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1. Introduction 

1.1 Scope of the review 

 

The development of chemical sensors is a subject that continues to fascinate chemists in 

academic research. Aside from the purely academic interest there is of course the important issue 

of finding suitable sensors for harmful chemical substances that might be present in the 

environment or at our workplaces. Consequently, the detection of volatile organic compounds 

(VOCs) by simple means requiring only a low-cost technology is an attractive research target. In 

this context vapochromism is a promising phenomenon. A vapochromic substance changes color 

upon exposure to certain vapors,1 and therefore the detection of analytes can often occur even by 

naked eye. In addition, there is the phenomenon of luminescence vapochromism, often called 
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4

vapoluminescence, which refers to changes in photoluminescence properties in the course of 

vapor exposure. The class of compounds in which these two closely related phenomena occur 

most frequently is undoubtedly the area of coordination complexes. This review therefore 

focusses on transition metal compounds that change color and/or their emission properties when 

exposed to VOCs. Where appropriate, information regarding the detection of other analytes (e. 

g., oxygen, humidity in air, acids or bases) will be included as well. Along the same lines, the 

related phenomena of mechanochromism or thermochromism will be discussed briefly where 

appropriate and were thematically fitting. 

The article is written from the perspective of a coordination chemist with an emphasis on 

understanding the origin of the vapochromic / vapoluminescent responses of the individual 

sensor materials. In this sense the current review is less geared towards applications than much 

of what has been published under the broadly defined label “electronic noses”.2-6 Nevertheless 

the present review includes analytical details for the sensors for which such information is 

available, but many original studies do not report quantitative analytical results and focused 

themselves on understanding the vapochromism / vapoluminescence phenomenon on a 

molecular level rather aiming to develop actual sensing devices. A separate section with an 

comprehensive table summarizes the available analytical information in a compact manner. 

Many of the coordination compounds discussed in the current article have been part of other 

reviews. For example, there exist several recent reviews on chemosensing with platinum(II) and 

gold(I) complexes.7-17 Most recently, a “feature article” on the specific subject of recent 

advances in the field of vapoluminescence in metal complexes appeared,18 but the scope of the 

current review is significantly broader, and it contains substantially more detailed information. 

The optical spectroscopic and photophysical properties of some of the metal complexes relevant 
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5

for the current article have been reviewed separately,19-22 and reviews on the related phenomena 

of thermochromism and mechanochromism also exist.23-27  

The two largest families of vapochromic / vapoluminescent substances are platinum(II) and 

gold(I) containing compounds which are treated in two separate dedicated sections of this 

review. Sensors devoid of these two elements are discussed in a subsequent section which is 

divided into subsections according to the transition metals they contain. Until now purely organic 

vapochromic / vapoluminescent substances are relatively rare and are not considered here.  Pt(II) 

and Au(I) containing vapochromic substances are treated in separate sections not only because 

by mere number they represent the two most important classes of vapochromic substances, but 

also because a more or less common mode of operation can be identified for many of these 

particular substances (sections 1.3 and 6). Briefly, in many of the Pt(II) and Au(I) compounds the 

vapochromic response is the result of changes in intermolecular interactions (e. g., weak metal-

metal interactions, π-stacking, hydrogen-bonding, C-H-π interactions) as a result of analyte 

uptake into the crystal lattice, while for many (but not all) of the substances presented in section 

4 direct ligation of an analyte to a metal center is observed. 

 

1.2 Metal-metal interactions in d8 and d10 compounds 

 

Because of the special importance of Pt(II) and Au(I) compounds in the field of vapochromism 

it is useful to recapitulate a few elementary aspects regarding weakly interacting metals with d8 

and d10 electron configurations. There exist numerous didactical articles on non-covalent Pt(II)-

Pt(II) and aurophilic interactions,7, 22, 28-31 hence only the most fundamental aspects needed to 
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comprehend the photophysical behavior of some of the vapochromic substances discussed in 

sections 2 and 3 will be briefly discussed here. 

Square planar d8 and linear d10 complexes tend to approach each other in such a way that their 

5dz2 and 6pz orbitals can interact with each other.32 Figure 1 shows the relevant part of the 

molecular orbital diagram for d8-d8 dimers. The interaction of 5dz2 and 6pz orbitals leads the 

formation of bonding and anti-bonding dimer orbitals, commonly designated as dσ / dσ* (5dz2) 

and pσ / pσ* (6pz).
31 In the electronic ground state of d8-d8 and d10-d10 dimers the dσ and dσ* 

orbitals are filled whereas the pσ and pσ* orbitals are empty. In both cases there is the possibility 

of dσ* → pσ transitions leading to excited-states in which the metal-metal distance is shorter 

than in the ground state due to an increase in bond order. However, in many of the cases from 

sections 2 and 3 for which intermetallic interactions are relevant the LUMO is a ligand-based 

orbital, typically with π or π* character; π-π interactions between ligands may themselves lead to 

“dimer π orbitals”. The HOMO-LUMO transition in these cases is a so-called metal/metal-to-

ligand charge transfer (MMLCT) which distinguishes itself from ordinary metal-to-ligand charge 

transfer (MLCT) transitions in that the HOMO is a “dimer orbital” (or “oligomer” / “polymer” 

orbital) resulting from intermetallic interactions. Depending on the strength of the metal-metal 

interaction the dimer HOMO shifts in energy, and for many sensors this forms the basis for 

vapochromism or vapoluminescence. However, there are numerous other mechanisms that may 

lead to vapor-induced color and emission changes, and the full breadth of possibilities will 

become obvious from the following sections. 
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7

 

Figure 1. Simplified MO diagram illustrating metal-metal interactions between square planar 

Pt(II) complexes. MMLCT = metal/metal-to-ligand charge transfer. More elaborate diagrams can 

be found in the literature.33, 34 

 

1.3 Unifying themes in research on vapochromic substances 

 

The vapochromism of many of the Pt(II) and Au(I) containing substances discussed in sections 

2 and 3 is more or less closely related to metallophilic interactions and/or π-stacking. A common 

theme for many (but not all) of the vapochromic substances presented in section 4 is the 

occurrence of changes in the first coordination sphere, including both alterations in coordination 

number and coordination geometry. This is particularly true for several of the vanadium, cobalt, 

nickel, copper, and metalloporphyrin-based vapochromic substances. One may therefore 

differentiate between two fundamentally different manners by which vapochromic substances 

respond to VOCs: Type I of vapochromic substances exhibits more or less subtle structural 

changes in crystal packing leading to alterations in intermolecular interactions such as for 
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example metal-metal interactions, π-stacking, hydrogen-bonding, and C-H-π interactions. In type 

II vapochromic substances direct ligation of an analyte to a solid-state material occurs. Type I is 

of key importance in sections 2 and 3, type II is prominent in section 4 (subsection 4.1) but 

several substances from section 4 are type I vapochromic systems (subsection 4.2). 

A unifying theme for many vapochromic substances is an exceptionally high complexity of the 

solid-state structures. Aside from the intermolecular interactions mentioned above, the presence 

of voids plays an important role in many cases. In this context, the size and shape of counterions 

can have an important influence. In several cases the vapochromic property is strongly dependent 

on the polymorph or solvate which is formed; while one polymorph or solvate may exhibit 

spectacular vapochromism, a closely related polymorph or solvate may be completely insensitive 

to VOCs. The most important insights to vapochromism therefore come from solid-state 

investigations including X-ray crystallography, powder X-ray diffraction, thermogravimetry, and 

solid state absorption (or reflectance), and luminescence. Solution studies are usually 

considerably less insightful. However, as will be seen from this review, even the simplest 

structure-property relationships in many vapochromic materials have remained extremely 

elusive. Consequently, it is very difficult to “engineer” vapochromic materials. It is even difficult 

to optimize the VOC response behavior of known vapochromic substances because even the 

slightest changes can lead to complete disappearance of the vapochromic property. In short, 

many challenges are associated with research on vapochromism. 
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2. Platinum(II) compounds 

2.1 Materials with charge-neutral Pt(II) complexes  

2.1.1 [Pt(α-diimine)(CN)2] complexes and their derivatives 

 

One of the earliest reports of vapochromism in a platinum(II) coordination compound dates 

from 1974.35 Gillard and coworkers found that [Pt(bpy)(CN)2] (bpy = 2,2’-biypridine) (1) 

(Scheme 1) changes color from red to yellow when solid samples are exposed to HF, H2O or H2S 

vapors. Similarly, [Pt(phen)(CN)2] (phen = 1,10-phenanthroline) (2) was observed to turn from 

yellow to red upon exposure to anhydrous organic solvent vapors. At that time the existence of a 

red and yellow form of [Pt(bpy)Cl2] (3) was already known from the early work by Morgan and 

Burstall.36 In the Gillard paper the vapor-induced color changes were discussed in terms of 

protonation of the CN ligands, and it was speculated that covalent addition of H2O to one of the 

pyridine rings of bpy might also play a role. 

 

Scheme 1. [Pt(α-diimine)(CN)2] complexes, part I. 

 

 

Nearly 20 years later Shih and Herber reported on water sorption by [Pt(tBu2bpy)(CN)2] 

(tBu2bpy = 4,4’-di-tert.-butyl-2,2’-biypridine) (4).37 At relative humidities above 40% this 

material reversibly uptakes 5 water molecules but no color changes occur because all relevant 
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10

absorptions are in the UV. The compound [Pt(5,5’-Me2bpy)(CN)2] (5,5’-Me2bpy = 5,5’-

dimethyl-2,2’-bipyridine) (5) was investigated in the same study and was found to change color 

from light yellow to deep orange on hydration.37 Thus, by investigating a series of 

[Pt(bpy)(CN)2] complexes with bpy ligands bearing substituents of variable steric bulk, Shih and 

Herber arrived at the conclusion that control over the metal-metal distance of neighboring 

complexes is desirable for obtaining materials which change color upon hydration. This 

important concept holds true for many vapochromic materials that are discovered only 

nowadays. 

Nearly another 10 years later the Kato group began to publish an entire series of papers on 

vapochromic [Pt(α-diimine)(CN)2] compounds.13, 38-42 Initial studies focused on the 

[Pt(bpy)(CN)2] material (1) investigated already by Gillard and coworkers.38 Based on X-ray 

crystallographic investigations it was possible to elucidate the origin of the water-vapor induced 

color change. The anhydrous red form of [Pt(bpy)(CN)2] was found to contain infinite stacks of 

complexes with regular intermolecular Pt(II)-Pt(II) distances of 3.34 Å, while in the yellow 

[Pt(bpy)(CN)2]·H2O (1⋅H2O) material the sorbed water molecule causes a deformation of the 

stacking structure and an interruption of the infinite Pt(II)-Pt(II) chain. In the yellow form there 

are inclined stacks with alternating short (3.3289(3) Å) and long (4.6814(3) Å) Pt(II)-Pt(II) 

distances, and the crystal water connects individual stacks via hydrogen-bonding to the cyanide 

ligands. Thus it became clear that vapochromism of [Pt(bpy)(CN)2] was due to changes in the 

Pt(II)-Pt(II) interaction brought about by a structural change upon water sorption. This 

conclusion was particularly obvious in light of prior vapochromism studies with platinum double 

salts by Mann and coworkers (see below), and the fundamental work on the electronic structures 

of d8-d8 dimers,43, 44 stacked platinum(II) diimine complexes,45-48 and tetracyanoplatinates.22 
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Kato and coworkers noted that the photoluminescence band maximum of [Pt(bpy)(CN)2] (1) 

shifts from 602 nm to 566 nm upon exposure to humid air while maintaining similar emission 

intensity.38 Thus, unlike the yellow form of [Pt(bpy)Cl2] which is a much weaker emitter than its 

red polymorph,49 the yellow form of [Pt(bpy)(CN)2] is strongly emissive. Presumably this is 

because [Pt(bpy)(CN)2]·H2O (1⋅H2O) contains dimers with short Pt(II)-Pt(II) distances which are 

able to exhibit 3MMLCT emission while yellow [Pt(bpy)Cl2] (3) has no short contacts between 

Pt(II) centers.46 

 

Scheme 2. [Pt(α-diimine)(CN)2] complexes, part II. 

 

The complex [Pt(4,4’-H2dcbpy)(CN)2] (4,4’-H2dcbpy = 4,4’-dicarboxyl-2,2’-bipyridine) (6) 

(Scheme 2) represents a milestone discovery in the area of vapochromic platinum compounds.13, 

39 The color of this material is dependent on the pH at which it is recrystallized and can adopt a 

range of colors from white to yellow, red, blue and purple. The different colors are a 

manifestation of different polymorphs with variable Pt(II)-Pt(II) interactions and are unusually 

diverse for linear-chain platinum(II) compounds. The red form was found to have short Pt(II)-

Pt(II) contacts of about 3.3 Å and a network structure with relatively large cavities in which 

water molecules can be included. The cavities form as a result of molecular alignments dictated 

by Pt(II)-Pt(II) interactions and hydrogen bonds between carboxylic acid and cyano groups. 

Upon exposure of any of the polymorphs to volatile organic compounds, reversible color 
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changes can be induced. Because the differently colored forms of [Pt(4,4’-H2dcbpy)(CN)2] are 

all emissive, vapor exposure further induces changes in the luminescence properties (Figure 2).  

 

 

Figure 2. Photoluminescence of [Pt(4,4’-H2dcbpy)(CN)2] (6) after exposure to different VOCs.13 

Reproduced with permission from the Chemical Society of Japan. 

 

In this system, there is a reasonably good correlation between the emission band maximum and 

the dielectric constant of the vapors to which the material is exposed; solvents such as DMSO 

and DMF cause significantly more blue-shifted emission than substances like benzene or 

chloroform. The emission originates from a 3MMLCT state which shifts to lower energy with 

increasing metal-metal interaction; direct evidence for the correlation between the luminescence 

band maximum and the Pt(II)-Pt(II) distance comes from the observation of thermochromism in 

the red form of [Pt(dcbpy)(CN)2] and from the observed shortening of the metal-metal distance 

from 3.28 Å at ambient temperature to 3.22 Å at 100 K.39  

When [Pt(4,4’-H2dcbpy)(CN)2] (6) is exposed to sodium methoxide in CH3OH solution the 

carboxylic acid groups of the bpy ligand are deprotonated and a material with the stoichiometry 

Na2[Pt(4,4’-dcbpy)(CN)2]·2H2O (7·2H2O) is obtained.40 The coordination unit in this compound 
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is formally anionic, but since it contains the deprotonated form of the complex discussed in the 

preceding paragraph it appears meaningful to discuss this vapochromic material in the current 

section. 

Na2[Pt(4,4’-dcbpy)(CN)2]·2H2O (7·2H2O) was obtained as a red and amorphous substance 

which changes color to yellow in humid air or when exposed to hydrophilic organic vapors such 

as those from methanol, acetone or DMF. Powder X-ray experiments reveal that the color change 

is accompanied by a structural transformation from an amorphous to a crystalline state, but 

inclusion of organic vapors into the solid did not occur. According to single crystal X-ray studies 

the yellow form of 7·2H2O has long (> 4.9 Å) intermolecular Pt(II)-Pt(II) distances while the red 

amorphous polymorph probably has short metal-metal contacts, hence the difference in color. 

The most interesting aspect of this material is certainly the fact that it exhibits structural changes 

upon exposure to hydrophilic VOCs without actually adsorbing anything. Unfortunately these 

structural transformations seem to be irreversible, limiting the application potential of the 

respective material severely. Both forms of 7·2H2O are luminescent when irradiated with UV 

light, and thus vapor exposure can be monitored both in absorption and emission (Figure 3). 

 

 

Figure 3. Photographs of 7·H2O before (a) and after (b) exposure to MeOH vapor. Panels (c) and 

(d) show the emission of the same compound before and after MeOH exposure. (A. Kobayashi, 

T. Yonemura, M. Kato: Vapor-Induced Amorphous-Crystalline Transformation of a 
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Luminescent Platinum(II)-Diimine Complex. Eur. J. Inorg. Chem., 2010, 2465-2470. Copyright 

Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.) 

