
A Distributed Archival Network for Process-Oriented
Autonomic Long-Term Digital Preservation

Inauguraldissertation

zur
Erlangung der Würde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Ivan Subotic
aus Basel (Basel-Stadt)

Basel, 2013

Attribution-Noncommercial-No Derivative Works 2.5 Switzerland

You are free:

to Share — to copy, distribute and transmit the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

• For any reuse or distribution, you must make clear to others the license terms of this work. The best way
to do this is with a link to this web page.

• Any of the above conditions can be waived if you get permission from the copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

Quelle: http://creativecommons.org/licenses/by-nc-nd/2.5/ch/deed.en Datum: 3.4.2009

Your fair dealing and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license) available in German:
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de

Disclaimer:
The Commons Deed is not a license. It is simply a handy reference for understanding the Legal Code (the
full license) — it is a human-readable expression of some of its key terms. Think of it as the user-friendly
interface to the Legal Code beneath. This Deed itself has no legal value, and its contents do not appear in
the actual license. Creative Commons is not a law firm and does not provide legal services. Distributing of,
displaying of, or linking to this Commons Deed does not create an attorney-client relationship.

http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/deed.en

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät

auf Antrag von

Prof. Dr. Heiko Schuldt, Dissertationsleiter
Prof. Dr. Andreas Rauber, Korreferent

Basel, den 26. Februar 2013

Prof. Dr. Jörg Schibler, Dekan

Abstract

The rapidly growing production of digital data, together with their increasing im-
portance and essential demands for their longevity, urgently require systems that
provide reliable long-term preservation of digital objects.

These systems have to ensure guaranteed availability, integrity, authenticity, and
interpretability over the course of the preservation, where the preservation period
may last for several years, for instance in business or scientific applications, the life-
time of a human in medical applications, up to potentially unlimited time-spans for
preservation in cultural heritage digital libraries. This means that all kinds of tech-
nical problems (network, software or hardware failures) need to be reliably handled
and that the evolution of data formats is supported. At the same time, systems need
to scale with the volume of data to be archived. Thus, long-term digital preserva-
tion systems have to be inherently distributed to allow content to be replicated. In-
stitutions with long-term archiving needs for the preservation of digital data, have
to collaborate in order to build a highly reliable and available, geographically dis-
tributed Internet-based digital archiving system. By employing distributed systems
technologies be it for the creation of a small cooperating network of few institutions
with limited resources, or a large network with many nodes providing combined
potentially vast amounts of globally distributed resources, the challenges lie in the
autonomic, efficient, and fault-tolerant use of these resources without a centralized
global coordinator.

We present novel concepts for a distributed long-term preservation system for dig-
ital data, with a focus on long-term preservation as required by archives, museums,
research communities, or the corporate sector. These concepts are the result of com-
bining distributed, autonomic, and process oriented computing, with requirements
from the digital preservation community regarding special system, user, and meta-
data functionality. Originating from this fusion, our novel concepts are the main in-
gredients of the described system model, consisting of a data model, and different

i

processes. At the data level, support is provided for complex data objects, man-
agement of collections, annotations, and arbitrary links between digital objects. At
process level, our proposed archiving system model supports automated processes
that provide dynamic replication, consistency checks, and automated recovery of the
archived digital objects utilizing autonomic behavior governed by preservation poli-
cies without any centralized coordinator in a fully distributed network. This allows
for an efficient and fault-tolerant use of the resources provided in the network.

Further, we present a prototype implementation of the DISTARNET (DISTributed
ARchival NETwork) system, a distributed long-term digital preservation solution,
which utilizes the described novel concepts. While implementing the described data
model and processes, our implementation is additionally governed by considerations
such as fault-tolerance on the node level, maintainability and extendability, and long-
term use of the system, which all flow into the described system architecture, and
resulting implementation.

Subsequently, we then perform an evaluation of the implemented prototype and
the underlying concepts, with the use of realistic scenarios. The evaluation consists
of two parts. In the first part, we define and employ a benchmark geared towards
triple stores, in which we evaluate the feasibility and the constraints of using triple
stores for RDF-based metadata storage and management in the context of long-term
preservation systems. In the second part, we perform a qualitative and quantitative
evaluation of the DISTARNET system prototype implementation. The former look-
ing at the correct execution of the developed processes, and the later looking at the
performance of the system regarding the overall archiving storage capacity and scal-
ability of the system.

ii

Acknowledgements

I would like to express the deepest appreciation to my thesis advisor and mentor
Prof. Dr. Heiko Schuldt for his extraordinary supervision, and for the generous and
friendly support he provided over these years while displaying a lot of patience. With
his stimulating discussions he gave me a lot of insight which I have been able to
express in this thesis. Also he provided me the huge opportunity to write this thesis
in his group, and to say the least, this thesis would not have been possible without
him.

I wish to thank Prof. Dr. Andreas Rauber from the Vienna University of Technology
in Austria, for kindly agreeing to be my co-referee.

I am particularly grateful for patient guidance, the support, and advice given by
P.D. Dr. Lukas Rosenthaler, Prof. Dr. Rudolf Gschwind, Dr. Simon Margulies, and all
the great people at the Imaging and Media Lab at the University of Basel.

I would also like to thank Daniela Bienz, for her loving support and enthusiastic
encouragement during this time. Finally, I wish to thank my father, Branislav Subotic,
for his patience and continuously support throughout my thesis.

M ••• B •••

iii

Contents

Abstract i

Acknowledgements iii

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Scenarios . 3

1.1.1 Multinational Pharmaceutical Corporation 3
1.1.2 National Museum of History & Native Art 4
1.1.3 Cloud Storage Provider . 5
1.1.4 Deployment Categories . 6

1.2 Challenges of Digital Long-Term Preservation 7
1.3 Contribution and Scope of the Thesis . 9
1.4 Structure of the Thesis . 11

2 Digital Preservation and Distributed Systems Foundations 12
2.1 Digital Preservation . 12

2.1.1 Communication with the Future 13
2.1.2 Key Aspects . 14
2.1.3 Long-Term Preservation Strategies 15

2.2 OAIS Reference Model . 18
2.3 Digital Objects Metadata . 20

2.3.1 Metadata Standards . 20
2.3.2 Object Format Identification, Validation, and Characterization . 23
2.3.3 Open Access API Standards . 24

iv

Contents

2.3.4 Summary . 25
2.4 Distributed Systems . 25

2.4.1 Peer-to-Peer Systems . 25
2.4.2 Grid Computing . 26
2.4.3 Service Oriented Architecture 27
2.4.4 Cloud Computing . 28
2.4.5 Summary . 30

2.5 Dependability in Distributed Systems 31
2.5.1 Faults, Errors, and Failures . 32
2.5.2 Fault-Tolerance . 33
2.5.3 Fault-Tolerance in the Context of Distributed Systems 34
2.5.4 Application Level Fault-Tolerance 35

2.6 Autonomic Distributed Systems . 39
2.6.1 Automatic vs. Autonomic . 39
2.6.2 Key Properties for Autonomic Systems 40
2.6.3 Self-* Properties in General . 42

2.7 Semantic Web Technologies . 43
2.7.1 Uniform Resource Identifier (URI) 43
2.7.2 Resource Description Framework (RDF) 44
2.7.3 RDF Schema (RDFS) . 45
2.7.4 SPARQL . 45
2.7.5 OWL . 46
2.7.6 Summary . 46

3 General Requirements and Concepts for a Distributed Archival Network 47
3.1 General Requirements for a Long-Term Digital Preservation System . . 48

3.1.1 Information Object . 48
3.1.2 User Functionality . 48

3.1.2.1 Ingest . 49
3.1.2.2 Access . 49
3.1.2.3 Annotations, Links, and Collections 50
3.1.2.4 Preservation Planning 50

3.1.3 System Functionality . 51
3.1.3.1 Replication and Distribution 52

v

Contents

3.1.3.2 Fault-Tolerance and Failure Management 52
3.1.3.3 Management of Complex Information Objects 53
3.1.3.4 Scalability . 54
3.1.3.5 Openness and Extensibility 54
3.1.3.6 Resource Discovery and Load Balancing 55
3.1.3.7 Authentication, Authorization, and Auditing 55

3.2 Distributed Archival Network Concepts 56
3.2.1 Network . 56
3.2.2 Node Layers . 57
3.2.3 Processes Overview . 59
3.2.4 DISTARNET Processes and OAIS 63

3.3 Failure Classification and Fault-Tolerance 63
3.3.1 Infrastructure Faults . 65
3.3.2 Content Faults . 66
3.3.3 Node Engine Faults . 66

3.4 DISTARNET Modules . 66
3.4.1 User Interaction Module . 68
3.4.2 Digital Preservation Logic Module 69
3.4.3 Repositories Module . 72

3.4.3.1 Node Information Repository 73
3.4.3.2 Replica Location Repository 73
3.4.3.3 Copy Job Repository 74
3.4.3.4 Migration Job Repository 75

3.4.4 Services Module . 76
3.4.4.1 Analyzer Basic-Services 76
3.4.4.2 Checksum Basic-Services 77
3.4.4.3 DFMP Basic-Services 77
3.4.4.4 Distribution Basic-Services 77
3.4.4.5 PNCP Basic-Services 78
3.4.4.6 PubSub Basic-Services 78
3.4.4.7 RCP Basic-Services . 78

3.4.5 Network Module . 79
3.4.5.1 Network Services . 79

3.4.6 DAO Storage Module . 79

vi

Contents

3.4.6.1 DAO DB-Store . 80
3.4.6.2 DAO File-Store . 80
3.4.6.3 Data Object Catalog . 81

3.5 DISTARNET Processes . 81
3.5.1 Ingest Process . 81
3.5.2 Node Joining Process . 81
3.5.3 Periodic Neighbor-Node Checking Process 82
3.5.4 Node-Lost Process . 83
3.5.5 Automated Dynamic Replication Process 85
3.5.6 Periodic Integrity Checking Process 87
3.5.7 DAO Repairing Process . 89
3.5.8 Data Format Migration Process 91
3.5.9 Reliable Copying Process . 93
3.5.10 State Dissemination Process . 98

3.6 DISTARNET Data Model . 100
3.6.1 DISTARNET Archival Object 100
3.6.2 Archival Information Package (AIP) 104

3.7 Summary . 105

4 DISTARNET System Architecture and Implementation 106
4.1 Requirements for the Implementation 107

4.1.1 Node Engine Fault-Tolerance . 108
4.1.2 Maintainability and Extendability 111
4.1.3 Long-Term Use . 113
4.1.4 Summary . 115

4.2 Implementation-Specific Concepts, Frameworks, and Libraries 120
4.2.1 Actor Model . 120
4.2.2 JVM, Scala, and Akka . 121
4.2.3 Akka’s Actor System . 122
4.2.4 Netty and Unfiltered . 122
4.2.5 Jena Core and Jena TDB . 123
4.2.6 Mongo DB and Casbah . 123

4.3 System Architecture Overview . 124
4.4 DISTARNET Modules Implementation 127

vii

Contents

4.4.1 Node Actor System . 127
4.4.2 User Interaction Module . 128
4.4.3 Digital Preservation Logic Module 129
4.4.4 Repositories Module . 131
4.4.5 Services Module . 131
4.4.6 Network Module . 132
4.4.7 DAO Storage Module . 133

4.5 DISTARNET Data Model Implementation 134
4.5.1 Relationships and Representations 135
4.5.2 RDF Schema . 136
4.5.3 RDF Model Checksum . 137
4.5.4 Why RDF-based DISTARNET Archival Objects? 139

4.6 Summary . 139

5 Evaluation 140
5.1 Evaluation of Metadata Management 141

5.1.1 DISTARNET Triple-Store Performance Evaluation 143
5.1.1.1 Scenarios . 144
5.1.1.2 Scaling Factor . 146
5.1.1.3 Benchmark Queries . 146
5.1.1.4 Benchmark Mix . 150
5.1.1.5 Benchmark Implementation 151

5.1.2 Benchmark Evaluation Results 152
5.1.2.1 Evaluation Setup . 152
5.1.2.2 Bulk Load Times . 152
5.1.2.3 S1 and S2 Evaluation Results 153
5.1.2.4 Discussion . 153

5.2 Evaluation of the DISTARNET System 155
5.2.1 Cooperating Image Archives Scenario 156
5.2.2 Qualitative System Evaluation 157

5.2.2.1 Test Scenario 1: Node Destruction 159
5.2.2.2 Test Scenario 2: Content Corruption 161
5.2.2.3 Test Scenario 3: Data Format Obsolescence 162
5.2.2.4 Test Scenario 4: Multi-Failure 163

viii

Contents

5.2.2.5 Qualitative Evaluation Summary 164
5.2.3 Quantitative System Evaluation 165

5.2.3.1 Test Data . 166
5.2.3.2 Evaluation Procedure 166
5.2.3.3 Quantitative Evaluation Results 167

5.3 Summary . 170

6 Related Work 172

7 Conclusion and Future Work 177
7.1 Conclusion . 177
7.2 Future Work . 180

Bibliography 183

Index 197

ix

List of Figures

1.1 DISTARNET Deployment Categories . 6

2.1 Preservation as Communication with the Future 13
2.2 OAIS Functional Entities . 19
2.3 OAIS Functional Entity: Archival Storage 20
2.4 The Dependability Tree . 31
2.5 Failures, Errors, and Faults . 33
2.6 Different Classifications of Faults . 34
2.7 Star Pattern . 35
2.8 Semantic Web Stack . 43
2.9 RDF Statement Example . 45

3.1 DISTARNET 2.0 System Overview . 57
3.2 Modularized View of the System Model 67
3.3 User Interaction Module . 69
3.4 Digital Preservation Logic Module . 69
3.5 Process Execution Logic Trigger Hierarchy 70
3.6 Repositories Module . 73
3.7 Services Module . 76
3.8 Network Module . 79
3.9 DAO Storage Module . 80
3.10 Periodic Neighbor-Node Checking Process (PNCP) 84
3.11 Node-Lost Process (NLP) . 86
3.12 Automated Dynamic Replication Processes (ADRP) 88
3.13 Periodic Integrity Checking Processes (PICP) 90
3.14 DAO Repairing Process (DRP) . 92
3.15 Data Format Migration Process (DFMP) 94
3.16 Reliable Copy Process Overview . 95

x

List of Figures

3.17 Reliable Copy Process: RCP-Out . 96
3.18 Reliable Copy Process: RCP-Out-Remote 97
3.19 Reliable Copy Process: RCP-In . 99
3.20 State Dissemination Process (SDP) . 101
3.21 UML Diagram of the Digital Archive Resource and Content Domain . 102
3.22 Logical Data Model for DISTARNET 2.0 in UML Notation 103
3.23 Simplified Data-Container for Distarnet 2.0 105

4.1 Secondary Dependencies without any Process Engine 116
4.2 Secondary Dependencies including the Activiti Process Engine 117
4.3 Secondary Dependencies including the jBPM Process Engine 118
4.4 Secondary Dependencies including the Bonitasoft Process Engine . . . 119
4.5 DISTARNET System Architecture Overview 124
4.6 DISTARNET Node Actor System . 128
4.7 User Interaction Module Actor Hierarchy 129
4.8 Digital Preservation Logic Module Actor Hierarchy 129
4.9 Process Execution Architecture Overview 130
4.10 Repositories Module Actor Hierarchy 131
4.11 Services Module Actor Hierarchy . 132
4.12 Network Module Actor Hierarchy . 132
4.13 DAO Storage Module Actor Hierarchy 133
4.14 DISTARNET Object Relationships View 136
4.15 DAO RDF Schema - Resource Subclasses 137
4.16 DAO RDF Schema - Property Subclasses 138

5.1 Image DISTARNET Archival Object Graph 144
5.2 Manuscript Archival Object Graph . 145
5.3 Evaluation Run Durations in Seconds per Scale Factor in S1 and S2 . . 154
5.4 Evaluation Data Structure . 156
5.5 DISTARNET Network of Four Image Archives after Initialization . . . 159
5.6 Bar Plot of the Results with Scaling Factor F = 1 169

xi

List of Tables

2.1 Overview of P2P Networks and Protocols 26
2.2 Classes of Strategies and their Fault Tolerance Methods 36

3.1 Main DISTARNET Processes Categorized by their Self-* Properties . . 60
3.2 Comparing OAIS-Archival Storage to DISTARNET 2.0 Processes . . . 63
3.3 DISTARNET Fault Classes, their Effect, Detection, and Recovery Actions . . . 64
3.4 Node Information Repository Entry Attributes 74
3.5 Replica Location Repository Entry Attributes 74
3.6 Copy Job Repository Entry Attributes 75
3.7 Migration Job Repository Entry Attributes 76

4.1 DISTARNET Fault Classes, their Effect, Detection, and Recovery Actions . . 109
4.2 External Dependencies per Module . 114
4.3 External Dependencies Summary . 114
4.4 System Information Repository Entry Attributes 132
4.5 Catalog Entry Attributes . 133

5.1 Triple-Store Capacities . 142
5.2 S1 and S2 Data Characteristics . 146
5.3 Query Frequency, Concurrency, and Access Type 150
5.4 Absolute and Relative Number of Process Instances 151
5.5 Bulk Load Times for Scenario 1 and 2 . 153
5.6 Evaluation Results for S1 and S2 . 154
5.7 Overall Data Collection Size per Scaling Factor 166
5.8 Evaluation Results Overview . 167
5.9 Evaluation Results for F = 1 . 169

7.1 DISTARNET Failure Recovery . 178

xii

1
Introduction

Digital data, either digitized or digital born are increasingly gaining importance in
our everyday life. As a consequence, a large spectrum of applications require that
data is preserved over long periods of time — up to several years due to legal con-
straints in business applications or for scientific data, for the duration of the lifetime
of a human in medical applications, up to potentially unlimited time spans for the
preservation of cultural heritage. Approaches to digital long-term preservation are
constrained by the enormous and ever growing volumes of data. In addition, long-
term data archiving and preservation also needs to take into account that data has to
outlive the hardware on which they are stored and the data formats in which they are
represented.

It is essential that at access time in the future as a result of the digital preservation
task, the information carried by the initially stored digital object, is still accessible
and usable. Metadata is the key to providing long-term digital preservation. The
Open Archival Information System (OAIS) Reference Model [1, 2] categorizes meta-
data that need to be preserved and managed together with the original bitstream
into the following categories: representation information (to allow the data to be ren-
dered and used as information); reference information (to identify and describe the
content); context information (for example, to document the purpose for the creation
of digital content); fixity information (to permit checks on the integrity of the digi-
tal content); and provenance information (to document the chain of custody and any
changes since the content was originally created). There is also additional metadata
that is created during the preservation process when a digital object evolves (e.g., an-
notations, links between information objects, collection/subcollection information).

1

1. Introduction

We will use the term Information Object to denote the digital data (bitstream), their
metadata and optional links to other objects.

The long-term preservation of digital information objects is challenged by a num-
ber of problems and risks (e.g., network, hardware and software failure, data format
obsolescence, etc.) that need to be addressed for a successful preservation outcome.
In order to escape from the technological obsolescence of specific hardware and soft-
ware products, the OAIS reference model explicitly considers the migration of digital
data to new data carriers and/or data formats in periodic intervals

In short, digital long-term preservation combines policies, strategies, and actions
for preserving information objects, despite potential changes of the formats in which
objects are stored, and in the underlying hardware environment. Therefore, a soft-
ware system for digital long-term preservation has to support preservation processes
that guarantee (i) integrity: the information captured by data is not altered in any
way; (ii) authenticity: provenance information is properly linked to each stored object
by means of appropriate metadata; (iii) chain of custody: location and management
controls are tracked within the preservation environment; (iv) completeness: every-
thing that was initially stored is also available in the future and finally (v) ease of ac-
cess: the necessary means are provided to find and identify the stored digital objects.
Moreover, an essential requirement for viable long-term preservation systems is their
capability to do the necessary maintenance and failure recovery in an autonomous
way, e.g., to automatically identify when a pre-defined replication level is no longer
reached and to trigger corrective actions (deploy new replicas) without human inter-
vention.

To cope with all these challenges, we have developed novel concepts for a dis-
tributed long-term preservation system for digital data, with a focus on long-term
preservation as required by archives, museums, research communities, or the corpo-
rate sector. These concepts are the result of combining distributed, autonomic, and
process oriented computing, with requirements from the digital preservation com-
munity regarding special system, user, and metadata functionality. The goal of the
development is to provide concepts, when implemented in a software system, the
deploying institutions can, on their own or through collaboration with others, build
an autonomous, reliable replicated, geographically distributed, Internet-based digital
archiving system.

The concepts describe a data model, and a number of processes. At the data level,

2

1. Introduction

support is provided for complex data objects, management of collections, annota-
tions, and arbitrary links between digital objects. At process level, we provide sup-
port for automated processes. The processes provide dynamic replication, consis-
tency checks, and automated recovery of the archived digital objects utilizing auto-
nomic behavior governed by preservation policies without any centralized coordina-
tor in a fully distributed network.

Further, we present a prototype implementation of the DISTARNET (DISTributed
ARchival NETwork) system, a distributed long-term digital preservation solution,
which utilizes the described novel concepts, and additional considerations regarding
fault-tolerance, maintainability and extendability, and long-term use.

1.1 Scenarios

In the following, we briefly sketch three use case scenarios that highlight the broad
applicability of DISTARNET, as a viable solution for a reliable, cost effective, and
efficient long-term archiving system. DISTARNET stands in these scenarios as one
possible representative for systems implementing the developed concepts.

1.1.1 Multinational Pharmaceutical Corporation

Carol, head of the computer science department at ACME Ltd. a large multinational
pharmaceutical corporation, has the task to implement a new digital archiving so-
lution which is compliant to the company’s preservation policy. In addition to the
standard requirement for digital preservation (integrity, authenticity, etc.), this policy
imposes that data has to be redundantly stored at least three different locations, with
added constraints regarding minimum distance between locations and – for some
types of data – also the country or state in which the data is allowed to be stored.
Other issues like enforcing integrity (uncorrupted record), authenticity (linking of
provenance information to each record), chain of custody (tracking of location and
management controls within the preservation environment, e.g., who, where, and
when handled the archived data in the network), trustworthiness (sustainability of
the records), and readability (long-term access through data format migration) need
also to be addressed. ACME Ltd. operates several data-centers worldwide, which
Carol can use for deploying her new archiving solution.

3

1. Introduction

Carol and her team decide to use DISTARNET for her archiving tasks. She deploys
DISTARNET nodes at several data centers of ACME Ltd. and specifies additional
policies. These nodes connect to each other and exchange information on the avail-
able storage resources. As soon as data gets ingested at either of the nodes, DISTAR-
NET will autonomously search for suitable nodes inside ACME’s DISTARNET net-
work and initiates the creation of replicas. In normal mode, DISTARNET periodically
checks the integrity of the archived data and synchronizes changes (e.g., propagates
new annotations that have been made). All this is handled automatically, without the
need of manual intervention. In case of failures (e.g., nodes become unavailable or
data are corrupted due to hardware and/or software failure), the built-in monitoring
functionality of DISTARNET will detect the problem and will automatically initiate
countermeasures by instantiating workflow processes that create additional replicas
at other suitable nodes adhering to the specified policies.

Once the problem is solved, DISTARNET will automatically pull the digital data
from the DISTARNET network onto the repaired node and deletes any excess replicas
from the least suitable nodes. Examples of organizations that comply to this scenario
include memory institutions such as large libraries, foundations, film archives etc.,
which are dedicated to preserving cultural heritage. Other examples include large
pharmaceutical companies which have to preserve their research results due to legal
constraints.

1.1.2 National Museum of History & Native Art

Jim, a digital archivist at the National Museum of History & Native Art in a small
European country, wants to implement a new archiving solution for preserving his
country’s cultural heritage. This new solution should enable him to have redundant
off-site replicas, although the museum itself has only one site available that can be
used to deploy such a solution. However, there is a collaboration agreement between
the national museums of different countries that include access to the other institu-
tions’ computation and storage resources for deploying replicas, together with the
enforcement of access restrictions on these shared data (pretty much like in a virtual
organization known in the context of grid computing). As before the issues of data
integrity, authenticity, chain of custody, and trustworthiness need to be addressed.

Each museum deploys a DISTARNET node. When data is ingested, they will be

4

1. Introduction

handled according to the policies specified by their owner and will automatically be
distributed across the storage resources of different museums. Again as before, DIS-
TARNET will also periodically instantiate maintenance processes and launch recov-
ery processes when necessary, such as periodic integrity checks of the archived digital
data and autonomously initiated replication, that will ensure adherence to the preser-
vation policies. In case of error, e.g., corrupted or lost replicas, etc., the system will
autonomously initiate countermeasures without the need of external intervention.

Fast forwarding into the not so far future, the system will send reminders to Jim,
based on data format migration policies defined in the past, about the possible need
to migrate the archived content to newer formats. He will be able to initiate data
format migration processes, that will migrate the older formats to the new defined
formats in the background as needed.

This scenario represents institutions in the cultural heritage community. We will
just mention two typical examples of organization with whom the author has collab-
orated in the past. First, municipal libraries like the Denver Public Library (DPL). In
this case, the digital collection consists of about 120,000 digitized images of its West-
ern History Collection1. The master images are stored on CD-Rs (two copies of each
CD). In a publicly available paper2, the DPL writes:

“The Library’s initial plan was to transfer the archive files to the best avail-
able storage media after 10 years. As we approach this date, we have dis-
covered that the issue may be more complicated. Transfer of the complete
collection of archive files will be time consuming and costly.”

Second, the e-codices project3, funded by the Mellon Foundation, which is establish-
ing a virtual library of most of the medieval handwriting and codices in Switzerland.
Currently, the digital data is “archived” in two copies on consumer-level hard-disks
sitting on a shelf in the project office.

1.1.3 Cloud Storage Provider

The cloud storage provider Stratocumulus Inc. plans to release DA3S (Data Archiving
as a Service), a new data management service. Essentially, DA3S offers customers the

1http://digital.denverlibrary.org
2http://history.denverlibrary.org/images/photodigitization_project.pdf, p.40
3http://www.e-codices.unifr.ch/

5

http://digital.denverlibrary.org
http://history.denverlibrary.org/images/photodigitization_project.pdf
http://www.e-codices.unifr.ch/

1. Introduction

Digital Preservation Provided by
DISTARNET

API

Digital Repositories
(e.g., DSpace, Fedora

Commons,etc.)DISTARNET
UI

Cloud Storage
Provider

Figure 1.1: DISTARNET Deployment Categories

option for long-term digital preservation of their digital assets, with dedicated quality
of service guarantees on data availability (replication), integrity (regular checks), and
authenticity. For this, Stratocumulus Inc. installs DISTARNET on each of their data-
centers. In this setting, DISTARNET will be a layer underneath the cloud so that
Stratocumulus Inc. can provide the services offered by DISTARNET, fully transparent
to their end users. As optional services for DA3S for an extra cost, Stratocumulus Inc.
offers automated data format migration. Moreover, storage location constraints can
be defined through preservation policies that will allow to restrict, where data will be
stored since Stratocumulus Inc. runs multiple data-centers around the world.

1.1.4 Deployment Categories

As we have seen in the three scenarios, DISTARNET can take a more visible role
where the user has direct contact with the system (Scenarios 1 + 2), or a role in the
background, where the deploying party is providing services, enabled by DISTAR-
NET (Scenario 3). Figure 1.1 shows the positioning of DISTARNET in regard to other
system categories.

In all three mentioned scenarios DISTARNET can offer a viable solution (or be part
of the solution) for a reliable, cost effective and efficient long-term archiving system.
DISTARNET is able to provide a high degree of scalability, by relying on concepts
from Peer-to-Peer systems and Grid computing domains for managing distributed
storage resources. The scalability provided is both in terms of volumes of digital
content to be archived and in terms of the available storage resources.

6

1. Introduction

1.2 Challenges of Digital Long-Term Preservation

The challenges that Digital Long-Term Preservation Systems are faced with are com-
prised of general issues distributed systems need to handle (e.g., fault tolerance, scal-
ability, load balancing, security) and additional issues arising from the specific re-
quirements for digital long-term preservation (e.g., integrity of complex information
objects, authenticity, data format obsolescence, long-term readability, ease of access).
In the following, we will discuss these challenges.

Distribution. To provide a secure environment for long-term storage of the archived
object, we need to store more then one copy of each object. Also, they should ideally
not be stored in one place. Thus, we need some form of a distributed and replicated
storage environment.

Fault Tolerance and Failure Management. The failure of one or more components
in a distributed preservation system should not endanger the whole system, and
should only have isolated effects. Failure (e.g., power failure, hardware failure, etc.)
or disaster (e.g., natural disaster, fire, etc.) resulting in the destruction or corrup-
tion of some of the stored information objects should not result in a complete loss
of the archived data. Automated replication mechanisms should maintain a mini-
mum number of geographically dispersed replicas (number and location defined by
preservation policies) of the stored information objects. Any data loss event should
trigger automated recovery processes that will reestablish the minimum number of
geographically dispersed replicas. This should be done by either using the repaired
failed storage nodes, or by using other available and suitable storage nodes found
through resource discovery.

Management of Complex Information Objects. The long-term preservation of dig-
ital data requires the management of complex information objects, i.e., information
objects that are comprised of or are part of other information objects. The complex-
ity arises out of the requirement for preserving additional supporting information
beside the bitstream of the archived data object (representation, reference, context,
fixity, provenance, and other information).

The challenge lies in the automated management of such complex objects in a dis-

7

1. Introduction

tributed setting. Preserving the integrity of complex objects is a twofold problem.
First, the integrity of the referential information needs to be maintained (e.g., are all
references properly defined and are all objects referred to available), and second, the
integrity of the objects themselves. Referential and object integrity checking (through
the use of fixity information stored with the complex object) needs to be automated.
Any loss of integrity needs to trigger automated processes that will restore the in-
tegrity of the information object. If the information object cannot be repaired solely
by the information it carries itself, other remote replicas need to be used. As an ex-
ample, through hardware failures some information objects might be corrupted or
destroyed. The information object representing a collection is partially corrupted
while some of the objects that are part of the collection are destroyed. In this case,
the discovery and subsequent recovery of the referential information (and through
inference also of the endpoint information objects) need to be automated. Integrity is
also an important challenge in the context of synchronization of information objects
that are changing during the preservation process (e.g., annotations, links between
information objects, collection/subcollection information). A system needs to make
sure that such changes do not break (falsely) the integrity of the information objects.

Scalability. The growing production of digital data that need to be archived re-
quires a scalable distributed preservation system. A system that should work effi-
ciently even with an increasing number of users and quickly growing volumes of
data that needs to be stored. The addition of storage resources should enhance the
performance of the system. This requires that the processes supporting the archiving
operations are automated and scalable themselves.

Openness and Extensibility. A long-term preservation system should provide
clearly separated and publicly available interfaces to enable easy extensions to exist-
ing components and the possibility of adding new components. The system should
be able to be adapted to arising new challenges, by allowing curators of digital objects
to specify new processes to cope with additional challenges (e.g., novel data formats).

Resource Discovery and Load Balancing. In a distributed preservation system, the
discovery of newly available resources, together with the monitoring and manage-
ment of existing resources is very important and should be handled efficiently. The
information gathered is important for the functioning of processes that provide au-

8

1. Introduction

tomated replication of the information objects to suitable remote storage nodes (con-
strained through preservation policies). The system should be able to distribute the
replicas among the available resources for improving performance, where perfor-
mance incorporates measures such as availability, access speed, higher security, and
reliability. Dynamically incorporating new resources or correctly handling the loss of
existing resources (temporarily or permanently) should be provided via automated
processes. For an efficient usage of the available resources, tasks (e.g., data format
migration) should be executed immediately or deferred baring the availability of the
resources needed.

Authentication, Authorization, and Auditing. Access to resources should be se-
cured to ensure only known users are able to perform allowed operations. Apart from
these usual security precautions, in a distributed preservation environment (e.g., dif-
ferent institutions cooperate and share storage space), only the institution should
be able to access and manage its owned data. No access should be possible to for-
eign data hosted on the local node for redundancy reasons. Cooperating institutions
should be able to access other institution’s meta-data. Also, after having been autho-
rized by the data owner be granted access to the content of interest . The system must
further support error reporting, and provide logging.

1.3 Contribution and Scope of the Thesis

In the context of long-term digital preservation, the reliable and fault-tolerant man-
agement of large digital archives poses requirements which cannot be met by individ-
ual organizations but need the collaboration of different, geographically dispersed
organizations to build novel Internet-based digital archiving systems.

In this document, we present novel concepts for a distributed long-term digital
preservation system. We describe the challenges and risks that need to be addressed,
and present our developed flexible and reliable approach to digital preservation, in
particular the data model, and the predefined processes for maintenance and failure
handling purposes.

The main contribution lies in the detailed analysis of the concepts providing self-⇤
capabilities, i.e., how a system implementing these concepts is able to automatically
adjust itself to changing environments (both in terms of volumes of digital content

9

1. Introduction

to be archived and the available storage resources) and how it automatically recovers
from different kinds of failures. The autonomic behavior also includes the compliance
to quality of service guarantees for the users (digital archivists) such as a predefined
level of data availability or specific constraints on the locality of data and replica
placement.

Further, we present a prototype implementation of the DISTARNET (DISTributed
ARchival NETwork) system, a distributed long-term digital preservation solution,
which utilizes the developed concepts. During the description of the implementation,
we discuss additional considerations governing the implementation. These consid-
erations include fault-tolerance on the node level, maintainability and extendability
of the system components, and long-term use of the system, which all flow into the
described system architecture, and resulting implementation.

Self-Configuration. The concepts provide the ability to automatically detect
changes to the distributed archiving network. New nodes joining or nodes leaving
are being constantly monitored, and their current status is taken into account. For
example, periodic neighbor-nodes checks, where every node checks periodically his
neighbors by sending a message to which the receiver has to reply in a defined time. If
the receiver does not reply than the node is marked as lost after some defined period
of time. After that, the system will start with self-healing.

They further provide automated dynamic replication of data. This includes repli-
cating data in a safe manner and keeping the replicas in sync. The data replication
task needs to be automated in such a way, so that the defined redundancy (via poli-
cies) is always upheld.

Self-Healing. The concepts provide the ability to recognize abnormal conditions or
problems that may be harmful, and the ability to recover from them. For example
in the case of a “Node-Lost Event”, where countermeasures are automatically initi-
ated (e.g., create additional replicas, etc.) needed to uphold the specified redundancy
which was defined in the policies. Another example would be the periodic integrity
(bitstream and referential integrity) checking that if breached would automatically
trigger countermeasures (e.g., find healthy replicas and copy them in place of the
broken one) to rectify the problem.

10

1. Introduction

Self-Optimization. The concepts provide the ability to know the environment, sur-
roundings, and other resources available, and automatically detect any changes con-
cerning the participating nodes (capacity, location, uptime, connectivity, speed, etc.).
This information will be used to autonomously manage and maintain resource allo-
cation (e.g., finding suitable nodes where data can be replicated to, automatic policy-
based geographical distribution of data, etc.).

1.4 Structure of the Thesis

This thesis is organized in six chapters. In Chapter 2 we begin by presenting the
current state-of-the-art of digital preservation by talking about current employed
standards and practices. This information is geared toward readers coming from
the computer science community to provide a solid foundation of the preservations’
community terminology and methods. The second part of this chapter is aimed at
readers coming from the preservation community, to provide them with a solid foun-
dation of the used computer science terminology, concepts, and methods. Chapter 3
presents general requirements for a long-term preservation system followed by a dis-
cussing of the developed DISTARNET concepts. Following, Chapter 4 discusses the
implementation, and Chapter 5 the evaluation of the implementation in regard to the
requirements. Chapter 6 presents related work, and we conclude in Chapter 7.

11

2
Digital Preservation and Distributed Systems
Foundations

We begin this chapter by providing a general introduction to Digital Preservation
and surrounding topics. This information is geared toward readers coming from the
computer science community to provide them with a solid foundation of the termi-
nology and methods used in the preservation community, and which are relevant to
the understanding of the later chapters. Further, we also provide a general introduc-
tion to the used computer science terminology, concepts, and methods surrounding
Distributed Systems, which is aimed at readers coming from the preservation com-
munity.

2.1 Digital Preservation

The growing production of digital data, be it born digital or retro-digitized artifacts
(e.g., photographs of photographic collection, digitized movie film, sound, etc.) chal-
lenges archiving institutions with new problems and new needs for the secure long-
term preservation. Long-term preservation in general is defined as the task to guar-
antee the authenticity, access, and the interpretability of archived assets in a usually
not determined far future.

The preservation of digital data is different from the traditional preservation of
analog sources and records in a way that it is not necessary to preserve physical evi-
dence of the artifacts or records but rather the semantic content. In this aspect, digital
long-term preservation is similar to the preservation of written knowledge. Many an-
cient texts, e.g., the bible, have been preserved without preserving the original phys-

12

2. Digital Preservation and Distributed Systems Foundations

ical writing. These texts are known in modern times because they were “migrated”
(copied) in the medieval monasteries and distributed all across Europe. As long as
the alphabet (greek or roman alphabet) and the language (greek or latin) are known,
the text can be read and interpreted.

2.1.1 Communication with the Future

We can describe the process of digital preservation as communication with the future
([3] and [4]). To be able to pass the information, i.e., the archived digital objects into
the future, we have three layers the information will pass as depicted in Figure 2.1.

Storage (t0) Access (t0 + ∆t)

Information Preservation

Bit Preservation

Information

Logical
Representation

Bitstream

Physical
Representation

Time

Information

Logical
Representation

Bitstream

Physical
Representation

Figure 2.1: Preservation as Communication with the Future

At storage time (t0), the information is stored as a logical representation inside a
bitstream onto a medium. At access time (t0 + �t), to be able to access the infor-
mation this conversion needs to be reversed, by accessing the medium, reading the
bitstream, converting the bitstream into a logical representation, and finally convert-
ing the logical representation back to the initially stored information. Each layer is
exposed to risks, that can endanger the preservation of the information.

At the lowest level, the physical representation of an archived digital object needs to
be preserved over time. Preservation at this level is challenged by the basic decay of
the physical media used for storage. For example the life expectancy for optical disks
lies between 2 and 50 years (depending on quality and storage conditions), those of
magnetic tapes between 2 and 30 years and for hard-drives between 5 and 10 years.

13

2. Digital Preservation and Distributed Systems Foundations

At the bitstream level, the preservation task is challenged by technological obsoles-
cence of the hardware and software used to store the digital objects and which is also
needed to access them. The time-span for technological obsolescence lies between 18
months ([5]) and 5 years ([6]).

At the logical representation level, we need to preserve the syntactic and semantic
rules needed to interpret the bitstream, without which the digital data stays by itself
meaningless. In order to become understandable to humans, digital data needs to be
interpreted and represented by a computer system.

2.1.2 Key Aspects

The process of archiving has a much bigger meaning in such a context than just to
make a permanent copy on a storage medium. It incorporates the lasting availability
and with it a further usability and interpretability of the digital resources. Addi-
tionally, throughout the whole archiving process, also the integrity, authenticity, and
provenance of the archived digital objects needs to be maintained.

The areas that a digital preservation solution will address are mainly the same, but
there are still differences that are given by their respective Designated Communities.
A designated community is the main group of users that will utilize the services of
an archive. The form in which the archived information are preserved should be
appropriate for those users so that they are able to understand them independently
and without expert assistance.

Long-term digital preservation thus has the following key aspects that need to be
addressed by any preservation system:

Preservation of the Bitstream To be able to interpret the digital object, we first need
to read the data-bits. Depending on the storage type, this would generally require the
following: (1) the medium is physically not damaged (e.g., no mechanical defects, or
demagnetization, etc.), (2) a reader for the storage medium exists and is fully func-
tional (e.g., tape reader, etc.), and (3) a computer is available where we can connect
the reader, including the system software needed to copy the digital data from the
tape to the computer.

Digital data from many heterogenous sources and on many different data carriers
need to be consolidated as early as possible into one homogenous storage system.

14

2. Digital Preservation and Distributed Systems Foundations

This system needs to be functionally autonomous with one main task which is bit-
stream preservation. Important properties of such a system are full or at least partial
automatization of the control mechanisms (e.g., integrity checking, data carrier mi-
gration, etc.).

Preservation of the Interpretability This means that not only the data itself (bit-
stream) and the data carrier need to be preserved to guarantee further usability and
interpretability, but also the description for its interpretation and rendering by a com-
puter system, and general meaning. As an example, to be able to interpret a word
document in 200 years from now, we would also need to provide the specification
for decoding the word document. To be able to do so, we need to archive additional
metadata alongside the bitstream. First the representation metadata, which will contain
information that will allow the data to be rendered and used as information. Further
we need reference metadata, which will allow us to identify and have a description of
the content contained in the digital objects that we archive. Also context metadata,
which provide us with important information regarding the purpose for the creation
of the digital content or its past usage.

Preservation Quality Should we finally be able to circumvent all the pitfalls until
now and manage to save the digital data and their interpretability into the future,
another question arises about the integrity and authenticity of the archived digital
objects. If we can not fully determine the provenance, and also have the full trail of
all changes that the digital object has gone through during the preservation process
(e.g., data format migration, annotations, etc.), then we have failed in our attempt to
preserve it for the future.

Further more, digital archives are new institutions. As such, it is important for their
trustworthiness that their institutional structure and backing are transparent and sus-
tained, and also conform to some criteria accepted by the preservation community
such as OAIS, TRAC, etc.

2.1.3 Long-Term Preservation Strategies

To be able to provide sustainable availability of digital objects, we need to address all
three mentioned key aspects with suitable measures. The available strategies can be
categorized into four categories: Technology Preservation, Migration and Refreshing, Per-

15

2. Digital Preservation and Distributed Systems Foundations

manent Medium, and Emulation and Virtualization. Of the mentioned measure, not all
can be seen as equally practical, and generally usable (e.g., computer museum). Here,
we give just a short overview of the four strategies to provide a complete picture. The
following chapters are then focused on migration and refreshing strategy.

Technology Preservation (Computer Museum) In a computer museum, the digital
objects and also all the technology necessary for their access are preserved in their
original logical and physical form. This means that we would access obsolete docu-
ments with the original software on old machines.

The idea of computer museums is highly problematic, for several reasons [7]. Keep-
ing old machines running indefinitely at a reasonable cost is very unlikely. Further,
the old documents and the software will not survive on the original medium and
would require the development of unique new device interfaces so that we could
store and run the documents and software on newer storage devices and mediums.
Even if this would be possible, the computer chips on the main hardware would still
fail over time as they have a limited life-time.

As we can see, a computer museum is not a generally usable solution, but in some
instances the only way, e.g., preservation of computer game platforms.

Migration and Refreshing Following the technological change, the digital objects
will be continuously migrated to technologically current storage mediums and data
formats. This would guarantee the readability of the archived digital objects with
current methods and programs. Data format migration is doable with simple data
objects (e.g., images, text documents, etc.) but can be a challenging task when we
would need to perform data format migration on complex objects (e.g., databases,
etc.). Refreshing denotes the preservation activity of transferring data between two
storage mediums, an important preservation activity which needs to be performed
periodically, to prevent any data loss or unintentional alterations to the data, caused
by the physical degradation of storage mediums.

Permanent Medium To provide long-term preservation, the digital objects would
be stored on a storage medium, which is explicitly hard- and software independent,
and extremely durable. For example, a solid nickel disk as used by the Rosetta
project [8]. As the access in the case of the Rosetta-Disk is by visual means, also
the digital objects would need to have a visual representation to be able to be ac-

16

2. Digital Preservation and Distributed Systems Foundations

cessed from such a medium. In the following, we look at long-term preservation on
microfilm as the permanent medium.

Using microfilm as a long-term preservation medium involves basically the exposi-
tion of the bitstream encoded as textual characters, barcode like images, or the visual
representation if existing (e.g., PDF, TIFF, etc.).

The Arche project [9] uses a color microfilm laser writer they have developed, to
expose the microfilm. To read the data, they use a special microfilm scanner. The data
written on the microfilm is composed of metadata in a textual representation, and the
visual document representation. This approach is only feasible for documents having
a visual representation.

The PErsistent VIsual ARchive (PEVIAR) [10, 11] project uses a similar but ex-
tended approach. The data written on the microfilm consists of the visual represen-
tation (i.e., documents preview image), textually encoded metadata in a tabular and
XML representation, the pseudocode containing the decoding instructions, and the
digital data encoded as a 2D barcode.

