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Chapter 1 

Introduction 

1.1  Research Background  

Mediterranean Europe has suffered from an increasing frequency of 

summer droughts and heat waves in recent decades that have had 

substantial societical and ecological impacts. Hot and dry summers in 

Europe are generally associated with a specific large-scale anticyclonic 

regime (Cassou et al., 2005). However, model simulations have 

suggested that the extreme conditions of droughts and heats may be 

enhanced when soil moisture is depleted (Seneviratne et al., 2010; 

Seneviratne et al., 2006; Teuling et al., 2010). Soil moisture partitions 

available net radiation into latent heat for evaporation and sensible heat 

for temperature. This partitioning thus directly affects the moisture and 

heat conditions of the lower atmosphere. The depletion of soil moisture 

results in reduced evaporation and eventually precipitation. The reduced 

latent cooling amplifies the temperature and the resulting increased 

temperature may increase the atmospheric demand of evaporation, 

leading to accelerated soil moisture depletion. Meanwhile, there is also 

possibility that sufficient soil moisture and thus increased evaporation 

stabilizes the boundary layer of atmosphere, thus forming a negative 

feedback on precipitation at particularly local scales (Seneviratne et al., 

2010). These interactions between land and atmosphere are sketched in 

Figure 1.1. Among these interactions, the soil moisture influences on 

precipitation and temperature are of particular interest. From improved 

understanding of these feedbacks, better prediction of summer droughts 

and heat waves is expected.  
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Up to now, our understanding of the soil moisture-atmosphere interaction 

relies heavily on numerical experiments. However, large unexplained 

discrepancies exist among model responses, regarding both the location 

and magnitude of the land-atmosphere interactions (Dirmeyer et al., 

2006; Koster et al., 2004). There is thus an increasing need to investigate 

soil moisture-atmosphere interactions with observational datasets to 

benchmark the models. In recent years, the increasing volume and 

diversity of climate datasets, especially the soil moisture datasets from 

satellite images, has created such an opportunity (Dolman and de Jeu, 

2010; Owe et al., 2008; de Jeu et al., 2008). However, so far, evidence of 

soil moisture influence on precipitation and temperature from 

observations remains rare.  

The influences of land surface processes on atmosphere are generally 

subtle, compared to other influences such as sea surface temperatures. 

The expected signals are often very hard to detect behind the strong 

background noise. Under such circumstances, the ordinary methods 

applied in climatology such as correlation or regression analysis may 

become inefficient. The failure of such ordinary methods can be easily 

seen from an example. Suppose we have two identical time series, which 

are unit correlation owing to a certain physical process. We perturb each 

time series by adding different noise to them until this perturbation leads 

to a reduced correlation, e.g., say a coefficient of 0.2. This very low 

correlation tells a story of “no relation”, which is false as they are already 

known to have a certain linkage. Thus better solutions are needed to find 

the signal.  

The case of land-atmosphere interactions is even more complicated. As 

illustrated in Figure 1.1, soil moisture and atmosphere exhibit often two-

way interactions. In climate models, the direction of the influences, in a 

strict sense of causality, can be seen from the responses by perturbing the 

initial states. However, the directional soil moisture influences on 

atmosphere are very hard to determine with confidence, because the 

atmospheric processes also exert influences on soil moisture the other 

way around. For example, precipitation wets soil; meanwhile, increased 

soil moisture may promote precipitation. One more example, soil 

moisture depletion heats the atmosphere; while the increased atmosphere 

temperature depletes soil moisture in return. A correlation, even lagged, 
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can say tell little about the soil moisture influence on precipitation or 

atmosphere temperature.  

 

Figure 1.1: The hypothesized interactions between land and atmosphere. 

Red cross in circle indicates positive feedback and red dash in circle 

indicates negative feedback. 

A correlation or regression analysis measures only the interdependence, 

and does not identify the statistical causality, that is, the statistical driver-

response relationships. For sake of understanding the mechanisms of an 

interacting system, the latter is arguably more important. In this thesis, 

two sophisticated methods are used to detect the possible influences of 

land surface processes on overlaying atmosphere, i.e., the coupled 

(forced) manifold (Navarra et al., 2005) and the wavelet-based Granger 

causality (Dhamala et al., 2008). The coupled (forced) manifold offers a 

generalization of methods for variance analysis, such as the singular 

value decomposition (SVD) or canonical correlation analysis (CCA). 

Although defined in a loose way, it has the potential to detect the directed 

influences between climate fields by sophisticated data decomposition. 

The Granger causality has a strict definition of statistical causality based 
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on linear prediction theory (Granger., 1969). However, it should be 

noted as a caution that statistical results can not always be interpreted as 

directly reflecting the physics. Statistics can only be used to infer the 

possible physical mechanisms by combining it with the physical 

knowledge that already exists.  

1.2  Thesis outline 

The aim of this thesis is to assess the influence of soil moisture on the 

atmosphere over Europe from observational datasets, using a variety of 

rigorous statistics. The flow diagram of the content of this thesis is shown 

in Figure 1.2. This thesis consists of three parts, with respect to the time 

scales of interest and the statistical approaches employed. Soil moisture 

is an important agent in the land-atmosphere interactions. The memory 

scale of soil moisture is indicative of, at least partly, the persistence of 

the soil moisture feedback on atmosphere. The first part of this thesis, 

namely Chapter 2, deals with the memory scales as well as the statistical 

properties of soil moisture, which serve as the priori guiding the 

following signal interpretation and statistical modeling.  

The second part consists of Chapter 3-4, where a rigorous spatio-

temporal modeling approach, the coupled manifold, is used to deal with 

climate variability at interannual and interdecadal time scales. In 

Chapter 3, the functional relations between later winter soil moisture, 

proxied by accumulated precipitation, and the subsequent summer 

climate are investigated to understand if soil moisture can contribute to 

the interannual variability of summer climate. Chapter 4 seeks for the 

causes of the marked variability of summer temperature at multidecadal 

time scales over Europe, suggesting a possible amplification of this 

signal by land surface processes.  

The third part consists of Chapter 5-6. High-resolution daily datasets 

from satellite images and gridded in-situ observations are utilized to 

study the direction of the interactions between soil moisture and 

atmosphere (including precipitation and temperature) based on the 

statistical notion of Granger causality. The soil moisture-atmosphere 

interactions are expected to be nonstationary (time-varying) and occur in 
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mainly warm seasons; therefore this part focuses on the seasonal 

variability of the interactions. As a step of data preprocessing, the 

missing values of satellite soil moisture are estimated with a thin-spline 

smoother in Chapter 5. Alternatively, the Granger causality can be 

estimated with parametric or nonparametric approaches.  Chapter 6 uses 

a nonparametric approach based on spectral factorization of wavelet 

transforms to produce a time-frequency representation of the direction of 

the interactions between soil moisture and precipitation over Europe.  

Chapter 2 Soil moisture fluctuation regimes:

Conclusion: three-month memory over Europe

nonstationarity and linearity.

Chapter 5 Soil moisture gap filling

Approach: linear operator,

three-dimensional

Chapter 6 Soil moisture-precipitation interactions

Approach: linear prediction theory-Granger causality

time-frequency wavelet solution.

Conclusion: Soil moisture affects precipitation in warm

seasons, at time scales of 1-2 months.

Chapter 3 Summer conditions in response to winter precipitation

Conclusion: summer drought and heat conditions are partly ruled by

the winter precipitation over the Mediterranean, owing to the soil

moisture persistence.

Chapter 4 Amplification of summer heats

Conclusion: Multidecadal variability of summer temperature

as an amplified response to the ocean forcing by background

warming. That marked response over southeast Europe is

suggested to be an amplification of soil moisture feedback on

temperature.

Interannual

Priori

Interdecadal

Synoptic

 

Figure 1.2: Flow diagram of the contents of this thesis, showing the 

interrelations between the chapters.    
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Chapter 2 

Soil Moisture Fluctuation 

Regimes in ERA-40 Re-

analysis Data
1 

Abstract 

Soil moisture variability is analyzed in the re-analysis data ERA-40 of 

the ECMWF (European Centre for Medium-Range Weather Forecasts) 

which includes four layers within 289 cm depth. Short-term correlations 

are characterized by an e-folding time scale assuming an exponential 

decay while the long-term memory is described by power-law decays 

with exponents determined by Detrended Fluctuation Analysis (DFA). 

On a global scale the short-term variability varies congruent with long-

term memory in the surface layer. Key climatic regions (Europe, 

Amazon, and Sahara) reveal that soil moisture time series are 

nonstationary in arid regions and in deep layers within the time horizon 

of ERA40. 

2.1  Introduction 

Soil moisture has a key role in the hydrological and the energy cycles as 

well as the carbon cycle. The influence of soil moisture on precipitation 

and surface temperature has long been noticed and now has been drawing 

renewed attention in the recent years (e.g., Delworth and Manabe, 1988; 

Hong and Kalnay, 2000; Koster and Suarez, 2003; Conil et al., 2008).  

       1The content of this chapter has been published as Wang, G. J., Dolman, A. J., 

Blender, R. & Fraedrich, K (2010), Fluctuation regimes of soil moisture in ERA-40 re-

analysis data. Theor Appl Climatol, 99, 1-8.  
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The memory of soil moisture is particularly important to the seasonal 

prediction of precipitation, temperature, and other atmospheric variables, 

and various modeling studies (see for example Dirmeyer et al., 2000) 

have shown that there is predictability based on anomalies in land surface 

moisture. Delworth and Manabe (1988) pioneered the study of the 

temporal variability of soil moisture in the Geophysical Fluid Dynamics 

Laboratory (GFDL) GCM, and suggested soil moisture variations can be 

considered as a first-order Markov process. The autocorrelation function 

of the process decays exponentially 

                                      r(τ) = exp(-λτ)                           (2.1) 

where τ is the time lag and λ
-1
 is the e-folding time of the anomaly 

correlation in the absence of forcing. The e-folding time is generally 

referred to as the temporal scale of soil moisture, at which the soil 

integrates precipitation into a red soil moisture process. Here, time scales 

are considered for which precipitation is uncorrelated and spectrally 

white. The e-folding time was intensively studied from either 

observations (Entin et al., 2000) or AGCMs (Atmosphere General 

Circulation Models, Wu and Dickinson 2004) since soil moisture may 

have the ability to enhance extreme climate events, such as dry or wet 

spells in warm seasons.  

Manabe and Delworth (1990) suggested that soil moisture has the 

potential to contribute substantially to low frequency atmospheric 

variability, as approximately half of the total variance of soil moisture 

process resides beyond a long ‘separation time scale’ in a first order 

Markov model (defined as 2πλ
-1
) implying a long-range correlation. 

Little work has been done to address this issue in more details. Amenu et 

al. (2005) reported 17-month, 34-month and 60-month low frequency 

modes in the Illinois soil moisture observations corresponding to ENSO 

signals; this gave an observational support to longer-term correlation 

beyond the classic e-folding time. Several studies have revealed that 

geophysical variables exhibit long-term correlations (equivalent to 

enhanced low frequency variability) (Mandelbrot et al., 1968), such as 

runoff (Livina et al., 2003; Mudelsee et al., 2007; Wang et al., 2008), and 

near surface temperature (Fraedrich and Blender, 2003; Koscielny-

Bunde et al., 1998). However, as the major driver of hydrological cycle, 
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precipitation is spectrally white (Kantelhardt et al., 2006); Blender and 

Fraedrich (2006) suggest soil moisture as the major source of memory in 

hydrological cycle over land. Observed long-term correlations do not 

follow exponential decays but follow power-laws with exponents 

quantifying the strength of these correlations. The long-term memory of 

soil moisture may be relevant for the clustering of soil moisture 

deficiencies (D’Andrea et al., 2006) and the occurrence of heatwaves 

(Seneviratne et al., 2006). 

Hasselmann (1976) introduced the concept of stochastic climate modes, 

and stated that climate variability in principle can be modeled by 

autoregressive (AR) processes. Mitchell (1964) also pointed out that 

‘…persistence in meteorological data can ordinarily be described very 

well by a first order linear Markov model’. Based on this concept, 

Delworth and Manabe (1988) advanced the e-folding time model of soil 

moisture memory. However, many climatic variables behave nonlinearly, 

e.g., temperature (Bartos and Jánosi, 2006), suggesting that linear 

models cannot fully capture the statistical properties of such processes. 

To fully characterize the statistical properties of soil moisture and for a 

better understanding of the underlying dynamics, it is necessary to 

determine the degree of nonlinearity in soil moisture process time series. 

Linearity may be defined using the Fourier phases of the time series: if 

the statistical properties do not depend on the Fourier phases (this is 

calculated by randomly shuffling the phases), the time series is linear, 

and otherwise the series is considered to be nonlinear. This definition 

includes linear AR processes that are used by Delworth and Manabe 

(1988). 

Ashkenazy et al. (2003) suggested a method to assess the nonlinearity in 

geophysical time series based on an analysis of the volatility time series, 

which is given by the absolute values of the increments.  The main 

observation is that time series with long-term memory based on linear 

processes are characterized by an absence of long-term memory in the 

volatility time series, whereas for nonlinear processes the long-term 

memory in the volatility is preserved. Volatility correlation is found for 

example in river fluxes (Livina et al., 2003), and land surface 

temperatures (Bartos and Jánosi, 2006; Govindan et al., 2003). Similar 

properties of temperature are detected on in proxy records (Ashkenazy et 
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al., 2003) and in the abyssal equatorial Pacific (Kalisky et al., 2005). 

These studies suggest considerable nonlinearity and ‘clustering’ of 

magnitudes in these geophysical variables, that is, a large magnitude 

tends to follow a large magnitude while small magnitudes follow small 

volatilities. 

The aim of this paper is to determine the temporal correlation properties 

of soil moisture on short and long time scales and to find possible 

relationships between both regimes. The degree of nonlinearity is 

addressed by a long-term memory analysis of the volatility time series. 

Since global high quality observations of soil moisture are sparse in 

space and time, we use the ECMWF re-analysis product ERA-40 in 1957 

to 2002. This paper is organized as follows: in Section 2.2 the dataset and 

the analysis methods are described. In Section 2.3 global results on the 

short and long term memory properties are presented and Section 2.4 

includes a nonlinearity analysis based on the volatility correlation 

properties. Section 2.5 concludes with a brief summary and discussion.  

2.2  Data and methods 

The variability analysis of soil moisture is based on global daily fields in 

the ECMWF re-analysis product ERA-40. To determine the short- and 

long-term variability correlations (which are related to memory) we use 

the Detrended Fluctuation Analysis (DFA). Nonlinearity of the 

underlying processes is determined by an analysis of the volatility of the 

soil moisture time series.  

2.2.1  ERA-40 re-analysis data 

We use land surface soil moisture data in the ERA-40 global re-analysis, 

produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF, Uppala et al., 2005). The land surface parameterization of 

ERA-40 (van den Hurk et al., 2000) models the soil-atmosphere and soil-

vegetation interactions and delivers a daily surface water and energy 

balance at each grid cell on 4 prognostic layers for soil moisture with 

layer thicknesses of 7 cm, 21 cm, 72 cm and 189 cm during the entire 

period of 1957 to 2002. Both daily data and monthly averages are used in 
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this study.  The seasonal cycle is removed at each grid point by 

subtracting the respective monthly and daily climatological means. 

Trends are not removed.  

2.2.2  Detrended fluctuation analysis and power spectra 

The Detrended Fluctuation Analysis (DFA, Peng et al., 1994) is a 

spectral method developed to detect long-term memory in stationary time 

series. First, the anomaly time series are determined by removing the 

climatological means from the original time series. As the first step of 

DFA, the anomaly series are integrated to the so-called profile. To 

determine the fluctuation function F(τ), the profile time series is 

partitioned into segments of duration τ, and linear fits are calculated 

separately for each segment. The fluctuation function F(τ) is the mean of 

the variances of the profile with respect to fits at the time scale τ. To 

obtain robust estimates overlapping windows are used. When the original 

time series shows polynomial trend of order k-1, polynomials of order k 

are fitted and subtracted in the segments (denoted as DFAk, note that the 

above mentioned DFA does not eliminate trends, Bunde et al., 2000). In 

this work, DFA is determined using the software matlab. Both DFA1 and 

DFA2 are performed in this work, and only the DFA1 results are reported 

since DFA2 produces the same results.  

