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ABSTRACT

Objectives: Alzheimer disease (AD) can now be diagnosed in subjects with mild cognitive impair-
ment (MCI) using biomarkers. However, little is known about the rate of decline in those subjects.
In this cohort study, we aimed to assess the conversion rate to dementia and identify prognostic
markers in subjects with MCI and evidence of amyloid pathology.

Methods: We pooled subjects from the VU University Medical Center Alzheimer Center and
the Development of Screening Guidelines and Criteria for Predementia Alzheimer’s Disease
(DESCRIPA) study. We included subjects with MCI, an abnormal level of �-amyloid1�42 (A�1–42) in
the CSF, and at least one diagnostic follow-up visit. We assessed the effect of APOE genotype,
CSF total tau (t-tau) and tau phosphorylated at threonine 181 (p-tau) and hippocampal volume on
time to AD-type dementia using Cox proportional hazards models and on decline on the Mini-
Mental State Examination (MMSE) using linear mixed models.

Results: We included 110 subjects with MCI with abnormal CSF A�1–42 and a mean MMSE score
of 26.3 � 2.8. During a mean follow-up of 2.2 � 1.0 (range 0.4–5.0) years, 63 subjects (57%)
progressed to AD-type dementia. Abnormal CSF t-tau (hazard ratio [HR] 2.3, 95% confidence
interval [CI] 1.1–4.6, p � 0.03) and CSF p-tau (HR 3.5, 95% CI 1.3–9.2, p � 0.01) concentration
and hippocampal atrophy (HR 2.5, 95% CI 1.1–5.6, p � 0.02) predicted time to dementia. For
subjects with both abnormal t-tau concentration and hippocampal atrophy, HR was 7.3 (95% CI
1.0–55.9, p � 0.06). Furthermore, abnormal CSF t-tau and p-tau concentrations and hippocam-
pal atrophy predicted decline in MMSE score.

Conclusions: In subjects with MCI and evidence of amyloid pathology, the injury markers CSF
t-tau and p-tau and hippocampal atrophy can predict further cognitive decline. Neurology® 2012;

79:1809–1816

GLOSSARY
A�1�42 � �-amyloid1�42; AD � Alzheimer disease; CI � confidence interval; DESCRIPA � Development of Screening Guide-
lines and Criteria for Predementia Alzheimer’s Disease; DSM-IV � Diagnostic and Statistical Manual of Mental Disorders, 4th
edition; HR � hazard ratio; MCI � mild cognitive impairment; MMSE � Mini-Mental State Examination; p-tau � tau phosphor-
ylated at threonine 181; t-tau � total tau; TMT � Trail Making Test; VUmc � VU University Medical Center.

Recently, 2 sets of research criteria1,2 were established, allowing a diagnosis of Alzheimer disease
(AD) in subjects with mild cognitive impairment (MCI) and biomarker evidence of AD pa-
thology. An international working group defined criteria for “prodromal AD” in 20072 and in
2011 the National Institute on Aging and the Alzheimer Association published criteria for
“MCI due to AD.”1 However, at this moment, the prognosis of subjects fulfilling these criteria
is largely unknown, which limits the use of the criteria in clinical practice. Prognostic markers
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for cognitive decline in subjects with MCI
due to AD1 or prodromal AD2 are therefore
urgently needed.

Subjects can be diagnosed with MCI due
to AD1 or prodromal AD2 when they have a
clinical diagnosis of MCI and biomarker evi-
dence of either �-amyloid pathology, AD-
related neuronal injury, or both. Abnormal
amyloid markers may already be present at the
earliest stage of the disease and reach a plateau
in a very early stage of the disease and can
therefore be useful as an early diagnostic
marker.3–5 Markers of the subsequent neuro-
nal injury, on the other hand, such as CSF tau
and hippocampal atrophy on MRI, may re-
flect more advanced pathology and might be
useful as prognostic markers.3–5

For the present study, we selected subjects with
MCI and evidence of amyloid pathology, defined
by an abnormal level of �-amyloid1�42 (A�1–42)
in the CSF. We hypothesized that the injury
markers total tau (t-tau) and tau phosphory-
lated at threonine 181 (p-tau)6–8 in CSF and
hippocampal atrophy on MRI9,10 would be as-
sociated with progression to AD-type demen-
tia and cognitive decline.