Further work was done by [12], analyzing different encoding techniques for stor-
ing data on microfilm, data recovery, and the cost issues. They have concluded that
microfilm-based storage is a feasible alternative for permanent storage of the digital
objects.

Emulation and Virtualization In digital preservation, we can differ between the
archiving of data, and archiving of the behavior exhibited by a computer program [13].
The first we solve through migration, but for the second we need emulation.

Emulation in the context of long-term preservation means the replication of the
functionality of an obsolete system [6]. This ranges from the emulation of hard-
ware platforms (e.g., using SIMH on a Linux system to emulate VAX hardware and
run OpenVMS [14]), over emulation of operating systems, to application emulation.
Which level of emulation is used, depends on the requirement where in the chain –
original data, original software for interpreting the data, operating system for run-
ning the software, hardware running the operating system – the entry-point needs to
be, to allow the long-term preservation of the intended target.

Early work on emulators was done by MIT and the Proteus system [15], and Stan-
ford on SimOS [16, 17], although in a different context. This work was performed
with the goal to better understand and improve the design and behavior of computer

17

2. Digital Preservation and Distributed Systems Foundations

systems, as these emulators where denoted as simulators. The work on SIM [18] had
a different orientation, with the goal of computer preservation.

The first work on emulation directed towards their usage as a preservation strat-
egy was done with the Emulation Virtual Machine [19] and Universal Virtual Com-
puter [20, 13].

Based on this early work, the Koninklijke Bibliotheek (National Library of the
Netherlands) and the Nationaal Archief have developed a durable component-based
computer emulator Dioscuri [21], specifically for the digital preservation domain.
The emulator was build with two main goals, modularity and durability. The emu-
lator is build modularly, where each emulated computer component (e.g., CPU, disk,
memory, etc.) is implemented as a module. This modularity allows to create emu-
lators for computers with different configurations, which can then be customized to
represent the original hardware. Durability is achieved by building the emulator on
top of a virtual machine (Java Virtual Machine).

Recent work following emulation as a preservation strategy include work on con-
sole game preservation [22], and home computer preservation [23].

2.2 OAIS Reference Model

The Open Archival Information System (OAIS) Reference Model [1, 2] is a widely ac-
cepted and used terminology to describe the various processes involved in an archiv-
ing institution. It does so by providing frameworks and concepts that are needed for
understanding the long-term preservation and access of digital data. The OAIS func-
tional model consists of various entities interacting with each other as displayed in
Figure 2.2.

The general proceeded sequence inside an archive described by the OAIS reference
model is the following:

1. A producer who created the content that he wants to archive provides a Submis-
sion Information Package (SIP) to the Ingest entity.

2. The Ingest entity creates from the SIP an Archival Information Package (AIP) and
hands it over to the Archival Storage entity.

18

2. Digital Preservation and Distributed Systems Foundations

Figure 2.2: OAIS Functional Entities

3. The descriptive information related to the AIP is provided to the Data Manage-
ment entity.

4. Next, a consumer will interact with the Access entity, and use the descriptive
information to search and request relevant information.

5. The requested AIP will be retrieved from the Archival Storage entity and further
transformed by the Access entity into the appropriate Dissemination Information
Package (DIP).

6. All activities in the archive are carried out under the guidance of the Adminis-
tration entity.

7. The employed preservation strategies and techniques are recommended by the
Preservation Planning entity and are put in place by the Administration entity.

Depicted in Figure 2.3 is the Archival Storage entity. This entity provides services
and functions for the storage, maintenance, and retrieval of AIPs. Archival Storage
functions include receiving AIPs from the Ingest entity and adding them to perma-
nent storage, managing the storage hierarchy, refreshing the media on which archive
holdings are stored, performing routine and special error checking, provide disaster
recovery capabilities, and providing AIPs to the Access entity to fulfill the order.

19

2. Digital Preservation and Distributed Systems Foundations

Figure 2.3: OAIS Functional Entity: Archival Storage

2.3 Digital Objects Metadata

In the following section, we provide a short overview over some of the more impor-
tant metadata standards, tools for digital objects validation and characterization, and
archive access API standards used in the field of digital preservation.

2.3.1 Metadata Standards

METS

The Metadata Encoding & Transmission Standard (METS) [24] is a very flexible stan-
dard defined using the XML schema language, and can be used for encoding descrip-
tive, administrative, and structural metadata of digital library objects. For a better
understanding, it is important to take a look at the structure of a METS document. A
METS document can consist of up to seven major subsections [25]:

1. Mets Header (metsHdr)

2. Descriptive Metadata Section (dmdSec)

3. Administrative Metadata Section (amdSec)

4. File Section (fileSec)

5. Structure Map (structMap)

6. Structural Links (structLink)

20

2. Digital Preservation and Distributed Systems Foundations

7. Behavior Section (behaviorSec)

One major subsection is mandatory, the Structure Map. The Structure Map is the only
requirement of any METS document and is often referred to “the heart of a METS
document” [26]. METS provides a relatively easy method for encoding structural,
administrative, and descriptive metadata for a digital library object. A typical divi-
sion of a digital library object could be pages or sections that contain a book. METS
has two main uses: a standardized mechanism, mainly used for exchanging digital
library objects between repositories and an encoding mechanism for digital library
objects. METS documents can be encoded with PREMIS metadata. This is mainly the
case for exchange purposes [27]. PREMIS is a “PREservation Metadata: Implementa-
tion Strategies” which is the name of an international working group. The PREMIS
Data Dictionary defines main keys that repositories should know for preservation
purposes [28].

NISO MIX

NISO MIX is an XML schema which allows to use a format for storage and/or inter-
change of data in the Data Dictionary - Technical Metadata for Digital Still Images.
The idea of this dictionary is to facilitate interoperability between services, systems
and software. Furthermore, it has been designed to support the long-term man-
agement of digital image collections and the continuing access to these collections.
This dictionary enables users to exchange, develop and interpret digital image files
as well [29].

The current version of MIX is MIX Version 2.0.

TextMD

TextMD specifies technical metadata and it is just like NISO MIX a XML schema, too.
Usually it has been used with METS but it can be a standalone document as well [30].
A schema of textMD allows the following functions: character, encoding and markup
information, fonts and languages, page ordering and sequencing, processing and tex-
tual notes and technical requirements for printing and viewing.

21

2. Digital Preservation and Distributed Systems Foundations

LMER

Almost together with the development of PREMIS the German National Library be-
gan to work on an initiative for metadata which can be preserved over a long period
of time. This initiative with the name “Langzeitarchivierungsmetadaten für elektro-
nische Ressourcen” lead to LMER (Long-term preservation Metadata for Electronic
Resources) [31]. The idea of LMER is to allow collecting metadata which can be uti-
lized for the long-term preservation of electronic documents.

Dublin Core

Dublin Core (DC) exists of 15 different descriptors which were created by an inter-
disciplinary team consisting of librarians, content experts and so on. The goals of the
Dublin Core team are: simplicity, interoperability, applicability, extensibility, adap-
tion of standards and common semantics. The Dublin Core is great for making basic
statements about resources and it is a small language [32]. The Dublin Core exists of
two categories: elements and qualifiers [33].

The qualifiers are split in two groups as well: encoding schemes and element re-
finements. Encoding schemes are parsing rules that assist in the interpretation of an
element value whereas element refinements make the meaning of an element more
specific without extending its definition too much.

The Dublin Core Metadata Initiative (DCMI) maintains the Dublin Core Metadata
Element Set. The 15-element set is divided into three groups:

• Content: Title, Subject, Description, Type, Source, Relation, Coverage

• Intellectual Property: Creator, Publisher, Contributor, Rights

• Instantiation: Date, Format, Identifier, Language

TEI

The Text Encoding Initiative (TEI) was created for the purpose to develop guidelines
that would permit projects to share data between each other and to advance the de-
velopment of tools [34]. Throughout the years, the TEI has accomplished two things:
a new data description language which mainly has an influence of further and new
WWW standards and it has created a research community which work with a new
perspective on the understanding of the role of a text structure.

22

2. Digital Preservation and Distributed Systems Foundations

2.3.2 Object Format Identification, Validation, and
Characterization

JHOVE

JSTOR/Harvard Object Validation Environment (JHOVE) [35] is a framework devel-
oped through a collaboration project between JSTOR and the Harvard University Li-
brary. The project had the goal to develop an extensible framework which would
provide object validation.

JHOVE provides modules for various format types. The framework can be used to
automate the process of format identification, validation, and characterization.

At run-time, JHOVE allows to be configured by specifying the desired data format
modules and output handlers. The output of the tool is an XML report, where the in-
formation is formatted according to the specification of each module (e.g., JPEG2000
and TIF use the NISO MIX format).

Although JHOVE does not directly provide PREMIS output, it could be used for
automated generation of preservation metadata, by combining the generated XML
report with XSL transformation, and convert the output to PREMIS specific elements.

DROID

Digital Record Object Identification (DROID) [36] is a tool developed by the National
Archives of the UK together with PRONOM for providing an automatic file format
identification. PRONOM is an online registry, which contains technical information
about file formats with descriptions for the file structure, and the need software and
hardware environments for access.

DROID uses the signatures stored in PRONOM as a means for file identification.
New updates to the PRONOM database are automatically detected by DROID and
are downloaded as to keep the tool always up-to-date.

As with JHOVE, the report generated by DROID could be combined with XSL
transformation, and the output converted to PREMIS specific elements, as a means
to provide an automated generation of preservation metadata.

Use Cases

The potential use cases for JHOVE and DROID can be summarized as following:

23

2. Digital Preservation and Distributed Systems Foundations

• Identification (JHOVE, DROID)

1. I have an object; what format is it?

• Validation (JHOVE)

1. I have an object that claims to be of format F; is it true?

2. I have an object of format F; does it meet profile P of F?

3. I have an object of format F and external metadata about F in schema S

• Characterization (JHOVE, DROID)

1. I have an object of format F; what are its salient properties?

2.3.3 Open Access API Standards

In this section we describe two API standards from the Open Archives Initiative.

OAI-PMH

The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) is a frame-
work which bases on metadata harvesting [37]. The OAI-PMH allows to harvest re-
currently of metadata based on XML from one place to another [38], and it is based
on existing standards, such as the IETF Hypertext Transfer Protocol (HTTP) and the
W3C Extensible Markup Language (XML). The XML is used to encode the exchanged
metadata. The framework offers an application-independent interoperability, and it
has two parts [39] :

• Service Providers: The metadata harvested via the OAI-PMH, they use this
metadata for building value-added services

• Data Providers: They handle systems which assist the OAI-PMH for exposing
metadata

OAI-ORE

Open Archives Initiative Object Reuse and Exchange (OAI-ORE) is a standard for the
exchange of compound digital objects and the description of Web resources [37]. The

24

2. Digital Preservation and Distributed Systems Foundations

compound digital objects are just like aggregations, and they can merge distributed
resources together with different media types such as data, video, images and text.
The main goal is to give the enriched content of these aggregations along to applica-
tions which support preservation, reuse, authoring, exchange, deposit and visualiza-
tion. OAI-ORE is mostly influenced by the RDF model which uses the idea of triples
for describing things. The triple consists of a subject, an object and a predicate [40].
Each part of this triple is a URI, except the object, which can be a plain text value
as well. OAI-ORE sets its focus on these objects and the relationships between these
objects.

2.3.4 Summary

We have given a short overview of a selection of preservation metadata formats, that
allow us to store different types of metadata required for the preservation of digi-
tal objects. We have further presented two tool frameworks, which provide format
identification, validation, and characterization. They can also be used to automati-
cally extract preservation metadata. At the end of this section, we have presented
standardized interfaces, which can be used to open the archive to external users, and
allow them to access the metadata stored in the archive over open and standardized
interfaces.

2.4 Distributed Systems

In the following, we provide a short discussion regarding a few selected distributed
system architectures. The discussion includes not only a short overview over the
general attributes of each architecture, but also their suitability in the context of digital
preservation.

2.4.1 Peer-to-Peer Systems

A Peer-to-Peer (P2P) System can be described as a distributed system which is com-
prised of equal peers, i.e., systems (e.g., computer nodes) which are equal in the sense
of the role they perform in this network. As opposed to the client/server architecture,
in P2P systems every peer performs the client (consumes services) and the server (of-

25

2. Digital Preservation and Distributed Systems Foundations

Field of use Network or Protocol
File Sharing BitTorrent, Direct Connect, eDonkey,

FastTrack, GNUnet, Gnutella,
Gnutella2, Kad Network, Napster,

OpenNap
Software Distribution BitTorrent

Media Distribution BitTorrent
Internet Information Retrieval Domain Name System

Distributed Data Store Freenet
Peer Applications JXTA, Windows Peer-to-peer

Video Streaming / Multicasting P2PTV, PDTV, Peercasting
Chat/Collaboration/Social Network GNUnet, Krawler, Pichat, JXTA

Distributed Discussion Usenet

Table 2.1: Overview of P2P Networks and Protocols

fers services) role, depending on the task at hand. There is no central coordination
for the behavior of the peers, rather the P2P architecture should be able to handle
failures, and the high dynamics of large scale systems by self-organizing itself.

Peer-to-peer system have become very popular and widely known from file-sharing
applications like Napster, Gnutella, BitTorrent, etc. They all have shown the power of
the P2P architecture but have also brought attention to many discussed problems of
technical, legal and economic natures. Books discussing these aspects of P2P systems
are for example [41] and [42].

Further areas besides file sharing where P2P architecture is used are for instance
collaboration and groupware applications, instant messaging, etc. Table 2.1 shows
the different usage fields and the prominent networks and protocols in usage.

2.4.2 Grid Computing

Grid Computing is a form of distributed computing, where a virtual supercomputer
is created from a cluster of loosely coupled computers. It was developed for solv-
ing computationally intensive problems. The difference between Grids and classic
computer clusters lies in their looser coupling and geographical dispersion of the re-
sources involved in a Grid. Also, Grids are mostly created with special applications
in mind and use standardized libraries and middleware.

26

2. Digital Preservation and Distributed Systems Foundations

A first definition of Grids was provided by Ian Foster and Carl Kesselman [43]:

A computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to high-
end computational capabilities.

As this first definition for Grids was given before there where any actual Grid sys-
tems, a revised definition was given in [44]:

The sharing that we are concerned with is not primarily file exchange
but rather direct access to computers, software, data, and other resources,
as is required by a range of collaborative problem-solving and resource-
brokering strategies emerging in industry, science, and engineering. This
sharing is, necessarily, highly controlled, with resource providers and con-
sumers defining clearly and carefully just what is shared, who is allowed
to share, and the conditions under which sharing occurs. A set of individ-
uals and/or institutions defined by such sharing rules form what we call
a virtual organization (VO).

The main difference to the initial definition lies in the addition that now the usage of
shared resources is defined through Virtual Organizations (VO). The incorporation of
VOs plays until today an important role in any implementation of a Grid. Also, now
the Grid does not only include high-end computational resources, but any resource
that is needed for the application at hand.

2.4.3 Service Oriented Architecture

Service Oriented Architecture (SOA) is a paradigm for developing distributed sys-
tems in the form of interoperating services. Each service represents a well-defined
business functionality enclosed in a software component, which can be reused. Ex-
isting IT components such as databases, servers, or websites can be packaged as ser-
vices, and then through orchestration composed to higher level services. The goal
is to provide a long-term reduction in software engineering costs, and the rise in
flexibility of the business processes by reusing already existing services in different
applications.

SOA was first described by Gartner in 1996 [45, 46], but the generally accepted
definition was defined by OASIS in 2006 [47]:

27

2. Digital Preservation and Distributed Systems Foundations

“A paradigm for organizing and utilizing distributed capabilities that
may be under the control of different ownership domains. It provides
a uniform means to offer, discover, interact with and use capabilities to
produce desired effects consistent with measurable preconditions and ex-
pectations.”

Attributes

A central element of SOA are the services. There are a certain number of attributes
which are ideally found in every service used in SOA. In practice, not all attributes
are always present [48].

A service is an IT-representation of a business functionality, encapsulated, and can
be used on its own. Further, a service is available over the network and has well
defined and published interfaces. To use the service, only the knowledge about the
interface is needed, and there is no need to know any details regarding its imple-
mentation. Also, a service is platform independent, which means that the service
provider and consumer can use different programming languages on different plat-
forms. Every service which is deployed is registered in a catalog. The application
using a service does not need to have access to the service at creation time, i.e., ser-
vices are dynamically localized and linked at run-time.

Remarks

Every SOA solution is adjusted to the requirements at hand and presents a very in-
dividual design. The communication between the services can be realized with any
protocol (e.g., IIOP, CORBA, REST, JSON, SOAP, etc.), as it only functions as a trans-
port mechanism for the actual message used in the application.

2.4.4 Cloud Computing

Cloud Computing has emerged as a synthesis out of several other computing re-
search areas such as high performance computing, virtualization, utility comput-
ing, and Grid computing. Cloud computing describes the approach to abstract IT-
infrastructure resources, e.g., CPU, storage, network, or even software, and to dy-
namically adapt their allocation to match the current demand, over the network.

28

2. Digital Preservation and Distributed Systems Foundations

From the users perspective, the available IT-infrastructure seems distant and opaque,
like a cloud. Access to the services provided in the cloud are exclusively done over
predefined APIs and protocols. The range of services provided by Cloud computing
includes the whole IT spectrum, from infrastructure, over platforms, to software.

Service Models

In 2009, the National Institute for Standards and Technology (NIST), has published
the first draft of definitions regarding the different service and deployment models.
In 2011, the final version was published [49]. According to these definitions, we can
differentiate between three different service models:

Infrastructure as a Service (IaaS) The cloud provides access to virtualized com-
puter resources like CPU, network, and storage. The users are free in their choice
of deployed software, and are responsible for their installation, management, and
running.

Platform as a Service (PaaS) The cloud provides access to programming and run-
time environments, with dynamic, and flexible computing and storage resources. The
user develops and deploys their software solution, inside an environment, which is
run and maintained by the service provider.

Software as a Service (SaaS) The cloud provides access to a collection of software
applications, running on the infrastructure maintained by the service provider. SaaS
is also called Software on Demand.

Deployment Models

Beside the different service models, the NIST also defined different deployment mod-
els.

Public Cloud The public cloud delivers access to the abstracted IT-infrastructure to
the general public over the Internet.

Private Cloud The private cloud delivers access to the abstracted IT-infrastructure
only inside their own organization.

29

2. Digital Preservation and Distributed Systems Foundations

Hybrid Cloud Is the combination of private and public access depending on the
needs of the users.

Community Cloud Is a semi public cloud, where the access to the services is pro-
vided to a community, i.e., to a group of individuals, institutions, corporations, with
similar interests, which share the cloud with each other.

Characteristics

The essential characteristics of Cloud computing according to the NIST are:

• The ability for the user for self-service provisioning, and the ability of the system
to provide resources available as-needed.

• Scalability of the system, decoupling usage peaks and infrastructure limits.

• Reliability and fault-tolerance guarantee permanently, the defined quality stan-
dards of the services provided for their users.

• Optimization and consolidation allow adaption to current environmental stan-
dards, which can be successively introduced by the cloud provider.

• The monitoring and maintaining of the Quality of Service (QoS) can be contin-
uously provided without any impact on, or involvement of the users.

2.4.5 Summary

In this section, we have presented a few distributed system architectures. These ar-
chitectures should not be seen as being orthogonal to each other. They all share some
basic common assumptions, e.g., Cloud computing builds on ideas from Grid com-
puting, Service Grids combine SOA and Grid computing, Peer-to-Peer Services com-
bine SOA and P2P systems, etc.

As we have seen, there are a number of different distributed system approaches.
From their technical capabilities, all these approaches can be used to implement a
distributed preservation environment (as we will see in Chapter 6).

Contrary to shorter lived systems, in the context of long-term preservation, we
need to additionally ensure if the approach used is feasible when long-term use is a

30

2. Digital Preservation and Distributed Systems Foundations

Dependability

Attributes

Means

Threats

- Availability
- Reliability
- Safety
- Confidentiality
- Integrity
- Maintainability

- Fault Prevention
- Fault Tolerance
- Fault Removal
- Fault Forecasting

- Faults
- Errors
- Failures

Figure 2.4: The Dependability Tree

requirement. For example, can we assume that a Cloud system provider is going to
be in business forever, and does the approach used provide enough flexibility to be
integrated with or exchanged for future technologies/approaches?

2.5 Dependability in Distributed Systems

An important aspect of distributed systems is dependability. Dependability is also
an important aspect when speaking about long-term preservation environments, and
one of the main motivators to use the distributed systems approach in the context of
long-term preservation.

In a distributed system, achieving dependability is an important goal, that needs to
be addressed on multiple levels. Under dependability, we understand the trustwor-
thiness of our system in performing some specified task or providing a service [50].
There are three main parts to the concept of dependability: the threats endangering
the dependability of a system, the attributes a dependable system possess and the
means by which a system can attain dependability as depicted in the dependability
tree in Figure 2.4.

As shown in the dependability tree, dependability possesses different attributes.
Reliability being the ability of the system to perform the set task or service correctly
when asked. Availability means that the system is available when asked. Safety is the
ability to avoid excessive costs, and Security the ability of preventing unauthorized
access to the system.

The means by which dependability is attained can be categorized into four major

31

2. Digital Preservation and Distributed Systems Foundations

groups [51]: fault-avoidance/prevention, fault-removal, fault-tolerance, and fault-forecasting.
Fault-prevention incorporates design methodologies consisting of techniques for de-
sign, testing, quality control, evaluation of reliability and safety, which attempt to
make software provable fault-free. Fault-removal incorporates methods that aim to
remove faults after the development stage has been completed, which is done by
exhaustive and rigorous testing of the final product. Fault-tolerance incorporates tech-
niques and methods under the assumption that a system has unavoidable and unde-
tectable faults, by employing error detection and system recovery with the goal of the
system to operate correctly even in the presence of faults. Fault-forecasting consists of
evaluation of the system behavior over time.

And finally, the third part to dependability being the threats, which consist of faults,
errors, and failures.

Fault-avoidance/prevention and fault removal are properties which are relevant
during the development, testing, and evaluation stage, and will be addressed in
Chapter 4 and 5. In the following we will concentrate our discussion to fault-tolerance
as the main property that we can address, that will lead to higher dependability of
the system during operation.

Before we go deeper into the discussion of fault-tolerance, we will need to define
the terminology surrounding it. So in the following we introduce some general ter-
minology and concepts that are behind fault-tolerance [52].

2.5.1 Faults, Errors, and Failures

The definition of fault-tolerance implies that there is a specification of what we define
as correct behavior. A failure occurs when the service provided by a system no longer
complies with its specification. The part of a system state or cause which is liable to
lead to failure is called an error. The error itself is the result of a defect in the system.
This defect as the cause of the failure is called a fault. Figure 2.5 depicts these basic
concepts in an UML class diagram [53]. So in summary, the fault being the cause,
resulting in an error, and causing failure.

When discussing faults, it is helpful to look at different classifications based on
duration, cause, and behavior as shown in Figure 2.6.

When looking at the duration of faults, we can distinguish transient and permanent

32

2. Digital Preservation and Distributed Systems Foundations

Specified State Behavior
Specification

System State

Valid State Error Failure

Fault

System
Behavior System

1..*

specifiedBy specifiedBy

0..*

causes >
1..* 0..*

< canResultIn

+defect 0..*

1..*

0..*

1..*

1
1..*

1

0..*

0..*

Figure 2.5: Failures, Errors, and Faults

faults, where the transient fault has a subtype of intermittent faults. The main differ-
ence is that a transient fault will disappear without intervention unlike a permanent
fault which needs to be actively removed. From an engineering point of view, it is
more complex to deal with transient faults especially with intermittent faults as they
are often unpredictable.

Using cause as the classifier, we will have design and operational fault classes. The
design being the faults introduced during the designing of the system, e.g., coding
errors, etc., and operational faults being the faults that occur during the running of
the system.

As a third classifier, we can take the behavior of components once they have failed.
Here, we have crash faults where the component simply stopped working altogether,
omission faults where the component fails to perform its service, timing faults where the
component does not complete its service on time or completes to early, and byzantine
faults which are faults of an arbitrary nature not covered by any preceding class.

2.5.2 Fault-Tolerance

In a distributed system, such as DISTARNET, the reliable functioning of the system
depends on remote nodes communicating over the internet. The structure and in-
herent complexity of the physical world does not actually allow for absolute 100%

33

2. Digital Preservation and Distributed Systems Foundations

Fault

Transient Persistent

Itermittent

Design Operational Crash

Omission

Timing

Byzantine

duration duration cause cause behaviorbehaviorbehavior behavior

Figure 2.6: Different Classifications of Faults

foolproof software [54]. As hard as we may try, the possibility that something can
go wrong can never be fully removed. We can only try to reduce the probability of
failure to an acceptable level.

Fault-tolerance techniques are a means of reducing the risk of faults. Fault-tolerance
is defined as the ability of a system to perform its function correctly even in the pres-
ence of internal faults [55, 51]. As such, the intention of providing fault-tolerance is
in increasing the dependability of a system.

General Procedure

The general procedure for dealing with faults can be divided into three interrelated
phases, which are fault detection, fault diagnosis and localization, and fault elimination and
recovery.

With fault detection, the goal is to identify that our system is in an invalid state. To
minimize the effects of this invalid state we need to identify the component which is
done in the fault diagnosis and localization phase. Through fault elimination and recovery
we deal with the fault itself, and remove its effects by restoring the system to a valid
state.

2.5.3 Fault-Tolerance in the Context of Distributed Systems

When speaking about distributed systems, then there are additional problems that
need to be taken into account such as remote site failures, communication media failures,
transmission delays, and distributed agreement problems.

34

2. Digital Preservation and Distributed Systems Foundations

Controller

Remote Node 1 Remote Node 2 Remote Node N. . .

Figure 2.7: Star Pattern

Fault-Tolerant Pattern

One possible pattern for constructing a fault-tolerant distributed system is the star
pattern (based on the master-slave pattern [56]) shown in Figure 2.7. The distributed
system consist of a controller and a set of remote nodes. The controller sends out work
to the remote nodes and keeps track of the remote nodes. In the event of failure of
one of the remote nodes, the controller can than initiate recovery. In this pattern, the
permanent failure of the controller would lead to a global failure of the whole system.
The controller is a single point of failure that needs to be made fault-tolerant. We will
see later in a greater detail, how this will be dealt with in DISTARNET, by allowing
remote nodes to take over the role of the controller, and by employing leader election
algorithms to select the best remote node as the new controller.

2.5.4 Application Level Fault-Tolerance

As we said earlier, the techniques discussed so far like replication and redundancy
are insufficient to provide fault-tolerance on the application level, and so we will now
explore some additional methods that can provide fault-tolerance on the application
level.

The additional methods for achieving application level fault-tolerance can be di-
vided into two classes of strategies, namely error processing and fault treatment.

The error processing class can be further subdivided into two subclasses. The first,
aims to remove any errors introduced into the application state, thus will implement
techniques for the substitution of the erroneous state with an error-free state, and is
called error recovery. The second, will employ methods that provide redundancy, and
by doing so compensate for the error. They are called error compensation.

The second top-level strategy, fault treatment, aims to prevent the activation of
faults, and so action is taken before the error arises. The two steps in this strategy

35

2. Digital Preservation and Distributed Systems Foundations

Error Compensation Error Recovery Fault Treatment

Design Diversity N-Version Programming [57],

Recovery Block [58],

N-Self Checking Programming [59]

Data Diversity Data Diversity [60]

Environment Diversity Restarting [61],

Process Pair [62],

Software Rejuvenation [63]

Checkpointing Checkpointing and

and Recovery Recovery [64, 65]

Table 2.2: Classes of Strategies and their Fault Tolerance Methods

are fault diagnosis and fault passivation.
The nature of faults which typically occur in software has to be thoroughly under-

stood in order to apply these strategies effectively. Table 2.2 shows the fault-tolerance
methods used by these classes. All these classes are discussed briefly in the remainder
of this section.

Design Diversity

To counteract and tolerate design faults that have arisen out of wrong specifications
and/or incorrect coding, design diversity techniques have been developed. Here,
multiple variants of a software component are developed by different teams to a
common specification. Fault-tolerance is then achieved by using these variants in
a redundant manner.

N-Version Programming. In N-version programming [57] N(N = 2) independently
created functionally equivalent programs called versions, are executed in parallel.
Then the results of all the versions are compared by a majority voting logic, and the
winner is reported as the presumed correct result. This technique is used in real-life
systems like railroad traffic control, airplane flight control systems, etc. The imple-
mentation cost of multiple versions and the voting logic are high.

Recovery Block. Recovery blocks [58] are analogous to cold standby in hardware
fault-tolerance. In this approach multiple, functionally equivalent versions of a soft-
ware component are deployed in a redundant fashion. By employing an acceptance

36

2. Digital Preservation and Distributed Systems Foundations

test on every result from the primary version, the validity of the same is tested. If a
result does not pass the acceptance test, then the result from the next version is tested,
repeating until a result is accepted or all versions have been tried. The main differ-
ence to N-version programming is that only one version is run at a time and that there
is no majority voting but an acceptance test.

N-Self Checking Programming. In N-self checking programming, [59] multiple
versions of a software component including acceptance tests are developed to the
same specification and are executed in parallel. Through a selection logic, the best
result is being selected and reported. It is a combination of N-version programming
and recovery blocks.

Data Diversity

Unlike the design diversity approaches who use multiple versions of software, the
data diversity [60] approach relies only one version of the software written to a spec-
ification. The idea behind data diversity lies in the observation that software com-
ponents fail sometimes for certain values of the input space and that these failures
cold be averted if the input data were changed slightly so that they are still accept-
able to the software component. In N-copy programming, N copies of the same pro-
gram using data diversity are run in parallel with a different input set produced by a
diverse-data system. The input set produced by a diverse-data system is a related set
of points in the original data space. The output of such a system is selected through
an enhanced voting scheme. This technique is not usable in all systems, but in sys-
tems, for example, where the sensor values are noisy and inaccurate to begin with,
this technique can be used to prevent failures.

Environment Diversity

Fault-tolerance through environment diversity is based on the observation that most
software failures are transient in nature and proposes that the same version of a soft-
ware component is executed in a different environment [66]. Restarting was proposed
[61] as the best approach to masking software faults, where environment diversity is
seen as a generalization of restart.

The behavior of a software component is determined by three states, being the

37

2. Digital Preservation and Distributed Systems Foundations

volatile state, the persistent state, and the operating system (OS) environment state. Tran-
sient faults typically occur in computer systems due to design faults in software
which result in unacceptable and erroneous states in the OS environment. Therefore,
environment diversity attempts to provide a new or modified operation environment
for the running software.

Process Pair. The process pair approach is based on the execution of the same ver-
sion of a software component on two different processors in parallel. In the event of
a failure, the second processor can take over the execution. One prominent execution
of this approach is the Tandems fault-tolerant computer system [62].

Software Rejuvenation. Software rejuvenation [63] is a specific form of environ-
ment diversity. It is a proactive fault management technique aimed at postponing/pre-
venting crash failures and/or performance degradation. This technique involves oc-
casionally stopping the running software, “cleaning” its internal state and/or its en-
vironment and restarting it. Software rejuvenation counteracts the software aging
phenomenon through freeing up OS resources and by removing error accumulation.
Common techniques for cleaning involve garbage collection, defragmentation, flush-
ing kernel and file server tables, etc. Main challenge lies in the rejuvenation schedul-
ing and granularity.

Checkpointing and Recovery

The checkpointing and recovery [64] is based on the idea of saving the state of the
system, and, in the case of fault detection, recovering the execution of the system
from the checkpoint where the state was saved.

Error recovery can be achieved by either forward or backward error recovery.
Checkpointing can be done static or dynamic. Static checkpoints take single snap-
shots of the state at the beginning of a program or module execution. The system
returns to the beginning of that module when an error is detected and restarts exe-
cution all over again. Dynamic checkpointing with different strategies: (a) Equidis-
tant checkpointing uses a deterministic fixed time between checkpoints, (b) Modular
where the placement of checkpoints is at the end of the sub-modular components
of a piece of software right after the error detection checks for each sub-module are
complete, and (c) Random where the process of checkpoint creation is triggered at

38

2. Digital Preservation and Distributed Systems Foundations

random without consideration of the status of the software execution.
In [65] it is proposed and analyzed the combination of software rejuvenation (pre-

ventive fault treatment) with checkpointing and recovery to reduce the chances of
activating a fault and simultaneously minimizing the loss of computation when there
is a failure.

2.6 Autonomic Distributed Systems

Automation in a preservation environment is an essential requirement. Autonomic
behavior would represent the next step, where the need for outside intervention is
tried to be minimized.

The term “Autonomic Computing” was coined 2001 by IBM, when they released
a manifesto, describing the complexity of computer systems as the main obstacle to
further progress [67]. The motivation lies in the proliferation of computer devices and
large software, which led to unprecedented levels of complexity, requiring highly
skilled IT professionals that would perform installation, configuration, tuning, and
maintenance. The mission statements define the goal to build computers that possess
the ability to regulate themselves, much in the same way our autonomic nervous
system regulates and protects our bodies.

In the way of IT progress, the human component is the “weakest link”. The goal
is to go from humans inside the (control) loop, to human operators “out of the loop”.
Even the engineers will need to be “put out of the loop”, as searching for solutions
will become too complex.

2.6.1 Automatic vs. Autonomic

Automatic computing is the execution of pre-programmed tasks [67]. The system
works fine until something goes wrong, and at latest now human intervention will be
needed. Autonomic on the other side includes self-regulation. The system response
is also automatic, but modulated. The system can compensate or work around prob-
lems, so that no human intervention is needed.

If we take as an example the installation of a software upgrade. We assume that
means exist to automatically deploy the needed upgrades. Also, that automatic re-
gression tests are available, and automatic problem detection is performed. The au-

39

2. Digital Preservation and Distributed Systems Foundations

tonomic approach would now consist of deploying, running and testing the software
upgrades. Additionally, in case of a problem, the system would autonomically revert
the upgrades, identify the problematic components, isolate them, and restart with the
reduced set of updates.

So autonomic computing is more than a simple extension of automatic computing,
and the engineering effort accordingly larger.

2.6.2 Key Properties for Autonomic Systems

Following IBM’s vision, there are four main properties an autonomic system should
provide [67]: self-configuration, self-optimization, self-healing, and self-protection.
There are also additional properties like self-aware, self-learning, operate in hetero-
geneous computing environment, anticipate and adapt to user needs, but we will
limit the discussion to the four main properties.

All these properties are also called self-* (self star) properties, as they begin with
the term “self” in their name. This denotes their extended set of inner capabilities.

Self-Configuration

IBM’s main concern is computing [67], and hence the following wish list, in which we
have automatic software deployment, installation, configuration, re-configuration,
and documentation. At the same time, the whole process must adhere to adminis-
trative directives, and produce reports on compliance.

The observations of IBM on the current status where that a data-center has mul-
tiple vendors, platforms, and software systems, and that the installation, configu-
ration, and integration of new elements including hardware, software, and policies
were very time consuming, and error prone. The goal was to have an automated con-
figuration of the components according to some high-level policies, and then the rest
of the system should adjust automatically.

Self-configuration can also be viewed in other contexts. Its application to network-
ing would mean that we would have automatic configuration of addresses, and rout-
ing. In the domain of parallel computing, self-configuration, for example, would
provide an automatic assignment of free processors, or computing resources in gen-
eral. This could lead in very complex systems even to self-organization, e.g., finding
new spacial configurations.

40

2. Digital Preservation and Distributed Systems Foundations

For our purposes, we can define that a system is self-configuring if the system is
able to (re-)configure itself according to high-level policies. This property by itself
does not mean that a system is autonomic, but is an important and required property
for an autonomic system.

Self-Optimization

IBM’s observation [67] was that there are a huge number of tuning parameters for
hardware and software, for example, like the cache size, different timeout values,
CPU, and bandwidth allocation, and going into the internals of software systems,
ranging from the dimensioning of internal data structures like hash tables, to several
algorithms that can be used for the same task, but with different profiles.

Optimization can thus be performed at many places. At design time, where the
software architecture could be self-optimizing. During the implementation, for the
choice of algorithms, language, and compiler optimizations. And lastly, at runtime,
where the system would optimize parameters.

Although we have a large range of possibilities for optimization, the current un-
derstanding of the term self-optimization is that only parameter adaption at run-time
is performed.

We can summarize, that a system is self-optimizing if the system and its compo-
nents continually seek to improve their performance and efficiency. For example, in
cloud computing adding more resources on demand, when some apps become too
slow, in distributed computing (GRID, SOA) the automatic outsourcing of tasks, or
picking the optimal connectivity subject to cost or speed. Self-optimization also in-
cludes the resolution of conflicting goals.

Self-Healing

The self-healing property involves problem solving at an analytical level [67]. The
wish list for automatic problem solving thus includes that the system is not only re-
active, i.e., has the ability to recover from events that have caused failure or malfunc-
tion, but also to be proactive, i.e., possess the ability to anticipate or predict failures
that can happen in the future. Problem solving in general includes finding the cause,
finding the cure, testing the cure, and finally deploying the cure.

41

2. Digital Preservation and Distributed Systems Foundations

The definition of self-healing by IBM is the ability of a system to automatically de-
tect, diagnose, and repair localized software and hardware problems. It is mostly
based on configuration errors, log analysis, but can also require infrastructure sup-
port, for example, when moving a set of apps and their data to a new server. As a
next level beyond the definition of IBM, we can look at self-healing inside the apps,
e.g., what algorithm to use, what data structure, etc. Such an extended definition can
be that a system providing self-healing, is a system that asserts goal integrity over
long times.

Self-Protection

According to IBM [67], a system is self-protecting when the system possesses the
ability to defend itself against malicious attacks, or cascading failures, and by doing
so, can prevent systemwide failures. This property is an ambitious and difficult task,
as attacks are not known in advance. The main focus lies in the automatic reaction to
events, and additionally employing tiered security, so that any breach on one level,
will have not the potential to endanger the whole system.

In practice, self-protection can be seen as a series of steps that can be taken. First,
confirm that the system has the ability to create backups, and that data resources can
be recovered when needed. Next, the system monitors the network with intrusion
detection capabilities, and automatically disconnects any suspicious computers in the
network. Also, all security advisories are tracked, and the system verifies that all
client machines have the latest patches installed.

2.6.3 Self-* Properties in General

The self-* properties are not orthogonal to each other [67]. For example,
self-optimization can result in re-configuration, or self-healing can even be seen as
a special case of self-optimization, in which we minimize the number of open prob-
lems. The properties are also not specific about their target, at which they are em-
ployed like at design, compile, deploy, or run-time. Also, the self-* properties are not
specific about the system they are employed in, like a closed (static) set of compo-
nents, or open, and distributed systems.

42

2. Digital Preservation and Distributed Systems Foundations

Rules:
RIF

URI Unicode

Crypto

XML (Turtle, N3)

Data interchange: RDF

RDF-S

Ontology:
OWLQuery:

SPARQL

Unifying Logic

Trust

Proof

User Interface & Applications

Figure 2.8: Semantic Web Stack

2.7 Semantic Web Technologies

The Semantic Web is a concept describing the further development of the World Wide
Web (WWW), where unstructured and semistructured documents are prevalent, with
the goal to create a “web of data”, and where the computers can derive meaning from
the semantically enriched data [68]. This development is lead by the W3C (World
Wide Web Consortium) as the standards organization for the WWW and all the un-
derlying standards and technologies [69].

Figure 2.8 depicts the Semantic Web Stack, the components of the Semantic Web,
and how these standards and technologies stand to each other. In the following, we
will describe some of these technologies in a greater detail.

2.7.1 Uniform Resource Identifier (URI)

A Uniform Resource Identifier (URI) consists of a tight sequence which identifies
resources, abstract or physical. This identification is quite simple and extensible [70,
71]. The scope of an URI is global and their interpretation is consistent regardless of
the context. An URI can be described as follows:

• Uniform: This has many benefits, such as uniform semantic interpretation, in-
troduction of new types and the use of different types of resource identifiers

43

2. Digital Preservation and Distributed Systems Foundations

and the identifiers can be reused.

• Resource: A resource has several uses and the term itself is used more broadly.
For example resources can be abstract concepts, an image, an electronic docu-
ment, human beings or even types of a relationship (e.g., “married”).

• Identifier: An identifier represents the information required to distinguish what
is being identified from all other things within its scope of identification.

2.7.2 Resource Description Framework (RDF)

The idea of the Resource Description Framework (RDF) is to describe logical state-
ments about resources [72]. With RDF, it is possible to exchange, reuse, and encode
metadata, and provide interoperability between applications [73]. The function of
statements is to align attributes to information units and give them a value. To align
these statements, it is further possible to use the RDF Vocabulary Description Lan-
guage (RDF Schema) which will be explained further in the next section. It is impor-
tant that the statements of the Semantic Web are described with the idea of RDF. The
structure of RDF is quite simple and consists of a graph-based data model which is
divided into three components which are also called RDF triple: Subject, Predicate,
and Object. With the RDF triple, almost everything can be described. The resource
can be a web page, an object such as a pictures, and so on.

A RDF triple connects an object and a subject and expresses this with a predicate.
Figure 2.9 shows a small RDF graph, where the ovals represent resources (subject or
object), the arrows represent predicates, and the box represents a literal.

Resources and literals are the main distinction inside the RDF model. An object can
be a resource or a literal, whereas a subject and a predicate of a statement are always
resources. Literals are simple strings, and have no further identification, whereas
resources poses unique identifiers which are represented by URIs. Literals and re-
sources can be represented as collections with three diverse types of containers:

• Alternatives: With an alternative only one value can be used with the property,
from the values contained inside the container.

• Bags: Values can appear a number of times in bags. And bags are in general
unordered lists, and permit duplicating values.

44

2. Digital Preservation and Distributed Systems Foundations

http://www.distarnet.ch/ex#doghttp://www.distarnet.ch/ex#isA

http://www.distarnet.ch/ex#db

http://www.distarnet.ch/ex#kenzi

http://www.distarnet.ch/ex#hasOwner

http://www.distarnet.ch/ex#bone

http://www.distarnet.ch/ex#likesToEat

"Daniela Bienz"
http://www.distarnet.ch/ex#hasName

"Kenzi"

http://www.distarnet.ch/ex#hasName

Figure 2.9: RDF Statement Example

• Sequences: In contrast to bags sequences are ordered lists, but duplicate values
are also allowed.

As mentioned, the RDF conceptual model is a graph. For writing down RDF, the W3C
specifies the RDF/XML syntax. There are a number of other serialization formats,
which can be used for writing RDF such as Turtle [74], or N-Triples [75] a superset of
Notation 3 [76].

2.7.3 RDF Schema (RDFS)

RDF Schema [77] allows to create simple relations between the resources and their at-
tributes, and by doing so provides means to create taxonomies and ontologies. While
the main modeling concept in RDF is the resource, in RDFS the main modeling con-
cept is based on classes and subclasses. RDFS allows to specify ranges and applica-
bility of property values of a class, further allowing to infer other relationships which
are not explicitly stated.

2.7.4 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) [78] is a query language for
retrieving and manipulating RDF data stored in databases. Databases that store RDF
data, i.e., triples, are also called triple-stores .

Listing 2.1 shows an example query, which would retrieve the name of all dogs
from the RDF example we have seen Figure 2.9. In SPARQL queries, the Turtle RDF
notation is used.

45

2. Digital Preservation and Distributed Systems Foundations

PREFIX ex: <http://www.distarnet.ch/ex>
SELECT ?dog ?name
WHERE {

?dog ex:isA ex:dog.
?dog ex:hasName ?name.

}

Listing 2.1: Example SPARQL Query

2.7.5 OWL

OWL stands for Web Ontology Language [79], a family of knowledge representation
languages used for authoring ontologies, and where OWL 2 is the latest version. It
extends RDF regarding expressivity, providing higher expressivity than RDFS.

2.7.6 Summary

In this section, we have provided a short overview over some of the technologies
and standards of the Semantic Web. We will come back to these technologies in later
chapters, where we will discuss how they can be used to provide a flexible data model
for storing digital objects and their preservation metadata.

46

3
General Requirements and Concepts for a
Distributed Archival Network

In this chapter, we provide a discussion of the general requirements for a long-term
digital preservation system, and a description of the concepts and system model for
our proposed solution.

We begin with a discussion of the general requirements, describing the user and
system functionality needed in a digital preservation system. Afterwards, we provide
a description of the main concepts and present the system model, of our proposed so-
lution for distributed long-term digital preservation DISTARNET (2.0). DISTARNET
is an acronym and represents DISTributed ARchival NETwork.

