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Abstract

Background: The African trypanosome Trypanosoma brucei is covered with a dense layer of Variant Surface Glycoprotein
(VSG), which protects it from lysis by host complement via the alternative pathway in the mammalian bloodstream. Blocking
VSG synthesis by the induction of VSG RNAi triggers an unusually precise precytokinesis cell-cycle arrest.

Methodology/Principal Findings: Here, we characterise the cells arrested after the induction of VSG RNAi. We were able to
rescue the VSG221 RNAi induced cell-cycle arrest through expression of a second different VSG (VSG117 which is not
recognised by the VSG221 RNAi) from the VSG221 expression site. Metabolic labeling of the arrested cells showed that
blocking VSG synthesis triggered a global translation arrest, with total protein synthesis reduced to less than 1–4% normal
levels within 24 hours of induction of VSG RNAi. Analysis by electron microscopy showed that the translation arrest was
coupled with rapid disassociation of ribosomes from the endoplasmic reticulum. Polysome analysis showed a drastic
decrease in polysomes in the arrested cells. No major changes were found in levels of transcription, total RNA transcript
levels or global amino acid concentrations in the arrested cells.

Conclusions: The cell-cycle arrest phenotype triggered by the induction of VSG221 RNAi is not caused by siRNA toxicity, as
this arrest can be alleviated if a second different VSG is inserted downstream of the active VSG221 expression site promoter.
Analysis of polysomes in the stalled cells showed that the translation arrest is mediated at the level of translation initiation
rather than elongation. The cell-cycle arrest induced in the presence of a VSG synthesis block is reversible, suggesting that
VSG synthesis and/or trafficking to the cell surface could be monitored during the cell-cycle as part of a specific cell-cycle
checkpoint.
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Introduction

African trypanosomes are masters of extracellular survival in the

mammalian bloodstream, where they multiply in the face of

continuous host immune attack both from antibodies and the

complement system. Of critical importance for the bloodstream

form trypanosome is a dense protective layer of Variant Surface

Glycoprotein (VSG), which shields invariant surface receptors from

recognition [1]. Eventually the host mounts an effective antibody

response against a given VSG variant, whereby B-cell responses

against the predominant VSG play a critical role [2]. However, as

new VSG switch variants continuously arise within the population,

these escape recognition and form the next wave of infection. This

highly sophisticated strategy of antigenic variation (reviewed in:

[3,4,5]) allows the trypanosome to maintain a chronic infection.

An individual trypanosome encodes a vast repertoire of more

than 1500 VSGs which are highly divergent in sequence [6]. In

fact, it has been estimated that in T. brucei 927 about 60% of the

VSGs are unique, with the rest occurring in very small subfamilies

[7]. Despite this great dissimilarity at the sequence level, VSGs

with different amino acid sequences have a highly conserved

tertiary structure [8,9]. This conservation in VSG shape

presumably allows a trypanosome switching from one VSG type

to another to form a protective coat composed of different VSG

types. There are about 56106 VSG dimers per cell, which are

attached to the cell surface through a glycosylphosphatidylinositol

(GPI) anchor [10]. This makes the VSG layer on the trypanosome

cell surface a very dense but highly fluid barrier. Extremely high

rates of VSG endocytosis allow the trypanosome to continuously

exchange the VSG on its surface [11]. Trypanosome motility
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coupled with these high rates of endocytosis allow the trypano-

some to rapidly remove VSG-antibody complexes, providing

protection from low titres of anti-VSG antibodies [12].

We have shown previously that VSG is essential in bloodstream

form T. brucei, even in vitro in the absence of antibodies or

complement. Blocking VSG synthesis results in a very striking and

precise precytokinesis cell-cycle arrest with no re-initiation of S

phase [13]. The precision of this cell-cycle arrest argues that VSG

synthesis is monitored as part of a cell-cycle checkpoint, whereby

progression is halted in the absence of sufficient VSG [13]. The

unusually tight nature of this precytokinesis cell cycle arrest

phenotype is unique in bloodstream form T. brucei, as other

bloodstream form RNAi cytokinesis mutants described thus far

have phenotypes whereby cells continue to attempt cytokinesis

while subsequently re-entering S-phase in a new cell-cycle

[14,15,16,17,18,19]. For example, depletion of the GPI8 catalytic

subunit of the GPI: protein transamidase complex in bloodstream

form T. brucei (resulting in the accumulation of unanchored VSG)

results in a precytokinesis arrest [19]. Alternatively, inhibition of

synthesis of a variety of flagellar proteins in bloodstream form T.

brucei including the basal body and flagellar protein KMP-11

[16,18] or aurora kinase-1 (TbAUK1) and related proteins results

in an inhibition of cytokinesis [14,15]. However these different

precytokinesis cell-cycle arrest phenotypes are all imprecise, as the

arrested cells repeatedly re-enter S-phase, and show characteristic

multinuclear, multikinetoplast and multiflagellar phenotypes.

In contrast, cells in which VSG221 RNAi has been induced are

precisely stalled precytokinesis with two nuclei and two kineto-

plasts, and show no indication of cleavage furrow initiation or re-

entry into S-phase. The fact that the arrested cells induced by VSG

RNAi do not re-enter S-phase, and the precision of the

precytokinesis block suggest that VSG synthesis or transport could

be sensed through a mechanism that interacts with the

trypanosome cell-cycle. It is likely that in the absence of VSG

synthesis or transport to the cell surface, a checkpoint is activated

which accurately stops cell-cycle progression, preventing further

cell growth and an increase in cell volume, which would cause a

dilution of the cell surface VSG.

Here we demonstrate that the precise precytokinesis arrest

triggered by the induction of VSG RNAi, is due to a block in VSG

synthesis rather than toxic effects caused by large amounts of

siRNAs derived from the ablated VSG transcript. We show that the

VSG RNAi induced cell-cycle arrest could be rescued if a second

different VSG, which is not recognised by the VSG RNAi, was

introduced into the same VSG expression site. Strikingly, we show

that blocking VSG synthesis triggered a global down-regulation of

protein synthesis down to less than 1–4% normal levels. This

translation arrest was correlated with disassociation of ribosomes

from the endoplasmic reticulum (ER) and a drastic reduction in

polysomes, arguing that the translation arrest was operating at the

level of translation initiation. Additionally, we show that the

precise precytokinesis cell-cycle arrest observed was reversible,

suggesting that VSG synthesis or transport to the cell surface could

be monitored as part of a cell-cycle checkpoint.

Results

The cell-cycle arrest triggered by VSG221 RNAi could be
rescued by expression of VSG117

Blocking VSG synthesis by inducing VSG RNAi results in a very

striking and specific cell-cycle arrest whereby cells stall prior to

cytokinesis without reinitiating S-phase [13]. However, a concern

with this experimental approach, is that the induction of VSG RNAi

could result in high levels of siRNA generated from the RNAi

mediated degradation of the highly abundant VSG transcript, which

is efficiently ablated down to 1–2% normal levels [13]. In order to

determine if toxic effects of the VSG221 siRNA were causing the

growth arrest, we generated trypanosomes expressing two different

VSGs from the same VSG expression site (Fig. 1A). The parental T.

brucei 221VB1.1 line expresses a telomeric VSG221 gene, and

contains a construct allowing the induction of VSG221 RNAi. These

cells cease growth very rapidly in the presence of tetracycline

induced VSG221 RNAi (Fig. 1B) [13]. In this cell line, a construct

containing a VSG117 gene was inserted immediately downstream of

the promoter of the VSG221 expression site to produce the T. brucei

221VP117 cell line (Fig. 1A).

Two independent T. brucei 221VP117 clones were generated

which express two VSGs from the same VSG expression site.

