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if not through  metabolic or gene  expression 
networks, then through RNAs (sense, 
anti-sense, or micro; Hendrickson et al., 
2009)], or through dynamic ultrastructure 
(Westerhoff et al., 1990, 2009a; van Driel 
et al., 2003). To understand disease one 
therefore needs to look at the operation 
and integration of several simultaneous 
processes, as a function of time. Since the 
sum of positive (regulation) and negative 
(homeostasis) effects tend to decide the 
outcome, the approach needs to be pre-
cise experimentally and quantitative in the 
analysis, and relate to molecular biology and 
functional genomics as well as physiology 
(Westerhoff and Palsson, 2004).

Systems approaches have invalidated the 
concept of one “rate limiting” step deter-
mining metabolic pathways (Groen et al., 
1982), gene expression circuits (Koster et al., 
1988; Snoep et al., 2002; Stuger et al., 2002), 
and signal transduction (Hornberg et al., 
2005a,b). A similar scenario is expected 
for DD, and can be tested by exploiting 
methodologies developed on simpler sys-
tems (Westerhoff, 2008; Westerhoff et al., 
2009a,b). The impact of network theory 
(Barabási and Albert, 1999) on under-
standing has been substantial especially so 
in gene networks (Alon, 2007), metabolic 
networks (Schuster et al., 2002; Reed and 
Palsson, 2004; Westerhoff, 2008), in plant 
systems biology (Marshall et al., 2007), 
and even in food webs (Getz et al., 2003). 
Biological networks adapt and change tem-
porally (Reijenga et al., 2005), are hierarchi-
cal in terms of space, time and organization 
(Westerhoff et al., 2009a), and have been 
optimized through evolution for multiple 

extracellular matrix components (Rehman 
et al., 2008; Shih et al., 2009). Free radi-
cals and localized ischemia may trigger 
the proliferation of DD tissue (Murrell 
et al., 1987). Histology has confirmed the 
presence of collagens, myofibroblast, and 
myoglobin proteins in DD, but at widely 
varying abundances. Pathophysiology of 
DD is also thought to arise either from a 
defect in a wound repair process or from 
an abnormal response to wounding (Shih 
and Bayat, 2010). Some of these hypoth-
eses are non-molecular or may associate 
the disease with effects, rather than with 
a single cause. No animal model exists 
for the study of DD fibromatosis, yet 
investigations in animal studies of pos-
sibly related diseases (Akai et al., 1997) 
may be informative (Tart and Dahners, 
1989; Kandel et al., 1991; Akai et al., 
1997; Hildebrand et al., 2004). Single gene 
changes have correlated poorly with DD, 
and DD is nowadays viewed as a complex 
disease. We propose that DD may be a net-
work disease, such that a systems biology 
approach may help its understanding.

How systems biology can assist
Abnormal development such as in DD and 
cancer can influence activities within the 
surrounding tissues. Hence an association of 
these diseases with normal tissue repair pro-
cesses should be expected, compromising 
the distinction between the genes causing 
the development of such a disease and the 
genes involved in the homeostatic response. 
Response to perturbations may be regulated 
at different levels [Daran-Lapujade et al., 
2007 and processes are linked extensively, 

introduction
Dupuytren’s disease (DD) resides within the 
poorly understood, yet important category 
of superficial quasi-neoplastic proliferative 
fibromatosis (McFarlane et al., 1990). This 
nodular palmar fibromatosis often causes 
permanent flexion contracture of the met-
acarpophalangeal (MCP) and proximal 
interphalangeal joints (PIPJ) of the digits 
(Rayan, 2007) leading to loss of function 
(Horner and Bralliar, 1971; Schroter, 1971; 
Tubiana, 1971; Rayan, 2007). DD may 
invade locally within the palmar aponeu-
rosis of the hand (sparingly supplied with 
blood vessels). DD does not disseminate to 
other tissues (Seemayer et al., 1980), but, 
rather behaves as a benign neoplastic disor-
der: progressive and irreversible with a high 
rate of recurrence after surgical excision 
(current gold standard treatment for DD; 
Bayat and McGrouther, 2006). The increas-
ing severity and aggressive recurrence may 
lead to amputation of the affected digit 
(Shaw et al., 2007).