In the case of power-law in power spectrum, S(f ) ~ f
 –β
, the fluctuation 

function F(τ) obeys a power-law, F(τ) ~ τ
α
, where α is the DFA 

exponent. This exponent α can be determined by the slope relating log 

F(τ) to log τ. The exponents are related by β = 2α–1. A long-term 

memory process is characterized by fluctuation exponents α>0.5 (β>0, 

for low frequencies).  An uncorrelated process (white noise) is given for 

α=0.5 (β=0), and an anti-persistent process has α<0.5 (β<0). Specifically, 

α=1.5 (β=2) corresponds to Brownian noise, which can be regarded as 

the integration of white noise. Stationarity is violated for α>1 (β>1), the 

threshold being given by 1/f (or flicker) noise.  

2.2.3  Volatility analysis and nonlinearity 

An empirical relationship between nonlinearity and volatility series was 

suggested by Ashkenazy et al. (2001). For a given a time series u(i) with 
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increments  ∆u(i) = u(i+1)–u(i), the volatility series is defined as the 

absolute value of increments vol(i) = |∆u(i)|. It was found that long-range 

correlated linear series have uncorrelated volatility series, while long-

range correlated nonlinear series have correlated volatility series. The 

detection of nonlinearity in time series is rather involved and requires 

long time series. 

 

Figure 2.1 One-month-lag autocorrelation coefficients of monthly soil 

moisture anomalies in the top surface layer with 7 cm depth.  

2.3  Temporal variability in soil moisture layers  

The e-folding time is used to estimate the memory time scale of soil 

moisture assuming an exponential decay of the autocorrelation function 

of the time series. Using Eq. (2.1) we use the one-month lag 

autocorrelation values r = 0.8, 0.6, 0.4, and 0.2 to determine the e-folding 

times λ
−1
 of 4.5, 2.0, 1.1 and 0.6 months, respectively. The one-month 

lag autocorrelation of global soil moisture for the top surface layer (7 cm 

depth) in ERA40 data is shown in Figure 2.1. This result is based on 

monthly anomalies at each grid cell which are calculated by removing the 
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monthly climatological mean in the monthly time series.  The substantial 

spatial variability of the e-folding times in the top surface layer show is 

consistent with previous studies (e.g. Delworth and Manabe, 1988; Wu 

and Dickinson, 2004). We find short values of the e-folding times in the 

Tropics and an increase with latitude as well as relatively higher values 

in arid and broadleaf forest regions. The processes involved in the 

dynamics of soil moisture (mainly precipitation, evapotranspiration and 

runoff) contribute to the variability, but the precise mechanisms are 

model dependent, and still not clearly understood (Delworth and 

Manabe, 1988; Wu and Dickinson, 2004).  

To examine the fluctuation regimes, three regions are selected for the 

DFA: a mid-latitude region in Europe marked as region I with an e-

folding time of 2-3 months, an evergreen broadleaf forest region marked 

as region II and an arid region marked as region III, both with an e-

folding time of approximately one year. These three regions represent 

different types of fluctuations in global soil moisture. In these analyses, 

daily soil moisture data are used. First the daily values are averaged in 

each of the four layers for the whole re-analysis period, in each selected 

regions (this yields 12 time series in total). The DFA is performed to the 

anomalies obtained by removing the climatology means from daily soil 

moisture time series. The DFA in the three regions I, II, and III shows the 

following results: 

Region I (Europe): A strong seasonality is present in the top three 

layers, while it is weak in the bottom layer (not shown). The DFA 

fluctuation functions show two distinct power-law regimes (Figure 2.2-I) 

with a crossover at around 3 months. The regimes corresponding to 

power spectra S(f ) ~ f 
-β
, based on the relationship β = 2α-1 between the 

spectral exponent β and the fluctuation exponent α. In the first regime, 

the DFA fluctuation exponents in 1-90 days increase according α ≈ 1.42, 

1.54, 1.70, and 1.82 from surface to bottom layer. Thus, in the two upper 

layers, the first regime (for shorter time) shows β ≈ 2 what is consistent 

with the e-folding time scale obtained within the Markovian framework. 

The exact value β = 2 is found in the high frequency limit of the 

Lorentzian power spectrum S(f ) ~ 1/(λ
2
 + f

 2
)  which is obtained for an 

exponential decay, exp(-λτ), of the auto-correlation function. In the 

deepest layer α ≈ 1.8 is found which is related to β ≈ 2.6; such ‘redder’ 
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spectra have been found in previous studies (Wu and Dickinson, 2004). 

The increase of α and β captures ‘the redder spectra in deeper layers’ 

related to an increasing memory. In the second regime, beyond 3 months, 

the exponents of the fluctuation functions of the four layers converge to 

the same value α ≈ 0.8 (β ≈ 0.6). At such long time scales, the exchange 

between the soil layers is complete and the variability is coherent. Note 

that values 0<β<1 indicate stationary long-term memory time series. 

Region II (Amazon): This broadleaf forest region shows intense the 

seasonality of soil moisture in all layers. The crossover time scales is 

higher than in region I (Europe) and reaches roughly one year (Figure 

2.2-II). Below one year the fluctuation function exponents α, in 1-300 

days increase with depth, α=1.20, 1.26, 1.42, and 1.65 from top to 

bottom. Hence, the power spectra S(f ) ~ f 
-β
  scale with the exponents 

β=1.4, 1.52, 1.84, and 2.3 and the increase of the memory with depth is 

similar to Europe. However, the short term memory is slightly weaker in 

this region than in Europe. In the long term regime above one year, α 

converges to α=1.28 (β=1.56). This value indicates nonstationarity of the 

anomaly time series up to the maximum time scale given by the duration 

of the ERA40 data. Therefore, averages determined in this data should be 

considered carefully; for climatological means longer time periods are 

necessary. 

Region III (Sahara): In this region, seasonality is present only in the top 

two layers, and throughout the year the top layer is wetter than the 

second layer. Besides the rare rainfall events evaporation is the dominant 

process in the dynamics of soil moisture. Due to the small amounts 

involved and due to subsequent fast evaporation rapidly varying 

precipitation does not reach the deeper layers. The crossover times 

extend up to one year in the top two layers (Figure 2.2-III), beyond which 

DFA fluctuations converge to α=1.54 (β=2.08) determined in 1-300 days. 

The two bottom layers, which are not impacted by the high frequency 

components of the precipitation variability, show a unique variability for 

all time scales, with the same exponent, which is the limit of the two top 

layers for large time scales. Thus all spectra are red (β=2) in the whole 

frequency range accessible in the data set. The nonstationarity involved is 

even more vigorous than in the Amazon region.  
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Figure 2.2 Log-log plots of DFA fluctuation functions F (τ) ~ τ
 α
 from 

daily soil moisture anomalies in the three regions (I: Europe, II: Amazon, 

and III: Sahara) and the four layers from top to bottom (7 cm (●), 21 cm 

(x), 72 cm (◊), and 189 cm (○)). Crossover time scales are indicated by a 

vertical bar. The exponents α for short time scales are indicated 

(determined in 1-90 days in I and in 1-300 days II, III).   



Chapter 2 

 16 

A global view of the interannual long-term memory determined for the 

top 7 cm-layer by a fit of the fluctuation exponent α in the time interval 

of 2-10 years (Figure 2.3). Since all of the four layers at each location 

have identical long-term correlation properties (see Figure 2.2), this map 

shows the long-term memory of the total soil moisture content. The 

similar spatial structure of the autocorrelation coefficients in Fig. 1 and 

the fluctuation exponents Figure 2.3 suggesting a relationship between 

the short- and the long-range correlations. Such a relationship is also 

found in the land surface temperature anomalies (Kiraly et al., 2006). The 

physical mechanisms leading to this interdependence need to be further 

clarified, possibly by simulations with coupled land-atmosphere climate 

models. 

 

Figure 2.3 Long-term fluctuation exponent α of soil moisture variability 

determined in the top layer (7 cm) within 2-10 years.  
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2.4  Volatility correlations 

Nonlinear geophysical processes can lead to a clustering of volatility 

which appears mainly as seasonality and long-range correlations (see 

Section 2.2.3). To determine the degree of nonlinearity involved in the 

dynamics of soil moisture, a long-term memory analysis is applied to the 

volatility time series vol(i) = |u(i+1) – u(i)| (Ashkenazy et al., 2001). In 

the volatility time series the seasonal cycle is removed.  The main 

observation is that time series with long-term memory based on linear 

processes are characterized by an absence of long-term memory in the 

volatility time series, whereas for nonlinear processes the long-term 

memory in the volatility is preserved. The numerical differentiation used 

to produce volatility series is known to strongly enhance the noise level 

inherent in the data (Bartos and Jánosi, 2006), and the typical volatility 

of fluctuations around local trends is extremely small, especially in arid 

regions, leading to noisy results. 

In order to substantiate the analysis we apply a further test which is based 

on surrogate data for the soil moisture time series where the nonlinearity 

is destroyed while other statistical properties are preserved. To produce 

such surrogate data, Schreiber and Schmitz (2000) suggest the iterative 

amplitude-adjusted Fourier transform (iAAFT) method which preserves 

both the power spectrum and probability distribution of the series. The 

method proceeds as follows: (i) first the sequence of the original time 

series is shuffled, (ii) the shuffled series is Fourier-transformed, (iii) the 

power spectrum is adjusted to the power spectrum of the original series, 

and (iv) the inverse transform is applied to adjust the histogram to the 

histogram of the original series. Steps (ii)-(iv) are repeated until the result 

converges. This surrogate series has random Fourier phases and the 

nonlinearities stored in the phases are destroyed. By means of comparing 

the correlation properties of volatility series obtained from the original 

increment soil moisture series and the surrogate series, we can conclude 

whether the correlation in the volatility series is an indication of 

nonlinearity. 

Before we perform a global analysis we consider the volatility anomalies 

series in the first two regions, Europe and Amazon (marked as I and II in 
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Figure 2.1). The long-term memory is determined by DFA (see Figure 

2.4). The results of the analysis of the surrogate data and the volatility 

reveal (see Table 2.1): 

 (i) The soil moisture time series show long-term memory (α=0.8 in 

Europe, α=1.28 in the Amazon region). 

(ii) The surrogate data (with nonlinearities eliminated) show the same 

long-term memory (this confirms the application of the iAAFT-

method (Schreiber and Schmitz, 2000).  

(iii) The volatility time series of soil moisture and of the surrogate 

time series show no long-term memory (α=0.5). 

LTM Data  

 

observations:  

nonlinear?  

surrogate data:  

linearized 
Volatility LTM no LTM LTM no LTM 

Result nonlinear linear − linear 

Table 2.1 The table shows the decision process for the assessment of 

nonlinearity in LTM (long-term memory) data by volatility analysis and 

the comparison with linear surrogate data (the result in the present 

analysis is underlined).  

The global distribution of the fluctuation exponent reveals no clear 

spatial pattern (not shown), therefore, we present scatter plots of the 

fluctuations exponents α obtained in the data grid points (Fig. 2.5). This 

figure confirms that the surrogate data has the same long-term memory as 

the soil moisture time series (see αoriginal vs. αsurro) with a wide 

distribution ranging from 0.3 to 1.8. The long-term memory is lost in the 

transformation to the volatility time series (αoriginal vs. αvol) leading to the 

conclusion of linearity. The exponents of the volatility time series, αvol 

vs. αsurro_vol, show a narrow distribution in α=0.4 to 0.6 centered at 0.5. 

Therefore, we conclude that the soil moisture time series is based on a 

linear physical process; the long-term memory is the same as in the linear 

surrogate data.  
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Figure 2.4 Volatility correlations for soil moisture and surrogate data for 

the regions in Fig. 2.1 (mid-latitude region I: Europe, broad leaf forest 

region II: Amazon) 
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Since the link between nonlinearity of the time series and the long-range 

volatility correlation is empirical (Ashkenazy et al., 2001), Kalisky et al. 

(2005) studied theoretical predictions of the relationship between the 

correlation exponent of a time series and its volatility. For a linear 

process obeying a power law, up to the value α=0.75, the volatility 

exponent is practically constant αvol = 0.5, and then changes to an 

approximately linear increase. Unfortunately, this result is not confirmed 

in our analysis (see αoriginal vs. αvol, for αoriginal>0.75 in Figure 2.5).  

 

Figure 2.5  Combined scatter plot of the fluctuation exponents α for the 

original soil moisture time series, αoriginal, surrogate series αsurro, volatility 

of the original time series αoriginal_vol , and volatility of the surrogate data 

αsurro_vol. The three plots are:  αoriginal vs. αsurro (×), αoriginal vs. αvol (o), and 

αoriginal_vol vs. αsurro_vol (•).  
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2.5  Summary and discussion 

Soil moisture is an important agent in land-atmosphere interactions, since 

it couples rapid precipitation fluctuations to storage with memory of the 

order of month to years. The memory time scale of soil moisture is 

widely characterized by an e-folding time within a Markovian 

framework. We study the power law fluctuations of soil moisture and 

find that there are two regimes, with either short- or long-rang 

correlations. The short-range correlation is equivalent to an e-folding 

time that is considered as the time scale at which soil moisture is 

integrated from uncorrelated precipitation. Beyond this time scale, the 

long-range correlations of soil moisture may contribute to low frequency 

climate variability. Within the short-range correlation regime, deep layers 

show a red spectrum, while within the long-range correlation regime, soil 

moisture shows an identical spectrum at different layers. There is a clear 

correspondence between the e-folding time and long-range correlations 

modified by local conditions. While the e-folding time is easily 

interpreted by simple first order autoregressive process, a simple model 

and the interpretation of the long-term power-law correlations are less 

clear and may originate in the complex interactions within the 

hydrological cycle (Blender and Fraedrich, 2006). In very dry and very 

wet as well as highly elevated regions, the fluctuation exponent for large 

interannual time scales is α>1; this shows the nonstationarity of soil 

moisture process at very large time scale, and hampers the prediction by 

traditional statistics.  

The volatility correlation of soil moisture, which is considered as an 

empirical indicator for nonlinearity reveals that soil moisture exhibits a 

white volatility spectrum. This suggests that the underlying processes of 

soil moisture in ERA-40 are linear, and that the statistical properties of  

soil moisture may be well approximated by linear models such as the 

Markovian model used by Delworth and Manabe (1988). This 

conclusion is substantiated by a surrogate data test. Further work is 

needed to clarify the physical processes and whether this corresponds to 

real linearity or it is in fact an artifact of the model used in the re-

analysis.  
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The linearity found in the soil moisture time series does not necessarily 

imply a conflict with the expected ‘nonlinear’ interactions between soil 

moisture and other land surface water budget components, since the latter 

falls into a different definition of nonlinearity with respect to the 

dynamical equation (see Ashkenazy, 2003 for a review on the definition 

of nonlinearity), and actually there is no proven evidence between the 

nonlinearity found in the data and the nonlinearity in the governing 

dynamical equations (e.g. Hsieh, 2001).  
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Chapter 3 

A Summer Climate Regime 

over Europe Modulated by 

the North Atlantic 

Oscillation
1
 

 

Abstract 

Recent summer heat waves in Europe were preceded by precipitation 

deficits in winter. Numerical studies suggest that these phenomena are 

dynamically linked by land-atmosphere interactions. However, there is 

still no clear evidence that connects summer climate variability to winter 

precipitation and the relevant circulation pattern so far. In this paper, we 

investigate the functional responses of summer mean as well as 

maximum temperature variability (Jun.–Aug., Tmean and Tmax) to 

preceding winter precipitation (Jan.-Mar., PJFM) for the period 1901-

2005. There appear distinctive Tmean and Tmax responses to PJFM over the 

Mediterranean, where it is most sensitive to land-atmosphere 

interactions. An analysis of a soil moisture proxy (self-calibrating Palmer 

drought severity index, scPDSI) shows that the PJFM seems to influence 

summer temperature via soil moisture, and therefore the Tmean and Tmax 

responses we present here are very likely to be physical hints of water 

cycle interactions with temperature. We estimate that roughly 10~20% of  

       1The content of this chapter has been published as Wang, G., A. J. Dolman, and A. 

Alessandri (2011), A summer climate regime over Europe modulated by the North 

Atlantic Oscillation, Hydrol Earth Syst Sci, 15(1), 57-64.   
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the interannual variability of Tmax and Tmean over the Mediterranean is 

statistically forced by PJFM; for the scPDSI this value amount to 20~25%. 

Further analysis shows that these responses are highly correlated to the 

North Atlantic Oscillation (NAO) regime over the Mediterranean. 

Therefore we suggest that NAO modulates European summer 

temperature via controlling precipitation that initializes the moisture 

states of water cycle interactions with temperature. This picture of 

relations between European summer climate and NAO precipitation 

suggests potential for improved seasonal prediction of summer climate in 

particular extreme events.  