The scope of the described system model incorporates a core feature set of the de-
scribed requirements that serve as a foundation for a preservation system, with the
ability to be extended in the future to cover the full range of requirements.

DISTARNET (2.0) is a follow-up project of the former DISTARNET (1.0) [80] project.
The original DISTARNET (1.0) system was developed at the Imaging and Media Lab,
University of Basel and granted by the Swiss National Science Foundation1, project
number: 100012-105714. For the reminder of the document, we use DISTARNET
when speaking about DISTARNET (2.0), and explicitly say when we refer to the orig-
inal DISTARNET (1.0) project.

During the description of the system model, we use DISTARNET as part of the
name of some of the presented concepts. The description of the system model that is
presented in this chapter will be implementation technology independent. In Chap-

1http://www.snf.ch

47

http://www.snf.ch

3. General Requirements and Concepts for a Distributed Archival Network

ter 4 we then present the system architecture and implementation of a DISTARNET
system, which is based on the concepts described in this chapter.

3.1 General Requirements for a Long-Term Digital
Preservation System

Based on Section 2.1 and 2.2 where we introduced the basics of long-term digital
preservation including the OAIS Reference Model, on TRAC (Trustworthy Reposito-
ries Audit & Certification Criteria and Checklist) [81], and on the experience from the
original DISTARNET (1.0) project, we now describe a set of requirements that will
ideally all be met by a distributed long-term digital preservation system. These re-
quirements are described in very broad and generic terms, without ties to any specific
technology.

3.1.1 Information Object

We use the term Information Object to denote a digital object that we want to archive,
which consists of the digital data (bitstream) of a data object (e.g., image, audio/video,
text document, etc.) and all surrounding metadata. The surrounding metadata in-
cludes representation information, reference information, and context information. It
also can include additional description information for an information object (e.g., an-
notations), the descriptions of relationships between information objects (e.g., links),
or information about membership in collection / subcollection sets.

3.1.2 User Functionality

The users of a long-term preservation system must be able to fulfill a certain number
of tasks, which we will describe in the following. From the user perspective, when
using a preservation system, there are some basic features that need to be provided.
The user will want to be able to add content to the archive (Ingest), work with the
content in the future (Access), and define some preferences regarding the long-term
storage (Preservation Planning).

48

3. General Requirements and Concepts for a Distributed Archival Network

3.1.2.1 Ingest

The users of an archiving system must be able to ingest Information Objects into the
system. As the Information Object being composed of the digital data (bitstream),
their metadata (representation information, reference information, context informa-
tion) and optional additional metadata (e.g., links, annotations, collection / subcol-
lection membership) can be available in virtually any format. An archive may define
policies, on how data are to be ingested including what representation information
need to be included, and what formats can be used. Thus, a policy for ingest should
be agreed between the Content Provider and the Preservation Manager. The ingest
policy details the assembling of the Information Object for submission to the long-
term archive.

The ingestion of data must be executed in a reliable manner, and support for a fault
tolerant and recoverable ingestion provided, subject to policies between the Content
Provider and the Preservation Manager who can define acceptable limits.

Further, the ability for external systems to process submissions should be provided.
It should also be possible to notify these external systems about the submission of
new data. Also, the system should allow to be queried regarding the status of the
ingest of the digital objects.

All ingested data must conform to the ingestion policy, and as such the system
must be able to verify and validate the ingested data regarding their conformance to
the ingestion policy. Also, all digital rights must be preserved during the ingest.

Over time, new versions of digital objects and the representation information can
be available. Thus, the system must have the ability to accept and manage new ver-
sions of the digital object and representation information updates. Also, the system
must be able to accept withdrawal of digital object.

The here described ingest functionality is equivalent to the Ingest functional entity
described in the OAIS Reference Model.

3.1.2.2 Access

After Ingest, the second most important feature of an archiving system is the ability
to give the users of the system Access to the archived objects. As the preservation en-
vironment is not intended to be a dark archive, it should provide their users with the
possibility to search for and retrieve digital objects. The users will be able to search for

49

3. General Requirements and Concepts for a Distributed Archival Network

content either by providing free text keywords or by specifying meta-data attributes.
After finding the information object the user is interested in, he should be able to
have access to the digital data, metadata, and all additional metadata contained in
the information object.

Access policies for the data and representation information may exist. User access
is restricted to certain users and user groups on per digital object level. Sometimes
an institute running an archive does not hold the license for all material that is stored
within the archival storage. In these cases, the consumer is directed to the license
owner’s system when he wants to retrieve a particular object. An infrastructure
provider might enable different institutes to store their collections at their site, and
share some of those collections with each other. The system may have to provide se-
cure interfaces for remote access (search and retrieval) to other institutes/consumers.

With time, the knowledge base of the designated community may undergo certain
changes. This may lead to a situation where users or a Preservation Manager may
want to enhance an existing information object with further knowledge in order to
keep that specified object understandable, and up-to-date.

This described access functionality is equivalent to the Access functional entity de-
scribed in the OAIS Reference Model.

3.1.2.3 Annotations, Links, and Collections

As seen in the description of the access functionality, we need to be able to enhance
existing information objects that are stored inside the preservation environment. So
the archiving system, and also the information objects, need to possess the ability to
be enhanced with additional information. This additional information can be user
created annotations attached to information objects, created arbitrary links between
information objects, or information objects organized into collections and subcollec-
tions.

3.1.2.4 Preservation Planning

The individuals, institutions, or corporations can have their own policies regarding
different aspects surrounding the task of long-term preservation of their materials.
These policies can be driven by preservation needs (e.g., keep a minimum of three
replicas on different sites, etc.), or even by some regulatory requirements (e.g., min-

50

3. General Requirements and Concepts for a Distributed Archival Network

imum geographical distance between two replicas, only allowed to store replicas in-
side the country, etc.). The administrators of the archive (Preservation Managers) will
thus need to be able to create, manage, and assign preservation policies and plans in-
side the archiving system.

These preservation plans and policies also include actions, and procedures in the
event of data format obsolescence relevant to the archived information objects. The
archiving system should support the administrators by providing the ability for au-
tomatic detection of future data format obsolescence, and to provide data format mi-
gration capabilities.

The described preservation planning feature is equivalent to the Preservation Plan-
ing functional entity described in the OAIS Reference Model.

3.1.3 System Functionality

In Section 2.1 we described long-term preservation as a form of communication with
the future. For the communication to be successful, the moment information objects
are ingested by the user into the preservation environment; the preservation system
needs to fulfill a series of tasks subject to user defined policies, with the goal to be
able to serve these archived information objects in some distant future when the user
wants to access them.

These tasks have as their goal to preserve information objects, despite potential
changes of the formats in which objects are stored, and the underlying hardware
environment. Therefore, a software system for digital long-term preservation has to
support preservation processes that guarantee i.) integrity: the information captured
by data is not altered in any way; ii.) authenticity: provenance information is properly
linked to each stored object by means of appropriate metadata; iii.) chain of custody:
location and management controls are tracked within the preservation environment;
iv.) completeness: everything that was initially stored is also available in the future,
and finally v.) ease of access: the necessary means are provided to find and identify the
stored digital objects.

Moreover, an additional and essential requirement for a long-term preservation
systems is their capability to do the necessary maintenance and failure recovery in
an autonomous way, e.g., to identify automatically when a replication level defined
through a preservation policy is no longer achieved, and to trigger corrective actions

51

3. General Requirements and Concepts for a Distributed Archival Network

(deploy new replicas) without human intervention.
We have seen that the deployed preservation policies can include a wide range of

requirements, ranging from the minimum number of replicas, to requirements re-
garding geographical distribution of the archived materials. The requirement for ge-
ographical distribution, paired together with the need for adequate computing and
storage resources on one side, and the limited available resources of the institutions
running an archive on the other side lead us to the need for a collaborative distributed
archiving solutions, which provide the needed flexibility.

A distributed archiving solution for information objects is comprised of a num-
ber of nodes, building a network of cooperating nodes which provide the needed
services. All nodes inside the network must be equal in regards to their functional
capabilities and differ only in terms of processing power and/or storage space. There
must be no central management system for the network.

The system must be able to allocate dynamically resources, i.e., storage space, for
the information objects that are ingested into the network. Through dynamic replica-
tion of the information objects, the system must also provide secure and automated
redundant storage of data, strong emphasis should be placed on a high storage capac-
ity of the system as a whole. Through access rights management, access to archived
information objects must be restricted accordingly.

3.1.3.1 Replication and Distribution

To provide a secure environment for long-term storage of the archived information
object, a system needs to store more than one copy of each information object, i.e.,
create additional replicas. The created replicas should not be stored in one place;
rather they need to be geographically distributed as a complete failure or destruction
of a storage location should not endanger all replicas. Thus, the solution needs to
provide some form of a replicated and distributed storage environment.

3.1.3.2 Fault-Tolerance and Failure Management

Local geographical disasters like fire or an earthquake has the potential to destroy
parts of the preservation environment. As time goes by, hardware or software com-
ponents may fail unexpectedly while storage media tend to lose bits of information.

Any abnormal conditions or problems that may harm the workings of the system

52

3. General Requirements and Concepts for a Distributed Archival Network

must be recognized, and recovered from. This should be done by providing trigger
routines that are executed every time, after a particular event that has occurred is
been detected, e.g., the copyright of a digital object expires, data corrupt, etc. Any
reaction to such triggered events should be executed autonomously by the system,
by initiating counter measures.

The failure of one or more components in a distributed preservation system should
not endanger the whole system, and should only have isolated effects. Failure (e.g.,
power failure, hardware failure, etc.), or disaster (e.g., natural disaster, fire) result-
ing in destruction, or corruption of some of the stored information objects, should
not lead to a complete loss of the archived data. Automated replication mechanisms
should maintain a minimum number of geographically dispersed replicas (number
and location defined by preservation policies) of the stored information objects.

Any data loss event should trigger automated recovery processes that will reestab-
lish the minimum number of geographically dispersed replicas. This should be done
by either using the repaired failed storage nodes, or by using other available and
suitable storage nodes found through resource discovery.

3.1.3.3 Management of Complex Information Objects

Any information objects stored inside the preservation environment are complex by
nature. The complexity arises out of the requirement for preserving additional sup-
porting information beside the bitstream of the archived data object. Even a simple
digital object, like for example, an image, will become a complex information object,
as we bring together and archive the digital files containing different data formats of
the same image (bitstream), the descriptions of the different data formats (representa-
tion information), the descriptions of what information the image is carrying (content
information), and others like reference, context, fixity, provenance, and many more.

So, the long-term preservation of digital data requires the management of complex
information objects, i.e., information objects that are comprised of or are part of other
information objects.

The challenge lies in the automated management of such complex objects in a dis-
tributed setting. Preserving the integrity of complex objects is a twofold problem.
First, the integrity of the referential information needs to be maintained (e.g., are all
references properly defined, and are all objects referred to available), and second, the

53

3. General Requirements and Concepts for a Distributed Archival Network

integrity of the objects themselves. Referential and object integrity checking (through
the use of fixity information stored with the complex object) needs to be automated.
Any loss of integrity needs to trigger automated processes that will restore the in-
tegrity of the information object. If the information object cannot be repaired solely
by the information it carries itself, other remote replicas need to be used. As an ex-
ample, through hardware failures some information objects might become corrupted
or destroyed. The information object representing a collection is partially corrupted
while some of the objects that are part of the collection are completely destroyed. In
this case, the discovery and subsequent recovery of the referential information (and
through inference also of the endpoint information objects) need to be automated.
Furthermore, integrity is an important challenge in the synchronization of informa-
tion objects that are changing during the preservation process (e.g., annotations, links
between information objects, collection / subcollection information). A system needs
to make sure that such changes do not break (falsely) the integrity of the information
objects.

3.1.3.4 Scalability

The omnipresent digitality of our culture and civilization leads to an ongoing rise
in production of digital data that need to be archived. This constant growth of the
volume, requires scalable distributed preservation solutions that should work effi-
ciently even with an increasing number of users, and quickly growing volumes of
data that need to be archived. The addition of storage resources should enhance the
performance of the system. This requires that the processes supporting the archiving
operations be automated and scalable themselves.

3.1.3.5 Openness and Extensibility

A long-term preservation system should be running per definition for a long time.
During that time, it is likely that the imposed requirements on the system can change.
As such, a long-term preservation system should provide clearly separated, and pub-
licly available interfaces, to enable easy extensions to existing components, and the
possibility of adding new components. The system should be able to be adapted to
arising new challenges, by allowing curators of the archived information objects to
specify new processes to cope with additional challenges (e.g., novel data formats).

54

3. General Requirements and Concepts for a Distributed Archival Network

3.1.3.6 Resource Discovery and Load Balancing

In a distributed preservation system, where each node is potentially run by a different
organization, and there is no central coordinator, the discovery of newly available re-
sources, together with the monitoring and management of existing resources is very
important, and should be handled efficiently. The information gathered is important
for the functioning of the processes that provide automated replication of the infor-
mation objects to suitable remote storage nodes (constrained through preservation
policies). The system should be able to distribute the replicas among the available re-
sources for improving performance, where performance incorporates measures such
as availability, access speed, higher security, and reliability. Dynamically incorporat-
ing new resources or correctly handling the loss of existing resources (temporarily
or permanently) should be provided via automated processes. For an efficient us-
age of the available resources, tasks (e.g., data format migration) should be executed
(immediately or deferred baring the availability of the resources needed).

3.1.3.7 Authentication, Authorization, and Auditing

A variety of different user roles and user groupings can exist in the environment of
the archive, where one individual may act in multiple user roles. Access to resources
should be secured to ensure only known users are able to perform allowed oper-
ations. Apart from these usual security precautions, in a distributed preservation
environment (e.g., different institutions cooperate and share storage space) only the
institution should be able to access and manage its owned data. No access should be
possible to foreign data hosted on the local node for redundancy reasons. Cooperat-
ing institutions should be able to access other institution’s meta-data and be granted
access to the content of interest after having been authorized by the data owner.

The system must further support error reporting, and provide logging. All oper-
ations and their results must be recorder in a searchable and preservable manner to
allow verification and validation of authenticity and chain of custody. Also, all oper-
ations should be able to be verified and validated.

55

3. General Requirements and Concepts for a Distributed Archival Network

3.2 Distributed Archival Network Concepts

In the previous section we have looked at the general requirements for a long-term
preservation system, broadly describing the user and system functionalities such a
system should possess. In the following, we describe the concepts and the system
model a long-term preservation solution, which meets these user and system func-
tional requirements on different levels.

In the following, we begin by first giving a high level overview of the DISTARNET
system model. We identify the components that are part of the system model, the
externally visible properties of those components, and the interactions and relation-
ships (e.g., the behavior) between those components. After the high level overview,
we take a deeper look into the system model by describing the DISTARNET processes
and the DISTARNET data model.

The DISTARNET system model is designed as a representation of a fully distributed
system consisting of a network of equal nodes. Figure 3.1 depicts the system model
of a DISTARNET Node. Every node has the same buildup, i.e., is equal, making a net-
work of DISTARNET nodes, a fully distributed network without any nodes acting as
super peers.

3.2.1 Network

The DISTARNET system model represents a fully distributed system consisting of
collaborating sites that deploy nodes. To provide security regarding content access
we organize the sites together into Virtual Organizations (VO), much like in Grid-
computing. In a virtual organization, each participating institution is able to define
their access policies as they see fit so that access restriction management can be used
do define the allowed access to the stored content. To provide full distribution, and
no single point of failure inside the virtual organization, we structure the network
inside the Virtual Organization in a self organizing fashion, much like in Peer-to-Peer
(P2P) networks. The so created P2P structured VO constitutes what we call a DIS-
TARNET Sub-Network (DSN). We refer to the created network of nodes that can be
constituted of multiple sub-networks, as the DISTARNET Network. As illustrated in

56

3. General Requirements and Concepts for a Distributed Archival Network

DISTARNET NODE

 Data Layer

User Interaction Layer

DISTARNET NETWORK

DSN3
DSN2DSN1

DAO
DB-Store

DAO
File-Store

Content and Network Management Layer (DISTARNET Processes)

Data
Objects
Catalog

Basic Services Network ServicesDAO Mgmt.
Processes

Repositories
RLR, NIR, CJR, MJR

Ingest Access System ManagementPreservation Planning

Figure 3.1: DISTARNET 2.0 System Overview

Figure 3.1, we see a larger DISTARNET Network consisting of multiple independent
DSNs. A node can be part of one or more DSN if there is a need. The resources are
partitioned and can only be accessed by sites within the same DSN.

Due to the P2P and VO nature of a DSN the resulting distributed system is free of
any single point of failure, while providing at the same time a high degree of scalabil-
ity (both in terms of nodes, users, and volumes of content to be archived), availability
(through replication), and access security (through Virtual Organizations).

3.2.2 Node Layers

A DISTARNET node is based on a layered design consisting of three layers: the (1)
Data Layer, where the different metadata representations and data catalogs are lo-
cated, (2) the Content and Network Management Layer, where the preservation logic of
the system in the form of processes, data repositories, basic-services, and network

57

3. General Requirements and Concepts for a Distributed Archival Network

services is housed, and (3) the User Interaction Layer allowing user and administrative
access to the system.

Data Layer

The Data Layer houses the DAO DB-Store, the DAO File-Store, and the Data Objects Cat-
alog. This layer will be used for the storage of DISTARNET Archival Objects (DAOs)2,
which are a DISTARNET specific realization of the Information Object (IO). As men-
tioned, an information object encompasses the archived digital objects (e.g., image,
audio/video, text document, etc.), corresponding metadata (e.g., annotations), rela-
tions (e.g., links, sub-/collections) between other information objects, and properties
(e.g., access rights, availability requirements, etc.).

Content and Network Management Layer

The Content and Network Management Layer houses all the digital preservation
logic, and data repositories needed for the running of the system.

The digital preservation logic consists of DISTARNET processes, and basic-services
used during the execution of these processes. The design of this layer allows a reliable
and fault-tolerant execution of the processes and archival management of DAOs in a
distributed setting.

This layer also houses the different repositories, like the distributed Replica Loca-
tion Repository (RLR) where the locations of all replicas are stored, distributed Node
Information Repository (NIR) where information such as location, country, free/used
space, etc. of nodes in the network are stored, the Copy Job Repository (CJR) used for
storing information about pending remote replica creation jobs, and the Migration
Job Repository (MJR) used for storing information regarding data migration jobs. The
RLR and the NIR are built and updated with information gathered about other nodes
through the State Dissemination Process which runs periodically on every node in the
DISTARNET Sub-Network (DSN).

2See Section 3.6

58

3. General Requirements and Concepts for a Distributed Archival Network

User Interaction Layer

The User Interaction Layer is the layer over which all external interaction (user and
administrative) with the system is provided. Basically this layer represents the user-
interface that the users are provided for working with the system.

3.2.3 Processes Overview

The goal of the proposed system model is to posses a certain flexibility and adapt-
ability to possible changes in the future, stemming from the long-term nature of an
archiving system. Based on this reasoning, the main functionality of the system de-
scribed in the system model, is provided by processes that consume basic-services dur-
ing their execution, similarly to a Service Oriented Architecture (SOA) approach, with
the difference that the processes taking the role of service consumers and the service
provider are situated on the same node. Contrary to a monolithic approach, our
proposed solution consists of a collection of processes and services. An overall appli-
cation of the separation of concerns paradigm, provides us with smaller well defined
processes that have a clear separation in functionality, and small reusable services.
Such a design will serve us better in providing an overall flexible and adaptable so-
lution.

The DISTARNET processes are defined in and managed by the Process Execution
Logic (PEL), which is housed in the Content and Network Management Layer of a DIS-
TARNET node. The PEL is responsible for the execution (timer or request based), and
monitoring of the execution of each process.

The goal of DISTARNET is to provide dynamic replication, automated consistency
checks, and recovery of the archived digital objects, utilizing autonomic behavior and
predefined processes, governed by preservation policies, and without any centralized
coordinator in a fully distributed network. To achieve this, the system will exhibit
certain self-* properties3 (see Table 3.1) which we describe in the following in greater
detail.

3For a general discussion on autonomic systems, see Section 2.6

59

3. General Requirements and Concepts for a Distributed Archival Network

Self-Configuration

Node Joining Process (NJP)

Periodic Neighbor-Node Checking Process (PNCP)

Automated Dynamic Replication Process (ADRP)

Self-Healing

Periodic Integrity Checking Process (PICP)

DAO Repairing Process (DRP)

Node-Lost Process (NLP)

Reliable Copying Process (RCP)

Data Format Migration Process (DFMP)

Self-Optimization

Resource Discovery

State Dissemination Process (SDP)

Parameter Optimization

Table 3.1: Main DISTARNET Processes Categorized by their Self-* Properties

Self-Configuration

In DISTARNET self-configuration manifests itself in the ability of the system to de-
tect automatically changes in the network. Events such as new nodes joining or nodes
leaving are being constantly monitored, and taken into account. Processes involved
are the Node Joining Process, the Periodic Neighbor-Node Checking Process, and the Auto-
mated Dynamic Replication Process.

Node Joining Process (NJP): A node joins the network after the node credentials are
configured, and the members of the DISTARNET Sub-Network (DSN) are added to
the Node Information Repository.

Periodic Neighbor-Node Checking Process (PNCP): Every node will check periodically
its neighbors, where the neighbors are members in the same DSN, by sending a mes-
sage to which the receiver has to reply in a defined time. If the receiver does not reply
after some defined period of time, then this node is marked as lost, and leads up to
the triggering of a Node-Lost Event. Following this, the system begins with the self-
healing behavior by starting the Node-Lost Process (NLP).

Automated Dynamic Replication Process (ADRP): The ADRP is responsible for finding

60

3. General Requirements and Concepts for a Distributed Archival Network

suitable storage nodes within the DSN, estimate the optimal number of replicas, and
initiating the creation and distribution of replicas. For this, the ADRP finds – using
the Node Information Repository – suitable geographically dispersed nodes for stor-
ing the replicas by taking into account possible geographical restrictions imposed by
the Preservation Policy.

The system estimates the optimal number of replicas needed by taking into account
the availability of nodes (based on statistics on the individual availability collected in
the past) used to store a DAO, and via the Preservation Policy imposed availability
threshold of the DAO itself. This estimate is used to raise the number of replicas if
needed. To optimize the access performance, the system creates if necessary addi-
tional replicas by analyzing the usage patterns of the digital objects. After evaluating
a DAO regarding its overall availability in the network, ADRP initiates if needed the
Reliable Copying Process and creates new replicas.

Self-Healing

Due to the continuous monitoring of nodes, content, and processes, the DISTARNET
system detects abnormal conditions or problems that may harm its proper function-
ing and is able to recover automatically from those situations, by means of predefined
processes. The system is designed as a fault-tolerant system with detection and recov-
ery mechanisms for occurrences of failures on the infrastructure, content, or node
engine level. The main processes are the Periodic Integrity Checking Process, DAO Re-
pairing Process, Node Lost Process, Reliable Copying Process, and Data Format Migration
Process.

Periodic Integrity Checking Process (PICP): The PICP checks periodically the integrity
of every DAO. In the case that a loss of integrity is detected, the process will initiate
the DAO Corrupt Event, which will trigger the DAO Repairing Process.

DAO Repairing Process (DRP): The DRP analyzes the corrupted DAO, and initiates
the RCP to get the fresh copies of the corrupted DAO from remote replicas, which are
then used for the repair.

61

3. General Requirements and Concepts for a Distributed Archival Network

Node-Lost Process (NLP): The NLP is executed automatically in the case of a Node-
Lost Event. This process analyses the lost node, and checks if the current node is the
next node in line for taking over the responsibility for the management of the DAOs
that where ingested on the lost node. In the case that the local node is indeed now the
responsible node, it will create local replicas of the DAOs belonging to the lost node
if needed, and also initiate the ADRP for these DAOs.

Reliable Copying Process (RCP): The reliable copying process is a transfer mode that
uses existing replicas in the network for creating new ones in a secure and efficient
manner. At process level, transactional semantics according to the model of transac-
tional processes [82] are applied.

Data Format Migration Process (DFMP): The DFMP is used to migrate the data for-
mat of the bitstream data of a DAO, in the case where the readability of the data is
endangered through data format obsolescence.

Self-Optimization

All the mentioned properties until now can only be provided if the system has the
needed information on which it can act upon. As a consequence, the DISTARNET
system must know its environment, especially the available resources and track their
changes over time. This knowledge is provided by the State Dissemination Process
and is used to manage autonomously and maintain resource allocation through the
Automated Dynamic Replication Process (e.g., finding suitable nodes where data can
be replicated to, automatic policy-based geographical distribution of data, etc.), and
other processes needed for the operation of DISTARNET.

State Dissemination Process (SDP): The dissemination of the information needed for
operating a node, which are stored in the local data repositories, is done by using
periodic direct communication between nodes in the network. Periodically the SDP
sends out and receive changes from other nodes in the DISTARNET Sub-Network
which is then used to update the Node Information Repository and the Replica Loca-
tion Repository.

62

3. General Requirements and Concepts for a Distributed Archival Network

Adaptive Parameters: As mentioned earlier, the ADRP and the PICP are also pro-
cesses that are triggered periodically. The parameters that trigger these processes
will be adapted dynamically by the system so that the time intervals between the
triggering of those processes can be changed. They will be prolonged in the case that
for a longer period of time there where no changes in the network, or shortened if
there where recent changes.

3.2.4 DISTARNET Processes and OAIS

The DISTARNET processes correspond to the OAIS model of Archival Storage which
we have introduced in Section 2.2, and are described in Table 3.2.

OAIS DISTARNET 2.0

Ingest / Receive Data Ingest Process

Manage Storage Hierarchy Automated Dynamic Replication Process

Error Checking Periodic Integrity Checking Process

Replace Media Reliable Copying Process

Disaster Recovery Reliable Copying Process

Table 3.2: Comparing OAIS-Archival Storage to DISTARNET 2.0 Processes

3.3 Failure Classification and Fault-Tolerance

In Section 2.5 we have introduced the notion of Dependability and the properties lead-
ing to it, where we have come to the conclusion that Fault-Tolerance is a property that
needs to be an essential part of the design, when speaking about dependable systems.
So in the following we discuss Fault-Tolerance in the context of our proposed system
model for distributed long-term preservation and identify how and at what level it
will be provided.

When discussing fault-tolerance in the context of our system model, we can look
at and classify the faults, we are concerned about, on three distinct levels. Starting
at the macro level, we have the Distributed Infrastructure class, where anything that
endangers the distributed nature of the proposed solution is enclosed in. Next, the

63

3. General Requirements and Concepts for a Distributed Archival Network

Content class, where all faults that can lead to the loss of the archived data are bun-
dled. Finally, at the lowest level, the Node Engine class, under which all the faults are
subsumed, that can happen during the execution of the processes running on a node.

The self-healing property of the DISTARNET processes described in our system
model is directed at encountering these three classes of faults. Table 3.3 provides an
overview of the classes, the failures that can results from them, and the main pro-
cesses that are involved in their detection, confinement, recovery, and treatment.

Fault Class Failure Detection / Reaction

Distributed Hardware Problems Modules Involved: DP Logic

Infrastructure Failure (power, hardware, etc.) Detection: PNCP

Disaster (natural, fire, etc.) Reaction: Node-Lost Event; Repository updt, ADRP

=> Node-Loss

Network Problems Modules Involved: DP Logic

intermittent/periodic connection loss, etc. Detection: PNCP

=> Node Dependability Reaction: Repository updates, ADRP

Content Localized hardware problems, Modules Involved: DP Logic, DAO Storage

malicious acts, etc. Detection: PICP

=> DAO Corruption Reaction: Repository updates; DAO update; ADRP

Format obsolescence Modules Involved: DP Logic, DAO Storage

=> DAO Representation Unreadable Detection: PICP

Reaction: DFMP

Node Engine A problem occurring during the execution Modules Involved: DP Logic

of a DISTARNET process Detection: process execution logic

=> Process Execution Failure Reaction: execution of corresponding recovery process

Table 3.3: DISTARNET Fault Classes, their Effect, Detection, and Recovery Actions

As we have seen earlier, fault-tolerance is a mechanism used to provide system
functionality complying with the specification in spite of the presence of faults. On
the whole, fault-tolerance frameworks are focused on physical systems and not on
software systems, and most applied techniques are based on replication and redun-
dancy, and recovery. Replication is employed in the recuperation of system func-
tionality by means of duplication of each of its functionalities in the form of replicas,
where in the case of a fault another replica takes control.

In the context of the system model, employing replication and redundancy will
only provide fault-tolerance to the first two classes of faults. For the third class of
faults, the Node Engine class, other techniques are necessary since it is insufficient to

64

3. General Requirements and Concepts for a Distributed Archival Network

add simply redundancy, as by doing so would simply duplicate the problem.

3.3.1 Infrastructure Faults

The infrastructure faults class contains all faults that can compromise the functioning
of the DISTARNET Sub-Network (DSN). The DSN is the infrastructure, the backbone
of our proposed solution, which in itself needs to be fault-tolerant.

Node Loss

Through general failure like power, hardware, etc., or through a disastrous event like
flood, fire, etc., a node can get compromised to the point that it is not working any
more, i.e., a node is lost. The loss of a node is detected through the PNCP. After
a predefined amount of time that a node is not responding, its status will be set to a
Lost Node and the Node-Lost Event will be triggered. The DISTARNET system will then
automatically react and initiate countermeasures in the form of the Node Lost Process
(NLP), by reevaluating the DAOs affected by the disappeared node by the ADRP, and
if needed create new replicas so that in the Preservation Policy defined redundancy and
availability requirements are upheld again. Through predefined responsibility chains
(an ordered list of the next responsible node in case of node loss), a new responsible
node will be selected for the continued management of the now orphaned DAOs, who
will then initiate the ADRP for these DAOs. This new responsible node should have
information stored in the Replica Location Repository as this information is shared
with all members of the DSN.

Node Dependability

Intermittent or periodic connection loss will be detected by the PNCP which logs all
successful and unsuccessful communication attempts. Unsuccessful communication
attempts will have the consequence that the dependability of a node is downgraded,
which in itself is a measure used by the ADRP in the selection of remote storage
nodes.

65

3. General Requirements and Concepts for a Distributed Archival Network

3.3.2 Content Faults

The content fault class contains faults associated with the content, i.e., the data, which
our goal is to preserve.

DAO Corruption

Through localized hardware problems, e.g., disk crash, through improper handling
of the data, or through malicious acts, the integrity of a DAO can be compromised.
Periodic integrity checks are done by the Periodic Integrity Checking Process (PICP),
and if integrity is breached, it will automatically trigger countermeasures like finding
healthy replicas in the DSN, and by using the Reliable Copying Process (RCP) to get
remote healthy copies, and use them to repair the corrupted DAOs, to rectify the
problem.

DAO Representation Unreadable

This failure is caused by the obsolescence of data formats, which can prevent the
representation of a DAO to be read. To prevent this from happening, the data formats
of the archived data objects are constantly monitored and warnings are issued if a
given data format is becoming obsolete as defined in the Preservation Policy. The Data
Format Migration Process (DFMP) can be initiated to migrate the obsolete data formats
by following a predefined migration path.

3.3.3 Node Engine Faults

This third class of faults, Node Engine Faults that concerned about, contains faults that
can emerge during the execution of the DISTARNET processes, during their interac-
tion with the different parts of the system, or the interaction of any part of the system
with another. This discussion will be continued in Section 4.1.1 in a greater depth as it
is tightly coupled with the implementation, and the therein used system architecture.

3.4 DISTARNET Modules

Following the system model overview and discussion about failure classification, we
will now take a deeper look into the system model and the individual building blocks.

66

3. General Requirements and Concepts for a Distributed Archival Network

Data Layer

Content and Network Management Layer

User Interaction Layer

Messaging

Digital Preservation
Logic Module Services Module Network Module

DAO Storage Module

DAO
File-Store

Network Services

DISTARNET NETWORK

DSN4
DSN3

DSN2

DSN1

Basic ServicesProcess Execution Logic +
DISTARNET Processes

Data Object
Catalog

User Interaction Module (API)

Repositories
Module

DAO
DB-Store

NIR, RLR, CJR,
MJR

Preservation
PlanningIngest Access System

Management

Figure 3.2: Modularized View of the System Model

We will start by presenting another view of the system model, in which the building
blocks are organized into modules. Following this, we will present the DISTARNET
processes and the DISTARNET model into greater detail.

The different building blocks in the three layers of the DISTARNET system model,
which we have briefly described, are additionally organized into modules. Figure 3.2
depicts the modularized view of the system model.

The three layers are broken down into independent functional modules which com-
municate with each other by exchanging messages. The reasoning behind this mod-
ularization is threefold. First, the separation of concerns: We want to have building
blocks with a clear separation of functionality, and with minimum overlap and de-
pendencies, so that they can function independently of each other as much as pos-
sible. Secondly, stemming from the needs of the implementation side, this modular

67

3. General Requirements and Concepts for a Distributed Archival Network

design provides the ability to exchange independently and/or extend each modules
functionality with different implementations in the future. The only restriction im-
posed on alternative implementations is the correct processing of the predefined mes-
sages and the external effects, but they are otherwise free of any restrictions regarding
the internal implementation. Thirdly, the modularization would provide additional
possibilities on the implementation side, for fault-tolerant behavior on the node level.

The three DISTARNET node layers are subdivided into six functional modules.
The User Interaction Layer is composed solely of the User Interaction Module which
encompasses this layers functionality. The Content and Network Management Layer is
divided into four modules which are the Digital Preservation Logic Module, the Repos-
itories Module, the Services Module, and the Network Module. The third layer, the Data
Layer is contained in the DAO Storage Module.

Module Manager and Submodules

To allow for maximum flexibility in the structure inside each module, every module
is further divided into submodules, where each of them provide a certain part of the
modules functionality. On top of all the submodules, there is also always a Module
Manager, which functions as an access point to all communication with the module.
Every message originating outside of a module, and is intended for a submodule,
is sent to the modules manager and then further routed to the intended destination.
Such a design provides a large flexibility as the “interface” seen from the outside of
the module consists of the modules “address”, i.e., the manager, and the messages
themselves. The structure inside each module can be changed, without having to
perform any additional changes outside of the module.

3.4.1 User Interaction Module

The User Interaction Module consists of the UI Manager providing an API, and differ-
ent submodules that by using the API provide the functionality to interact with the
system on user and management levels. Figure 3.3 shows the structure of the User
Interaction Module.

The API provides a standardized interface that allow a two-way communication
with all other modules. The specification of the submodules providing Ingest, Preser-
vation Planning, Access, and System Management functionality is out of the scope of

68

3. General Requirements and Concepts for a Distributed Archival Network

UI Manager (API)

Preservation
PlanningIngest Access System

Management

Figure 3.3: User Interaction Module

Digital Preservation Logic Module
PEL-Manager

ADRP DFMP DRP

NLP PICP PNCP RCP SDP

IP NJP

Figure 3.4: Digital Preservation Logic Module

our design.

3.4.2 Digital Preservation Logic Module

The Digital Preservation Logic Module is the central module, where the Process Ex-
ecution Logic (PEL) and the DISTARNET Processes are housed. Figure 3.4 shows an
overview of the Digital Preservation Logic Module. At the top, we have the PEL-
Manager, which is the access point for this module, and is responsible for the routing
of messages destined to any submodule. Further, the PEL-Manager incorporates also
the Process Execution Logic, which is responsible for the execution, monitoring, and
management of the DISTARNET processes. Beneath the PEL-Manager, we have the
DISTARNET processes. In the following, we discuss the functionality of the Process
Execution Logic, and who and when triggers the execution of the DISTARNET pro-
cesses. The DISTARNET processes will be discussed in greater detail in Section 3.5.

Process Execution Logic

The Process Execution Logic (PEL) is the central controlling instance for the execution,
management, and monitoring of all processes in the system. Each process execution is
initiated by the Process Execution Logic. Further, every running process is monitored

69

3. General Requirements and Concepts for a Distributed Archival Network

PNCP PICP SDP

ADRP

RCP

DRP DFMPNLP NJP IP

Figure 3.5: Process Execution Logic Trigger Hierarchy

by the PEL, and if required terminated and/or restart in case of failure.
The PEL will execute processes as a response to messages originating from either a

timer, other processes, or by operators of the system. Figure 3.5 depicts the different
process execution triggers for each process. Processes connected to a watch symbol
are initiated periodically while the processes connected to a message symbol are ini-
tiated on demand by other processes, or directly by the system operator.

Periodic Neighbor-Node Checking Process (PNCP): The PNCP is triggered periodically,
and checks if all members of the same DISTARNET Sub-Network (DSN) are still
available. In case that a remote node is detected as lost, the PNCP will trigger the
NLP.

Node Lost Process (NLP): The NLP is triggered by the PNCP when a node loss is
detected. The NLP will trigger the RCP and the ADRP.

Automated Dynamic Replication Process (ADRP): The ADRP is either triggered peri-
odically (e.g., at least once a day) or by the NLP for each DAO in the archive. In case
that the degree of replication for a DAO is not sufficient, or the placement on remote
nodes is not optimal, the ADRP will trigger the RCP for the DAO in question.

Periodic Integrity Checking Process (PICP): The PICP is triggered periodically (e.g., at
least once a day) for all DAOs in the archive, and checks the integrity of all DAOs
stored on a node. In case that a DAO corruption is detected, the PICP will trigger the

70

3. General Requirements and Concepts for a Distributed Archival Network

DRP.

DAO Repairing Process (DRP): The DRP is triggered by the PICP when DAO cor-
ruption is detected. It will take the needed measures to repair the DAO, and by doing
so triggers the RCP.

Data Format Migration Process (DFMP): The DFMP is triggered on demand by the
curator. This is not a daily maintenance job, and for the running of this process, ad-
ditional information is needed, that first needs to be provided by the curator of the
archive in the form of a migration job description.

Reliable Copying Process (RCP): The RCP is either triggered by the ADRP and DFMP
in the outbound direction, or the NLP and DRP in the inbound direction, and will
send DAOs to remote nodes (outbound), or get DAOs from remote nodes (inbound).

State Dissemination Process (SDP): The SDP is triggered periodically and dissemi-
nates data that was changed since the last time it was executed.

Node Joining Process (NJP): The NJP is triggered on demand by the administrator.

Ingest Process (IP): The IP is triggered on demand by the administrator.

General Process Failure Characteristics

All DISTARNET processes are of idempotent nature, and thus can be simply restarted
in case of process execution failure. The PEL monitors the execution of all processes,
and acts upon any failures encountered during process execution, which can not be
handled by the processes themselves, by either simply terminating a process, or if
needed by also restarting them.

Process Persistence

Every process managed by the PEL is persisted in such a way, that after a system
shutdown the process execution of the processes running before the shutdown, can
be resumed. The specifics regarding process persistence is implementation specific

71

3. General Requirements and Concepts for a Distributed Archival Network

and depends on the implementation of the Process Execution Logic. We will discuss
this further in the Section 4.4.3.

Process Versioning

A long-term preservation system, with long life expectancy, needs to have the ability
of allowing processes to evolve, so that the system can be improved or adapted to
changing requirements.

It will not be possible to update directly or change the already running processes,
but new versions of processes can be deployed.

When deploying an updated process, we need to define what should happen to the
already running process instances based on older versions of the process. There are
three strategies that can be followed in this regard:

• Proceed: The old version process instances proceed their execution of the process
as defined by the process definition at the time the process was started. As a
consequence, these processes will resume their execution as if there never was
an update of the process definition. Newly created instances can be started by
using the new process definitions.

• Abort and Restart: The process instances based on the old version that are run-
ning will be aborted. If need, the process instance can be restarted by using the
new process definition.

• Migrate: The running old version process instances are migrated in the mid-
dle of the process execution to the new process definition, and will run after a
successful migration based on the updated process logic.

We follow the Abort and Restart strategy, where already running process instances will
be restarted with the new process definition.

3.4.3 Repositories Module

This module includes the different repositories storing information needed for the
execution of the DISTARNET processes. The Node Information Repository - NIR, the
Replica Location Repository - RLR, the Copy Job Repository - CJR, and the Migration Job
Repository - MJR. Figure 3.6 shows the structure of the Repositories Module. At the

72

3. General Requirements and Concepts for a Distributed Archival Network

Repositories Module
Repositories Manager

NIR RLR CJR MJR

Figure 3.6: Repositories Module

top, we have the Repositories Manager (RM) responsible for the routing of all messages
destined for the different repositories. The RM is also responsible for the monitoring
of the different repositories, and in case of a fault not handled by the repositories, to
try and restart the one in question.

3.4.3.1 Node Information Repository

The Node Information Repository (NIR) contains information about every Node in all
the DISTARNET Sub-Networks (DSN) a node is part of. If a node is part of more
than one DSN, it will simply have more than one entry. The attributes that each entry
can hold are shown in Table 3.4. First we have the attributes identifying an entry, the
unique identifier of the DSN and the node. Next are the entries from the Periodic
Neighbor-Node Checking Process, the timestamps of when the last time checkNode
messages where sent to this node, and when replies where received, and the status
of the node. Further we have entries with location information of a node like the
country code, or the latitude and longitude coordinates of a node. Finally, we also
have information regarding available resources for this node (e.g., free/used space,
etc.), and the timestamp of the last change of an entry. The entries in the NIR are
distributed to other nodes through the State Dissemination Process.

3.4.3.2 Replica Location Repository

The Replica Location Repository (RLR) contains information about each DAO replica
from every DISTARNET Sub-Network (DSN) where the node is a member of. Every
replica entry is identified with the unique identifier of the DSN, the name of the node
this replica is stored on, and the URI of the DAO this replica pertains to. Additionally
an entry will contain information about the currently responsible node for the execu-
tion of the ADRP, and information about the node on which the DAO was originally

73

3. General Requirements and Concepts for a Distributed Archival Network

Attribute Description

DSN Unique identifier of the DSN
node Unique identifier of the Node

lastCheckNodeSent The timestamp of the last checkNode message sent
lastCheckNodeReceived The timestamp of the last reply to a checkNode message

status The state of the node (OK, LOST)
countryCode The country code

geoLat Latitude coordinate of the node
geoLong Longitude coordinate of the node
freeSpace Available space on this node reserved for the DSN
timestamp Timestamp of entries last change

Table 3.4: Node Information Repository Entry Attributes

Attribute Description

DSN Unique identifier for the current DSN
node Unique node identifier that holds a replica
uri URI of the DAO for which this entry is meant

responsible The node responsible for the execution of the
ADRP

ingester Unique node identifier of the node that
ingested this DAO

status The state of the replica on this node (OK,
CORRUPT, LOST)

timestamp Timestamp of the last change

Table 3.5: Replica Location Repository Entry Attributes

ingested. Table 3.5 lists all the attributes that an entry will contain.
Processes that create or change entries are the Ingest Process, Periodic Integrity

Checking Process, the Remote Copying Process (i.e., RCPOutRemote), and the Pe-
riodic Neighbor-Node Checking Process. The entries in the RLR are distributed to
other nodes through the State Dissemination Process.

3.4.3.3 Copy Job Repository

The Copy Job Repository (CJR) is used to store information about copy jobs that need
to be executed by the Remote Copying Process. An entry is uniquely identified by the
unique identifier of the DISTARNET Sub-Network (DSN), the unique node identifier

74

3. General Requirements and Concepts for a Distributed Archival Network

Attribute Description

DSN Unique identifier for the current DSN
node Unique node identifier of the node executing

the job
uri URI of the DAO for which this entry is meant

locations Locations of the receiving end, or the
locations of the source end

parts The parts of a DAO that need to be copied.
Empty if the whole DAO is to be copied.

direction The direction of the copy job (inbound,
outbound)

type The process type that created the copy job
(outbound: ADRP, DFMP; inbound: DRP,
NLP)

status The status of the job (open, closed, failure
message)

Table 3.6: Copy Job Repository Entry Attributes

of the node executing the job, and the URI of the DAO which is to be copied. Next,
each entry will hold either the locations of nodes that will receive the DAO in the case
of an outbound job, or the locations of the source nodes from which the DAO can be
copied in the case of an inbound job. If only parts of an DAO are to be transported,
then a list of those parts can be stated. Also, every entry will hold the type of the
process that created the entry. Possible types are from outbound jobs ADRP and
DFMP, and for inbound jobs DRP and NLP. Finally, the status of each job is stored
with each entry being op, closed, or in case of a failure the message text. All attributes
of an entry in the Copy Job Repository are listed in Table 3.6.