Phenotypically, DD is described by its 
two distinct fibrotic elements: the nodule 
and cord. Nodules are highly vascular-
ized, soft-tissue masses containing mostly 
myofibroblasts, while the cords are rela-
tively avascular with a thickened collagen-
rich structure (Rayan, 2007; Rehman et al., 
2008, 2011). Different schools of thought 
exist regarding the definition of DD pro-
gression; they debate whether the nodule 
develops into cord or the two fibrotic ele-
ments occur independently from a sepa-
rate precursor cell. Processes associated 
with DD pathogenesis include cytokines, 
growth factors, adhesion molecules, and 
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and data processing. In addition to the 
obvious factors such as patient age, gender, 
disease grade, and recurrence, the time and 
order of sample analysis could provide sig-
nificant sources of variability, potentially 
obscuring the biological variation which 
we seek to characterize.

discovery of patHway biomarkers 
tHrougH stress-induced stimuli in dd 
networks
Once the cell system is determined, high 
throughput studies can characterize disease 
using healthy cells to enable identification 
of pathways for the construction of disease-
specific networks. A metabolomics approach 
would facilitate identification of involved 
metabolites, as well as the pathways in which 
they occur. Subsequently the integration of 
transcript and metabolite profiling data will 
determine congruence between the levels 
of certain metabolites, gene transcripts, and 
their protein product(s) to identify meta-
bolic pathways, signaling pathways, and key 
networks (connections and intercellular 
dynamics) that may attribute to formation 
of DD. Next, the investigation of the cellular 
network response to stress-induced stimuli 
(e.g., response to xenobiotics) will assist the 
mechanistic and kinetic modeling of com-
plete pathways. Key parameters (e.g., initial 
concentrations of enzymes and metabolites, 
enzyme kinetic properties such as K

m
, k

cat
, 

and K
i
), and variables (e.g., concentrations 

of metabolites and metabolic fluxes) of the 
DD and control dynamical system may then 
be assigned.

text mining tools, and sbml models for 
systems biology information 
extraction from dd and connective 
tissue disorders
In pharma, systems biology is increasingly 
adopted, as is the use of next generation 
sequencing tools, e.g., RNA Seq, enhancing 
further the impact microarrays have had on 
transcript wide screening in the last decade 
to investigate disease. More than >45,000 
hits in PubMed using the term “systems 
biology” and >54,000 hits for “DNA micro-
array analysis” were retrieved in early 2012. 
In 6 months (July, 2010 to January, 2011) 
6000+ papers with the term “microarray” in 
title or abstract were added to the database. 
However only ∼2100 publications on DD 
have appeared since the original publication 
by Guillaume Dupuytren in 1831.

approach could overcome the ethical issues 
in animal research studies (Westerhoff 
et al., 2008).

imaging
Perhaps the biggest growth area in imag-
ing technologies (Megason and Fraser, 
2007) is fluorescence imaging, adapted for 
in vivo analysis. Label-free methods such as 
Raman microspectrometry are also show-
ing promise (Ellis and Goodacre, 2006). 
The former will allow researchers to assess 
how components of intracellular signaling 
pathways interact in real time (e.g., Maeder 
et al., 2007; Chen et al., 2008). Computed 
tomography (CT), magnetic resonance 
imaging (MRI), positron emission tomog-
raphy (PET), confocal microscopy, cell 
imaging, and Raman microspectroscopy 
already provide a platform for potentiating 
a knowledge base relationship between the 
clinician, patient, and scientist. Integration 
of the observation platform with dynamic-
spatial models (Soh et al., 2009) has not yet 
been achieved. Systems biology would help 
evaluate the metabolic state of the various 
cells in the nodules and the cords of DD as 
a function of contractile activity and assess 
the de- and re-differentiation of fibroblasts 
and myofibroblasts.