3.1  Introduction 

The recent European climate is characterized by an increasing frequency 

of summer heat waves with substantial societical and ecological impacts, 

e.g. the record-breaking heat wave in 2003. Climate projections point 

towards even higher-frequent and longer-lasting heat waves under 

increased greenhouse gas emission scenarios (Scherrer et al., 2005; Pal 

et al., 2004; Stott et al., 2004; Meehl et al., 2004). These past and 

projected heat waves highlighted the importance of a detailed 

understanding of the mechanisms that contribute to the initialization and 

persistence of extreme heat conditions. Hot and dry summers in Europe 

are generally associated with a specific, large-scale anticyclonic 

atmosphere circulation regime (Cassou et al., 2005; Fischer et al., 2007). 

It’s also found that most of hot and dry summers over Europe were 

preceded by pronounced deficits of precipitation in winter and early 

spring (Della-Marta et al., 2007; Vautard et al., 2007). However, 

precipitation is nearly a white noise process with very limited memory; 

and winter precipitation cannot persist into summer solely through its 

atmospheric memory. With numerical experiments, Vautard et al. (2007) 

showed that the observed winter precipitation deficit and summer heat 

wave are dynamically linked via the feedback loops between land and 

atmosphere, wherein soil moisture plays a crucial role. The deficit of 

precipitation and subsequent drier soils resulted in reduced latent cooling 

and thereby an increase of air temperature, in agreement with other 

numerical experiments (e.g. Seneviratne et al., 2006; Fischer et al., 2007; 

Zampieri et al., 2009).   
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These investigations of individual heat waves have highlighted the role 

of land-atmosphere interactions, and also pointed to the importance of 

circulation patterns, in the generation of summer heat waves. An 

immediate question that arises is whether this land surface feedback 

mechanism exists only for extraordinary hot summers or more 

systematically. Schär et al. (2004) underlined that an increase of 

interannual temperature variability in response to greenhouse-gas forcing 

might be an alternative causal mechanism for the occurrence of European 

summer heat waves; and numerical analysis by Seneviratne et al. (2006) 

suggested further that the increased interannual temperature variability is 

strongly related to the land-atmosphere interactions.  

However, there exists as yet no clear analysis of observational evidence 

connecting the interannual variability of summer temperature to winter 

precipitation. The present paper aims to fill this gap in our understanding 

by investigating the relations of summer mean as well as maximum 

temperature and winter precipitation using long-term observations. 

Furthermore, a soil moisture analysis is also presented.  The paper is 

organized as follows: in section 3.2 the observational datasets used are 

described and the statistical technique is briefly introduced. Section 3.3 is 

dedicated to the results and, finally, section 3.4 contains a discussion and 

the conclusions of this study.  

3.2  Datasets and methods 

3.2.1  Observational datasets 

We use long-term observations of accumulated precipitation in Jan-Mar 

(PJFM) and averaged daily mean as well as maximum temperature in Jun.-

Aug. (Tmean and Tmax respectively) for the period 1901-2005. Due to the 

sparseness of in situ soil moisture observations, the averaged self-

calibrating Palmer drought severity index in Jun-Aug (scPDSI, Wells et 

al., 2004), is used as a proxy of soil moisture. The scPDSI is based on 

soil water content in a rather complex water budget model involving 

water cycle interactions with temperature; therefore it is suitable for the 

purpose of this study. Ideally one would use remotely sensed soil 

moisture observations (e.g. de Jeu et al., 2008) but the datasets are 
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unfortunately not yet sufficiently long in time. The scPDSI dataset 

obtained from CRU spans 1901-2002 on a monthly basis and range from 

-4 to +4 in the case of extremely dry and extremely wet conditions 

respectively (van der Schrier et al., 2006). These datasets, gridded at a 

horizontal resolution of 0.5º×0.5º, are derived from University of East 

Anglia Climatic Research Unit (CRU; Mitchell et al., 2005). The serial 

mean values over each pixel are removed to obtain anomalies. Data 

values over mountainous Scandinavia are not included in this study.  

3.2.2  Coupled manifold technique 

We use a technique, the Coupled Manifold Technique (CMT) recently 

proposed by Navarra and Tribbia (2005), to investigate the functional 

relations between fields of interest. Let S and Z stand for two fields and 

suppose they are linked by a linear relation. Their relation may then be 

expressed in terms of data matrices, as 

                            Z=Zfor+Zfree=AS+Zfree 

                            S=Sfor+Sfree=BZ+Sfree.                                      (3.1) 

A and B are two linear operators that express the relation between S and 

Z. Using the Procrustes method (Richman et al., 1993), the CMT seeks 

for A and B with  

                                  A=ZS′ (SS′)
-1 
 

                                  B=SZ′(ZZ′)
-1                                                                     

(3.2) 

where the primes denotes a matrix transpose operation. They are 

generally not equivalent: A expresses the influence of S on Z, and B 

expresses the influence of Z on S. Hence, the Z field can be separated 

into two parts using A: 

                                    Zfor =AS 

                                    Zfree=Z-AS.                                              (3.3) 
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The Zfor part is the portion of Z variability forced by S (henceforth 

“forced manifold”), and Zfree is the portion independent from S 

(henceforth “free manifold”). The same equation can be solved for Sfor 
and Sfree using B: 

                                      Sfor =BZ 

                                      Sfree=S-BZ.                                             (3.4) 

The Zfor and Sfor portions can be further decomposed by writing Equation 

(3.3) and (3.4) into the right-hand side of Equation (3.1): 

               Z=A(BZ+Sfree)+Zfree=ABZ+ASfree+Zfree  

                S=B(AS+Zfree)+Sfree=BAS+BZfree+Sfree.                     (3.5) 

The ABZ and BAS represent the fully coupled manifolds of Z and S 

fields. From a viewpoint of physics, there are two possible mechanisms 

to generate these fully coupled manifolds. One is the external mechanism 

influencing both S and Z fields simultaneously. The other is the 

reciprocal feedbacks between S and Z. Since Sfree is free from Z, the 

ASfree portion thus represents the Z variability purely forced by S, that is, 

the directional influence. Similarly, the BZfree portion represents the 

directional influence of Z on S.  

In our analysis, the CMT is applied to the EOF coefficients of fields of 

interest to simplify the computation, as suggested by Navarra and 

Tribbia (2005), with 99% of the total variance of each field retained. To 

obtain only significant relations, each elements in matrix A and B is 

tested against the null hypothesis of being equal to zero at the 1% 

significance level using the Student t distribution described by Cherchi et 

al (2007). When the forced manifold is obtained, a further significance 

test of the forced variance is performed to make the result robust using a 

Monte Carlo approach. Then S and the forced manifold Zfor, containing 

now only the variability in Z forced by S, are then subjected to traditional 

MCA to obtain the forcing and forced patterns as well as time coefficient 

series of interest.  
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3.3  Results 

3.3.1  Responses of Tmean and Tmax to PJFM 

Figure 3.1a shows the percentage of Tmean variance forced by the PJFM 

variability, and that for Tmax is shown in Figure 3.1d. These values are 

derived from the ratio of the forced Tmean (Tmax) manifold to the original 

Tmean (Tmax) fields. We tested where the percentage values are significant 

different from zero at the 0.10 level. For each grid point, we tested the 

null hypothesis of getting as high or higher variance fractions through a 

Monte Carlo bootstrap method (10000 repetitions of the CMT) by 

randomizing the order number of PJFM values on each grid. The largest 

values are found over southern Europe for both Tmean and Tmax where it is 

most sensitive to land-atmosphere interactions (Seneviratne et al., 2006; 

Fischer et al, 2007; Zampieri et al., 2009), while little forcing (low 

values) is observed over northern Europe of 50ºN. Up to 5~15% of the 

summer Tmean variance over southern Europe appears to be forced by 

PJFM. The forced Tmean variance by PJFM is up to 8% over Western 

Europe, averaged within the green rectangle in Figure 3.1a, which 

doesn’t pass the significance test. Over Eastern Europe, this value 

increases to 11% averaged within the red rectangle in Figure 3.1a, 

passing the significance test. This implies that summer Tmean over Eastern 

Europe is more sensitive to PJFM. These values for Tmax are a bit higher. 

The forced Tmax variance is up to 10% over Western Europe and that 

value over Eastern Europe is up to 14%, averaged within the green as 

well as the red rectangles respectively in Figure 3.1d. Low values for 

both Tmean and Tmax over North of 50ºN indicate little influence from 

PJFM.  

The MCA analysis was originally designed for detecting cross-

correlation. In our study it is conducted to the PJFM field and the Tmean 

(Tmax) manifold forced by the PJFM variability, and therefore what it 

detects is the forcing PJFM pattern and the Tmean (Tmax) response. Derived 

from the first MCA mode, Figure 3.1b and c shows the 1
st
 pair of forcing 

PJFM pattern and its Tmean response, containing 95% of the total squared 

covariance. This MCA mode exhibits unit correlated time coefficients 

(r>0.999), suggesting the derived forcing-forced relationship is very 

robust. The time coefficient series are shown as blue lines in Figure 3.3. 
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We note that the unit correlation derived here is due to the data 

preprocessing with CMT, which constructs only the Tmean variability 

forced by PJFM at significance level of 0.01. The time coefficient series of 

the 1
st
 MCA mode without CMT exhibit a correlation of 0.40 (not 

shown), which is clearly insufficient to conclude a significant linkage. 

The same situation also holds in the following analysis of Tmax as well as 

soil moisture proxy of scPDSI.  

Shown in Figure 3.1b and c, there exists only one significant PJFM 

anomaly over the Mediterranean, with opposite sign of the Tmean response 

largely northward and eastward extended to 50 ºN compared to the PJFM 

anomaly. This suggests that Tmean in summer fluctuates in 

correspondence to the anomalous states of PJFM via the cooling effect of 

the surface energy balance. Precipitation is spectrally white with very 

limited memory up to two weeks due to the chaotic nature of atmosphere 

(Wang et al., 2010); therefore the extended memory of PJFM is probably 

sustained by soil moisture feedbacks on precipitation. One may question 

the existence of forced Tmean anomalies in the opposite sign over north of 

50 ºN. It appears not a physical response to PJFM since there exists no 

forcing anomaly in PJFM in the very location. Therefore we attribute it to 

be a statistical coexistence with no physical implication.  Furthermore, 

this anomaly accounts for a very low percentage of the forced Tmean 

variance over north of 50 ºN (Figure 3.1a) and didn’t pass our 

significance test.  

Shown in Figure 3.1e and f is the 1
st
 leading pair of the forcing PJFM 

pattern and its Tmax response, which contains 96% of the total squared 

covariance with unit correlated time coefficient series. Comparing Figure 

3.1b and e, we can see clearly the Tmax anomaly is forced by almost the 

same PJFM anomaly as that forces Tmean; and the time coefficient series 

exhibit unit correlation (r>0.999). Furthermore, these time coefficient 

series are nearly unit correlated with those derived from the PJFM ~Tmean 

association (r>0.999). These statistical properties suggest that the derived 

linkages between PJFM and Tmean as well as Tmax are very likely to be 

driven by the same climate dynamics. The forced Tmax (Figure 3.1f) 

exhibits very similar dipole pattern as Tmean (Figure 3.1c), however the 

anomalies over north of 50°N are small again.  
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An important question regarding land-climate interactions is whether 

they lead to amplified variability of climate extremes, such as heat 

waves, particularly in the context of climate change (Seneviratne et al., 

2009). Over south of 50 ºN, the percentage of Tmax variance forced by 

PJFM appears to be more homogenized than that of Tmean. Furthermore, 

the robust relations derived from MCA analysis after CMT enable us to 

compare the magnitudes of Tmean and Tmax responses to PJFM, where the 

magnitude of the Tmax response appears to twice that of Tmean. Therefore 

PJFM exerts to some extend larger influence on Tmax than that on Tmean 

over south of 50 ºN, possibly through water cycle interactions.  

3.3.2  The role of soil moisture 

So far we showed that summer temperature fluctuates in relation to 

fluctuations in winter precipitation over Mediterranean. It is plausible to 

hypothesize that these responses are modulated by interactions between 

the water cycle and temperature with soil moisture playing a critical 

mediating role. An analysis of soil moisture would help to support this 

hypothesis. For this purpose the same analytic framework as above is 

conducted to PJFM and summer scPDSI as a soil moisture proxy. Analysis 

of this field is expected to clarify the role of soil moisture in the forced 

Tmax and Tmean responses to PJFM. This analysis is restricted to south of 55 

ºN where PJFM has distinctive expressions in the Tmax and Tmean fields.  
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Figure 3.1 Tmean as well as Tmax variability forced by PJFM. a) Percentage 

of Tmean variance forced by PJFM (sig=0.10 in the red rectangle). b) The 

forcing PJFM pattern and c) its Tmean response. d) Percentage of Tmax 

variance forced by PJFM (sig=0.10 in the red rectangle). e) The forcing 

PJFM pattern and f) its Tmax response. All the relevant time coefficient 

series mutually exhibit unit correlation (r>0.999), shown in Figure 3.3. 

Units are K for Tmean as well as Tmax and mm for PJFM.  
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The scPDSI variability forced by PJFM is shown in Figure 3.2. Shaded 

values in Figure 3.2a indicate the percentage of scPDSI variance forced 

by PJFM that can pass significance test at 0.01 level, with the largest 

values of 20~25% existing in the west Mediterranean. The 1
st
 MCA 

mode contains 80% of the total square covariance with unit correlated 

time coefficient series (r>0.999, green lines in Figure 3.3). The forcing 

PJFM pattern exhibits a distinctive anomaly over Mediterranean (Figure 

3.2b), very similar to that PJFM patterns forcing Tmean and Tmax (Figure 

3.1a, d). The scPDSI response is of the same sign but largely northward 

and eastward extended (Figure 3.2c) compared to the forcing PJFM 

anomalies. Of particular interest is that the time coefficient series are 

highly correlated with those from temperature analyses in section 3.3.1, 

with correlation coefficient r>0.999. The MCA analyses are summarized 

in Table 3.1. Therefore the responses of scPDSI, Tmean and Tmax to the 

PJFM variability we present here appear to be driven by the same climate 

dynamics, and PJFM is very likely to influence Tmean and Tmax via soil 

moisture. That is, a negative precipitation anomaly in winter is supposed 

to result in summer heating due to reduced latent cooling from soil 

moisture. The reverse relationship also holds, where a positive 

precipitation anomaly implies cooling.  

 

Table 3.1 A summery of the MCA analyses between PJFM and the forced 

manifolds 

These observational relations corroborate the interactions between water 

cycle and temperature established in previous numerical work, e.g., 

Seneviratne et al. (2006). Note that if we perform the same set of 

statistics to the winter precipitation and summer minimum temperature, 

we do not obtain the same relations. This is physically reasonable 

because the minimum temperature is highly constrained by external 

forcings, such as atmospheric circulation and sea surface temperature, 

rather than internal feedbacks (Alfaro et al., 2006; Zhang et al. 2008).  
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Figure 3.2 The scPDSI 
variability forced by 

PJFM. a) Percentage of 

scPDSI variance forced 

by PJFM (sig=0.01). b) 

The forcing PJFM pattern 

and c) its scPDSI 

response, containing 

80% of the total squared 

covariance. The MCA 

time coefficient series 

have unit correlation, as 

shown in Figure 3.3.  
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3.3.3  Link to the North Atlantic Oscillation 

The North Atlantic Oscillation (NAO) is the dominating large-scale 

atmospheric circulation over the Atlantic-Europe sector in winter, with 

marked influence on winter climate. In recent years, the NAO is also 

observed to influence summer climate over Europe, in a weak but 

significant way. For example, Qian et al (2003) showed with 

observations that European summer temperature has positive correlation 

with the NAO index in previous January and February; Kettlewell et al. 

(2003) discovered a negative correlation between winter NAO and 

summer precipitation over Europe. However, the mechanism that links 

these phenomena remains still a puzzle. The derived forcing PJFM patterns 

on Tmean and Tmax as well as scPDSI in our analysis appear to resemble 

the NAO regime over Mediterranean, suggesting a plausible hypothesis 

that the NAO variability modulates summer climate over Europe through 

controlling winter precipitation that subsequently initializes the moisture 

states of water cycle interactions with temperature.   