 

When the cyano ligands of [Pt(4,4’-H2dcbpy)(CN)2] are replaced by SCN- an unusual 

vapochromic material results.50 By synthesizing the [Pt(4,4’-H2dcbpy)(SCN)2] complex (8) at 0 

°C it was possible to obtain the S-bound linkage isomer of this material, which, by analogy to the 

thiocyanato complex [Pt(bpy)(SCN)2] is presumably the kinetically (but not thermodynamically) 

favored product. The [Pt(4,4’-H2dcbpy)(SCN)2] complex is an orange non-luminescent material 

which crystallizes as a monohydrate (8·H2O). Exposure to DMF vapor induces a change in color 

to red, and the material becomes emissive (λmax = 660 nm, τ = 16 ns), presumably from a 

3MMLCT excited state indicative of Pt(II)-Pt(II) interactions. The CN stretching frequency red-

shifts from 2128 cm-1 to 2115 cm-1 in the course of DMF uptake, and the three 1H NMR 

resonances from the bpy backbone undergo high-field shifts. These two observations are 

consistent with a linkage isomerization reaction from S-bound thiocyanate to N-bound 

isothiocyanate. According to thermogravimetric studies the DMF adduct contains 3 molecules of 

DMF per formula unit (8·3DMF). By crystallization from DMF solution it was possible to obtain 

single-crystals of the formulation 8·4DMF in which the SCN- ligand is clearly nitrogen bound, 

but there are no short intermetallic contacts in this specific material. Some of the DMF molecules 

form hydrogen-bonds to the carboxyl groups and indeed, the CO stretching frequency of DMF in 

8·3DMF is lowered by 22 cm-1 compared to liquid DMF, suggesting that in the material with 

only 3 molecules of DMF, hydrogen-bonding between DMF and carboxyl groups of the H2dcbpy 

ligand occurs as well. Thus, hydrogen-bonding seems to play an important role in the vapor-

induced linkage isomerization. This interpretation is supported by the finding that solvents with a 
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Gutmann donor number above 26 induce the isomerization reaction for both SCN- ligands of a 

given complex (DMSO, DMF, dimethylacetamide), whereas solvents with donor numbers 

between 10 and 26 (methanol, ethanol, acetone, acetonitrile) induce S-to-N isomerization of only 

one of the two ligands.50 Presumably, the explanation for this behavior is that the initial S-bound 

form is stabilized by hydrogen-bonding between the terminal (more electronegative) N-atoms of 

the thiocyanato-ligands and the carboxyl-groups of neighboring complexes; upon sorption of a 

good hydrogen-bond donor these existing hydrogen-bonds are disrupted, making the 

thiocyanato-ligation thermodynamically unstable. Even though the crystal structure of 8·4DMF 

fails to provide direct evidence for intermetallic interactions it is easy to see why such 

interactions are more likely to occur in 8·3DMF than in 8·H2O: S-coordinated thiocyanate has a 

bent structure which can be directed up or down from the coordination plane, whereas N-

coordinated isothiocyanate is expected to lead to essentially planar complexes, hence close 

Pt(II)-Pt(II) contacts become more readily possible. 

Building on their own prior work Kato and Kobayashi recently reported on a series of 

coordination polymers containing [Pt(bpy)(CN)2] units. Specifically, their work focused on 

[Pt(5,5’-dcbpy)(CN)2]
2- complexes (5,5’-H2dcbpy = 5,5’-dicarboxyl-2,2’-bipyridine) (92-) 

bridged by Mg2+, Ca2+, Sr2+, Ba2+ or Zn2+ cations (Scheme 3).41, 42 Respective systems with 

formally anionic platinum complexes are discussed in this chapter because of their chemical and 

functional kinship to the materials discussed above. 

 

Scheme 3. [Pt(α-diimine)(CN)2] complexes, part III. 
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In the zinc compound the [Pt(5,5’-dcbpy)(CN)2]
2- units act as bridges between individual Zn2+ 

ions to form an infinite chain.41 The platinum complexes themselves are stacked perpendicularly 

to these chains with an intermetallic distance of 3.309(1) Å which is responsible for the orange 

color as well as the 3MMLCT emission (at 614 nm) exhibited by the Zn[Pt(5,5’-

dcbpy)(CN)2]·4H2O material at room temperature. Three of the four water molecules from this 

formula unit are coordinated to Zn(II) (along with two carboxylate oxygens), while the fourth 

water molecule is only hydrogen-bonded to a cyano group. When heating to 100°C all four water 

molecules can be driven off, thereby inducing a color change from orange to red and finally 

purple. The anhydrous purple form is vapochromic; when exposed to humid air at room 

temperature it readily re-converts to the initial orange tetrahydrate form. Thus, water 

adsorption/desorption occurs predominantly at the Zn(II) site, but this influences the stacking of 

the chromophoric and emitting platinum complexes (Figure 4). 
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Figure 4. Illustration how solvent uptake at the Zn(II) sites in the M[Pt(5,5’-dcbpy)(CN)2] 

coordination polymers affects the Pt(II)-Pt(II) distance (upper part) and the energy level structure 

(MO diagrams in lower part). Reprinted with permission from ref. 42. Copyright 2011 The Royal 

Society of Chemistry. 

 

When replacing Zn(II) by other dications it becomes possible to alter the intermolecular Pt(II)-

Pt(II) distances in the M[Pt(5,5’-dcbpy)(CN)2]·nH2O coordination polymers;42 in a way this is 

similar to cation exchange in tetracyanoplatinates although the accessible Pt(II)-Pt(II) distance 

range is more narrow for the newly explored coordination polymers.22 Compounds with M2+ = 

Mg2+, Ca2+, Sr2+, and Ba2+ are thought to be isomorphous with Zn[Pt(5,5’-dcbpy)(CN)2]·4H2O, 

and hence it appears plausible that the alkaline earth metals act as water adsorbing sites similar to 

the Zn(II) ion in the parent compound, but this is not known for sure. By analogy to the zinc 

compound discussed above, heating to 100°C drives off all four water molecules in all 

compounds, and the resulting anhydrous forms readily re-adsorb water vapor at ambient 

temperature. In the case of the compounds with Mg2+ and Ca2+ this is accompanied by significant 

chromic shifts both in absorption and emission, hence these two materials may be considered 

vapochromic substances. Contrary to the zinc compound, the alkaline earth metal based 
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coordination polymers can all adsorb methanol vapor, and this alters their luminescence with 

respect to the anhydrous forms. It is thought that the methanol molecules simply occupy the 

adsorption sites filled with water in the M[Pt(5,5’-dcbpy)(CN)2]·nH2O forms. 

 

2.1.2 [Pt(α-diimine)(acetylide)2] complexes 

 

The search for phosphorescent metal complexes which can be used as triplet harvesters in 

organic light emitting diodes (OLEDs) has lead, inter alia, to platinum(II) complexes with 

acetylide ligands.16, 51-55 When combining acetylide ligands with α-diimines or cyclometalating 

chelating agents very strong ligand fields can be exerted on coordinated Pt(II) centers,56, 57 and 

this is beneficial for the luminescence properties due to suppression of multiphonon relaxation 

from metal-localized (d-d) excited states.58 In the course of research on such complexes a few 

vapochromic materials have been discovered. 

 

Scheme 4. [Pt(α-diimine)(acetylide)2] complexes, part I. 
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Che, Wong, and coworkers report on a series of [Pt(tBu2bpy)(arylacetylide)2] complexes two 

of which are vapoluminescent (Scheme 4).59 Thin films of the complex in which the 

arylacetylide is 4-ethynylpyridine exhibit greatly enhanced green luminescence upon sorption of 

CH2Cl2 or CHCl3 vapor; the detection limits are around 25 and 450 ppm, respectively, while 

polar VOCs such as methanol produce no response. In crystals of [Pt(tBu2bpy)(4-

ethynylpyridine)2]·CH2Cl2 (10·CH2Cl2) there are interactions between the relatively acidic 

protons of CH2Cl2 and the 4-ethynylpyridine C≡C bonds.59 As a consequence, an infinite chain 

of CH2Cl2 molecules forms within a hydrophobic channel between the platinum complexes; C-

H–N interactions between the tBu2bpy ligands and the pyridyl N atoms complement the network 

of noncovalent interactions. Presumably, the high selectivity for CH2Cl2 in the vapoluminescent 

response of neat [Pt(tBu2bpy)(4-ethynylpyridine)2] (10) is at least partly due to the hydrogen 

bonding interactions which have been observed in crystals of the CH2Cl2 adduct. Acetonitrile has 

less acidic protons hence hydrogen bonding to the 4-ethynylpyridine C≡C bonds is weaker and 

no vapoluminescence is observed; alcoholic vapors presumably cannot intrude into the 

hydrophobic environment produced by the tert.-butyl substituents. The emission spectrum of the 

crystalline CH2Cl2 adduct is similar to that obtained when dissolving the complex 10 in CH2Cl2 

and has been interpreted in terms of 3MLCT emission from discrete molecules; there are no short 

Pt(II)-Pt(II) contacts in the crystalline form. 

When the arylacetylide is ethynylpentafluorophenyl another vapoluminescent material is 

obtained.59 When crystallized from benzene solution [Pt(tBu2bpy)(ethynylpentafluorophenyl)2] 

(11) forms orange crystals which exhibit an intense structureless emission with λmax = 595 nm. 

Upon exposure to CH2Cl2 vapor, the orange emission gradually changes to green (λmax = 500 

nm). While the orange photoluminescence is thought to be excimeric emission originating from 
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electronically interacting complexes the green luminescence was attributed to 3MLCT emission 

from isolated complexes. The dichloromethane adduct of this material could not be crystallized 

but it was possible to investigate 11·CH3CN by X-ray crystallography. The shortest Pt(II)-Pt(II) 

contact in the acetonitrile adduct is at 9.957 Å, while in the solvent-free compound the shortest 

metal-metal distance is 5.172 Å. In the latter, the distances between neighboring luminophore 

layers are between 3.3 Å and 3.6 Å which is indicative of π-stacking between pentafluorophenyl-

rings and tBu2bpy. The excimeric orange emission of solvent-free 11 may have its origin in these 

weak intermolecular interactions. 

Wang and coworkers recently reported on a structurally related platinum(II) material 

exhibiting vapochromism that relies on an entirely different concept which has nothing to do 

with metal-metal distances or π-stacking.60 Instead, the vapochromism of complex 12 appears to 

be due to changes in the excited-state structure resulting from direct interactions between the 

complex and adsorbed molecules. Complex 12 contains two triarylboron groups, similar to those 

investigated in the context of fluoride sensors or electron-deficient materials.61-63 Neat 12 shows 

yellow 3MLCT emission (λmax = 559 nm) following UV irradiation (Figure 5). Exposure to n-

hexane, toluene or methanol vapors quenches the luminescence, while exposure to benzene or 

cyclohexane induces a change in emission color from yellow to red (λmax = 580 – 620 nm). By 

contrast, when the same complex is exposed to vapors of CH2Cl2, CHCl3, CH3CN, acetone, THF, 

or ethanol, the emission color shifts from yellow to green (λmax = 490 – 500 nm). Thus, complex 

12 exhibits unusual behavior in that different groups of solvent vapors induce emission color 

shifts to either shorter or longer wavelengths. 
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Figure 5. Photoluminescence of complex 12 after exposure to different VOCs. Reprinted with 

permission from ref. 60. Copyright 2011 American Chemical Society. 

 

This phenomenon has been explained in terms of solvent-induced switching in the nature of 

the emissive excited-states: While the yellow luminescence of neat 12 and the red emission after 

exposure to benzene or cyclohexane are assumed to originate from a 3MLCT state, the green 

emission following adsorption of more polar vapors is attributed to ligand-centered emission 

(3LC). This interpretation makes sense in view of the fact that many Pt(II) complexes exhibit 

negative solvatochromism, because of their large ground-state dipole moments which are 

opposite to the direction of the MLCT.64, 65 In complex 12, solvents of a certain threshold 

polarity shift the 3MLCT state energetically above the 3LC level which is then largely insensitive 

to further polarity changes (left part of Figure 6); this explains why solvents ranging in polarity 

from CH2Cl2 to CH3CN all lead to essentially the same green emission.60 Conversely, nonpolar 

solvents decrease the energy of the 3MLCT state, resulting either in red luminescence (benzene, 

cyclohexane) or, in the extreme case (n-hexane), to emission quenching.  

Single-crystal X-ray diffraction of 12⋅4CH2Cl2 reveals that the shortest intermolecular Pt(II)-

Pt(II) separation is above 12 Å and the shortest distance between aromatic planes is ∼5.7 Å.60 

Powder X-ray studies show that CH2Cl2, benzene, and hexane adducts are structurally very 

similar to neat 12. This finding is corroborated by solid state NMR studies monitoring the 1H, 
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13C, and 195Pt nuclei. 11B NMR spectroscopy shows that the boron center is unaltered by 

adsorption of CH2Cl2 or benzene. On the basis of these observations Wang and coworkers 

postulated that interactions between the bpy ligands and the adsorbed molecules are responsible 

for the energetic changes in the emissive 3MLCT state.60 

 

 

Figure 6. Changes of the excited-state structure in complex 12 as a function of VOC exposure. 

Reprinted with permission from ref. 60. Copyright 2011 American Chemical Society. 

 

Chen and coworkers report on a vapoluminescent platinum(II) bis(acetylide) complex (13) 

with a bpy ligand substituted at its 5- and 5’-positions with trimethylsilyl-protected ethynyl 

groups,66 its acetylide ligands are two 5-ethynyl-2,2’-bipyridine molecules (Scheme 5). The 

luminescence of 13 is strongly sensitive to a variety of VOCs. When exposed to acetone, 

structured luminescence with a band maximum at 562 nm is observed while exposure to THF 

leads to unstructured emission with λmax at 747 nm. For other solvent vapors, emission band 

maxima between these two extremes are detected. Structural investigations of different solvent 

adducts of 13 reveal that there is a correlation between the shortest Pt(II)-Pt(II) distance (dPt-Pt) 

with the solvent-induced shift of the emission band maximum: While for the acetone and n-

hexane adducts dPt-Pt = 4.8406(15) Å and 4.3091(9) Å, respectively, chloroform and THF adducts 
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exhibit short Pt(II)-Pt(II) contacts of 3.2363(15) Å and 3.2195(5) Å. Thus, it appears plausible 

that the emissive state changes from 3MLCT to 3MMLCT for VOCs such as acetone, CH2Cl2, 

and n-hexane. In the CH2Cl2 adduct, intermolecular π-π stacking as well as C-H /π(C≡C) 

interactions may play a role as well.66 

 

Scheme 5. [Pt(α-diimine)(acetylide)2] complexes, part II. 

 

 

Chen and coworkers further reported on a Pt(II) complex with 5,5’-bis(trimethylsilylethynyl)-

2,2’-bipyridine and phenylacetylene ligands (14) exhibiting selective vapoluminescence response 

to volatile halohydrocarbons with only one carbon atom and molecular masses below 150 

g/mol.67 The crystal structure of neat 14 as well as those of solvent adducts with 1,2-

dichloroethane and toluene exhibit no Pt(II)-Pt(II) distances shorter than 4.7 Å. By contrast, in 

the structure of the CHCl3 adduct there is a short intermetallic distance of 3.302(1) Å between 

pairs of complexes. The structural changes following CHCl3 uptake are accompanied by a 

change from orange (λmax = 561 nm and 603 nm) to red emission (λmax = 761 nm), which has 
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been explained by a changeover from 3MLCT emission with some admixed 3LLCT character (τ 

= 2.12 µs) to 3MMLCT emission. Computational studies support this interpretation and hint to an 

admixture of 3LLCT character even to the 3MMLCT luminescence. Neat 14 was exposed to a 

variety of different solvent vapors including those from diethyl ether, ethyl acetate, methyl 

acetate, acetone, methanol, ethanol, acetonitrile, pyridine, dibromomethane, bromoform, carbon 

tetrachloride, 1,2-dichloroethane, 1,2-dibromoethane, 1,1,2-trichloroethane, and toluene. 

However, a vapoluminescence response was only obtained with CH2Cl2, CHCl3, and CH3I. The 

vapochromic response to CH2Cl2 is illustrated by Figure 7. 

 

 

Figure 7. Photograph of crystalline samples of 14 (a) and 14⋅CH2Cl2 (b). Reprinted with 

permission from ref. 66. Copyright 2009 American Chemical Society. 

 

Complexes 15 and 16 differ from 14 only by the fluoro-substituents at the phenylacetylene 

ligands yet exhibit substantially different vapoluminescence behavior.68 Complex 15 is 

specifically selective to CHCl3 vapors, while complex 16 responds to both CHCl3 and CH2Cl2. 

Unlike 14, neither 15 nor 16 are sensitive to CH3I, but the effect of chloroform and/or 

dichloromethane exposure is the same in all three complexes, namely the change from orange 

3MLCT/3LLCT to red 3MMLCT/3LLCT emission mentioned above for 14. The structure of the 

adduct between 15 and 1,2-dichloroethane, as well as the structures of 16⋅0.5CH2Cl2, 
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16⋅CH2ClCH2Cl, and 16⋅CH2BrCH2Br were determined by single crystal X-ray diffraction 

(Figure 8). Individual complexes are either stacked in staggered or anti-parallel fashion in these 

structures. The staggered mode permits formation of Pt(II)-Pt(II) contacts shorter than 3.4 Å, 

whereas in the anti-parallel mode individual complexes are forced to slide away from each other 

so as to enforce intermetallic distances longer than 3.5 Å. Both stacking modes appear in the 

structure of 16⋅0.5CH2Cl2 as there are pairs of complexes with short (3.315(9) Å) and long 

(4.853(10) Å) metal-metal distances (Figure 8). The structures of 15⋅CH2ClCH2Cl and 

15⋅CH2ClCH2Cl exhibit relatively short intermetallic contacts (3.514(16) Å and 3.513(5) Å) as 

well, but there is no significant vapoluminescence response of 15 or 16 to 1,2-dichloroethane. A 

notable feature of several of the abovementioned crystal structures is the presence of C-

H/π(C≡C) interactions between the halocarbon adsorbents and the fluorophenylacetylides. The 

reversible structural changes following the conversion of 16⋅CH2BrCH2Br to 16⋅CH2Cl2 were 

studied by monitoring X-ray diffraction (XRD) patterns after different times following exposure 

to CH2Cl2 or 1,2-dibromoethane vapors. Given the reversibility of the structural transformations 

the observation of fully reversible vapoluminescence responses by 15 and 16 is not particularly 

surprising. Several solvent adducts of 15 and 16 were found to exhibit mechanochromic 

luminescence.23, 68  
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Figure 8. Molecular packing in single crystals of 16⋅0.5CH2Cl2. (J. Ni, X. Zhang, Y.-H. Wu, L.-

Y. Zhang, Z.-N. Chen. Chem. Eur. J., 2011, 17, 1171-1183. Copyright Wiley-VCH Verlag 

GmbH & Co. KGaA. Reproduced with permission.) 