Approximately equal amounts of both VSG117 and VSG221

transcript and protein (Fig. 1C and 1D) were produced in these

cells, and both VSGs were present on the cell surface (result not

shown). Although these two VSG genes were expressed from the

same VSG expression site, the amount of transcript and protein

produced from each VSG appeared to be about half normal levels

(Fig. 1C and 1D). When VSG221 transcript was knocked down by

the induction of VSG221 RNAi, both VSG117 transcript and

protein increased. This indicates that the maximum amount of

VSG transcript that can be expressed is restricted, possibly due to

either a limiting VSG transcript stabilising protein or a restricting

aspect of the RNA processing machinery. Double-expressing

trypanosomes had been thought to express more VSG than

normal, and it had been speculated that these trypanosomes

expressing two different VSGs on their surface could have a larger

volume than normal [20]. However, in agreement with our finding

that ‘‘double-expressor’’ trypanosomes expressing both VSG117

and VSG221 on their surface had levels of total VSG comparable

to parental trypanosomes expressing just VSG221, we did not find

that the ‘‘double-expressors’’ had a significantly larger cell volume

(Fig. S1).

As VSG117 and VSG221 are dissimilar in sequence, VSG117

transcript is not targeted by VSG221 RNAi. As expected, after the

induction of VSG221 RNAi with tetracycline for 6 hours, the

VSG221 transcript had almost completely disappeared, while levels

of the VSG117 transcript did not decrease (Fig. 1C). Disappear-

ance of the VSG221 transcript was followed by decrease of

VSG221 protein from the cells where VSG221 RNAi had been

induced (Fig. 1D), presumably as a result of protein turnover, and

dilution through cell growth. The induction of VSG221 RNAi in

the T. brucei 221VP117 cells did not lead to significant growth

arrest, showing that the VSG117 protein can compensate for lack

of VSG221 (Fig. 1B). These results demonstrate that the drastic

growth arrest induced in the parental T. brucei 221VB1.1 cells in

the presence of VSG221 RNAi was not a consequence of siRNA

toxicity, as VSG221 siRNA was also being produced in the rescued

T. brucei 221VP117 lines in the presence of tetracycline. In

contrast, these results argue that the precise precytokinesis arrest

observed after the induction of VSG RNAi is a direct consequence

of blocking VSG synthesis. Attempts to establish if high level

expression of a different surface protein on the surface of

bloodstream form T. brucei could complement for lack of VSG

synthesis were unsuccessful. We inserted a copy of a procyclin gene

in the active VSG221 expression site, however high level expression

of procyclin appeared to be toxic in bloodstream form T. brucei

(S.T. and G.R. unpublished results).

Blocking VSG synthesis triggers a global translation arrest
As blocking VSG synthesis triggers a cell-cycle arrest and a

block in cell growth, we investigated if further metabolic activities

T. brucei Translation Arrest
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were compromised. Total protein synthesis was followed by

metabolic labeling of T. brucei 221VG1.1 cells with [35S]-

methionine where VSG RNAi was induced for different times

over a 24 hour period. Surprisingly, total protein synthesis

decreased dramatically in a time dependent manner, and was

reduced to less than 1% after 24 hours (Fig. 2A and 2B). In

contrast, the total amount of protein as detected using Coomassie

stained gels remained largely unchanged (Fig. 2A). As incorpora-

tion of [35S]-methionine into protein decreased, uptake also

decreased, consistent with the cell maintaining a normal

intracellular level of the amino acid even under conditions where

protein synthesis was not draining the intracellular pool (Fig. 2B).

In parallel, we investigated [3H]-serine uptake and incorporation

into protein and lipid (Fig. 2C, Fig. S2). After the induction of a

VSG synthesis block, the decrease in incorporation of [3H]-serine

into protein resembled that seen monitoring incorporation of

[35S]-methionine. However, incorporation of [3H]-serine into the

lipid fraction remained unchanged over 24 hours. Using a variety

of approaches, we have found that lipid synthesis was unimpaired

in T. brucei 221VG1.1 stalled by the induction of VSG221 RNAi for

up to 24 hours (T. K. S. unpublished results). As a consequence,

the uptake of [3H]-serine, while decreasing as a consequence of the

translation arrest, reached equilibrium at about 20% of its original

level. This remaining serine uptake supplies the unchanged serine

utilisation in the formation of serine containing phospholipids i.e.

phosphatidylserine (T. K. S. unpublished results).

One mechanism for mediating a translation block is by a

perturbation of amino acid transport resulting in a reduction in

Figure 1. T. brucei expressing both VSG117 and VSG221 from the active VSG221 expression site escapes VSG221 RNAi induced cell-
cycle arrest. A) Schematic of the T. brucei 221VP-117 cell line. A construct containing a VSG117 gene linked to a puromycin resistance gene (Pur) and
flanked by tubulin and VSG221 RNA processing signals (white boxes) is inserted immediately downstream of the promoter (white flag) of the active
VSG221 expression site. Various expression site associated genes within the VSG221 expression site are indicated with blue boxes and the telomeric
VSG221 gene with a red box. This cell line also contains a VSG221 RNAi construct linked to a phleomycin resistance gene (dark blue box) driven by an
rDNA promoter (black flag). In the presence of tetracycline, transcription of a VSG221 fragment (red box) from opposing tetracycline inducible T7
promoters (black arrows) results in VSG221 RNAi. Relevant transcription is indicated with red arrows. B) T. brucei expressing both VSG117 and VSG221
from the active VSG221 expression site escapes growth arrest in the presence of VSG221 RNAi. The parental T. brucei VB1.1 cell line (VB1) expresses
only VSG221 from the active VSG221 expression site and was incubated in the presence (+) or absence (2) of tetracycline to induce VSG221 RNAi. The
T. brucei 221VP-117 clones VP117.1 and VP117.2 were also grown in the presence or absence of tetracycline in order to induce VSG221 RNAi. The
standard deviation of triplicate counts is indicated with error bars. C) Northern blot analysis of T. brucei 221VP-117 cell lines in the presence of VSG221
RNAi. RNA from the parental (P) T. brucei 221VB1.1 cell line was compared with RNA from the T. brucei 221VP-117 clones VP117.1 and VP117.2 which
had VSG221 RNAi induced with tetracycline (Tet) for the time in hours (h) indicated above. The blots were probed for VSG221, VSG117 or tubulin as a
loading control. D) Western blot analysis of the T. brucei 221VP-117 cell line VP117.1 after the induction of VSG221 RNAi for the time in hours
indicated above. Protein lysates from T. brucei HN1(VO2+) expressing VSGVO2, T. brucei HN1(221+) expressing VSG221 or the parental T. brucei
221VB1.1 cell line expressing VSG221 were compared with lysates from T. brucei 221VP-117 clone VP117.1 in the presence of VSG221 RNAi induced for
the time in hours indicated above. The Western blot was probed with antibody against VSG221, VSG117 or BiP as a loading control.
doi:10.1371/journal.pone.0007532.g001
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intracellular amino acid concentrations. We therefore measured

amino acid pools in uninduced T. brucei 221VG1.1 cells compared

with cells where VSG221 RNAi had been induced for 24 hours

(Table 1). No drastic reductions in amino acid levels were observed

with the exception of levels of serine and glutamine, which were

reduced to approximately 33% and 22% of normal levels

respectively. Although this reduction is significant, it is unlikely

to result in the observed extreme translation block, which is down

to less than 1–4% normal levels. The intracellular concentrations

of both glycine and arginine surprisingly increase upon induction

of VSG RNAi, which may be associated with the general slow

down in other specific metabolic pathways. It should also be noted

that these amino acids are also used for cellular functions other

than protein synthesis. Serine is used for phospholipid biosynthesis

and glutamine as a donor for amino-transferases while glycine may

be used in the glycine cleavage system and arginine is utilised in

polyamine de novo synthesis.