To further clarify the role of NAO in these processes, we compared the 

winter NAO index and the time coefficient series derived from MCA 

analysis. We use the averaged values of NAO index in Jan.-Mar. for the 

period 1901-2005, based on the difference of normalized sea level 

pressures between Gibraltar, Azores and SW Iceland. Shown in Figure 

3.3, the derived time coefficient series from Tmean, Tmax and scPDSI 

analyses have a high correlation with the NAO index with r=0.65 

(p<0.05), suggesting a significant relation between the NAO variability 

and summer climate. The NAO variability is a north-south shift (or vice 

versa) in the track of storms and depressions across the North Atlantic 

Ocean and into Europe. The Atlantic storms that travel into Europe result 

in a dry Mediterranean Europe during a high NAO winter and the 

opposite during a low NAO winter (Hurrell et al., 2001). Based on the 

above analysis, we suggest that the NAO regime over the Mediterranean 

modulates European summer climate via initialization of the winter land 

surface moisture.  
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3.4  Discussion and conclusion 

The importance of soil moisture initialization in winter and early spring 

for the  seasonal prediction of heat and drought waves in European 

summer has been demonstrated in recent years (e.g., Vautard et al., 2007; 

Fischer et al, 2007; Zampieri et al., 2009; Seneviratne et al., 2006; 

Ferranti et al, 2006). Although soil moisture is closely related to 

precipitation, a clear picture of the relations between summer climate and 

preceding winter precipitation has not yet been demonstrated 

observationally. This is largely because the expected signal is very weak 

in the fields of interest, and traditional techniques for cross-correlation, 

such as MCA and CCA, are not capable of generating robust relations 

from this strong background noise.  

 

 

Figure 3.3 The MCA time coefficient series and the NAO index. Green 

line indicates the time coefficients series for the MCA modes of PJFM and 

Tmean as well as Tmax. Four time coefficient series mutually have 

correlation r>0.999, therefore shown with only one green line. Blue line 

indicates the unit correlated time coefficient series for the MCA mode of 

PJFM and scPDSI. The red line indicates the averaged NAO index in Jan.-

Mar.  

 

Using the newly developed CMT technique that detects directional 

influence between climatic fields, we present in this paper robust 
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responses of summer Tmean and Tmax as well as scPDSI to previous winter 

precipitation. Distinctive responses exist only over the Mediterranean 

area, where the temperature response is most sensitive to land-

atmosphere interactions in regional climate models (Schär et al., 1999; 

Seneviratne et al., 2006). The PJFM variability accounts for up to 10~15% 

of the total Tmean and Tmax variance respectively for the period of 1901-

2005; for the scPDSI this value amounts to 20~25% over Western 

Mediterranean. The PJFM appears to influence Tmean and Tmax via scPDSI, 

agreeing very well with our recent understanding of the water cycle 

dynamics over land (see Seneviratne et al., 2010 for a review). Therefore 

our findings are very likely to be physical of origin, although there is 

always a risk to infer physics from statistics. We also note that we are not 

addressing the full picture of land-atmosphere feedback processes but 

only that part that is related to Jan.-Mar. precipitation.  

The extension of responses towards north and east is also observed in 

numerical experiments. Vautard et al. (2007) suggested that the 

northward propagation may be due to the southerly wind episodes 

carrying moisture northward. The eastward propagation is probably due 

to the heat low response over Central Europe, blocking the inflow of 

moist maritime air from the Atlantic and reinforcing the northward 

extension dynamically, addressed by Haarsma et al. (2008). Using a 

moisture tracer model, Bisselink and Dolman (2009) also found that 

advection is the most important contributor to precipitation over central 

Europe. It’s notable that the largest anomalies of Tmean and Tmax responses 

to PJFM (Figure 3.1c, f) exist in central Europe, while the largest Tmean and 

Tmax variance forced by PJFM exists in southeast Europe (Figure 3.1a, d). 

This is because the interannual variability of Tmean as well as Tmax over 

central Europe is much stronger than that over southeast Europe. We 

inferred that the forced variance can be considered as the forcing strength 

or land-atmosphere coupling strength, while the forced anomalies cannot. 

It can also be noticed that the PJFM variability forces large Tmean and Tmax 

variances over southeast Europe (Figure 3.1a, d), but that the variance of 

scPDSI is very limited there (Figure 3.2a). This is possibly because the 

derived Tmean and Tmax variability over southeast Europe is closely related 

to the eastward extended heat response (Haarsma et al., 2009), while the 

soil moisture availability is very small there (Bisselink and Dolman, 

2009).  
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We suggest that the NAO regime over the Mediterranean modulates 

summer climate over Europe through controlling winter precipitation that 

then initializes water cycle interactions with temperature. A positive 

phase of NAO tends to cause a hot and dry summer, or vice versa. This 

suggests there is scope for improved seasonal prediction of heat and 

drought waves from the pressure pattern of winter NAO. A remarkable 

feature of the NAO is its prolonged positive phases in the past 40 years, 

possibly related to anthropogenic warming (Shindell et al., 1999). This 

NAO dry pattern over the Mediterranean may have contributed to the 

increased frequency of heat and drought waves since then through 

modulating the water interactions over the Mediterranean.  
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Chapter 4 

Amplified Summer 

Temperature Response to 

the Atlantic Multidecadal 

Oscillation over the 

Mediterranean Europe
1
  

Abstract 

The surface air temperature (SAT) over Mediterranean Europe exhibits 

marked variability at multidecadal scales, which is widely thought to be a 

response to the Atlantic Multidecadal Oscillation (AMO) of Sea Surface 

Temperature. Here, we analyze, using new rigorous spatio-temporal 

statistics, the relation between North Atlantic SST and European SAT in 

boreal summer (Jun.-Aug.) based on the instrumental records for the 

period 1901-2005. We show that the AMO variability of North Atlantic 

SST explains only half magnitude of the multidecadal SAT variability 

over the Mediterranean Europe. Its full magnitude can only be adequately 

explained as an amplified response in the presence of a long-term 

warming trend. We conclude that the multidecadal SAT variability over 

the Mediterranean Europe is not a direct response to the oceanic AMO 

variability, but contains a large component of amplification.  

         1The content of this chapter has been submitted as “Amplified summer 

temperature response to the Atlantic Multidecadal Oscillation over the Mediterranean 

Europe”. 
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4.1  Introduction 

The surface air temperature (SAT) over the Mediterranean Europe 

exhibits marked variability at multidecadal time scales (Della-Marta et 

al., 2007; Shabalova and Weber, 1999). With ongoing climate change, 

understanding the cause of this multidecadal variability is critical for 

realistic climate projections (Keenlyside et al., 2008; Sutton and Hodson, 

2005). It is particularly so for developing the decadal scale climate 

predictions and adaptation scenarios(Collins et al., 2006; Griffies and 

Bryan, 1997; Latif et al., 2006; Meehl et al., 2009; Sutton and Hodson, 

2005). This multidecadal SAT variability is widely considered to be a 

response to the basin-scale Sea Surface Temperature (SST) fluctuation 

over the North Atlantic Ocean (Delworth and Mann, 2000; Knight et al., 

2006; Knight et al., 2005; Sutton and Hodson, 2005; Trenberth and Shea, 

2006), known as the Atlantic Multidecadal Oscillation (AMO) 

(Keenlyside et al., 2008; Kerr, 2000; Knight et al., 2005). Such a linkage 

has been indeed demonstrated in modeling studies; however, there exist 

considerable uncertainties regarding the precise magnitude among these 

model outcomes (Collins et al., 2006; Delworth and Mann, 2000; Guan 

and Nigam, 2009; Sutton and Hodson, 2005; Zhang et al., 2007). Since 

the AMO variability of North Atlantic SST is thought to be driven by the 

Atlantic thermohaline circulation, it may be predictable once ocean 

circulation models have been improved (Keenlyside et al., 2008; Knight 

et al., 2005). This raises the hope and potential for decadal scale 

prediction of European temperatures (Collins et al., 2006; Keenlyside et 

al., 2008; Latif et al., 2006; Meehl et al., 2009).  

The AMO states are generally represented by a serial index derived from 

detrended SST anomalies averaged over the North Atlantic (Delworth 

and Mann, 2000; Knight et al., 2006; Trenberth and Shea, 2006). 

Alternatively, this index can also be obtained through the Empirical 

Orthogonal Function (EOF) of the SST field (Parker et al., 2007).
 
A 

correlation analysis is then often used to infer its climatic consequences 

(Della-Marta et al., 2007; Delworth and Mann, 2000; Huss et al., 2010; 

Knight et al., 2006). This inference with a simple AMO index assumes 

spatially uniform capacity of the SSTs to affect continental climate, 

which is unlikely to be the case in reality. It is more plausible that SSTs 

at different locations have different capacities to affect the climate over 
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continents. This motivates our current attempt to quantify the European 

SAT response to the AMO variability that takes into account not only the 

temporal but also the spatial variations of SST. A rigorous statistical 

technique, the forced manifold (Navarra and Tribbia, 2005), is used. It is 

specially designed for analyzing the functional relations between climate 

fields, and has recently been used to study the coupling between land, 

ocean and atmosphere (Alessandri and Navarra, 2008; Cherchi et al., 

2007; Navarra and Tribbia, 2005; Wang et al., 2011). 

4.2  Dataset and method 

4.2.1  Datasets 

The data of North Atlantic SST is derived from the Met Office Hadley 

Centre (HadISST1) (Rayner et al., 2003). This product is gridded at 1 

degree resolution (from http://www.metoffice.gov.uk/hadobs/hadisst/). 

The European SAT data is obtained from the product (CRU TS3) of the 

Climatic Research Unit, School of Environmental Sciences, University of 

East Anglia, UK (Mitchell and Jones, 2005). This product is gridded at 

0.5 degree, and is available from http://www.cru.uea.ac.uk/cru/data/. The 

SSTs used here are restricted to the extra tropical North Atlantic 

(60°W~40°E, 30°N~70°N), where most of the influence of temperatures 

in Europe resides (Sutton and Hodson, 2005; Zhang et al., 2007). The 

SST and SAT anomalies are obtained by removing the pixel-wise serial 

means. The SST anomalies are then subjected a running-window low-

pass filter with window length of seven years to obtain its low frequency 

components (SSTL hereon).  

4.2.2   Method 

Given two climate fields S and Z, the forced manifold technique seeks 

for the solution of Z as a linear function of S in terms of data matrices 

(Navarra and Tribbia, 2005):  

                           Z= AS+Zfree                                            (4.1) 

where  



Chapter 4 

 46 

               Z= [z (1), z (2), … , z(t)] and 

               S= [s (1), s (2), … , s(t)]                                     (4.2) 

are the data matrices at fixed time points. A is a matrix operator that 

expresses the influence of S on Z, satisfying  

                                         min||Z-AS||
2
,                                               (4.3) 

where || || is the Frobenius norm. The solution is found by applying the 

minimization problem, which is known as the “Procrustes problem’. 

Owning to the applied low-pass filtering in our case, the matrix operator 

A might be not full rank. In this case, the A can be written as  

                                            A=ZS'(SS')
-1
,                                          (4.4) 

with                                  
1 2 '

1

( ')
K

i i i

i

u uσ− −

=

=∑SS  ,                               (4.5) 

where ui and σi are the left singular vectors and the singular values of the 

matrix S respectively, and the prime represents transpose. The 

summation extends over all its non-zeros singular values, and the modes 

that can not contribute to the variance of S are excluded from the inverse. 

The described method is applied to the Empirical Orthogonal Functions 

(EOFs) coefficients of Z and S fields, as Navara et al (2005) suggested, 

to reduce the mathematical dimension.  

The data matrices of Z and S are first scaled with the square root of their 

respective covariance, i.e., (ZZ')
-1/2

 and (SS')
-1/2

, so that the rescaled data 

have unit covariance. Under such scaling each element of A is a 

correlation coefficient; and each element is then tested for statistical 

significance against the null hypothesis the correlation is zero (Cherchi et 

al., 2007). This test is based on student t distribution and uses n-2 degree 

of freedom. Only the coefficients that can pass a 1% significance 

criterion have been retrained in the operator A. Using A, we can 

decompose the field Z into AS and Zfree as described in (4.1). The 

derived AS is the portion of Z variability that is functionally forced by S, 

termed “the forced manifold”; and Zfree is the portion of Z variability 

independent of S. After rescaling back,  the AS is further subjected to the 

EOF analysis to derive the principal spatio-temporal modes of interest.  
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4.3  Results 

We first demonstrate the multidecadal variability in the SAT records. The 

SAT anomalies are first low-pass filtered with a running window of 

seven years, and then linearly detrended (deSATL hereon). We then apply 

an EOF analysis to the deSATL. The derived first EOF mode, containing 

58% of the total variance of the deSATL field, represents the 

multidecadal variability of summer SAT over Europe, as shown in Figure 

4.1. Similarly, the field of SSTL anomalies is first linearly detrended, to 

which (deSSTL hereon) an EOF analysis is then applied. Shown in Figure 

4.2, the 1
st
 EOF mode of deSSTL, containing 60% of the total variance of 

the deSSTL field, captures the basin-scale AMO variability. Hereon we 

refer to the principal component (PC) time series of its first EOF mode as 

the AMO index. This index agrees very well with that derived from the 

area average deSSTL (Fig 4.2b). The PC time series of the first EOF 

mode of deSATL resembles the AMO index, suggesting this EOF mode 

represents the SAT response to the AMO variability. High amplitudes of 

this response exist over Southeast Europe. Over Northern Europe, the 

amplitudes of this response are relatively low. We now continue to show 

with a focus on the Mediterranean Europe that the seeming high-

amplitude response has largely aliased into the existing background 

warming.  

We first compute the portion of SAT variability that is functionally 

forced by deSSTL. This part is called the forced manifold (Navarra and 

Tribbia, 2005). For this computation, the SAT anomalies are neither low-

pass filtered nor detrended. To obtain reliable results, only the computed 

relations that can pass a 1% significance test (Cherchi et al., 2007) are 

used to reconstruct the forced SAT manifold (see Methods). An EOF 

analysis is then applied to the derived SAT manifold. The spatial pattern 

and the associated PC time series of the derived first EOF mode are 

shown as Figure 4.3a and the PCa in Figure 4.3c respectively. The AMO 

index is also shown in Figure 4.3c for comparison. The spatial pattern 

shows the same sign over the entire Europe, with the highest amplitudes 

occurring over the northern part and very low amplitudes over the 

Mediterranean part. Of particular significance is the fact that the derived 

PC time series (PCa in Fig 4.3c) is nearly identical to the AMO index 



Chapter 4 

 48 

(Fig 4.3c), which suggests this derived first EOF mode is an exact 

response to the AMO variability of North Atlantic SSTs.  

 

Figure 4.1 The first EOF mode of the deSATL anomalies over Europe. 

(a) The spatial pattern (unit: K per standard deviation) and (b) the 

associated principal component (PC) time series with unit standard 

deviation. Also shown in (b) is the normalized AMO index.  

In contrast with Figure 4.1, this result implies that the AMO has rather 

limited impact on the summer SAT over the South Europe where there 

actually appears a marked AMO signature in the instrumental records. It 
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is important to note that this SAT response exhibits quite similar pattern 

(Fig 4.3a) as those in response to the variations of Atlantic thermohaline 

circulation that drives the AMO (Laurian et al., 2010; Pohlmann et al., 

2006). This supplies a strong indication that our result (Fig 4.3a) is very 

likely to be a realistic representation of the SAT response, if the AMO is 

indeed driven by the Atlantic thermohaline circulation.  

Given this limited AMO impact in the above analysis, we suspect that the 

marked AMO signature in the summer SAT records over the Southern 

Europe (Fig 4.1) contains a large component of amplification, possibly 

owing to the existing background warming. Such amplification has 

previously been found in Arctic and Antarctic temperature records 

(Chylek et al., 2010; Chylek et al., 2009). To understand this more fully 

and, importantly, to quantify the possible amplification, we now compute 

the portion of the SAT variability that is forced by SSTL, that is, by the 

non-detrended SSTL anomalies. Again, the SAT anomalies are neither 

low-pass filtered nor detrended for this computation. The derived portion 

of SAT variability is then linearly detrended pixel by pixel (“deSAT 

manifold” hereon). If the suspected amplification effect indeed exists, the 

signal is now expected to be contained in the deSAT manifold. Thus by 

comparing with the SAT variability forced by deSSTL, we can determine 

the magnitudes of this amplification.   
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Figure 4.2 The basin-scale fluctuation of Atlantic Multidecadal 

Oscillation derived from the EOF analysis. (a) The spatial pattern of the 

1
st
 EOF mode of deSSTL, with corresponding PC time series shown as 

green line in (b). This EOF mode captures the basin-scale SST anomalies 

with persistent warm (1930s–1950s) and cool (1900s–1920s, 1960s–

1980s) phases, and the onset of a warm phase in the 1990s. This 

resembles the AMO variability. The red line in (b) shows the area 

averaged deSSTL, which is also used as the AMO index at times. Both 

AMO indices are standardized to have unit deviation. The unit for spatial 

anomalies in (a) is K per standard deviation.  
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Figure 4.3 The summer SAT variability forced by deSSTL and SSTL 

anomalies respectively. The first EOF mode of SAT manifold forced by 

deSSTL consists of the spatial pattern in (a) and the PC time series, PCa, 

in (c). The first EOF mode of deSAT manifold forced by SSTL consists 

of the spatial pattern in (b) and the PC time series, PCb, in (c). The unit of 

spatial anomalies in (a) and (b) is K per standard deviation. Also shown 

in (c) is the AMO index. The PCa , PCb and AMO index in (c) all have 

unit standard deviations.  