METHODS Subjects. We selected subjects from the Devel-
opment of Screening Guidelines and Criteria for Predementia
Alzheimer’s Disease (DESCRIPA) cohort and the memory clinic
of the Alzheimer Center of the VU University Medical Center
(VUmc). DESCRIPA is a European multicenter study per-
formed in a memory clinic setting.11 The VUmc was one of the
DESCRIPA partners and contributed an additional sample of
subjects that were seen outside the DESCRIPA inclusion period.
Inclusion criteria were a clinical diagnosis of MCI, an abnormal
level of CSF A�1–42, based on a clinically validated cutoff (�550
pg/mL),12 and at least one follow-up diagnosis. Subjects with
obvious causes for MCI other than AD, such as alcohol abuse or
severe depression, were excluded. In 10 of the participating cen-
ters, CSF was collected. Of the subjects enrolled at these centers
between 2003 and 2005, 64 subjects fulfilled the inclusion crite-
ria. From the VUmc, 46 additional subjects were included.

Standard protocol approvals, registrations, and patient
consents. The medical ethics committee at each center approved
the study. All patients provided written informed consent.

Clinical assessment. Diagnosis of MCI was made according
to the criteria of Petersen et al.13 Raw scores on neuropsycholog-
ical tests were corrected for age, gender, and educational level in
accordance with locally collected or published normative data
and are expressed as z scores. MCI was defined as a z score less
than �1.5 SD on any of the following tests: the learning mea-
sure or delayed recall of a verbal memory task, Trail Making Test
(TMT) part A, TMT part B, verbal fluency, or Rey Figure Copy
or equivalent test, as described in more detail previously.11,14

Follow-up assessment was performed annually up to 5 years. For

subjects from the Alzheimer Center of the VUmc, follow-up was
part of regular patient care. Diagnosis of AD-type dementia was
made according to the DSM-IV15 and National Institute of Neu-
rological and Communicative Disorders and Stroke–Alzheimer’s
Disease and Related Disorders Association criteria.16 Time to
dementia was defined as the time between the baseline visit and
the date AD-type dementia was diagnosed.

CSF analyses. CSF was collected by lumbar puncture, centri-
fuged, and stored at �80°C in polypropylene tubes. One sample
was thawed twice, but analyses without this sample revealed sim-
ilar results. CSF A�1–42, t-tau, and p-tau were measured with an
InnoTest sandwich ELISA (Innogenetics, Ghent, Belgium) in
Gothenburg for the DESCRIPA cohort and in Amsterdam for
the VUmc cohort. We corrected for interlaboratory ELISA dif-
ferences by means of 33 samples that were analyzed at both lab-
oratories and adjusted the VUmc values to those of DESCRIPA
using the equating formula: Gothenborg � (SD Gothen-
borg/SD VUmc) � VUmc � average Gothenborg � [(SD
Gothenborg/SD VUmc) � average VUmc].17

MRI analyses. For the DESCRIPA cohort, subjects were
scanned according to the routine MRI protocol at each site.
Scanning was performed at 1.0 or 1.5 T and included a
3-dimensional T1-weighted gradient echo sequence with near-
isotropic voxels and a fast fluid-attenuated inversion recovery
sequence.14,18

Hippocampal volume was measured at the Department of
Computing of Imperial College London, using LEAP, a segmen-
tation technique based on atlas registration.19 We tested whether
the MRI field strength influenced the LEAP scores in 348 sub-
jects with MCI from the DESCRIPA cohort. Field strength did
not affect the LEAP score (difference of 0.07%, p value � 0.8
after correction for age, gender, educational level, baseline Mini-
Mental State Examination [MMSE] score, and follow-up diag-
nosis), and, therefore, we used data from both field strengths
without correction.

MRI data were available in 35 of the 64 subjects (55%) from
the DESCRIPA cohort and in 30 of the 46 subjects (65%) from
VUmc. Subjects with and without MRI data available did not
differ with respect to age, gender, educational level, APOE status,
CSF markers, or score on the MMSE20 at baseline.