3.4.3.4 Migration Job Repository

The Migration Job Repository (MJR) store information needed for the execution of
the Data Format Migration Process (DFMP). An entry in the MJR is identified by the
unique identifier of the current DISTARNET Sub-Network (DSN), the unique node
identifier of the node executing the job, and the URI of the DAO that needs to be
migrated. Additionally, each entry holds the path to the migration script that will be
executed by the DFMP, and status of the job being open, closed, or a failure message,

75

3. General Requirements and Concepts for a Distributed Archival Network

Attribute Description

DSN Unique identifier for the current DSN
node Unique node identifier of the node executing the job
uri URI of the DAO for which this entry is meant

path The node responsible for the execution of the ADRP
status The status of the job (open, closed, failure message)

Table 3.7: Migration Job Repository Entry Attributes

Services Module
Services Manager

Analyzer Checksum DFMP Distribution

PNCP PubSub RCP

Figure 3.7: Services Module

depending on the result of the process execution. Table 3.7 shows the attributes of the
entries that will be stored in the Migration Job Repository.

3.4.4 Services Module

The Services Module (SM) houses the basic-services which are used by the processes in
the Digital Preservation Logic Module. Figure 3.7 shows an overview of the Services
Module. At the top of the SM, we have the Services Manager, and underneath the
different submodules containing the basic-services.

Again, the Services Manager is the entry point for any communication with the Ser-
vices Module, and all messages are routed to their destination. The Services Manager
is also responsible for the monitoring of the submodules, and in case of any faults not
handled by the submodules, to try and restart them.

3.4.4.1 Analyzer Basic-Services

The Analyzer submodule contains the AssertDAODamage basic-service, which can be
used for the assertion of the damage of a DAO. This service is used by the DAO
Repairing Process, to analyze the DAO, and as a result, return those parts of the DAO,
which need repair.

76

3. General Requirements and Concepts for a Distributed Archival Network

3.4.4.2 Checksum Basic-Services

The Checksum submodule contains two basic-services, the ExtractDAOChecksums, and
CalcDAOChecksums. The ExtractDAOChecksums service can be used to extract exist-
ing checksums stored as part of the DAO. The CalcDAOChecksums service can be
used to recalculate checksums of a DAO.

3.4.4.3 DFMP Basic-Services

The DFMP submodule contains one basic-service, which can be used for execution of
data format migration jobs.

3.4.4.4 Distribution Basic-Services

The Distribution submodule consist of two basic-services, namely the CalcOptimal-
NrOfReplicas used to calculate the optimal number of replicas, and the CalcOptimalD-
istribution used to calculate the optimal replica locations.

Estimating the Optimal Number of Replicas

The CalcOptimalNrOfReplicas service will estimate the optimal number of replicas
needed by taking into account the availability of nodes (based on statistics on the
individual availability collected in the past) used to store a data object in conjunction
with the availability threshold imposed by the preservation policy of the data object
itself. This estimate will be used to raise or lower the number of replicas if needed.

In DISTARNET the availability of a data object depends on the failure rate of the
nodes. In the case that a larger number of nodes become unreachable can lead to
the unavailability of a data objects. The following formula will estimate the needed
number of replicas (n) for a certain availability threshold.

Let n be the total number of replicas for a data object, p the average probability of a
site to be up and ad the required amount of availability for a data object D:
ad = 1� (1� p)n

Thus if we take 90% average probability of a site to be up (90% availability of a
node equals to 36.5 days of downtime per year) and if we have at least 3 replicas in
the network, then the availability of the data object will be 99.9% which equals to 8.76
hours per year the data object will not be available.

77

3. General Requirements and Concepts for a Distributed Archival Network

So taking the needed average availability of the archived data objects and the aver-
age availability of the nodes used to store them into account, the system can calculate
the optimal number of replicas needed.

Calculating the Optimal Replication Locations

The CalcOptimalDistribution service will try to use the largest available granularity
for the distribution of the replicas, i.e., the information about collections/subcollec-
tions will be used, if available. This means that the replicas of data objects belonging
to a collection/subcollection will be stored together if possible.

Using data from the local Node Information Repository, a ranked list of optimal nodes
is calculated. This list contains the most suitable geographically dispersed nodes for
storing the replicas by taking into account the available storage resources and any
preservation policy-based restrictions.

3.4.4.5 PNCP Basic-Services

The PNCP submodule contains one basic-service used to send and receive messages
to and from other nodes with the purpose to check if the nodes in the same DISTAR-
NET Sub-Network are still alive and responding. Upon receiving reply messages, the
service will additionally update the entry for the sending node in the Node Informa-
tion Repository with the timestamp when the reply was received.

3.4.4.6 PubSub Basic-Services

The PupSub submodule contains the basic-services used to send and receive the state
of a node with the publish-subscribe pattern [83]. On the sending side, the service
takes as the input values the states that need to be send, and the name of the DISTAR-
NET Sub-Network. The service will then send the state information to all nodes be-
longing to the DSN. On the receiving side, the service receives states sent from other
nodes, and stores them to the appropriate repositories (Node Information Repository
or Replica Location Repository).

3.4.4.7 RCP Basic-Services

The RCP submodule contains basic-services used by the Remote Copying Process.
These services can be used to initiate secure transfer of DAOs (or parts of DAOs) to

78

3. General Requirements and Concepts for a Distributed Archival Network

Network Module
Network Manager

Network Services

Figure 3.8: Network Module

remote nodes (outbound), and to initiate secure transfer of DAOs from remote nodes
to the local node (inbound). The transferred payload is rechecked whether it really
has been successfully transferred, and no data has been lost or written inconsistently
during the copy process. For consistency checking, the service calculates checksums
(e.g., SHA-1) on both ends (before and after the transfer) and compares them to each
other. If any inconsistencies are found, then the transfer is repeated.

3.4.5 Network Module

Figure 3.8 shows the overview of the Network Module, where at the top we have the
Network Manager responsible for the routing of messages to the appropriate submod-
ule.

3.4.5.1 Network Services

The Network Services submodule is responsible for the routing of messages to re-
mote nodes. It implements a simple name to full address resolver, where messages
internally addressed with DISTARNET Sub-Network (DSN) Name and Node Name,
are looked up in the DSN Member Registry, and forwarded accordingly. On the other
side, this sub-module receives messages from other remote nodes and routes them to
the intended recipient.

3.4.6 DAO Storage Module

Figure 3.9 shows an overview of the DAO Storage Module. At the top of the Storage
Module, we have the Storage Manager acting as the entry point for any communica-
tion with the module, which is responsible for routing any messages to the intended
recipient submodule. The Storage Manager is also responsible for restarting of the

79

3. General Requirements and Concepts for a Distributed Archival Network

DAO Storage Module
Storage Manager

DAO
File-Store

Data Object
Catalog

DAO
DB-Store

Figure 3.9: DAO Storage Module

submodules in case of failure.
Further, we have the DAO DB-Store a database-based storage for the DAO meta-

data, the DAO File-Store representing a filesystem-based storage for DAO metadata,
and the Data Object Catalog being the storage facility for the bistream referenced by
the DAO metadata. The DAO DB-Store together with the Data Object Catalog is re-
sponsible for the storage of the DAOs. The DB-Store stores the metadata part of the
DAO and the Data Object Catalog the bistream part. The DAO File-Store stores the
data in a different representation and just mirrors the DAO DB-Store.

A detailed discussion regarding the structure of the DISTARNET Archival Object
which is stored in the DAO Storage Module is provided in Section 3.6.

3.4.6.1 DAO DB-Store

The DAO DB-Store is responsible for the database-based storage and management of
DAO metadata. This submodule contains basic-services for accessing to the DAOs
stored in the DB, providing transactional read, write, and update functionality.

3.4.6.2 DAO File-Store

The data stored in the DAO File-Store represents the same data as stored in the DAO
DB-Store, where the only difference lies in the serialization format of the data. This
redundant storage has a twofold motivation. The explicit representation stored on
the filesystem provides the basis for exporting, transporting, and archiving of the
DAOs with their asserted relationships to other objects. The database-based store
provides an index of an entire repository and the basis for high-performance queries
over their relationships. An added advantage of the dual representation is that the
entire database-based store can be rebuild by importing and parsing file-based DAO
representations.

80

3. General Requirements and Concepts for a Distributed Archival Network

3.4.6.3 Data Object Catalog

The Data Object Catalog is responsible for the storage of the bitstream data belonging
to DAOs. The basic-services contained in this submodule provide the functionality
needed for read and write access to the bitstream data.

3.5 DISTARNET Processes

In the previous section, we have discussed the different modules, and the different
functionalities that each module provide. While discussing the Digital Preservation
Logic Module, we have only given a short overview of the different DISTARNET pro-
cesses defined and executed inside this module.

In the following, we take a look at each DISTARNET process individually. We dis-
cuss the individual steps that each process is made of and how it all plays together
with the other modules, which provide the different services that are consumed dur-
ing the execution of the processes.

3.5.1 Ingest Process

The Ingest Process (IP) is the process which is used to add the DAOs into the archiv-
ing environment. During the IP the different parts of a DAO are stored into the
Storage Module. The data representing the metadata of the DAO, which is basically
everything besides the bitstream, is stored into the DAO DB-Store and the DAO File-
Store. The remaining, bitstream data, is stored in the Data Object Catalog.

In the course of the IP, an entry will be added to the Replica Location Repository for
every DAO that is ingested. Each entry contains the location (i.e., DSN, current node),
the URI, the responsible node (current node), the ingesting node (current node), sta-
tus, timestamp. The entries in the Replica Location Repository are distributed to the
other nodes in the DSN through the State Dissemination Process (SDP).

3.5.2 Node Joining Process

The Node Joining Process (NJP) is the process in which a node joining the network is
authorized to participate in the DISTARNET network. Depending on the type of the
DiSTARNET network this process can have a range of different behaviors:

81

3. General Requirements and Concepts for a Distributed Archival Network

Public DISTARNET network: In the case of a public network, the joining node is
supplied with a number of seed nodes. These seed nodes can than be queried for
information about other nodes in the network, and so on, until the newly joined node
has information about all nodes in the public DISTARNET network, which is then
stored in the Node Information Repository.

Small private DISTARNET network: The joining node is provided with basic in-
formation about all other participants, which is stored in the Node Information Repos-
itory. All the other participants also add the newly joining node to their list of autho-
rized members, and the Node Information Repository.

Large private DISTARNET network: The joining node is provided with credentials
that will allow it to authorize itself to other members in the network. The node will
also be provided with a number of seed nodes that it can query for information about
other nodes in the network. After successful mutual authorization of the new joining
node with all other nodes in the network, they will all add each other to their Node
Information Repository.

3.5.3 Periodic Neighbor-Node Checking Process

The Periodic Neighbor-Node Checking Process (PNCP) is responsible for initiating pe-
riodic communication, with every node in the DISTARNET Sub-Network (DSN) the
node is a member of, to check if they are alive. If a node that is being checked is fail-
ing to respond for a predefined amount of times, then a Node-Lost Event is generated,
which subsequently triggers the Node-Lost Process (NLP).

The PNCP is depicted in Figure 3.10. The process is started when the PNCPStart
message is received with the DSN as the parameter. It begins by querying the Node
Information Repository (NIR) for the members of the DSN (P01-R01), and then by
sending check messages to all nodes by using the PNCP basic-service (P02-S01). After
the messages are sent, a timestamp is written to the NIR (P03-R03) for every receiving
node. Asynchronously, the PNCP service receives replies from the sent messages and
writes their timestamp to the NIR for every sending node (S01-R03). Following the
process again, the NIR is queried for the last reply times of every node (P03-R04). If
the last reply time is older then 24h, then the node is marked as lost in the NIR, and
a Node-Lost Event is triggered (P05-P06). If the last reply time is not older than 24h,

82

3. General Requirements and Concepts for a Distributed Archival Network

then the process simply ends.
The process was designed with asynchronicity in mind, i.e., for the process ex-

ecution not to have any dependencies on the PNCP service for the received reply
messages. The process can continue its execution even if the remote nodes are not
responding immediately. This process can be terminated and restarted at any time
without the need to store or restore any state information.

3.5.4 Node-Lost Process

The Node-Lost Event that was triggered in the PNCP will subsequently trigger the
running of the Node-Lost Process (NLP) depicted in Figure 3.11.

The process is started with the NLPStart message, and the DSN and name of the
node which is lost as the parameter. The process begins by marking all entries in the
Replica Location Repository (RLR) with the status LOST (P01-R01). Afterwards, the
process checks if the current node has the responsibility for the DAOs ingested on the
lost node, i.e., is the next node in the responsibility chain (P02-R02). If the node is not
responsible for the lost node’s DAOs, then the Automated Dynamic Replication Pro-
cess (ADRP) is called (P11) so that additional copies for the lost ones can be created. If
the node, on the other hand, is responsible for the lost node’s DAOs, then the current
node takes over the responsibility for these DAOs by updating the RLR entries for
the DAOs ingested on the lost node, and adding the current node as the responsible
node (P03-R03). As the next step, the process checks if the DAOs for which the node
is now responsible are already stored locally (P03-R04). If they are all stored locally
already, then ADRP is called, which will now run for both the DAOs ingested on the
local node, and for the foreign DAOs the node is responsible now (P11). In the case
that some DAOs are not stored locally (P04), the process retrieves the remote loca-
tions where the replicas of the DAOs are stored (P05-R05), creates inbound copy jobs
for the DAOs that we want to store locally (P06-R06), and calls the Remote Copying
Process (RCP) (P07). After this, the first execution strain of the process ends.

The retrieval of the DAOs that we want to store locally happens asynchronously.
As soon as RCP has retrieved a DAO, another instance of the NLP is started with the
RetrieveDAOResult message, which starts the second execution strain of the process.
This strain is executed for every DAO for which we have created a copy job in the first
part of the process. The execution starts with the evaluation of the retrieval result. In

83

3. General Requirements and Concepts for a Distributed Archival Network

Services Module DAO Storage
Module Network ModuleDigital Preservation Logic

Module
Repositories

Module

P0
2:

 C
he

ck

M
em

be
rs

PN
C

PS
ta

rt

P0
1:

 G
et

 D
SN

M

em
be

rs

R
01

:
G

et
M

em
be

rs

Li
st

 fr
om

 N
IR

R
02

: U
pd

at
e

se
nd

in
g

tim
e

to

N
IR

tim
e

<
24

 h

tim
e

>
24

 h

S0
1:

 P
N

C
P

Se
rv

ic
e

Se
nd

 re
qu

es
t t

o
al

l
m

em
be

rs

Ti
m

e
si

nc
e

la
st

 re
pl

y

P0
6:

 T
rig

ge
r

N
od

e-
Lo

st

Ev
en

t

N
od

eL
os

t(d
sn

, d
is

tn
am

e)
(M

sg
 to

 P
EL

)

PN
C

PE
nd

C
he

ck
N

od
eR

eq
ue

st

R
ec

ei
ve

 re
pl

y
fro

m

m
em

be
rs

C
he

ck
N

od
eR

ep
ly

P0
3:

 W
rit

e
se

nd
in

g
to

 N
IR

R
04

: G
et

 la
st

re

pl
y

tim
e

fro
m

N

IR

P0
4:

 G
et

 la
st

re

pl
y

tim
es

R
03

: U
pd

at
e

se
nd

in
g

tim
e

to

N
IR

P0
5:

 M
ar

k
no

de
 a

s
Lo

st
 in

N

IR

Fi
gu

re
3.

10
:P

er
io

di
c

N
ei

gh
bo

r-
N

od
e

C
he

ck
in

g
Pr

oc
es

s
(P

N
C

P)

84

3. General Requirements and Concepts for a Distributed Archival Network

the case of success, the DAO is stored locally (P08-ST01), and the RLR is updated
to reflect the location of the new replica (P09-R08). Next, the RLR is queried if now
all DAOs for which we are responsible are stored locally (P10-R09). If they are not,
then the process simply ends and if they are all retrieved now, then ADRP is called,
which will as before run for both the DAOs ingested on the local node, and for the
foreign DAOs the node is responsible now (P11). For the case that the DAO retrieval
has failed, then the RCP job will be updated in such a way that the retry count is
incremented, the job status changed to OPEN (P12-R07), and RCP called again (P13).

The reasoning behind the two independent execution strains is the resulting ad-
vantage, as the lower part of the process from P01 until P07 is executed only once,
and the upper part of the process is executed for every retrieved DAO. With this
design, we have many short running instances of the process, and after the lower
part has run, or a retrieved DAO was processed, we do not need to keep the pro-
cess running anymore, or track their state. An alternative design would have been
to build one long-running process, but this would have been more costly as the Pro-
cess Execution Logic would need to keep track of the running process, and route the
RetrieveDAOResult messages to the right process instance.

3.5.5 Automated Dynamic Replication Process

The Automated Dynamic Replication Process (ADRP) as depicted in Figure 3.12, is re-
sponsible for finding suitable storage nodes for remote replicas, estimating the opti-
mal number of replicas, and initiating the creation of new replicas.

The process begins after receiving the ADRPStart message containing as a param-
eter the name of the DSN and the URI of the DAO that we are evaluation. As the
first task, the process retrieves the preservation policy of the DAO from the storage
module (P01-ST01). Next the optimal number of replicas is calculated (P02-S01), the
current storage locations from the RLR (P03-R01), and the members of the DSN from
the NIR (P04-R02) are retrieved. These information are than used to calculate the op-
timal distribution for the DAO (P05-S02). Afterwards, the calculated distribution is
compared with the current distribution, and a decision is made if additional replicas
need to be created. If the distribution is found not to be optimal, then an outbound
copy job is created the Reliable Copying Process called (P06-R03, P07).

We saw earlier that a node can be a member of one or more DSNs. The ADR process

85

3. General Requirements and Concepts for a Distributed Archival Network

Services Module DAO Storage
Module Network ModuleDigital Preservation Logic Module Repositories

Module

NL
PS

ta
rt

P0
1:

 U
pd

at
e

st
at

us
 in

RL

R

R0
1:

M

ar
kE

nt
rie

sL
os

t
in

 R
LR

R0
3:

 T
ak

eO
ve

r-
Re

sp
on

sib
ilit

y
in

RL

R

NO

YE
S

P1
0:

 A
ll

DA
O

s
re

tri
ev

ed

NL
PE

nd
(w

ai
tin

g)
P0

3:
 T

ak
e

ov
er

re

sp
on

sib
ilit

y
in

RL

R

R0
4:

 G
et

No
tL

oc
al

-
Re

sp
on

sib
le

DA
O

s
fro

m
 R

LR

R0
2:

 C
he

ck

Re
sp

on
sib

ilit
y

Ch
ai

n
in

 N
IR

P0
2:

 C
he

ck
 if

Re
sp

on
sib

le

P0
6:

 C
re

at
e

co
py

 jo
bs

 fo
r

ne
ed

ed
 D

AO
s

R0
6:

 C
re

at
e

RC
PI

n
jo

bs
 in

CJ

R

P0
7:

 C
al

l
RC

P

P0
8:

St

or
e

DA
O

AD
RP

In
it

(M
sg

 to
 P

EL
)

P1
1:

 C
al

l
AD

RP

ST
01

:
St

or
eD

AO

P0
9:

Up

da
te

RL
R

R0
8:

Up

da
te

RL

R

YE
S

NO

Re
tri

ev
e-

DA
O

Re
su

lt

NL
PE

nd
(fi

ni
sh

ed
)

R0
9:

Al

lD
AO

SR
et

rie
ve

d
to

 R
LR

P0
4:

 G
et

 lis
t o

f
DA

O
s

no
t l

oc
al

ly
st

or
edAl

l lo
ca

l

So
m

e
no

t
lo

ca
l

SU
CC

ES
S

RC
P

re
su

lt

P1
3:

 C
al

l
RC

P
FA

IL
UR

E

Re
tri

ev
eD

AO
(M

sg
 to

 P
EL

)

P1
2:

 U
pd

at
e

RC
PI

n
Jo

b

R0
7:

 U
pd

at
e

RC
PI

n
jo

b
in

CJ

R

Re
tri

ev
eD

AO
(M

sg
 to

 P
EL

)

R0
5:

 G
et

lo

ca
tio

ns
 fr

om

RL
R

P0
5:

 G
et

re

m
ot

e
r.

lo
ca

tio
ns

Fi
gu

re
3.

11
:N

od
e-

Lo
st

Pr
oc

es
s

(N
LP

)

86

3. General Requirements and Concepts for a Distributed Archival Network

will only operate within those boundaries, and use the storage resources of the DSN
a DAO it is a member of.

Responsibility for ADRP Execution

Every DAOs redundancy and storage location is reevaluated periodically. This is
done on the node where the DAOs where initially ingested, and only for those DAOs.
The remote replicas of those DAOs are thus actually never directly reevaluated. The
information regarding the ingesting node is stored in the RLR. Should an institution
have more nodes but the data is ingested only at one node, then it will be possible to
distribute the task of reevaluation to the other nodes by overriding the information
regarding the ingesting node. The node who is initially set as the ingesting node is
also at the same time set as the responsible node in the RLR entry.

In the case that the responsible reevaluation node is not available anymore (e.g., in
the case of destruction), another node in the DISTARNET network will automatically
take over. As soon as the original responsible node (i.e., the ingesting node) is avail-
able again it will contact the nodes storing the replicas – by using the information
stored in the Replica Location Repository (RLR) – and inform them of his return and
taking back the responsibility for triggering the ADR process.

The responsibility succession is set through the responsibility chain. The responsibil-
ity chain is a DSN wide ordered list, containing all nodes. In the case that one node
is not available anymore, the next node on the list takes over the responsibility for
the execution of the ADRP for DAOs ingested by the unavailable node. In the case
that this node also becomes unavailable, then the next node on the list would take
responsibility for the DAOs of both unavailable nodes, and so on.

Additional Optimizations

Additionally, to optimize the access performance the system will create if necessary
additional replicas by analyzing the usage patterns of the digital objects.

3.5.6 Periodic Integrity Checking Process

Every node in a DSN will periodically (e.g., once a day) check the integrity of all
locally stored DAOs using the Periodic Integrity Checking Process (PICP) depicted in

87

3. General Requirements and Concepts for a Distributed Archival Network

Services Module DAO Storage
Module Network ModuleDigital Preservation Logic

Module
Repositories

Module

P0
1:

 G
et

DA
O

 P
PI

AD
RP

St
ar

t

ST
01

: G
et

PP
I

P0
2:

 C
al

cu
la

te

op
tim

al
 n

r.
of

re

pl
ica

s

S0
1:

Ca

lcO
pt

im
al

Nr
O

fR
ep

lic
as

P0
3:

 G
et

re
pl

. l
oc

at
io

ns
fro

m
 R

LR

R0
1:

 G
et

lo

ca
tio

ns
 fr

om

RL
R

P0
4:

 G
et

 a
ll

DS
N

m
em

be
rs

R0
2:

 G
et

 D
SN

m

em
be

rs
 fr

om

NI
R

P0
5:

 C
al

cu
la

te

op
tim

al

di
st

rib
ut

io
n

DA
O

 o
pt

im
al

ly
di

st
rib

ut
ed

R0
3:

 C
re

at
e

RC
PO

ut
 J

ob
 in

CJ

R

P0
6:

 C
re

at
e

RC
PO

ut
 J

ob

YE
S

NO

S0
2:

Ca

lcO
pt

im
al

Di
s

tri
bu

tio
n

AD
RP

En
d

DA
O

Ne
ed

sD
ist

rib
ut

io
n

P0
7:

 C
al

l R
CP

Fi
gu

re
3.

12
:A

ut
om

at
ed

D
yn

am
ic

R
ep

lic
at

io
n

Pr
oc

es
se

s
(A

D
R

P)

88

3. General Requirements and Concepts for a Distributed Archival Network

Figure 3.13. After being successfully checked, a DAO is marked with a time-stamp.
To eliminate overlap and excess integrity checking, only DAOs with a time-stamp
older then X hours will be rechecked, where X is a network wide setting.

The PICP starts with the PICPStart message, containing the DSN and URI of the
DAO. As a first step, the process retrieves the DAO from the DAO Storage Module
(P01-ST01). Afterwards, it extracts (P02-S01), calculates (P03-S02), compares the ex-
tracted against the calculated checksum (P04). In the case that the checksums are
equal, then the DAO is marked as checked (P05-R01). In the other case, where the
extracted, and calculated checksums are not equal, the DAO is marked as corrupt
(P06-R02), and the DAO Repairing Process (DRP) is called by sending the DAOCor-
rupt message to the PEL (P07).

Integrity

We check the integrity of a DAO by calculating and comparing checksums. During
integrity checking, all parts of the DAO are taken into account, and checksums are
calculated for the metadata and bitstream data parts of the DAO.

3.5.7 DAO Repairing Process

When the PICP finds that a DAO is corrupt, then it sends the DAOCorrupt message to
the PEL. This message then triggers the initiation of the DAO Repairing Process (DRP)
as depicted in Figure 3.14.

The process is started with the DRPStart message, containing the DSN and URI of
the DAO. Next, the process retrieves the DAO from the DAO Storage Module (P01-
ST01). Afterwards, the damage of the DAO is asserted by using the AssertDAODam-
age service (P02-S01). To be able to repair the DAO, we need to retrieve healthy parts
from a remote copy. So next the process queries the RLR for remote replica locations
(P03-R01), creates an inbound copy job (P04-R02), and sends a message to the PEL
(P05) to initiate the retrieval of the needed parts. This part of the DRP ends here.

When the Remote Copying Process finishes the retrieval of the remote parts, it will
inform the PEL which will in turn initiate the DRP, and start the process with the
RetrieveDAOPartsResult message. Next, the returned result is analyzed, and if the
retrieval was successful, this message will contain the needed parts for the repairing
of the DAO. This is used in the following step, and sent to the DAO Storage Module to

89

3. General Requirements and Concepts for a Distributed Archival Network

Services Module DAO Storage
Module Network ModuleDigital Preservation Logic

Module
Repositories

Module

P0
2:

 E
xt

ra
ct

ch

ec
ks

um
s

PI
CP

St
ar

t

P0
1:

 G
et

 D
AO

gr

ap
h

ST
01

: G
et

DA

O
 g

ra
ph

S0
2:

Ca

lcD
AO

Ch
ec

ks
um

NOYE
S

Ch
ec

ks
um

s
eq

ua
l

P0
7:

 C
al

l D
RP

DA
O

Co
rru

pt PI
CP

En
d

P0
3:

 C
al

cu
la

te

ch
ec

ks
um

s
P0

4:
 C

om
pa

re

ex
tr.

 v
s

ca
lc.

ch

ec
ks

um

R0
1:

M

ar
kD

AO
Ch

ec
ke

d
in

 R
LR

P0
5:

 M
ar

k
DA

O
 a

s
ch

ec
ke

d

S0
1:

Ex

tra
ct

DA
O

Ch
ec

ks
um

P0
6:

 M
ar

k
DA

O
 a

s
co

rru
pt

R0
2:

M

ar
kD

AO
Co

rru
pt

in

 R
LR

Fi
gu

re
3.

13
:P

er
io

di
c

In
te

gr
ity

C
he

ck
in

g
Pr

oc
es

se
s

(P
IC

P)

90

3. General Requirements and Concepts for a Distributed Archival Network

store the fresh data (P06-ST06). Afterwards, the DAO is marked as checked (P07-R03),
and the process ends. In the other case, where the returned RCP result is negative,
the DRP is called again.

As before in the NLP, this process has also two execution strains. The reasoning
behind such a design is similar, in that we want short running process instances, and
lower administration cost as we do not need to keep track of the process, after the
first strain has finished. We can simply instantiate a new process which will start on
the second strain.

3.5.8 Data Format Migration Process

The Data Format Migration Process (DFMP) is used for the on-demand migration of
the archived content, i.e., the different representations constituting a DAO. For exam-
ple, an image DAO, an object representing an image with different representations
contains a representation in the TIFF format. The DFMP can be used to create an
additional representation of the TIFF bitstream data by converting it to the JPEG2000
format, and afterwards appending it to the DAO.

As there is no limitation by the data model regarding the data format of the archival
content, the process itself must be data format agnostic, and only provide a structure
that allows the execution of migration scripts. This kind of flexibility is also required
through the long-term nature of the archiving task as such, where the needs regarding
data format migration in the distant future are not known at the present time.

Figure 3.15 shows the structure of the process, which begins by receiving the DFMP-
Start message containing the DSN, URI of the DAO, and the job description, which
we want to apply to the DAO. As a first step, the process calls the DFMP basic-service
which executes the migration script (P01-S01). The process is then informed about the
result, and in the case of an execution failure, the migration job is closed with the re-
sult (P06). If the execution of the migration job succeeds, then the result is appended
to the DAO (P02-ST01). Afterwards, the so amended DAO needs to be transferred
to remote nodes where a replica is stored, i.e., the remote replicas need to be also
amended. For this, the process first retrieves the remote locations of any replica from
the RLR (P03-R01), creates a copy job in which we only want to transfer the changed
parts of the DAO (P04-R02), and finally trigger RCP (P05). At this point, the process
ends.

91

3. General Requirements and Concepts for a Distributed Archival Network

Services Module DAO Storage
Module Network ModuleDigital Preservation Logic

Module
Repositories

Module

P0
2:

 A
ss

er
t

da
m

ag
e

DR
PS

ta
rt

P0
1:

 G
et

 D
AO

gr

ap
h

ST
01

: G
et

DA

O
 g

ra
ph

R0
1:

 G
et

lo

ca
tio

ns
 fr

om

RL
R

SU
CC

ES
S

FA
IL

UR
E

RC
P

re
su

lt
P0

7:
 M

ar
k

DA
O

 c
he

ck
ed

DA
O

Co
rru

pt
(M

sg
 to

 P
EL

)

DR
PE

nd
(fi

ni
sh

ed
)

P0
3:

 G
et

re

m
ot

e
re

pl
ica

lo

ca
tio

ns

P0
4:

 C
re

at
e

co
py

 jo
b

wi
th

ne

ed
ed

 p
ar

ts

R0
3:

M

ar
kD

AO
Ch

ec
ke

d
in

 R
LR

P0
8:

 C
al

l D
RP

S0
1:

As

se
rtD

AO
-

Da
m

ag
e

P0
6:

 R
ep

ai
r

DA
O

ST
02

: R
ep

ai
r

DA
O

R0
2:

 C
re

at
e

RC
PI

n
jo

b
in

CJ

R

P0
5:

 C
al

l R
CP

Re
tri

ev
eD

AO
-

Pa
rts

Re
su

lt

DR
PE

nd
(w

ai
tin

g)

Fi
gu

re
3.

14
:D

A
O

R
ep

ai
ri

ng
Pr

oc
es

s
(D

R
P)

92

3. General Requirements and Concepts for a Distributed Archival Network

The process is again started when the RCP job finished executing, and the result is
sent with the DFMPRCPResult message, after which the migration job is closed with
the corresponding result (P06).

3.5.9 Reliable Copying Process

The Reliable Copying Process (RCP) is responsible for creating new replicas of DAOs
on remote nodes, or retrieving existing replicas from remote nodes, in a secure and
efficient manner. At process level, transactional semantics according to the model of
transactional processes [82] will be applied. It corresponds to the traditional data-
carrier migration of digital data. This means that every copy has to be rechecked
whether it really has been successful, and no data has been lost or written inconsis-
tently during the copy process. This is achieved by calculating and comparing of
checksums on the data streams transported between the nodes.

We differentiate between outbound and inbound transfer direction. The outbound
transfer direction is used when new replicas of DAOs need to be created on remote
nodes, and the inbound transfer direction is used when we want to retrieve existing
replicas of DAOs from remote nodes to the local node. Figure 3.16 depicts the two
transfer directions, and the processes involved in each. The RCP-Out and RCP-Out-
Remote are used during outbound transfer, where as the RCP-In is used for inbound
transfer.

For both the outbound and the inbound transfer direction, the content which is
to be transferred, is defined in the copy job description, and is stored in the Copy Job
Repository (CJR).

Outbound Transfer

The outbound transfer direction is used when creating new replicas of DAOs on re-
mote nodes. For this, two processes are used, namely the RCP-Out process running
on the local node who initiates the transfer, and the RCP-Out-Remote companion
process running on the remote node. Figure 3.17 and 3.18 depict both processes.

An outbound transfer starts when the RCP-Out process receives the RCPOutStart
message. The start message carries the DSN and the URI of the DAO that we want
to transfer. As a next step, the process retrieves the copy job from the CJR (P01-R01),

93

3. General Requirements and Concepts for a Distributed Archival Network

Services Module DAO Storage
Module Network ModuleDigital Preservation Logic Module Repositories

Module

P0
1:

 E
xe

cu
te

DF

M
P

Jo
b

DF
M

PS
ta

rt

S0
1:

 E
xe

cu
te

DF

M
P

Jo
b

DF
M

P
Jo

b
Ex

ec
ut

io
n

P0
2:

 A
m

en
d

DA
O

ST
01

: A
m

en
d

DA
O

P0
3:

 G
et

lo

ca
tio

ns
 fr

om

RL
R

R0
1:

 G
et

lo

ca
tio

ns
 fr

om

RL
R

P0
4:

 C
re

at
e

Co
py

 J
ob

R0
2:

 C
re

at
e

RC
PO

ut
 jo

b
in

CJ

R

P0
5:

 C
al

l R
CP

RC
P

Re
su

lt
DF

M
PE

nd
(fi

ni
sh

ed
)

P0
6:

 C
lo

se

M
ig

ra
tio

n
Jo

b
wi

th
 s

ta
tu

s

R0
3:

 C
lo

se

M
ig

ra
tio

n
Jo

b
in

 M
JR

P0
6:

 C
lo

se

M
ig

ra
tio

n
Jo

b
wi

th
 s

ta
tu

s

P0
6:

 C
lo

se

M
ig

ra
tio

n
Jo

b
wi

th
 s

ta
tu

s

SU
CC

ES
S

FA
IL

UR
E

SU
CC

ES
S

FA
IL

UR
E

DF
M

PR
CP

Re
su

lt

DF
M

PE
nd

(w
ai

tin
g)

DA
O

Ne
ed

sD
ist

rib
ut

io
n

(M
sg

 to
 P

EL
)

Fi
gu

re
3.

15
:D

at
a

Fo
rm

at
M

ig
ra

tio
n

Pr
oc

es
s

(D
FM

P)

94

3. General Requirements and Concepts for a Distributed Archival Network

Inbound Transfer - Retrieve copies of existing replicas

Remote NodeLocal Node

Outbound Transfer - Create new replicas on remote nodes

RCP-In

RCP-Out-RemoteRCP-Out

Service Service

Service Service

secure transfer mode

secure transfer mode

Figure 3.16: Reliable Copy Process Overview

and calls the RCPOut service with the parameters from the copy job containing des-
tination information. The RCP-Out basic-service then retrieves the DAO from the
DAO Storage Module (S01), and initiates the RCP-Out-Remote process on the re-
mote node (S02). On the remote node, a RCP-Out-Remote process is started with
RCPOutRemoteStart message. The message carries information allowing the RCP-
Out-Remote basic-service started by the process (P01), to contact the RCP-Out basic-
service on the initiating node (S01). After the DAO was received on the remote node
(S02), the RCP-Out-Remote process is informed via the DAOReceived message. Af-
terwards, the DAO is stored, and depending on the outcome, the RLR is updated
with information regarding the added DAO. In both cases, the initiating RCP-Out
basic-service is informed about the outcome (P04 or P05). Now back on the initiating
node, the RCP-Out basic-service receives the messages with the outcome (S04) and
informs the RCP-Out process. The process closes the copy job with the result (P03-
R02). Afterwards, depending on success or failure, and the process that created the
copy job we send different messages (P04 or P05).

95

3. General Requirements and Concepts for a Distributed Archival Network

Services Module DAO Storage
Module Network ModuleDigital Preservation Logic

Module
Repositories

Module
P0

2:
 E

xe
cu

te

RC
PO

ut
 J

ob

RC
PO

ut
St

ar
t

P0
1:

 G
et

RC

PO
ut

 J
ob

R0
1:

G

et
RC

PO
ut

Jo
b

fro
m

 C
JR

RC
PO

ut
Tr

an
sf

er
Re

su
lt

AD
RP

: S
UC

CE
SS

DF
M

P

RC
P-

O
ut

 b
as

ic-
se

rv
ice

S0
1:

 G
et

DA
O

P0
4:

 C
al

l
AD

RP

st
at

us

DF
M

PR
CP

Re
su

lt(
st

at
us

)
P0

5:
 S

en
d

re
su

lt
to

 D
FM

P

RC
PO

ut
En

d

S0
2:

 In
it

RC
P-

O
ut

-
Re

m
ot

e
pr

oc
es

s
on

 re
ce

ivi
ng

 n
od

es

S0
3:

 S
en

d
DA

O
 to

 re
m

ot
e

no
de

s
S0

4:
 R

ec
ei

ve

re
su

lts

RC
PO

ut
Tr

an
sf

er
Su

cc
es

s
RC

PO
ut

Tr
an

sf
er

Fa
ilu

re

P0
3:

 C
lo

se

RC
PO

ut
 jo

b
wi

th
 re

su
lt

R0
2:

 C
lo

se
 jo

b
wi

th
 s

ta
tu

s
in

CJ

R

AD
RP

: F
AI

LU
RE

ST
01

: G
et

DA
O

AD
RP

In
itF

or
(d

sn
, d

ist
na

m
e,

 u
ri)

M
SG

 T
O

 P
EL

M
SG

 T
O

PE
L

Fi
gu

re
3.

17
:R

el
ia

bl
e

C
op

y
Pr

oc
es

s:
R

C
P-

O
ut

96

3. General Requirements and Concepts for a Distributed Archival Network

Services Module DAO Storage
Module Network ModuleDigital Preservation Logic

Module
Repositories

Module

RC
P-

O
ut

-R
em

ot
e

ba
sic

-s
er

vic
e

P0
2:

 S
to

re

DA
O

RC
PO

ut
Re

m
ot

eS
ta

rt

P0
1:

 S
ta

rt
RC

P-
O

ut
-R

em
ot

e
se

rv
ice

S0
2:

 R
ec

ei
ve

DA

O

SU
CC

ES
S

FA
IL

UR
E

St
or

e
DA

O
Re

su
lt

P0
5:

 S
en

d
re

su
lt

to

re
m

ot
e

RC
PO

ut
Tr

an
sf

er
Su

cc
es

s
P0

4:
 S

en
d

re
su

lt
to

re

m
ot

e

RC
PO

ut
Re

m
ot

eE
nd

ST
01

: S
to

re

DA
O

P0
3:

 U
pd

at
e

RL
R

an
d

m
ar

k
st

at
e

fo
r

di
st

rib
ut

io
n

R0
1:

 U
pd

at
e

RL
R

an
d

m
ar

k
st

at
e

fo
r

di
st

rib
ut

io
n

RC
PO

ut
Tr

an
sf

er
Fa

ilu
re

S0
1:

 In
itia

te
 R

CP
-

O
ut

-R
em

ot
e

en
dp

oi
nt

se

rv
ice

DA
O

Re
ce

ive
d

Fi
gu

re
3.

18
:R

el
ia

bl
e

C
op

y
Pr

oc
es

s:
R

C
P-

O
ut

-R
em

ot
e

97

3. General Requirements and Concepts for a Distributed Archival Network

RCP-Out-Remote and RLR

After creating an additional replica of a DAO on a remote node, the Remote Location
Repository (RLR) on the receiving node is updated by adding the replica to the list
of DAOs stored on this location (step P03 in the ECP-Out-Remote process). This
entry needs to be also updated on all other nodes throughout the DSN. For this, the
entry will be marked as needing dissemination, and at the next running of the State
Dissemination Process will be sent out to all nodes in the DSN.

Inbound Transfer

The inbound transfer direction is used when we want to retrieve DAOs or parts of
DAOs stored on remote nodes, for which the RCP-In process, shown in Figure 3.19,
is responsible.

The process starts when receiving the RCPInStart message, containing the DSN
and the URI of the DAO as parameters, and for which we need to retrieve either
some parts of, or the whole object. The transfer instructions are stored in the copy
job, which the process retrieves from the CJR in the first step (P01-R01). Next, the
RCP-In basic-service is called (P02-S01), retrieves the DAO parts (S01 - Remote-S01),
and stores them to temporary storage (if the transfer was successful). Afterwards, the
main process is informed about the outcome, which can be either successful or un-
successful. The RCP-In process closes the job with the result of the transfer (P03-R02),
and depending on the process that created the copy job, informs the DAO Repairing
Process (P04) or the Node-Lost Process (P05).

3.5.10 State Dissemination Process

The State Dissemination Process (SDP) is a periodically running process that checks if
there where changes made to the Replica Location Repository (RLR) and the Node
Information Repository (NIR) that need to be published to other nodes in the DIS-
TARNET Sub-Network (DSN). Figure 3.20 depicts the SDP.

The process is started with the SDPStart message, which contains the name of the
DSN for which the process should run as the node can be part of more then one
DSN. As the first step, the process retrieves any state information that needs to be
disseminated from the Repositories Module (P01-R01). Next, it retrieves the members

98

3. General Requirements and Concepts for a Distributed Archival Network

Services Module DAO Storage
Module Network ModuleDigital Preservation Logic

Module
Repositories

Module

(o
n

re
m

ot
e

no
de

)

P0
2:

 E
xe

cu
te

RC

P
Jo

b

RC
PI

nS
ta

rt

P0
1:

 G
et

 R
CP

Jo

b

R0
1:

G

et
RC

PJ
ob

fro

m
 C

JR

R0
2:

 C
lo

se
 jo

b
wi

th
 s

ta
tu

s
in

CJ

R

P0
3:

 R
CP

In
Tr

an
sf

er
Re

su
lt

NL
P

DR
P

RC
P-

In
 b

as
ic-

se
rv

ice
(o

n
lo

ca
l n

od
e)

S0
1:

 R
et

rie
ve

 D
AO

pa

rts
 fr

om
 re

m
ot

e
no

de
s

an
d

sa
ve

 to

te
m

p
st

or
ag

e

P0
3:

 C
lo

se

RC
PI

n
jo

b
wi

th

re
su

lt

P0
5:

 In
fo

rm

NL
P

st
at

us
 /

da
ta

Re
tri

ev
eD

AO
Pa

rts
Re

su
lt(

st
at

us
, d

at
a)

(M
sg

 to
 P

EL
)

P0
4:

 In
fo

rm

DR
P

RC
PI

nE
nd

Re
tri

ev
eD

AO
Re

su
lt(

st
at

us
, d

at
a)

(M
sg

 to
 P

EL
)

RC
P-

In
 b

as
ic-

se
rv

ice
(o

n
re

m
ot

e
no

de
)

Re
m

ot
e

- S
01

:
Se

rv
e

DA
O

 p
ar

ts

Re
m

ot
e

- S
T0

1:

G
et

 D
AO

 p
ar

ts

Fi
gu

re
3.

19
:R

el
ia

bl
e

C
op

y
Pr

oc
es

s:
R

C
P-

In

99

3. General Requirements and Concepts for a Distributed Archival Network

of the DSN from the NIR (P02-R02), and calls the PubSub basic-service with the list
of DSN members, and states that need to be disseminated (P03). The PubSub basic-
service then opens a connection to all remote nodes in the DSN and sends the states.
This will be received on the remote nodes by the PubSub basic service, which will
write the received states to the corresponding repositories (R03).

RLR entries: When the RLR is updated for a DAO (e.g., a replica was created on
a remote node), then this entry will be marked for dissemination. The next time the
SDP runs, it will send out the updated entry with the additional remote location to
all nodes in this entry. After the dissemination, all nodes storing a replica of the DAO
will have information regarding storage locations of all other replicas.

NIR entries: When a node updates its entry in the NIR (e.g., free storage space), it
also marks this entry for dissemination. The next time when the SDP runs, it will
send out this information to all other nodes in the DSN.

3.6 DISTARNET Data Model

To encompass all the described general requirements for a long-term preservation
system, we need to have a flexible, and in the future extendable data model.

The concepts used in the design of the DISTARNET Data Model are partly based on
the “DELOS Digital Library Reference Model” [84], which conceptually describes the
structure of the Digital Archive Resource Domain and the Content Domain shown in the
UML diagram in Figure 3.21. The UML digram represents only a small section of the
reference model as a whole. It describes the Resource concept, and its specialization
the Information Object concept, which together represent a very powerful concept for a
data model as it allows to express many of the “features” we need for our data model
(e.g., collection/subcollection, links, annotations, etc.).