The derived deSAT manifold is now subjected to further EOF analysis. 

The spatial pattern and the associated PC time series of the derived first 

EOF mode are shown as Figure 4.3b and the PCc in Figure 4.3c 

respectively. The spatial pattern shows the same sign over the entire 

Europe but with highest amplitudes over the Mediterranean part (Fig 

4.3b). The associated PC time series (PCb in Fig 4.3c) is very close to the 

AMO index, suggesting the derived EOF mode to be again a response to 

the AMO but, now in the presence of background warming. In contrast 
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with that forced by deSSTL, this portion of SAT variability has now 

dramatically increased over the Mediterranean Europe. This strongly 

suggests that the marked AMO signature in the summer SAT records 

over the Mediterranean Europe contains indeed a large component of 

amplification owing to the existing background warming.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 The magnitudes of the amplification. (a) The spatial 

distribution of the amplification factors. (b) The realistic AMO signature 

and its amplification over Mediterranean Europe, as with the realistic 

SAT variability at multidecadal scales observed directly from 

instrumental records.   
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To determine the magnitude of this amplification, we divide the 

amplified SAT response in the background warming by the SAT 

response purely to the AMO, both of which are derived as the EOF 

modes in the above analysis. Because they share nearly identical PC time 

series, the magnitudes of the amplification can be readily obtained by the 

amplitudes of the spatial pattern in Figure 4.3b divided by those in Figure 

4.3a. The spatial distribution of these amplification factors is shown in 

Figure 4.4a. Not surprisingly, the largest amplification values exist over 

the Mediterranean Europe, where the background warming amplifies the 

SAT response to the AMO by a factor of roughly 2. This implies that 

roughly half magnitude of the AMO signature in the summer SAT 

records has aliased into the effect of the background warming. We 

further show in Figure 4.4b the time series of SAT anomalies in response 

to the AMO and those amplified in the background warming, 

representing the realistic and amplified AMO signature in the 

instrumental SAT records. These anomalies in response are averaged 

within the black square as marked in Figure 4.4a. Importantly, the 

validity of quantifying the amplification effect depends largely on 

whether the amplified AMO signature agrees with the realistic 

multidecadal SAT variability with respect to the amplitudes. To show 

this validity of our analysis, we also plot in Figure 4.4b the realistic 

multidecadal SAT variability in the same spatial domain, as determined 

by the first EOF mode of the deSATL (Fig 4.1). It appears that the 

amplified AMO signature can adequately explain the magnitude of the 

realistic multidecadal SAT variability. This agreement of magnitudes 

strongly confirms the validity of our analysis, precluding the possible 

statistical artifact in our analysis. Shown in Figure 4.4b, in recent decades 

the SAT anomalies up to ~0.5 K can be decomposed from the direct 

AMO impact and attributed to the aliasing of the background warming. 

This helps to better understand the magnitude of recent climate change 

over Europe.   

4.4  Conclusion and discussion  

We have provided evidence from spatial-temporal analysis that the 

marked multidecadal variability of summer SAT over the Mediterranean 

Europe contains a large component of amplification in the background 
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warming. It is not just a direct response to the AMO variability of North 

Atlantic SST. Since the AMO is the most important source of decadal 

scale climate predictability (Delworth and Mann, 2000; Keenlyside et al., 

2008; Latif et al., 2006; Meehl et al., 2009; Sutton and Hodson, 2005), 

our result has clear implications for the prediction of future climate over 

Europe. The AMO is projected to cool down to its long-term mean state 

in the next few decades and this is expected to temporally offset the 

temperature increase over Europe (Keenlyside et al., 2008; Knight et al., 

2005). This present study suggests a much reduced possibility for such a 

temperature relaxation to occur than previously expected.  

An active debate exists on the precise shape of the AMO variability so 

far. Defining the AMO as a residual SST pattern after linear detrending 

may not fully reveal its true states (Guan and Nigam, 2009; Mann and 

Emanuel, 2006; Ottera et al., 2010; Ting et al., 2009; Trenberth and 

Shea, 2006). While this is possibly a caveat of our study, we have shown 

that the use of spatio-temporal statistics, rather than a simple index, does 

allow for a more realistic representation of relationships between the 

AMO and European temperature. Our analysis raises the warning that 

inferring the climatic consequences from a single AMO index may lead 

to overinterpretation over the Mediterranean Europe because of the 

aliasing of the background warming into the raw signal (Mann and 

Emanuel, 2006). However, such amplification is not so surprising, given 

the complicated interactions among different components of the climate 

system. We suggest there are physical processes, associated with the 

background warming, that induce positive feedbacks in the air-sea 

interactions that may lead to the amplified SAT response to the AMO 

forcing. However, our statistical analysis from instrumental records 

cannot provide the full unambiguous picture. Further modeling studies 

are needed to identify the precise feedback mechanisms. The strong 

AMO expression over the Southeast Europe (Fig 4.1) disappears partly in 

our spatio-temporal analysis (Fig 4.3). This may suggest the existence of 

amplification related to other processes rather than the background 

warming. The heat-low response over the Southeast Europe, caused by 

soil moisture feedbacks on temperature (Haarsma et al., 2009; Hirschi et 

al., 2011) and triggered by the AMO conditions at multidecadal scales, 

may be such a process.  
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Chapter 5 

Filling Gaps in the Large 

Soil Moisture Dataset from 

Satellite Images
1
  

 

Abstract 

The presence of data gaps is a common concern in geophysical records, 

creating not only difficulty, but more importantly, a large source of 

uncertainty in data analysis. Filling the data gaps is a necessity in the 

perspective of statistical modeling. There are numerous approaches for 

this purpose; however we face particular challenges regarding large 

spatio-temporal dataset such as Earth observations from satellites. Here 

we introduce an efficient three-dimensional method based on discrete 

cosine transforms, which explicitly utilizes information from both time 

and space to predict the missing values. To analyze its performance, this 

method was applied to a global soil moisture product derived from 

satellite images. We executed a validation by introducing synthetic gaps. 

It is shown this method is capable of filling data gaps in the global soil 

moisture dataset with high accuracy.  

  

 

 

 

         1The content of this chapter has been submitted as “Filling gaps in large soil 

moisture dataset from satellite images” to Environmental Modeling and Software.  
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5.1  Introduction  

The presence of data gaps is a common concern in geophysical datasets, 

which presents a large source of uncertainty for data analysis. This 

concern is of particular importance when analyzing the spatio-temporal 

variability of large datasets, e.g., the large-scale satellite observations. In 

the last two decades satellite observations have demonstrated the 

potential to become a major tool for observing the properties of the 

Earth’s land surface and atmosphere, such as soil moisture, temperature, 

aerosols and more recently green house gases. The data gaps in satellite 

datasets are inherent, primarily due to the satellite orbits. Other specific 

reasons such as clouds contamination or instrumental failure etc can also 

create data gaps. The rapidly growing volume and diversity of satellite 

datasets requires an efficient method for filling the data gaps.    

Several methods for this purpose have emerged in recent years, among 

which the most promising ones are based on the empirical orthogonal 

function (EOF) of spatial variability (Beckers et al., 2003; Alvera-

Azcárate et al., 2007) or the singular spectrum analysis (SSA) of 

temporal variability (Kondrashov et al., 2006; Hocke et al., 2008). These 

methods use a few spatial or temporal optimal modes occurring at low 

frequencies to predict the missing values. With the other components 

discarded as noise, these methods may lead to reduced accuracy of the 

statistical models fitted to the existing values and consequently the 

predicted missing values from these models. More importantly, for large 

spatio-temporal datasets it is of critical importance to utilize information 

from both spatial and temporal variability to predict the missing values. 

This demands a method that explicitly takes into account the full three-

dimensionality (2-D spatial + time) of the spatio-temporal dataset. 

However, such a method is still not yet reported to date.  

Here we introduce a penalized least square method based on three-

dimensional discrete cosine transforms, for the purpose of filling data 

gaps in large spatio-temporal dataset. To show its performance, we apply 

it to a global soil moisture product derived from satellite images. There 

are two reasons to choose soil moisture dataset as a primary example. 

First, soil moisture is one important climate player, which affects the 

drought and heat conditions of lower atmosphere through partitioning the 
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available net radiation into latent heat for evaporation and sensible heat 

for temperature increase (Koster et al., 2004; Seneviratne et al., 2010). 

Complete soil moisture datasets are nowadays urgently needed for better 

understanding of the soil moisture-climate interactions, from which 

improved prediction of climate extremes is expected. Secondly, soil 

moisture exhibits temporally a red spectrum (Wang et al., 2010). This 

provides a special challenge to the existing gap filling methods utilizing 

only optimal modes at low frequencies (Kondrashov et al., 2006). It is 

worth noting that there exist some methods specially designed for filling 

data gaps in high-resolution soil moisture time series, as Dumedah has 

recently reviewed (2011); however, those are not applicable to spatio-

temporal satellite product with coarse resolution.   

5.2  Data and method  

5.2.1  Global soil moisture product  

We use the VU University-NASA (VUA-NASA) global volumetric soil 

moisture product (m3·m-3) derived from the Advanced Microwave 

Scanning Radiometer-Earth Observing System (Owe et al., 2008). This 

sensor is mounted on NASA’s Aqua satellite and has daily ascending 

(13:30 equatorial local crossing time) and descending (01:30) overpasses. 

The surface moisture was retrieved with the Land Parameter Retrieval 

Model (LPRM) that solves simultaneously for the surface soil moisture 

and vegetation optical depth (Owe et al., 2008). The LPRM is based on a 

microwave radiative transfer model for passive microwave images that 

links surface geophysical variables, i.e. soil moisture, vegetation optimal 

depth and soil/canopy temperature, to the observed brightness 

temperatures. The C-band (6.9 GHz) channel is generally used to retrieve 

soil moisture; and it switches to X-band (10 GHz) when the C-band is 

contaminated by Radio frequency interference (RFI) (Njoku et al., 2005). 

This daily product has been validated extensively over a large variety of 

land surfaces of sparse to moderate vegetations, showing good agreement 

with in situ observations (De Jeu et al., 2008; Wagner et al., 2007). It has 

been shown that the VUA-NASA product outperforms other AMSR-E 

soil moisture product over various land cover types (Draper et al., 2009; 

Rüdiger et al., 2009). We apply the gap filling method to both the 
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ascending and descending products for the period 2003-2009, which are 

gridded at 0.50 degree resolution. Here we show only the results from the 

ascending product.  

5.2.2  Gap filling method 

The method to introduce is a panelized least square (PLS) regression 

based on three-dimensional discrete cosine transform (DCT), acronymed 

DCT-PLS. The DCT-PLS was originally proposed for automatic 

smoothing of multidimensional incomplete data (Garcia, 2010a; Garcia, 

2010b), and we adapt it here for the purpose of filling data gaps of spatio-

temporal geophysical datasets. The PLS regression is a thin-plate spline 

smoother for generally one-dimensional data array, which trades off 

fidelity to the data versus roughness of the mean function. Recently, 

Garcia (2010a) has demonstrated that the PLS regression can be 

formulated by the DCT, which expresses the data in terms of a sum of 

cosine functions oscillating at different frequencies. Since the DCT can 

be multidimensional, the DCT-based PLS regression can thus be 

immediately extended to multidimensional datasets. Following on we 

give a brief introduction of the DCT-PLS algorithm, and refer the 

mathematical details to Garcia (2010a).  

Let X stand for a spatio-temporal dataset with gaps, and W a binary array 

of the same size indicating whether or not the values are missing. The 

DCT-PLS seeks for X̂ that minimizes  

                               
2 22

1/2ˆ ˆ ˆF(X) W (X X) s X�= - + Ñ ;                      (5.1)  

i.e., it seeks X̂ so that  

                                             
F

0
X̂

¶
=

¶
.                                              (5.2) 

where || || is the Euclidean norm, 2
Ñ  and �  stand for the Laplace operator 

and the Schur (element-wise) product, respectively. The s is a positive 

scalar that controls the degree of smoothing: as s increases, the 
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smoothness of X̂ also increases. The X̂ can be easily achieved by 

rewriting Eq (1) with the type II DCT and its inverse (IDCT), which 

forms 

                        ˆ ˆ ˆX = IDCT( DCT(W (X-X) +X))Γ � � .                 (5.3) 

Here, the Г is a three-dimensional filtering tensor defined by 
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j j
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n
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G = + -å ,                (5.4) 

where ij denotes the ith element along the jth dimension, and nj denotes 

the size of X along this dimension.  

In Eq (5.3) and (5.4), the DCT-PLS modeling relies only on the choice of 

the smoothing parameter s. For the purpose of filling data gaps, this 

parameter must have an infinitesimal value (≈ 0) to reduce the effect of 

smoothing. A high s value leads to the loss of high frequency 

components. For a specific s value, the fitness of the derived DCT-PLS 

model to the existing values can be evaluated by the reconstruction error. 

We define it as the normalized error between original existing values and 

their reconstructions, which falls into (0, 1):  

                              1/2 1/2ˆW (X-X) / W X� � .                             (5.5) 

Then the model with satisfying reconstruction error can then be used to 

predict the missing values.  

5.3  Results 

5.3.1  Gap filling results 

Figure 5.1 shows the fraction of data gaps existing in the soil moisture 

product for the study period. Besides the systematic data gaps due to 

satellite orbit, the other major reasons creating data gaps in this dataset 

include dense vegetation, frozen soil (snow), waterbody etc. As a polar 
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orbiting satellite, the AQUA satellite gives better coverage over the high 

latitudes. However, the data gaps amount to 60-90% over north of 45ºN 

because of frozen soil. The same situation also exists for high elevation 

regions like in the Tibetan Plateau. Over regions of tropical rainforest, 

the vegetation is too dense to retrieve soil moisture. This product has the 

best coverage over Europe, with only 10-30% missing values.  

 

Figure 5.1 Fraction of data gaps in the ascending AMSR-E product for 

the period 2003-2009. White areas contain no data at all. 

Using the DCT-PLS, the fitness of the derived model to the existing 

values is completely controlled by the smoothing parameter s, which can 

be any positive value. For the purpose of gap filling rather than 

smoothing, we consider here only s values smaller than 1. We apply the 

DCT-PLS to the global soil moisture product given s values of 10
-N
 with 

N=0, 1, … , 6 respectively. The global average reconstruction errors for 

each s value are calculated according to Eq (5.5), shown in Figure 5.2. 

Not surprisingly, a larger s value has resulted in a larger global error. 

When s = 10
-6
 is used, the global error has already reached a very small 

value of 5×10
-5
. This small error indicates that the derived DCT-PLS 

model approximates very well the existing values of the global soil 
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moisture dataset; and thus this model can be used to predict the missing 

values.  

 

Figure 5.2 The errors averaged over globe for given s values. 

Hereafter we demonstrate the gap filling result from the DCT-PLS with 

s=10
-6
.  We note that the data gaps in the entire dataset are filled by the 

three-dimensional DCT-PLS simultaneously. The data image and time 

series shown below are extracted from respectively the original and the 

gap-filled spatio-temporal datasets. Fig. 3 shows the data image on Jun. 

5, 2003 prior to its model result. It appears the missing values are well 

filled not only between the satellite bypasses but also over the tropical 

rainforest regions where there are rare observations. In Figure 5.4, we 

show three time series with small to intermediate fraction of data gaps as 

well as their corresponding model outputs. For a clear presentation, only 

the data series for 2009 are shown. The upper panel shows the time series 

extracted from one pixel over Europe (47ºN, 2.5ºE), with 10% missing 

values in the original time series. The middle panel shows those from 

central US (35.5ºN, 99ºW), with 27% data gaps in the original series. The 

bottom panel shows those from equatorial Africa (11ºN, 0ºE), with 43% 

missing values in the original time series. In all three cases, the original 

values almost completely overlap their reconstructions by the DCT-PLS 

model, which is however not surprising because of the small 
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reconstruction error. It is noticeable that the extreme values existing in 

the original dataset are also well captured by the model, e.g., those 

emphasized with arrows in Figure 5.4. This indicates the predicted 

missing values from the used DCT-PLS model might be reliable; 

however, further validation is made in section 3.2.  

 

Figure 5.3  The data image on Jun. 5, 2003 prior to its model result. 

Unit: m
3
·m

-3
.  