 

A closely related Pt(II) complex has two 4-trifluoromethylphenylacetylide ligands (17) and is 

selectively sensitive to vapors from cyclic ethers such as THF, dioxane, or tetrahydropyrane 

(THP) (Figure 9).69 As in the case of 13 – 16, the vapoluminescence response of 17 is triggered 

by changes in intermetallic distances causing a red-shift in luminescence due to the changeover 

from 3MLCT/3LLCT to 3MMLCT emission. In 17⋅THF there is a short (3.255(8) Å) Pt(II)-Pt(II) 

distance between staggered complexes, and the overall crystal structure appears to be stabilized 

by host-guest interactions through hydrogen-bonding between C-H groups of the complex and 

the oxygen atom of THF, as well as between C-H groups of THF and the trifluoromethyl group 

of the phenylacetylide ligands. It is possible that this is the origin of the selective 

vapoluminescence response to certain O-heterocyclic compounds (Figure 9). XRD studies reveal 

that the structural conversion between 17⋅CH2ClCH2Cl and 17⋅THF is fully reversible. Exposure 

to vapors of methanol, ethanol, acetone, furan, diethyl ether, ethyl acetate, hexane, toluene, 

pyridine, and various halohydrocarbons produces no significant vapoluminescence changes. The 

initial motivation for introducing the electron-withdrawing trifluoromethyl group at the 

phenylacetylide ligands was to increase the HOMO-LUMO energy gap, and the expected 

emission blue-shift could indeed be observed (λmax of 17 in CH2Cl2 solution: 568 nm; λmax of 14 

in CH2Cl2: 616 nm). However, the selective vapoluminescence response of 17 is most likely an 

accidental result. 
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Similar to 15 and 16, neat 17 and some of its solvent adducts exhibit mechanochromic 

properties and luminescence thermochromism.23, 69 

 

 

Figure 9. Vapochromic and vapoluminescent response of complex 17 to selected VOCs. 

Reprinted with permission from ref. 69. Copyright 2012 American Chemical Society. 

 

2.1.3 [Pt(isocyanide)2(CN)2] complexes 

 

When heating double salt compounds of the stoichiometry [Pt(CNR)4][Pt(CN)4] (see next 

chapter) to their melting point in absence of solvent, ligand rearrangement occurs and isomeric 

charge-neutral [Pt(CNR)2(CN)2] complexes are formed.70 Starting from the respective double 

salt, Mann and coworkers prepared [Pt(CN-C6H4-C2H5)2(CN)2] (18) at 201 °C (Scheme 6). 

 

Scheme 6. Vapochromic [Pt(isocyanide)2(CN)2] complexes. 

 

 

Subsequent re-crystallization of the raw product gives either an orange or a purple form of the 

same product: Slow crystallization from CH2Cl2 yields the orange form, while the purple isomer 

Page 27 of 171

ACS Paragon Plus Environment

Submitted to Chemical Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

28

is obtained via rapid addition of hexanes to the CH2Cl2 solution. Of specific interest here is the 

orange form because it exhibits vapoluminescence, whereas the purple isomer does not appear to 

respond to VOCs. Orange 18 is the cis-isomer of 18 (cis-18) and exhibits luminescence from a 

dσ*→pσ excited state similar to tetracyanoplatinates. When exposed to vapors of toluene, 

benzene, chlorobenzene, p-xylene, mesitylene, or ethanol in an N2 stream at 296 K, the 

maximum of the broad emission band of cis-18 shifts from 611 nm to shorter wavelengths by up 

to 46 nm (Figure 10). In the case of toluene a VOC mole fraction of 0.0337 in the N2 stream is 

necessary to induce this blue-shift while in the case of mesitylene only a mole fraction of 0.0028 

is required to induce the same effect. Analysis of the luminescence data suggests that toluene 

sorption occurs in two steps, involving adducts with the stoichiometry cis-18⋅0.25C6H5CH3 and 

cis-18⋅0.5C6H5CH3. Gravimetric studies, however, indicate that cis-18 rapidly sorbs 0.5 

equivalents of toluene while prolonged exposure produces an adduct with 0.9 equivalents of 

toluene. Subsequent partial removal of toluene by continued purging with N2 occurs readily, but 

the last 0.25 equivalents are held with tenacity and neat cis-18 can only be recovered with 

simultaneous heating. 

 

 

Figure 10. Emission spectral changes of cis-18 in the course of toluene vapor uptake. Reprinted 

with permission from ref. 70. Copyright 2002 American Chemical Society. 
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The structures of cis-18⋅0.5C6H5CH3 and cis-18⋅x(hexanes) were determined by X-ray 

analysis.70 The packing arrangements in both structures are nearly identical, there are infinite 

stacks of cis-[Pt(CN-C6H4-C2H5)2(CN)2] molecules with chains of Pt(II) atoms along the c-axis. 

The in-chain Pt(II)-Pt(II) separation in the toluene adduct is alternating between 3.281 Å and 

3.300 Å, but the chain is slightly zigzagged with Pt-Pt-Pt angles of 175.5°. The cis-

18⋅0.5C6H5CH3 adduct incorporates 4 toluene molecules per unit cell, thereby the volume of the 

latter increases by 160 Å3 or 43% of the estimated volume of 4 toluene molecules (372 Å3). 

Uptake of toluene vapor increases the packing efficiency by 10%, which is significantly greater 

to what is commonly observed for the vapochromic Pt(II) double salts discussed in the next 

section (6%). Toluene sorption increases the length of the unit cell along the c-axis by 0.35 Å, 

resulting in an increase of the Pt(II)-Pt(II) distance by about 0.09 Å. However, among the VOCs 

investigated, no obvious correlation between the magnitude of the vapochromic luminescence 

band shift and any one VOC molecular parameter was found, and it was cautiously suggested 

that the molecular shape of the VOC guest plays an important role. 

When the [Pt(CNR)4][Pt(CN)4] double salt with R = C6H4-C2H5 is heated to reflux in 

chloroform, the purple trans-isomer of compound 18 is obtained.71 Expectedly, trans-18 differs 

from cis-18 not only in color (purple vs. orange) but by an ensemble of physical properties, e. g., 

different cyanide stretching frequencies, different chemical shifts for the 195Pt NMR signals, and 

molecular packing in single crystals. The Pt(II)-Pt(II) separation (3.1253(8) Å) in trans-18 is one 

of the shortest in the entire class of Pt(II) double salts. Furthermore, there are intermolecular π-π 

interactions between isocyanide ligands of different stacks leading to a relatively close-packed 

structure in two of the three dimensions. As noted by Mann and coworkers, it is possible that the 
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compact two-dimensional packing motif is responsible for the absence of vapochromism or 

vapoluminescence of trans-18.71 

This cis-isomer of [Pt(CN-iC3H7)2(CN)2] (cis-19) was synthesized from the respective double 

salt like cis-18.72 Individual Pt(II) complexes in cis-19 are slip-stacked in staggered fashion 

along the c-axis with an intermetallic distance of 3.256 Å, the color of the material is yellow. 

When exposed to benzene vapors, the structure changes to an eclipsed orientation of Pt(II) 

complexes with an intermetallic separation that has increased to 3.485 Å, and the color of this 

compound (cis-19⋅0.5C6H6) is blue. The structural change including a 20% expansion in unit cell 

volume is further accompanied by a change in luminescence properties (Figure 11). Modeling of 

the spectral changes observed in the course of exposure to benzene leads to the conclusion that 

benzene uptake is a consecutive two-step reaction (A → B → C) with an intermediate B of 

unknown structure. Interestingly, cis-19 does not respond to vapors of substituted derivates of 

benzene such as toluene, p-xylene, m-xylene, o-xylene, mesitylene, chloroform, and 

hexafluorobenzene. Presumably the selectivity of cis-19 for benzene has its origin in the absence 

of a stable solvate phase for adducts such as cis-19⋅n(C6H5CH3). Unfortunately, the reversibility 

of the benzene uptake is poor due to crystalline degradation. The slow kinetics for benzene 

sorption additionally limits the usefulness of cis-19 as a benzene sensor for practical purposes. 
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Figure 11. Photoluminescence of cuvettes filled with crystalline films of cis-19 before (top) and 

after (bottom) exposure to benzene vapor. Reprinted with permission from ref. 72. Copyright 

2009 American Chemical Society. 

 

Using the compound [Pt(CN-tBu)2(CN)2] (20) it has been possible to fabricate vapor-

responsive microwires.73 For this purpose, 20 was dissolved in methanol and deposited onto 

insulating SiO2 substrates bearing two pre-installed small gold electrodes on the surface. The 

microwires were typically longer than 10 µm and hence they were able to cross over two 

neighboring electrodes. When slowly evaporating solvent over a time period of 6 days the 

diameter of the microwires was typically on the order of 1.2 µm. The electrical conductivity of 

an operating electrode-microwire-electrode device at a bias of 5 Volts was determined to be 6.86 

µA. The conductivity is perturbed upon VOC exposure, but only toluene, acetonitrile, and 

methanol produce a significant response. Vapors of THF, acetone, ethyl acetate, diethyl ether, 

petroleum ether, hexane, nitromethane, ammonia, chlorobenzene, cyclohexane, dichloromethane, 

chloroform, and hydrazine lead to a comparatively small change in conductivity. It has been 

suggested that changes in the Pt(II)-Pt(II) interactions are responsible for the vapor-induced 

variations in conductivity.73 X-ray diffraction indicates that upon acetonitrile uptake the Pt(II)-

Pt(II) distance remains almost unchanged (3.354(1) Å vs. 3.3525(2) Å), but the coordination 

bond angles around the Pt(II) center are altered.74 Consequently, CH3CN exposure is associated 

with a relatively small change in luminescence properties and the 5dσ*←6pσ emission simply 

decreases in intensity but does not change color (λmax stays at 534 nm).  
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2.2 Platinum(II) / palladium(II) double salts 

 

When stirring an acetonitrile solution of Pt(CH3CN)2Cl2 and [(n-Bu)4N]2[M(CN)4] (M = Pt, 

Pd) in presence of isopropylisocyanide one obtains two compounds which are reminiscent of the 

Magnus Green Salt (MGS, [Pt(NH3)4][PtCl4]), namely [Pt(CN-iC3H7)4][Pt(CN)4] (21) and 

[Pt(CN-iC3H7)4][Pd(CN)4] (22) (Scheme 7).75 

 

Scheme 7. Vapochromic d8-d8 double salts, part I. 

 

 

Bulk samples of 21 are red with a green metallic reflectance whereas 22 is yellow. From 

aqueous solution 21 crystallizes as a hexahydrate adduct with alternating cation-anion stacking 

similar to MGS (Figure 12), and the water molecules connect individual stacks through 

hydrogen-bonding to the cyanide ligands of the anion. Gravimetric investigations demonstrated 

that dry 21 readily uptakes either 12 molecules of H2O, 8 molecules of methanol, 6 molecules of 

chloroform, or 4 molecules of trifluoroethanol when exposed to the corresponding vapors. 
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Figure 12. A cation-anion pair in compound 21. Reprinted with permission from ref. 75. 

Copyright 1998 American Chemical Society. 

 

Interestingly, none of these sorption processes influences the Pt(II)-Pt(II) distance much, the 

unit cell parameter in the stacking direction (c-axis) varies in the narrow range from 6.303(2) Å 

to 6.337(2) Å. As a consequence, the absorption maximum of the lowest-energetic absorption 

varies only from 573 nm to 603 nm and vapochromism is not particularly spectacular. However, 

the vapor-sorption induced changes in the distance between individual Pt(II)-Pt(II) stacks in the 

ab plane are all the more noteworthy; the respective distance varies between 10.416 Å(1) (in dry 

21) to 18.271(4) Å (in 21·12 H2O). Large unit cell volume expansions reflecting the size of the 

guest vapor are observed: For H2O the cell volume expands by 54%, for methanol 60%, for 

trifluoroethanol 73%, and for chloroform 94% relative to the volume of dry 21. Thus, it is clearly 

the size of the guest, and not the size of any preexisting pores in the host material which 

determines the magnitude of the lattice expansion. Principally these changes in the plane 

perpendicular to the Pt(II)-Pt(II) stacking direction are thought to be responsible for the weak 

vapochromism of 21, but how exactly this occurs is not known.75 

 

Scheme 8. Vapochromic d8-d8 double salts, part II. 
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A variety of different isonitrile ligands can be used for obtaining vapochromic double salts 

similar to 21 or 22, an early example is [Pt(CN-C6H4-C10H21)][Pd(CN)4] (23) (Scheme 8).76 

Analogous compounds with isonitriles containing n C6, C12, and C14 chains were investigated as 

well, but the C10 compound has the highest responsivity to solvent vapors. Thin films of 23 

change color from pink to blue with a response time (t1/2) of ∼350 ms when exposed to CHCl3-

saturated air at room temperature. The associated shift of the visible absorption band from 548 

nm to 578 nm is reversible thanks to a minimal disruption of crystallinity upon vapor sorption. It 

has been suggested that this is possible due to the rather large size mismatch between Pt(II) 

dications and Pd(II) dianions, producing a relatively large free volume through which CHCl3 can 

easily move in and out of the material. IR spectroscopy suggests that the CHCl3 guest interacts 

predominantly with the [Pd(CN)4]
2- anion because the CN vibration in pure 23 exhibits a single 

band at 2125 cm-1 while in the CHCl3 adduct a splitting into two bands (at 2127 and 2132 cm-1) 

is observed; the CN stretching frequency of the isonitrile ligands of the cation are invariant to 

CHCl3 uptake. 

Bailey and Hupp reported on chemoresponsive diffraction gratings which make use of the 

vapochromic ([Pt(CN-C6H4-C10H21)4][Pd(CN)4] material (23).77 A film of compound 23 was cast 

onto a patterned poly(dimethylsiloxane) stamp having 5 × 5 µm2 wells arranged periodically, and 
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the stamp was subsequently brought into contact with a transparent microscope slide. The lattice 

periodicity of 10 µm is nicely observable by AFM and permits the diffraction of visible light. 

The uptake of chloroform vapor by the vapochromic layer results in an increase of the refractive 

index of the diffraction grating because voids (or initially present water molecules) in the 

vapochromic material are replaced by an organic substance. The increase in refractive index 

difference between grating and surrounding medium in turn causes an increase in diffraction 

efficiency. This effect is particularly strong when using light of a wavelength at which the 

diffraction lattice absorbs: Using 632.8 nm as an irradiation wavelength the loss-corrected 

diffraction efficiency is ∼3000 times larger than when irradiating at a wavelength where the 

lattice does not absorb. Because the magnitude and the direction of the vapor-induced absorption 

band shifts in compound 23 depends on the VOC, the resonance effect observed in diffraction 

efficiency at a given irradiation wavelength is dependent on analyte, i. e., the effect shows 

certain solvent selectivity. Based on uptake isotherms a detection limit of a few mg/m3 was 

estimated for CHCl3 vapor. 

Analogous double salts with tetracyanoplatinate(II) instead of tetracyanopalladate(II) anions 

exhibit vapochromism as well. On the cations, arylisocyanide ligands (p-CN-C6H4-CnH2n+1) with 

n = 1, 6, 10, 12, 14 were explored, and it was found that compounds with n = 1, 6 (24a, 24b) 

respond better to polar VOCs whereas compounds with n > 6 are more sensitive to nonpolar 

VOCs (24c, 24d, 24e) with compound 24c (n = 10) being the most responsive.78 Despite the 

change from a 4d to a 5d metal in the dianion, there is still a significant size mismatch between 

counterions which is important for the reversible vapochromism of this family of compounds 

(Figure 13). 
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Figure 13. Space-filling model of double salt 24d. Reprinted with permission from ref. 78. 

Copyright 1998 American Chemical Society. 

 

These Pt(II)-Pt(II) double salts are mostly insoluble solids with a blue color, caused by a 

dσ*→pσ transition arising from 5dz2-5dz2 and 6pz -6pz orbital overlaps between neighboring 

Pt(II) atoms in linear stacks of alternating cations and anions (Figure 2). In neat 24c the 

maximum of the respective absorption is at 746 nm, and upon exposure of a thin film of 24c to 

CHCl3 λmax shifts to 837 nm. Methanol, ethanol, 2-propanol, diethyl ether, acetonitrile, hexanes, 

acetone, benzene, and dichloromethane produce vapochromic shifts as well, but to a smaller 

extent than chloroform (11 – 65 nm). The luminescence of 24c is affected by vapor sorption, too, 

but the emission band maximum of neat 24c is already outside the visible spectral range (944 

nm) and further moves into the NIR upon vapor sorption (e. g., to 1018 nm for CHCl3). The 

timescale of the vapochromic response is ∼500 ms (t1/2). IR spectroscopy monitoring the CN 

stretching vibrations of the cyanide and arylisonitrile ligands indicates that solvents capable of 

forming hydrogen bonds mostly interact with the [Pt(CN)4]
2- anion, whereas apolar VOCs (e. g., 

benzene) cause very small shifts in ν(CN) but produce a significant change in the NIR portion of 

the optical absorption spectrum. From these observations it was concluded that the vapochromic 

response of this family of compounds is governed by a complicated interplay of hydrogen-

bonding, lypophilic, and dipole-dipole interactions. 
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In-depth IR studies of 24c revealed a correlation between the cyanide stretching frequency and 

the hydrogen-bonding ability of the adsorbed VOC,79 as expressed by Abraham’s α parameter.80 

The vapor-induced ν(CN) shifts are between 1 and 17 cm-1. The only solvent which does not at 

all fit into the correlation between ν(CN) and α is water, due to its inability to pass the h 

ydrophobic barriers imposed by the long alkyl chains of the dications. 