3.6.1 DISTARNET Archival Object

In the context of DISTARNET the term DISTARNET Archival Object (DAO) is used to
denote a container holding an Information Object, where the Information Object is con-
sisting of a Data Object (e.g., image, audio/video, text document, etc.) and the corre-
sponding representation information, or some other kind of metadata. This metadata

100

3. General Requirements and Concepts for a Distributed Archival Network

Services Module DAO Storage
Module Network ModuleDigital Preservation Logic

Module
Repositories

Module

(o
n

re
m

ot
e

no
de

)

Pu
bS

ub
 b

as
ic

-s
er

vi
ce

(o
n

re
m

ot
e

no
de

)
Pu

bS
ub

 b
as

ic
-s

er
vi

ce
(o

n
lo

ca
l n

od
e)

P0
2:

 G
et

 D
SN

m

em
be

rs

SD
PS

ta
rt

P0
1:

 G
et

 s
ta

te
s

ne
ed

in
g

di
ss

em
in

at
io

n

R
01

:G
et

St
at

es
N

ee
di

n
gD

is
se

m
in

at
io

n
(N

IR
, R

LR
)

Se
nd

 S
ta

te
s

SD
PE

nd

P0
3:

 S
en

d
st

at
es

 to
 D

SN

m
em

be
rs

R
02

:
G

et
D

SN
M

em
be

rs

fro
m

 N
IR

W
rit

e
to

R

ep
os

ito
rie

s

R
03

: S
av

e
re

m
ot

e
st

at
es

(N
IR

, R
LR

)

Se
nd

St
at

e
R

ec
ei

ve
St

at
e

Fi
gu

re
3.

20
:S

ta
te

D
is

se
m

in
at

io
n

Pr
oc

es
s

(S
D

P)

101

3. General Requirements and Concepts for a Distributed Archival Network

Digital Archive Resource Domain

Digital Archive Resource Domain

Content Domain

Quality Domain

Policy Domain

-Resource Identifier
Resource

Resource Set

Resource Format

Purpose

Ontology

Information Object

Region

Policy

Qual i ty

0..*

0..*0..*

0..*

regulatedBy

hasQuality

expressedBy

describedBy

hasMetadata

hasAnnotation

0..1

0..1

0..1

1..*
0..*

0..*

1..*

1..*0..1
1..*0..*

expressionOf

1

0..*
0..*0..*

0..1

0..*

0..*

0..*0..*

expressedBy

hasPart

hasFormat

associatedWith

Visual Paradigm for UML Standard Edition(University of Basel)

Figure 3.21: UML Diagram of the Digital Archive Resource and Content Domain

can provide additional descriptions for an information object (e.g., annotations), the
descriptions of relationships between information objects (e.g., links) or information
about collection/subcollection sets. Furthermore, different data supporting various
aspects of the system will also be contained in the Distarnet Archival Object.

DISTARNET distinguishes between mutable and immutable content [85]: First, the
digital objects that are to be archived (e.g., images, audio/video, text documents,
etc.) that cannot be modified once created (read-only). Second, the metadata of the
archived digital objects which may exist in several versions and which can be mod-
ified (e.g., annotations pertaining to some archived digital object; read-write seman-
tics).

The data model used in DISTARNET allows the archiving of complex data objects,
i.e., objects which are composed of or are parts of other data objects. Figure 3.22
shows the DISTARNET Logical Data Model using UML notation. Here we can see
that in DISTARNET every container stores one information object characterized by
its type. To represent, for example, an annotation for an archived image, we create an
DISTARNET Archival Object of the corresponding type, which contains the annota-
tion, and make a link to the DAO containing the image – note that an annotation can
be anything from text to a full-fledged DISTARNET Archival Object (which again has
its own metadata and annotations).

102

3. General Requirements and Concepts for a Distributed Archival Network

Distarnet Archival Object
-URI

Representation

Preservation Policy

Audit Trail

Access Control Policy
Fixity Information

Type

Collection

0..*
0..*

1 1..*

hasRelationship

1 0..*

1 0..*

1 1

1
11

1

1..*

1..*

Figure 3.22: Logical Data Model for DISTARNET 2.0 in UML Notation

Representations

Every DAO has a unique identifier (URI), a type, and a set of key descriptive prop-
erties. It consists in its simplest form as an aggregation of representations. The rep-
resentations provide a reference to the different representations of the digital object
(e.g., thumbnail version of an image).

Relationships

Any two DAOs can be characterized by a set of relationships. These can represent, for
example, in the case of a complex object, the different parts that an object is comprised
of, e.g., the different pages of a book, or in the case of an annotation, the DAO that is
annotated.

Collection

Every DAO can be part of a collection or a subcollection, where a collection is defined
as a subclass of a DAO.

Preservation Policy

Every DAO can contain preservation policy information, which further describe any
specific requirements that need to be met during the preservation, e.g., the number of

103

3. General Requirements and Concepts for a Distributed Archival Network

replicas.

Audit Trail

Each DAO possesses an audit trail, which documents everything that has happened
to the DAO during the preservation, e.g., data format migration.

Access Control Policy

Contains the access control policy for the DAO.

Fixity Information

Contains the the fixity information for the DAO, e.g., checksums of the bitstream
referenced in the representation.

3.6.2 Archival Information Package (AIP)

The container storing the information object corresponds to the Archival Informa-
tion Package (AIP) described in the OAIS Reference Model in Section 2.2. According
to the OAIS reference model, the AIP is made of Content Information (CI), with the
actual digital object that is been archived, and the Preservation Description Informa-
tion (PDI) containing the corresponding metadata. Beside these, important metadata
is also stored in the Representation Information (part of the CI), namely the Structure
and Semantic Information of the archived digital object.

In DISTARNET 2.0 the digital object and their representation information are be-
ing treated equally. This is not contradictory since in the OAIS reference model, the
representation information is just a special form of a data object (the digital object
being archived). This is also why the metadata from the representation information
(structural and semantic information) can be treated equally the PDI.

For example, information such as “user generated annotations”, which are created
over time, are not the original data objects that where archived, they are treated
equally since they provide additional description information and need to be pre-
served as such alongside the originally archived data objects. For the future readabil-
ity and interpretability of the digital object, the representation information metadata
is very important. Following these requirements, a simplified model of the data-
container for Distarnet 2.0 can be derived as depicted in Figure 3.23.

104

3. General Requirements and Concepts for a Distributed Archival Network

Structure and Semantic
Information

Content Information
Preservation Description

Information
Packaging Information

Distarnet 2.0 Data-Container

Figure 3.23: Simplified Data-Container for Distarnet 2.0

3.7 Summary

We have begun this chapter by presenting the general requirements for a long-term
digital preservation system. Here, we have discussed the different overall system
and user functionalities that a system should provide, and also based on the OAIS
Reference Model, the different requirements on the functional entities.

Following the general requirements, we presented and discussed our proposed sys-
tem model for a distributed long-term digital preservation system. The scope of the
described system model corresponds mainly to the general requirements category
“Data Management and Archival Storage”. The system model describes a fully dis-
tributed, fault-tolerant archiving environment. The archiving environment provides
autonomic behavior which is governed by preservation policies. We describe and dis-
cuss the processes that provide self-configuration, self-healing, and self-optimization,
and how through their execution the system provides dynamic replication, auto-
mated consistency checking, and recovery of the archived digital objects.

Finally, we describe a highly flexible data model that we have developed that to-
gether with the specification of the sophisticated management processes, provides
support for complex data objects, user generated annotations, collections, and arbi-
trary links.

In the next chapter, we describe and discuss the system architecture of our proto-
type implementation, which is based on the concepts discussed in this chapter.

105

4
DISTARNET System Architecture and
Implementation

In Chapter 3 we have presented and discussed novel concepts for a distributed long-
term preservation system for digital data, with a strong focus on long-term preser-
vation as required by the preservation community. These concepts resulted from
the combination of distributed, autonomic, and process oriented computing, with re-
quirements from the digital preservation community regarding special user, system,
and metadata functionality and needs. As a result, the described system model, con-
sisting of a data model for complex information objects, and a number of processes
was developed, providing dynamic replication, consistency checking, and automated
recovery of the archived digital objects utilizing autonomic behavior governed by
preservation policies without any centralized coordinator in a fully distributed net-
work.

We have taken the described data model and processes, and used them to develop
one possible implementation of these concepts. This resulted in the development of
a prototype of the DISTARNET System, which system architecture we are describing
in this chapter.

Before we begin with the actual description of the system architecture, we will
first discuss additional requirements imposed on the implementation. These require-
ments where already partly discussed in the previous chapter, but as they have direct
implications for the implementation, are again discussed in the new context. Follow-
ing this discussion, we then describe the main architectural concepts, and libraries
used in the implementation, after which we will begin with the description of the
system architecture of our implementation.

106

4. DISTARNET System Architecture and Implementation

4.1 Requirements for the Implementation

Beside the requirements discussed in the previous Chapter regarding modularization
and fault-tolerance on infrastructure and content level, in a long-term preservation
system, where the main goal is to preserve data over decades, implies that the sys-
tem itself needs to be also used, maintained, and extended over the same period of
time. This is an important distinction in terms of long-term use, maintainability, and
extendability, compared to shorter lived systems. As such, these additional require-
ments for the running system need to be also taken into consideration for the design
and implementation of a running system.

Long-Term Use

Many implementation choices will be impacted by this, namely the minimization of
external dependencies, i.e., the balance between functionality provided through ex-
ternal dependencies versus a solution where everything is implemented in the system
from scratch. We will use the term “external dependency” to denote any code or li-
brary that is maintained outside of this project, and thus is external to our area of
influence.

Maintainability and Extendability

The requirement of long-term use implies the need for adaptability of the system to
changes that can present themselves in the future, and which are unknown at the
present time. As such, the implementation needs to provide as much flexibility as
possible to allow the system to be easily adapted to future new need.

Node Engine Fault-Tolerance

As a distributed long-term preservation system, we need not only to focus ourselves
on providing fault-tolerance in regard to the data we want to preserve, but also re-
garding the application providing this functionality. The former will be provided by
the preservation processes, as discussed in Section 3.3. The later will be discussed in
this section, and needs to be taken into consideration for the implementation.

In the following, we take a bottom-up approach, where we first discuss Node En-
gine fault-tolerance strategies that need to be taken into account for the implemen-

107

4. DISTARNET System Architecture and Implementation

tation. Afterwards, we take a look at the implementation possibilities that provide
long-term maintainability and extendability of the system. Thereafter we look over
some considerations regarding the minimization of external dependencies. Last but
not least we round up the discussion with a summary, where we discuss the strategy
for the implementation of the system that we follow thereafter.

4.1.1 Node Engine Fault-Tolerance

Building on Section 2.5, we will resume the discussion we have started in Section 3.3,
and discuss the third class of faults, the Node Engine class. Table 4.1 shows again the
three DISTARNET fault classes that we have defined, their effects when they occur,
how they will be detected, and what the recovery actions of the system will be. Pre-
viously we have already covered the Distributed Infrastructure Class of faults where
we have discussed how the system will deal with remote node failures, and what
processes will be used to recover. Also, we have discussed the Content Class of faults,
where we have seen how the system will recover from faults regarding the content,
e.g. corrupt archived digital data, and also what processes will be involved. In the
following, we will discuss the Node-Engine Class of fault, and look what strategies can
be followed to provide Fault-Tolerance on the Node-Engine level, i.e., to allow a fault-
tolerant execution of the processes which are used in the previous two classes. These
strategies will need to be inherently provided by the implementation. This require-
ment will have a strong influence on any further discussion and decisions regarding
the implementation design.

The Node-Engine class of faults includes faults that can occur during the execu-
tion of the DISTARNET processes, and their interaction with the modules a node is
composed of. We will concentrate us on the Crash, Omission, and Timing faults which
we introduced in Section 2.5, which can occur during the execution of the process
requests.

To help us in the discussion, we will further divide the requests initiated by the
DISTARNET processes by the scope, into a Network Scope, and a Local Scope. The
Network Scope includes processes that involve interaction with other nodes in the
network, and the Local Scope where the processes are confined to the local node.
We will only look one-sidedly on these requests, from the point-of-view of the local
node. The same behavior holds true for all nodes in the network as they are built all

108

4. DISTARNET System Architecture and Implementation

Fault Class Failure Detection / Reaction

Distributed Hardware Problems Modules Involved: DP Logic

Infrastructure Failure (power, hardware, etc.) Detection: PNCP

Disaster (natural, fire, etc.) Reaction: Node Lost Event; Repository updt, ADRP

=> Node Loss

Network Problems Modules Involved: DP Logic

intermittent/periodic connection loss, etc. Detection: PNCP

=> Remote Node Dependability Reaction: Repository updates, ADRP

Content Localized hardware problems, Modules Involved: DP Logic, DAO Storage

malicious acts, etc. Detection: PICP

=> DAO Corruption Reaction: Repository updates; DAO update; ADRP

Format obsolescence Modules Involved: DP Logic, DAO Storage

=> DAO Representation Unreadable Detection: PICP

Reaction: DFMP

Node Engine A problem occurring during the execution Modules Involved: DP Logic

of a DISTARNET process Detection: process execution logic

=> Process Execution Failure Reaction: execution of corresponding recovery process

Table 4.1: DISTARNET Fault Classes, their Effect, Detection, and Recovery Actions

the same.

Local Scope

Every process will be composed of different building blocks, which when executed
fall into one of the following two: (1) side-effect free building blocks, and (2) building
blocks with side-effects.

The (1) side-effect free building blocks are either stateless, or only the local state of the
building block is changed. A stateless building block, for example, is a piece of code
that calculates a checksum. We would execute the building block by providing an
input value, and as a result, we would get the checksum. In case of failure of such an
building block, we can just simply retry the execution. In the second case were some
internal state is changed, for example if the building block is called subsequently and
needs to store some values temporarily, we could employ the checkpointing strategy,
and save the local state periodically, and then in case of fault, restore the state, and
allow to retry the execution from the last saved state.

The (2) building blocks with side-effects, have side-effects in the form of global state
changes, for example, if the building block is an abstraction of a database, and the

109

4. DISTARNET System Architecture and Implementation

state changes are the writes we execute against the database. Here, we can also em-
ploy the checkpointing strategy, to save and restore the state in case of a fault, but this
will need to be implemented on a global level as other processes running can have
dependencies on the global state that we would change in case of a restore. As we
have a modular system design, global state means in this case global at the module
level.

Network Scope

Everything we have said so far, will also hold for processes running in a network
scope, as they also have parts that run locally. So additionally, we have interactions
with other nodes, during which the crash, omission, or timing faults of a remote node,
can have adverse effects to the running process, and cause it to fail. The strategy here
will be to design every call to a remote node in an asynchronous way, and add a time-
out condition. Triggered by the time-out condition, we must provide an alternative
path of process execution which will deal with the problem, either by simply retrying,
or by further escalating the problem.

Beside the Retry and Checkpointing strategies discussed so far, we can addition-
ally employ the Software Rejuvenation Strategy on the module level, where we would
restart each module, and clean out the internal states.

Fail-Stop

In the case of a fault from the Node Engine class, where in spite of any recovery
attempts the node engine is not able to resume proper functioning, the system will
follow the fail-stop strategy. In this case, the system will send out notifications to
inform that it is not able to recover from a failure and stop. In this instance, external
assistance will be needed. Any unsuccessful recovery from a failure in the Distributed
Infrastructure or Content class will only produce notifications, without stoping the sys-
tem.

Multiple Faults

As a basic requirement, for the system to be able to execute any processes, the Node
Engine needs to function properly. In the case of multiple faults where the combina-
tion also includes the node engine, first the node engine itself needs to recover before

110

4. DISTARNET System Architecture and Implementation

any other recovery processes can be executed. Any combination of Distributed Infras-
tructure and Content faults can be recovered from at the same time, as long as there
are a minimum number of remote nodes available that can be used as alternatives for
the storage of the archived content, and there is at least one healthy replica available
in the network from which the content can be recovered from.

4.1.2 Maintainability and Extendability

Implied by the long-term use of the system, the maintainability and extendability
requirement, needs to be met through an implementation design, supporting adapt-
ability to changes that can present themselves in the future. This can be achieved by
employing a process-driven application design, where on one side, we have well defined
processes that can be exposed and reused, and on the other side atomic services that will
be consumed during the execution of these processes.

Additionally, this service orientation will be accompanied by modularization, which
means that the different services will be organized, implemented, and provided by
well defined and independent modules. This is motivated by the need to allow parts
of the system to be exchanged for newer implementations in the future, to allow to
be adapted to changes in the software ecosystem composing and/or surrounding
the preservation system. Furthermore, this modularization is also a requirement that
comes down from the Application-Level Fault-Tolerance Strategy discussion.

Embedded Process Engine vs. Custom Process Execution Logic

In the following, we will discuss the different alternatives for the implementation of
a process-driven application, where beside a strong separation of application flow
from application execution, we have additionally strong fault-tolerance requirements
that need to be taken into account as discussed earlier. For the implementation, we
will need a system providing us with the ability to define the process flow, execution,
control, and compensation. For this, we have three general possibilities to our dis-
posal: (I) build the whole system on top of an integrated system providing process
execution, (II) embedding an existing process engine into the system, and (III) imple-
menting a custom process execution logic. Before we can make such a decision, we
need to take a look at the advantages and disadvantages of all the possibilities.

In the first case, we would build the system on top of an integrated system provid-

111

4. DISTARNET System Architecture and Implementation

ing process execution such as IBM WebSphere1. This would allow us to define our
process flows, and then deploy them to the process engine, which will be responsible
for their execution. WebSphere would provide a full ACID transaction support for
processes, both for short-running (one transaction end to end) and long-running pro-
cesses (multiple transactions). Transaction boundaries can be modified to allow the
grouping of multiple steps in a process into one transaction. Additionally, it supports
flexible compensation of business processes as defined in the WS-BPEL specification.
The main drawback would be to create a large external dependency and the imposed
monolithic design.

In the second case, where we would embed an existing process engine, we would
have the advantage of integrating it with our overall modular system design (unlike
the monolithic design which would be imposed by the first case), with the added ad-
vantages provided by a process engine. These include the advantage to allow us to
define our process flows, and then deploy them to the process engine, which will be
responsible for their execution, and persistence of the process instance states during
their execution. In the case of jBPM2, Activiti3, and Bonitasoft4, we can define the
processes in the BPMN 2.05 notation which can then be deployed. They generally
provide a smaller feature set as compared to WebSphere, especially the ACID trans-
action support for processes. Also, one of the drawbacks is that an embedded process
engine will need an additional custom software layer to be able to talk to the rest of
the system.

In the third case where we implement a custom Process Execution Logic, the imple-
mentation will not be able to support process definitions in the form of the BPMN 2.0
notation, because such a feature would be coupled with a high implementation cost,
which would on the other side be somewhat alleviated by the fact, that the custom
implementation would be able to directly communicate with the rest of the system.
This means that the process flows will need to be “hard-coded” in the programming
language used in the implementation. One can now argue that by doing so, we lose
the very flexibility that we wanted to have in the first place, by using a process engine.
In the case of service-oriented programming-in-the-large where there are possibly dif-

1http://www.ibm.com/websphere
2http://www.jboss.org/jbpm
3http://activiti.org/
4http://www.bonitasoft.com/
5http://www.bpmn.org/

112

http://www.ibm.com/websphere
http://www.jboss.org/jbpm
http://activiti.org/
http://www.bonitasoft.com/
http://www.bpmn.org/

4. DISTARNET System Architecture and Implementation

ferent suppliers, or different implementations of the same service, this holds true. But
in the case of our system, where we apply the programming-in-the-small paradigm,
and where every service that we want to call, needs to be first implemented in the sys-
tem, this does not hold true. Any change in the process flow description, where old
service calls are changed, or new service calls are added, need also to be reflected in
the implementation of these services in the system. There are certainly some services
that theoretical can be implemented outside of the system by an external provider,
and consumed in the SOA manner, e.g., calculating the checksums, but the added
cost of sending the large digital files over the network, or the implications of sending
content to an external provider, renders this non-feasible.

Another advantage of embedding an existing process engine lies in the persistence
of the process instance states during their execution. This allows us to restore all
process instances after a crash, and resume their execution.

This is a feature that will need to be also provided in the case where we would
implement a custom process execution logic. The main challenge in either case lies
in the implementation design of the services consumed by the processes so that they
will allow to be resumed after a complete system crash.

We will come back to this question in the summary of this section.

4.1.3 Long-Term Use

In the context of long-term use of a system, an important factor that needs to be taken
into account are the external dependencies. They need to be minimized as to be able
to allow and provide a long-term deployability, maintainability, and extendability of
the system. The term “external dependency” denotes any code or library that is main-
tained outside of this project, and thus is external to our area of influence. Although
for DISTARNET, we use only open-sourced external dependencies, an active main-
tenance is important to guaranty future compatibility. If any external dependency
becomes unmaintained, then this dependency is threatening the long-term working
of the system, and needs to be exchanged. Table 4.2 list the external dependencies per
module and Table 4.3 provides a summary of the overall external dependencies.

113

4. DISTARNET System Architecture and Implementation

Module External Dependency Usage Description

User Interaction Module Scala / Java / JVM Programming and runtime environment

Akka Communication Framework

Netty / Unfiltered REST API (Netty is also used by Akka)

Digital Preservation Logic Module Scala / Java / JVM Programming and runtime environment

Akka Communication Framework

jBPM or Activiti or Akka-FSM Process Engine

MongoDB Repositories / Process Engine

Services Module Scala / Java / JVM Programming and runtime environment

Akka Communication Framework

Network Module Scala / Java / JVM Programming and runtime environment

Akka Communication Framework

DAO Storage Module Scala / Java / JVM Programming and runtime environment

Akka Communication Framework

Jena-Core API for accessing the triple store

Jena-TDB Triple Store

Table 4.2: External Dependencies per Module

External Dependencies

Scala / Java / JVM

Akka

Jena-Core

Jena-TDB

jBPM or Activiti or Akka-FSM (provided in Akka)

MongoDB

Netty (used also by Akka) / Unfiltered

Table 4.3: External Dependencies Summary

114

4. DISTARNET System Architecture and Implementation

Secondary External Dependencies

The Figures 4.1, 4.2, 4.3, and 4.4 show the secondary external dependencies of the dif-
ferent embeddable process engines. If we take into account that all three engines have
a comparable feature set, we can see that in the case of Bonitasoft, when compared to
Activiti and jBPM, we have an additional large set of secondary dependencies, which
make this process engine unsuitable for our needs.

4.1.4 Summary

In the context of a long-term deployment of the system, we need to weight the ad-
vantages provided by feature rich external dependencies against the disadvantages
of increasing our external dependencies. External dependencies can negatively im-
pact the long-term deployability and maintainability of the system if they become
unmaintained, in which case we would need to exchange them. Depending on the
usage, i.e., on the location where in the system it is used, this exchange can be more
or less complex. If we would use a monolithic design for the system, then the com-
plexity of such an exchange would rise additionally. Through the modularization
of the system, our goal is also to make this kind of exchange less complex. Despite
the modularization, we will still have some core functionality of the system, that al-
though possible to be exchanged if needed, plays a large central role. For such core
functionalities we would tend to use our own implementation if it would be feasible
implementation cost wise.

Summing it up, a feature rich platform like WebSphere is not an option, in spite the
feature richness of the platform as this would demand a very large external depen-
dency, and also confine us to a monolithic design imposed by the underlying system.

Generally speaking, implementing everything by ourselves is also not an option
as the cost of doing so would be prohibitively high. As such we will create as little
external dependencies as possible while at the same time try to reuse them as much
as possible. Additionally we will be employing a modular design that will allow the
exchanging of certain parts of the system in the future, in case the external dependen-
cies are not available anymore.

In the case of embeddable processes engine versus custom Process Execution Logic,
we come to the conclusion that if the cost of developing a custom Process Execution
Logic, with the features described earlier is feasible, then we would tend towards a

115

4. DISTARNET System Architecture and Implementation

Fi
gu

re
4.

1:
Se

co
nd

ar
y

D
ep

en
de

nc
ie

s
w

ith
ou

ta
ny

Pr
oc

es
s

En
gi

ne

116

4. DISTARNET System Architecture and Implementation

Ac
tiv

iti
Pr

oc
es

s
En

gi
ne Fi
gu

re
4.

2:
Se

co
nd

ar
y

D
ep

en
de

nc
ie

s
in

cl
ud

in
g

th
e

A
ct

iv
iti

Pr
oc

es
s

En
gi

ne

117

4. DISTARNET System Architecture and Implementation

jB
PM

Pr
oc

es
s

En
gi

ne

Fi
gu

re
4.

3:
Se

co
nd

ar
y

D
ep

en
de

nc
ie

s
in

cl
ud

in
g

th
e

jB
PM

Pr
oc

es
s

En
gi

ne

118

4. DISTARNET System Architecture and Implementation

Bo
ni

ta
so

ft
Pr

oc
es

s
En

gi
ne

Fi
gu

re
4.

4:
Se

co
nd

ar
y

D
ep

en
de

nc
ie

s
in

cl
ud

in
g

th
e

Bo
ni

ta
so

ft
Pr

oc
es

s
En

gi
ne

119

4. DISTARNET System Architecture and Implementation

solution where we would implement our own custom Process Execution Logic.

4.2 Implementation-Specific Concepts, Frameworks,
and Libraries

In the following, we describe the main architectural concepts, frameworks, and li-
braries that are used for the implementation of the DISTARNET system prototype.

4.2.1 Actor Model

The implementation of DISTARNET is heavily based on the Actor model concept, and
as we will see in later in this chapter, used at all levels.

An Actor is basically a model for concurrent computation execution where the actor
objects encapsulate state, behavior, and have their own thread of control. The commu-
nication with other objects is done asynchronously by passing immutable messages.
For this, every actor possesses its own mailbox for storing messages, implemented as
queues. The concept of actors goes back to the work of Hewitt et al. [86].

Basically, every actor follows the following three simple rules:

1. The processing of messages from an actors mailbox is only done sequentially.

2. The order by which an actor sends messages out to another actor is the same
order by which these messages will be processed by the receiving actor.

3. All messages that are sent out an actor must be immutable objects.

By deploying only one actor, we will not get a system that provides concurrent exe-
cution. To achieve concurrency, we need to deploy many actors interacting with each
other.

We decided to use the Actor model for the implementation of DISTARNET be-
cause of its attributes regarding asynchronicity and concurrency. Both attributes, we
believe, will gain more and more importance as the trend towards increasing CPU
count and cores per CPU progresses. With the use of the Actor model, the goal is to
provide a good platform, that will be able to scale well not only vertically (number
of CPUs) when deployed on a node running on more performant hardware, but also
horizontally (number of nodes), when used in a distributed setting.

120

4. DISTARNET System Architecture and Implementation

4.2.2 JVM, Scala, and Akka

The decision towards the JVM platform as such was influenced by the long-term use
requirement discussed in Section 4.1.3 as only the JVM needs to be ported on new
hardware, while the rest of the application should work as is. Additionally, the JVM
provides platform independence, allowing to deploy the solution on a large number
of operating systems. Further, the abundance of software libraries available in the
Java programming language and the widespread use were also important factors for
the decision towards the JVM platform.

A number of factors contributed to the selection of Scala [87] as the programming
language for DISTARNET’s implementation. Scala programs compile directly to Java
bytecode, and allow the calling of Java classes directly, without any intermediate
interfaces or proxies. The trend towards increasing CPU count and cores per CPU
rather than increasing clock speeds means that applications of all types increasingly
have to rely on concurrency for performance. Functional languages are perhaps the
most promising alternative for writing concurrent applications as they avoid the dif-
ficulties inherent in managing concurrent access to mutable state. Scala’s support
for functional programming, and paired with its seamless interoperability with Java,
provided a natural fit.

As a natural progression regarding the capabilities for implementing concurrent
systems in Scala is the Akka6 framework a library written in Scala. Akka provides
besides scaling up through concurrency (e.g., local actors), also scaling out through
remoting (e.g., remote actors), and also additionally inherent strategies for fault-
tolerance (e.g., actor supervision). The Akka framework thus allows the creation of
event-driven, scalable, and fault-tolerant systems by utilizing the actor model.

The core of Akka, namely the akka-actor, is a very small library which is easily
dropped into an existing project where asynchronicity and lockless concurrency are
needed. Beginning with Scala version 2.9.10, akka-actor is part of the Scala language
where it will replace the current actor implementation, and will not be needed to be
added as a separate library.

6http://akka.io

121

http://akka.io

4. DISTARNET System Architecture and Implementation

4.2.3 Akka’s Actor System

Akka’s actor implementation is very lightweight, where different actors can share the
same thread. All messaging, local or remote is done by sending messages to actor
paths which point to the receiving actor implementation.

Actor Paths: Each actor path has an address component, describing the protocol
and location by which the corresponding actor is reachable, followed by the names
of the actors in the hierarchy from the root up, e.g.:

akka://mySystem@server.com:5678/user/service/myService.

Here, akka is the default remote protocol used, but others can be plugged in through
a custom implementation.

As there can be any number of actor systems running inside a JVM, the name of the
receiving actor system must be given, which is in the example mySystem.

The interpretation of the host & port part (i.e., server.com:5678 in the example)
depends on the transport mechanism used, but it must abide by the URI structural
rules. The part after the port number is the actors name (i.e., myService in this
example) embedded in the hierarchy.

Children: Each actor can create children for delegating subtasks. By doing so, it
will automatically become the supervisor of these actors.

Supervisor Strategy: As a supervisor, the supervising actor delegates tasks to sub-
ordinates and therefore needs to also respond to their failures. In the case of a de-
tected failure in a subordinate, he will send a message to his supervisor, and signal
the failure. The supervisor can then decide the best course of action, ranging from
resuming, restarting, and terminating the subordinate actor, and also even the possi-
bility of escalating the failure higher up the hierarchy.

4.2.4 Netty and Unfiltered

Unfiltered 7 is a toolkit that allows to serve HTTP requests in Scala. The toolkit is
server backend agnostic, meaning that it provides a consistent vocabulary for han-
dling HTTP requests, without being tied to a certain server. The server used as the

7http://unfiltered.databinder.net

122

http://unfiltered.databinder.net

4. DISTARNET System Architecture and Implementation

backend in our implementation is a server based on the Netty Framework 8. Netty is
a highly flexible asynchronous event-driven network application framework, which
can be used to rapidly develop protocol servers. In our case, we use it to create a
small http server, functioning as the backend of the Unfiltered toolkit.

The Netty Library is already used by the Akka Framework so that only the Unfil-
tered library is additionally needed. As Unfiltered is a Scala library, it integrates well
and easy with Akka, allowing a thin implementation.

It would certainly be possible to use any other libraries instead of Netty and Un-
filtered, but the goal was to reuse the available libraries as much as possible, and to
create a simple implementation as possible.

4.2.5 Jena Core and Jena TDB

As we will see in Section 4.5 where we describe the implementation of the DISTAR-
NET data model, we use RDF to represent the archived Information Objects. For
working with RDF data, we use libraries from the Apache Jena9 project. The libraries
consist of the Jena Core library which provides a rich API for working with RDF data,
and the Jena TDB which is a native implementation of a triple-store done in java.

There are certainly any number of other libraries which could have been used for
the implementation, that provide a similar feature set. We have decided to use this
particular implementation basically because of two things. First, we implemented the
metadata benchmark using this library (see Section 5.1), and the resulted performance
was more than satisfactory. Second, for pragmatic reasons as we had good prior
experience with the library.

4.2.6 Mongo DB and Casbah

For the implementation of the different repositories we are using Mongo DB10, a doc-
ument oriented database, and the Casbah library11 which is the official Scala API
for Mongo DB. The reasoning beside the usage of a document oriented database is
twofold. First, the structure of the different repositories used throughout the DIS-

8http://netty.io
9http://jena.apache.org

10http://www.mongodb.org
11http://api.mongodb.org/scala/casbah/current/

123

http://netty.io
http://jena.apache.org
http://www.mongodb.org
http://api.mongodb.org/scala/casbah/current/

4. DISTARNET System Architecture and Implementation

TARNET system can be represented in single tables, without any relations to other
tables. Second, a document oriented database allows us to have a very flexible data
model, which allows us to mirror it closely to the internally used data structures, that
we can store with little effort.

4.3 System Architecture Overview

In the following, we give a short overview of the system architecture of the DISTAR-
NET system implementation.

As discussed in Section 3.4, the proposed system model was developed as being
strongly modularized, where each module provides a certain subset of the function-
ality needed by the whole system. Figure 4.5 shows the familiar modular design
described earlier, which we have taken over for the implementation of the prototype.
The figure additionally includes annotations regarding the technologies used for the
implementation of the different parts.

DISTARNET NODE

Data Layer

Content and Network Management Layer

User Interaction Layer

Akka Local and Remote Messaging

DISTARNET NETWORK

User Interaction Module (RESTful API)

UI Manager (HTTP Server)

Preservation
PlanningIngest Access System

Management

Netty + Unfiltered + Akka

DSN1
DSN3

DSN2
DSN4

DAO Storage Module

Network ModuleServices ModuleRepositories ModuleDP Logic Module

PEL Manager Network Manager

Storage Manager

DAO
File-Store

Rslv.

Data Object
Catalog

Repositories
Manager

DAO
Triple-Store

NIR

FSM, Akka Mongo DB, Akka Jena, Akka Akka

Jena TDB, Filesystem, Mongo DB, Akka

RLR CJR
MJR SIR

PICP ADRP
DRP

PNCP
NLP

NJP

SDP ...
RCP DFMP

Services Manager

An. CS DFMP Dist.
PNCP Pub. RCP ...

...

Figure 4.5: DISTARNET System Architecture Overview

124

4. DISTARNET System Architecture and Implementation

Node Modules

As mentioned earlier, for the implementation of the system we are using the Scala
programming language, where the modules and the parts they are made of, are im-
plemented as Actors with the use of the Akka framework. The communication be-
tween Actors is message based, and as such also any interaction between the different
modules is done by exchanging messages. The use of a message based architecture
allows our implementation to provide the features described in Section 3.4 regarding
modularity. Also, it facilitates the implementation in regard to the extended set of
requirements that where discussed in Section 4.1, relating to long-term use, and node
engine fault-tolerance. Both will be discussed in more detail when we take a deeper
look at the implementation of the modules in Section 4.4.

User Interaction Module Beginning at the top we have the User Interaction Mod-
ule. The foundation for the implementation of these modules will be implemented
as a RESTful API using Netty as the HTTP server in combination with the Unfiltered
library. On top of the API, the implementation of the individual user and administra-
tive access parts (the grayed out parts) to the system can be build, which are out of
the scope of the implementation.

Digital Preservation Logic Module The Digital Preservation Logic Module houses on
one side the Process Execution Logic (PEL), and on the other side the different repos-
itories as described in Section 3.4.2. The Process Execution Logic is a custom im-
plementation of an execution environment using Akka, in which the DISTARNET
processes are implemented as Finite State Machines (FSM).

Repositories Module The Repositories Module contains besides the Replica Location
Repository (RLR), the Node Information Repository (NIR), the Copy Job Repository (CJR),
and the Migration Job Repository (MJR) also the System Information Repository (SIR). The
RLR, NIR, CJR, and MJR will provide the features described in Section 3.4.2, whereas
the SIR is used by the Process Execution Logic for the persistence of the states during
the execution of the DISTARNET processes. All the aforementioned repositories will
be implemented as actors using the Casbah API to communicate with an instance of
Mongo DB used for persistent storage.

125

4. DISTARNET System Architecture and Implementation

Services Module The Services Module includes the implementations of the basic-
services which are consumed by the Digital Preservation Logic Module. The basic ser-
vices are as before implemented as actors using Scala and Akka, and additionally
those services accessing RDF data are using the Jena library.

Network Module The Network Module contains the network services written in Scala
with the usage of the Akka framework for routing messages from the local node to
remote nodes, and received messages from remote nodes to the corresponding local
modules.

DAO Storage Module The DAO Storage Module contains the DAO Triple-Store which
is implemented as a Jena TDB triple-store. Further, the DAO File-Store and the Data
Objects Catalog are implemented as flat files on the filesystem. All three submodules
use the Akka library and are implemented as actors.

DISTARNET Network

An implementation of DISTARNET will need to accommodate a broad spectrum of
users as introduced in Section 1.1, e.g., institutional, corporate, scientific, etc. As
such we deemed it necessary to provide one flexible implementation as supposed
to building a separate implementation for each scenario. Thus, the implementation
needs to be usable in a smaller and in a larger setting.

The size of a DISTARNET Sub-Network (DSN) depends on the deployment sce-
nario. As a consequence, the size of the DSN can vary from just a few nodes to a
couple of hundred or thousand nodes. This wide range of deployment scenarios will
have an impact on the implementation design. For example, State Dissemination
inside a DSN can be implemented with a simple publish-subscribe pattern in combi-
nation with flooding, or a more complex gossiping algorithm and a distributed hash
table (DHT). The former will suffice when only smaller DSNs are assumed, and the
later will be needed for a good performance when a DSN consist of thousands of
nodes.

Although very large DSNs can be a possibility, the current implementation will
limit itself to use cases where the size of the DSN is in the order of tens of nodes.
This does not mean that the system can not be adapted to be usable with large DSNs.
Through the modular design, it will be possible to extend the appropriate modules,

126

4. DISTARNET System Architecture and Implementation

and add additional functionality that will provide efficient support for large DSNs.

4.4 DISTARNET Modules Implementation

The implementation of the DISTARNET system at large, and modules in particular
is based on using the Akka Framework, an implementation of the Actor Model, to
create an event-based distributed system architecture.

At a micro level, every node is broken down into modules, where any interac-
tion between the modules is message-based. Every module has a dedicated Actor
functioning as the entry point for intermodule communication. Also, all the differ-
ent functionalities encapsulated in the modules themselves are also implemented as
Actors.

At a macro level, these modular nodes create together a distributed network of
cooperating nodes, which again use the same kind of message-based communication.

4.4.1 Node Actor System

The modular design provided through the usage of the Actor Model with the Akka
framework brings certain advantages to our implementation. Firstly, in regards to
the long-term use discussion (see Section 4.1.3), it will provide flexibility and inde-
pendents regarding the implementation as it allows exchanging and/or extending of
each modules functionality with different implementations. Secondly, regarding the
discussion of node engine fault-tolerance (see Section 4.1.1), such a modular design
paired together with a message based communication between the modules, allows
full decoupling of the modules, and with the supervisor strategy, provides additional
finer grained fault-tolerance.

The DISTARNET implementation uses the akka protocol by default. The name of
the Actor System is defined in the implementation of a node as DistNodeSystem so
that the generic endpoint path takes on the form of:

akka://DistNodeSystem@host:port/user/endpoint.

Using the Akka framework, each module is represented by an actor, creating the
DISTARNET Node Actor System as depicted in Figure 4.6. As already mentioned, all
communication between the module actors is done via messaging, decoupling them

127

4. DISTARNET System Architecture and Implementation

Actor System
Supervisor

UI
M

od
ul

e

Processes Actors:
ADRP, DAORP, DFMP, PICP,

PNCP, RCPIn, RCPOut,
RCPOutRemote, SDP

REST Actors:
Ingest, Preservation Planning,
Access, System Management

RESTServer

Lo
gi

c
M

od
ul

e PELManager

RepositoriesManager Repositories Actors:
CJR, NIR, RLR, MJR, SIR

Re
po

sit
or

ie
s

M
od

ul
e

Se
rv

ice
s

M
od

ul
e

St
or

ag
e

M
od

ul
e

Storage Actors:
Triple-Store, File-Store,

Data Object Catalog

ServicesManager

StorageManager

Services Actors:
Analyzer, Checksum,

Distribution, PubSub, RCPIn,
RCPOut, RCPOutRemote

Ne
tw

or
k

M
od

ul
e

Network ActorsNetworkManager

akka://DistNodeSystem@host:port/user/rest

akka://DistNodeSystem@host:port/user/pel

akka://DistNodeSystem@host:port/user/repositories

akka://DistNodeSystem@host:port/user/services

akka://DistNodeSystem@host:port/user/storage

akka://DistNodeSystem@host:port/user/network

Figure 4.6: DISTARNET Node Actor System

from each other. Each actor representing a module is supervised by the System Level
Supervisor, which allows to isolate the failure by allowing only parts of the system to
be restarted if needed. Further more, all communication inside a module is also done
via messaging, and each module actor takes on the role of a supervisor for actors
created beneath him. This allows the restarting of the different actors providing the
module’s functionality in case of failure.

This architecture basically creates a locally distributed system of service providers,
where additionally also each service execution is isolated so that in the case of failure
only this service will crash, and not the service provider, or the whole DISTARNET
node.

4.4.2 User Interaction Module

The User Interaction Module is implemented as a HTTP Server providing a RESTful
API. This API allows to control and interact with the deployed DISTARNET system
node.

For the implementation of the HTTP server, Netty is used in combination with
Unfiltered. The REST functionality if provided through the implementation of the
routes with Unfiltered, which respond to the different HTTP request received by the
Netty server. The main functionality is provided as an interface between the HTTP re-

128

4. DISTARNET System Architecture and Implementation

Actor System
Supervisor U

I
M

od
ul

e REST Actors:
Ingest, Preservation Planning,
Access, System Management

RESTServer

Figure 4.7: User Interaction Module Actor Hierarchy

Actor System
Supervisor Lo

gi
c

M
od

ul
e

PELManager

Process Actors

ADRP, DAORP, DFMP, NLP,
PICP, PNCP, RCPIn, RCPOut,

RCPOutRemote, SDP
ADRP, DAORP, DFMP, NLP,

PICP, PNCP, RCPIn, RCPOut,
RCPOutRemote, SDP

ADRP, DAORP, DFMP, NLP,
PICP, PNCP, RCPIn, RCPOut,

RCPOutRemote, SDP
ADRP, DAORP, DFMP, NLP,

PICP, PNCP, RCPIn, RCPOut,
RCPOutRemote, SDP

ADRP, DAORP, DFMP, NLP,
PICP, PNCP, RCPIn, RCPOut,

RCPOutRemote, SDP
ADRP, DAORP, DFMP, NLP,

PICP, PNCP, RCPIn, RCPOut,
RCPOutRemote, SDP

ADRP, DAORP, DFMP, NLP,
PICP, PNCP, RCPIn, RCPOut,

RCPOutRemote, SDP
ADRP, DAORP, DFMP, NLP,

PICP, PNCP, RCPIn, RCPOut,
RCPOutRemote, SDP

Figure 4.8: Digital Preservation Logic Module Actor Hierarchy

quests, and the DISTARNET modules, by translating the requests into messages which
are then sent to actors in the different module, and serving the response back to the
requester.

The actor hierarchy for this module is shown in Figure 4.7. Only the RESTServer
was implemented in the prototype, as the REST actors themselves where not needed
for the evaluation of the system.

4.4.3 Digital Preservation Logic Module

The Digital Preservation Logic Module is implemented as a series of actors orga-
nized in an actor hierarchy as shown in Figure 4.8. At the top of the hierarchy is the
PELManager, which stands short for Process Execution Logic (PEL) Manager. The
PELManager manages the execution of the DISTARNET processes, where each DIS-
TARNET process is implemented as a distinct actor and is instantiated by the PEL-
Manager either timer based or on request as described in Section 3.4.2.

DISTARNET Process Execution

Following the discussion in Section 4.1.2 we here describe the process execution which
will be provided by our own implementation of a Process Execution Logic.

The Process Execution Logic (PEL) Manager is responsible for the execution of the
DISTARNET processes. The processes themselves will be implemented as Finite State

129

4. DISTARNET System Architecture and Implementation

PELManager

Process Instance 1

Process Instance n

... External Monitor

State Transition
Information

SIR

Restore Process

Save State
InformationLoad State

Information

Start Process

Figure 4.9: Process Execution Architecture Overview

Machines (FSM), where each state in the machine corresponds to one task in the pro-
cess that needs to be executed.

The PELManager will initiate a process when triggered, by creating and starting a
Process Instance (PI). During the execution of a PI, an External Monitor (EM) will re-
ceive a message on every state transition, which will allow the persistence of the cur-
rent state of a running process instance in the System Information Repository (SIR).
Figure 4.9 shows an overview of the process execution architecture.

The creation of PI’s will be triggered by a timer or a request as described in Chap-
ter 3.4.2.

DISTARNET Process Implementation

The DISTARNET processes are implemented as Finite State Machines (FSM) by using
the Akka FSM library. Each task in a DISTARNET process is implemented as a state.
When all messages are exchanged, and a task is finished (e.g., send a message to
execute service and receive service execution result), the FSM transitions to the next
state.