We wanted to investigate if the observed translation arrest was a

downstream nonspecific effect of a lethal RNAi phenotype. We

therefore additionally performed [35S]-methionine metabolic label-

ing experiments in bloodstream form T. brucei stalled after the

induction of RNAi against clathrin [21], the flagellar protein PFR2

[18], tubulin [22] and actin [23] (Fig. S3). RNAi mediated

inhibition of these different proteins in bloodstream form T. brucei

Figure 2. Blocking VSG synthesis triggers a global translation arrest in T. brucei. A) T. brucei 221VG1.1 cells had VSG synthesis blocked by
the induction of VSG221 RNAi for the time indicated in hours (h) prior to labeling with [35S]-methionine for one hour. Proteins were separated on an
SDS-PAGE gel. The left panel shows [35S]-labeled proteins detected by fluorography ([35S]-Meth.). On the right is the corresponding Coomassie
stained gel (Coom.). Protein sizes are indicated in kiloDaltons (kDa). B) Triplicate samples of the [35S]-methionine labeled cells were processed to
determine the mean rate) of [35S]-methionine uptake and incorporation into total protein after the induction of VSG221 RNAi for the time indicated in
hours (h) with the standard deviation indicated with error bars. C) VSG221 RNAi was induced in T. brucei 221VG1.1 cells for the time indicated in hours
(h) prior to labeling for one hour with [3H]-serine. Replicate aliquots of the labeled cells were processed, and incorporation of [3H]-serine radiolabel
into either the whole cell (uptake), total protein or lipid fractions was determined. The values show the means and standard deviations (indicated
with error bars) of three separate labeling experiments, whereby the values at time 0 are normalised to 100%.
doi:10.1371/journal.pone.0007532.g002
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results in inhibition of growth within 24 hours, with eventual cell

death. Inhibition of tubulin and PFR2 synthesis results in an

imprecise precytokinesis arrest and cells with multiple nuclei and

multiple flagella [18,22]. Knock-down of clathrin and actin

interferes with vesicular trafficking, producing an enlarged flagellar

pocket or ‘‘big-eye’’ phenotype and rapid cell death [21,23,24].

Although inhibition of tubulin synthesis for 24 hours quickly

arrests cells which later die, there was no evidence for significantly

reduced translation in these stalled cells (Fig. S3). Inhibition of

PFR2 synthesis resulted in translation reduced to about 40%

normal levels, which is still at least ten to forty fold higher than

that observed after blocking VSG synthesis. Inhibition of clathrin

synthesis resulted in a reduction in translation to about 19%

normal levels, and blocking actin synthesis resulted in reduction in

levels of translation to about 9% normal. However, knock-down of

these last two proteins would also be expected to interfere with

endocytosis, and therefore with VSG recycling [12,21,23,24]. It is

therefore unclear if the observed translation arrest in these cells

was a consequence of a disruption of deposition of VSG on the cell

surface. The fact that RNAi mediated knock-down of tubulin

effectively stalls cell growth without a significant decrease in

translation, indicates that reduced protein synthesis is not always a

consequence of a lethal RNAi phenotype. In addition, there are a

number of examples of conditional knock-outs of metabolic

enzymes generating a lethal phenotype prior to disruptions to

translation associated with a dying cell. These include conditional

knock-outs of phosphatidylinositol synthase [25], myo-inositol-3-

phosphate synthase [26], and cytidyl ethanolamine-phosphate

transferase [27].

RNA metabolism in cells stalled by the induction of
VSG221 RNAi

We next investigated if this total block in protein synthesis was

caused by changes in RNA transcript stabilities or a global

transcription arrest in the stalled T. brucei VG1.1 cells. Northern

blot analysis of T. brucei 221VG1.1 [13] showed rapid ablation of

VSG221 transcript within 4 hours of induction of VSG221 RNAi

(Fig. 3A). The blots were subsequently hybridised with probes for a

range of housekeeping genes including the chromatin proteins

TDP1 [28] and TbISWI [29], NUP1 [30], structural proteins like

the flagellar protein PFR2 [31], actin, tubulin and the 18S

ribosomal RNA as well as eGFP (which is present in the active

VSG221 expression site [13]), ESAG5 and ESAG6/7. We did not

observe any drastic decreases in transcript levels, certainly not

down to levels that would explain the observed global translation

arrest (Fig. 3A, Fig. S4). The minor decrease in PFR2 and tubulin

transcript after the induction of VSG RNAi could be a

consequence of feedback mechanisms down-regulating transcripts

in cells that are stalled in the cell-cycle and therefore not in need of

these structural proteins. In addition, we found no evidence that

induction of VSG221 RNAi resulted in a decrease in the level of

transcripts derived from the active VSG221 expression site.

Recently, a novel stress response has been described in T. brucei

where RNAi mediated silencing of the signal-recognition particle

(SRP) receptor results in silencing of spliced leader RNA

transcription and a significant reduction in total mRNA [32].

However, no reduction in spliced leader RNA was found in T.

brucei 221VG1.1 cells after the induction of VSG221 RNAi for up

to 24 hours (Fig. S5). Therefore the translation arrest observed

after the induction of VSG221 RNAi must be operating through a

different stress-response pathway than that involved in the spliced

leader RNA silencing (SLS) response.

To investigate if transcription was arrested in the stalled cells,

we monitored levels of total transcription in T. brucei 221VB1.1 by

incorporating BrUTP into nascent transcripts in permeabilised

cells (Fig. 3B). The incorporated BrUTP nucleotide analogue can

be detected using an antibody against BrdUTP [33]. We

compared levels of BrUTP incorporation in precytokinesis cells

in the absence or presence of VSG221 RNAi. After 24 hours

tetracycline induction of VSG221 RNAi, arrested cells had levels of

total transcription that appeared comparable to that in untreated

cells immediately prior to cytokinesis (Fig. 3B, -a-ama). The toxin

a-amanitin inhibits RNA polymerase II and III transcription at

concentrations of 200 mg ml21, leaving transcription by RNA

polymerase I unaffected. As seen in Fig. 3B, the inclusion of a-

amanitin (+ a-ama) inhibited all transcription except for that of the

rRNA in the nucleolus, as well as transcription of the active VSG

expression site located in the expression site body (ESB), which is

seen as a small discrete spot [34]. There was no discernible

difference in transcription of RNA Pol I after blocking VSG

synthesis for 24 hours. Therefore the total block in protein

synthesis was not caused by a general arrest in transcription.

Induction of a VSG synthesis block results in
disassociation of ribosomes from the ER and a reduction
in polysomes

If the observed translation arrest was operating at the level of

translation elongation, one would expect to see unaffected

distribution of ribosomes on the ER. In order to investigate this,

we determined the distribution of ribosomes on the endoplasmic

reticulum (ER) using transmission electron microscopy (TEM) and

a nonstandard TEM fixing and staining technique. Normally

ribosomes are distributed uniformly on the outer membrane of the

Table 1. Intracellular amino acid concentrations in T. brucei in
the presence (+) or absence (2) of tetracycline induced VSG
RNAi for 24 hours.

Intracellular amino acid concentration (mM)a

Amino Acid VSG RNAi (2) VSG RNAi (+) % of wild type

Asp 113.565.8 86.364.9 76

Glu 243.168.5 169.066.4 70

Gly 306.269.3 545.6613.8 178

Ala 68.963.6 61.864.6 90

Val 158.864.5 135.164.0 85

Ileu 207.866.9 174.164.6 84

Leu 145.664.5 126.763.8 87

Gln 841.367.6 184.164.5 22b

Ser 94.463.0 31.161.3 33b

Thr 45.962.2 33.361.8 73

Arg 69.963.5 112.369.4 161

Lys 55.667.8 53.766.2 97

Tyr 82.665.6 72.465.6 88

Phe 27.061.9 21.462.2 79

Try 4.760.4 5.960.7 126

Meth 379.868.7 354.866.7 93

Pro 79.763.4 79.364.1 100

aAmino acid concentrations within the cells were determined as described in
Materials and Methods. The intracellular concentration was calculated using
the cell volume 5.89 ml/108 cells [59]. Values are means6SD of three separate
determinations normalised using the internal standard norleucine.

bSignificant difference (P,0.05).
doi:10.1371/journal.pone.0007532.t001
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nuclear envelope, which is contiguous with the rough ER