establisH an optimum cell system to 
model dd
Several factors need to be taken into account 
when building a cellular model for DD 
(Rehman et al., 2012). Notably, differing 
numbers of cell passages have been reported 
in the studies investigating the Dupuytren 
tissue, and changes in the proliferative 
potential of the fibroblast unstated. DD 
fibroblasts may possess a higher potential 
for matrix and collagen production through 
passages than control fascia cells because 
the DD nodules and cords result from an 
uncontrolled proliferative cellular state. 
Differences in collagen, fibronectin pro-
teins, matrix expression proteins, and even 
proteoglycans could be affected by cell pas-
sage because it is thought that at earlier pas-
sages all cells would mostly be proliferating 
while at later passages they would tend to 
become senescent (Benvenuti et al., 2002) 
or rather quiescent.

Careful consideration should be given to 
factors that affect the reproducibility of data 
or produce instrument drift including sam-
ple preparation, instrument  contamination, 

properties that evade our understanding 
(Schuetz et al., 2007; Westerhoff, 2008; 
Westerhoff et al., 2009b).

New network theories are targeted more 
toward comprehending biological systems 
functionally (Molenaar et al., 2009). The 
Flux-Balance-Analysis objective function 
of maximum growth yield for instance 
(Edwards et al., 2002) is irrelevant for 
the human erythrocyte and muscle cell 
(Westerhoff et al., 2009b). The objective 
of oxygen carrying capacity plus binding 
capacity in the lungs and delivery capacity 
in the tissues, and maximum performance 
independent of oxygen makes more sense. 
It remains to be seen whether in DD the 
flux pattern adjusts to a new criterion of 
optimality, such as in some cases of tumo-
rigenesis (Rodríguez-Enríquez et al., 2009).

If DD was triggered by a single genetic 
factor, then it should encounter so many 
diverse processes during its etiology that 
it will still be co-determined by the many 
factors regulating those processes. If the 
networks governing differentiation of nor-
mal fibroblasts of the palm of the hand are 
perturbed so as to cause differentiation 
into tissue that is muscle-like in terms of 
expressing alpha smooth-muscle actin 
and being contractile without the usual 
controllers of contraction and relaxation, 
then various sets of genetic perturbations 
could lead to DD. Here DD may be much 
like cancer (Hornberg et al., 2006). The 
dilemma is that although we now avail of 
an unprecedented set of methodologies for 
the identification and analysis of molecules 
in living cells, seeing more molecules may 
not help (Lazebnik, 2002). Visualizing the 
connections between them may heighten 
our understanding of DD.

tHe way forward: a coalition 
between systems biology and 
molecular analyses
anatomical model Hooked to in silico 
model
Absence of animal models for DD can be 
offset to some extent by in silico models 
using integrated systems approaches. A 
virtual hand (Soh et al., 2009) may help 
elucidate functional outcomes/behaviors of 
the proliferation of diseased cells. Here to it 
should be useful to map expression patterns 
onto such an anatomical model and attach 
this to in silico models of metabolism and 
gene expression (Westerhoff, 2001). Such an 
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the absence of radically new findings, the 
present mainstream research paradigm is 
unlikely to lead to a full understanding of the 
disease. What is known about DD suggests it 
is a multifactorial network disease requiring 
targeting of a few complete sets of pathways. 
A part way house is needed whereby a sys-
tems biology lead is adopted and molecular 
data generated to test and colonize potential 
networks. The use of time and changes to 
microenvironment should be promoted. 
Single cell analyses too will help to assess the 
impact of cell location and cell–cell contact. 
Availability of different disease states and 
severities will help to define perturbations 
and chronograph network change and dis-
ease progression. This will also assist thera-
peutic target selection. A consortium effort 
to understand DD should be initiated and 
the parameters then correlated across the 
various levels of systemic description. This 
should enable a collective investigation of 
pathological mechanisms in DD and related 
fibrotic connective tissue disorders.
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