With conventional methods, the hardest part is to fill the continuous gaps. 

In spatio-temporal dataset the spatially continuous gaps can however be 

temporally intermittent, or visa versa, such as those between the satellite 
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bypasses. Owing to the three-dimensionality, the DCT-PLS method can 

easily cope with data gaps of this type. However, we need to give special 

care to data gaps of large spatio-temporal size, e.g., those over the 

tropical rainforest regions where the vegetation is too dense to retrieve 

soil moisture. In this case, the missing values are predicted mainly using 

the low frequency components of the dataset, leading to reduced 

reliability of filled-in high frequency components. A large portion of data 

gaps of this global soil moisture dataset is due to frozen soil, in which 

case the filled-in soil moisture values are physically not realistic, and we 

need to mask them out.  

 

Figure 5.4 Original values (red) and the corresponding model 

reconstructions (blue) for the year 2009 from the pixels over a. Europe 

(47ºN, 2.5ºE), b. US (35.5ºN, 99ºW) and c. Africa (11ºN, 0ºE). Note that 

the original values are almost completely overlapped by the reconstructed 

values, due to the very small reconstruction errors. Emphasized with 

arrows are some extreme values.   
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5.3.2  Synthetic validation  

Sometimes perfect fitting does not necessarily imply good prediction 

skill, for example, when overfitting problem occurs. Thus the prediction 

skill needs to be further validated, for which a general approach is to 

introduce synthetic gaps. To validate the prediction skill of the DCT-PLS 

method, we introduce synthetic gaps in addition into the original soil 

moisture dataset (2003-2009) by randomly removing 10% of the existing 

values over each pixel. Then the DCT-PLS gap filling process is applied 

to the new dataset with s=10
-6
. In the synthetic gaps, we calculate the 

correlation coefficient (Corr) between the original values and their 

corresponding DCT-PLS predictions. The reconstruction error in the 

synthetic gaps can be alternatively used as the skill metric of prediction; 

however, it contains no more information than Corr, and we show here 

only Corr. The pixel-wise Corr (p<0.05) is shown in Figure 5. It appears 

that 85% of the validated pixels have higher Corr than 0.80, and those 

pixels with higher Corr than 0.90 amount to 64%. Specifically, the Corr 

values for the representative cases in Figure 4 are 0.97 (Europe), 0.95 

(US) and 0.97 (Africa) respectively. This result suggests very good 

prediction skill of the DCT-PLS for the filling the data gaps of spatio-

temporal soil moisture dataset. 

 

Figure 5.5 Pixel-wise Correlation (p<0.05) surface for the synthetic 

validation over globe. 
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5.4  Discussions 

In this paper, we introduce an efficient DCT-PLS method for filling the 

data gaps in large spatio-temporal dataset; and we recommend it is of 

particular interest for the rapid growing volume and diversity of satellite 

observations in environmental sciences. Using a global satellite soil 

moisture dataset as a primary example and challenging case, we have 

demonstrated very good skill of this method for gap filling purpose.  

This DCT-PLS method has some novel features with respect to other gap 

filling methods. It is a method of full three-dimensionality, and thus 

explicitly utilizes both spatial and temporal information of the dataset to 

derive the statistical model and predict the missing values. Instinctively, 

this strategy is rather sound for spatio-temporal dataset than using only 

spatial or temporal modeling. The statistical modeling process is 

completely controlled by one smoothing parameter which is easy to 

specify, eliminating the need of complicated model parameterization. 

Furthermore, with a small smoothing parameter the DCT-PLS method 

has the potential to reliably fill in the high frequency components.  

However, we do not suggest “the smaller smoothing parameter, the better 

gap filling result”. In case the geophysical dataset spatially have very 

large magnitude difference, an overfitting problem could occur with an 

extremely small smoothing parameter, leading to poor prediction 

performance. For example, in our soil moisture case the minor 

fluctuations in the dataset are indeed observed to be exaggerated over 

some regions, when a smoothing parameter smaller than 10
-7
 is used. 

There are alternative ways to avoid the overfitting problem regarding 

whether or not the dataset contains continuous spatio-temporal gaps of 

large size. For dataset with such gaps, the best choice is probably to 

introduce cross validation for better generalization as Garcia (2010) 

suggested. Yet, this may lead to underfiting and errorous prediction 

where there exist data gaps of large spatio-temporal size, in our 

experience. In this case we suggest a post-validation by introducing 

synthetic gaps to ensure the reliability of the predicted values.  
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Chapter 6 

The Observed Soil 

Moisture Feedback on 

Precipitation from Satellite 

Datasets over Europe 

 

Abstract 

Modeling studies have postulated the possibility of improved prediction 

of precipitation from soil moisture. This has raised the hope of early 

warning of summer droughts. However there exist considerable 

discrepancies among model outcomes. So far, conclusive evidence of soil 

moisture impact on precipitation has not been shown directly from 

observations over Europe. Using satellite observations over southern and 

central Europe, we disentangle and quantify the direction of the 

interactions between soil moisture and precipitation in the time-

frequency space based on the statistical concept of Granger causality. We 

find a significant signal of soil moisture impact on summer precipitation 

over Europe. Soil moisture memory is identified as the mechanism that 

sustains this impact at time scales of 1-2 months. This result sheds light 

on the soil moisture-precipitation interactions as found in the real world 

rather than in modeling results.  
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6.1  Introduction 

Precipitation originating from the surface moisture flux is critically 

important in the terrestrial water cycle and may play a major role in the 

generation of hydrological extremes, such as summer droughts and 

floods (Koster et al., 2004; Seneviratne et al., 2006; Vautard et al., 

2007). Modeling studies have provided evidence for the existence of such 

a soil moisture-precipitation feedback, albeit only over over specific 

regions. However, there remains a high uncertainty about the magnitude 

and even the sign of this feedback (Cook et al., 2006; Hohenegger et al., 

2009; Koster et al., 2004; R. D. Koster et al., 2006; Schar et al., 1999; 

van den Hurk et al., 2010; Vautard et al., 2007).  With such high 

uncertainty our understanding of the soil moisture impact on precipitation 

remains necessarily limited (Dirmeyer et al., 2006). One of the reasons 

for this lack of understanding is that until now empirical evidence to 

support the modeling studies directly from observations of soil moisture 

that could act as a benchmark is very rare. Substantial progress in 

retrieving soil moisture from space has now made such a more 

empirically based analysis possible (de Jeu et al., 2008).  

The challenge is then to identify the directions of soil moisture-

precipitation interaction, i.e. the precise driver-response relationships. 

While this is straightforward in climate models by perturbing the system 

and analyzing the responses, disentangling these relationships in the real 

world, from observations, is much more difficult. Here we make such an 

attempt with soil moisture and precipitation observations using the 

statistical concept of Granger causality (GC) (Granger, 1969). The GC 

method is based on linear prediction theory that the cause occurs before 

the effect and, importantly, that knowledge of the cause helps the 

prediction of the effect (Geweke, 1982; Granger, 1969). It has been 

extensively used in many disciplines, e.g., econometrics (Geweke, 1982; 

Granger, 1969), neuroscience (Brovelli et al., 2004) and also in climate 

studies (Kaufmann and Stern, 1997).   

Formulated in terms of vector autoregression (VAR), the GC method 

assumes covariance stationarity (Geweke, 1982; Granger, 1969). This 

implies that, in a in statistical sense, the causal relationships are time-

invariant. However, the impact of soil moisture on precipitation is 
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expected to vary with season (Koster et al., 2004; Seneviratne et al., 

2010). Identifiable timescales of this impact have appeared in a few 

numerical studies, partly as a function of soil moisture memory (e.g., 

Dirmeyer et al., 2009). It is thus plausible to establish a time-frequency 

representation of the impact of soil moisture on precipitation for 

understanding its time-varying properties and the time scales at which 

this impact operates. For this purpose, we obtain the GC results by 

combining Geweke’s definition of spectral GC (1982) with the 

factorization of a wavelet spectral matrix (Dhamala et al., 2008). An 

advantage of this wavelet-based method is that it eliminates the explicit 

need of parametric VAR modeling, which is impossible for soil moisture 

and precipitation due to their unbalanced variance.  

6.2  Data and method 

6.2.1  Remote sensing dataset 

We use the daily VU University Amsterdam-NASA (VUA-NASA) 

product of volumetric soil moisture (m
3
·m

-3
).  It is derived from satellite 

images of the Advanced Microwave Scanning Radiometer-Earth 

Observing System, using a Land Parameter Retrieval Model (LPRM) that 

solves simultaneously for the surface soil moisture and vegetation optical 

depth (de Jeu et al., 2008; Owe et al., 2008).  The soil moisture retrievals 

from images of the descending bypasses (1:30 am, local time) are used. 

There exist 10-30% missing values in the soil moisture dataset, mainly 

due to satellite orbit and dense vegetation. We applied a three-

dimensional thin-plate spline algorithm to interpolate the dataset, which 

generates full and consistent time series (Garcia, 2010), as shown in 

Chapter 5. The daily precipitation dataset is derived from the multiple 

satellite precipitation product of the Global Precipitation Climatology 

Project (Huffman et al., 2001).  
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Figure 6.1 The analysis domain of this study. 

 

Both daily datasets are resampled to have a horizontal resolution of one 

degree. The current study is restricted to the period of 2003-2007 where 

the datasets temporally overlap. The probability density function of soil 

moisture and precipitation are skewed. Before analyzing the interactions, 

the time series over each pixel are forced to have normal probability 

density function (PDF) with zero mean and unit variance using the 

lookup table method (Jevrejeva et al., 2003). We note that, owing to 

existence of many zero values, the precipitation time series cannot be 

perfectly normalized; however, this is expected to have negligible 

influences on the results. This study is focused on southern and central 

Europe, shown as the red square in Figure 6.1, where soil moisture has 

the most potential to affect atmosphere in climate models. Within this 

spatial domain, there are 459 pixels with complete soil moisture and 

precipitation time series.   

6.2.2 Wavelet-based Granger causality 

This wavelet-based GC method combines Geweke’s (1982) spectral GC 

definition and the factorization of wavelet spectral matrix. Suppose we 
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have too stationary time series X1(t) and X2(t), and each admits a vector 

autoregressive (VAR) representation:  
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where 1,..., ph = is the order of the VAR model, 11
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is the 

transfer coefficient of the model that indicates the contribution of the 

lagged values to the predicted values, ε1(t) and ε2(t) are models residuals 

(prediction errors). Jointly, they can be represented as a bivariate VAR 

process in the form  
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Here, ε1|2(t) and ε2|1(t) are the error items of the joint model, which are 

modeled as uncorrelated white noise.  If var(ε1|2(t))< var(ε1(t)), it is said 

X2(t) statistically has a causal influence on X1(t), which can be quantified 

in the time domain as (Granger, 1969)   

1
2 1

1|2

var( ( ))
ln

var( ( ))

t
GC

t

e
e-> = .                                   (6.3) 

The can be understood as the improvement of the predictability of X1(t) 

by incorporating p-step history of X2(t).  The statistical causality from 

X1(t) to X2(t) can be defined similarly.  
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Further interest lies in the frequency at which these influences operate for 

better understanding the underlying mechanisms. This can be achieved 

by the spectral decomposition of Granger causality as in (6.3), which is 

in time domain, using the formulation of Geweke (1982). A compact 

format of (6.2) and (6.3) forms 

        
1

X( ) A X( ) E( )
p

t t th
h

h
=

= - +å                            (6.4) 

where 11 12

21 22

A A

A A
Ah

æ ö
ç ÷= ç ÷
è ø

 is the transfer coefficient matrix, and E(t) is the 

residual errors with covariance matrix denoted as 
11 12

21 22

æ öå å
ç ÷å = ç ÷å åè ø

.  

 

Once the VAR model of (6.4) is fitted to the data, its spectral 

representation by Fourier transformation forms (Geweke, 1982) 

 
*( ) ( ) ( )f f fS H H= åååå                                (6.5)  

in which the asterisk denotes matrix conjugation, and H is a spectral 

representation of Ak. Then The GC values from X2t to X1t ( 2 1GC ® ) at 

frequency f become (Geweke, 1982)   
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 and, those from X1t to X2t ( 1 2GC ® ) become                                  
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The GC method conceptually determines the improvement of the linear 

predictability of one variable by incorporating p-step history of the other 

variable. The spectral GC values can be viewed as the fraction of 

variance of one variable explained by the p-step history of the other, 

which can be obtained as (Brovelli et al., 2004): 

                                             1-e
-GC(f)

.  
                                                                         

(6.8) 
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The procedure of (6.1)-(6.7) assumes covariance stationarity, that is, the 

relationships between analyzed signals are time-invariant. Recently, 

Dhamala et al. (2008) proposed a nonparametric extension of the spectral 

GC method from the wavelet transforms, which eliminates the 

assumption of covariance stationarity and the explicit need of VAR 

modeling. This makes it possible to assess the time-varying properties of 

soil moisture-precipitation interactions. This wavelet-based GC method 

eliminates also the explicit need of VAR modeling, thus making the 

statistical assessment of the directed interactions between soil moisture 

and precipitation possible. However, the accuracy of spectral GC 

measurements relies heavily on the number of analyzed realizations; thus 

we subject this to gridded datasets. Suppose X(t) = [X1(t), X2(t)] forms a 

realization of a bivariate process, and we have r realizations of this 

bivariate process. The spectral density matrix of X(t) can be defined as  
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21 22

S S

S S
S

æ ö
ç ÷= ç ÷
è ø

,                                         (6. 9)     

which can be derived from the wavelet transforms of time series X1(t) 

and X2(t). We consider the continuous Morlet wavelet transform of a 

time series as W (Torrence and Compo, 1998), and derive the inner 

matrices of S by  

                X X( , ) ( , )
l mlm rS W t f W t f *=á × ñ , with l=1, 2 and m=1, 2.     (6. 10)        

Here, * indicates the matrix conjugate, and ‹›r indicates ensemble 

averaging of r realizations. Using Wilson’s spectral factorization 

algorithm (Wilson, 1972), the spectral matrix S can be factorized into a 

transfer matrix H and a noise covariance matrix ∑ that satisfies Equation 

(6.5) at each time step t. Defining the spectral factorization is complex 

and we refer the detailed mathematics to Dhamala et al. (2008). Then the 

derived H and ∑ at each time step t can be put into (6.6) and (6.7) to 

produce the time-varying spectral GC maps. We represent the result of 

our analysis using time scales, which is the inverse of frequency.  
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6.3  Interdependences and causal interactions 

We consider each pair of soil moisture and precipitation time series over 

the same pixel and in the same year as one realization of the underlying 

bivariate stochastic process. The entire dataset constitute thus an 

ensemble of 5× 459 = 2295 realizations. By means of ensemble 

averaging of these multiple realizations, the derived values can be 

interpreted as the averaged pixel-wise local relationships of soil moisture 

and precipitation in the study domain. Importantly, this ensemble 

averaging also reduces errors arising from possible biases of satellite 

datasets. In Figure 6.2, we show the ensemble averaged cross wavelet 

spectrum of soil moisture and precipitation (Torrence and Compo, 1998). 

A significance test is not performed in this step, as all the derived 

quantities have to be later subjected to spectral factorization. High 

spectral power is seen at timescales of 4-5 months and at timescales of 1-

2 months in the summer season, indicating there are interdependences 

between soil moisture and precipitation at these timescales. However, 

these tell us little of soil moisture impact on precipitation, because high 

power of interdependence may occur from precipitation wetting the  soil 

only (Koster, 2011).  

Using the wavelet-based GC method (Dhamala et al., 2008), we then 

decompose these interdependences into two-way interactions. The time-

frequency GC maps resulting from this analysis are shown in Figure 6.3, 

with Figure 6.3a showing the precipitation impact on soil moisture (GCP-

>SM) and Figure 6.3b the reverse soil moisture impact on precipitation 

(GCSM->P). It is important to note that the GC measures only part of the 

statistical causality between soil moisture and precipitation. As indicated 

in Equation (6.4), by definition, the GC determines only the lagged 

predictability with model order p>=1. That is to say, the instantaneous 

influences, e.g., precipitation wetting of soil on the same day, are not 

captured in the GC analysis. We establish the statistical significance of 

the derived GC results by a random permutation approach. Surrogate 

realizations of the bivariate process are generated randomly using time 

series of soil moisture and precipitation from different original 

realizations, which are then subjected to the computation of spectral GC. 

This computation is repeated 1000 times to establish the statistical 

significance at 1% level. This procedure assumes spatial independence of 
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different pixels; thus our result reflects principally the local impacts. 

Importantly, this procedure preserves the spectral structure of the 

analyzed time series, thus reducing the possibility of obtaining high 

significance erroneously as a result of the serial autocorrelation.  