(indicated with arrows in Fig. 4A and B). After induction of

VSG221 RNAi in T. brucei 221VG1.1 cells for 8 hours, the nuclear

envelope appeared to be devoid of significant numbers of bound

ribosomes (Fig. 4C and D). This disassociation of ribosomes from

the ER coincided with the previously observed decrease in protein

synthesis. This result is consistent with the observed translation

arrest being a consequence of disassociation of polysomes in the

Figure 3. Transcription analysis of cells where VSG synthesis is blocked. A) Northern blot analysis of T. brucei 221VG1.1 cells where VSG221
RNAi had been induced for the time indicated above in hours (h). The parental (P) T. brucei 90-13 cell line does not contain the VSG221 RNAi
construct. The T. brucei 221VG1.1 cell line was either not incubated with tetracycline (2 Tet) or had VSG221 RNAi induced with tetracycline for the
times indicated above. Blots were hybridised with probes for Actin, NUP1, eGFP (present in the active VSG221 ES), TDP1, tubulin (Tub), ESAG5, 18S
rRNA, ISWI, ESAG6/7, VSG221 and PFR2. Ethidium stains of the gels are indicated on the right to indicate total RNA loaded. B) Transcription analysis of
T. brucei 221VG1.1 where VSG synthesis was blocked by the induction of VSG221 RNAi with tetracycline (Tet) for 0 or 24 hours (h). Cells were
incubated with BrUTP to label nascent transcripts and subsequently incubated with an anti-BrdUTP antibody, and a secondary antibody coupled to
Alexa 488. DNA was stained with DAPI. A normal precytokinesis cell (0 h) is compared with a precytokinesis cell arising after the induction of VSG
RNAi for 24 hours (24 h). The experiment was performed in the absence of a-amanitin (2 a-ama) to visualise total transcription, or in the presence of
200 mg ml21 a-amanitin to inhibit transcription by RNA polymerases II and III and visualise transcription by RNA polymerase I (+ a-ama). The scale bar
indicates 4 mm. Quantitation of transcription as fluorescence in the FITC channel is in arbitrary units using 50 cells per time point, with standard
deviation indicated with error bars.
doi:10.1371/journal.pone.0007532.g003

T. brucei Translation Arrest

PLoS ONE | www.plosone.org 6 October 2009 | Volume 4 | Issue 10 | e7532



stalled cells rather than a scenario whereby polysomes remain

intact but translation elongation is blocked.

Polysomes are large complexes composed of translating

ribosomes associated with mRNA transcripts which fractionate

at the bottom of sucrose gradients. In contrast, free ribosomes

fractionate at the top of the gradient. Polysome profiles from

normal cells and cells where a VSG RNAi mediated block of VSG

synthesis had been induced were determined by separating lysed

T. brucei over sucrose gradients (Fig. 5). We first determined the

polysome profile of T. brucei incubated with cycloheximide

(50 mg ml21), which blocks translation elongation [35]. The

ribosomes as monitored by absorbance at 254 nm were primarily

found in polysomes, which contain transcripts associated with the

translating ribosomes (Fig. 5A). In contrast, if T. brucei is incubated

with pactamycin (200 ng ml21) which blocks translation initiation

[35,36], ribosomes disassociated from the transcripts, and there

was a dramatic increase in free ribosomes (80S)(Fig. 5B).

In a similar fashion, polysome profiles were determined for T.

brucei 221VG1.1 in the presence or absence of a VSG synthesis

block. In the absence of VSG221 RNAi (Fig. 5C), most of the

ribosomes were associated with polysomes. However, after the

induction of VSG221 RNAi for 24 hours, there was a drastic

decrease in polysomes and an increase in free ribosomes (80S)

(Fig. 5D). These experiments demonstrate that the global

translation arrest observed after the induction of VSG221 RNAi

was operating through a block in translation initiation rather than

translation elongation.

We have not found evidence for striking changes in levels of a

range of different T. brucei translation factors (eIF4A, eIF4E1-4)

[37](M. Narayanan, O. Neto, M.C. and G.R. unpublished) after

the induction of a VSG RNAi induced cell-cycle arrest.

Phosphorylation of translation initiation factor eIF2a is an

important potential mechanism for blocking global protein

synthesis at the level of translation initiation [38,39]. However,

we have not found evidence for changes in levels or phosphor-

ylation state of T. brucei eIF2a in cells stalled after the induction of

VSG RNAi for up to 24 hours (M. Narayanan and G. R.

unpublished results). Similar to what we describe here, there is a

comparable reduction in polysome abundance after the induction

of a heat-shock response in trypanosomes, yet no evidence for

changes in the phosphorylation state of eIF2a [40]. This could

indicate significant differences in translation control in trypano-

somes compared with other eukaryotes.

A concern with a global translation arrest is that it is a

consequence of dying cells. We know that levels of transcription,

lipid synthesis and endocytosis of FITC-tomato lectin are not

obviously affected in the arrested cells (Fig. 3, [13]), indicating that

they are metabolically active. In order to investigate protein

composition in these stalled cells, we used proteomic two

dimensional Difference Gel Electrophoresis (2D-DIGE analysis)

[41]. We did not see any significant up- or down-regulation of the

levels of any individual protein in cells stalled after the induction of

VSG RNAi for 8 hours, when the cell-cycle arrest is already

maximal (Sup. Fig. 6). Although this type of proteomic analysis

would only be expected to sample the most abundant proteins (in

our case 1486 different spots), this result indicates that the arrested

cells do not have a drastically different protein composition from

normal. This would support the observation that the cells arrested

immediately after the induction of the cell-cycle arrest are not an

obviously dying system that is degrading. Because blocking VSG

synthesis could be expected to result in aberrant expression of

other surface proteins in the cell as a compensatory effect, we

looked specifically at the procyclic specific cell surface protein

procyclin. However, we did not observe that blocking the major

cell surface protein (VSG) resulted in significant upregulation of

procyclin, either at the RNA or the protein level (Fig. S7).

The VSG RNAi mediated cell-cycle arrest is reversible
As a global translation arrest is an extreme phenotype, we next

determined if the cell-cycle arrest triggered by the induction of VSG

RNAi is reversible. T. brucei 221VB1.1 was incubated with the water

soluble tetracycline analogue doxycycline for 12 hours to induce

VSG221 RNAi and induce a cell-cycle arrest (Fig. 6A). Doxycycline

was then removed by washing the cells and transferring them to fresh

Figure 4. Ultrastructural evidence for disassociation of ribosomes from the endoplasmic reticulum after blocking VSG synthesis. A)
In non-induced T. brucei 221VG1.1 cells (0 h), the outer membrane of the nuclear envelope is studded with ribosomes (arrows). Membranes are not
contrasted because cells are not treated with osmium tetroxide. Scale bars represent 200 nm. B) A region of the nuclear envelope indicated with a
white box in (A) shown at 4x higher magnification. An array of membrane-associated ribosomes is indicated with arrows. c = cytoplasm and
n = nucleoplasm. C) After induction of VSG RNAi for 8 hours, large stretches of nuclear envelope are devoid of ribosomes (arrows). D) A region of the
nuclear envelope indicated with a white box in (C) shown at 4x higher magnification. No membrane-associated ribosomes are observed.
doi:10.1371/journal.pone.0007532.g004
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medium. VSG RNAi was induced using 300 pg ml21 doxycycline, as

this concentration reproducibly triggered a maximum cell cycle

arrest, yet was low enough to facilitate the washing step (Fig. S8).

Comparable cell cycle arrest results were obtained using 2 ng ml21

tetracycline. However using tetracycline resulted in greater exper-

imental variability compared with doxycycline, possibly due to

differences in its solubility or cell permeability.

After an initial lag of about 24 hours following doxycycline

removal, the cells resumed growth, presumably due to the

translation arrest impeding rapid recovery. Northern blot analysis

showed that VSG221 transcript levels returned back to normal

levels 56 hours after the stalled cells were removed from

doxycycline (Fig. 6B). These recovered cells stalled abruptly if

VSG221 RNAi was induced again, showing that they were still fully

responsive to VSG RNAi. To determine the cloning efficiency of

this experimental procedure, serial dilutions were plated out in

microtitre dishes. The observed rescued trypanosomes arose

reliably in about 15% of the wells when less than 80 stalled cells

were allowed to recover, which is about 30x less efficient than that

of cloning the parental T. brucei 221VB1.1 line (Fig. S9). This

relatively low cloning efficiency is presumably due to deleterious

aspects of the VSG RNAi induction, including the generation of

internalised flagella in some of the cells [13]. However, our

recovered cells arise more rapidly than would be expected from

generation by background mutations, as the mutation rate in T.

brucei has been estimated to be about 1029 per bp per cell

generation [42]. These results argue that the cell-cycle arrest

triggered by blocking VSG synthesis is reversible. After a brief

arrested state, some of the cells re-enter the cell-cycle and resume

dividing. The reversibility of the precise precytokinesis cell-cycle

arrest suggests that this phenomenon is not necessarily a dead end

pathway. It could possibly have relevance in allowing the

trypanosome to react to fluctuations in either VSG synthesis

and/or deposition of VSG on the cell surface that are less drastic

than those described here, where essentially all VSG synthesis is

blocked for a significant period of time.