APOE genotyping. DNA was isolated from 10 mL EDTA-
blood for APOE genotyping, using the light cycler APOE muta-
tion detection kit (Roche Diagnostics GmbH, Mannheim,
Germany).

APOE genotype was determined in 99 subjects (90%). Sub-
jects in whom no APOE status was determined scored higher on
the MMSE at baseline (27.7 vs 26.1, p � 0.005). There were no
differences with respect to age, gender, educational level, medial
temporal lobe atrophy, or CSF markers between subjects with
and without APOE data available. Subjects were classified as
APOE �4�positive when having 1 or 2 APOE �4 alleles.

Statistical analyses. Analyses were performed with SPSS 18.0
for the Macintosh.

For group comparisons of subjects with and without AD-
type dementia at follow-up we used �2 tests for categorical vari-
ables and Student’s t tests for continuous variables. Data for the
CSF markers were log-transformed to obtain an approximately
normal distribution. For further analyses we used dichotomized
values of the respective markers. We used clinically validated
cutoff points for CSF t-tau (�375 pg/mL) and p-tau (�52 pg/
mL).12 For hippocampal volume, we used a summed volume of
the left and right hippocampus of 5.39 cm3 as the cutoff point.
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This cutoff point could best differentiate between healthy con-
trol subjects and subjects with AD-type dementia in the Alzhei-
mer’s Disease Neuroimaging Initiative cohort (S.J.B. Vos, I.A.
van Rossum, F. Verhey, et al., unpublished data), based on the
Youden index using R.21,22 This cutoff point was similar to the
cutoff point of 5.34 cm3 that could best predict AD-type demen-
tia in our own dataset.23

We assessed the effect of APOE genotype, CSF levels of t-tau
and p-tau, and hippocampal atrophy on time to dementia using
Cox proportional hazards with correction for age, gender, educa-
tion, and MMSE score at baseline. Analyses were performed for
each variable alone and with all variables together using a step-
forward model to select the variables that could best predict AD-
type dementia.

We also assessed the association of CSF t-tau and p-tau and
hippocampal volume with the decline in MMSE score. We per-
formed mixed-model analyses with an unstructured covariance struc-
ture with correction for age, gender, educational level, and center.24

RESULTS Baseline characteristics. We included 110
subjects with MCI and abnormal CSF A�1–42. Sub-

jects were 70.8 � 7.7 years old (average � SD), 46%
were female, and 62% had at least one APOE �4
allele. Mean MMSE score was 26.3 � 2.8. Baseline
characteristics of the subjects are shown in table 1.
Two subjects progressed to other types of dementia
(one subject with vascular dementia and one subject
with Parkinson disease dementia). They were in-
cluded in the group of subjects who did not progress
to AD-type dementia. Excluding those 2 subjects
from the analyses did not change the results (data not
shown).

Predictors of progression to AD-type dementia. Dur-
ing a mean follow-up of 2.2 � 1.0 years (median 2.0
years, range 0.4–5.0 years), 63 subjects (57%) pro-
gressed to AD-type dementia. These subjects had
higher levels of CSF t-tau (mean � SD, 670 � 368
vs 421 � 252 pg/mL, p � 0.001) and p-tau (103 �
54 vs 71 � 35 pg/mL, p � 0.001), a smaller
hippocampal volume (5.2 � 0.6 vs 5.8 � 0.8 cm3,
p � 0.002), and a lower score on the delayed recall of
a verbal memory task (z score �1.9 � 0.8 vs �1.3 �
1.1, p � 0.004) than subjects who did not progress
to AD-type dementia (table 1).