We could have implemented the DISTARNET processes as a series of synchronous
message calls. The problem with synchronous message calls is that they simply block
the execution of an actor until a reply is received. This blocking also blocks the thread
on which the actor is running. As mentioned earlier, in the Akka actor implementa-
tion, all actors share a defined number spawned system threads. If actor execution
blocking is also done in some other actors, then the problem can arise that all avail-
able threads are blocked and that our system is standing still. The Akka FSM library

130

4. DISTARNET System Architecture and Implementation

Actor System
Supervisor

R
ep

os
ito

rie
s

M
od

ul
e

RepositoriesManager

Repositories Actors:

Mongo DB

CJR, NIR, RLR, MJR, SIR
CJR, NIR, RLR, MJR, SIR

CJR, NIR, RLR, MJR, SIR
CJR, NIR, RLR, MJR, SIR

CJR, NIR, RLR, MJR, SIR

Figure 4.10: Repositories Module Actor Hierarchy

allows to implement efficiently serial execution in a system which is otherwise asyn-
chronous, without blocking of any running threads.

4.4.4 Repositories Module

The Repositories Module houses the different repositories for the storage of informa-
tion needed by the system. The RepositoriesManager manages the Node Information
Repository (NIR), the Replica Location Repository (RLR), the Copy Job Repository
(CJR), the Migration Job Repository (MJR), and the System Information Repository
(SIR). Figure 4.10 shows the actor-hierarchy in this module.

The repositories are implemented as actors which store their corresponding infor-
mation in separate Mongo DB collections. Each actor representing on repository,
communicates through the Casbah API with the Mongo DB and is responsible for
the management of the data stored inside its collection.

System Information Repository

The System Information Repository (SIR) is used to store the current state of a running
process instance. The External Process Monitor maintains an entry for each running
process, where on each change of state, the new information is updated. When the
process finishes its execution, then the PEL removes the entry. Table 4.4 show the
attributes of an entry.

4.4.5 Services Module

Figure 4.11 shows the actor-hierarchy in the Service Module. Every basic-service de-
scribed in Section 3.4.4 is implemented as an actor. The ServicesManager actor routes
any incoming requests to the corresponding actor implementation instance. All actor

131

4. DISTARNET System Architecture and Implementation

Attribute Description

instance id Unique identifier of the running instance (actor name)
state name Name of the last state
state data Data taken over to the last state
timestamp Timestamp of last change

Table 4.4: System Information Repository Entry Attributes

Actor System
Supervisor

Se
rv

ic
es

M
od

ul
e

ServicesManager

Services Actors

Analyzer, Checksum, DFMP,
Distribution, PNCP, PubSub, RCPAnalyzer, Checksum, DFMP,

Distribution, PNCP, PubSub, RCPAnalyzer, Checksum, DFMP,
Distribution, PNCP, PubSub, RCPAnalyzer, Checksum, DFMP,

Distribution, PNCP, PubSub, RCPAnalyzer, Checksum, DFMP,
Distribution, PNCP, PubSub, RCPAnalyzer, Checksum, DFMP,

Distribution, PNCP, PubSub, RCPAnalyzer, Checksum, DFMP,
Distribution, PNCP, PubSub, RCP

Figure 4.11: Services Module Actor Hierarchy

instances are instantiated and monitored by the ServicesManager when the node is
started.

4.4.6 Network Module

The Network Module contains the NetworkManager actor as shown in Figure 4.12.
The NetworkManager is responsible for the routing of initial messages to remote
nodes. It implements a simple name to full address resolver, where messages inter-
nally addressed with DSN name and node name, are looked up in the DSN member
registry, and forwarded accordingly.

In our implementation, the DSN member registry is a simple list loaded when the
node is started, which contains the full addresses of every node in the DSN.

Actor System
Supervisor

N
et

w
or

k
M

od
ul

e

Network ActorsNetworkManager

Figure 4.12: Network Module Actor Hierarchy

132

4. DISTARNET System Architecture and Implementation

Actor System
Supervisor

St
or

ag
e

M
od

ul
e

StorageManager

Storage Actors
Triple-Store

Files-Store

Data Object Catalog

Mongo DB

Jena TDB

Filesystem

Figure 4.13: DAO Storage Module Actor Hierarchy

Attribute Description

DSN Unique identifier for the current DSN
node Unique node identifier of the node storing this data

object
data-uri The URI used inside a DAO to identify the

bitstream data for which this entry is meant
file-path The the path to the storage location on the

filesystem
checksum The checksum of the bitstream

Table 4.5: Catalog Entry Attributes

4.4.7 DAO Storage Module

The Storage Module implements the features described in Section 3.4.6 and is shown
in Figure 4.13.

The StorageManager instantiates and monitors every actor at node startup. The
Triple-Store actor (named DAO DB-Store in the system model) uses the Jena API to
manage and store the Distarnet Archival Objects (DAOs) which are represented as
RDF graphs, in the Jena TDB triple-store. Next we have the File-Store actor (named
DAO File-Store in the system model), mirrors the data stored in the triple store by
storing them in RDF-XML representation on the filesystem. Finally, the Data Ob-
ject Catalog actor, stores the bitstream data of the DAOs to the filesystem, and uses
Casbah API to communicate with a Mongo DB instance, which is used to store per-
sistently the different catalog information shown in Table 4.5.

133

4. DISTARNET System Architecture and Implementation

4.5 DISTARNET Data Model Implementation

The Data Model DISTARNET implements supports the representation of rich infor-
mation networks where the complex digital objects consisting of data and/or metadata
constitute the nodes in the network, and the ontology-based relationships among these
digital objects constitute the edges.

The integration of content management and the Semantic Web is motivated by
the requirements imposed by the archiving community. A familiar example of this
requirement would be the need to express well-known management relationships
among digital resources such as the organization of items in a collection/subcollec-
tion, or creating arbitrary links between digital objects.

There are certainly a number of other schemes for the representation of these rela-
tionships such as conventional relational databases and formalisms like conceptual
graphs. We believe that the need for extensible open-source solutions for representa-
tion, manipulation and the querying of these knowledge networks is best served by
the products of the Semantic Web initiatives such as RDF12, RDFS13, and the Jena TDB
triple-store14.

The design of the DISTARNET (2.0) object model is a further development of the
data model defined in the first implementation of DISTARNET (1.0) [80], where the
model supported simple objects (e.g., a single image) but RDF was used in the back-
ground to store technical information about the system (e.g., locations of other repli-
cas, IP addresses of neighbor nodes, etc.). In DISTARNET (2.0), the object model will
be expanded by using RDF which will be used to represent every aspect of an object.

DISTARNET Model for Complex Objects

The DISTARNET object model provides support for different kinds of complex ob-
jects like documents, images, electronic books, and other compound information en-
tities. Further, DISTARNET allows any combination of media types to be aggregated
into complex objects. Additionally, by providing the ability to define assertions of
relationships among objects, allows the creation of arbitrary links between DISTAR-

12http://www.w3.org/TR/rdf-primer/
13http://www.w3.org/TR/rdf-schema/
14http://jena.apache.org/

134

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-schema/
http://jena.apache.org/

4. DISTARNET System Architecture and Implementation

NET objects, managed collections/subcollections where a set of related DISTARNET
objects can be represented as such, or even broader a set of objects that share some
common characteristics (defined by semantic relationships).

To better understand the DISTARNET object model, we will take a look at the object
model from two different perspectives: (1) the relationship and representation perspec-
tive, a simplified view where the internal structure of an object is not visible, but the
interconnections to other objects and their meaning can be observed, and (2) the inner
perspective, where the underlining structure of the objects is revealed.

We will begin by taking a look at a simplified view where the internal structure
of an object is not visible, but the interconnections to other objects and their meaning
can be observed. Afterwords we will go into more detail and discuss the RDF schema
behind the data model, why we use RDF, and how we can calculate checksums for a
RDF graph.

4.5.1 Relationships and Representations

In the relationship perspective, we can see that every DISTARNET Archival Object
(DAO) can have one or more representations and that each object can have one or
more relations to one or more other objects. This corresponds to the Logical Data
Model we described in Section 3.6.1 but represented as a graph. As an example for an
object with multiple representations we can look at an image or a document, where
the content of both can be available in multiple formats. Every object and all its repre-
sentations are identified through Uniform Resource Identifiers (URIs). The URIs follow
the Linked Data paradigm. Linked Data15 is a term used to describe a recommended
best practice for exposing, sharing, and connecting pieces of data, information, and
knowledge on the Semantic Web using URIs and RDF.

Figure 4.14 depicts three interrelated DISTARNET Archival Objects. In this directed
graph, the darker nodes are DAOs, and the lighter nodes are the different represen-
tations that exist for the DAOs. We can observe two types of arcs that connect the
depicted objects, the relationship arcs connect digital objects, and representation arcs
connect digital objects to their respective representations. We can express this graph
as RDF triples, which we can store in a triple-store, and the run queries upon.

In the diagram, each DAO has at least one representation, which is related by a

15W3C Linked Data: http://www.w3.org/standards/semanticweb/data

135

http://www.w3.org/standards/semanticweb/data

4. DISTARNET System Architecture and Implementation

http://dist.ch/DAO/456/dc

hasRep

http://dist.ch/DAO/456/thumb

http://dist.ch/DAO/456/high

hasRep

hasRep

hasMember

hasMember

http://dist.ch/DAO/789/dc

hasRep

http://dist.ch/DAO/789/thumb

http://dist.ch/DAO/789/high

hasRep

hasRep

http://dist.ch/DAO/456

http://dist.ch/DAO/789

http://dist.ch/DAO/123

Figure 4.14: DISTARNET Object Relationships View

“hasRep” arc to the originating object. As an example, the node http://dist.ch/
DIOC/456 is an image object with three representations:

• Dublin Core record, http://dist.ch/DO/456/dc

• Thumbnail image, http://dist.ch/DO/456/thumb

• High-resolution image, http://dist.ch/DO/456/high

In Figure 4.14 we can also see an example of an inter-object relationship, represented
by the “hasMember” arcs. The inverse “isMemberOf” relationships are not depicted
for simplification, but are there. Here, the node http://dist.ch/DIO/123 is a Col-
lection consisting of two items, the nodes http://dist.ch/DO/456 and
http://dist.ch/DO/789.

4.5.2 RDF Schema

The relationship and representation perspective have provided us with a simple, access-
oriented view of the digital resources and collections. The inner perspective will now
provide a view of the underlying core data model for DISTARNET. The implemen-
tation of the core data model which represents the DISTARNET Archival Object is
provided by the defined RDF Schema shown in Figure 4.15 where the different de-
fined resource subclasses are depicted. There are two main resource subclasses. The
first, the DAO subclass contains all the different DAOs that can be described by the

136

http://dist.ch/DIOC/456
http://dist.ch/DIOC/456
http://dist.ch/DO/456/dc
http://dist.ch/DO/456/thumb
http://dist.ch/DO/456/high
http://dist.ch/DIO/123
http://dist.ch/DO/456
http://dist.ch/DO/789

4. DISTARNET System Architecture and Implementation

rdfs:Resource

:DAO

:Manuscript

:Image

:Annotation

:Collection

:Part

:Representation

:Page

:AuditTrail

:PreservationPolicy

:AccessControlPolicy

rdfs:subClassOf

Figure 4.15: DAO RDF Schema - Resource Subclasses

data model. The second, the Part subclass contains the different parts a DAO can be
made of.

Additionally, each resource subclass can be further described through properties,
depicted in Figure 4.16 showing the RDF Schema which describes the different prop-
erty subclasses. There are also two main property subclasses. The first, the object-
Property is used describe the relationships between instances of the DAO and Part
resource subclasses, and the second, the dataProperty is used to describe values at-
tached to instances of the DAO or Part subclasses.

4.5.3 RDF Model Checksum

As defined in 4.5 the DAOs are stored in RDF/XML files and loaded in the RDF
triple-store. Consistency checks thus need to encompass both the RDF/XML files and
the graph in the triple-store. When a DAO is checked, then following consistency
checks need to be performed: (1) checking the consistency of the binary files that
are archived (e.g., TIFF images, etc.), (2) checking the consistency of the RDF/XML
files, (3) checking the consistency of the RDF graph of the DAO, and (4) check if the
serialization of the RDF graph which is stored in the RDF/XML file is identical to the

137

4. DISTARNET System Architecture and Implementation

rdf:Property

:contentProperty

:hasPage

:hasRep

:dataProperty

:objectProperty

:hasAccessControlPolicy

:hasPreservationPolicy

:hasAuditTrail

:representationProperty

:pageProperty

:accessControlPolicyProperty

:preservationPolicyProperty

:auditTrailProperty :logItem

:creation-date_time

:mimetype

:data-content

:data-uri

:format-uri

:label

:numberOfReplicas

:pageSequence

:pageNumber

:Representation
d

xsd:string

r

r

r

r

xsd:dateTimer

xsd:intr

rdfs:subPropertyOf

rdf:ranger
rdf:domaind

:daoProperty
:checksum

:oid

r

r

:Representationr

:AccessControlPolicyr

:Pager

:AuditTrailr

:PreservationPolicyr

r

r xsd:string

xsd:int

xsd:string

xsd:stringr

:preservationProperty

:relationshipProperty

:hasMember

:Image
r

:Collection
r

:Manuscriptr

d

:hasAnnotation

:Image
r

:Manuscriptr

:Annotation
r

:DAO
d

r

:Paged

:PreservationPolicyd

:AuditTraild

:DAO
d

:DAO
d

:DAOd

:isMemberOf

r

d

d

d

:lastCheckResult

:lastCheckDateTime xsd:dateTimer

r

:Manuscript

:Collection

:Image

Figure 4.16: DAO RDF Schema - Property Subclasses

138

4. DISTARNET System Architecture and Implementation

RDF graph stored in the triple-store.
To support these checks, three kinds of checksums are calculated: (1) the checksums

of the binary files that are archived (e.g, tiff images, etc.), (2) the checksum of the
RDF/XML file and (3) the checksum of the RDF graph of the DAO in the triple-
store. To be able to compare the checksum of the graph stored in the triple-store
and the checksum of the graph serialized in the RDF/XML file, we will calculate the
checksum by using a set hash [88] . Basically what we will do is to calculate the
checksums of the individual RDF statements and combine them.

4.5.4 Why RDF-based DISTARNET Archival Objects?

Motivation for using RDF: High flexibility and easy expendability to accommodate
future needs. The combination of representing explicit relationships as RDF of a digi-
tal object and then mapping them to a triple-store offers the "best of both worlds". The
explicit representation provides the basis for exporting, transporting, and archiving
of the digital objects with their asserted relationships to other objects. The mapping
to a triple-store provides a graph-based index of an entire repository and the basis for
high-performance queries over their relationships. An added advantage of the dual
representation is that the entire triple-store can be rebuild by importing and parsing
the RDF-based information objects.

4.6 Summary

In this chapter, we have provided a further discussion of the requirements which
have a direct implication for the implementation. These requirements range from
node-engine fault-tolerance, over maintainability and extendability, to long-term use
of the system.

Further we have described the concepts, frameworks and libraries that are used in
the prototype implementation.

Following, we have provided an overview of the system architecture, a more de-
tailed discussion of the different modules and how these are implemented, and the
description of the data model implementation.

In the next chapter will now discuss the evaluation of the implemented prototype
system, and the employed concepts.

139

5
Evaluation

In Chapter 3, we have presented a system model for long-term digital preservation
of digital data, where we in general terms describe the DISTARNET processes that
are needed to guarantee the integrity and consistency of the archived objects over the
long-term. Following this general description, we have presented in Chapter 4 one
possible implementation by employing these concepts. In this chapter, we now eval-
uate the implementation and through extension the concepts behind the implemen-
tation, with the use of realistic scenarios. The goal of the evaluation is to answer the
questions if the implementation and the concepts behind, are working when applied
to realistic scenarios, and what possible constraints the presented solution might have
when applied to these scenarios.

The evaluation consists of two parts. In the first part, in Section 5.1, we define and
employ a benchmark geared towards triple-stores as the DISTARNET data model
implementation is based on RDF, in conjunction with the developed DISTARNET
processes. We evaluate the feasibility and the constraints of using triple-stores for
RDF-based metadata storage and management. In the second part, in Section 5.2, we
perform a qualitative and quantitative evaluation of the DISTARNET system. The
former looking at the correct execution of the DISTARNET processes, and the later
looking at the performance of the system regarding the overall archiving storage ca-
pacity.

Global vs. Local Evaluation Viewpoint

When doing an evaluation of a distributed system such as DISTARNET, we can look
at the system from a global or a local viewpoint. In the global view, we would evaluate

140

5. Evaluation

the whole system, and look at how all nodes that form the system perform together.
In the local view, we would isolate and evaluate one node or one part of the whole
system.

During the course of this chapter, we take both approaches. For the evaluation
of the performance of triple-stores in Section 5.1, which is just one but an integral
part of our node, we assume a local viewpoint, but at the same time need to take
the interactions with other nodes into account. In Section 5.2 we assume a global
viewpoint so that the evaluation results mirror the functionality and performance of
the system as a whole.

5.1 Evaluation of Metadata Management

In a distributed long-term digital preservation system, like DISTARNET, to guaran-
tee the integrity and consistency, regular checks are applied to the archived objects,
or in DISTARNET terms to the DISTARNET Archival Objects (DAOs). These regu-
lar checks are performed with the goal to timely detect inconsistencies, and trigger
repair actions (e.g., to re-install a corrupted replica from another, uncorrupted one).
The consistency checks generate a non-negligible additional load to the system which
forms the special characteristics of long-term digital preservation systems, compared
to other RDF database applications. Consistency checks and corrective actions will
be referred to as system processes. In addition, read and write requests (user processes)
need to be also considered in an archive.

There are a number of different benchmarks for evaluating the performance of
triple-stores: the Berlin SPARQL benchmark (BSBM) [89], the Barton Library bench-
mark [90], the Lehigh University Benchmark (LUBM) [91], which focuses on inference
and reasoning capabilities of RDF engines, and the SPARQL Performance Benchmark
(SP2Bench) [92].

All these benchmarks have in common that they do not, or only partly, address the
specific access characteristics that can be found in a long-term digital preservation
system.

The e-commerce scenario used by BSBM takes into account a similar access pat-
tern a user would also have in an archiving system (user processes), e.g., it emulates
the search and navigation pattern of a consumer looking for a product which can be

141

5. Evaluation

OpenLink Virtuoso v6.1 explicit: 15.4 billion
URL: http://www.openlinksw.com/

BigOWLIM explicit: 12.03 billion, implicit: 8.43 billion, total: 20+
billion
URL: http://www.ontotext.com/owlim/

AllegroGraph explicit: 20+ billion
URL: http://www.franz.com/

4store explicit: 15 billion
URL: http://4store.org/

Bigdata(R) explicit: 12.7 billion
URL: http://www.bigdata.com/blog/

Jena TDB explicit: 12.7 billion
URL: http://jena.apache.org

Jena SDB explicit: 650 million
URL: http://jena.apache.org

Mulgara explicit: 500 million
URL: http://www.mulgara.org/

3store explicit: 100 million
URL: http://threestore.sourceforge.net/

Sesame explicit: 70 million
URL: http://www.openrdf.org/

Table 5.1: Triple-Store Capacities

compared to a user accessing an archive. However, it lacks support for system pro-
cesses which make the particular semantics of a preservation system (e.g., consistency
checking, data migration, etc.) and the recovery needed for corrupted data. Similarly,
the Barton Library benchmark focuses on user access without special consideration
of the access pattern imposed by system processes. The same also holds for LUBM
and SP2Bench. The benchmarks and therein covered problem areas of LUBM and
SP2 Bench while also important in the context of metadata management in a preser-
vation context can not be used for performance measurements of triple-store-based
metadata management.

Although RDF based data model and triple-stores as storage for metadata are used
(at least partially) by some long-term preservation projects, there is no benchmark for
evaluation of triple-stores that incorporate the access characteristics, data model and
volume, of a long term preservation system. To close this gap, we have developed a
benchmark.

142

5. Evaluation

There are also some general performance measures published for some specific
triple-stores. Table 5.1 list capacity capabilities (number of triples) of different triple-
store implementations1. These numbers, while interesting as they provide general
pointers regarding the size of the data storage capabilities, are of static nature. They
do not provide us with tangible information, regarding the way a particular triple-
store will perform under such loads, when paired with specific access patterns in
which we are interested.

In the following, we will thus introduce a novel benchmark for RDF-based meta-
data management that jointly takes into account specific access patterns of long-term
preservation systems that stem from both system and user processes, as such cur-
rently not present in any existing benchmark. Furthermore, we present the results
of this benchmark applied to our distributed long-term digital preservation system
DISTARNET in two realistic archiving settings, an Image Archive, and a Manuscript
Archive.

5.1.1 DISTARNET Triple-Store Performance Evaluation

Based on the data model implementation discussed in Section 4.5, we specify two
different usage scenarios that we then use in conjunction with a RDF/XML generator
to create the test data. This test data is then been used for performance testing of the
Jena TDB triple-store.

The goal of the benchmark is to test the performance of the triple-store subsystem
under realistic usage patterns. We create a series of benchmarking queries that will
allow us to test the performance of the triple-store with our data model under load,
by taking into account the usage patterns of both system and user processes. The
results will provide us with information about the limits of the triple-store under test,
like what is the maximum number of triples that we can store in our triple-store while
still having acceptable query speeds. It should further provide us with insights into
possible bottlenecks of not only the triple-store, but also of our data model.

As one of the targeted user groups for the DISTARNET system are small institu-
tions that do not have a large IT environment, we thus perform the evaluation on
commodity hardware.

1The numbers were taken from http://esw.w3.org/LargeTripleStores

143

http://esw.w3.org/LargeTripleStores

5. Evaluation

*/1

*/1/dc

hasRep

*/1/high

hasRep
text/xml

mimetype

*/1/
thumb

hasRep

image/tiff

mimetype

image/jpeg

mimetype

2010-10-74
T13:48:18Z

creation-date-time

<dc:title>Image of something</dc:title>
<dc:subject>Photographic image</dc:subject>
<dc:publisher>University of Basel</dc:publisher>
<dc:identifier>1</dc:identifier>

data

dc
metadata

label

http://...format-uri

* = http://purl.dist.ch/ia/dao

2010-10-74
T13:48:18Z

creation-date-time

*/1/thumb/data

data-uri

thumbnail
size image

label

http://...format-uri

2010-10-74
T13:48:18Z

creation-date-time

*/1/high/data

original
size image

label

http://...format-uri

data-uri

Figure 5.1: Image DISTARNET Archival Object Graph

5.1.1.1 Scenarios

To cover a wide usage spectrum, the benchmark will be performed using data gener-
ated for two different scenarios.

Scenario 1: Image Archive

The Image Archive consists of collections of images where each image has three rep-
resentations: a TIFF and a JPEG representation, and a textual representation of the
image in Dublin Core. Each representation is characterized by attributes such as
mime-type, label, or creation-date-time. The TIFF and JPEG representations will only
contain URIs to where the TIFF or JPEG files are stored.

Figure 5.1 depicts the Image DAO graph that describes the metadata graph that
will be stored in the triple-store. Note that this is not a complete illustration of the
whole graph but rather an excerpt that visually represents the differences between
the image and the manuscript graph (scenario 2).

This scenario is motivated by its generality since the images can be exchanged for
any data type (e.g., documents, audio/video, etc.) that can have multiple representa-
tions that need to be jointly archived.

144

5. Evaluation

*/1

1 recto

*/1/1

hasPart

pagenumber

1

sequence

* = http://purl.dist.ch/mma/dao

*/1/dc
hasRep

text/xml

mimetype

2010-10-74
T13:48:18Z

creation-date-time

<dc:title>Manuscript of something</dc:title>
<dc:subject>Manuscript</dc:subject>
<dc:publisher>University of Basel</dc:publisher>
<dc:identifier>1</dc:identifier>

data

dc
metadata

label

http://...format-uri

*/1/1/
high

hasRep

*/1/1/
thumb

hasRep

image/tiff

mimetype

image/jpeg

mimetype

2010-10-74
T13:48:18Z

creation-date-time

*/1/1/thumb/data

data-uri

thumbnail
size image

label

http://...format-uri

2010-10-74
T13:48:18Z

creation-date-time

*/1/1/high/data

original
size image

label

http://...format-uri

data-uri

*/1/1/
OCR

hasRep

text/plain

mimetype

2010-10-74
T13:48:18Z

creation-date-time

*/1/1/OCR/data

data-uri

OCR text of
manuscrip

label

http://...format-uri

Figure 5.2: Manuscript Archival Object Graph

Scenario 2: Manuscript Archive

This scenario addresses collections of digitized manuscripts. Each manuscript con-
sists of several pages, each one having multiple representations. Additional metadata
describes the manuscript as a whole. For our scenario, we set the number of pages
per manuscript to 100. Every page has three representations, namely TIFF, JPEG, and
OCR Text. The metadata describing the whole manuscript consists of Dublin Core
formatted text. Figure 5.1.1.1 depicts the Manuscript DAO graph.

This scenario is motivated by the SALSAH [93] (System for Annotation and Link-
age of Sources in Arts and Humanities) project, a Virtual Research Environment[94],
which allows collaborative work on medieval manuscripts, where a similar data
model is used for the representation of medieval manuscripts in the system.

145

5. Evaluation

Scenario Factor # of Objects Coll. Size TS Data # of Triples
1 10 1’000 100 GB 201 MB 29’020
1 100 10’000 1 TB 204 MB 290’200
1 1’000 100’000 10 TB 450 MB 2’902’000
1 10’000 1’000’000 100 TB 2.9 GB 29’020’000
2 10 1’000 10 TB 425 MB 2’515’020
2 100 10’000 100 TB 2.6 GB 25’150’200
2 1’000 100’000 1 PB 23.9 GB 251’502’000
2 10’000 1’000’000 10 PB 250 GB 2’515’020’000

Table 5.2: S1 and S2 Data Characteristics

5.1.1.2 Scaling Factor

The RDF generator creates the metadata representing the archives of different sizes for
both scenarios. For this, we have defined a scaling factor F that specifies a multiple
of a collection containing 100 archived objects. In both scenarios, we will perform the
benchmark runs for scaling factor sizes of 10, 100, 1’000 and 10’000. The generated
metadata corresponds to archive sizes of 1’000, 10’000, 100’000 and 1’000’000 objects.
If we take the conservative assumption of a total of 100 MB of digital data per image
object (including all representations), this implies for Scenario 1 required disk spaces
of 100GB, 1TB, 10TB and 100TB, respectively.

For Scenario 2, if we again assume 100 MB of digital data per image object (which
will be needed for all representations of each of the 100 pages), then the total disk
space amounts to 10 TB, 100 TB, 1 PB and 10 PB, respectively. This total disk space
represents the size of the whole archive managed by the metadata store. Table 5.2
shows the different scenarios (Scenario), the scaling factor values (Factor), the number
of image or manuscript objects (# of Objects), the needed storage space for the whole
archive (Coll. Size), the size of the triple-store on disk (TS Data), and the total number
of triples (# of Triples).

5.1.1.3 Benchmark Queries

The benchmark queries are derived from the (system and user) processes’ access to
metadata. The goal is to evaluate the scalability characteristics – and possible limita-

146

5. Evaluation

tions – of the metadata store with increasing number of objects. We assume that the
benchmark load reflects the system and user processes that need to be considered in
the course of one day (i.e., a number of system processes is supposed to run daily).
The focus of this benchmark is to evaluate the triple-store performance for metadata
management. Therefore, the processes that have been implemented in the benchmark
contain only the parts that pertain to the interaction with the triple-store.

System Processes

• Periodic Integrity Checking Process

P1: For each DAO, in the triple-store, find out if it was checked in the
last 24h. If not then check if the checksums of the objects are OK,
and mark as checked. If a checksum is not OK, then lock and mark
DAO as corrupt. The whole archive must be checked once a day. P1
has read-write access to the triple-store.

P2: For all DAOs marked as corrupt (result of P1 and P3), replace sub-
graph with healthy version from another system retrieved with P3.
We assume a failure rate of 10% of all DAOs. These 10% will be de-
tected together by P1 and P3. The assumption of a 10% failure rate
is a very conservative one and corresponds to the worst case that we
anticipate based on the discussion in the paragraph about Hardware
Failure Rates. P2 will also have read-write access to the triple-store.

P3: Queries a local node will receive from other remote nodes on which
P2 runs. It returns the subgraphs and their checksums of a DAO
identified by URI. Before sending the subgraphs, checksums are again
calculated to check whether the DAO is OK. If not OK, then DAO is
locked and marked as corrupt.
This query corresponds to the queries our node will receive from
other nodes on which P2 would run. We assume that at least three
copies per object are stored in the network. Therefore, the other two
remote nodes can run this query against the local node in consider-
ation (see also 5). Hence, we conservatively assume two concurrent
requests. P3 has read-write access to the triple-store.

147

5. Evaluation

• Data Format Migration Process

P4: Addresses data format migration, i.e., the actions to bring preserved
digital content up-to-date when a new data format is available, or
an existing format is deprecated. P4 converts each DAOs TIFF rep-
resentation to JPEG2000. This process must finish within 90 days
(for the complete collection) – so the whole collection could in prin-
ciple be migrated four times a year, which is a very conservative
assumption. P4 implements read-write access to the triple-store.

• Maintenance Process

P5: Encapsulates the corrective actions needed to repair and maintain
digital objects. For each affected subgraph of a DAO, the changed
subgraph is retrieved, and the checksum of the subgraph is recalcu-
lated and updated after P4, P8, P9, and P10. This process accesses
the triple-store in read-write mode.

User Processes

• Simple Read Queries

P6: Query and return a certain number of objects belonging to a collec-
tion. The number of objects to be returned is determined by a nor-
mally distributed random variable. The number of process instances
are calculated by multiplying 1/10 with the number of users and the
scaling factor. P6 has read-only access.

• Complex Read Query

P7: Find objects with creation date between two dates (randomly cho-
sen from a list) that have a particular author, and some keywords
that occur in the annotations. The number of process instances is
calculated by multiplying 1/10 with the scaling factor and the num-
ber of users. P7 has read-only access to the triple-store.

• Write queries

148

5. Evaluation

P8: User-created collection with some (randomly) selected objects. We
conservatively assume that each user creates one collection per week
(i.e., 1/7 per day). P8 needs read-write access to the triple-store.

P9: Creation of an annotation. We assume that every user creates one
annotation per day. Thus, P9 requires read-write access to the triple-
store.

P10: Represents the user creating a link between two DAOs. We assume
that each user creates two links per day. P10 has read-write access.

Hardware Failure Rates According to [95] the failure rate of hard-disks is greater
than what can be expected when looking at the MTTF numbers given by manufac-
turers. In their paper, they have analyzed data provided by different organizations
deploying supercomputers and cluster systems. The hard-drives used in those server
systems had a manufacturer specified MTTF between 1’000’000 and 1’500’000 hours.
This would suggest a nominal annual failure rate (AFR) of at most 0.88%. However
their findings where that in the field, the annual disk replacements rates typically ex-
ceed 1%, with 2-4% common and going up to 13% on some of the systems that where
analyzed. These findings are also supported by [96] where they have analyzed the
failure rates of the hard-drives deployed in the Google cluster. Their observed AFR
was between 1.7% and 8.6%, and rose up to 10.5% when looking at drives with a high
utilization rate.

Transactions

The queries Q8, Q9, and Q10 will be run by the users regularly and as such trigger
Q5. This can present a problem for Q2, which will run daily since we have read and
write queries that can occur on the same time on the same objects. Therefor we will
need some form of transactions. For this, there are two possibilities. First, we can
use Jena SDB which uses a relational database for storage. In this case, we could
use the transaction capabilities of the relational database. In our case, we can not
use SDB since it doesn’t scale well if graphs with more than 100 million triples are
stored (scenario 2 with factor 1000 has 211 million triples). For this reason, we will be
using Jena TDB. But Jena TDB does not support transactions so our second possibility
would be locking the model for exclusive read/write access.

149

5. Evaluation

Process-Type Frequency Concurrency Access
P1 1 b * F R/W
P2 0.1 * b * F 1 R/W
P3 0.1 * b * F 2 R
P4 1 1/90 * b * F R/W
P5 P4 + P8 + P9 + P10 1 R/W

P6 1/10 u * F R
P7 1/10 u * F R
P8 1/7 u * F R/W
P9 1 u * F R/W

P10 2 u * F R/W

Table 5.3: Query Frequency, Concurrency, and Access Type

5.1.1.4 Benchmark Mix

Table 5.3 shows the frequency and concurrency per process type that are used for cre-
ating the benchmark mix. The frequency denotes how often a specific process type
will run, and the concurrency denotes how many possibly concurrent instances will
be created each time the process runs. Multiplying the frequency and the concurrency
yields the total number of instances of each process type created. Each process type
in turn is implemented by means of a number of SPARQL queries. The factor F rep-
resents the scaling factor that is used to generate the test data. Increasing the scaling
factor linearly increases the size of the metadata representing the archive, and thus
run the benchmark on archives of bigger sizes, which in turn also increases the num-
ber of process instances of the process types that will run. The variable b is the base
number of objects (e.g., image or manuscript) that are created for each F and variable
u the number of users that access the system per F . The degree of concurrency of
the user process types depend solely on u and F , and is the product of those two.
Dependance on u is given as the users can access the system concurrently while the
dependance on F represents the assumption that a larger archive is used by a larger
number of users.

For the evaluation, we have set b to 100 (i.e., 100 image or manuscript objects are
contained in a collection). The size of b is by itself not important, but rather the ratio
of b and u as it defines the relation between system and user processes. For the bench-

150

5. Evaluation

Process-Type Frequency Concurrency Absolute Relative
P1 1 100 100 38.43 %
P2 10 1 10 3.84 %
P3 10 2 20 7.69 %
P4 1 1 1 0.43 %
P5 63 1 63 24.25 %

74.64 %
P6 2 1 2 0.77 %
P7 2 1 2 0.77 %
P8 2 1 2 0.77 %
P9 20 1 20 7.69 %
P10 40 1 40 15.37 %

25.36 %
TOTAL 151 110 260 100.00%

Table 5.4: Absolute and Relative Number of Process Instances

mark, we set the ratio between system and user processes to approx. 1/4 user and
3/4 system processes which reflects the special characteristics of a digital long-term
preservation system. The amount of 1/4 of user processes also corresponds approx.
to the ratio between the working hours of a workweek (40 hours) and the whole week
(168 hours). Table 5.4 contains relative and absolute numbers of process instances for
the base case with F = 1, b = 100 and u = 20.

5.1.1.5 Benchmark Implementation

The benchmark is implemented in Scala and can be run from any current JVM. The
benchmark test driver application takes as parameter the location of the SPARQL
endpoint. For the communication to the triple-store, the SPARQL 1.1 HTTP proto-
col2 is used. The system and user processes implement their operations on the RDF
graphs by using SPARQL 1.1 Query3 and Update4. The benchmark mix is imple-
mented by serializing the system and user processes described in Table 5.4, depend-
ing on the size of F which is given by the number of DAOs found in the triple-store.
This guarantees at runtime an evenly distributed access pattern to the triple-store,

2http://www.w3.org/TR/2011/WD-sparql11-http-rdf-update-20110512/
3http://www.w3.org/TR/2011/WD-sparql11-query-20110512/
4http://www.w3.org/TR/2011/WD-sparql11-update-20110512/

151

5. Evaluation

where the system and user processes are evenly intermixed and spread over the
whole duration of the benchmark.

The benchmark can be run on any triple-store that exposes a SPARQL endpoint
with enabled update operations, and into which the RDF data from the data generator
is loaded.

5.1.2 Benchmark Evaluation Results

5.1.2.1 Evaluation Setup

Since one of the targeted types of organizations for DISTARNET are small archives
that do not possess a large IT environment, we decided to perform the evaluation on
commodity hardware. The evaluation was performed on an Apple Mac Pro with 2 x
3GHz Dual-Core Intel Xeon CPUs, 24GB RAM and a dedicated 2TB SATA disk drive.
The triple-store used in the evaluation was Jena TDB5, a natively implemented triple-
store, with a SPARQL endpoint provided by the Fuseki server6. The benchmarking
software implementing the benchmark mix with the calls to the SPARQL endpoint
was run from the same machine as the triple-store.

5.1.2.2 Bulk Load Times

The Jena TDB triple-store has two command line utilities for fast initial loading (i.e.,
build TDB indexes) of RDF data into an empty TDB store, namely tdbloader and
tdbloader2. They differ in the way indexes are generated. tdbloader builds the
node table and the primary indexes first. After that, it builds the secondary indexes.
tdbloader can also be used for incremental loads, i.e., to load data into an existing
TDB database. tdbloader2, in contrast, builds just the node table and text files
for the input data using Node IDs. It then uses UNIX sort to sort the text files
and produce text files ready to be streamed into BPlusTreeRewriter to generate
B+Tree indexes. tdbloader2 cannot be used to incrementally load new data into an
existing TDB database, but it is faster when working with larger data sets7.

For the two scenarios, we have used the tdbloader2 command. Table 5.5 contains
the load time durations and the rate in triples per second (TPS) for the two scenarios

5http://openjena.org/TDB/
6http://openjena.org/wiki/Fuseki
7http://seaborne.blogspot.com/2010/12/performance-benchmarks-for-tdb-loader.html

152

5. Evaluation

Scenario Factor # of DAOs # of Triples TS Size Duration TPS
1 100 1’000 29’000 0.2 GB 00m 09s 3’224
1 100 10’000 290’200 0.2 GB 00m 42s 6’910
1 1’000 100’000 2’902’000 0.5 GB 06m 59s 6’926
1 10’000 1’000’000 29’020’000 2.9 GB 01h 07m 7’206
2 10 1’000 2’515’020 0.4 GB 06m 32s 6’416
2 100 10’000 25’150’200 2.6 GB 01h 14m 5’608
2 1’000 100’000 251’502’000 23.9 GB 13h 38m 5’120
2 10’000 1’000’000 2’515’020’000 250.0 GB 97h 20m 7’177

Table 5.5: Bulk Load Times for Scenario 1 and 2

and different scaling factors. This table shows that there is a substantial amount of
data that need to be managed, even though we are only dealing with the metadata of
the archival system.

5.1.2.3 S1 and S2 Evaluation Results

In the following, we will discuss the results of our evaluation runs made with scaling
factor F set to 10, 100, 1’000 and 10’000 for both scenarios (summarized in Table 5.6).
Figure 5.3 depicts the durations of the evaluation runs divided by the scale factor.
The change in duration from F = 10 to F = 100 is sub-linear but can be explained
by the short run time for F = 10 and the overhead of the program for running the
evaluation. The change in duration is rising slightly between F = 100 and F = 10000

for both scenarios, and then between F = 10000 and F = 100000, S1 stays almost linear
while S2 doubles in duration. This doubling can be explained by the high load, i.e.,
2.5 bn triple and adding 11m new ones, combined with the limitations for executing
parallel write operations.

5.1.2.4 Discussion

The benchmark evaluation times for both scenarios and all F values are well below
the 24h mark except for S2 with F = 100000 where the duration is over 48h. This
means that the evaluated triple-store can be used for the storage and management of
metadata for DISTARNET archives of a size of approx. 5 PB (as this corresponds to
the case where all benchmark queries terminate within the 24h margin).

153

5. Evaluation

Factor 10 100 1’000 10’000
S1
New Triples 3’438 34’476 344’914 3’449’197
P-Type Instances 2’618 26’192 261’936 2’616’364
Duration 19s 2m 40s 46m 4s 7h 46m
S2
New Triples 11’060 111’405 1’106’400 11’145’304
P-Type Instances 2’618 26’192 261’936 2’619’364
Duration 1m 37s 13m 28s 2h 35m 2d 10h 16m

Table 5.6: Evaluation Results for S1 and S2

FactorFactorFactorFactor
10 100 1'000 10'000

S1
DAOs (Images)

Triples
Triples created

Total Trans
Duration (ms)
Duration (m)

Duration
[s]/F
Eval

Bulkload

S2
DAOs (Manuscripts)

Triples
Triples created

Total Trans
Duration (ms)
Duration (m)

Duration
[s]/F
Eval

Bulkload

1'000 10'000 100'000 1'000'000
29'020 290'200 2'902'000 29'020'000
3'438 34'476 344'914 3'449'197
2'618 26'192 261'936 2'619'364
18'947 159'711 2'764'450 27'919'336
0.32 2.66 46.07 465.32

0h 0m 19s 0h 2m 40s 0h 46m 4s 7h 45m 19s
1.8947 1.5971 2.7645 2.7919

x x x x
x x x x

1'000 10'000 100'000 1'000'000
2'515'020 25'150'200 251'502'000 2'515'020'000

11'060 111'405 1'106'400 11'145'304
2'618 26'192 261'936 2'619'364
97'141 808'278 9'257'839 209'779'771
1.62 13.47 154.30 3'496.33

0h 1m 37s 0h 13m 28s 2h 34m 18s 2d 10h 16m
9.7141 8.0828 9.2578 20.9780

x x x x
x x x x

0

875

1750

2625

3500

Factor 10 100 1'000 10'000

Chart 5: Duration in minutes

S1
S2

0s

5s

10s

15s

20s

25s

Factor 10 100 1'000 10'000

Chart 6: Duration in seconds per Factor [s]/F

S1
S2

Figure 5.3: Evaluation Run Durations in Seconds per Scale Factor in S1 and S2

154

5. Evaluation

Parallelism

The implementation of the benchmark utilizes parallel execution of the process in-
stances whenever possible. As described in Section 5.1.1.5, the execution is done in
cycles where one cycle is equivalent to the benchmark mix for F = 1 and where all
processes are run in a serial fashion. The different process instances of the same type
are always run in parallel where possible. The process instances for P1, P4, P6 and P7
are all run in parallel. Presently, the degree of parallelization of the write processes
is limited, due to the limitations of the underlying Jena TDB triple-store as only a
multiple-reader / single writer locking model is supported.

As a consequence, the parallel execution of the process instances have a rather small
positive impact during the execution of the benchmark. The Jena triple-store does not
answer the request in parallel for P1 and P4 as these process types require write access
during which Jena is locking the model for all other requests.

5.2 Evaluation of the DISTARNET System

In this section, we provide an evaluation of the DISTARNET system as a whole. The
main focus of the evaluation is on the DISTARNET processes, i.e., their ability to cope
with failures that the system can encounter, as described in Section 3.3, i.e., infras-
tructure and content faults.

The failures of the execution environment, i.e., node engine faults are not part of
this evaluation. Although an important feature in a productive running system, the
main focus of the implemented prototype, and this evaluation lies primarily on the
validation of the main DISTARNET processes as they represent the most important
and central elements of the system.

The evaluation is structured as follows. First we do a qualitative evaluation of the
system, for which we use four test scenarios that involve the main processes running
in the DISTARNET system. These scenarios cover single infrastructure and content
faults, data format migration tasks, and a combination of all three.

Secondly, we conduct a quantitative evaluation, by using measurements of the
execution times of a series of processes in combination with approximations, and
through extrapolation provide an overall performance of the system. These results
are then discussed in comparison to the results from Section 5.1.1.1.

155

5. Evaluation

i1

i1/dc

hasRep

i1/high

hasRep
i1/thumb

hasRep

i1/thumb/data
(link to bitstream)

data-uri

i1/high/data
(link to bitstream)

data-uri

a1

c1

hasMemberInCollectionhasMemberInCollection

a1/annotation

hasRep

...
i100

...

a100

Figure 5.4: Evaluation Data Structure

5.2.1 Cooperating Image Archives Scenario

Both the qualitative and quantitative evaluation of the DISTARNET system use
this scenario that represents a network of four cooperating Image Archives. In this
scenario, every Image Archive deploys one node running the DISTARNET system
software and uses the other nodes in the network for the storage of remote replicas.
This setup is motivated by the scenario described in Section 1.1.2 regarding the Na-
tional Museum of History and Native Art, where each institution has only the means
to deploy one DISTARNET node, and through cooperation with other institutions has
access to additional remote DISTARNET nodes, on which they can deploy their re-
mote replicas. The here described four nodes create what we also call a DISTARNET
network.