Discussion

We show that although the induction of VSG221 RNAi

normally induces a precise precytokinesis cell-cycle arrest in

Figure 5. Polysome profile analysis indicates that the VSG221 RNAi induced global translation arrest operates at the level of
translation initiation. A) Polysome profile of T. brucei 221VG1.1 cells which have been incubated with cycloheximide (50 mg ml21) to block
translation elongation. The percentage of sucrose from top to bottom of the gradient is indicated on the X-axis, with the absorbance at 254 nm
indicated on the Y-axis. The free ribosomes (80S) and ribosomal subunits (40S and 60S) are indicated with arrows. The polysomes (translating
ribosomes bound to transcript) are indicated with a bar. B) Polysome profile of T. brucei 221VG1.1 cells which have been incubated with pactamycin
(200 ng ml21) to block translation initiation. C) Polysome profile of T. brucei 221VG1.1 in the absence (2) of VSG RNAi. D) Polysome profile of T. brucei
221VG1.1 where VSG221 RNAi has been induced for 24 hours (+).
doi:10.1371/journal.pone.0007532.g005
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VSG221 expressing trypanosomes, cells did not stall in the cell-

cycle if VSG117 (which is not recognised by the VSG221 RNAi) was

also expressed from the active VSG221 expression site. This argues

that the cell-cycle arrest observed after the induction of VSG221

RNAi is a consequence of lack of newly synthesised VSG rather

than toxicity of the VSG221 siRNA. Surprisingly, an extreme and

global block in protein synthesis was induced in the stalled cells,

whereby total translation was reduced to 1–4% normal levels after

24 hours induction of VSG221 RNAi. No major changes in

transcription or transcript levels were observed that explain this

protein synthesis block. However, after 8 hours induction of VSG

RNAi ribosomes appeared to have disassociated from the ER.

Polysome analysis of the stalled cells showed that the translation

block was operating at the level of translation initiation rather than

translation elongation. Despite the striking changes in the arrested

cells, particularly with regards to the global arrest in protein

synthesis, the cell-cycle arrest was reversible suggesting that VSG

synthesis and/or deposition on the cell-surface is possibly being

monitored as part of a normal cell-cycle checkpoint.

Earlier, it has been shown that T. brucei can be genetically

modified to express two VSGs from the telomere of the active VSG

expression site [43]. We show that a second VSG could also be

efficiently expressed if it was inserted immediately downstream of

the promoter of the active VSG expression site rather than in its

usual telomeric location. The invariably telomeric location of VSGs

within VSG expression sites therefore presumably facilitates VSG

recombinogenicity rather than being essential for expression.

Surprisingly, the precise precytokinesis arrest observed after

blocking VSG synthesis coincided with an extreme and global

block in protein synthesis down to less than 1–4% normal levels.

No major decrease in transcription or steady state transcript levels

was observed that explains this protein synthesis block. Although

Figure 6. The cell-cycle arrest in T. brucei 221VB1.1 triggered by blocking VSG221 synthesis is reversible after the removal of
doxycycline. A) Doxycycline was added to a culture of T. brucei 221VB1.1 (VB1) for 12 hours (indicated with an arrow labeled addition dox) to
induce VSG221 RNAi and a subsequent cell-cycle arrest. The cells were then washed to remove the doxycycline (removal dox) and growth was
monitored. After an initial stalled period, the trypanosomes started to grow. In order to establish that these growing trypanosomes were still
responsive to VSG221 RNAi, these growing trypanosomes were diluted and VSG221 RNAi was induced with 1 mg ml21 tetracycline (blue dashed line).
As a control, VSG221 RNAi was also induced in the parental T. brucei 221VB1.1 cells (red lines). The standard deviation of counts in triplicate is
indicated with error bars. B) Northern blot analysis of RNA from T. brucei 221VB1.1 cells following removal of doxycycline. RNA from the noninduced T.
brucei 221VB1.1 (VB1) is compared with RNA from T. brucei 221VB1.1 cells where doxycycline has been removed from the cultures for the time in
hours (h) indicated above. The blot was hybridised with a probe for VSG221. An ethidium stain (Eth) of the blot is indicated below.
doi:10.1371/journal.pone.0007532.g006
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there was some reduction in transcripts encoding structural

proteins including the flagellar protein PFR2 and tubulin, the

observed reduction of just a few transcripts does not explain the

global protein synthesis arrest phenotype. Similarly, Northern

blots probed with spliced leader RNA specific oligonucleotides

showed no drastic reduction in total mRNA (S.T. and G.R.

unpublished results). These results are compatible with our

observation that transcription was not detectably disrupted in

these stalled cells. These data agree with previously reported

results [44], which show that the T. brucei transcriptome remains

largely unchanged in trypanosomes when confronted with a

variety of stresses. This indicates that T. brucei does not respond to

environmental challenges through transcriptional regulation, and

in the absence of protein synthesis, still transcribes and then

degrades large amounts of excess transcript.

In addition, there were no abrupt decreases in intracellular

amino acid pools which could explain this block in protein

synthesis. Incorporation of methionine and serine into protein

decreased drastically. However, phospholipid synthesis was not

greatly altered in these stalled cells (T.K.S. unpublished data),

allowing serine uptake (at about 20% normal levels) and

incorporation into phospholipids to continue. This continued

uptake of serine indicates that the protein synthesis block was not a

consequence of disruption in general amino acid uptake, possibly

through minor perturbations in the VSG coat negatively affecting

amino acid transporters. Also if this were the case, then the stalled

cells would not be able to escape the cell-cycle arrest.

Polysome analysis of the stalled cells showed that the translation

block was operating at the level of translation initiation rather than

translation elongation. Compatible with this, after 8 hours

induction of VSG RNAi ribosomes appeared to have disassociated

from the ER. The signal sequence on nascent peptides targets the

translating ribosome to the ER membrane, facilitating anchoring

of the ribosome to the ER through the binding of the signal

recognition particle (SRP) to SRP receptors on the ER surface

[45,46]. As VSG is the major secreted protein in bloodstream form

T. brucei, blocking its synthesis would result in a drastic reduction in

nascent peptides with signal sequences. Ribosomal subunits in

mammalian cells remain membrane-bound after pharmacological

inhibition of protein synthesis [45]. Even if ribosomal subunits

initially remained membrane-bound upon termination of VSG

translation, ongoing translation of cytosolic transcripts would

result in a clearance of ribosomes from membranes [35]. This

probably occurs early after induction of VSG RNAi, and is

followed by the observed global translation arrest.

Why is there a global translation arrest in trypanosomes stalled

precytokinesis after the induction of a VSG synthesis block? The

first possibility is that the translation arrest is triggered as part of a

general stress response, perhaps as a consequence of lack of VSG

synthesis or deposition on the cell surface. In our experimental

system the ER is being depleted of newly synthesised VSG, which

accounts for 10% of the total protein, and which could generate a

form of stress. In some eukaryotes a global translation block can be

observed after the induction of the unfolded protein response

(UPR) [reviewed in: [47]]. UPR is triggered by ER stress,

including the accumulation of unfolded protein within the ER. If

this ER stress continues for a prolonged period, translation arrests

in order to stop the stream of additional protein into the

overburdened ER [38,48]. If the situation persists, the cell

undergoes apoptosis [47]. Our VSG RNAi induced arrest does

not appear to be the same as that induced by UPR, as there was

no significant upregulation of the chaperone BiP [13], which is

characteristic of UPR [49]. In addition, in the absence of VSG

synthesis the cells stall and remain metabolically active rather than

entering apoptosis. It is possible that trypanosomes have a novel

stress response pathway different to UPR, which is triggered by the

stress induced by a restriction operating on the deposition of VSG

on the cell surface. In this regard it is striking that knock-down of

actin, which would be expected to be involved in VSG recycling,

also results in a striking arrest in translation (Fig. S3).