Predictors of time to AD-type dementia. Survival anal-
yses using Cox proportional hazards models with
correction for age, gender, and education showed
that time to dementia was predicted by abnormal
CSF t-tau (hazard ratio [HR] 2.3, 95% confidence
interval [CI] 1.1– 4.6, p � 0.03), abnormal CSF
p-tau (HR 3.5, 95% CI 1.3–9.2, p � 0.01), and
hippocampal atrophy (HR 2.5, 95% CI 1.1–5.6,
p � 0.02) (figure 1, table e-1 on the Neurology® Web
site at www.neurology.org). After correction for
baseline MMSE score, results remained essentially
the same, with an HR of 2.0 (95% CI 1.0–4.2, p �
0.06) for CSF t-tau, 3.1 (95% CI 1.2–8.4, p � 0.03)
for CSF p-tau, and 2.2 (1.0–5.0, p � 0.06) for hip-
pocampal atrophy. Of the neuropsychological mea-
sures, only delayed recall predicted AD-type
dementia (HR 2.1, 95% CI 1.0–4.3, p � 0.05) (ta-
ble e-1). The APOE �4 genotype, age, gender, and
education did not predict time to dementia (table
e-1). Cox multivariate analyses with forward-step se-
lection and biomarkers entered as log-transformed
continuous variables selected only CSF p-tau (� 1.2,
HR 3.3, 95% CI 1.4–7.5, p � 0.005). In the multi-
variate analysis, we did not find a significant interac-
tion between CSF p-tau or t-tau with hippocampal
atrophy (p � 0.8).

MMSE slope analyses. Subjects with abnormal CSF
t-tau declined more rapidly on the MMSE, with an
annual decline of �1.1, compared with �0.4 for
subjects with normal CSF t-tau (table 2). At baseline
there were no differences in MMSE score between

Table 1 Baseline characteristics according to diagnosis at follow up

All subjects

No AD-type
dementia
at follow-up

AD-type
dementia
at follow-up

No. 110 47 63

Age, y, mean � SD 70.8 � 7.7 70.1 � 8.1 71.3 � 7.4

Female, n (%) 51 (46) 20 (43) 31 (49)

Education, y, mean � SD 10.8 � 3.5 10.5 � 3.5 11.1 � 3.4

Follow-up, y, mean � SD 2.2 � 1.0 2.3 � 1.1 2.0 � 0.9

APOE �4 positive, n (%)a 61 (62) 23 (54) 38 (68)

A�1–42, pg/mL, mean � SD 382 � 98 369 � 100 392 � 97

t-tau, pg/mL, mean � SD 564 � 345 421 � 252 670 � 368b

t-tau, abnormal, n (%)c 81 (74) 28 (60) 53 (84)b

p-tau, pg/mL, mean � SD 89 � 49 71 � 35 103 � 54b

p-tau, abnormal, n (%)c 90 (82) 32 (68) 58 (92)b

Hippocampal volume, cm3, mean � SDd 5.4 � 0.7 5.8 � 0.8 5.2 � 0.6b

Hippocampal atrophy, n (%)e 35 (54) 8 (31) 27 (69)b

MMSE score, mean � SD 26.3 � 2.8 26.8 � 2.6 25.9 � 2.8

Verbal memory, learning (z score),
mean � SD

�1.5 � 1.0 �1.4 � 1.1 �1.6 � 0.9

Verbal memory, delayed recall (z score),
mean � SD

�1.6 � 1.0 �1.3 � 1.1 �1.9 � 0.8b

Verbal fluency (z score), mean � SD �0.8 � 1.1 �0.7 � 1.3 �1.0 � 0.9

TMT part A (z score), mean � SD �0.8 � 1.8 �0.7 � 1.6 �0.9 � 2.0

TMT part B (z score), mean � SD �1.1 � 1.6 �1.0 � 1.6 �1.2 � 1.6

Visuoconstruction (z score), mean � SD 0.2 � 1.1 0.03 � 1.2 0.3 � 1.0

Abbreviations: A�1–42 � �-amyloid1–42; AD � Alzheimer disease; MMSE � Mini-Mental
State Examination; p-tau � tau phosphorylated at threonine 181; t-tau � total tau; TMT �

Trail Making Test.
a APOE genotype was determined in 99 subjects.
b p � 0.005 compared to no dementia at follow-up.
c Abnormal values were defined as �375 pg/mL for CSF t-tau and �52 pg/mL for CSF
p-tau.
d Hippocampal volume was determined in 65 subjects.
e Hippocampal atrophy was defined as a summed volume of left and right hippocampus of
�5.39 cm3.
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subjects with normal and abnormal CSF t-tau (26.5
and 26.3, respectively). For CSF p-tau, results were
similar (table 2). Subjects with hippocampal atrophy
showed a more rapid decline in MMSE score com-
pared with subjects without hippocampal atrophy
(average annual decline �1.2 vs �0.5, p � 0.09)
(table 2). At baseline, subjects with hippocampal at-
rophy had lower MMSE scores than subjects without
hippocampal atrophy (25.6 vs 27.0, p � 0.02).