The data used in this scenario is an extended version of the data from Section 5.1.1.1.
As before, the scenario represents an Image Archive, where each Image DAO is com-
prised of three representations, i.e., Dublin Core metadata, JPEG, and TIFF. The JPEG
and TIFF representations have additionally references to randomly generated bit-
stream data. The DAOs are grouped together into collections, where one collection is
comprised of 100 Image DAOs. Additionally, and this is what is different in compari-
son to the Image Archive Scenario used in Section 5.1.1.1, the collection also contains
100 Annotation DAOs. In summary, one collection thus contains 100 Image DAOs
and 100 Annotation DAOs. We use synthetically generated data, consisting of one
such collection, as our base data for the different evaluations. Depicted in Figure 5.4
is an overview of the data structure.

156

5. Evaluation

5.2.2 Qualitative System Evaluation

During the qualitative system evaluation, we put the network of Image Archives,
described previously, through a series of test scenarios. In Scenario 1, we simulate the
destruction of one node, in Scenario 2 we simulate the corruption of archived content,
in Scenario 3 we simulate data format migration, and in Scenario 4 we combine all
three together.

Evaluation Environment

The implementation of the test scenarios is comprised of a collection of multi-JVM
test cases, running in the development environment. This allows to run a predefined
number of DISTARNET nodes, and create a DISTARNET network on the same phys-
ical hardware while still running each node in its own JVM. The different test cases
are used to send messages in an orderly fashion to the nodes running in the DISTAR-
NET network and by doing so initiate certain effects, e.g., kill nodes, corrupt content,
etc. Afterwards, subsequent test evaluate the reactions of the individual nodes, i.e.,
the result of these reactions, such as for example the generation of additional replicas,
repairing of content, etc.

The execution of the test cases is synchronized between all nodes, which allows a
precise control of their execution order throughout the network, and also allows to
query the state of each node at key points in time during the execution of a test.

Running these tests in a multi-JVM environment, has shown to have a negative
impact on the speed of the execution, as the limited system resources are divided
between multiple threads of execution. Thus, this kind of execution can not be used
for quantitative evaluation, as it would distort the results. However, for the purpose
of this qualitative evaluation, we can use a mutli-JVM environment, as long as we
restrict the number of the running nodes, to a number where each node has enough
resources to provide a correct execution, i.e., the other nodes running concurrently
are not starved for resources, and we are not interested in the execution time as the
process execution will slow down. The evaluation is performed on an Apple Mac
Pro with 2 x 3GHz Dual-Core Intel Xeon CPUs, with 24GB RAM, and a dedicated
2TB SATA disk drive. As we need to run at most four nodes during this qualitative
evaluation, the four cores provided by our hardware are enough to ensure a correct
execution during the evaluation.

157

5. Evaluation

Initial Network State

Before running each test scenario, we bring the network of Image Archive nodes to
the same initial state. This state consists of four nodes being started (each represent-
ing an archive). Each node is ingested with its own collection of DAOs consisting of
100 image DAOs and 100 annotation DAOs, as described in Section 5.2.1. All four
nodes belong to the same DISTARNET Sub-Network (DSN). The nodes are named
NODE01 through NODE04. Each node creates for each DAO ingested on this node,
two additional replicas on the next two nodes, e.g., NODE01 on NODE02 and NODE03,
NODE02 on NODE03 and NODE04, NODE03 on NODE04 and NODE01, and NODE04 on
NODE01 and NODE02.

The initial network state is created through the execution of the following steps:

1. Load data in the triple-store on every node, which represents the 100 image
DAOs and the 100 annotation DAOs.

2. Create the catalog entries and data on every node, representing ingest of 100
image DAOs.

3. Create the appropriate Replica Location Repository (RLR) entries for our test
data (that have been created in the previous steps) on each node.

4. Create the initial Node Information Repository (NIR) entries on each node.

5. Initiate the Automated Dynamic Replication Process (ADRP) on every node,
which will create and execute Reliable Copy Process Out (RCPOut) jobs, which
will create replicas on two other nodes (as described earlier).

6. Initiate the State Dissemination Process (SDP) on every node, so that the RLRs
and NIRs across the network are updated with the newest information regard-
ing the locations of all replicas throughout the network, and additional infor-
mation about all nodes present in the DSN.

These steps are part of every test scenario, where they are executed at the beginning
before any actual tests of a scenario are executed. Figure 5.5 depicts the created initial
DISTARNET network state.

158

5. Evaluation

DISTARNET NETWORK

Image Archives

node01

node04

node03

node02

node01

node02

node03

node04

node01

node01

node02

node02

node03node03

node04

node04

100 Image and 100 Annotation DAOs
Ingested on this Node (Metadata + Bitstream)

DISTARNET System Node

DISTARNET Sub-Network (DSN)

DISTARNET Network

node

Figure 5.5: DISTARNET Network of Four Image Archives after Initialization

This initial network state represents the state of the DISTARNET network after all
nodes have been ingested with the digital objects that need to be archived (steps 1. -
4.), and after additional replicas have been created and distributed across the archival
network (steps 5. - 6.).

5.2.2.1 Test Scenario 1: Node Destruction

In the first test scenario, we simulate the use case, in which one of the nodes in the
DISTARNET network of Image Archives has permanently gone offline (e.g., destruc-
ted through an earthquake, flood, etc.).

This scenario represents an extreme situation. Nevertheless, its occurrence needs
to be countered promptly as this event endangers all the DAOs throughout the net-
work, whose replicas were stored on the now destructed node, as the required overall
redundancy prescribed by the preservation policies is not upheld anymore. The sys-
tem needs to employ measure to bring the DISTARNET network back to a stable state.
This stable state must provide the same redundancy of the stored content as it was
before the occurrence of the node destruction.

To pass successfully this test scenario, the archive network needs to pass a series of

159

5. Evaluation

test cases that are testing the system for the following behavioral sequence:

1. After a node in the network is killed, the other nodes in the network must detect
through the Periodic Neighbor-Node Checking Process (PNCP) that a node is
lost.

2. The next node in the responsibility chain must take over the responsibility for
the DAOs ingested on the lost node.

3. The node taking the responsibility must initiate the creation of additional repli-
cas in the network, to compensate for the lost replicas stored on the missing
node.

To verify if the DISTARNET network under test is behaving as described, we use a
series of test cases that verify the state of the network at key points in time, and is
structured as follows:

1. Initialize the DISTARNET network under test to the initial state as described
earlier.

2. Induce test scenario by shutting down NODE01.

3. The PNCP running on every node (NODE02, NODE03, and NODE04) detects that
NODE01 is lost. After Lost Node detection occurs, the Node-Lost Process (NLP)
should be started automatically on all nodes, after which NODE02 should have
taken responsibility for the DAOs of NODE01 as it is the next node in the respon-
sibility chain after NODE01 in our setup. Also, all nodes should have initiated
ADRP to create additional replicas on other nodes, countering the disappear-
ance of NODE01.

4. To verify that the network of nodes has reached a stable state, we check at the
end a sample of RLR entries on every node, to see if there are again three replicas
of each nodes DAOs in the DISTARNET network.

In this test scenario, we only induce one failure, from which the DISTARNET network
automatically recovers from. The initiated recovery process can tolerate additional
failures during recovery, which will be covered in the multi-failure test scenario in
Section 5.2.2.4. The recovery from the loss of a node, and even multiple nodes at

160

5. Evaluation

the same time, and the recreation of the lost replicas stored on these nodes is only
restricted by the availability of other replicas of the same DAO in the DISTARNET
network. If all replicas of a DAO are lost at the same time, then the recovery can not
be performed. In the case that at least one replica of the DAOs is available, then the
remaining nodes will be able to create additional replicas, and bring the DISTARNET
network back to a stable state. The idempotent nature of the DISTARNET processes,
allows them to be restarted in case of a failure during their execution, until a success-
ful outcome, or a definable retry threshold is reached. In the case of the retry thresh-
old, notifications would be dispatched, and external operator intervention would be
needed.

5.2.2.2 Test Scenario 2: Content Corruption

Again as before, we use the network of Image Archives, and now we simulate in this
scenario the use case, where on one node, parts of the archived content, i.e., the DAOs
become corrupted.

This is a likely event, that will occur at a higher rate than the previously discussed
scenario involving node destruction, especially in larger archives, as the number of
for example, hard-disk failures rises with the number of deployed drives. When this
event occurs it needs to be dealt with immediately as any subsequent content corrup-
tion on say other nodes, can lead in the worst case to a complete and permanent loss
of the archived content, if as a result of content corruption all the replicas on local and
remote nodes of the same DAO become unusable.

The DISTARNET network under test will need to present the following behavior,
to pass successfully this test scenario:

1. Periodic Integrity Checking Process (PICP) should check all local DAOs and
find corrupted content on the node on which the corruption has happened.

2. The node will then initiate the repairing of the corrupted DAOs by getting fresh
copies of the missing content from other nodes in the network.

As before, we use a collection of test cases to verify the correct behavior. The collection
of test cases will does the following:

1. Initialize the DISTARNET network under test to the initial state as described
earlier.

161

5. Evaluation

2. Induce scenario by deleting the bitstream files on NODE01 of 10 different DAOs.

3. The PICP running on NODE01, should detect the corruption of the DAOs, and
automatically initiate the DAO Repairing Process (DRP) for each detected cor-
ruption.

4. To verify that the DISTARNET network was restored to the state before the cor-
ruption occurred, we wait for DRP to finish, and for the execution of PICP. This
time PICP should not find any corrupted DAOs.

5.2.2.3 Test Scenario 3: Data Format Obsolescence

In our third scenario, we look at the use case, of data format obsolescence. In this
use case, the interpretability of some of the DAOs in the DISTARNET network is
threatened by an obsolete data format. To counter this threat, we need to perform a
data format migration task.

As we want to provide a long-term preservation solution with DISTARNET, the
task of data format migration is very likely to happen in the future of every archive.
As time goes by, the requirement of interpretability of the archived content will raise
the need for data format migration as data formats become inevitably obsolete. As
such, we need to provide the means to allow controlled changes to the archived con-
tent, and subsequently consistently propagate these changes throughout the network
to all the remote replicas.

To pass successfully this test scenario, our DISTARNET network of Image Archives
must provide the following behavior:

1. Execute migration job.

2. The additional representation created in the course of the migration job exe-
cution must be appended to the DAO for which the data format migration is
performed.

3. The DAO’s checksums (graph and bitstream) need to be updated.

4. The updated DAO (graph and bitstream) will need to be sent out to all remote
nodes where the old version is stored.

162

5. Evaluation

As before, the correctness of behavior is verified through a collection of test cases,
which contains the following steps:

1. Initialize the DISTARNET network under test to the initial state as described
earlier.

2. Induce scenario by creating a migration job (e.g., containing instructions to cre-
ate additional representations by converting TIFF bitstreams to J2K bitstreams)
in NODE01, which should be detected on this node, and lead to the execution of
the Data Format Migration Process (DFMP) on NODE01.

3. To verify if the DISTARNET network has achieved a consistent state after the
migration job has finished, we run on NODE01, NODE02, and NODE03 a check
against the Catalog, to see if the additional representation was created, and dis-
tributed to the other nodes storing replicas of the DAO for which the DFMP was
run.

4. Additionally, PICP will run on every node, which should not find any corrupted
content. This will test if the appending of the created representation, and the
recalculation of the checksums was done correctly.

5.2.2.4 Test Scenario 4: Multi-Failure

In our last test scenario, we run the DISTARNET network of Image Archives through
a simulation of a combination of infrastructure failure, content corruption, and data
format migration task happening at the same time.

This scenario represents the worst case, which should not be very common, but is
still a possibility, and needs to be dealt with. As in all the other previous scenarios, the
goal is to have at the end of the scenario, a DISTARNET network of Image Archives,
which remaining nodes reside in a stable and consistent state.

Our archival network needs to provide the following behavioral sequence to pass
successfully this test scenario:

1. PNCP on all nodes should detect that NODE01 is lost, NODE02 should take over
responsibility and create additional replicas.

2. PICP on NODE02 should detect DAO corruption and initiate DRP.

163

5. Evaluation

3. Execute migration job on NODE03.

The collection of test cases verifying the correct behavior contains the following steps:

1. Initialize the DISTARNET network under test to the initial state as described
earlier.

2. Induce scenario by shutting down NODE01, deleting the bitstream files on
NODE02, and creating a data format migration job on NODE03.

3. The PNCP should run on every node, and should find that node01 is lost. After
Lost Node detection occurs, the Node-Lost Process (NLP) should be started on
every node. As before, NODE02 should create an additional replicas for DAOs
from NODE01, and also NODE03 and NODE04 should created additional repli-
cas.

4. The PICP running on NODE02, should detect the corrupted DAOs, and repair
them.

5. The presence of a DFM job on NODE03, leads to the execution of the DFMP,
which should create an additional representation and update the DAOs on
NODE02 and NODE03 which now store the remote replicas as NODE01 is down.

6. To verify that our network of Image Archives has reached a stable and con-
sistent state, check a sample of RLR on every node, to see if there are again 3
replicas of each nodes DAOs in the network. Also, we check the Catalog on
every node to see if the additional representation created by DFMP is present
and was distributed around the network.

7. Additionally, PICP will run on every node, which should not find any corrupted
content, verifying that our archival network is in a consistent state.

5.2.2.5 Qualitative Evaluation Summary

For the qualitative evaluation of the implemented DISTARNET system, we have de-
fined a test setup that represents a cooperative network of four Image Archives,
where each archive deploys a node running the DISTARNET system software. For

164

5. Evaluation

the evaluation, we have used four scenarios, derived from real world use cases, which
cover the core functionalities of the DISTARNET system.

The four scenarios cover failures ranging from infrastructure to content faults and
are implemented as a collection of test cases. In the first scenario, we simulate the de-
struction of one node, in the second scenario we simulate the corruption of archived
content, in the third scenario we simulate data format migration, and in the fourth
scenario we combine all three together.

For each of the four scenarios, the system passes the execution of all the defined
test cases without any errors. This error free execution lead us to the conclusion that
the core functionality provided by the implementation of the DISTARNET system is
working correctly. As the prototype implementation is closely based on the concepts
described in Chapter 3, we further conclude that the therein described system model
for a distributed long-term digital preservation is also validated.

5.2.3 Quantitative System Evaluation

In the following quantitative evaluation, we use the DISTARNET network scenario
described in Section 5.2.1. This scenario is a good representative of the scenarios
discussed in Section 1.1, which we will later on discuss further in the context of the
results of the quantitative system evaluation.

The quantitative system evaluation we are performing is based on a combination
of practical measurements in combination with analytical approximations. For the
purpose of this evaluation, we thus measure the execution time of different processes
running on one node, with the deployed DISTARNET prototype as used in the quali-
tative evaluation. We then combine this measure with approximations for inter-node
transfer times, to attain a comprehensive measure, that represents a good approxima-
tion of a running DISTARNET network. Additionally, we extend these results with
additional extrapolated data points.

The goal of this evaluation is to provide approximations regarding the quantita-
tive performance of the system, i.e., how many TB of data can be managed on one
node under the constraint that the main DISTARNET processes need to run and fin-
ish within 24 h, which will allow us to compare these results with the results obtained
during the evaluation performed in Section 5.1.1. As this 24 h constraint represents a
very conservative restriction, we also discuss more practical and relaxed alternatives,

165

5. Evaluation

Scaling Factor 1 10 100 1’000 10’000 100’000 1’000’000
Nr of Image DAOs 100 1 K 10 K 100 K 1 M 10 M 100 M

Overall Archive Size 10 GB 100 GB 1 TB 10 TB 100 TB 1 PB 10 PB

Table 5.7: Overall Data Collection Size per Scaling Factor

and how they affect the overall result.

5.2.3.1 Test Data

The data that we use during the evaluation of the DISTARNET archiving system
is the same as described in Section 5.2.1 containing generated synthetic content. To
provide an easier discussion, we assume that the overall size of an image DAO is
100 MB (i.e., just the size of the TIFF bitstream, neglecting the Dublin Core, and JPEG
representations), and neglect the size of the annotation DAO. Taking this data collec-
tion as the base for our evaluation, i.e., scaling factor F = 1, we can derive through
extrapolation the overall data collection size for each scaling factor we use in the eval-
uation. This data is presented in Table 5.7. As an example, for a scaling factor F = 100,
we thus have 100 collections with each containing 100 image DAOs and 100 annota-
tion DAOs. As we only count the image DAOs with 100 MB each, we totally have 100
times 100 image DOAs equaling to 10’000 image DAOs with an approximated overall
data collection size of 1 TB.

5.2.3.2 Evaluation Procedure

The mix of DISTARNET processes we use in the evaluation corresponds to the system
process benchmark queries and mix as described in Section 5.1.1.3 and 5.1.1.4.

For the evaluation we time the duration a DISTARNET node system needs to ex-
ecute the process mix with a data scaling factor F = 1, and then extrapolate the
theoretical system performance for the different scaling factors under a linear scaling
assumption.

Process Mix

In the first step, we run the Periodic Integrity Checking Process (PICP) over the Image
Archive data, where we beforehand deleted 10 % of the TIFF images corresponding

166

5. Evaluation

Scaling Factor 1 10 100 1’000 10’000 100’000 1’000’000

Image DAOs 100 1 K 10 K 100 K 1 M 10 M 100 M
Archive Size 10 GB 100 GB 1 TB 10 TB 100 TB 1 PB 10 PB
Duration w. 100 Mb/s 129.415 s 0.36 h 3.59 h 35.95 h 15 d 150 d 1’495 d
Duration w. 1 Gb/s 50.894 s 0.14 h 1.41 h 14.14 h 6 d 59 d 589 d

Table 5.8: Evaluation Results Overview

to a 10 % data loss rate. The PICP will detect the data loss, and start the DAO Repair-
ing Process (DRP) to repair the data by using the Reliable Copy Process In (RCPIn) to
recover fresh copies of the lost data. In the second step, the Data Format Migration
Process (DFMP) will run for 1 DAO, converting a TIFF representation to a JPEG2000
representation, and using the Reliable Copy Process Out (RCPOut) to send the up-
dated DAO with the newly created representation to two remote nodes.

Inter-Node Transfer Times

To attain a good approximation of a running DISTARNET network, we use approx-
imations of the inter-node network transfer times, representing time that we need
to add to the times previously measured, to compensate for time needed for net-
work traffic. Using approximated values gives us one parameter more, which we
can regulate, and provides us with additional data points for the discussion. For the
approximation of the inter node transfer times, we use two network bandwidth as-
sumptions. The first representing a 100 Mb/s network, with a theoretical transfer
capability of 12.5 MB/s, where it theoretically takes 8 seconds to transfer 100 MB of
data. The second representing a 1 Gb/s network between the nodes, with a theoret-
ical capability of 125 MB/s, where it theoretically takes 0.8 s to transfer 100 MB of
data, over the wire.

5.2.3.3 Quantitative Evaluation Results

Table 5.8 shows the evaluation results for the different scaling factors (timed and ex-
trapolated), network bandwidths, and additionally also the overall archive sizes with
the corresponding number of image DAOs. The colored cell backgrounds reflect the
adherence to the 24 h constraint imposed for the maximum overall run-time of the
processes, where green lies under 24 h, and red over the 24 h mark. In the metadata

167

5. Evaluation

management benchmark in Section 5.1.2.4 we have estimated the overall archive size
that can be managed with DISTARNET somewhere between 1 PB and 10 PB. In com-
parison, now that we also consider the bitstream data and the additional time needed
for checksum calculation, network transfer, and data format migration, we see that
the estimated overall archive size that we can manage on one node, lies around 10 TB.
Depending on the assumed network bandwidth, either just under 10 TB with the
lower assumption, or little over 10 TB with the higher bandwidth assumption.

As said earlier, the 24 h constraint is a very conservative assumption, coming from
the metadata management benchmark section. For a productive running system, we
can relax this assumption, if for example the DISTARNET node uses a RAID storage
system, providing higher data storage reliability and thus lessening the need for fre-
quent integrity checking. In the case with the higher network bandwidth, we could
achieve archive sizes of 100 TB, if we allow the processes to run for almost a whole
week, or even 1 PB if we give the node 2 months for the running of the processes.

Table 5.9 shows a more detailed representation of the evaluation results for the
scaling factor F = 1, and the two network bandwidths. Here, we can additionally
see the overall distribution of the time contributions, and also within each process
mix. When looking at the overall time, then the PICP / DRP / RCPIn mix (1) is
responsible for 95 % of the duration. Looking further at (1), we see that in the case of
the slower network, the main time consumer is the RCPIn part of the mix (64.76 %).
When looking at (1) in the case of the faster network, then the situation is reversed.
The main time contribution stems from the checksum calculation including a small
amount of process execution overhead. If we now look at the DFMP / RCPOut mix
(2), then we will see a similar picture. In the case of the slower network, the main
contribution comes from the network transfer in RCPOut with approx. 2/3, whereas
the TIFF to JPEG 2000 conversion uses approx. 1/3 of the time. Here, the picture also
reverses as before, when looking at the faster network scenario.

Figure 5.6 represents a different depiction for the overall time durations of the eval-
uation runs for both network speeds, and their distribution within each process mix.

With the overall goal to achieve a better performance of the system, a large step was
done when going from a slower to a faster network connection. To further increase
the performance, we need to decrease the processing time needed for checksum cal-
culation in (1) and also of TIFF to J2P conversion in (2). One option is if we assume
to be able to achieve faster processing by a factor of 10, by means of better hardware

168

5. Evaluation

Scaling Factor F=1 (100 Image DAOs, 10 GB)
100 Mb/s 1 Gb/s

abs rel abs rel

(1) PICP / DRP / RCPIn 123.534 s 95.46 % 48.638 s 95.57 %
(Process + Checksum) (43.534 / 35.24 %) (40.638 s / 83.55 %)

(RCPIn for 1 GB) (80 s / 64.76 %) (8 s / 16.45)

(2) DFMP / RCPOut 5.881 s 4.54 % 2.256 s 4.43 %
(Process Execution) (0.111 s / 1.89 %) (0.086 s / 4.81 %)

(TIFF to JPEG 2000 for 100 MB) (1.77 s / 30.10 %) (1.77 s / 78.46%)

(RCPOut for 50 MB) (4 s / 68.02 %) (0.4 s / 17.73 %)

TOTAL 129.415 s 100 % 50.894 s 100 %

Table 5.9: Evaluation Results for F = 1

100 Mb/s 1 Gb/s rel rel
PICP / DRP / RCPIn
DFMP / RCPOut

123.534 48.638 95.46 % 95.57 %
5.881 2.256 4.54 % 4.43 %

0 s

38 s

75 s

113 s

150 s

100 Mb/s 1 Gb/s

PICP / DRP / RCPIn DFMP / RCPOut

4.54%

95.46%

4.43%

95.57%

Figure 5.6: Bar Plot of the Results with Scaling Factor F = 1

169

5. Evaluation

(multiple cores, high performance disk arrays), then this would roughly cut the over-
all processing time by 30 % in the case of the slower network connection, and by 75 %
in the case of the faster network connection. Looking at Table 5.8, this would provide
a shift to the “right” for the case with the lower bandwidth, and almost a shift for the
other case.

If we additionally relax the 24 h constraint in conjunction with the rise in process-
ing power, then the 1 PB archive size can be achieved with overall processing times
around 2 weeks. To shift further to the right side of the performance table, we would
than again need to increase the network bandwidth. One inexpensive option to fur-
ther increase “network bandwidth” between sites would be to simply ship the hard-
drives by courier.

Another feasible possibility to increase the overall performance of a DISTARNET
site, besides better hardware, would be by deploying multiple nodes, where each
node could run on “commodity hardware”, and would manage a fraction of the
archive. As before the limiting factor would be the needed equivalent rise in the
overall network connectivity for the whole site.

In summary, barring any measures to increase the performance of a node, when us-
ing commodity hardware with current technology, we estimate that one DISTARNET
node can effectively manage around 10 TB of archived data under the 24 h constraint.
Under a more relaxed constrained of 2 weeks, and using high performance hardware,
we estimate that the system can manage around 1 PB of archived data.

5.3 Summary

In this chapter, we have presented and discussed three different evaluations concern-
ing different aspects of the DISTARNET system implementation. The first, regard-
ing triple-store usage for the management of metadata, as used by DISTARNET. Sec-
ondly, a qualitative evaluation of the implemented main DISTARNET processes, and
lastly, a quantitative evaluation of the implemented DISTARNET processes.

We have defined a benchmark for process-based metadata management tailored
to a long-term digital preservation setting, and we have evaluated the scalability
characteristics of metadata management using the Jena triple-store to find out po-

170

5. Evaluation

tential scalability restrictions. The evaluation results provided show that even with
commodity hardware, archive sizes of up to approx. 5 PB can be supported with
triple-store-based metadata management. This evaluation has shown that the usage
of triple-stores for the storage of metadata used in a long-term preservation environ-
ment is a viable option, and will not present a limiting factor.

The second evaluation, with a focus on the qualitative aspects, has shown that the
implementation of the core DISTARNET processes as described in Chapter 4 are ca-
pable of performing the tasks as they where specified and designed in Chapter 3. This
result also validates the developed novel concepts, onto which the implementation is
based.

The third, the quantitative evaluation of our implementation has shown what col-
lection sizes are effectively manageable in regard to the used hardware, and time
constraints for the running of the processes.

In Section 1.1 we have introduced three exemplary scenarios in which a DISTAR-
NET system could be used. After the quantitative evaluation of the implementation
of the DISTARNET system, we see that these scenarios are viable, either with some
constraints regarding the collection size, or with added hardware and network re-
quirements in conjunction with a relaxed maximal process running time.

In the scenarios of a Multinational Pharmaceutical Corporation, and the National
Museum of History & Native Art, the main constraint will be the requirement for
high-speed network connectivity between the DISTARNET nodes. While this re-
quirement also imposes a constraint in the scenario with the Cloud Storage Provider,
when “only” deployed on a per data-center basis, the added network speed require-
ment could be met, allowing large collection sizes. If we additionally relax the max-
imum process running time, then all three scenarios can provide a large collection
sizes in the region of 1 PB.

171

6
Related Work

In this chapter, we discuss the similarities and differences between DISTARNET and
the representatives of three categories of systems. The list of projects in each category
is not exhaustive and should only provide an overview. The first category, Digital
Library, contains approaches for providing digital library services in a distributed en-
vironment consisting of cooperating nodes. The second category, Digital Repository
- Archive, contains projects which are closing the gab between digital repositories as
managers of the holdings, and the archiving services providing long-term preserva-
tion. The third category, the Digital Archive, contains projects providing management
of the holdings fused together with archiving services, providing long-term preser-
vation.

Digital Library

In this category, we will mention two representatives, BRICKS [97] and DILIGENT [98]
/ D4Science [99], which are projects for providing library services in a distributed en-
vironment, in which the participating nodes build a cooperating network. BRICKS
is a P2P-based digital library that provides, management, easy access, and sharing of
content and resources between participants. DILIGENT/D4Science is a Grid-based
digital library infrastructure providing a virtual research environment, in which users
can manage, share content and resources, and collaborate with each other.

Both projects allow flexible organization of materials with support for complex
digital objects, user annotations, and building of collections/subcollections. These
features are also found in DISTARNET. Also, similar is the distributed cooperative
nature which these projects share with DISTARNET. The main difference in regard

172

6. Related Work

to DISTARNET is that these projects, and digital libraries in general, do not provide
long-term preservation services.

Digital Repository - Archive

Fedora Commons [100] and DSpace [101] are open source projects that allow the cre-
ation of digital repositories for management of digital objects. Both provide sup-
port for complex objects, where Fedora Commons additionally has a more flexible
data model, which is partly based on RDF. DSpace and Fedora Commons allow only
simple management of the archived materials where collections/subcollections can
be created. More advanced management features like creating annotations, as sup-
ported by the DISTARNET data model, is not supported by both projects. As Fe-
dora Commons is a framework which is meant to be used to create individual digital
repository solutions, there are projects working on creating an annotations frame-
work for Fedora Commons which integrates the Open Annotations Data Model1.

To close the gap between the management of digital holdings and preservation
services, these two projects have merged together into DuraSpace [102], which is cre-
ating DuraCloud [103]. DuraCloud provides both storage and access services, includ-
ing content replication and monitoring services that can span multiple cloud-storage
providers. The idea is that digital repositories (e.g., Fedora, DSpace) using Dura-
Cloud can expand their systems, and provide long-term preservation capabilities, or
individuals can use DuraCloud directly through the DuraCloud UI, as a long-term
preservation system. DuraCloud and DISTARNET are similar as both provide pro-
cesses for the management of digital objects necessary for digital long-term preserva-
tion. The main difference lies in the location of the preservation services. In the case
of DuraCloud they are completely situated in the cloud, and allow no cooperation
with other institutions while in the case of DISTARNET they are situated locally on
the premises of each cooperating site in the network.

SHERPA DP (Securing a Hybrid Environment for Research Preservation and Ac-
cess, Digital Preservation) [104] describes a preservation framework which distin-
guishes between institutional repositories (e.g., DSpace, Fedora) acting as content
providers, and between external service providers with expert knowledge in long-
term preservation. The service providers would provide long-term archiving ser-

1http://www.openannotation.org

173

http://www.openannotation.org

6. Related Work

vices, for the content providers, which would transfer the data and metadata into the
preservation archive of the service provider right after it is ingested into the content
providers repository. In the case of the SHERPA DP architecture, the preservation
services are defined to be build centrally, and shared between different institutional
repositories.

Both of the presented project can be seen as use case for DISTARNET, where the in-
stitutional repositories could cooperatively run a preservation network, which would
then serve the preservation services to the individual institutional repositories.

Digital Archive

LOCKSS (Lots Of Copies Keep Stuff Safe) [105] provides digital preservation through
high replication in a peer-to-peer network. The main focus lies on the preservation
of journals. The idea behind LOCKSS is to provide long-term preservation through a
larger number of cooperating nodes, where for each object at least 7 copies are kept
in the network, needed to provide recovery and repair in case damage occurs. The
LOCKSS software can be used to build open or closed networks. This project shares
the common idea with DISTARNET for a cooperating network, and using shared re-
sources to provide preservation services. The followed cooperative and distributed
approach allows generally lower infrastructure, and maintenance costs, the ability
for virtually unlimited growth, and also a higher degree of availability and reliability,
as the archiving infrastructure is distributed among the participants, and the overall
resources used are shared among all participants. However, the focus of the LOCKSS
project is on journals, and it also does not provide advanced access functionalities like
annotations, collection/subcollection management, or data format migration func-
tionalities, like in the case of DISTARNET.

Cheshire 3 [106] focuses on building a component based framework integrating
data grid (e.g., Storage Resource Broker [107]), digital repositories (e.g., DSpace and
Fedora), and text and data mining systems (e.g., Cheshire). The similarities to DIS-
TARNET are the addressing of the twin aspects of access, e.g., support for complex
objects, collection/subcollection management, etc., and long-term preservation ser-
vices, by employing distributed technology for large-scale support.

kopal (Co-operative Development of a Long-Term Digital Information Archive) [108]
is a long-term archiving solution for electronic publications. It consists of koLibRI
(kopal Library for Retrieval and Ingest) and DIAS-Core, which is the core of IBM’s

174

6. Related Work

Digital Information Archiving System developed together with the National Library
of the Netherlands (Koninklijke Bibliotheek [KB]) as e-Depot [109]. It provides similar
functionality to DISTARNET by including support for complex objects, collection/-
subcollection management, etc., and long-term preservation services like replication,
integrity checking, and data format migration. Additionally, it provides support for
integrating emulation services. The main difference lies in its architecture as it is built
as a centralized system, not allowing to collaboratively share resources with other
institutions.

CASPAR (Cultural, Artistic and Scientific knowledge for Preservation, Access and
Retrieval) [110] is a long-term preservation service-based framework, with a strong
emphasis on preservation of representation information, the preservability of the
infrastructure itself, and validation of the proposed concepts. The strong focus on
preservation of representation metadata goes beyond of the features of DISTARNET.
While DISTARNET provides a data model which supports the preservation of repre-
sentation information with each object, the CASPAR approach additionally defines a
whole infrastructure for creating, registering, storing, and preserving extensive rep-
resentation metadata.

PLANETS (Preservation and Long-term Access through Distributed
NETworkS) [111], built on a service oriented architecture, provides a suite of software
tools and services to support the preservation and long-term access to digital content.
The main components are Plato, the Testbed, and the Interoperability Framework.
Plato [112, 113] provides preservation planning services, which interactively help the
user to identify the characteristics of the digital objects, and the best course of action.
The Testbed contains a corpus of 5000 sample digital objects, which can then be used
to test workflows or tools beforehand. The interoperability framework provides stan-
dard services such as authorization, authentication, orchestration, data and metadata
management. Additionally, through its service-based architecture allows the integra-
tion of third-party services (e.g., emulation services). Similarly to DISTARNET, the
PLANETS approach also supports complex objects, advanced digital object manage-
ment functionalities, and preservation processes providing integrity checking, and
data format migration.

SHAMAN (Sustaining Heritage Access through Multivalent ArchivingNg) [114],
uses iRODS [115] a integrated rule-oriented data grid (successor to SRB) as the im-
plementation technology, which provides transparent support for local and remote

175

6. Related Work

storage, i.e., allowing to additionally leverage the Cloud [116] and use it for storage.
It provides a distributed, preservation policy, and workflow driven preservation envi-
ronment, with a strong focus on preservation of context, discoverability of the hold-
ings, and risk management through geographically dispersed replication support.
Like DISTARNET, this project provides support for complex objects, advanced digi-
tal object management functionalities, and long-term preservation processes, provid-
ing integrity checking, replication, and data format migration. The main difference
lies in its larger orientation as a framework, from which individual solutions can be
developed. For example, it would be theoretically possible to implement a preserva-
tion solution with SHAMAN, in which the DISTARNET concepts and processes are
implemented as workflows.

Hoppla [117] is an archiving solution that combines back-up and fully automated
migration services for data collections in environments with limited expertise, and
resources for digital preservation. By employing data format identification (e.g.,
DROID) and characterization tools (e.g., JHOVE), and through externally defined
rules, the system provides file format migration services that will ensure long-term
readability and usability of the digital objects. The project focuses on automated data
format migration with expert knowledge provided as external services, whereas DIS-
TARNET provides data format migration capabilities, but requires an expert user.
Also, Hoppla depends on the locally provided storage, and would need to be com-
bined with some other service with replication and integrity checking features, for
providing long-term preservation such as DISTARNET does.

176

7
Conclusion and Future Work

In the following chapter, we conclude the work, and provide an overview over a
number of topics which we deem interesting to be followed on in the future.

7.1 Conclusion

By combining P2P and Grid technology, the developed DISTARNET concepts de-
scribe a fully distributed, fault tolerant archiving environment with process-based
autonomic behavior governed by preservation policies. Through self-configuration,
self-healing, and self-optimization capabilities, the environment autonomously pro-
vides dynamic replication, automated consistency checking, and recovery of the
archived digital objects. By developing a highly flexible data model and the speci-
fication of sophisticated management processes, the environment provides support
for complex data objects, user generated annotations, collections, and arbitrary links.

By deploying a DISTARNET System, an implementation based on these concepts,
collaborating geographically dispersed organizations can build an Internet-based long-
term preservation system that meets the requirements for reliable and fault-tolerant
management of large digital archives.

Replication and Distribution

DISTARNET provides a fully distributed environment, where collaborative geograph-
ically dispersed organizations can share resources, and through automated processes
provide secure and reliable replication and distribution of the archive materials.

177

7. Conclusion and Future Work

Fault Class Failure Detection Reaction

Distributed Node Loss, PNCP ADRP

Infrastructure Node Dependability PNCP ADRP

Content DAO Corruption PICP DRP

Data Format obsolescence PICP DFMP

Node Engine Process Execution Failure PEL execution of corresponding recovery process

Table 7.1: DISTARNET Failure Recovery

Fault-Tolerance and Failure Management

Due to the continuous monitoring of nodes, the DISTARNET system detects abnor-
mal conditions or problems that may harm its proper functioning and is able to re-
cover automatically from those situations, by means of predefined processes. Ta-
ble 7.1 shows a classification of faults from which a DISTARNET can recover.

Hardware Problems caused by failure (e.g., power failure, hardware failure, etc) or
disaster (e.g., natural disaster, fire) can result in the destruction of the whole node,
or in the destruction or corruption of the stored information object containers. The
loss of a node is discovered through the PNCP which triggers a Node-Lost Event after
some predefined period of time because at first a Network Problem is assumed. In the
case of a Node-Lost Event this information is stored in the Node Information Repository,
the Replica Location Repository is updated, and both are propagated throughout the
network. Subsequently, the ADRP is started for the DAOs that are affected (network
wide redundancy) by the lost node.

Network Problems caused by lost network connection or an intermittent network
connection are detected through the PNCP. For a lost connection to a node to be clas-
sified as a network problem, upon the return of a node it has to be verified that the
node was running, only the network was down, and all DAOs are accounted for. Such
discovered network problems trigger an entry into the Node Information Repository
and are taken into consideration (e.g., reliability of a node) by the ADRP.

Problems with the Content of the archive caused through the corruption (e.g., hard-
ware problems, malicious acts, etc.) of the DAOs is discovered through the PICP.
Any detected corruption is logged correspondingly in the Node Information Repository
where it speaks about the reliability of a specific node, in the Replica Location Repos-
itory, and in the audit trail of the DAO for future reference. Also, subsequently the
DRP is triggered to resolve the problem.

178

7. Conclusion and Future Work

DISTARNET processes are able to Self Recover from problems encountered during
their execution. The PEL responsible for the execution of the processes, monitors and
logs every step of the execution. In the event of failure of any step, the corresponding
recovery action is triggered.

Management of Complex Information Objects

DISTARNET supports Complex Information Objects by providing a flexible data model,
and maintenance processes that can manage complex object. The Integrity of each
DAO is guaranteed through periodic integrity checking, and automated repair. The
Interpretability of the logical representation of the DAOs is guaranteed by processes
providing automated data format migration and is supported by the data model.

Scalability

Through the distributed nature of the system and the maintenance processes, DIS-
TARNET provides vertical scalability, i.e., size of the archived collection, and hori-
zontal scalability, i.e., number of collaboration sites. The quantitative evaluation re-
sults show that even with commodity hardware, archive sizes of up to approx. 1 PB
can be achieved.

Openness and Extensibility

Openness and extensibility are provided though the modular nature of the system,
where future extension or exchange of the modules is supported. Additionally, the
flexible data model can adapt to new needs that can arise in the future (e.g., in case of
new data formats, new metadata standards, etc.).

Resource Discovery and Load Balancing

Resource discovery and load balancing are supported through the fully distributed
design of the network, adaptability of the triggers to lower the overall load on the
nodes caused by the maintenance processes, and by the ADRP which optimizes the
usage of the storage resources provided in the network.

Authentication, Authorization, and Auditing

Authentication and authorization are supported by the virtual organization-based
organization of the DISTARNET Sub-Networks in which each participant needs to be

179

7. Conclusion and Future Work

authenticated and authorized to be part of the network. Auditing is supported by the
data model, which allows the storage of an audit trail within every DAO, and thus
receiving the same long-term care as the DAO itself.

7.2 Future Work

In the following section, we first discuss a few topics which are more technical in na-
ture, and pertain to the current implementation. Afterwards, we provide an overview
over a number of topics going beyond our current work, which we find interesting
and important that possibly warrant future research efforts in those directions.

Extending the Current Implementation

User-Facing Functionalities

The conceptual development and implementation effort was limited to the develop-
ment of core functionalities representing our vision of a distributed archival network.
As such, the implementation does not provide an user interface, and the correspond-
ing modules need to be extended to provide a visual interface providing ingest, man-
agement, and access functionality to the user.

System Functionalities

To optimize the Data Format Migration Process (DFMP), remote execution needs to
be addressed as it would be more efficient to perform DFM on remote nodes where
the data is stored. Further, how can it be ensured, that the remote node has the ca-
pabilities to execute the migration scripts, and how can the remote node be protected
from possible maliciously behaving scripts? Could some form of sandboxing be used
to execute the scripts in a controlled environment?

As we have multiple copies of a DAO distributed around the network, how can
we provide merging or synchronizing of DAOs if changed on two or more nodes?
Further, how can we provide versioning for any changes applied to a DAO?

180

7. Conclusion and Future Work

Future Topics

Semantic Digital Archives, Context, and Process Preservation

The current development in the digital library community is going toward Seman-
tic Digital Libraries [118]. This development should also be followed in the digi-
tal preservation community leading to research in the direction of Semantic Digital
Archives (SDA). We understand SDAs as a further development of current ideas for
a Digital Preservation System, combined with Semantic Web technologies, with the
goal to allow not only access to the archive on the basis of archival metadata, but also
according to the connections the archived objects have with internally or externally
defined concepts. The Data Model implementation of DISTARNET is based on RDF,
providing a good basis for such further development.

In digital preservation, context is identified as a critical aspect of preservation meta-
data. An extensive discussion outlining the importance of context in digital preserva-
tion is provided in [119]. Under context, we understand all metadata which describe
the objects origins, composition, and purpose. A development toward SDAs can also
facilitate the capturing of the context for the archived digital objects. Further, as the
designated communities evolve, their knowledge expands, so will also the usage of
the digital objects, and thus the context evolve over time. Means need to be devel-
oped to also allow to capture this change over time.

The amalgamation of Web 3.0 and long-term digital preservation is a big step, but
we need to go further. At present, we preserve static objects, or in the best case, a
static representation of something dynamic. Following [120], the future development
needs to proceed toward the preservation of processes. At present, for example, when
some experiment, or some other arbitrary process is executed, we are presented with
results in the form of data, which are then preserved together with metadata describ-
ing the context. The goal now would be to preserve the whole execution chain of the
process for the future, allowing assessment of their authenticity upon re-execution,
and capturing the whole context.

Ontology-Based Process Definitions

The defined and executed preservation processes represent an important part of ev-
ery preservation environment. In the DISTARNET project, we developed them con-

181

7. Conclusion and Future Work

ceptually and afterwards realized them in the implementation. Even if we use open-
source software libraries, eventually, the implementation will become obsolete, and
will need to be exchanged. Also, the implementation we provide is highly specific
to our implementation and can not be shared without a significant effort with other
projects.

The goal now would be to provide a conceptual description of the DISTARNET pro-
cesses as an ontology following the work in [121]. An ontology provides the needed
expressive power, and facilitates information reuse. It could be further integrated
with other internal ontologies, shared and extended in order to incorporate future
changes. The use of established standards in the development of the ontology, such
as the OWL language, will ensure that the defined processes defy obsoleteness in the
future. The instances of the process definitions could then be retrieved using SPARQL
queries and executed by a custom Process Execution Logic.

Further, the now conceptually defined processes should also be validated, to guar-
antee their executability. Also, as DISTARNET performs preservation actions auto-
matically, a form of validation of the executed actions against the preservation plan
stored in the ontology, would provide additional feedback if the system is behaving
as it should.