 

Scheme 9. Vapochromic d8-d8 double salts, part III. 

 

 

Based on the double salt family of vapochromic compounds several molecular devices were 

constructed. The first to be mentioned here is that of a vapochromic light-emitting diode 

(LED).81 For this purpose, a 700-nm layer of tris-(4-(2-thienyl)phenylamine) was deposited on 

an ITO coated glass and oligomerized anodically to produce a hole transport layer. This was 

followed by casting a 200-nm film of compound 25 (Scheme 9) on top. Finally, vapor deposition 

was used to deposit a 700-nm film of aluminum on top of everything. Application of an external 

voltage then resulted in electron flow from aluminum through the two molecular layers to ITO, 

inducing electroluminescence with a photon/electron efficiency of about 0.01%. The 

electroluminescence was clearly due to compound 25 and exhibited a similar response to acetone 

vapor as the photoluminescence spectrum of 25, namely a shift of λmax from 540 to 575 nm. The 
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motivation for using 25 with its tetranitroplatinate(II) anion instead of the analogous 

tetracyanoplatinate(II) salt (24c) was mainly the experience that 25 forms better films. 

A device containing the same components but with somewhat different film thicknesses was 

used as a vapochromic photodiode.82 Rectification of the current favoring electron flow from 

aluminum through the two molecular layers was observed, the rectification ratio at 5 Volts was 

∼100. Under application of 2 Volts of reverse bias it is possible to induce a photocurrent using 

the visible light output of a 450 W Xenon lamp. When blowing acetone vapor into the device, 

the photocurrent increased more than 10 times within 2 minutes. It was noted that this 

photodiode acts like vapochromic absorption sensor without the need for a separate detector. 

 

Scheme 10. Vapochromic d8-d8 double salts, part IV. 

 

 

In addition to the vapochromic LED and the vapochromic photodiode Mann and coworkers 

reported on electronic nose devices based on vapoluminescent Pt(II)-Pt(II) double salts.83, 84 The 

principle of electronic noses is to use an array of chemical substances which respond differently 

when exposed to different vapors such that one obtains a response pattern from which one is able 

to discriminate between various odors.2, 85 Using a combination of compounds 27, 28 and 26 

(Scheme 10), deposited in submilligram quantities onto inert support disks made from platinum 

or carbon fibers, it was possible to construct a device which is able to differentiate chloroform, 
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water, methanol, and dichloromethane from a broad variety of other solvent vapors. 

Interestingly, the device is able to differentiate between two the isomeric forms of propanol, but 

n-hexane and cyclohexane are not well resolved from each other.83 The discrimination ability of 

this device relies on the fact that compounds 27 and 26 give differently pronounced gradual 

vapor-induced luminescence shifts, whereas compound 28 acts essentially as a binary sensor 

with only two distinct responses. Principal component analysis of the overall luminescence 

spectra after vapor exposure then permits distinction between different vapors. 

 

Scheme 11. Vapochromic d8-d8 double salts, part V. 

 

 

In subsequent electronic nose studies, compound 28 was replaced by the more temperature-

resistant compound 29, a mixed cation platinum(II) double salt which can be formulated as 

[dication]2[monocation]2[Pt(CN)4]3 (Scheme 11).84  This was necessary because heating and 

cooling cycles of the array elements while purging with N2 gas between solvent vapor exposures 

turned out to be the most effective way to increase the reversibility and reproducibility of the 

device response. In addition, elevated operating temperatures (typically 50°C) did at least 

partially eliminate the problem of undesired devices responses to air humidity. Using principal 

component analysis of vapor-induced luminescence changes the electronic nose constructed from 
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compounds 27, 26 and 29 was able to differentiate between 10 different solvents. The detection 

limit for acetone was at 12% saturation (75 g/m3), for methanol an even lower detection limit of 

3% (6 g/m3) was determined.84 

 

Scheme 12. Vapochromic d8-d8 double salts, part VI. 

 

 

Unusually direct insight into the phenomenon of vapochromism in Pt(II)-Pt(II) double salts 

was obtained from investigation of compound 30 using a quartz crystal microbalance on which 

mass changes and spectral changes as a function of water uptake from air humidity could be 

detected simultaneously (Scheme 12).86 The employed experimental setup revealed a type of 

behavior which was not previously known for this class of compounds, namely a strongly 

nonlinear response behavior to varying concentrations of water vapor. At low water vapor 

concentrations compound 30 sorbs 0.5 water molecules per formula unit, followed by a sudden 

uptake of 2.5 water molecules per formula unit when the water vapor concentration increases to 

∼25% relative humidity. This phenomenon is accompanied by a stepwise change of the 

reflectance spectrum of compound 30 on the quartz crystal microbalance, i. e., optical 

spectroscopic and sorptive properties of thin films of 30 changed in a correlated fashion. CH2Cl2 

and CHCl3 vapors produce reflectance changes as well, but as their concentrations are increased 
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the step-like response behavior is much less pronounced than for water vapor. Benzene, toluene, 

and p-xylene induce a gradual vapochromic response. It thus appears that vapors capable of 

hydrogen-bonding produce fundamentally different optical species in 30 than non-hydrogen-

bonding VOCs. 

Starting from enantiomerically pure isocyanide ligands, Drew, Mann and coworkers recently 

synthesized and explored a double salt which is capable of enantiomerically selective 

vapoluminescence sensing.87 Compound 31 with chiral β-methylphenethylisocyanide ligands on 

the cation can be obtained in pure R- and S-forms, and the two enantiomers are able to 

differentiate between vapors of R-2-butanol and S-2-butanol. The enantiomeric selectivity cannot 

be pinned down to one specific effect but was rather considered as resulting from a combination 

of three possible effects: (i) differential selective hydrogen-bonding between the chiral 2-butanol 

guest and the cyanide ligands, (ii) selective solvation at the chiral host sites, and (iii) selective 

permeation of the chiral guest into the interstitial voids of the chiral host. Compound 31 suffers 

from water sensitivity and stability issues which need to be resolved before efficient 

vapochromic devices with enantiomeric selectivity can be envisaged; however, the proof of 

concept has clearly been provided. 

 

2.3 Cationic Pt(II) complexes with tridentate N^N^N ligands 

2.3.1 Terpyridine complexes 

 

Electrostatic repulsion is a significant obstacle to obtaining stacks of cationic Pt(II) complexes 

with short metallophilic contacts. In view of this problem, many researchers have turned their 
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attention to 2,2’:6’,2’’-terpyridine ligands because they have strong σ-donating and π-accepting 

character, because these properties are beneficial for Pt(II)-Pt(II) stacking. 

 

Scheme 13. Pt(II) terpyridine complexes, part I. 

 

 

 

Figure 14. Vapochromic response of microarrays with complexes 32a-e+ – 33+. Reprinted with 

permission from ref. 88. Copyright 2008 The Royal Society of Chemistry. 

 

Among the structurally most simple Pt(II) terpyridine complexes that have been investigated in 

the context of vapochromism and vapoluminescence are the cations 32a-e+ – 33+ which were 

each isolated as a chloride, hexafluorophosphate, and perchlorate salt, resulting in a total of 18 

compounds (Scheme 13).88 4 nmol portions of these substances were put into 6 × 3 microarrays 

from which the vapor-induced color and luminescence changes could be detected using a flatbed 
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scanner (Figure 14). Alkoxy-substitutents on terpyridine were used because they have previously 

been demonstrated to favor π-stacking,89 whereas the tert.-butyl groups are likely to lead to 

longer metal-metal contacts. Variation of the counterion affects packing of the Pt(II) terpyridine 

cations in the crystals.48 Making these simple chemical variations on the 

chloro(terpyridine)platinum(II) backbone, it was hoped that exposure to different VOCs would 

produce distinct colorimetric / luminometric patterns and that the microarrays would be able to 

qualitatively mimic the olfactory system.88 Indeed, the individual Pt(II) salts respond 

distinctively to different analytes, but research on microarrays with these salts did not go far 

beyond providing the proof of concept. Anyhow, it was demonstrated that VOCs with lone pairs 

such as acetonitrile, piperidine and DMF produce the greatest vapochromic and vapoluminescent 

changes in the salts of complexes 32a-e+ – 33+. 

 

Scheme 14. Pt(II) terpyridine complexes, part II. 

 

 

Despite its chemical simplicity the chloride salt of the (4-chloroterpyridine)platinum(II) 

complex 34+ is a highly selective vapoluminescent sensing material (Scheme 14).90 It responds 

only to methanol vapor whereas all other tested VOCs, including halogenated solvents (CH2Cl2, 

CHCl3, CCl4), aromatic substances (benzene, toluene, p-xylene, pyridine), amines (triethylamine, 

diethylamine, diisopropyl amine), other alcohols (ethanol, isopropanol, n-butanol, t-butanol), 
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THF, diethyl ether, acetone, ethyl acetate and alkanes elicit no response. Methanol uptake is 

accompanied by a color change from red to yellow, and the emission band maximum undergoes 

a blue-shift from 665 nm to 615 nm. Even though no crystallographic data is available it is 

reasonable to assume that the red form contains short Pt(II)-Pt(II) contacts which make a 

3MMLCT state the energetically lowest and emissive excited state, whereas the yellow color of 

the methanol-exposed material signals the absence of significant metallophilic interactions. 

Consequently, the vapoluminescence response most likely relies on the disruption metal-metal 

contacts and changeover from 3MMLCT to 3MLCT emission. In addition to the unusual 

selectivity, the high reversibility of the vapoluminescence response is an attractive feature of 

34Cl. 

 

 

Figure 15. Packing diagram for 35SCN⋅MeOH. Reprinted with permission from ref. 91. 

Copyright 2009 The Chemical Society of Japan.  

 

After the chloro(terpyridine)platinum(II) complexes the chemically next simple Pt(II) 

terpyridine exhibiting vapochromism is the thiocyanato complex 35+. When exposing the 

rhodanide salt of this complex (35SCN) to methanol vapor, an unusual stepwise vapochromism 
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response is detected.91 Initially, the 35SCN compound is red but upon methanol exposure there is 

first a color change to dark red before the material turns yellow. The structure of the yellow 

compound was determined by X-ray diffraction on single crystals grown from methanol solution 

and was found to consist of dimers of cations with an intermetallic distance of 3.4567(3) Å 

(Figure 15). Between individual dimers there are no metal-metal contacts shorter than 6 Å. 

Methanol solvate molecules are hydrogen-bonded to the N atoms of the NCS- anions, forming 

one-dimensional channels along the crystallographic b-axis. In air, the yellow crystals rapidly 

change to red due to facile methanol loss. On the basis of combined diffuse reflectance and 

powder X-ray diffraction studies, a two-step structural transformation from the initial red 

methanol-free form to an intermediate dark red form containing some methanol to finally a 

yellow fully adsorbed form was postulated. The color changes were explained by an increase of 

π-π stacking and/or Pt(II)-Pt(II) interactions when the first methanol molecules enter the 

structure of neat 35SCN, followed by a decrease of the respective interactions in the course of 

further methanol uptake. In other words, methanol sorption is accompanied by shrinking and 

elongation processes resembling a breathing motion of the crystalline lattice.91 

The hexafluoroantimonate salt of 35+ was found to exhibit vapochromic behavior which is 

selective and reversible for vapors of acetonitrile, DMF, and pyridine.92 Using 15N NMR 

spectroscopy it was demonstrated that in solution 95% of the complexes have nitrogen-bound 

NCS ligands while only 5% are sulfur-bound, and this was explained by the electron-

withdrawing nature of the terpyridine ligand making the Pt(II) center relatively hard. The crystal 

structure of the acetonitrile solvate 35SbF6·CH3CN contains dimers of cations with Pt(II)-Pt(II) 

distances of 3.293(1) Å, the shortest intermetallic distance between individual dimers is 4.246(1) 

Å. The crystal structure of 35SbF6 without CH3CN is not known, but it is assumed that the Pt(II)-
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Pt(II) interactions within dimers are retained when acetonitrile is removed and that intact cation 

dimers can slide into new positions such that an infinite linear chain structure with extensive 

Pt(II)- Pt(II) interactions is adopted. This structural transformation would explain the maroon 

color and the observation of 3MMLCT emission of neat 35SbF6. Upon exposure to acetonitrile, 

DMF or pyridine the maroon color rapidly changes to yellow, and thermogravimetric studies 

demonstrated that 1 equivalent of CH3CN or 0.5 equivalents of DMF or pyridine are adsorbed. 

The solvates can be converted back to the neat material upon gentle heating.  

 

 

Figure 16. (a) Absorption and (b) emission changes as a function of diethyl ether addition to 

acetonitrile solutions of compound 36. Reprinted with permission from ref. 64. Copyright 2002 

American Chemical Society. 

 

A Pt(II) terpyridine diynyl complex was found to exhibit strong solvatochromism but no 

vapochromism and will therefore be treated only very briefly here.64 [Pt(tpy)(C≡C–C≡CH)]OTf 

(36) crystallizes in a dark green form with platinum atoms arranged in a linear chain with 

intermetallic contacts of 3.388 Å, and a red form exhibiting a dimeric structure with zigzag 

arrangement and alternating short (3.394 Å) and long (3.648 Å) Pt(II)-Pt(II) distances. When 

Page 46 of 171

ACS Paragon Plus Environment

Submitted to Chemical Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

47

dissolved at ∼10-4 M concentration in CH3CN the color of the resulting solution is yellow but 

upon addition of increasing amounts of diethyl ether the color changes first to green and finally 

to blue (Figure 16). This phenomenon has been explained by solvent-induced aggregation of 

individual Pt complexes to dimer, trimer, or even oligomer structures. Moreover, ether addition 

induces a dramatic enhancement of the luminescence emitted by these solutions; the emission 

has been assigned to a 3MMLCT state. 

 

Scheme 15. Pt(II) terpyridine complexes, part III. 

 

 

A study of a Pt(II) terpyridine-nicotinamide complex (372+) (Scheme 15) provided unusually 

direct insight into the phenomenon of vapochromism because it was possible to structurally 

characterize both the neat form of 37(PF6)2 as well as its CH3OH adduct using the same single 

crystal before and after methanol vapor exposure.93 This is remarkable because such single-

crystal transformations involving the loss or gain of solvent molecules while at the same time 

retaining the integrity of the crystal lattice are rare. Both the red solvent-free form and the orange 

methanol adduct contain dimers of cations which are doubly hydrogen-bonded through their 

nicotinamide groups.93 There are three important differences in cation packing between the two 

forms: (i) the Pt-Pt-Pt arrangement is significantly more linear in the red form (Pt-Pt-Pt angle of 
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171.9°) than in the orange form (126.7°) (Figure 17); (ii) the separation between the planes of 

individual tpy ligands alternates between 3.453 Å and 3.660 Å in the red form (distance between 

N-atoms of central pyridine ring), but increases to alternating distances of 3.692 Å and 3.763 Å 

in the orange form; (iii) the Pt(II)-Pt(II) distances increase from 3.301 Å / 3.336 Å in the red 

form to 3.622 Å / 3.964 Å in the orange form. These structural changes clearly help to promote 

π-π stacking and Pt(II)-Pt(II) interactions between neighboring complexes in the solvent-free red 

form, while such interactions are essentially absent in the orange methanol adduct. Accordingly, 

the emission of red 37(PF6)2 is assigned to a 3MMLCT state (λmax = 660 nm) while the 

luminescence of 37(PF6)2·CH3OH (λmax = 630 nm) is attributed to 3MLCT emission of isolated 

chromophores. Thus, compound 37(PF6)2 is not only vapochromic but also vapoluminescent. It 

exhibits a selective and reversible vapochromic response when exposed to methanol, acetonitrile, 

or pyridine.93 

 

 

Figure 17. Stacking of complexes in (a) 37(PF6)2·CH3OH (orange form) and (b) 37(PF6)2 (red 

form). Reprinted with permission from ref. 93. Copyright 2004 American Chemical Society. 
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A platinum(II) complex with a pentaphenyl-benzene moiety linked to a terpyridine chelating 

agent (38Cl) has been reported to exhibit unusually large vapor-induced luminescence band 

shifts from the red to the green spectral range upon exposure to VOCs (Figure 18).94 This 

vapoluminescence response is relatively selective and occurs only for CH2Cl2, ethanol, CH3CN, 

and ethyl acetate although the response time is by far the shortest for CH2Cl2. The initial red 

form of 38Cl is a methanol adduct and contains Pt(II) cations which are stacked in a spiral 

fashion with each complex rotated by ca. 120° along the stacking direction. There are four 

independent nearest-neighbor Pt(II)-Pt(II) distances in this helix, two of which (3.30 Å and 3.34 

Å) are indicative of metallophilic interactions. Therefore it has been concluded that the red 

emission (λmax = 654 nm) of this form originates from a 3MMLCT state. Crystals of the green 

form of 38Cl were grown from dichloromethane solution and contain one molecule of CH2Cl2 

(instead of CH3OH) per formula unit. This entails a dramatic change in cation packing and leads 

to a zigzag  arrangement of neighboring Pt(II) complexes which are now found to be in head-to-

tail orientation with Pt(II)-Pt(II) distances (3.9092(9) Å and 4.5483(11) Å). Both of these 

distances are both significantly beyond what can be considered a metallophilic contact. 