Biomarker subgroup analyses. To investigate the ef-
fect of the combination of abnormal CSF t-tau and
hippocampal atrophy on progression to AD-type de-
mentia and cognitive decline, we subdivided subjects
with both CSF and MRI available (n � 65) into 3
groups, depending on their biomarker status at base-
line (figure e-1): 1) normal CSF t-tau and no hip-
pocampal atrophy (n � 9, of whom 1 progressed to
AD-type dementia); 2) either abnormal CSF t-tau or
hippocampal atrophy (n � 28, of whom 16 pro-
gressed to AD-type dementia); and 3) both abnormal
CSF t-tau and hippocampal atrophy (n � 28, of
whom 22 progressed to AD-type dementia). Com-
pared with subjects with normal CSF t-tau and no
hippocampal atrophy, subjects with either abnormal
CSF t-tau or hippocampal atrophy had an HR of 5.2
(95% CI 0.7–40.3, p � 0.1) for progression to AD-
type dementia. For subjects with both abnormal CSF
t-tau and hippocampal atrophy, the HR was 7.3
(95% CI 1.0–55.9, p � 0.06) (table 3).

The annual decline in MMSE score was �0.1 (p
value slope � 0.8) for subjects with normal CSF
t-tau and no hippocampal atrophy, �0.8 (p �
0.001) for subjects with either abnormal CSF t-tau
or hippocampal atrophy, and �1.1 (p � 0.001) for
subjects with both abnormal CSF t-tau and hip-
pocampal atrophy (table 3, figure 2). The slopes of
decline of subjects with 1 or 2 abnormal markers
differed from the slope of subjects with both markers
normal, but not from each other. For subjects with
only abnormal CSF t-tau (n � 21), the annual de-
cline in MMSE score was �0.6 (�1.0 to �0.2, p �
0.006). For subjects with only hippocampal atrophy,
no slope analyses could be performed, because of the
small sample size (n � 7).

DISCUSSION In this prospective study of subjects
who fulfilled the criteria for MCI due to AD1 and
prodromal AD2 based on abnormal CSF A�1–42, we
found that during a mean follow-up of 2.2 years 63
subjects (57%) progressed to AD-type dementia.
High CSF levels of t-tau and p-tau and hippocampal
atrophy predicted progression to dementia and de-
clines in MMSE score.

The overall annual conversion rate to dementia of
approximately 20% in this study was higher than the

Figure 1 Survival curves for time to dementia
in subjects with mild cognitive
impairment (MCI) and abnormal CSF
�-amyloid1�42, corrected for age,
gender, and education

Red lines indicate the subjects with an abnormal value of each
respective marker, defined as CSF total tau (t-tau) �375
pg/mL (A), CSF tau phosphorylated at threonine 181 (p-tau)
�52 pg/mL (B), and hippocampal volume �5.39 cm3 (C). Blue
lines indicate the subjects with normal values of each marker.
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conversion rate typically observed in subjects with
MCI unselected for biomarker status.25 For compar-
ison, subjects with MCI and a normal concentration
of CSF A�1–42 in our dataset had an annual conver-
sion rate of less than 10% (data not shown). Still, a
considerable percentage of our subjects did not de-
velop AD-type dementia within the follow-up pe-
riod. Because abnormal A� is suggested to be an early
marker for AD,3 higher progression rates to AD-type
dementia might be expected with a longer follow-up
period.

The rapid decline to dementia in subjects with
high CSF levels of t-tau and p-tau and hippocampal
atrophy could mean that these subjects either had a
more aggressive course of the disease or were already
in a more advanced stage when assessed at baseline.