182

Bibliography

[1] “Reference Model for an Open Archival Information System (OAIS) - Blue
Book,” Consultative Committee for Space Data Systems (CCSDS), Tech. Rep.
January, 2002. [Online]. Available: http://nssdc.gsfc.nasa.gov/nost/isoas/
us19/650x0_20010226rl.pdf 1, 2.2

[2] “Reference Model for an Open Archival Information System (OAIS) - Pink
Book - Draft,” Consultative Committee for Space Data Systems (CCSDS), Tech.
Rep. August, 2009. [Online]. Available: http://public.ccsds.org/sites/cwe/
rids/Lists/CCSDS6500P11/Attachments/650x0p11.pdf 1, 2.2

[3] R. Moore, “Towards a theory of digital preservation,” International Journal
of Digital Curation, vol. 3, no. 1, pp. 63–75, 2008. [Online]. Available:
http://ijdc.net/index.php/ijdc/article/view/63 2.1.1

[4] M. Mois, C.-p. Klas, and M. H. F.-h. De, “DIGITAL PRESERVATION AS COM-
MUNICATION WITH THE FUTURE Faculty for Mathematics and Computer
Science FernUniversität in Hagen,” Science, 2009. 2.1.1

[5] T. Kuny, “A Digital Dark Ages ? Challenges in the Preservation of Electronic
Information,” in 63rd IFLA General Conference, 1997. 2.1.1

[6] J. Rothenberg, “Avoiding Technological Quicksand: Finding a Viable
Technical Foundation for Digital Preservation. A Report to the Council on
Library and Information Resources,” Tech. Rep., 1999. [Online]. Available:
http://eric.ed.gov/ERICWebPortal/recordDetail?accno=ED426715 2.1.1, 2.1.3

[7] D. Swade, “The Problems of Software Conservation,” Resurrection, Computer
Conservation Society, no. 7, 1993. [Online]. Available: http://www.cs.man.ac.
uk/CCS/res/res07.htm#f 2.1.3

[8] “Roseta Project.” [Online]. Available: http://rosettaproject.org 2.1.3

183

http://nssdc.gsfc.nasa.gov/nost/isoas/us19/650x0_20010226rl.pdf
http://nssdc.gsfc.nasa.gov/nost/isoas/us19/650x0_20010226rl.pdf
http://ijdc.net/index.php/ijdc/article/view/63
http://eric.ed.gov/ERICWebPortal/recordDetail?accno=ED426715
http://www.cs.man.ac.uk/CCS/res/res07.htm#f
http://www.cs.man.ac.uk/CCS/res/res07.htm#f
http://rosettaproject.org

Bibliography

[9] K. Wendel and W. Schwitin, “Eine Arche zur Rettung digitalen Kulturguts,”
Tech. Rep. September 2006, 2007. [Online]. Available: http://elib.uni-stuttgart.
de/opus/volltexte/2007/3011/pdf/ARCHE_v1.6_25.01.2007.pdf 2.1.3

[10] A. Amir, F. Müller, and P. Fornaro, “Towards a channel model for
microfilm,” Proceedings of IS&T’s Archiving Conference, no. 1, 2008. [Online].
Available: https://www.math.uzh.ch/fileadmin/user/aireeal/publikation/
peviar_microfilm.pdf 2.1.3

[11] F. Müller, P. Fornaro, L. Rosenthaler, and R. Gschwind, “PEVIAR: Digital
Originals,” Journal on Computing and Cultural Heritage, vol. 3, no. 1, pp. 1–12,
Jun. 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1805961.
1805963 2.1.3

[12] S. Schilke and A. Rauber, “Long-term archiving of digital data on microfilm,”
International Journal of Electronic Governance, vol. 3, no. 3, 2010. [Online].
Available: http://inderscience.metapress.com/index/T133878207N8873W.pdf
2.1.3

[13] R. A. Lorie, “Long term preservation of digital information,” in Proceedings
of the first ACM/IEEE-CS joint conference on Digital libraries - JCDL ’01. New
York, New York, USA: ACM Press, 2001, pp. 346–352. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=379437.379726 2.1.3

[14] “The Computer History Simulation Project.” [Online]. Available: http:
//simh.trailing-edge.com 2.1.3

[15] E. Brewer, C. Dellarocas, A. Colbrook, and W. Weihl, “Proteus: A
high-performance parallel-architecture simulator,” Tech. Rep., 1991. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.7487
2.1.3

[16] M. Rosenblum, E. Bugnion, S. Devine, and S. a. Herrod, “Using the SimOS
machine simulator to study complex computer systems,” ACM Transactions on
Modeling and Computer Simulation, vol. 7, no. 1, pp. 78–103, Jan. 1997. [Online].
Available: http://portal.acm.org/citation.cfm?doid=244804.244807 2.1.3

184

http://elib.uni-stuttgart.de/opus/volltexte/2007/3011/pdf/ARCHE_v1.6_25.01.2007.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2007/3011/pdf/ARCHE_v1.6_25.01.2007.pdf
https://www.math.uzh.ch/fileadmin/user/aireeal/publikation/peviar_microfilm.pdf
https://www.math.uzh.ch/fileadmin/user/aireeal/publikation/peviar_microfilm.pdf
http://dl.acm.org/citation.cfm?id=1805961.1805963
http://dl.acm.org/citation.cfm?id=1805961.1805963
http://inderscience.metapress.com/index/T133878207N8873W.pdf
http://portal.acm.org/citation.cfm?doid=379437.379726
http://simh.trailing-edge.com
http://simh.trailing-edge.com
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.7487
http://portal.acm.org/citation.cfm?doid=244804.244807

Bibliography

[17] S. Herrod, “Using complete machine simulation to understand com-
puter system behavior,” Ph.D. dissertation, 1998. [Online]. Avail-
able: ftp://reports.stanford.edu/www/pub/public_html/cstr/reports/cs/
tr/98/1603/CS-TR-98-1603.pdf 2.1.3

[18] M. Burnet and R. Supnik, “Preserving Computing’s Past : Restoration
and Simulation,” Digital Technical Journal, vol. 8, no. 3, pp. 23–38,
1996. [Online]. Available: http://ftp.se.scene.org/pub/bitsavers.org/simh.
trailing-edge.com/docs/dtjn02pf.pdf 2.1.3

[19] J. Rothenberg, “An Experiment in Using Emulation to pre-
serve Digital Publications,” Koninklijke Bibliotheek, Tech. Rep.,
2000. [Online]. Available: http://www.studioautomata.com/itp/indestudy/
emulationpreservationreport.pdf 2.1.3

[20] R. A. Lorie, “Long-Term Archiving of Digital Information,” IBM, Tech.
Rep. May, 2000. [Online]. Available: http://www.imaginar.org/dppd/DPPD/
138ppLongterm.pdf 2.1.3

[21] J. van der Hoeven, B. Lohman, and R. Verdegem, “Emulation for Digital
Preservation in Practice: The Results,” International Journal of Digital Curation,
vol. 2, no. 2, 2007. [Online]. Available: http://www.ijdc.net/index.php/ijdc/
article/view/50 2.1.3

[22] M. Guttenbrunner, C. Becker, A. Rauber, and C. Kehrberg, “Evaluating
strategies for the preservation of console video games,” in Proceedings of The
Fifth International Conference on Preservation of Digital Objects, 2008, pp. 115–121.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.144.1417&rep=rep1&type=pdf 2.1.3

[23] M. Guttenbrunner and A. Rauber, “Design Decisions in Emulator Construction:
A Case Study on Home Computer Software Preservation,” in 8th International
Conferece on Preservation of Digital Objects, 2011, pp. 171–180. [Online].
Available: http://publik.tuwien.ac.at/files/PubDat_201169.pdf 2.1.3

[24] Library of Congress, “METS - Metadata Encoding and Transmission Standard.”
[Online]. Available: http://www.loc.gov/standards/mets/ 2.3.1

185

ftp://reports.stanford.edu/www/pub/public_html/cstr/reports/cs/tr/98/1603/CS-TR-98-1603.pdf
ftp://reports.stanford.edu/www/pub/public_html/cstr/reports/cs/tr/98/1603/CS-TR-98-1603.pdf
http://ftp.se.scene.org/pub/bitsavers.org/simh.trailing-edge.com/docs/dtjn02pf.pdf
http://ftp.se.scene.org/pub/bitsavers.org/simh.trailing-edge.com/docs/dtjn02pf.pdf
http://www.studioautomata.com/itp/indestudy/emulationpreservationreport.pdf
http://www.studioautomata.com/itp/indestudy/emulationpreservationreport.pdf
http://www.ijdc.net/index.php/ijdc/article/view/50
http://www.ijdc.net/index.php/ijdc/article/view/50
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.1417&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.1417&rep=rep1&type=pdf
http://publik.tuwien.ac.at/files/PubDat_201169.pdf
http://www.loc.gov/standards/mets/

Bibliography

[25] M. V. Cundiff, “An introduction to the Metadata Encoding and Transmission
Standard (METS),” Library Hi Tech, vol. 22, no. 1, pp. 52–64, 2004. [Online].
Available: http://www.emeraldinsight.com/10.1108/07378830410524495 2.3.1

[26] L. Cantara, “METS : The Metadata Encoding and Transmission Standard,”
Cataloging & Classification Quarterly, vol. 40, no. 3-4, pp. 237–258, 2009. [Online].
Available: http://dx.doi.org/10.1300/J104v40n03_11 2.3.1

[27] R. Guenther, R. Wolfe, O. Brandt, M. Enders, T. Habing, F. Lazzarino, C. Red-
ding, and J. Riley, “Guidelines for using PREMIS with METS for exchange,”
Library of Congress, Tech. Rep., 2008. 2.3.1

[28] P. Caplan, “Understanding PREMIS,” 2009. [Online]. Available: http:
//www.loc.gov/standards/premis/understanding-premis.pdf 2.3.1

[29] NISO, “Data Dictionary - Technical Metadata for Digital Still Images,” Tech.
Rep., 2006. 2.3.1

[30] Library of Congress, “textMD.” [Online]. Available: http://www.loc.gov/
standards/textMD/ 2.3.1

[31] T. Steinke, “LMER, Long-term preservation Metadata for Electronic
Resources,” Die Deutsche Bibliothek, Tech. Rep. [Online]. Available:
http://nbn-resolving.de/urn:nbn:de:1111-2005051906 2.3.1

[32] S. Sugimoto, T. Baker, M. Nagamori, T. Sakaguchi, and K. Tabata, “Versioning
the Dublin Core across multiple languages and over time,” Proceedings 2001
Symposium on Applications and the Internet Workshops (Cat. No.01PR0945), pp.
151–156, 2001. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=998223 2.3.1

[33] D. Hillmann, “Using Dublin Core,” 2005. [Online]. Available: http:
//dublincore.org/documents/2005/11/07/usageguide/ 2.3.1

[34] E. Mylonas and A. Renear, “The text encoding initiative at 10: not
just an interchange format anymore - but a new research community,”
Computers and the Humanities, pp. 1–9, 1999. [Online]. Available: http:
//www.springerlink.com/index/Q70370679U1M7027.pdf 2.3.1

186

http://www.emeraldinsight.com/10.1108/07378830410524495
http://dx.doi.org/10.1300/J104v40n03_11
http://www.loc.gov/standards/premis/understanding-premis.pdf
http://www.loc.gov/standards/premis/understanding-premis.pdf
http://www.loc.gov/standards/textMD/
http://www.loc.gov/standards/textMD/
http://nbn-resolving.de/urn:nbn:de:1111-2005051906
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=998223
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=998223
http://dublincore.org/documents/2005/11/07/usageguide/
http://dublincore.org/documents/2005/11/07/usageguide/
http://www.springerlink.com/index/Q70370679U1M7027.pdf
http://www.springerlink.com/index/Q70370679U1M7027.pdf

Bibliography

[35] JSTOR and Harvard University Library, “JHove - JSTOR/Harvard Object
Validation Environment.” [Online]. Available: http://jhove.sourceforge.net
2.3.2

[36] National Archives of UK, “DROID / PRONOM.” [Online]. Available:
http://www.nationalarchives.gov.uk/aboutapps/pronom/ 2.3.2

[37] OAI, “Open Archives Initiative.” [Online]. Available: http://www.
openarchives.org 2.3.3

[38] J. Bekaert and H. V. de Sompel, “Access interfaces for open archival
information systems based on the OAI-PMH and the OpenURL framework
for context-sensitive services,” in Ensuring Long-term Preservation and Adding
Value to Scientific and Technical data (PV 2005), 2005. [Online]. Available: http:
//www.ukoln.ac.uk/events/pv-2005/pv-2005-final-papers/032.pdf 2.3.3

[39] C. Lagoze, H. Van de Sompel, M. Nelson, and S. Warner, “The Open Archives
Initiative Protocol for Metadata Harvesting,” 2008. [Online]. Available:
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm 2.3.3

[40] C. Lagoze, H. van de Sompel, P. Johnston, M. Nelson, R. Sanderson, and
S. Warner, “ORE User Guide - Primer,” Open Archives Initiative, Tech. Rep.,
2008. [Online]. Available: http://www.openarchives.org/ore/ 2.3.3

[41] A. Oram, Peer-to-peer: Harnessing the power of disruptive technologies, 2001, vol. 32,
no. 2. 2.4.1

[42] D. Schoder, K. Fischbach, and R. Teichmann, Peer-to-peer. Oekonomische, tech-
nologische und juristische Perspektiven. Springer Verlag, Heiderlberg, Germany,
2002. 2.4.1

[43] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 1999. 2.4.2

[44] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” International Journal of Supercomputer
Applications, vol. 15, no. 3, pp. 200–222, Aug. 2001. [Online]. Available:
http://hpc.sagepub.com/cgi/doi/10.1177/109434200101500302 2.4.2

187

http://jhove.sourceforge.net
http://www.nationalarchives.gov.uk/aboutapps/pronom/
http://www.openarchives.org
http://www.openarchives.org
http://www.ukoln.ac.uk/events/pv-2005/pv-2005-final-papers/032.pdf
http://www.ukoln.ac.uk/events/pv-2005/pv-2005-final-papers/032.pdf
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm
http://www.openarchives.org/ore/
http://hpc.sagepub.com/cgi/doi/10.1177/109434200101500302

Bibliography

[45] Gartner, “Service Oriented’ Architectures, Part 1, SSA Research Note SPA-
401-068,” Tech. Rep., 1996. [Online]. Available: http://www.gartner.com/id=
302868 2.4.3

[46] ——, “Service Oriented’ Architectures, Part 2, SSA Research Note SPA-401-
069,” Tech. Rep., 1996. [Online]. Available: http://www.gartner.com/id=
302869 2.4.3

[47] OASIS, “OASIS Reference Model for Service Oriented Architecture 1.0,”
1996. [Online]. Available: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.
pdf 2.4.3

[48] P. Bianco, R. Kotermanski, and P. Merson, “Evaluating a service-oriented
architecture,” no. September, 2007. [Online]. Available: http://repository.cmu.
edu/sei/324/ 2.4.3

[49] P. Mell and T. Grance, “The NIST Definition of Cloud Computing:
Recommendations of the National Institute of Standarts and Technology,”
National Institute of Standards and Technology US . . . , 2011. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf 2.4.4

[50] A. Avizienis, J. Laprie, and B. Randell, “Fundamental concepts of dependabil-
ity,” ISW-2000, 2000. [Online]. Available: http://www.cert.org/research/isw/
isw2000/papers/56.pdf 2.5

[51] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan. 2004. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335465 2.5,
2.5.2

[52] B. Randell, P. Lee, and P. C. Treleaven, “Reliability Issues in Computing System
Design,” ACM Computing Surveys, vol. 10, no. 2, pp. 123–165, 1978. [Online].
Available: http://portal.acm.org/citation.cfm?doid=356725.356729 2.5

[53] B. Selic, “Fault Tolerance Techniques for Distributed Systems,” 2006. 2.5.1

188

http://www.gartner.com/id=302868
http://www.gartner.com/id=302868
http://www.gartner.com/id=302869
http://www.gartner.com/id=302869
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://repository.cmu.edu/sei/324/
http://repository.cmu.edu/sei/324/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.cert.org/research/isw/isw2000/papers/56.pdf
http://www.cert.org/research/isw/isw2000/papers/56.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335465
http://portal.acm.org/citation.cfm?doid=356725.356729

Bibliography

[54] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “IMPOSSIBILITY OF
DISTRIBUTED CONSENSUS WITH ONE FAULTY PROCESS,” Journal
of the ACM, vol. 32, no. 2, pp. 374–382, 1985. [Online]. Available:
http://wrap.warwick.ac.uk/26189/ 2.5.2

[55] P. Jalote, Fault Tolerance in Distributed Systems. Prentice Hall, 1994. 2.5.2

[56] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, “Pattern-
Oriented Software Architecture: A System of Patterns,” 1996. 2.5.3

[57] A. Avizienis, “The N-version approach to fault-tolerant software,” Software En-
gineering, IEEE Transactions on, no. 12, pp. 1491–1501, 1985. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1701972 2.5.4, 2.5.4

[58] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Randell, “A
Program Structure for Error Detection and Recovery,” in Lecture Notes
in Computer Science, vol. 16. Springer-Verlag, 1974, pp. 171–187. [On-
line]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
1.9163&rep=rep1&type=pdf 2.5.4, 2.5.4

[59] J. C. Laprie, J. Arlat, C. Béounes, K. Kanoun, and C. Hourtolle, “Hardware and
Software Fault Tolerance: Definition and analysis of architectural solutions,” in
Proc l7th Int Symp on FaultTolerant Computing FTCS17. IEEE Computer Society
Press, 1987, pp. ll6–121. 2.5.4, 2.5.4

[60] P. E. Ammann and J. C. Knight, “Data diversity: An approach to software fault
tolerance,” IEEE Transactions on Computers, vol. 37, no. 4, pp. 418–425, 1988.
[Online]. Available: http://portal.acm.org/citation.cfm?id=47054.47058 2.5.4,
2.5.4

[61] E. N. Adams, “Optimizing preventive service of software products,”
IBM Journal of Research and Development, vol. 28, no. 1, pp. 2–14, 1984.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5390362 2.5.4, 2.5.4

[62] I. Lee and R. K. Iyer, “Software dependability in the Tandem GUARDIAN sys-
tem,” Software Engineering IEEE Transactions on, vol. 21, no. 5, pp. 455–467, 1995.
2.5.4, 2.5.4

189

http://wrap.warwick.ac.uk/26189/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1701972
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.9163&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.9163&rep=rep1&type=pdf
http://portal.acm.org/citation.cfm?id=47054.47058
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5390362
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5390362

Bibliography

[63] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuvenation:
analysis, module and applications,” in TwentyFifth International Symposium on
FaultTolerant Computing Digest of Papers, vol. 4. IEEE Comput. Soc. Press, 1995,
pp. 381–390. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=466961 2.5.4, 2.5.4

[64] K. M. Chandy and C. V. Ramamoorthy, “Rollback and Recovery Strategies
for Computer Programs,” IEEE Transactions on Computers, vol. 21, no. 6,
pp. 546–556, 1972. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1638603.1638989 2.5.4, 2.5.4

[65] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi, “Minimizing completion
time of a program by checkpointing and rejuvenation,” in Proceedings of the
1996 ACM SIGMETRICS international conference on Measurement and modeling of
computer systems SIGMETRICS 96, vol. 24, no. 1. ACM Press, 1996, pp. 252–261.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=233013.233050
2.5.4, 2.5.4

[66] P. Jalote, Y. Huang, and C. Kintala, “A Framework for Understanding and Han-
dling Transient Software Failures,” in 2nd ISSAT Intl. Conf. on Reliability and
Quality in Design, Orlando, Florida, 1995. 2.5.4

[67] J. Kephart and D. Chess, “The Vision of Autonomic Computing,” Computer,
vol. 36, no. January, pp. 41–50, 2003. [Online]. Available: http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1160055 2.6, 2.6.1, 2.6.2, 2.6.3

[68] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific
American, vol. 284, no. 5, pp. 34–43, 2001. [Online]. Available: http:
//www.nature.com/doifinder/10.1038/scientificamerican0501-34 2.7

[69] W3C, “W3C Semantic Web.” [Online]. Available: http://www.w3.org/2001/
sw/ 2.7

[70] T. Berners-Lee, “Universal Resource Identifiers in WWW,” IETF, Tech. Rep.,
1994. [Online]. Available: http://tools.ietf.org/html/rfc1630 2.7.1

[71] ——, “Uniform Resource Identifier (URI): Generic Syntax,” IETF, Tech. Rep.,
2005. [Online]. Available: http://tools.ietf.org/html/rfc3986 2.7.1

190

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=466961
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=466961
http://dl.acm.org/citation.cfm?id=1638603.1638989
http://dl.acm.org/citation.cfm?id=1638603.1638989
http://portal.acm.org/citation.cfm?doid=233013.233050
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055
http://www.nature.com/doifinder/10.1038/scientificamerican0501-34
http://www.nature.com/doifinder/10.1038/scientificamerican0501-34
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/
http://tools.ietf.org/html/rfc1630
http://tools.ietf.org/html/rfc3986

Bibliography

[72] F. Manola and E. Miller, “RDF Primer,” Tech. Rep., 2004. [Online]. Available:
http://www.w3.org/TR/rdf-primer/ 2.7.2

[73] E. Miller, “An introduction to the resource description framework,” Bulletin of
the American Society for Information Science, pp. 15–19, 2005. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/bult.105/full 2.7.2

[74] D. Beckett and T. Berners-Lee, “Turtle - Terse RDF Triple Language,” Tech.
Rep., 2012. [Online]. Available: http://www.w3.org/TR/turtle/ 2.7.2

[75] J. Grant and D. Beckett, “RDF Test Cases,” W3C, Tech. Rep., 2004. [Online].
Available: http://www.w3.org/TR/rdf-testcases/ 2.7.2

[76] T. Berners-Lee, “Primer: Getting into RDF & Semantic Web using N3,” Tech.
Rep., 2000. [Online]. Available: http://www.w3.org/2000/10/swap/Primer.
html 2.7.2

[77] D. Brickley and R. von Guha, “RDF Vocabulary Description Language 1.0:
RDF Schema,” Tech. Rep., 2004. [Online]. Available: http://www.w3.org/TR/
rdf-schema/ 2.7.3

[78] W3C, “SPARQL Query Language,” 2008. [Online]. Available: http://www.w3.
org/TR/rdf-sparql-query/ 2.7.4

[79] W3C OWL Working Group, “OWL 2 Web Ontology Language Document
Overview (Second Edition),” Tech. Rep., 2012. [Online]. Available: http:
//www.w3.org/TR/2012/REC-owl2-overview-20121211/ 2.7.5

[80] I. Subotic, S. Margulies, and L. Rosenthaler, “DISTARNET: Distributed Archiv-
ing Network,” in Proceedings of Archiving 2006, vol. 3, 2006, pp. 131–134. 3, 4.5

[81] CRL, OCLC, and NARA, “Trustworthy Repositories Audit &
Certification: Criteria and Checklist,” 2007. [Online]. Avail-
able: http://wiki.digitalrepositoryauditandcertification.org/pub/Main/
ReferenceInputDocuments/trac.pdf 3.1

[82] H. Schuldt, G. Alonso, C. Beeri, and H. Schek, “Atomicity and isolation
for transactional processes,” ACM Transactions on . . . , vol. 27, no. 1, pp.

191

http://www.w3.org/TR/rdf-primer/
http://onlinelibrary.wiley.com/doi/10.1002/bult.105/full
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/2000/10/swap/Primer.html
http://www.w3.org/2000/10/swap/Primer.html
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://wiki.digitalrepositoryauditandcertification.org/pub/Main/ReferenceInputDocuments/trac.pdf
http://wiki.digitalrepositoryauditandcertification.org/pub/Main/ReferenceInputDocuments/trac.pdf

Bibliography

63–116, 2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=507236
3.2.3, 3.5.9

[83] A. Hinze, K. Sachs, and A. Buchmann, “Event-based applications
and enabling technologies,” in Proceedings of the Third ACM In-
ternational Conference on Distributed Event-Based Systems - DEBS ’09.
Nashville, Tennessee: ACM New York, NY, USA, 2009, pp. 1–
15. [Online]. Available: http://doi.acm.org/10.1145/1619258.1619260http:
//portal.acm.org/citation.cfm?doid=1619258.1619260 3.4.4.6

[84] L. Candela, D. Castelli, N. Ferro, Y. Ioannidis, G. Koutrika, C. Meghini,
P. Pagano, S. Ross, D. Soergel, M. Agosti, and Others, “The DELOS Digital
Library Reference Model. Foundations for Digital Libraries,” 2007. [On-
line]. Available: http://www.delos.info/files/pdf/ReferenceModel/DELOS_
DLReferenceModel_0.98.pdf 3.6

[85] L. Voicu and H. Schuldt, “The Re : GRIDiT Protocol : Correctness of Distributed
Concurrency Control in the Data Grid in the Presence of Replication,” 2008.
3.6.1

[86] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular Actor Formalism for
Artificial Intelligence,” in International joint conference on Artificial intelligence,
1973, pp. 235–245. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1624804 4.2.1

[87] M. Odersky, P. Altherr, V. Cremet, I. Dragos, and G. Dubochet, “An
Overview of the Scala Programming Language,” EPFL Lausanne, Switzerland,
Tech. Rep., 2004. [Online]. Available: http://www.scala-lang.org/docu/files/
ScalaOverview.pdf 4.2.2

[88] C. Sayers and A. H. Karp, “Computing the digest of an RDF graph,” Tech.
Rep., 2004. [Online]. Available: https://www.hpl.hp.com/techreports/2003/
HPL-2003-235R1.pdf 4.5.3

[89] C. Bizer and A. Schultz, “The berlin sparql benchmark,” Int J Se-
mantic Web Inf Syst, 2009. [Online]. Available: http://citeseerx.ist.psu.

192

http://dl.acm.org/citation.cfm?id=507236
http://www.delos.info/files/pdf/ReferenceModel/DELOS_DLReferenceModel_0.98.pdf
http://www.delos.info/files/pdf/ReferenceModel/DELOS_DLReferenceModel_0.98.pdf
http://dl.acm.org/citation.cfm?id=1624804
http://dl.acm.org/citation.cfm?id=1624804
http://www.scala-lang.org/docu/files/ScalaOverview.pdf
http://www.scala-lang.org/docu/files/ScalaOverview.pdf
https://www.hpl.hp.com/techreports/2003/HPL-2003-235R1.pdf
https://www.hpl.hp.com/techreports/2003/HPL-2003-235R1.pdf

Bibliography

edu/viewdoc/download?doi=10.1.1.161.8030&rep=rep1&type=pdfpapers2:
//publication/uuid/9A017750-3A0A-4540-9E7A-B81F6C6330EF 5.1

[90] D. Abadi, A. Marcus, S. Madden, and K. Hollenbach, “Using the Barton
libraries dataset as an RDF benchmark,” Citeseer, Tech. Rep., 2007.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.124.9927&rep=rep1&type=pdf 5.1

[91] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL knowledge
base systems,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 3, no. 2-3, pp. 158–182, Oct. 2005. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1570826805000132 5.1

[92] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, “SP2Bench: A SPARQL
Performance Benchmark,” CoRR, vol. abs/0806.4, 2008. [Online]. Available:
http://arxiv.org/pdf/0806.4627 5.1

[93] L. Rosenthaler, “Virtual Research Environments - A new approach for deal-
ing with digitized sources in research in Arts and Humanities,” Des manuscrits
antiques à l’ère digitale. Lectures et littératies, 23.-25. August 2011, University Lau-
sanne. 5.1.1.1

[94] A. Carusi and T. Reimer, “Virtual Research Environment Collaborative Land-
scape Study,” JISC, Tech. Rep. January, 2010. [Online]. Available: http://www.
jisc.ac.uk/media/documents/publications/vrelandscapereport.pdf 5.1.1.1

[95] B. Schroeder, “Disk failures in the real world: What does an MTTF of 1,000,000
hours mean to you,” Proceedings of the 5th USENIX Conference, 2007. [Online].
Available: http://www.usenix.org/event/fast07/tech/schroeder/schroeder.
pdf 5.1.1.3

[96] E. Pinheiro and W. Weber, “Failure trends in a large disk drive population,” in
Proceedings of FAST 2007, no. February, 2007. [Online]. Available: http://static.
usenix.org/event/fast07/tech/full_papers/pinheiro/pinheiro_html/ 5.1.1.3

[97] B. Haslhofer and P. Knezevic, “The BRICKS Digital Library Infrastructure,” in
Semantic Digital Libraries, S. R. Kruk and B. McDaniel, Eds., no. Ist 507457, 2009,
pp. 151–161. 6

193

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.9927&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.9927&rep=rep1&type=pdf
http://linkinghub.elsevier.com/retrieve/pii/S1570826805000132
http://arxiv.org/pdf/0806.4627
http://www.jisc.ac.uk/media/documents/publications/vrelandscapereport.pdf
http://www.jisc.ac.uk/media/documents/publications/vrelandscapereport.pdf
http://www.usenix.org/event/fast07/tech/schroeder/schroeder.pdf
http://www.usenix.org/event/fast07/tech/schroeder/schroeder.pdf
http://static.usenix.org/event/fast07/tech/full_papers/pinheiro/pinheiro_html/
http://static.usenix.org/event/fast07/tech/full_papers/pinheiro/pinheiro_html/

Bibliography

[98] D. Castelli, L. Candela, P. Pagano, and M. Simi, “DILIGENT: A Digital Library
Infrastructure for Supporting Joint Research,” in 2005 IEEE International
Symposium on Mass Storage Systems and Technology, no. Section 2. IEEE, 2005,
pp. 56–59. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1612465 6

[99] D. Castelli and J. Michel, “D4Science - Deploying Virtual Research Environ-
ments,” ERCIM News, no. 74, pp. 8–9, 2008. 6

[100] “FedoraCommons.” [Online]. Available: http://www.fedora-commons.org 6

[101] R. Tansley and M. Bass, “DSpace as an open archival information
system: Current status and future directions,” Research and advanced
technology for, no. November 2002, pp. 446–460, 2003. [Online]. Available:
http://www.springerlink.com/index/HDEPD4443HL00K4K.pdf 6

[102] “DuraSpace.” [Online]. Available: http://duraspace.org 6

[103] “DuraCloud.” [Online]. Available: http://www.duracloud.org 6

[104] G. Knight, “SHERPA DP: establishing an OAIS-compliant preservation
environment for institutional repositories,” Digital repositories: interoperability
and common, pp. 26 – 29, 2005. [Online]. Available: http://delos-wp5.ukoln.ac.
uk/forums/dig-rep-workshop/knight.pdf 6

[105] V. Reich and D. Rosenthal, “Lockss (lots of copies keep stuff safe),” New
Review of Academic Librarianship, vol. 6, pp. 155–161, 2000. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/13614530009516806 6

[106] P. Watry, “Cheshire 3 framework white paper: implementing support for digital
repositories in a data grid environment,” in International Symposium on Mass
Storage Systems and Technology, 2005, pp. 60–64. 6

[107] C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The SDSC Storage
Resource Broker,” in ASCON ’98 Proceedings of the 1998 conference of the
Centre for Advanced Studies on Collaborative research, 1998. [Online]. Available:
http://dl.acm.org/citation.cfm?id=783165 6

194

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1612465
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1612465
http://www.fedora-commons.org
http://www.springerlink.com/index/HDEPD4443HL00K4K.pdf
http://duraspace.org
http://www.duracloud.org
http://delos-wp5.ukoln.ac.uk/forums/dig-rep-workshop/knight.pdf
http://delos-wp5.ukoln.ac.uk/forums/dig-rep-workshop/knight.pdf
http://www.tandfonline.com/doi/abs/10.1080/13614530009516806
http://dl.acm.org/citation.cfm?id=783165

Bibliography

[108] “kopal,” 2007. [Online]. Available: http://kopal.langzeitarchivierung.de 6

[109] E. Oltmans, R. van Diessen, and H. van Wijngaarden, “Preservation
functionality in a digital archive,” Proceedings of the 2004 joint ACM/IEEE
conference on Digital libraries - JCDL ’04, p. 279, 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=996350.996416 6

[110] D. Giaretta, “The CASPAR Approach to Digital Preservation,” International
Journal of Digital Curation, vol. 2, no. 1, pp. 112–121, 2007. [Online]. Available:
http://ijdc.net/index.php/ijdc/article/view/29 6

[111] A. Farquhar and H. Hockx-Yu, “Planets: Integrated Services for Digital
Preservation,” The International Journal of Digital Curation, vol. 2, no. 2,
pp. 88–99, 2007. [Online]. Available: http://www.planets-project.eu/docs/
papers/Farquhar_PlanetsIntegratedServices.pdf 6

[112] C. Becker, H. Kulovits, A. Rauber, and H. Hofman, “Plato: a service oriented
decision support system for preservation planning,” JCDL ’08: Proceedings
of the 8th ACM/IEEE-CS joint conference on Digital libraries, 2008. [Online].
Available: http://portal.acm.org/citation.cfm?id=1378889.1378954 6

[113] H. Kulovits, C. Becker, and M. Kraxner, “Plato: A Preservation Planning Tool
Integrating Preservation Action Services,” in Research and Advanced Technology
for Digital Libraries. Springer, LNCS Volume 5173, 2008, pp. 413–414. [Online].
Available: http://www.springerlink.com/index/317404U785H571TG.pdf 6

[114] SHAMAN-Consortium, “WP2.D2.3 Specification of the SHAMAN
reference architecture,” SHAMAN, Tech. Rep., 2009. [On-
line]. Available: http://shaman-ip.eu/sites/default/files/SHAMAN_D2.
3-SpecificationReferenceArchitecture.pdf 6

[115] A. Rajasekar, R. Moore, C.-Y. Hou, C. a. Lee, R. Marciano, A. de Torcy,
M. Wan, W. Schroeder, S.-Y. Chen, L. Gilbert, P. Tooby, and B. Zhu,
iRODS Primer: Integrated Rule-Oriented Data System, Jan. 2010, vol. 2,
no. 1. [Online]. Available: http://www.morganclaypool.com/doi/abs/10.
2200/S00233ED1V01Y200912ICR012 6

195

http://kopal.langzeitarchivierung.de
http://portal.acm.org/citation.cfm?doid=996350.996416
http://ijdc.net/index.php/ijdc/article/view/29
http://www.planets-project.eu/docs/papers/Farquhar_PlanetsIntegratedServices.pdf
http://www.planets-project.eu/docs/papers/Farquhar_PlanetsIntegratedServices.pdf
http://portal.acm.org/citation.cfm?id=1378889.1378954
http://www.springerlink.com/index/317404U785H571TG.pdf
http://www.morganclaypool.com/doi/abs/10.2200/S00233ED1V01Y200912ICR012
http://www.morganclaypool.com/doi/abs/10.2200/S00233ED1V01Y200912ICR012

Bibliography

[116] P. Wittek and S. Darányi, “Digital Preservation in Grids and Clouds: A
Middleware Approach,” Journal of Grid Computing, vol. 10, no. 1, pp. 133–149,
Mar. 2012. [Online]. Available: http://www.springerlink.com/index/10.1007/
s10723-012-9206-7 6

[117] S. Strodl, P. Petrov, M. Greifeneder, and A. Rauber, “Automating logical
preservation for small institutions with Hoppla,” Research and Advanced
Technology for Digital Libraries, pp. 124–135, 2010. [Online]. Available:
http://www.springerlink.com/index/WX626W572T4218QN.pdf 6

[118] S. R. Kruk and B. McDaniel, Eds., Semantic Digital Libraries. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009. [Online]. Available: http:
//www.springerlink.com/index/10.1007/978-3-540-85434-0 7.2

[119] J. E. Beaudoin, “Context and Its Role in the Digital Preservation of Cultural
Objects,” D-Lib Magazine, vol. 18, no. 11/12, 2012. [Online]. Available:
http://dlib.org/dlib/november12/beaudoin/11beaudoin1.print.html 7.2

[120] A. Rauber, “Digital Preservation in Data-Driven Science: On the Importance
of Process Capture, Preservation and Validation,” in Proceedings of the 2nd
International Workshop on Semantic Digital Archives (SDA 2012), no. Sda, 2012,
pp. 7–17. [Online]. Available: http://ceur-ws.org/Vol-912/paper0.pdf 7.2

[121] M. Mikelakis and C. Papatheodorou, “An ontology-based model for
preservation workflows,” in 8th International Conferece on Preservation of Digital
Objects, 2011. [Online]. Available: http://www.ionio.gr/~papatheodor/
papers/ipres2012.pdf 7.2

196

http://www.springerlink.com/index/10.1007/s10723-012-9206-7
http://www.springerlink.com/index/10.1007/s10723-012-9206-7
http://www.springerlink.com/index/WX626W572T4218QN.pdf
http://www.springerlink.com/index/10.1007/978-3-540-85434-0
http://www.springerlink.com/index/10.1007/978-3-540-85434-0
http://dlib.org/dlib/november12/beaudoin/11beaudoin1.print.html
http://ceur-ws.org/Vol-912/paper0.pdf
http://www.ionio.gr/~papatheodor/papers/ipres2012.pdf
http://www.ionio.gr/~papatheodor/papers/ipres2012.pdf

Index

actor model, 120
ADRP, see automated dynamic replica-

tion process
akka’s actor system, 122
autonomic properties

self-configuration, 60
self-healing, 61
self-optimization, 62

casbah, 123
CJR, see copy job repository

DAO, see distarnet archival object
dao storage module

concept, 79
implementation, 133

DC, see dublin core
DFMP, see data format migration pro-

cess
digital preservation, 12

key aspects, 14
strategies, 15

digital preservation logic module
concept, 69
implementation, 129

distarnet archival object
concept, 100

implementation, 134
distarnet data model

concept, 100
implementation, 134

distarnet processes, 81
automated dynamic replication, 85
dao repairing, 89
data format migration, 91
ingest, 81
node joining, 81
node-lost, 83
periodic integrity checking, 87
periodic neighbor-node checking, 82
reliable copying, 93
state dissemination, 98

distarnet sub-network, 56
distributed system, 25

cloud computing, 28
grid computing, 26
peer-to-peer systems, 25
service oriented architecture, 27

DROID, 23
DRP, see dao repairing process
DSN, see distarnet sub-network
dublin core, 22

fault classes

197

Index

content, 66
infrastructure, 65
node engine, 108

information object, 48
IP, see ingest process

jena, 123
core api, 123
TDB, 123

JHOVE, 23

metadata encoding & transmission stan-
dard, 20

METS, see metadata encoding & trans-
mission standard

MJR, see migration job repository
mongo DB, 123

netty, 122
network module

concept, 79
implementation, 132

NIR, see node information repository
NISO MIX, 21
NJP, see node joining process
NLP, see node-lost process

OAI-ORE, 24
OAI-PMH, 24
OWL, 46

P2P, see peer-to-peer systems
PEL, see process execution logic
PICP, see periodic integrity checking pro-

cess

PNCP, see periodic neighbor-node check-
ing process

process execution logic
concept, 69
implementation, 129

RCP, see reliable copying process
RDF, see resource description framework
rdf model checksum, 137
rdf schema, 45
RDFS, see rdf schema
repositories module

concept, 72
implementation, 131

repository
copy job repository, 74, 131
migration job repository, 75, 131
node information repository, 73, 131
replica location repository, 73, 131
system information repository, 131

resource description framework, 44
responsibility chain, 87
RLR, see replica location repository

SDP, see state dissemination process
services module

concept, 76
implementation, 131

SOA, see service oriented architecture
SPARQL, 45

TEI, see text encoding initiative
text encoding initiative, 22
TextMD, 21
triple-store, 45

198

Index

unfiltered, 122
uniform resource identifier, 43
URI, see uniform resource identifier
user interaction module

concept, 68
implementation, 128

199

���������� ���	��
���
��
��
���
�������
���
�����
��� ���������� � ���������	

����
�

���� ��������
� � ����������

������
�������

����������
�� ���������� � ���������

���	��
���
��
��
��
�
�������
���
�����
��� ���������� � ��
�������

���	��
���
��
��
��
�
�������
���
�����
��� ���������� � ����������

�
����
�����
�� ������

� � ����������

���������	��
�����

��

������ �� ���� ��������� ������������ ����� ��� ���� ������ ��� �������� �������� ����� ��

�� ������

������������

!"� #���$������ ����� �� $�� ��� %��&�%��� '�(� ���$����� �� �$����� %��)� �� ����������*

��+���%����*���%�����������*���������������������������,

(��)� ������������*� ��+���%����� ���� ��%������������ ��� ���$������ ��� ����-�������

-�+�.������������������(����������(��,

����������������������������
��������	���
���
���

/���������������%�������������+� ��������%%�� �����������0
.���������,

���������	��
�����

-���������� ����/!
"&�1'"�2/!
"���$����&� ��+���1'"����3�(��)� �� �$������4� ����
15

2
�����1��������
 ��� ��5$��3

������������
����

-��������������6"!�%��)� ��7/���������6���8�2/�������5���3�������!�%���������%�$����

������������� ��%�����������������7��498,

/���������� ��%��������������� �������%�� ������ �����������4%��� ���� ����'�4%������ ��

!�����$�����������:��+�����4����;����,

� ���!����
����

/���������� ��%���������������%��)� ��� ��+��+����<��$��1�����/�����*�-�������1"�����

#������ ����
��+��*� "�$=�:��>� ���� #��%�?� &�%���
��+��*� <������ 1��������� ;� �$%

��$����

��������� ���	��
���
��
��
�� ����� � ����	

���	��
���
��
��
�� �

�� � �����

"�����������
������ �#��"$�%���!��������
�����
�������������������&�"�&�'�
����������

������(���������%�)��
��������������!
��

�	��

������
'������������������=�"�������
���9������� ���@�$���� , �

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Scenarios
	Multinational Pharmaceutical Corporation
	National Museum of History & Native Art
	Cloud Storage Provider
	Deployment Categories

	Challenges of Digital Long-Term Preservation
	Contribution and Scope of the Thesis
	Structure of the Thesis

	Digital Preservation and Distributed Systems Foundations
	Digital Preservation
	Communication with the Future
	Key Aspects
	Long-Term Preservation Strategies

	OAIS Reference Model
	Digital Objects Metadata
	Metadata Standards
	Object Format Identification, Validation, and Characterization
	Open Access API Standards
	Summary

	Distributed Systems
	Peer-to-Peer Systems
	Grid Computing
	Service Oriented Architecture
	Cloud Computing
	Summary

	Dependability in Distributed Systems
	Faults, Errors, and Failures
	Fault-Tolerance
	Fault-Tolerance in the Context of Distributed Systems
	Application Level Fault-Tolerance

	Autonomic Distributed Systems
	Automatic vs. Autonomic
	Key Properties for Autonomic Systems
	Self-* Properties in General

	Semantic Web Technologies
	Uniform Resource Identifier (URI)
	Resource Description Framework (RDF)
	RDF Schema (RDFS)
	SPARQL
	OWL
	Summary

	General Requirements and Concepts for a Distributed Archival Network
	General Requirements for a Long-Term Digital Preservation System
	Information Object
	User Functionality
	Ingest
	Access
	Annotations, Links, and Collections
	Preservation Planning

	System Functionality
	Replication and Distribution
	Fault-Tolerance and Failure Management
	Management of Complex Information Objects
	Scalability
	Openness and Extensibility
	Resource Discovery and Load Balancing
	Authentication, Authorization, and Auditing

	Distributed Archival Network Concepts
	Network
	Node Layers
	Processes Overview
	DISTARNET Processes and OAIS

	Failure Classification and Fault-Tolerance
	Infrastructure Faults
	Content Faults
	Node Engine Faults

	DISTARNET Modules
	User Interaction Module
	Digital Preservation Logic Module
	Repositories Module
	Node Information Repository
	Replica Location Repository
	Copy Job Repository
	Migration Job Repository

	Services Module
	Analyzer Basic-Services
	Checksum Basic-Services
	DFMP Basic-Services
	Distribution Basic-Services
	PNCP Basic-Services
	PubSub Basic-Services
	RCP Basic-Services

	Network Module
	Network Services

	DAO Storage Module
	DAO DB-Store
	DAO File-Store
	Data Object Catalog

	DISTARNET Processes
	Ingest Process
	Node Joining Process
	Periodic Neighbor-Node Checking Process
	Node-Lost Process
	Automated Dynamic Replication Process
	Periodic Integrity Checking Process
	DAO Repairing Process
	Data Format Migration Process
	Reliable Copying Process
	State Dissemination Process

	DISTARNET Data Model
	DISTARNET Archival Object
	Archival Information Package (AIP)

	Summary

	DISTARNET System Architecture and Implementation
	Requirements for the Implementation
	Node Engine Fault-Tolerance
	Maintainability and Extendability
	Long-Term Use
	Summary

	Implementation-Specific Concepts, Frameworks, and Libraries
	Actor Model
	JVM, Scala, and Akka
	Akka's Actor System
	Netty and Unfiltered
	Jena Core and Jena TDB
	Mongo DB and Casbah

	System Architecture Overview
	DISTARNET Modules Implementation
	Node Actor System
	User Interaction Module
	Digital Preservation Logic Module
	Repositories Module
	Services Module
	Network Module
	DAO Storage Module

	DISTARNET Data Model Implementation
	Relationships and Representations
	RDF Schema
	RDF Model Checksum
	Why RDF-based DISTARNET Archival Objects?

	Summary

	Evaluation
	Evaluation of Metadata Management
	DISTARNET Triple-Store Performance Evaluation
	Scenarios
	Scaling Factor
	Benchmark Queries
	Benchmark Mix
	Benchmark Implementation

	Benchmark Evaluation Results
	Evaluation Setup
	Bulk Load Times
	S1 and S2 Evaluation Results
	Discussion

	Evaluation of the DISTARNET System
	Cooperating Image Archives Scenario
	Qualitative System Evaluation
	Test Scenario 1: Node Destruction
	Test Scenario 2: Content Corruption
	Test Scenario 3: Data Format Obsolescence
	Test Scenario 4: Multi-Failure
	Qualitative Evaluation Summary

	Quantitative System Evaluation
	Test Data
	Evaluation Procedure
	Quantitative Evaluation Results

	Summary

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Index