Consequently, the green emission (λmax = 514 nm) of this form was attributed to 3MLCT 

luminescence from isolated Pt(II) terpyridine chromphores. Clearly the disruption of Pt(II)-Pt(II) 

interactions is responsible for the strong vapochromic and vapoluminescence response of 

compound 38Cl. 
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Figure 18. Photoluminescence of the green (5G) and red (5R) form of 38Cl. Reprinted with 

permission from ref. 94. Copyright 2008 American Chemical Society. 

 

An interesting aspect is the absence of thermochromism of the red form of 38Cl.94 This is 

noteworthy because linear-chain compounds with stacked Pt(II) complexes exhibiting 3MMLCT 

luminescence often show a pronounced red-shift of the emission with decreasing temperature 

due to contraction of the crystal lattice and a shortening of Pt(II)-Pt(II) distances, resulting in a 

smaller HOMO/LUMO energy gap.13, 46 The absence of thermochromism in red 38Cl is 

presumably due to the bulky nature of the pentaphenyl-benzene unit and its propeller-shaped 

nature which impedes tighter stacking of individual Pt(II) complexes at lower temperatures. 

 

2.3.2 Complexes with 2,6-bis(N-alkylbenzimidazol-2’-yl)pyridine 

 

Scheme 16. Vapochromic 2,6-bis(N-alkylbenzimidazol-2’-yl)pyridine complexes. 
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Complex 39+ (Scheme 16) forms vapochromic salts with chloride and hexafluorophosphate 

anions.95 39Cl changes color from yellow-orange to red when exposed to methanol, ethanol, 

chloroform, or acetonitrile (Figure 19). A color change from yellow to violet is detected upon 

exposure of 39PF6 to acetonitrile, but many other solvents (including water, methanol, ethanol, 

2-propanol, diethyl ether, CH2Cl2, CHCl3, CCl4, acetone, hexanes, and benzene) produce no 

response. Gravimetric studies indicate that 39Cl sorbs up to two molecules of CH3OH per 

formula unit whereas 39PF6 can only sorb one equivalent of CH3CN. Unlike for some of the 

Pt(II) terpyridine materials from the prior section in which VOC uptake results in the disruption 

of metallophilic contacts, the yellow-to-red color change observed for 39Cl and 39PF6 rather 

suggests that Pt(II)-Pt(II) interactions strengthen in the course of methanol and acetonitrile 

sorption. Indeed, 2,6-bis(N-alkylbenzimidazol-2’-yl)pyridine complexes of Pt(II) are known to 

have a strong tendency to aggregate in solution.47, 96 

 

 

Figure 19. Vapochromic response of 39Cl and 39PF6. Reprinted with permission from ref. 95. 

Copyright 2004 American Chemical Society. 
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In the crystal structure of 39PF6·DMF Pt(II) complexes are oriented in zigzag head-to-tail 

arrangement with long intermolecular contacts (4.336(2) Å and 4.565(2) Å) but comparatively 

short distances between the ligand planes (3.35 Å and 3.39 Å).97 Chloride anions and DMF 

solvent molecules fill the voids between the columns of cations. Exposure of single crystals of 

39PF6·DMF to acetonitrile vapor induced a color change from orange to violet as noted above for 

powder samples of solvent-free 39PF6, but subsequent X-ray diffraction yielded only powder 

rings. Thus, the precise structure of the acetonitrile adduct remains unknown, but an interesting 

hypothesis has been put forward: The slippage of Pt(II) complexes by 1.35 Å along vectors lying 

parallel to the plane of each complex to give cation dimers with Pt(II)-Pt(II) distances of ∼3.39 Å 

is conceivable since this represents the simplest imaginable deformation upon CH3CN uptake. 

This structural rearrangement would be in line the yellow-to-violet color change and the high 

reversibility of the vapochromism. 

An unrelated but noteworthy observation is that orange powder samples of 39PF6 quickly sorb 

1 equivalent of DMF and turn violet, but the 39PF6·DMF single crystals grown from mixed 

CH3CN/DMF solution are orange and unresponsive to DMF vapor. These observations suggest 

that there is both an orange and a violet polymorph of the DMF adduct. 

 When complex 39Cl is incorporated into a zirconium phosphate (ZrP) framework, a different 

type of vapochromic behavior is observed.98 First of all, different colors than in neat 39Cl are 

obtained with certain VOCs. Secondly, despite the lower concentration of the platinum(II) 

complexes in ZrP compared to neat 39Cl, the color response is equally strong or even stronger in 

the inorganic framework. The Pt:ZrP ratio was typically between 1:5 and 1:30, yet the 

vapochromic response upon exposure to water, MeOH, CH3CN, CH2Cl2, THF, benzene, and n-

hexane occurs within minutes. Interestingly, the vapochromic response patterns of the ZrP-
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incorporated complex are different than those of neat 39Cl or 39PF6. Fast and reversible 

(3MMLCT) vapoluminescence responses were detected. 

An entire series of 2,6-bis(N-alkylbenzimidazol-2’-yl)pyridine complexes of Pt(II) with 

various alkyl-substituents (R) and counterions was found to exhibit vapochromic behavior 

similar to that of 39Cl and 39PF6.
99 This includes the chloride salts of complexes with R = C8H17 

(40a), C12H25 (40b), C16H33 (40c), as well as the hexafluorophosphate, perchlorate, 

tetrafluoroborate, triflate, and acetate salts of the complex with R = C16H33 (40c). Both the alkyl 

chain length and the size of the anion affect the vapochromic response because these factors 

influence the molecular stacking pattern. However, no clear systematic trends could be 

recognized. When constructing an array from all these vapochromic substances it becomes 

possible to distinguish between different VOCs, i. e., to some extent the array can function as an 

electronic nose. The solvents to which these arrays were exposed are acetone, acetonitrile, 

methanol, ethanol, dichloromethane, chloroform, ethyl acetate and benzene. The majority of the 

vapochromic responses involve a transition from lighter to darker color (typically from yellow-

orange to red or violet), similar to what has been observed for 39Cl and 39PF6, suggesting that 

Pt(II)-Pt(II) interactions are strengthened upon VOC uptake. Two notable exceptions are the 

chloride and triflate salts of 40c which change from deep orange to yellow. In these two salts 

solvent uptake seems to reduce Pt(II)-Pt(II) and/or π-π interactions. 

 

2.3.3 Complexes with 2,6-bis-(1H-imidazol-2-yl)pyridine 

 

Scheme 17. A vapochromic Pt(II) 2,6-bis-(1H-imidazol-2-yl)pyridine complex. 
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Complex 41+ was synthesized along with a few other related complexes with a view to 

obtaining a quasi-2D framework made of planar Pt(II) complexes.100 The idea was to exploit 

Pt(II)-Pt(II) interactions and π-π stacking to induce ordering of individual complexes along one 

direction while at the same time making use of hydrogen-bonding interactions to induce ordering 

along a second direction. In the course of these studies it was discovered that 41Cl is a 

vapoluminescent substance. Solvent-free 41Cl exhibits emission with λmax at 525 nm, the 

occurrence of vibrational fine structure with ∼1500 cm-1 intervals between individual progression 

members suggests that the emission contains significant intraligand π-π* character. When 

brought in contact with vapors from CH2Cl2, CH3CN, CH3OH or acetone, the emission red-shifts 

to λmax = 630 nm and becomes broad and unstructured. The red emission has been tentatively 

attributed to the presence of close Pt(II)-Pt(II) contacts or π-π interactions between ligands. 

Support for this hypothesis comes from the X-ray crystal structure of 41Cl ·DMSO·2H2O which 

exhibits intermolecular π-π distances of 3.370 Å and 3.395 Å, but in this specific solvate 

structure the shortest Pt(II)-Pt(II) distance is 4.33 Å. 

An electron mobility value of 0.4 cm2V-1s-1 has been determined for solvent-free 41Cl which is 

a low value compared to that measured for a related 2,6-bis(1H-pyrazol-3-yl)pyridine complex 

of Pt(II) (20 cm2V-1s-1).100 Cofacial π-π and Pt(II)-Pt(II) interactions are thought to be 

responsible for the high electron mobility in the pyrazolyl-complex. It has been noted that if such 
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interactions could be induced by vapor (e. g., in 41Cl or related other materials), transistor-based 

sensors and other multi-functionalized optoelectronic devices could be created based on Pt(II) 

complexes.  

 

2.4 Cyclometalated Pt(II) complexes 

2.4.1 Complexes with 2,6-diphenylpyridine (N^C^N) ligands 

 

Scheme 18. Vapochromic cyclometalated Pt(II) complexes, part I. 

 

 

The bis(diphenylphosphino)methane (dppm) bridged dinuclear Pt(II) complex 42 (Scheme 18) 

is a vapochromic substance functioning on the basis of intramolecular π-π stacking rather than 

inter- or intramolecular Pt(II)-Pt(II) interactions.101 Both a solvent-free yellow form and an 

orange chloroform adduct of this charge-neutral complex were characterized 

crystallographically, and it was found that the yellow form exhibits weak π-π interactions 

between one of the Pt(N^C^N) planes and a phenyl ring of the dppm ligand with interplanar 

separations ranging from 3.38 Å to 3.67 Å. In the orange chloroform adduct each Pt(N^C^N) 

plane makes a π-π interaction with a phenyl ring from different P-atoms of the dppm ligand, and 

the interplanar distances are in the range of 3.12 Å to 3.29 Å (Figure 20), i. e., noticeably shorter 

than in the yellow form. A variety of different VOCs (CH2Cl2, CH3OH, acetone, benzene, 
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pentane) induce a change in color from yellow to orange, and given the structural information 

from above it appears plausible to conclude that each of these solvents induces a strengthening of 

intramolecular π-π interactions when sorbed by the yellow form of 42. 

 

 

Figure 20.  Crystal structure of 42. Reprinted with permission from ref. 101. Copyright 2001 

American Chemical Society. 

 

The amide-decorated [Pt(2,6-diphenylpyridine)Cl] complex 43 exhibits an interesting 

combination of mechanochromism and vapochromism.102 When crystallizing from DMF, one 

obtains green emitting 43·DMF. This material exhibits sharp diffraction peaks in powder X-ray 

analysis. When 43·DMF is ground in a ceramic mortar one obtains an orange luminescent 

powder which does not give clear X-ray diffraction. Subsequent exposure of this amorphous 

substance to methanol vapors leads to 43·CH3OH, a yellow emitter which exhibits sharp X-ray 

diffraction peaks again. This two-step conversion from crystalline 43·DMF to amorphous 43 and 

finally crystalline 43·CH3OH is a highly unusual phenomenon. X-ray diffraction studies on 

single crystals reveal long Pt(II)-Pt(II) contacts of 4.854 Å between nearest neighbors in the 

DMF adduct, whereas in 43·CH3OH the shortest intermetallic separation is only 3.385 Å. The 

observation of metal-metal distance shrinking may explain the change from green to red 
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luminescence accompanying the two-step transformation from 43·DMF to 43·CH3OH. The 

hydrogen-bonding ability of the dangling amide groups is suspected to play an important role for 

the mechano- and vapochromism of 43 because the hexanoylamide groups form hydrogen-bonds 

to the DMF and methanol guest molecules in crystals of 43·DMF and 43·CH3OH. Heating 

crystals of 43·DMF to 150 °C induces release of the DMF molecule and produces the same 

luminescence change as grinding, suggesting that the amorphous orange-luminescent powder is a 

solvent-free form of 43. Along with complex 43 two closely related Pt(II) complexes with 

shorter alkanoylamide groups were investigated, but these substances did not show any 

mechano- or vapoluminescence properties, demonstrating once again how subtle the search for 

materials with such properties has to be.102 

 

 

Figure 21. Mechano- and vapoluminescent properties of 43. Copyright 2012 The Chemical 

Society of Japan. 

 

2.4.2 Complexes with 6-phenyl-2,2’-bipyridine (C^N^N) ligands 

 

Scheme 19. Vapochromic Pt(II) complexes with C^N^N ligands. 
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The luminescent complex 44 (Scheme 19) was reacted with amino-decorated silica gel in order 

to immobilize a luminescent probe on the surface of a supporting matrix.103 It was envisioned 

that host-guest interactions between the surface-bound complexes and VOC analytes would 

affect metal-metal and/or ligand-ligand interactions to the extent that a vapochromic or 

vapoluminescent response would result. Indeed this turned out to be possible when using MCM-

41 and MCM-48 silica gel supports which were first reacted with (3-aminopropyl)triethoxysilane 

and then loaded with 2.8 wt% of platinum in the form of complex 44. The resulting material 

displays red emission at 662 nm (λmax) at room temperature. When placing the Pt-decorated 

silica gel samples into an air-tight tank containing a saturated atmosphere of pentane, benzene, 

chloroform, or dichloromethane for ∼10 minutes, the emission shifted to substantially shorter 

wavelength (λmax = 548 nm). Drying in air for 3 days then restores the initial red luminescence. 

Presumably the red emission is due to 3MMLCT states resulting from tightly interacting Pt(II) 

complexes whereas the yellow luminescence comes from 3MLCT excited states of isolated 

complexes. The disruption of metal-metal and/or π-π interactions following the uptake of 

nonpolar solvents may potentially be explained by the high sorption capacity of silica for such 

substances. 

Complex 452+ contains two Pt(C^N^N) units which are linked by a rigid cis-1,2-

bis(diphenylphosphino)ethylene ligand. This dinuclear complex responds to vapors of 
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heteroatom-containing VOCs such as acetonitrile, ethanol, diethyl ether, THF, ethyl acetate, 

CH2Cl2, CHCl3 by a change in color from yellow to deep red.104 Since no structural information 

is available for compound 45 (ClO4)2 an explanation for its vapochromism cannot be provided. It 

is clear, however, that intramolecular stacking leading to closer Pt(II)-Pt(II) contacts after 

solvent exposure (as observed for the dppm-bridged dinuclear Pt(II) complex 42) is impossible 

for complex 452+ due to the rigidity of the cis-1,2-bis(diphenylphosphino)ethylene bridging 

ligand. 

 

2.4.3 Complexes with 2,6-di(2’-naphthyl)pyridine (C^N^C) ligands 

 

Scheme 20. A vapochromic dinuclear complex with C^N^C ligands. 

 

 

Building on the prior observation of weak vapochromism in the dinuclear dppm-bridged 

Pt(N^C^N) complex 42 a series of dinuclear Pt(C^N^C) complexes was investigated with a view 

to obtaining new vapochromic or vapoluminescent materials.105 It was anticipated that the large 

π-system of 2,6-di(2’-naphthyl)pyridine would be beneficial for π-π and C-H-π interactions 

between this ligand and VOCs, and that the disruption of such weak non-covalent interactions 

would potentially entail a significant vapochromic response. In one out of four investigated 

complexes  of this type (46) (Scheme 20) this turned out to be the case.104 The solvent-free form 
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of complex 46 is a weak emitter, but exposure to a variety of different VOCs produces an 

enhancement of its orange-yellow luminescence (λmax = 602 nm) (Figure 22). 

 

 

Figure 22. Changes in crystal structure, color, and photoluminescence upon vapor uptake / 

release by compound 46. Reprinted with permission from ref. 105. Copyright 2006 American 

Chemical Society. 

 

Halogenated vapors (CH2Cl2, CH2Br2, CHCl3, 1,2-dichloroethane, 1,2-dibromoethane, CH3I 

but not CCl4) lead to particularly strong luminescence enhancements, but small polar VOCs such 

as acetone, diethyl ether, THF, ethyl acetate also produce a significant response. X-ray 

diffraction studies on 46·6CHCl3·C5H12 reveal that both the syn- and anti-conformations of 46 

are present in the combined chloroform/pentane adduct. The most notable feature of this crystal 

structure is the presence of continuous solvent channels with an aperture size of ca. 6.5 Å × 4.3 

Å along the c-axis (Figure 22). Such large channels are absent in the crystal structures of three 

analogous dinuclear complexes bearing aromatic substituents at the 4-position of the central 

pyridine ring of the C^N^C ligand, and this may understand why vapoluminescence is observed 

exclusively for complex 46.104 X-ray diffraction of the desolvated form shows that the 

crystallographic a-axis decreases substantially upon solvent removal, resulting in a reduction of 

the unit cell volume from 7374 Å3 to 6188 Å3. The intramolecular Pt(II)-Pt(II) distance increases 

from 3.29(3) Å to 3.40(3) Å in the syn form, whereas in the anti-conformer there is an increase 
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from 5.68(2) Å to 5.40(3) Å. In the desolvated form, individual molecules are held in place by 

intermolecular π-π interactions (the relevant interplanar separations range from 3.20 Å to 3.47 

Å) and by C-H-π interactions. Aggregation of the syn- and anti-forms in solvent-free 46 is tighter 

than in 46·6CHCl3·C5H12, and it has been proposed that this is the origin of the luminescence 

quenching in dry 46. In other words, the molecular conformations (syn or anti) do not appear to 

play a decisive role for the vapoluminescence. Temperature-dependent luminescence studies 

indicate that there can be emission from a 3
ππ* state of isolated complexes and excimeric 3

ππ* 

luminescence at longer wavelengths resulting from aggregated complexes; the formation of tight 

aggregates in the solvent-free form of 46 can red-shift the excimeric 3ππ* states to the extent that 

radiative relaxation is no longer competitive with multiphonon relaxation. Sorption of VOCs can 

then restore the luminescence by disruption of aggregation. The observation that acetonitrile, 

methanol, and ethanol produce no vapoluminescence response was explained by insufficient 

hydrophobicity of these solvents, whereas the insensitivity of 46 to benzene, toluene and n-

hexane was explained by the size of these VOCs. 