 

Figure 6.2 The cross wavelet spectrum of soil moisture and precipitation 

in a climatological year. The spectral power is obtained by ensemble 

averaging of the 2295 realizations in the analysis study domain.   

It appears that the power peaks of the GCP->SM and the GCSM->P are 

located at different time scales of 4-5 months and 1-2 months 

respectively, although both in summer. The different locations of these 

power peaks imply that they are generated by different mechanisms. This 

suggests that we have been successful in decomposing the 

interdependences into two-way interactions using the GC method. It is 

notable that the power peak of the GCSM->P at time scales of 1-2 months 

resembles a subset of the GCP->SM, with the latter less stronger. This 

raises the concern whether or not such signals in pair are generated by the 

same external forcing. Indeed, Orlowsky et al. (2010), using an 

equilibrium feedback analysis (EFA), illustrated that statistical 

diagnostics of the impact of soil moisture on precipitation, are often 

better attributed to the precipitation persistence that results from  the 

influence of for instance sea surface temperatures (SST). The EFA 

method uses both the lagged cross-correlation and autocorrelation to 

assess the instantaneous feedbacks. It assumes a shorter persistence time 

of precipitation than the employed time lags which are generally of the 
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order of one month. This assumption can hardly be satisfied because of 

the external influence of SSTs. The GC method we use, although it 

conceptually also incorporates the lagged cross-correlation and 

autocorrelation, is based on the error items of the prediction. This 

essentially eliminates the possible erroneous signal of the impact of soil 

moisture on precipitation from precipitation persistence. In the Appendix 

of this chapter, a numerical experiment is performed to compare the 

performances of the EFA method and the GC method.   

The significant GCP->SM power signifies the wetting of soils caused by 

persistent precipitation regimes. The strongest GCP->SM power appears in 

the summer at time scales of 4-5 months, for which the long persistence 

of precipitation may be best attributed to precipitable moisture advected 

from oceans. However, the GCP->SM power at time scales of 1-2 months 

is suggested to be of relevance to the precipitable moisture originating 

from surface flux. Shown in Figure 6.3b, the GCSM->P shows also 

significant power at time scales of 1-2 months in summer, indicating a 

soil moisture impact on subsequent precipitation. This persistent regime 

of soil moisture impact generates a corresponding persistent precipitation 

regime that keeps the soil wet in return. A signal can thus be expected to 

occur at the similar locations in the GCP->SM map if it is strong enough. It 

is noticeable that there exists little signal at shorter time scales for GCP-

>SM and GCSM->P, as well as for the cross wavelet spectrum. We suggest 

that the ensemble averaging, as a low-pass filter, has essentially 

smoothed out the chaotic phenomena of rainfall which generally have 

smaller spatial and temporal scales, e.g., the processes associated with an 

individual event.  

The derived GCSM->P suggests that soil moisture is likely to affect 

summer precipitation in Europe, sustained by a persistent soil moisture 

regime of 1-2 months. It is important to note that the “time scale” we 

have derived is not equivalent to the predictive time scale used in model 

experiments. While model experiments express straightforwardly the 

time leads at which soil moisture assists in predicting subsequent 

precipitation (R. D. Koster et al., 2010; van den Hurk et al., 2010), ours 

indicates the persistent regime of soil moisture that sustains an impact on 

precipitation. A schematic depiction of this result is shown in Figure 6.4 

for better understanding. The GC method measures the improvement of 
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the precipitation predictability from incorporating backward soil moisture 

observations of p steps, which are segmentations of the soil moisture 

time scales. However, the steps of p remain hidden here because the 

parametric VAR modeling was eliminated. The derived spectral GC 

measurements can be conceptually understood as the fraction of 

precipitation variance explained by the p-step history of soil moisture at 

each time scale. Although significant in summer, the soil moisture impact 

on subsequent precipitation appears to be subtle, as it explains only 10-

20% precipitation variance according to (6.8). One uncertainty in this 

aspect, which we have to point out, is that an increased number of 

analyzed realizations leads to reduced variance to explain.   
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Figure 6.3 The two-way GC relations between soil moisture and 

precipitation over the Southern Europe. Shaded values are at 5% 

significance level.  
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The timing of this impact, i.e., its onset and dissipation, is suggested to 

relate to the evaporation process that connects soil moisture with 

precipitation. Evaporation over Europe is driven largely by energy 

constraints (Miralles et al., 2011; Teuling et al., 2009). In cold seasons, 

soils are generally saturated but the amount of evaporation is too small to 

sufficiently change atmospheric humidity and subsequent precipitation 

(Bisselink and Dolman, 2009). In warm seasons, the amount of 

evaporation becomes sufficiently large to impact precipitation. At the 

same time the drying soil starts to restrict evaporation. In such 

conditions, the variations in precipitation are likely to be partly guided by 

variations in soil moisture.  

 

Figure 6.4 The schematic depiction of the derived soil moisture impact 

on subsequent precipitation. a. indicates one soil moisture state; x-axis 

indicates the evolution of soil moisture and y-axis indicates the 

precipitation predictability rooted in soil moisture. The shaded area 

indicates the soil moisture impact from soil moisture persistence of state 

a. in conjunction with the soil moisture evolution independent of that.   

The underlying mechanisms of soil moisture impact on subsequent 

precipitation are of considerable concern (Taylor et al., 2011; D'Odorico 

and Porporato, 2004; Findell et al., 2011). Several studies have reported 

that the surface moisture flux modifies rather the probability of 

precipitation than the amount through the triggering mechanism, i.e., 

altering the boundary layer properties for precipitation generation 

(D'Odorico and Porporato, 2004; Findell et al., 2011). This triggering 
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mechanism may also exist over Europe (Schar et al., 1999) and our study 

certainly does not preclude it. Our analysis does support an impact of soil 

moisture on the precipitation amount rather than on the probability of its 

occurrence.   

The persistent regime of soil moisture impact can be plausibly attributed 

to the memory scales of soil moisture, which have been estimated to be a 

few months over Europe (Dirmeyer et al., 2009; Wang et al., 2010). Soil 

moisture is a red noise process with strong memory. Although empirical 

evidence still remains rare, this strong memory is believed to be the 

mechanism that sustains the initial soil moisture into subsequent 

precipitation months later, from which the potential of subseasonal 

prediction is constituted (D'Odorico and Porporato, 2004; Dirmeyer et 

al., 2009; Seneviratne et al., 2010). In our analysis, the soil moisture 

memory cannot be directly interpreted as the predictive time. 

Nonetheless, our result gives some hints that the memory of soil moisture 

plays indeed a role in sustaining its impact on precipitation, and thus the 

initial state of soil moisture has the potential to be remembered in future 

precipitation. Statistically speaking, the hidden p-step history constitutes 

the exact predictive time of precipitation that is rooted in soil moisture. 

However, there is also fair possibility that the expected soil moisture 

impact becomes too subtle, and, while still active physically, not 

statistically strong enough to be determined backward beyond p steps.   

6.4  Conclusion 

Our analysis using satellite observed soil moisture presents evidence that 

soil moisture affects the summer precipitation over Europe. This is 

important as it shows for the first time how in the real-world soil 

moisture-precipitation interactions take place. Soil moisture memory is 

thought to play an important role by sustaining the initial mpact at time 

scales of 1-2 months. It is well known that the current generation of 

climate models has difficulties in predicting convective precipitation over 

Europe. The comprehensive multiple-model Global Land-Atmosphere 

Coupling Experiment, and its second phase with realistic soil moisture 

initializations, has demonstrated little soil moisture impact on subsequent 

precipitation over Europe (Koster et al., 2004; van den Hurk et al., 2010). 
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Under such conditions of poor understanding, our observational analysis 

provides a valuable metric for benchmarking climate models and 

validating model-based analyses of soil moisture-precipitation 

interactions. This is of value also for understanding the predictive 

capability for hydroclimatic extremes, such as the summer droughts in 

the present and future climate over Europe (Pal et al., 2004; Seneviratne 

et al., 2006).    

Appendix 

Based on the stochastic climate theory, the EFA method was designed to 

assess the instantaneous influence of a slow-varying variable (e.g., SST) 

on a fast atmospheric variable (Frankignoul et al., 1977). Recently it is 

widely used in assessing land-atmosphere interaction (e.g., Notaro et al., 

2008; Notaro et al., 2006; Zhang et al., 2008; Liu et al., 2006). Below 

with a numerical experiment, we demonstrate that the EFA tends to 

produce statistical pitfalls of the expected feedbacks when the 

atmospheric variable exhibits persistence; however, the spectral GC 

method we have used in this study does not show this behavior.  

The EFA method assumes an atmospheric variable a to consist of two 

parts:   

                                        a(t+dt)=λb(t)+ε(t+dt),                                (6.11) 

where λb(t) represents the atmospheric response to a change in the low-

varying variable b after time dt, and ε(t+dt) represents the noise 

generated by atmospheric internal variability.  By taking the covariance 

of both sides with b(t-τ), Equation (6.9) becomes 

                                     
cov[ ( ), ( )]

cov[ ( ), ( )]

b t a t dt

b t b t

t
l

t
- +

=
-

,                           (6.12) 

where λ is the feedback parameter. The persistence time of the 

atmospheric internal variability is usually shorter than one month. 

Therefore, dt can be neglected if monthly data are used, leading to a 

simplified estimator which is generally used 

                                     
cov[ ( ), ( )]
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b t a t

b t b t
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,                                 (6.13) 
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An apparent limitation of this EFA estimator is that it neglects the 

persistent regimes of atmospheric variables that are due to external 

forcings, which leads to statistical pitfalls when assessing land surface 

feedbacks on overlying atmosphere.   

We consider a bivariate autoregressive process of X=[x1, x2], following 

Dhamala et al. (2008), with  

                              

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 1 2 1

2 2 2 1 2 1 2

 0.55 1 0.8 2 1

 0.55 1 0.8 2 1

x t x t x t c t x t t

x t x t x t c t x t t

ε

ε

→

→

= − − − + − +

= − − − + − +
.       (6.14) 

Here, t is an index of 900 time points, ε1(t) and ε2(t) are two different 

white noise with zeros means and unit variance, c2->1(t) is the feedback 

strength of x2 on x1, and c1->2(t) is the feedback strength of x1 on x2.  The 

c1->2(t) is set to be 0.25 for 0<t<425 and 0 for 425<t<900; the c2->1(t) is 

set to be 0 for 0<t<425 and 0.25 for 425<t<900. These designed 

coupling strengths are shown in Figure 6.5a. By numerical control, x1 and 

x2 both have a persistent mode (period) of 5 data points. We generate 

5000 realizations of this bivariate process.   

We first estimate the EFA feedback parameters, as defined in (6.12). To 

get the time-varying estimates, the EFA estimator is applied to the 

bivariate process (x1 and x2) with a sliding window of 50 data points. The 

time lag is selected to be τ=1. Note that, x1 and x2 both have a persistent 

mode of 5 data points. This is to create an analog of the EFA practice in 

assessing land-atmosphere coupling. Generally, monthly data and a time 

lag of one month are used in such studies. However, the atmospheric 

variables are very likely to have persistence time of 3-5 months owing to 

SST forcings. In our case, as shown in Figure 6.2 and 6.3, the 

precipitation shows indeed a persistence time up to 4-5 months. The 

computation is done realization by realization, and the averaged EFA 

estimates of 5000 realizations are shown in Figure 6.5b.  It appears that 

the EFA estimates yield correctly the designed x1 influence on x2 for the 

first half analyzed period and the x2 influence on x1 for the second half of 

the analyzed period. However, it appears also clearly that the EFA 

estimates yield pitfall of x2 influence on x1 for the first half analyzed 

period and x1 influence on x2 for the second half analyzed period. Note 

that zero EFA values indicate the absence of feedbacks.  
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Figure 6.5 The designed coupling strength and the averaged EFA 

estimates of 5000 realizations. The dashed lines in b. indicate statistical 

pitfall of the feedbacks.  

Consider now the analog of the soil moisture feedback on precipitation. 

The influence of precipitation on soil moisture is obvious, with possible 

persistence times longer than months owing to SSTs. However, the soil 

moisture influence on precipitation may not exist or be very subtle in 

observations. On such circumstance, statistical pitfall of soil moisture 

feedback on precipitation can be easily created by the EFA method.   

Next, we subject the 5000 realizations of the designed bivariate process 

to the wavelet-based GC method. The derived results are shown in Figure 

6.6. To demonstrate the details, these results are not subjected to 

significance tests. It appears that the GC estimates have correctly yielded 

the designed the two-way coupling as shown in Figure 6.5a, without 

statistical pitfall. This implies the wavelet-based GC method is exempt 

from the precipitation persistence, and thus valid for assessing the soil 

moisture feedback on subsequent precipitation.   
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Figure 6.6 The directed couplings estimated from wavelet-based GC 

method. There is no significance test applied in this numerical example.  
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Chapter 7 

Summary and Perspectives  

7.1  Summary 

Recently Mediterranean Europe has suffered from increasing occurrences 

of summer droughts and heat waves that have caused substantial societal 

and ecological impacts (Pal et al., 2004; van Oldenborgh et al., 2009; 

Vautard et al., 2007). Although such extreme conditions are generally 

associated with specific large-scale regimes, model simulations have 

suggested the possible enhancement by soil moisture depletion (Fischer 

et al., 2007; Seneviratne et al., 2006; Teuling et al., 2010; Vautard et al., 

2007). Given the severe scarcity of empirical evidence, this thesis has 

attempted to detect signals of variations in the overlying atmosphere that 

can be attributed to soil moisture feedback, using observational datasets. 

This feedback may exist over a variety of time scales. The focus was thus 

to understand whether or not the land surface processes, with soil 

moisture as the main agent, can contribute to subseasonal, interannual as 

well as interdecadal climate variability over Europe.  

Chapter 2 describes the statistical properties of soil moisture time series. 

This is of importance for knowing the memory of soil moisture, and thus 

the possible persistence of soil moisture impact on atmosphere. 

Furthermore, these statistical features of the soil moisture dataset serve as 

a priori guidance to  the signal interpretation and statistical modeling in 

the following analysis. The soil moisture memory over Europe is 

estimated to be roughly 1-3 months; within this regime, soil moisture 

exhibits a red spectrum and nonstationarity fluctuation properties. 

However, the soil moisture fluctuation in volatility exhibits a white 

spectrum, indicating that soil moisture is statistically a linear process. 



Chapter 7 

 96 

This linearity of soil moisture indicates that the soil moisture time series 

can be well approximated by linear models.  

Chapter 3 studies the interannual variability of summer temperature and 

drought in response to initial soil moisture states, as proxied by the 

accumulated precipitation, of later winter (Jan.-Mar.). Significant 

responses are found over the Mediterranean Europe. We estimate that 

roughly 10 to 5% of the interannual variability of summer temperature 

over the Mediterranean Europe can be explained by initial soil moisture 

states. The value for summer drought increases to 10-25%. In agreement 

with some numerical experiments (Fischer et al., 2007; Seneviratne et 

al., 2006), these results suggest seasonal predictability of temperature 

and drought conditions of Mediterranean summer.  

Chapter 4 studies the possible causes of the marked summer temperature 

variability over Europe at multidecadal time scales. This multidecadal 

variability is generally considered to be a response to the Atlantic 

Multidecadal Oscillation (AMO) (Huss et al., 2010; Keenlyside et al., 

2008; Kerr, 2000; Knight et al., 2006; Knight et al., 2005; Sutton and 

Hodson, 2005). In our rigorous statistical analysis, the oceanic AMO 

variability is found to explain only half of the magnitude of the observed 

magnitude of the AMO-like variability over the Mediterranean Europe. 

The full magnitude can be explained only as amplification in the 

background warming; and the amplification effect is quantified to be a 

factor of roughly 2. Over southeast Europe, where there exists the 

strongest multidecadal variability, the background warming doesn’t show 

the amplification effect. This implies that  the multidecadal variability 

over southeast Europe is more likely an amplification by local processes. 

There is numerical and observational evidence that soil moisture can 

have very strong impact on temperature over southeast Europe, where 

drier soil can induce a self-stimulating heat low response (Haarsma et 

al., 2009; Hirschi et al., 2011). Thus we suggest that such a response 

may be initialized by the AMO condition at the multidecadal frequency 

band.  