Slope analyses suggested that they had a more aggres-
sive course of the disease because they showed a more
rapid decline in MMSE score than subjects with nor-
mal values of these markers at baseline. This finding
is in line with previous studies that showed a more
rapid cognitive decline in subjects with AD-type de-
mentia with high levels of CSF tau.26,27 Subjects with
hippocampal atrophy may have also already been in a
more advanced stage of the disease at baseline be-
cause they had lower MMSE scores at baseline than
subjects without hippocampal atrophy. This result is
consistent with the previously suggested order of
events in the amyloid cascade,3,4 with hippocampal
atrophy being a relatively late feature of AD pathol-
ogy. In a previous study in subjects with MCI and
biomarker evidence of A� pathology, hippocampal
atrophy also predicted time to dementia.28 In another
study in subjects with MCI who all progressed to AD-
type dementia, CSF t-tau, CSF p-tau, and hippocampal
atrophy were also associated with rapid progression
from MCI to AD-type dementia, whereas CSF A�1–42

was not.5 Our finding that the predictive value of the
respective CSF and MRI markers for progression to
AD-type dementia remained after correction for base-
line MMSE score indicates that AD biomarkers can
have prognostic value in addition to clinical measures
alone.

The predictive accuracy of CSF t-tau and p-tau and
hippocampal atrophy we observed in our MCI subjects
with abnormal CSF A�1–42 was lower than that re-
ported in studies conducted in subjects with MCI re-
gardless of amyloid biomarker status7–9,23 Most likely
this is because in our analyses only the additional pre-
dictive effect relative to abnormal amyloid was tested,
although differences could partly also be due to differ-
ences in setting and other study characteristics.

Table 2 Predictors for decline in MMSE scorea

No. Baseline MMSE p Valueb Slope p Valueb

CSF t-tau

>375 pg/mL 81 26.2 (25.1–27.4) 0.6 �1.1 (�1.4 to 0.8) 0.02

<375 pg/mL 29 26.5 (25.3–27.9) �0.4 (�0.9 to 0.2)

CSF p-tau

>52 pg/mL 90 26.2 (25.1–27.3) 0.4 �1.1 (�1.3 to 0.8) 0.005

<52 pg/mL 20 26.7 (25.3–28.2) �0.04 (�0.7 to 0.6)

Hippocampal volume

<5.39 cm3 35 25.6 (23.8–27.5) 0.02 �1.2 (�1.5 to 0.8) 0.01

>5.39 cm3 30 27.0 (25.2–28.8) �0.5 (�0.9 to 0.1)

Abbreviations: MMSE � Mini-Mental State Examination; p-tau � tau phosphorylated at
threonine 181; t-tau � total tau.
a Baseline MMSE scores and slope values of annual change in MMSE score were estimated
using mixed models with correction for age, gender, educational level, and center. Values
are estimated assuming that subjects are 50% female, are 70 years of age, and have 11
years of education. Data are means (95% confidence interval).
b The p value of the difference between subjects with normal and abnormal values for each
biomarker.

Table 3 Progression to AD-type dementia and rate of cognitive decline with respect to biomarker status
at baselinea

CSF t-tau and
hippocampal
volumeb No.

Dementia-free
survival after 4 y,
mean � SE

Dementia,
HR (95% CI)

Baseline
MMSE, HR
(95% CI)c Slope

Both normal 9 0.73 � 0.06 Reference 27.4 (25.2–29.6) �0.1 (�0.9 to 0.7)

One abnormal 28 0.19 � 0.08 5.2 (0.7–40.3) 26.6 (24.7–28.5) �0.8 (�1.2 to 0.4)d

Both abnormal 28 0.09 � 0.03 7.3 (1.0–55.9) 25.5 (23.6–27.4) �1.1 (�1.5 to 0.7)e

Abbreviations: AD � Alzheimer disease; CI � confidence interval; HR � hazard ratio; MMSE � Mini-Mental State Examina-
tion; p-tau � tau phosphorylated at threonine 181; t-tau � total tau.
a Dementia-free survival and the HR were calculated using Cox regression analyses with correction for age, gender, and
educational level. Baseline MMSE scores and slope values of annual change in MMSE score were estimated using mixed
models with correction for age, gender, educational level, and center. Values are estimated assuming that subjects are
50% female, are 70 years of age, and have 11 years of education.
b Abnormal CSF t-tau was defined as a value �375 pg/mL; hippocampal atrophy was defined as a volume of both left and
right hippocampus of �5.39 cm3.
c Differences in baseline MMSE between the groups were not statistically significant.
d The p value compared with both markers normal � 0.1.
e The p value compared with both markers normal � 0.02.
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We found no differences in age, gender, and APOE
status between subjects with and without dementia at
follow-up, although age, gender, and APOE genotype
are known risk factors for AD in the general population.
A possible explanation for this finding is that advanced
age and APOE �4 genotype are risk factors for develop-
ment of abnormal A� processing but do not influence
clinical progression once abnormal A� processing is es-
tablished.