 

2.4.4 Complexes with 7,8-benzoquinolinato and 2-phenylpyridine (C^N) ligands 

 

Scheme 21. Two anionic vapochromic Pt(II) complexes. 
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Complexes 47- and 48- (Scheme 21) are two rare examples of anionic Pt(II) complexes 

exhibiting vapochromism. Their optical spectroscopic properties are strongly dependent on the 

cation: The tetrabutylammonium salts are yellow, whereas the respective potassium salts are 

obtained as red and purple solids which are to be formulated as monohydrates (K47·H2O and 

K48·H2O).106 When heating to 110 °C the crystal water can be removed, and this procedure 

induces a change in color from red or purple to yellow (Figure 23). 

 

 

Figure 23. Color changes in K47·H2O and K48·H2O upon water release and uptake. Reprinted 

with permission from ref. 106. Copyright 2008 American Chemical Society. 

 

In air, the red and purple forms rapidly regenerate due to spontaneous water uptake. This 

behavior is opposite to that observed for red [Pt(bpy)(CN)2] which sorbs water to form yellow 

[Pt(bpy)(CN)2]·H2O.38 Apparently, in K47·H2O and K48·H2O short Pt(II)-Pt(II) contacts lead to 

MMLCT absorptions which are responsible for the red and purple colors of these forms while in 

the anhydrous yellow forms intermetallic contacts are largely disrupted.106 Thin films of 

K47·H2O are responsive to a variety of anhydrous VOCs with response time increasing in the 

order of methanol (∼5 s), ethanol (∼10 s), acetonitrile (∼30 s), acetone (∼2 min), and THF (∼45 

min). K48·H2O does not respond to any of these anhydrous solvent vapors, perhaps because the 
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crystal water molecule is more strongly bound to the lattice than in the case of K47·H2O. This 

interpretation is in line with thermogravimetric analyses. 

 

2.4.5 Pincer complexes 

 

The complexes presented in this chapter are exceptional vapochromic Pt(II) compounds in that 

they exhibit vapochromism as a result of direct ligation of the analyte to the metal center. Thus, 

unlike the vast majority of the other compounds from section 2, the pincer complexes in this 

chapter are type II vapochromic substances according to the definition used in section 1.3. 

 

Scheme 22. Vapochromic pincer complexes, part I. 

 

 

Several square-planar Pt(II) complexes with monoanionic N^C^N pincer ligands were found to 

be highly selective sensors for gaseous SO2. Complex 49 (Scheme 22) self-assembles in the solid 

state to form a network with intramolecular hydrogen-bonds between the chloro-ligand of one 

complex and the hydroxyl-group of its neighbor (Figure 24).107 Exposure of 49 to sulfur dioxide 

for ∼1 minute affords the SO2 adduct 49·SO2 in which a sulfur dioxide molecule is ligating to the 

Pt(II) center. Remarkably, the crystallinity of compound 49 is retained in the course of this 

process. Associated with the uptake of SO2 is a change in coordination geometry from square-

planar to pyramidal, and this affects the packing index and the density of the material. 
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Figure 24. Extracts from the crystal structure of 49 before (left) and after SO2 uptake (right). 

Reprinted by permission from Macmillan Publishers Ltd: Nature 2000, 406, 970, copyright 

2000. 

 

The unit cell volume increases by more than 15% upon SO2 sorption, whereas the density 

decreases from 2.1606(6) g/cm3 to 2.1473(6) g/cm3. The pyramidal complex retains the 

hydrogen bonds between chloro-ligands and hydroxyl-groups of adjacent ligands (the O-Cl 

distance remains virtually unchanged: 3.126(8) Å before and 3.127(8) Å after SO2 uptake). In 

addition there are non-covalent interactions between SO2 and chloro-ligands of adjacent 

complexes perpendicularly to the hydrogen-bonding network. 49 is colorless while 49·SO2 is 

deep orange hence the transformation can easily be detected by naked eye. The recovery of 49 

from 49·SO2 in an atmosphere of air was studied by time-dependent powder X-ray diffraction 

and infrared spectroscopy (monitoring the SO2 stretching vibrations at 1072 cm-1 and 1236 cm-1), 

and it was concluded that SO2 release follows a zero-order rate law with the absolute rate being 

strongly dependent on the surface area of the sample. It was assumed that the rate-determining 

step in SO2 release is the diffusion-controlled transfer of SO2 molecules from one complex to the 

other from the inner part of the crystalline material to its surface. 

 

Scheme 23. Vapochromic pincer complexes, part II. 
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Immobilization of the pincer complex 49 on a surface is of interest for obtaining a functional 

SO2 sensor device. Instead of layering these complexes into a polymer in which they may be less 

accessible to SO2 from the atmosphere, functional dendrimers (50, 51) (Scheme 23) with well-

defined connectivities were synthesized and explored.108 According to molecular models, the 

macromolecular constructs have disk-like structures with diameters of 2.4 nm and 3.4 nm, 

respectively, and they are found to maintain the high sensitivity for SO2 observed for the 

monometallic complex 49. When coating a cellulose surface with dendritic 50 at a density of 20 

nm/mm2 the detection of SO2 at a concentration of 8.5±0.5 µg/cm3 is possible. Even at 190 K, 

the response (a change from colorless to orange) occurs within 2 ms. Exposure to SO2-free air 

regenerates the initial colorless state within a few minutes. A promising resistance against 

atmospheric impurities such as water and acids has also been noted. 

 

Scheme 24. Vapochromic pincer complexes, part III. 
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Fundamental studies in which the electronic structure and the steric bulk of mononuclear 

pincer complexes are varied systematically have been conducted.109 On the generic structure 52 

(Scheme 24) the monodentate ligand X was varied from Cl to Br, I, and p-tolyl in order to 

modulate the electron density at the metal center. The substituents R and R’ at the nitrogen donor 

atoms were varied between methyl and ethyl in order to explore the influence of steric 

constraints on SO2 binding. Finally, the para-substituent E was varied between H, OH, OSiMe2 

and tBu in order to tune the electron density in the aromatic system. SO2 binding is possible 

irrespective of which of the four monodentate ligands (X) is chosen. However, SO2 binding is 

suppressed when all four substituents at the N atoms are ethyl groups. At least one of them has to 

be a methyl-substituent otherwise there is apparently too much steric bulk. Solution titrations 

show that the nature of the para-substituent E has relatively little influence because the 

equilibrium constants for SO2-binding of 7 complexes with variable E are all in the range 

between 8.48±0.34 M-1 and 14.81±0.35 M-1 in benzene. Stopped-flow experiments in benzene 

solution showed that the reaction of pincer complexes with different X, E, and R is complete 

within 50 µs. In air at room temperature, the complexes lose SO2 over several weeks, but when 

heated to 40°C the initial state can be recovered within minutes. 

Pt(II) complexes with the anionic N^C^N pincer ligand in the generic complex 52 have an 

enhanced nucleophilicity when compared to other d8 metal complexes.110 This explains why they 

react with the Lewis acid SO2, yet the selective recognition of sulfur dioxide even in presence of 

Page 66 of 171

ACS Paragon Plus Environment

Submitted to Chemical Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

67

other acids such as HCl, CO2 or H2O is spectacular. Two additional fundamental observations 

are noteworthy: (i) platinum-bound SO2 does not undergo subsequent reactions such as insertion 

into a metal-carbon bond or oxidation to sulfate in air; (ii) in the complexes with X = I there is no 

SO2-binding to the iodide, despite the expected competitive behavior of iodide in terms of 

nucleophilicity.111 In-depth mechanistic studies (theoretical and experimental) lead to the 

conclusion that iodide-bound SO2 does not even play a role as a reaction intermediate during SO2 

uptake or release.112 Using 1H NMR spectroscopy the exchange rate of the SO2 ligand on the 

complex with X = I, R = CH3, and E = H was investigated at cryogenic temperatures. When 

extrapolating to room temperature, one obtains an exchange rate of 1.5·108 s-1, which is close to 

the rate constants for some of the fastest enzymatic reactions. This underscores the point that 

these Pt(II) pincer complexes are suitable for on-line monitoring of the SO2 concentration in air. 

 

2.4.6 NHC complexes 

 

Scheme 25. Vapochromic Pt(II) complexes with NHC ligands. 

 

 

Transition-metal complexes with N-heterocyclic carbenes (NHCs) are playing an increasingly 

important role in organometallic chemistry,113-115 and until now two vapochromic Pt(II) 

complexes with such ligands have been reported (Scheme 25).116, 117 Complex 53+ is synthesized 

via transmetallation from an Ag(I) precursor complex and crystallizes in two different structures 
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depending on what solvent is used.116 Recrystallization from methanol/diethyl ether yields a 

hydrated form with the sum formula 53Cl·2.5H2O, whereas crystallization from CH2Cl2/hexane 

affords the anhydrate form 53Cl. Both crystal structures contain dimers of head-to-tail oriented 

complexes with short Pt(II)-Pt(II) contacts (Figure 25). In 53Cl·2.5H2O the shortest intermetallic 

distance is 3.5096(7) Å, in 53Cl it is 3.5185(19) Å. The interplanar (π-π) stacking distances are 

not much different either and vary between 3.342 Å (53Cl·2.5H2O) and 3.472 Å (53Cl). 

However, the hydrate exhibits orange luminescence (λmax = 614 nm) whereas the anhydrate form 

emits green (λmax = 555 nm) which is difficult to explain by the observed structural changes. At 

any rate, when the green-emitting dehydrated form (53Cl) is exposed to moisture, the emission 

changes to orange and powder X-ray analysis is in line with the formation of 53Cl·2.5H2O. 

 

 

Figure 25. Crystal packing and emission colors of 53Cl·2.5H2O (top) and 53Cl (bottom). 

Reprinted with permission from ref. 116. Copyright 2010 American Chemical Society. 

 

Complex 542+ contains mesityl-substituents instead of n-butyl groups and the fourth 

coordination site is occupied by a carbonyl instead of a chloro-ligand. The bulky mesityls form a 

small pocket which allows VOCs to enter the crystal structure of 54(PF6)2 in order to form 
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solvent adducts with different luminescence properties than the desolvated form.117 The solvent-

free form of 54(PF6)2 exhibits structured emission with a band maximum at 462 nm but exposure 

to vapors of small molecules containing nitrogen or oxygen donor atoms such as methanol, 

water, THF, diethyl ether, DMF, or pyridine leads to a yellow featureless emission with λmax = 

529 nm. Small VOCs without donor atoms such as CH2Cl2, CHCl3, or benzene do not trigger any 

response. The exact mechanism for the luminescence vapochromism is not clear, but the crystal 

structure of 54(PF6)2·2(CH3)2CO shows signs of solvate/Pt-CO interactions. Specifically, the 

distance of 2.82 Å between the O-atom of acetone and the C-atom of the carbon monoxide 

ligand is significantly shorter than what is expected based on the van-der-Waals radii of oxygen 

and carbon (3.22 Å). Moreover, the CO stretching frequency of the solvated acetone is 10 cm-1 

lower than that of free acetone, and the CO stretching frequency for the carbon monoxide ligand 

is 15 cm-1 lower in 54(PF6)2·2(CH3)2CO than in desolvated 54(PF6)2. 

 

2.5 Pt(II) complexes with S-, P-, and As-ligand atoms 

 

Scheme 26. Syn- and anti-isomers of a vapochromic Pt(II) complex with thiolate ligands. 

 

 

A dinuclear pyridine-2-thiolate bridged Pt(II) bpy complex was obtained both as a syn- (55a) 

and an anti-isomer (55b) (Scheme 26).118 The syn-isomer (55a) has one Pt(II) ion in a 
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coordination sphere of four N-atoms (2 from bpy, 2 from pyridine-2-thiolate), and the second 

metal center is coordinated to the two thiolate functions in addition to bpy. In the anti-isomer 

(55b) both Pt(II) centers are coordinated to 3 N-atoms and 1 S-atom. Both isomers exhibit 

unusually short (intramolecular) Pt(II)-Pt(II) distances of 2.923(1) Å (syn) and 2.997(1) Å (anti). 

The syn isomer changes color from dark red to lighter red upon standing in air, and this is 

accompanied by changes in the luminescence properties as illustrated in Figure 26. Exposure to 

methanol or acetonitrile reverses the color and luminescence changes. 

 

 

Figure 26. Room-temperature photoluminescence spectra of (a) the anti-isomer 55b, (b) the 

desolvated form of the syn-isomer 55a, (c) the solvated form of syn-isomer 55a. (M. Kato, A. 

Omura, A. Toshikawa, S. Kishi, Y. Sugimoto: Vapor-Induced Luminescence Switching in 

Crystals of the Syn Isomer of a Dinuclear (Bipyridine)platinum(II) Complex Bridged with 

Pyridine-2-Thiolate Ions. Angew. Chem. Int. Ed., 2000, 41, 3183-3185. Copyright Wiley-VCH 

Verlag GmbH & Co. KGaA. Reproduced with permission.) 

 

The crystal structure of the dark red acetonitrile adduct (55a·CH3CN) exhibits short 

intermolecular Pt(II)-Pt(II) distances of 3.384(1) Å in addition to the short intramolecular Pt(II)-

Pt(II) contacts mentioned above. Thus, there is extensive interaction between metal centers along 
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one dimension, and therefore the strongly red-shifted emission at λmax = 766 nm is most likely 

due to a low-energy 3MMLCT state. The structure of 55a·CH3CN contains channels in which the 

solvate molecules are located, providing a pathway for them to diffuse in and out of the lattice. 

The sensitivity of 55a for VOCs decreases with increasing steric bulk of the solvent vapors, in 

line with the hypothesis that the adsorbates must be small enough to penetrate these channels. 

Methanol and acetonitrile produce a rapid response, ethanol and isopropanol lead to slower color 

and luminescence changes, whereas t-butanol triggers no response at all, despite the fact that 

these five VOCs have similar vapor pressures. The anti-isomer (55b) is neither vapochromic nor 

vapoluminescent but emits orange emission (λmax = 603 nm, τ = 240 ns), presumably from a 

3MMLCT state resulting from intramolecular Pt(II)-Pt(II) interactions. 

 

Scheme 27. A vapochromic Pt(II) dithiooxamide complex. 

 

 

The Pt(II) dithiooxamide complex 56 is sensitive to gaseous HCl (Scheme 27).119 The initial 

form of this material is orange-red and non-luminescent, but when exposed to HCl it forms an 

adduct (56·2HCl) which is purple-brown and emits in the red spectral range (λmax ≈ 740 nm, τ = 

28 ns). According to prior studies of the same process in solution the red emission is due to a 

charge transfer state in which electron density has been transferred from the Pt/S moiety to the 

dithiooxamide backbone.120 In the course of HCl uptake this state shifts to lower energy and 

begins to emit, whereas in the initial form the CT state is energetically close to other non-
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emissive excited states leading to nonradiative energy dissipation. Conversion back from 

56·2HCl to 56 is possible either by heating to 80 °C or by exposure to NH3 vapor.119 

 

Scheme 28. Vapochromic Pt(II) complexes with S, P, or As-ligands. 

 

 

Complex 572+ is a tetranuclear [Pt2Ag2] cluster made from two Pt(II) benzoquinoline 

pyrrolidinedithiocarbamate units bridged via the sulfur atoms through two Ag(I) cations (Scheme 

28).121 The separation distance between the two silver ions (3.0394(18) Å) is significantly shorter 

than the sum of their van der Waals radii (3.44 Å), i. e., they show argentophilic interactions. In 

the perchlorate salt of complex 572+ the [Pt2Ag2] clusters form a polymer along the 

crystallographic c-axis with short (3.1390(7) Å) Pt(II)-Pt(II) contacts. Consequently, the red 

emission of solid 57(ClO4)2 (λmax = 610 nm) is most likely due to 3MMLCT or excimeric 3
ππ* 

states. Exposure of solid 57(ClO4)2 to acetonitrile induces a rapid change in color from orange to 

garnet red (Figure 27), but several other vapors (including CH2Cl2, methanol, H2O, acetone, 

diethyl ether, DMF, DMSO, toluene, n-hexane) produce no response. The origin of the selective 

vapochromism with CH3CN is not known but it has been noted that acetonitrile may replace the 

perchlorate anions which are weakly coordinated to the Ag(I) ions. The smaller size of CH3CN 

relative to ClO4 would then allow the individual [Pt2Ag2] clusters to get closer to each other, and 
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this may well lead to the observed vapochromism. The selectivity of 57(ClO4)2 to acetonitrile is 

quite unusual, but unfortunately the vapochromic response does not appear to be easily 

reversible. 