Another stress response in trypanosomes is the spliced leader

RNA silencing response (SLS), which occurs after the induction of

stress in the ER by pH stress, or by blocking synthesis of the signal

recognition particle (SRP) receptor, which facilitates the translo-

cation of secretory proteins across the ER [32]. The SLS response

results in the down-regulation of the spliced leader RNA genes,

resulting in drastic reduction in total mRNA and subsequent cell

death [32]. The translation arrest observed after the induction of

VSG RNAi is not coupled to an SLS response, as there was no

reduction in spliced leader transcript after induction of VSG RNAi

for up to 24 hours (Fig. S5). In addition, there was no significant

reduction in total trans-spliced mRNA transcripts (another

expected consequence of induction of an SLS response) after the

induction of VSG RNAi for up to 24 hours (S.T. and G.R

unpublished results; [32]). Therefore the ER stress caused by

blocking VSG synthesis appears to use different pathways than

those that trigger the spliced leader RNA silencing response in

African trypanosomes.

A second possible explanation for the observed translation

arrest, is that trypanosomes always transiently arrest protein

synthesis when they are in the precytokinesis stage of the cell-cycle.

Earlier, it has been shown in mammalian cells that protein

synthesis slows down when cells are in the G2/M stage of the cell-

cycle [50]. However in our case, this is unlikely to provide the

explanation. After the induction of VSG RNAi, the stalled

population of trypanosomes is up to 60% enriched for precytokin-

esis stage cells, but still contains cells in other stages of the cell-

cycle which normally would be expected to be translationally

active [13]. This scenario is not compatible with our observed

block in protein synthesis down to less than 1–4% normal levels.

A third possibility is that the observed translation arrest is a

general feature of RNAi phenotypes that result in growth

inhibition and eventual death. This is not the case, as cells

arrested as a consequence of another lethal phenotype (induction

of a tubulin synthesis block) do not show reduced levels of

translation (Fig. S3). In addition, we have no evidence that our

cells are an obviously dying system within the 24 hour period used

in these analyses. Our arrested cells are viable for relatively long

periods, with virtually all cells intact and metabolically active

(other than protein synthesis) after 24 hours [13]. Endocytosis of

FITC-tomato lectin appears unimpaired [13], and as shown here,

there was no significant drop in transcription. In addition, the

proteomic analysis did not detect changes in the most abundant

proteins even in fully stalled cells (Fig. S6), confirming that we are

not looking at a system that is obviously falling apart. Last, arrested

cells were able to reenter the cell-cycle when doxycycline was

removed.

We favour an explanation whereby induction of a VSG

synthesis block triggers a stress response resulting in a global

translation arrest. Although it is unclear what exactly is being

‘‘sensed’’ in this stress response pathway, our data is most

compatible with a scenario whereby the cell senses the restriction

occurring from the lack of deposition of VSG on the cell surface.

The fact that downregulation of actin (which is necessary for

vesicular trafficking of VSG) also triggers a severe translation

arrest is compatible with this possibility.

Does this arrest operate in vivo during an infection? Our

experiments here document an extreme situation whereby
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virtually all VSG synthesis is rapidly blocked by the induction of

VSG RNAi. It is unclear if anything this extreme occurs within a

natural trypanosome infection. VSG synthesis also halts in

‘‘stumpy form’’ T. brucei where transcription of the active VSG

expression site stops [51]. There are some superficial similarities

between our cells arrested after the induction of a VSG synthesis

block and stumpy form T. brucei. Similar to stumpy cells, our

arrested cells are shorter and broader than normal, arguing that

this morphological change could be a consequence of a restriction

operating on VSG [13]. In addition, stumpy form T. brucei also

show reduced levels of protein synthesis and a reduction in

polysomes [52]. However, stumpy form T. brucei are stalled in G0

rather than precytokinesis, and have undergone other morpho-

logical changes that facilitate differentiation into procyclic form

trypanosomes that are not seen in our stalled cells. It is unlikely

that VSG synthesis is ever drastically reduced in bloodstream form

T. brucei to the extent seen after the induction of VSG RNAi.

However, possibly the stress response documented here has

evolved to allow the trypanosome to reduce cell growth in

response to fluctuations in amount of synthesised VSG rather than

complete ablation of VSG transcript. An important feature of this

stress response is reversibility, which could argue that the triggered

cell-cycle arrest has biological relevance, rather than being an

irreversible end-point from which the trypanosome is unable to

escape. The challenge for the future will be in unravelling exactly

which pathways are involved in these novel cell-cycle checkpoints.

Materials and Methods

Trypanosome strains, culturing and genetic modification
Bloodstream form T. brucei 427 was cultured in HMI-9 medium

with 10% SerumPlus (SAFC Biosciences) and 10% fetal calf serum

(Gibco). All trypanosomes used were bloodstream form variants

derived from T. brucei 427 90-13 expressing VSG221 [53]. The T.

brucei 221VB1.1 and T. brucei 221VG1.1 cell lines are described in

[13]. The T. brucei 221VP117 transformants have the p221-

purVSG117UTR construct inserted into the T. brucei 221VB1.1

cell line. The construct is integrated immediately behind the

VSG221 expression site promoter using the target fragments of the

221GP1 construct described in [54]. This construct contains the

VSG117 gene from pXS5:117VSG (gift of Jay Bangs)[55] flanked

downstream by the VSG221 UTR and polyadenylation sequences.

The VSG117 cassette is inserted downstream of the puromycin

drug resistance gene, which is flanked up and downstream by a-

tubulin gene RNA processing signals [54]. Homogeneity of the

VSG coat expressed was ensured by maintaining trypanosome

transfectants with drug markers in the active VSG expression site

on the appropriate drug selection pressure to prevent switches to

different VSG expression sites. Tet-system approved fetal calf

serum (Clontech) was used for some experiments requiring

tetracycline free conditions.

Nucleic acid and polysome analysis
For Northern blot analysis, total RNA was purified using

RNeasy RNA isolation kits (Qiagen). Approximately 1.5 mg total

RNA was loaded per lane on 1.5% formaldehyde agarose gels,

electrophoresed and blotted using standard protocols. Northern

blots were hybridized with random primed probes radiolabeled

with [32P]-dCTP using Amersham Ready-To-Go DNA labeling

Beads (-dCTP) (GE Healthcare). Details on the exact sequence of

the different Northern probes can be obtained from the authors.

Blots were imaged with a Bio-Rad Personal Molecular Imager FX.

Quantitation of signal was performed using Quantity One

software, and radioactive signals were plotted in arbitrary units.

Polysome analysis was performed according to [36] and [40],

whereby 400 ml cultures of T. brucei 221VG1.1 cells were grown to

a density of about 7.56105 cells ml21. VSG RNAi was induced by

incubating the cells with 1 mg ml21 tetracycline for 24 hours.

Pactamycin treated trypanosomes were incubated with

200 ng ml21 pactamycin (gift of Pfizer Global Research &

Development, Groton, Connecticut, USA) for 20 minutes at

37uC, and cycloheximide-treated trypanosomes were incubated

with 50 mg ml21 cycloheximide for 10 minutes at 37uC prior to

the start of polysome purification procedure. Cells were harvested

by centrifugation at 4uC and washed with HMI-9 without serum

(containing either pactamycin or cycloheximide where appropri-

ate). Cells were resuspended in polysome buffer (120 mM KCl,

2 mM MgCl2, 20 mM Tris pH 7.5, 1 mM DTT) containing

either cycloheximide or pactamycin where appropriate. Cells were

lysed using the detergent n-octylglycoside (which does not absorb

at 254 nm), loaded on top of 10%–50% sucrose gradients and

centrifuged for 2 hours at 36,000 rpm at 4uC in a Beckman

ultracentrifuge using a SW41 rotor. Gradients were then harvested

using a peristaltic pump and analysed using an absorbance reader

at 254 nm.