In Chapter 6, attempts are made to quantify the direction of the 

interactions between soil moisture and precipitation as well as 

temperature using gridded daily observations (de Jeu et al., 2008; Owe et 

al., 2008). The soil moisture dataset from AMSR-E satellite images 

suffers from the inherent data gaps. As a step of data preprocessing, 
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Chapter 5 introduces a thin-spline smoother of triple dimensionality to 

fill the data gaps (Garcia, 2010). Chapter 6 quantifies the directions of 

the interaction between soil moisture and precipitation. A nonparametric 

approach based on spectral factorization of wavelet transforms is used to 

achieve a time-frequency presentation of the Granger causality (Dhamala 

et al., 2008; Geweke, 1982; Granger, 1969). The interdependences 

between soil moisture and precipitation are decomposed into two-way 

causal interactions. We find a significant signal of the impact of soil 

moisture on summer precipitation over Europe. Soil moisture memory is 

identified as the mechanism that sustains this impact at time scales of 1-2 

months. This result sheds light on the soil moisture-precipitation 

interactions as found in the real world rather than in modeling results.   

7.2  Research perspectives     

The climate system is full of interactions, and the interactions at the land-

atmosphere interface are a key player in the changing climate 

(Seneviratne et al., 2006; Seneviratne et al., 2010). Modeling studies 

addressing land-atmosphere feedbacks often display a large divergence 

between models, without being able to explain exactly why the models 

have these different responses. For instance, the comprehensive multiple-

model Global Land-Atmosphere Coupling Experiment, and its second 

phase with realistic soil moisture initializations, has not demonstrated 

any significant soil moisture feedback on subsequent precipitation over 

Europe (Koster et al., 2004; van den Hurk et al., 2010). In contrast, 

observational evidence tends to be hard to find largely because soil 

moisture observations are very few, but when available they may be 

made into benchmark datasets that allow us to validate model-based 

studies. Both modeling and empirical studies have limitations, and have 

to be employed in conjunction for improved understanding of the 

coupled land-atmosphere system.  

Substantial progress in retrieving land surface properties, especially soil 

moisture (de Jeu et al., 2008; Owe et al., 2008) and evaporation (Miralles 

et al., 2011a; Miralles et al., 2011b), from space has now made an 

empirically based analysis possible. However, due to the different 

directions of the interactions complications easily arise  (e.g Figure 1.1). 

Correlation or coherence analysis unfortunately indicates little about the 
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impact of soil moisture on the lower atmosphere, as precipitation simply 

wets or temperature simply dries the soil in both directions (Koster 

2011). Because of the availability of new satellite datasets, it is now 

timely to conceive a statistical strategy for disentangling the directions of 

interactions from observations, and thus looking more directly into the 

processes itself. The statistical concept of Granger causality is an 

excellent tool for such a strategy (Geweke, 1982; Granger, 1969).  

However difficulties exist in making this happen, particularly in studies 

of land-atmosphere interactions using daily datasets, because of the 

nonstationarity involved in the time-solving interactions. By means of a 

spectral factorization of a wavelet matrix, Chapter 6 demonstrates an 

application in quantifying the direction of the interactions between soil 

moisture and precipitation. However, the accuracy of this approach relies 

heavily on the number of realizations to analyze, which limits it use to 

gridded datasets. This is a condition that can hardly be satisfied by 

observational datasets. For observations with only one realization, 

ultimately we have to go to parametric approaches for estimating the 

Granger causality, for example, when using Fluxnet observations. To 

analyse the nonstationary (time-varying) properties of the land-

atmosphere interactions, alternatively we need to perform adaptive VAR 

modeling, for which Kalman filtering can be used (Havlicek et al., 2010; 

Milde et al., 2010). However, regarding the detection of soil moisture-

atmosphere, there remains a special challenge in parametric modeling. 

The daily soil moisture time series is a red noise process, leading to 

severe problems of unbalance variances with atmospheric variables. This 

problem may cause model misspecification and the variable with higher 

variance can be easily misinterpreted as the causal source. Further efforts 

are needed to find a solution of the VAR modeling that is immune to this 

unbalanced variance problem. This forms a promising research direction.    

While empirical evidence is necessary for validating model-based 

analysis, it can also be easily misleading, particularly with respect to the 

magnitude of the relationships. In Chapter 4, the causes of the 

multidecadal variability of summer temperature over Southern Europe 

are studied statistically. This temperature variability is generally thought 

to result from a response to the Atlantic Multidecadal Oscillation (AMO) 

of the sea surface temperatures. However, we determined that the oceanic 

AMO forcing explains only half magnitude of the multidecadal 
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variability over the Mediterranean Europe. Its full magnitude can be 

explained only as an amplified response in presence of the background 

warming. The data is thus contaminated. Under such circumstances, the 

standard empirical analysis may overestimate the oceanic forcing, 

aliasing the background warming. This may occur  with  many other 

processes where positive feedbacks are involved.  

The amplification over the Mediterranean Europe is likely to result from 

positive feedbacks associated with the background warming related to 

air-sea interactions. It is not yet fully known whether a soil moisture 

feedback plays a role in this amplification. The amplification over 

Southeast Europe may well be related to the soil moisture feedback, as 

there exists modeling evidence that such a feedback may cause the heat 

low response of temperature (Haarsma et al., 2009; Hirschi et al., 2011). 

If this hypothesis is true, it may improve our understanding how soil 

moisture feedbacks evantually contribute to climate variability at 

multidecadal time scales. However, statistical analysis from instrumental 

records alone, unfortunately, cannot provide a fully unambiguous picture. 

Further modeling studies are needed to identify the precise feedback 

mechanisms involved in this amplification.  
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Chapter 8 

Samenvatting en verdere 

perspectieven voor onderzoek 

8.1  Samenvatting  

De laatste tien jaar heeft het Mediterrane gebied in Europe geleden onder 

periodes van grote droogte en hittegolven. Deze droogteperioden en 

hittegolven hebben een grote invloed op het functioneren van het 

maatschappelijk leven en op de natuur. Meestal worden deze bijzondere 

omstandigheden toegeschreven aan de aanwezigheid specifieke 

grootschalige circulatie patronen. Simulaties met meteorologische 

modellen suggereren echter dat bodemvocht ook een rol kan spelen bij 

het ontstaan en handhaven van deze weerscondities. 

Dit proefschrift poogt, ondanks de vaak gebrekkige beschikbaarheid van 

gegevens, juist die signalen te bepalen, die te herleiden zijn op de invloed 

van bodemvocht op de variaties van temperatuur in de onderste lagen van 

de atmosfeer. Deze terugkoppeling kan bestaan op verschillende 

tijdsschalen. Onze grootste aandacht gaat uit naar het begrijpen hoe 

landoppervlakteprocessen, specifiek bodemvocht,  bijdragen aan sub-

seizoenale, jaarlijkse en decadale klimaatvariabiliteit in Europa. 

Hoofdstuk 2 beschrijft de statistiek van tijdseries van bodemvocht in de 

ERA-40 her-analyse. Dit is van belang om het “geheugen” van 

bodemvocht goed te kunnen bepalen en de mogelijke doorwerking van 

dat geheugen op de atmosfeer. Bovendien geeft deze analyse ons een 

eerste inzicht in, en ondersteuning voor onze verdere statistische 

analyses. Het geheugen van bodemvocht kent een karakteristiek 

tijdschaal van ongeveer 1-3 maanden. Bodemvocht kenmerkt zich hierbij 

als een “rode ruis” proces met niet-stationaire fluctuaties.  De fluctuaties 
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in het volatiliteit deel laten echter een “witte ruis” zien. Dit suggereert dat 

bodemvocht zich hier gedraagt als een lineair proces dat gemodelleerd 

kan worden met lineair statistische modellen. 

Hoofdstuk 3 bestudeert de invloed van bodemvocht, voorgesteld door de 

som van de neerslag in de late winter (jan-maart), op de jaarlijkse 

variabiliteit van zomer temperatuur en droogte. We vinden hierbij een 

statistisch significante relatie over Mediterraan Europa die 10-15% van 

de jaarlijkse variabiliteit in zomer temperatuur kan verklaren. Bij droogte 

vinden we een sterkere relatie, die 10-25% kan verklaren. Deze resultaten 

zijn in overeenstemming met model experimenten die voorspelbaarheid 

op seizoenschaal aantonen voor met name  zomertemperatuur en droogte 

in het Europese Mediterrane gebied. 

Hoofdstuk 4 bestudeert de mogelijke oorzaken van de aantoonbare 

variatie in zomertemperaturen op multidecadale tijdschaal (orde >10 

jaar). Men neemt aan dat deze variabiliteit een gevolg is van de 

Atlantische Multidecadale Oscillatie (AMO). In onze nieuwe, robuuste 

statische analyse vinden we echter dat de AMO variatie maar de helft van 

de waargenomen variatie in het Mediterrane gebied kan verklaren die 

doorgaans geheel aan de AMO wordt toegeschreven. De volledige 

grootte van het signaal kan enkel worden verklaard als een versterking 

van het originele signaal tegen de achtergrond van de algehele 

opwarming van de aarde. Deze versterking maakt het oorspronkelijke 

signaal groter met een factor twee. In Zuid Oost Europa, waar we de 

sterkste multidecadale variabiliteit aantreffen zien we deze algemene 

versterking niet, maar lijkt het erop dat lokale processen, zoals 

bodemvocht, een rol spelen.  Model experimenten hebben voor dit gebied 

ook laten zien dat bodemvocht een grote rol speelt bij de totstandkoming 

en handhaving van lage druk gebieden. Het mechanisme waarbij dit 

gebeurt is dat een uitdrogende bodem  tot hogere temperaturen leidt, die 

zo de uitdroging verder kunnen versterken. Onze analyse ondersteunt de 

analyse dat zo’n situatie geinitialiseerd kan worden door specifieke AMO 

periodes en dat deze zichtbaar wordt in de multidecadale frequenties van 

temperatuurfluctuaties. 

 

In Hoofdstuk 6 ondernemen we een poging de richting van de interactie 

tussen bodemvocht en neerslag en temperatuur te bepalen. We gebruiken 
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hiervoor dagelijkse waarnemingen van bodemvocht afkomstig van 

satellietwaarnemingen. De bodemvocht data set is gebaseerd op AMSR-

E metingen. Helaas missen in  deze data set vele waarneming als gevolg 

van, onder andere, problemen met de satelliet. Die ontbrekende data 

moeten we ook berekenen en daarvoor is een “thin-spline smoother” 

ontwikkeld die in drie dimensies (lengte, breedte, tijd) de ontbrekende 

data kan berekenen. Hoofdstuk 6 berekent dan de richting van de 

interactie tussen bodemvocht en neerslag. We gebruiken hiervoor een 

niet-parametrische methode, die gebaseerd is op de spectrale omvorming 

van een wavelet. Dit geeft ons een beschrijving van de zogenoemde 

“Granger Causality” in het tijd-frequentie domein. De wederzijdse 

afhankelijkheid van bodemvocht en neerslag kan zo ontrafeld worden in 

twee aparte richtingen en we kunnen de grootte van die causaliteit dan 

berekenen. We vinden een duidelijk signaal van het bodemvocht op de 

zomer neerslag. Het bodemvochtgeheugen speelt hierbij een belangrijke 

rol om het signaal door te geven op tijdschalen van 1-2 maanden. Deze 

resultaten laten voor het eerst zien hoe bodemvocht-neerslag interacties 

zich in de realiteit afspelen. 

8.2  Perspectief voor verder onderzoek 

Het klimaatsysteem kent vele interacties. Model studies hebben laten 

zien dat juist de interacties tussen het land en de atmosfeer spelen een 

belangrijke rol in een veranderend klimaat. Er bestaan echter grote 

verschillen tussen die modellen en het blijkt vaak moeilijk precies aan te 

geven wat de oorzaak is van de gevonden verschillen. Als voorbeeld, het 

Global Land-Atmosphere Coupling Experiment (GLACE-II) heeft met 

realistische initialisatie van bodemvocht niet kunnen aantonen dat er een 

significante relatie bestond tussen bodemvocht en neerslag in Europa. 

Helaas is bewijs voor dat soort relaties moeilijk te krijgen als gevolg van 

gebrekkige waarnemingsreeksen.   Zouden die datasets er wel komen, 

dan kunnen ze als  “benchmarks” van modellen gebruikt worden. Hoe het 

ook zij, zowel model als op waarneming gebaseerde studies hebben zo 

hun beperkingen en voorlopig valt de meeste voortgang te boeken door 

ze allebei, liefst in samenhang, te gebruiken.  
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Er is de laatste veel vooruitgang geboekt bij het berekenen van 

bodemvocht en verdamping met behulp van satellietwaarnemingen. Dit 

heeft het mogelijk gemaakt om onze statische analyses te maken. Helaas 

is deze analyse niet altijd even eenduidig, omdat bodemvocht en neerslag 

elkaar wederzijds beïnvloeden. Correlatie, of coherentie analyse zijn 

daarbij van weinig nut, omdat ze geen onderscheid maken in de richting 

van beïnvloeding. Gelukkig kunnen we wel dankzij de nieuwe 

satellietwaarnemingen  een strategie uitstippelen voor een statische 

aanpak. Als het lukt om de richting te bepalen van de interacties krijgen 

we immers meer zicht op de processen van die beïnvloeding dan 

voorheen.  Het door ons gebruikte concept van “Granger Causality” is 

hierbij een uitstekend hulpmiddel. 

De toepassing van deze concepten is echter niet makkelijk noch 

eenduidig. Het gebruik van dagelijkse waarnemingen leidt er toe dat de 

tijdreeksen niet meer stationair zijn omdat er dan in de reeksen seizoen 

en andere variaties op treden. Door middel van spectrale ontbinding in 

factoren van een wavelet matrix, is het ons gelukt in Hoofdstuk 6 de 

richting van de interacties te bepalen. Helaas is de nauwkeurigheid van 

die methode beperkt door het aantal realisaties dat we kunnen maken, en 

is de methode dan ook beperkt tot zogenaamde op grids gebaseerde 

datasets (zoals afkomstig uit meteorlogische of klimaat modellen).  Voor 

waarnemingen met enkel één realisatie, zoals bijvoorbeeld van flux 

meetmasten (Fluxnet) hebben we parametrische methoden nodig. Om de 

niet stationaire eigenschappen van land atmosfeer interacties te kunnen 

bepalen kunnen we mogelijk  “adaptive” VAR (Vector AutoRegression ) 

technieken met Kalman filters toepassen. 

Voor het bepalen van bodemvocht atmosfeer interacties blijven 

parametrische technieken  een grote uitdaging. Immers, de dagelijkse 

variaties in bodemvocht laten zich kenmerken als rode ruis, en dit leidt 

tot grote problemen in niet-gebalanceerde varianties van de data reeksen. 

Dit kan op zijn beurt leiden tot model fouten en de variabele met de 

grotere variantie kan dan onterecht worden aangewezen als de 

veroorzaker van het effect. Er is meer onderzoek nodig naar VAR 

methoden die niet gevoelig zijn voor dit probleem. Dit lijkt een 

veelbelovende onderzoeksrichting. 
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Waarnemingen blijven noodzakelijk voor modelvalidatie. Echter, zoals 

we hebben laten zien in Hoofdstuk 4, kan analyse van datareeksen ook 

leiden tot verkeerde conclusies. In hoofdstuk 4 hebben we de oorzaken 

bestudeerd van de multidecadale variatie in zomertemperatuur in Zuid 

Europa. Hoewel, algemeen wordt aangenomen dat deze een gevolg is van 

de AMO, hebben we laten zien dat slechts de helft van de variatie daar 

echt op kan worden herleid. De andere helft van dat signaal is een 

versterking die optreedt als gevolg van de algehele opwarming van de 

aarde. Het lijkt er dus op dat de datareeks “vervuild” is en dan kan een 

empirische analyse tot overschatting van de relatie komen. Dit fenomeen 

kan vaker optreden in complexe (klimaat) situaties waarbij meerdere 

positieve terugkoppelingen op elkaar inwerken. 

De versterking in Mediterraan Europa vindt vermoedelijke zijn 

oorsprong in positieve terugkoppelingen als gevolg van de opwarming 

van de aarde. Het is nog onvoldoende bekend of bodemvocht hierbij een 

rol speelt. Maar, er is ondersteuning voor deze vanuit modelstudies, die 

suggereren dat een dergelijke respons van uitdroging versterkt wordt 

door grootschalige lage drukgebieden die op hun beurt weer in stand 

worden gehouden door hogere landtemperaturen. Mocht dit het geval 

blijken te zijn dan is onze kennis over bodemvocht klimaatvariabiliteit 

weer een stap verder. Statistische analyse van tijdreeksen, hoe waardevol 

ook, kan nooit alleen het gehele beeld van variabiliteit verklaren. Hierbij 

zijn modelstudies, die precies de processen kunnen identificeren die 

bijvoorbeeld een rol kunnen spelen in de versterking van signalen zoals 

van de AMO, evenzeer noodzakelijk.  
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