 

 

Figure 27. Sample of 57(ClO4)2 before (a) and after (b) exposure to CH3CN vapor. Reprinted 

with permission from ref. 121. Copyright 2008 The Royal Society of Chemistry. 

 

The bischelated Pt(II) complex 58 with two identical aminophosphine ligands was obtained in 

its cis-form and exhibits a vapoluminescence response to small alcohols.122 Two crystal 

structures of this complex were studied by X-ray diffraction but none of them contains short 

Pt(II)-Pt(II) contacts. The shortest intermetallic distances found are 5.9267(2) Å in 58·C6H5CH3 

and 8.9268(2) Å in 58·2CH3OH·CH3CN. The origin of the emission which turns on after 

methanol exposure is unclear, but given the large intermetallic distances participation of 

3MMLCT states appears highly unlikely. It has been speculated that a rigidochromic effect 

induced by hydrogen-bonding could be the reason why methanol-exposed 58 is emissive. 

(Rigidochromism is a change of color occurring as a consequence of changes in the rigidity of 

the surrounding medium). Hydrogen-bond donation from methanol to the aminophosphine 

ligands may render the overall complex less flexible, making multiphonon relaxation less 
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efficient. Aside from methanol, ethanol, and (to a lesser extent) isopropanol cause a 

luminescence turn-on, but t-butanol produces no significant response.  

The organoarsenic complex 59 can be crystallized either in neat form or as adducts of 

dichloromethane (59·2CH2Cl2), acetone (59·2acetone) or toluene (59·C6H5CH3).
123 In the crystal 

structure of 59·2CH2Cl2 there are no large cavities and the void volume is only 1.1% of the total 

crystal volume, but in the structure of neat 59 the void volume amounts to 6.0%. Consequently, 

when exposing neat 59 to vapors of CH2Cl2, acetone, or toluene, these solvent vapors are taken 

up and the abovementioned adducts are formed rapidly. Vapor sorption is accompanied by the 

appearance of very intense red luminescene (λmax = 658 nm) within seconds. This emission turn-

on has been tentatively explained by a conformational fixation of the emissive species due to 

tighter crystal packing in the solvent adducts compared to neat 59. 

 

2.6 MMX chains made from [Pt2(pop)4I]
4- units 

 

The photochemistry of the [Pt2(pop)4]
4- complex (pop = µ-pyrophoshito) in solution has been 

explored extensively.124, 125 This diphosphito-bridged d8-d8 dimer exhibits favorable 

photophysical and photochemical properties due its short (2.925(1) Å) intramolecular Pt(II)-

Pt(II) distance.31 Halogenides can bind to the [Pt2(pop)4]
4- core, resulting in so-called MMX 

compounds in which M = Pt and X = halogenide. A few of these MMX materials were found to 

exhibit vapochromism.126-128 The compound [NH3(CH2)4NH3]2[Pt2(pop)4I]·4H2O (60) forms 

linear PtPtI chains along the crystallographic c-axis with Pt(II)-Pt(II) distances of 2.837 Å and 

Pt(II)-I distances of 2.722 Å, the counter-cations are in the spaces between individual chains.126 

At 296 K there is a single Pt-Pt vibration band at 98 cm-1 but upon heating to 340 K the 
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respective IR signal splits into two separate bands, indicating that there are two kinds of Pt-Pt 

units at elevated temperatures. Simultaneously, the color of the compound changes from green to 

red (Figure 28). These observations were explained in terms of a structural transition from a 

paramagnetic charge-polarization (CP) state to a diamagnetic charge-density-wave (CDW) state. 

In the initial CP state the individual molecular components are formally best regarded as Pt2+–

Pt3+–I units which are linearly linked through weak interactions from the terminal iodo-ligand of 

one unit to the Pt2+ center of the nearest neighbor (Pt2+–Pt3+–I…Pt2+–Pt3+–I). In the CDW state, 

there are two different kinds of Pt2 units because this structure is formally best described by 

alternating Pt2+–Pt2+and I–Pt2+–Pt3+–I units (Pt2+–Pt2+…I–Pt2+–Pt3+–I), resulting in a lower band 

gap of only 1.12 eV (1110 nm) compared to 2.52 eV (520 nm) in the CP state. In dry 

atmosphere, the red CDW state remains stable upon cooling from 340 K to room temperature. 

However, upon exposure of the metastable CDW form to saturated water vapor the CP state is 

recovered, manifesting itself in a color change from red to green.126 The anhydrous red form of 

60 can be crystallized directly from methanol solution and X-ray diffraction on single crystals 

confirms the CDW structure of this modification.128 The difference in lattice volume between 

anhydrous 60 and 60·4H2O amounts to 150 Å3 whereas the volume of a water molecule is 

generally approximated to 30 Å3, suggesting that the total volume of eight H2O molecules in the 

unit cell of 60·4H2O should be around 240 Å3. This analysis suggests that crystal packing in 

anhydrous 60 is not as tight as it could be, and this might account for the facile water uptake in 

humid atmosphere. The X-ray crystal structure of a methanol adduct (60·2CH3OH) has also been 

reported,128 but it is not yet clear whether this material exhibits vapochromism. 
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Figure 28. Reflectivity spectra and microscope images of compound 60 at two different 

temperatures. (Vapochromic Behavior Accompanied by Phase Transition between Charge-

Polarization and Charge-Density-Wave States in a Quasi-One-Dimensional Iodine-Bridged 

Dinuclear Platinum Compound. Angew. Chem. Int. Ed., 2005, 44, 3240-3243. Copyright Wiley-

VCH Verlag GmbH & Co. KGaA. Reproduced with permission.) 

 

When replacing the [NH3(CH2)4NH3]
2+ cation of compound 60 by the larger 

[NH3(CH2)5NH3]
2+ cation one obtains another MMX material (61) which exhibits an analogous 

transition from a green CP state to a red CDW state upon heating.127 However, in this case the 

transition occurs between 297 K and 308 K, i. e., at significantly lower temperature than in 

compound 60 (340 K). Thermogravimetric studies show that up to 350 K compound 61 releases 

four water molecules per formula unit hence the initial CP compound is to be formulated as 

[NH3(CH2)5NH3]2[Pt2(pop)4I]·4H2O (61·4H2O). Anhydrous 61 sorbs water readily from air at 

room temperature whereas anhydrous 60 requires water-saturated atmosphere. The higher 

sensitivity of 61 compared to 60 has been explained by the larger distances between individual 

MMX chains (caused by the larger cation), facilitating water diffusion into the crystal structure. 

 

3. Gold(I) compounds 

3.1 Dicyanoaurates 
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When reacting Cu(ClO4)2 with KAu(CN)2 in DMSO, two different polymorphs of 

Cu[Au(CN)2]2(DMSO)2 (62⋅⋅⋅⋅(DMSO)2) can be obtained.129 Reactant concentrations below 0.2 M 

lead to a green polymorph, whereas blue crystals of a second polymorph are obtained at 

concentrations above 0.5 M. This concentration dependence suggests that the blue material is a 

kinetic reaction product while the green polymorph is presumably the thermodynamically more 

stable form. The X-ray crystal structures of the two forms are significantly different, one of the 

most evident differences is the five-fold (square-pyramidal) coordination of Cu(II) in the green 

polymorph compared to the six-coordinate Cu(II) center in the blue form (Figure 29). 

 

 

Figure 29. Extracts of the crystal structures of the green (left) and blue (right) polymorph of 

Cu[Au(CN)2]2(DMSO)2 (62⋅(DMSO)2). Reprinted with permission from ref. 129. Copyright 2004 

American Chemical Society. 

 

The green structure exhibits an extended 1D zigzag chain structure in which Cu(II) bridges 

between individual Au(CN)2
- units. Each chain is connected to four neighboring chains through 

Au(I)-Au(I) interactions occurring through an intermetallic contact of 3.22007(5) Å. The DMSO 

molecules, ligated to Cu(II), occupy the voids between the chains. The blue polymorph contains 
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2-D layers of interconnected Au(CN)2
- units and octahedral Cu(II) complexes, individual layers 

are stacked through aurophilic interactions of 3.419(3) Å to yield a 3-D network. The different 

colors of the two polymorphs are due to the different coordination numbers (5 or 6) and 

geometries (square-pyramidal vs. octahedral) of the Cu(II) ions, causing substantially different 

crystal field splittings of the d-d excited states. Both polymorphs are thermally stable up to 100 

°C, but they easily sorb a variety of different small molecules with N- or O-atoms and thereby 

release DMSO. Specifically water, acetonitrile, DMF, dioxane, pyridine, and NH3 were tested. A 

combination of elemental analysis, thermogravimetry, X-ray diffraction, and IR spectroscopy 

leads to the conclusion that the compounds generated by vapor uptake are identical to those that 

can be obtained directly from solutions containing the respective N- or O-atom-containing small 

molecules. A key finding is that all adsorbed solvent molecules are ligated to Cu(II) by replacing 

some or all of the initially present DMSO molecules. This behavior is in clear contrast to many 

other vapochromic materials in which adsorbed VOCs are loosely trapped in channels or voids of 

the crystalline host lattice. The ratio of adsorbed molecule to Cu(II) varies between 1:1 (DMF), 

2:1 (H2O, CH3CN, pyridine), and 4:1 (NH3), producing color changes which are easily detectable 

(Figure 30): The maximum visible reflectance varies between 433±7 nm for 

Cu[Au(CN)2]2(NH3)4 and 560±20 nm for solvent-free Cu[Au(CN)2]2. As the color variations are 

entirely due to changes in the Cu(II) coordination number and geometry it might be argued that 

Cu[Au(CN)2]2 is a copper- rather than gold-based vapochromic material. However, on the one 

hand the aurophilic interactions between individual cyanoaurate units are crucial for obtaining 

the vapor-responsive structures of Cu[Au(CN)2]2,
17 and on the other hand the Au(CN)2

- units 

provide a spectroscopic handle which is at least as sensitive to solvent uptake as the changes in 

the UV-vis (reflectance) spectrum. Specifically, the CN stretching frequency is very susceptible 
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to π-backbonding from the Cu(II) center to the cyano-groups, producing shifts between 10 cm-1 

and 40 cm-1 depending on solvent.129 

 

 

Figure 30. Vapochromic response of Cu[Au(CN)2]2(DMSO)2 (62⋅(DMSO)2) to different vapors. 

Reprinted with permission from ref. 129. Copyright 2004 American Chemical Society. 

 

The solvent exchange on Cu(II) is completely reversible, permitting dynamic vapor sensing, at 

least for H2O, CH3CN, DMF, and dioxane.14 The stronger pyridine and NH3 ligands are less 

easily replaced by other solvents hence in the case of Cu[Au(CN)2]2(pyridine)2 and 

Cu[Au(CN)2]2(NH3)4 thermal treatment is necessary to reactivate the vapochromic behavior. 

The strong binding of NH3 to Cu(II) in 62 was one of the motivations for investigating 

analogous zinc(II) compounds in which the reversibility of NH3 uptake was anticipated to be 

better. The second reason why Zn[Au(CN)2]2 (63) was studied is that in this material no d-d 

absorptions of the 3d metal can mask any gold-localized emission.130 A vapoluminescence 

response in lieu of a vapochromic effect would potentially increase the detection sensitivity. 

Depending on reaction conditions (starting material, solvent, concentration) four different 

polymorphs of compound 63 were obtained. Particularly noteworthy is the fact that even the 

counterions of the zinc(II) and Au(CN)2
- starting materials influence which polymorph is formed 

even though these counterions are not incorporated into the final product. Despite careful 
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systematic investigations the rationale behind the preferential formation of a particular polymer 

under a given set of conditions has not become clear. All four polymorphs of Zn[Au(CN)2]2 have 

been characterized structurally. They all have Zn(II) in tetrahedral coordination geometry, and 

they all exhibit short Au(I)-Au(I) contacts in the range of 3.11 – 3.34 Å. Two polymorphs exhibit 

diamond-like networks, among the other two polymorphs there is a quartz-like and a 

herringbone-like network with different degrees of interpenetration. Because of the presence of 

aurophilic interactions, UV excitation leads to photoluminescence in three of the four 

polymorphs. One polymorph shows even two emissions, namely a short-lived (τ = 240 ns) band 

at 390 nm attributed to fluorescence and a longer lived (τ = 930 ns) band at 480 nm assigned to 

phosphorescence. Along the series of the three emissive polymorphs the phosphorescence energy 

is inversely proportional to the Au(I)-Au(I) distance, as expected.131, 132 

 

 

Figure 31. Excitation and emission spectra of (a) [Zn(NH3)2][Au(CN)2]2 and (b) 

[Zn(NH3)4][Au(CN)2]2 illustrating the vapochromic and vapoluminescent response of compound 
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62 to ammonia vapor. Reprinted with permission from ref. 130. Copyright 2008 American 

Chemical Society. 

 

Exposure of any of the four polymorphs to ammonia vapors produces a new emission with a 

band maximum at 430 nm (Figure 31).130  The resulting species, identified as 

[Zn(NH3)4][Au(CN)2]2, decomposes fairly rapidly once it is removed from ammonia-rich 

atmosphere, and the [Zn(NH3)2][Au(CN)2]2 compound with a lower ammonia content emitting at 

500 nm is formed. In IR spectroscopy the CN stretch of [Zn(NH3)2][Au(CN)2]2 shows up as a 

single band at 2158 cm-1, and there is evidence for metal-bound NH3, suggesting that Zn(II) is 

either octahedrally or tetrahedrally coordinated by ammonia. From powder X-ray diffraction data 

it was inferred that [Zn(NH3)2][Au(CN)2]2 contains Zn(II) centers in D4h local symmetry with 

NH3 ligands in trans-disposition and four equatorial N-bound cyanides. When 

[Zn(NH3)2][Au(CN)2]2 was left standing in air for 30 minutes, neat Zn[Au(CN)2]2 was formed, i. 

e., the vapoluminescence response has the anticipated higher reversibility compared to 

Cu[Au(CN)2]2. Although all four polymorphs of Zn[Au(CN)2]2 show vapoluminescence 

behavior, the material made from Zn(NO3)2 and [(n-Bu)4N][Au(CN)2] exhibits the highest 

sensitivity for ammonia with a detection limit of 1 ppb.17 The permissible long-term exposure 

limit for NH3 is 20 ppm, the human nose starts sensing ammonia at concentrations of 50 ppm.133 

 

3.2 Di- and trinuclear Au(I) complexes 

 

Reaction of KS2CN(C5H11)2 with “AuCl2
-“ generated in situ from K[AuCl4] and Na2S2O3 

affords a dimeric gold(I) dithiocarbamate complex (Scheme 29), [Au(S2CN)(C5H11)2]2 (64), 
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which exhibits reversible vapoluminescence upon exposure to polar aprotic molecules such as 

acetone, CH3CN, CH2Cl2, CHCl3.
134 Vapors of protic solvents such as methanol or ethanol 

produce no response. X-ray diffraction of single crystals of 64·DMSO and 64·CH3CN shows that 

there are infinite chains of Au atoms along the crystallographic c-axis with intermolecular Au(I)-

Au(I) contacts of 2.9617(7) Å (64·DMSO) and 3.0241(12) Å (64·CH3CN). The intramolecular 

Au(I)-Au(I) distances in the two solvates are 2.7690(7) Å and 2.7916(12) Å. In solvent-free 64 

the intramolecular metal-metal contacts are equally short (2.7653(3) Å), but the closest 

intermolecular Au(I)-Au(I) distance increases to 8.135 Å hence there is no infinite chain of 

mutually interacting gold atoms. Thus, the orange emission (λmax = 604 nm) is only observed 

when intermolecular Au(I)-Au(I) interactions between dimers are present, and the emissive 

excited states are likely to have either (dσ*)1(pσ)1 or (dδ*)1(pσ)1 valence electron 

configurations.135 

 

Scheme 29. Dinuclear gold(I) complexes exhibiting vapochromism and tribochromism. 

 

 

A gold(I) 2-thiouracilato complex with a bridging bis(diphenylphosphino)methane (dppm) 

ligand (65a·CF3COO) exhibits a somewhat longer (2.8797(4) Å) intramolecular Au(I)-Au(I) 

distance than complex 64.136 The helical supramolecular arrangement in the crystal structure of 
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65a·CF3COO precludes the formation of extended chains of interacting gold atoms (Figure 32), 

and the substance is not luminescent. When it is gently crushed with a spatula blue 

photoluminescence (λmax = 483 nm) can be detected, i. e., the substance shows luminescence 

tribochromism.137 The emissive form can also be obtained upon gentle heating (37 °C) or by 

sonication,136 and in the course of this treatment acid is released as monitored by using pH paper. 

When compound 65a·CF3COO is stirred in CH2Cl2/CH3OH solutions over Na2CO3 it is possible 

to obtain the deprotonated product 65b which consists of dimers held together with short 

(2.9235(4) Å) intermolecular Au(I)-Au(I) contacts (Figure 32), i. e., the crystal packing is 

completely different. The available experimental evidence including powder X-ray analysis of 

crushed 65a·CF3COO supports the hypothesis that 65b is the emissive material resulting from 

mechanical (or thermal) treatment of 65a·CF3COO. Thus it appears that the tribochromism is due 

to rearrangement of the molecules in the crystal lattice coupled to release of volatile acid. 