RNA analysis to determine the presence or absence of an SL

response was performed using end-labeled 9091 oligonucleotide

to detect the spliced leader and U3 oligonucleotide

(16105 cpm pmol21) according to [56]. After annealing at 60uC
for 15 minutes, the sample was kept on ice for one minute. Next,

one unit of reverse transcriptase (Expand RT, Roche Molecular

Biochemicals) and one unit of RNase inhibitor (Promega) were

added, and extension was performed at 42uC for 90 minutes. The

reaction was analysed on a 6% polyacrylamide denaturing gel.

Microscopy
Labeling of nascent RNA using BrUTP was performed

essentially according to [34], only the Saponin (Sigma) incubation

was performed at 4uC. After the transcription reaction, cells were

washed and fixed in 2% paraformaldehyde and BrUTP labeled

transcripts were detected with a monoclonal anti-BrdUTP

antibody (Roche). For transmission electron microscopy analysis

of membrane bound ribosomes, cells were fixed by addition of

2.5% glutaraldehyde directly to the culture medium followed by

fixation in 2.5% glutaraldehyde in 0.1 M phosphate buffer pH 7.0

for 2 hours at room temperature without osmium tetroxide post-

fixation. Cells were dehydrated in a graded series of ethanol and

embedded in Epon resin. Thin sections were stained 5 minutes

with 5% aqueous uranyl acetate and 1 minute with 0.1% lead

citrate and examined in a FEI Tecnai 12 transmission electron

microscope.

Cell-cycle arrest reversibility and cell volume
measurements

T. brucei 221VB1.1 was cultured with a starting cell density of

about 36105 cells ml21. Doxycycline was added to a final

concentration of 300 pg ml21 (minimum effective concentration)

and incubated for 12 hours in order to induce VSG221 RNAi.

Cells were centrifuged, washed with 20 ml HMI-9, and then

resuspended in HMI-9 with the appropriate drugs but without

doxycycline. Total RNA was isolated at different time points and

analysed using Northern blots as described above.

Recovery efficiency of the cells that resume growth after

removal of doxycycline was determined by plating out serial

dilutions (10x, 100x, 1000x and 10,000x) of the culture (at about

36105 cells ml21) in fresh HMI-9 medium with appropriate drugs

but without doxycycline. Each dilution was aliquotted over 48

wells of 96-well plates. The cloning efficiency using this method
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was also established using the parental T. brucei 221VB1.1 cell line

in the absence of induction of VSG221 RNAi.

In order to determine the cell volume, the parental T. brucei

221VB1.1 cell line and the T. brucei double expressers 221VP117.1

and 221VP117.2 were cultured to a concentration of 8–

106105 cells ml21. Fifty-fold dilutions of each culture were

prepared in CASYH ton dilution liquid and the cell sizes were

determined by using the Coulter size exclusion method on a

CASYH Cell Counter and Analyser System model TT (Schärfe,

Reutlingen, Germany) according to the manufacturer’s instruc-

tions. The cell volumes were determined as an average of the

measurements from five independent experiments.

Protein analysis and in vivo metabolic labeling
For Western blot analysis, T. brucei 221VP117 cells were

cultured and VSG221 RNAi was induced by incubating the

cultures with 1 mg ml21 tetracycline for up to 96 hours. Cells were

maintained at a concentration of about 7–106105 cells ml21

throughout the experiment. Western blot analysis was performed

by analysing lysate from 46105 cells per lane using 10%

polyacrylamide gels, and transferred to nitrocellulose membrane

using standard protocols. Blots were probed with antibodies raised

against the N-termini of VSG117 or VSG221 (gift of Piet Borst) or

BiP (gift of Jay Bangs). Anti-EP procyclin antibody is a mouse

monoclonal antibody obtained from Cedarlane Laboratories

(CLP0001A). Blots were imaged using Western LightningH
Detection Kit (Perkin Elmer) and a BioRad Fluor-S MAX imager.

For the metabolic labeling experiments, mid-logarithmic growth

T. brucei 221VG1.1 cells induced with tetracycline (1 mg ml21) for

different times were centrifuged (800 g 10 minutes) and washed in

minimal essential media minus either methionine or serine, before

resuspension in the same media at 16107 cells ml21. Cells were

labeled for 1 hour at 37uC with either 5 mCi ml21 [35S]-

methionine (MP Biomedicals, 1175 Ci mmol21) or 50 mCi ml21

of [3H]-serine (20 Ci mmol21, ARC) in a shaking water bath. The

cells were collected by centrifugation and washed briefly in TDB

buffer (25 mM KCl, 400 mM NaCl, 5 mM MgSO4, 100 mM

Na2HPO4, NaH2PO4, 100 mM glucose) prior to samples taken for

either protein or lipid analysis as previously described [26].

Proteins were separated on a 10% SDS-PAGE gel (46106 cell

equivalents per lane) and visualised by Coomassie blue staining.

To detect radiolabeled proteins the destained gel was soaked in

En3hanceTM (NEN) for 30 minutes, washed with water twice,

soaked in 10% glycerol and dried and exposed to XAR-5 film at

270uC.

For the in vivo radiolabel incorporation into total, protein or lipid

fractions T. brucei 221VG1.1 cells were induced with tetracycline

(1 mg ml21) for different times, and then labeled with [35S]-

methionine or [3H]-serine for one hour as described above. Cells

were split into three equal volumes and processed as follows: for

total incorporation, cells were spun down through tetrachlor-

ophenyl-modified silicone oil (Medford) and washed with TDB,

prior to lysis with 1% SDS. Total uptake of radiolabel was

quantified by scintillation counting. For incorporation into

protein, cells were centrifuged and washed with TDB, followed

by TCA protein precipitation and washing of the protein pellet,

followed by reconstitution with 1% SDS and total radiolabel

incorporation into protein quantified by scintillation counting. For

the measurement of incorporation into lipids, cells were spun

down and washed with TDB followed by extraction of lipids/

glycolipids with CHCl3:MeOH and CHCl3:MeOH:H2O

(10:10:3). These extracts were desalted and the incorporation of

radiolabel into the lipid fraction was quantified by scintillation

counting. Values are means with standard deviations of three

separate labeling experiments. The values at time zero are

normalised to 100% whereby the deviation of total incorporation

between different experiments was no greater than 10%.

Amino acid analysis
For the amino acid analysis, triple aliquots of noninduced

(30 ml of cells at a density of 1.56106) or cells where VSG RNAi

had been induced with tetracycline for 24 hours (30 ml of cells at a

density of 1.86106) were collected by centrifugation (850 g for 5

minutes at room temperature), washed twice briefly in ice-cold

MEM (1 ml) and suspended in ice-cold MEM (250 ml, containing

norleucine [2 ml of 1.5 mM] as internal standard). This cell

suspension was immediately added to 1 ml 50uC ethanol to lyse

the cells and cooled on ice for 10 minutes. After centrifugation at

14,000 rpm at 4uC for 30 minutes the supernatant was transferred

to a new Eppendorf tube and dried under vacuum. An aliquot

(10 ml) of a freshly prepared mixture (ethanol: sodium acetate

[1 M]: triethylamine, [2:2:1 v/v]) was added, vortexed and

thoroughly dried under vacuum. A 20 ml aliquot of a freshly

prepared derivatising agent (water: triethylamine: and PITC

phenylisothiocyanate [2:2:1 v/v]) was added to the dry samples,

vortexed, centrifuged at full speed for one minute and allowed to

stand at room temperature for 20 minutes, prior to drying under

vacuum. The derivatised amino acids were dissolved in 100 ml of

starting buffer and analysed using a PICO-TAG HPLC system

(Waters). Triplicate samples of both a standard mix of amino acids

containing 2 ml of 0.1–1.5 mM of each amino acid and an

equivalent volume (250 ml) of MEM was used in order to correct

the values obtained from the cell samples to obtain intracellular

amino acid pools.

Supporting Information

Figure S1 The cell volume of T. brucei expressing only VSG221

on its surface is not significantly different to that of T. brucei

‘‘double-expressors’’ expressing both VSG117 and VSG221 on

their surface. The cell volumes were determined as pseudo-spheres

using a CASYH Cell Counter. The parental T. brucei VB1.1 cell

line is compared with that of the double-expressers T. brucei

221VP117.1 and 221VP117.2. A) The graph at the top shows data

from a representative experiment whereby the percentage of cells

with a respective cell diameter as pseudo-spheres is indicated. B)

The values shown are the average of five independent experiments

with the standard deviation indicated. The average peak volume is

calculated from the projected cell diameter if the cells are

represented as pseudo-spheres. C) The values shown below are

the average of five independent experiments with the standard

deviation indicated with error bars.