We included subjects with MCI and abnormal
amyloid. According to the criteria of the National

Institute on Aging and the Alzheimer Association,1

these subjects would meet the criteria for “MCI due
to AD�intermediate likelihood.” Of the 65 subjects
with both CSF and MRI data available, 9 subjects
(14%) had both normal CSF t-tau and normal hip-
pocampal volume and met the criteria for “MCI,
biomarker evidence uninformative.” The course of
the disease in these subjects was relatively benign
with a 27% conversion rate to AD-type dementia
after 4 years, although the interpretation is limited by
the small sample size. Twenty-eight subjects (43%)
had both abnormal CSF t-tau and hippocampal atro-
phy and fulfilled the criteria for “MCI due to AD-
�high likelihood.”1 Their prognosis was poor, with
91% progressing to AD-type dementia after 4 years.
In 28 subjects (43%), the injury markers were con-
flicting, with either CSF t-tau abnormal or hip-
pocampal volume abnormal. According to the
National Institute on Aging and the Alzheimer Asso-
ciation criteria, it is not clear whether these subjects
should be diagnosed as “MCI, biomarker evidence
uninformative” or “MCI due to AD�high likeli-
hood.”1 Our data suggest that these subjects should
be considered as “MCI due to AD�high likelihood”
because the decline in MMSE score and progression
rate to AD-type dementia (81%) was similar to that
of subjects with both markers abnormal, whereas the
rate of decline on the MMSE was worse than that of
subjects with both markers normal, although group
comparisons are hampered by the small sample size.

Two subjects included in the study progressed to
other types of dementia, despite abnormal CSF
A�1–42 levels at baseline. One subject, aged 75 years,
had extrapyramidal signs at baseline and was later
diagnosed with Parkinson disease dementia. CSF
A�1–42 was 326 pg/mL, CSF t-tau and CSF p-tau
were normal, and hippocampal volume was not
available. Decreased CSF A�1–42 has been described
before in subjects with alpha-synucleinopathies.29

This finding highlights the importance of ruling out
causes for the cognitive symptoms other than AD
before the criteria for MCI due to AD can be ap-
plied.1 The other subject, aged 61 years, was diag-
nosed with vascular dementia at follow-up. She had a
CSF A�1–42 concentration of 357 pg/mL and abnor-
mal CSF t-tau and p-tau concentrations. On the
MRI scan she had multiple vascular white matter le-
sions and parietal atrophy, in the absence of hip-
pocampal atrophy. In retrospect, this subject may
have had mixed dementia with both vascular and AD
pathology.

A major limitation of our study is that we did not
have MRI data available for all subjects, which lim-
ited the possibilities for multivariate analyses. An-
other limitation is the limited follow-up. Studies

Figure 2 Decline in Mini-Mental State
Examination (MMSE) score in
subjects with mild cognitive
impairment (MCI) and abnormal
CSF A�1–42 according to CSF total
tau (t-tau) and hippocampal volume

Slopes of decline in MMSE score in subjects with MCI and
abnormal CSF �-amyloid1–42 (A�1–42) are shown. Subjects
were classified according to their CSF t-tau levels and hip-
pocampal volume at baseline. Abnormal values were de-
fined as CSF tau �375 pg/mL and hippocampal volume
�5.39 cm3.
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with longer clinical follow-up are needed to assess
whether all subjects with MCI due to AD will indeed
develop dementia eventually.

Our results indicate that markers of AD-related
neuronal injury, such as CSF levels of t-tau and p-tau
and hippocampal atrophy, could help to identify
those subjects with MCI due to AD who will more
rapidly progress to dementia. Subjects with both ab-
normal CSF A�1–42 and abnormal injury markers,
thereby fulfilling the criteria for “MCI due to AD-
�high likelihood,” showed the most rapid cognitive
decline and a high progression rate to AD-type de-
mentia, even within our limited follow-up period.
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