Found at: doi:10.1371/journal.pone.0007532.s001 (0.24 MB TIF)

Figure S2 Global translation arrest after the induction of VSG

RNAi monitored using [3H]-serine labeling of cells. A) T. brucei

221VG1.1 cells had VSG221 RNAi induced with tetracycline for

the time in hours (h) indicated above, prior to labeling with [3H]-

serine for 1 hour. Proteins were separated by SDS-PAGE and

visualised by Coomassie staining (Coom.). B) Triplicate aliquots of

the [3H]-serine labeled cells were processed to determine the

mean rate of [3H]-serine incorporation into total protein versus

time. The standard deviation is indicated with error bars.

Found at: doi:10.1371/journal.pone.0007532.s002 (1.06 MB TIF)

Figure S3 Induction of a lethal RNAi mediated phenotype does

not always trigger a global translation arrest in T. brucei. A)

Various T. brucei cell lines with RNAi constructs allowing the

tetracycline inducible knock-down of clathrin, PFR2, tubulin,
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actin or VSG221 were analysed. The levels of total protein

synthesis were investigated after the induction of RNAi with

tetracycline for 0 or 24 hours prior to labeling with [35S]-

methionine for one hour. After this period cells were fully arrested.

Total protein was separated on an SDS-PAGE gel. The top panel

shows [35S]-labeled proteins detected by fluorography. Bottom

panel is the corresponding Coomassie stained gel. B) Quantitation

of triplicate samples of the of [35S]-methionine labeled cells after

the induction of RNAi for 0 or 24 hours were processed to

determine the mean rate (+/2 the standard deviation) of [35S]-

methionine incorporation into total protein after induction of the

indicated knock-down.

Found at: doi:10.1371/journal.pone.0007532.s003 (0.87 MB TIF)

Figure S4 Quantitation of the radioactive signal from the

Northern blot analysis of transcripts from T. brucei 221VG1.1

cells where VSG221 RNAi has been induced for the respective

time in hours (Fig. 3A). The signal is indicated as arbitrary units of

radioactivity after quantitation was performed using a BioRad

PhosphorImager and Quantity One software.

Found at: doi:10.1371/journal.pone.0007532.s004 (0.18 MB TIF)

Figure S5 Blocking VSG synthesis by the induction of VSG

RNAi does not result in downregulation of SL RNA, indicating

that there is no induction of an SL response. RNA analysed was

isolated from trypanosomes where VSG RNAi had been induced

with tetracycline (Tet) for the time in hours (h) indicated above.

Primer extension reactions to detect either the spliced leader (SL)

RNA or the control U3 RNA were performed using radiolabeled

oligonucleotides as described in the Experimental Procedures. The

reaction products were electrophoresed on a polyacrylamide gel.

The U3 or SL RNAs are indicated on the right.

Found at: doi:10.1371/journal.pone.0007532.s005 (0.93 MB TIF)

Figure S6 A) 2D-DIGE comparison of cells grown in the

presence or absence of VSG221 RNAi. T. brucei 221VB1.1 cells

were either grown in the absence of tetracycline, or in the presence

of tetracycline (Tet) for 8 hours to induce VSG221 RNAi. Three

replicate sample pairs consisting of lysates from induced or

noninduced cells were compared by 2D-DIGE. 2D-DIGE is a

proteomic technique that allows the direct comparison of two

sample types on a single gel. Each sample to be compared is pre-

labeled with one of three CyDye DIGE fluor dyes (GE

Healthcare). Here, one sample from each pair was labeled with

CyDye5 and the other sample with CyDye3, such that in two of

the pairs the noninduced sample was labeled with CyDye5 while

in the other pair the noninduced sample was labeled with CyDye3.

A standard sample consisting of an equal proportion of each of the

six samples was generated and labeled with CyDye2. For each of

the three replicates, the induced and noninduced samples,

together with one third of the standard sample were combined

and subjected to two dimensional electrophoresis. The standard

sample is therefore present on all gels, and allows normalisation of

protein abundance within each gel and statistical analysis across all

gels. Proteins were separated in the first dimension on pH 3–11

NL IPG strips (GE Healthcare) and in the second dimension by

SDS-PAGE-10% acrylamide: bisacrylamide 37.5:1. On the 2D

gels shown, molecular weight (Mw) decreases from top to bottom,

and pH increases from left to right. Spots were visualised on a

Typhoon scanner (GE Healthcare) and gel images were analysed

and matched by reference to the standard sample using the

DeCyder software suite (GE Healthcare). A total of 1486 spots

were matched between at least two of the replicate gels and

average ratios between induced and noninduced time points were

obtained. B) No significant changes in protein levels were observed

after the induction of VSG221 RNAi for 8 hours. Log10 average

ratios of spots from induced and noninduced lysates were

calculated for each of the 1486 spots analysed. The frequency of

log10 ratios was calculated with a resolution of 0.025 and plotted

as a percentage of the total number of spots analysed. Over 95% of

the proteins showed a less than 25% change after the induction of

VSG221 RNAi (area between the grey vertical bars), and no

changes greater than 37% were observed.

Found at: doi:10.1371/journal.pone.0007532.s006 (1.48 MB TIF)

Figure S7 There is no evidence for upregulation of procyclin

after the induction of a VSG221 RNAi induced cell-cycle arrest in

T. brucei VB1.1. A) Northern blot analysis does not show evidence

for significant upregulation of procyclin after the induction of a

VSG221 RNAi mediated cell-cycle arrest. RNA from the procyclic

T. brucei 29-13 cell line (PF) was compared with RNA from the T.

brucei 221VB1.1 cell line in which VSG221 RNAi had been

induced with tetracycline for the time in hours (h) indicated above.

The blot was hybridised with a probe for procyclin (CPT4) from

[57], VSG221 to show the degree of VSG221 transcript knock-

down, or actin as a loading control. Quantitation of the

radioactive signal from the Northern blot analysis is indicated in

arbitrary units of radioactivity, and was performed using a BioRad

PhosphorImager with QuantityOne software. B) Western blot

analysis of T. brucei VB1.1 stalled by the induction of VSG221

RNAi does not show evidence for the upregulation of EP

procyclin. Protein lysates from bloodstream form T. brucei

HNI(V02) [58] (BF), procyclic T. brucei 29-13 cell line (PF), or

T. brucei 221VB1.1 where VSG221 RNAi had been induced for

the time in hours (h) indicated above. The blot was probed with an

antibody for EP procyclin or BiP as a loading control.

Found at: doi:10.1371/journal.pone.0007532.s007 (0.32 MB TIF)

Figure S8 Titration of the minimum concentration of tetracy-

cline or doxycycline which induces a maximal VSG221 RNAi

mediated cell-cycle arrest. The T. brucei 221VB1.1 cell line was

incubated with the indicated amount of tetracycline (Tet) or

doxycycline (Dox) for the time in hours indicated below. The

density of trypanosomes is indicated per ml x 105. The average of

triplicate counts is shown, with the standard deviation indicated

with error bars.

Found at: doi:10.1371/journal.pone.0007532.s008 (0.28 MB TIF)

Figure S9 A) Cloning of recovered T. brucei 221VB1.1 cells

after induction of VSG221 RNAi. Cells were induced using

doxycycline for 12 hours, and then subsequently washed to

remove the doxycycline. Ten-fold serial dilutions of washed cells

were made and plated out over 48 wells of a 96 well plate with the

indicated number of cells per well. The percentage of positive wells

is indicated. Results are the average of three independent

experiments with the standard deviation indicated with error

bars. B) Cloning the parental T. brucei 221VB1.1 cells without the

induction of VSG221 RNAi. Each serial dilution of the washed

cells was plated out in 48 wells of a 96 well plate with the indicated

number of cells per well. The percentage of positive wells is

indicated. Results are the average of two independent experi-

ments.

Found at: doi:10.1371/journal.pone.0007532.s009 (0.19 MB TIF)
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