Exposure of 65b to CF3COOH vapor leads (very slowly) to a loss of the photoluminescence, but 

the emission can be recovered by subsequent exposure to triethylamine vapor. The C-O bond 

lengths in the crystal structures of 65a·CF3COO and 65b are similar hence the probable site of 

protonation in 65b is most likely the uncoordinated pyrimidine N-atom. 
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Figure 32. Top left: Crystal structure of compound 65a·CF3COO. Top right: helical arrangement 

of gold atoms in 65a·CF3COO. Bottom: Dimers of complexes in compound 65b. Reprinted with 

permission from ref. 136. Copyright 2003 American Chemical Society. 

 

Scheme 30. Trinuclear gold(I) complexes. 

 

 

The trinuclear gold(I) complex 66 (Scheme 30) exhibits the unusual phenomenon of solvent-

stimulated luminescence.138, 139 This means that emission is triggered when liquids are brought 

into contact with crystals of 66 that have been previously irradiated at 366 nm. Compound 66 

features short intra- (3.308(2) Å) and intermolecular Au(I)-Au(I) interactions (3.346(1) Å), and 

thus it seems plausible that aurophilic interactions are important for the luminescence behavior 
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of 66, particularly in view of the fact that a reference compound without any short intermetallic 

contacts is non-emissive. In the crystal structure of 66 there are extended stacks of individual 

molecules along the c-axis, and it has been speculated that upon UV irradiation energy might be 

stored in these stacks in the form of electron-hole pairs which only recombine following addition 

of solvent. This tentative explanation is plausible because one would expect relatively facile 

charge migration along these stacks,140 and electrons or holes can easily be trapped at defect 

sites. Solvent addition can then trigger minor structural changes such that the electrons and holes 

are released from the defect sites. Interestingly, CHCl3 and CH2Cl2 in which compound 66 has 

the highest solubility produce the strongest luminescence. It has been noted that the solvent-

stimulated luminescence of 66 is related to the phenomenon of lyoluminescence,141 in which 

light emission occurs when dissolving a solid that has been previously exposed to ionizing 

radiation – with the important difference that radiation of much lower energy is required to 

induce emission in compound 66.138 The solvoluminescence from planar trigold(I) complexes 

has been reviewed.142
 

The charge mobility in microwires of compound 66 has been explored with a view to obtaining 

materials with vapor-sensitive conductive properties.143 For this purpose a CH2Cl2 solution of 66 

was drop-cast between two gold electrodes on a SiO2 surface, and the resulting microwires 

formed from stacks of 66 were found to bridge the 150 µm gap between the two gold electrodes. 

Hole mobilities on the order of 0.2 cm2 V-1 s-1 were determined for 10 devices of this type. At a 

voltage of 1.5 V between the two gold electrodes currents on the order of 0.6 nA flow through 

the microwires. Exposure to ethanol vapor decreases the flowing current by two orders of 

magnitude, but this decrease is reversible when purging with pure N2 afterwards. In addition to 

ethanol, THF, CH3CN, acetone, methanol, n-propanol, n-butanol, n-pentanol, benzene, and p-

Page 85 of 171

ACS Paragon Plus Environment

Submitted to Chemical Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

86

xylene have been tested, but only ethanol, methanol and CH3CN were found to produce a 

significant response. It has been argued that hydrogen-bonding interactions between compound 

66 and adsorbed VOCs might disturb the 1D-stacking of the complexes and thereby disrupt 

efficient charge transfer pathways.143 

 

 

Figure 33. Columnar structure of 67·C6F6. Reprinted with permission from ref. 144. Copyright 

2001 American Chemical Society. 

 

The trinuclear gold(I) complex 67 differs from compound 66 mainly in that the N-atoms bear 

p-tolyl groups instead of methyl-substituents. Solid 67 exhibits blue photoluminescence (λmax ≈ 

440 nm), but when exposed to vapor of C6F6 the emission is quenched.144 X-ray structural 

investigations provide a plausible explanation for this behavior. Neat 67 crystallizes in such a 

way that dimers of 67 with short intermolecular Au(I)-Au(I) contacts are formed,145 whereas the 
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crystal structure of 67·C6F6 consists of 1D-chains of alternating gold complexes and 

hexafluorobenzene molecules interacting with each other through (Lewis) acid-base interactions 

(Figure 33).144 Thus, uptake of C6F6 disrupts intermolecular Au(I)-Au(I) contacts, and this is 

likely the reason for the emission quenching described above. 

A chemically related trinuclear Au(I) complex with imidazolate instead of carbeniate ligands 

forms analogous 1D chains with intercalating TCNQ molecules, but for the respective complex 

no vapoluminescence behavior has been reported.144 

 

 

Figure 34. Drawing of the structure of 68·2DMSO (type A representative). Reprinted with 

permission from ref. 146. Copyright 2010 American Chemical Society. 

 

The dimer Au2(µ-bis-(diphenylphosphino)ethane)2Br2 (68) was found to exhibit remarkable 

molecular flexibility and for this reason may be regarded as a molecular accordion with 

vapoluminescent properties.146 Depending on crystallization conditions three different types of 

structures of the same compound are obtained. Type A crystals are obtained for 68·2DMSO, 

68·2Me2CO, 68·2CH2Cl2, 68·2DMF and contain discrete Au2 dimers (Figure 34). They are 

colorless and exhibit orange emission (λmax = 620 – 640 nm) upon UV excitation. The 

intramolecular Au(I)-Au(I) distances in type A crystals are relatively long and range from 

3.8479(3) Å for 68·2DMSO to 3.5142(3) Å  in 68·2DMF. The expected Au(I)-Au(I) separation 
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based on the van der Waals radius is about 3.6 Å,147 i. e., there are little to no aurophilic 

interactions in these crystals. The solvent molecules merely fill space in the crystal structures but 

do not interact with the metal centers. Type B crystals are green photoluminescent (λmax = 550 

nm) and exhibit aurophilic interactions within discrete dimers since there are short Au(I)-Au(I) 

contacts between 3.3249(2) Å and 3.09841(18) Å in 68·2CH3CN and 68·0.5Et2O. Type C 

crystals are polymers which are not considered further here because they are not vapochromic or 

vapoluminescent. The finding of intermolecular Au(I)-Au(I) distances varying between 

3.09841(18) Å and 3.8479(3) Å for the same compound is highly unusual and justifies usage of 

the term “molecular accordion”. 

 

 

Figure 35. Vapor-induced luminescence changes in compound 68. Reprinted with permission 

from ref. 146. Copyright 2010 American Chemical Society. 

 

When drying type A crystals of 68·2CH2Cl2 and 68·Me2CO their orange emission disappears, 

and they begin to exhibit the green luminescence observed for type B crystals (Figure 35). 

Subsequent exposure to acetone or CH2Cl2 vapor recovers the orange emission of the initial type 

A material, but no vapoluminescence response is observed for acetonitrile, diethyl ether, DMF, 

DMSO, benzene, pyridine, nitrobenzene, and carbon disulfide. It seems quite obvious that the 

remarkable flexibility of the Au2(µ-dppe)2Br2 molecule is responsible for the vapoluminescence 
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behavior. The different luminescence colors between type A (orange) and type B (green) seem to 

be primarily an effect of a smaller Stokes shift in type B crystals. 

 

 

Figure 36. Excitation (dotted lines) and emission (solid lines) spectra of (a) the α-polymorph of 

69·2Me2CO; (b) the β-form obtained after gentle drying of α-69·2Me2CO (light green traces); (c) 

the material obtained after drying of α-69·2Me2CO for three hours (dark green traces). Reprinted 

with permission from ref. 148. Copyright 2012 The Royal Society of Chemistry. 

 

An analogous gold(I) dimer with iodo- instead of bromo-ligands, Au2(µ-bis-

(diphenylphosphino)ethane)2I2·2Me2CO (69·2Me2CO), exhibits similarly spectacular 

behavior.148 Depending on crystallization conditions two different polymorphs of 69·2Me2CO 

can be obtained: The α-polymorph luminesces in the orange spectral range (λmax = 607 nm), 

whereas the β-polymorph is a green emitter (λmax = 577 nm) (Figure 36). The two polymorphs 

can be reversibly converted into one another. Gentle drying of α-69·2Me2CO crystals in air 

transforms them into the green-emitting β-form, and subsequent exposure to acetone or CH2Cl2 

vapor converts them back to the orange-glowing α-polymorph. This single crystal to single 

crystal conversion does not involve any loss or uptake of acetone, but it is possible to remove 2 
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molecules of acetone from the β-polymorph by prolonged drying. In the course of the conversion 

of the α- to the β-form the intramolecular Au(I)-Au(I) distance decreases from 3.6720(2) Å to 

3.3955(2) Å. 

 

Scheme 31. Di- and trinuclear gold complexes. 

 

 

When reacting C6F5Au(tetrahydrothiophene) with 1,4-diisocyanobenzene in CH2Cl2 one 

obtains the dinuclear gold(I) complex 70 (Scheme 31) which is a mechanochromic and 

vapochromic substance.149 The blue photoluminescence of untreated powder or crystals of 70 

was attributed to ligand-localized π-π* transitions. X-ray diffraction on a single crystal shows 

that the shortest intermolecular Au(I)-Au(I) distance is 5.19 Å, i. e., there are no aurophilic 

interactions between individual molecules. When grinding a sample of 70 in an agate mortar the 

luminescence changes to yellow (Figure 37). Powder X-ray diffraction shows that an amorphous 

material is formed, and it has been speculated that the yellow luminescence of this material 

might be due to aurophilic interactions that arise from rearrangement of the individual molecules 

relative to each other. Significant changes in the N≡C stretching frequencies upon mechanical 

grinding suggest that the coordination mode of the isocyanide ligands is altered, and this could 

indeed be due to the formation of aurophilic bonds.150 When exposing a ground sample of 70 to 
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CH2Cl2 vapor the blue luminescence is restored, indicating that the structural transformation is 

reversible.149 A simple slipping motion of the planar molecules appears as the most plausible 

molecular rearrangement accompanying mechano- and vapochromism in compound 70. 

 

 

Figure 37. (a) Absorption and (b) photoluminescence spectra of compound 70 in various states. 

Reprinted with permission from ref. 149. Copyright 2008 American Chemical Society. 

 

The dinuclear complex 71 changes color from orange to black when exposed to vapors of 

acetone, CH2Cl2, or CHCl3.
151, 152 This behavior was exploited for the construction of VOC-

sensitive optical fibers. The sensors consisted of a standard 1.3 µm optical fiber onto which the 

vapochromic material was deposited at one end. Since the vapochromic material undergoes a 

change in refractive index upon solvent exposure, the reflectance of the overall optical fiber 

changes dramatically in the 500 – 1800 nm wavelength range when the material is exposed to 

VOCs. Changes of up to 13.5 dB in the transmitted optical power were detected for acetone and 

CH2Cl2, but the devices respond to other solvents as well, for example to CHCl3, dichloroethane, 

ethanol, ethyl acetate, THF, and toluene.151, 152 

 

3.3 Gold-thallium complexes 
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When equimolar quantities of [NBu4][Au(C6Cl5)2] and TlPF6 are brought to reaction in THF 

one obtains [Tl[Au(C6Cl5)2]]n (72) as a pale yellow solid.153 This vapochromic material contains 

linear chains of alternating (and nearly planar) [Au(C6Cl5)2]
- anions and Tl+ cations along the 

crystallographic z-axis with unsupported Au(I)-Tl(I) interactions at distances of 3.044(5) and 

2.9726(5) Å. Theoretical studies lead to the conclusion that this heterobimetallic d10-s2 

interaction (of Lewis acid – Lewis base type) is associated with a stabilization energy of about 

275 kJ/mol.154 Between individual Au(I)-Tl(I) chains there are channels with hole diameters as 

large as 10.471 Å running parallel to the z-axis hence there is considerable room for 

incorporation of solvent guests. Compound 72 changes color from yellow to red when exposed 

to vapors of acetylacetone or pyridine but stays yellow upon exposure to acetone, acetonitrile, 

THF, triethylamine, 2-fluoropyridine, or tetrahydrothiophene. However, all of these VOCs 

produce detectable vapoluminescence responses with emission maxima ranging from 507 nm 

(THF) to 650 nm (acetylacetone) compared to λmax = 531 nm for neat 72 (Figure 38).153 

 

 

Figure 38. Luminescence vapochromism of compound 72 observed after exposure to various 

VOCs. Reprinted with permission from ref. 155. Copyright 2004 American Chemical Society. 
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Using the appropriate VOCs as solvents, it is possible to synthesize a range of solvent adducts 

with the general stoichiometry [TlL2[Au(C6Cl5)2]]n (72L2), two of which have been structurally 

characterized (72(tetrahydrothiophene)2, 72(2-fluoropyridine)2).
155 The respective structures 

contain polymeric chains of cations and anions with unsupported Au(I)-Tl(I) contacts at 

distances between 2.90894(5) and 3.1981(4) Å which are close to the sum of thallium and gold 

metallic radii (3.034 Å). The tetrahydrothiophene and 2-fluoropyridine molecules ligate to Tl(I) 

which is now in pseudo trigonal-bipyramidal coordination with a vacant equatorial coordination 

site occupied by a lone pair. As a consequence, the Au(I)-Tl(I)-Au(I) interaction is no longer as 

linear as in neat 72 but more zigzag-like (the Au(I)-Tl(I)-Au(I) angle is 164°). The emission of 

the individual solvent adducts undergoes a significant red-shift between room temperature and 

77 K, suggesting that the luminescence of [Tl[Au(C6Cl5)2]]n has its origin in gold-thallium 

interactions. Time-dependent DFT supports this hypothesis. The geometrical changes around the 

Tl(I) cation in the course of solvent uptake lead to a change in HOMO-LUMO energy gap 

because the Au(I)-Tl(I) interaction is perturbed by solvent ligation to the Lewis acid. 

Importantly, the vapoluminescence response of compound 72 is reversible: Heating of the 72L2 

compounds to 100°C for a few minutes regenerates the solvent-free starting material. 

 

Scheme 32. Vapochromic substances (73a/73b) based on ketimine formation (74a/74b). 
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When reacting equimolar amounts of [Tl[Au(C6X5)2]]n (X = F, Cl) and 1,2-ethylenediamine 

(en) one obtains [Tl(en)[Au(C6F5)2]]n (73a) and [Tl(en)[Au(C6Cl5)2]]n (73b) as green and white 

solids, respectively.156 The ethylenediamine ligand ligates to Tl(I), leading to the pseudo 

trigonal-bipyramidal coordination geometry discussed above for the 72L2 compounds. When 

exposing solid 73a to acetone or acetophenone vapor it changes color from green to yellow, 

whereas 73b changes from white to red with acetone and from white to orange with 

acetophenone. In order to understand this vapochromic behavior it is important to know that the 

reaction of 73a or 73b with 2 (or more) equivalents of acetone in THF solution yields 

compounds 74a and 74b which are ketimines formed through reaction of the ethylenediamine 

ligand and acetone. The vapochromism of solids of 73a and 73b is most likely due to the same 

reaction because IR spectroscopy provides clear evidence for the disappearance of the amine N-

H stretch in the course of VOC exposure with the simultaneous appearance of imine C=N 

stretches near 1650 cm-1. Solid 73a/74a and 73b/74b are brightly luminescent in different colors 

hence the compounds can also be used as vapoluminescent sensors. The absorption and emission 

color changes following ketimide formation have been attributed to perturbation of excitonic 

states along Tl(I)-Au(I) chains caused by changes in the Tl(I) coordination environment. 

 

3.4 Gold-silver complexes 

 

Bimetallic gold-silver compounds of the general formula [Au2Ag2(C6F5)4L2]n (75L2) with a 

variety of different donor ligands L exhibit vapochromic behavior.12, 157 Structural studies of the 

systems with L = Et2O (75(Et2O)2), Me2CO (75(Me2CO)2), THF (75(THF)2), and CH3CN 

(75(CH3CN)2)) reveal that this class of compounds contains tetranuclear Au2Ag2 units linked to 

Page 94 of 171

ACS Paragon Plus Environment

Submitted to Chemical Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

95

each other along the crystallographic z axis through unsupported Au(I)-Au(I) interactions at 

distances between 3.1674(11) Å and 3.1959(3) Å, resulting in extended linear-chain compounds 

(Figure 39).158 

 

 

Figure 39. Extract of the crystal structure of compound 75(THF)2). Reprinted with permission 

from ref. 158. Copyright 2008 American Chemical Society. 

 

Compound 75(Et2O)2 is obtained by reacting equimolar quantities of [Bu4N][Au(C6F5)2] and 

AgClO4 in a CH2Cl2/Et2O solvent mixture and can be used as a starting material for the 

syntheses of the other 75L2 compounds.159, 160 Moreover, exposure of solid 75(Et2O)2 to vapors 

of acetone, THF or acetonitrile produces rapid color changes that are consistent with replacement 

of Et2O by the respective other VOCs (Figure 40). 
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Figure 40. Left: Samples of compound 75(Et2O)2 before (1) and after exposure to vapors of 

acetone (2), THF (3), CH3CN (4). Right: Reprinted with permission from ref. 158. Copyright 

2008 American Chemical Society. 

 

IR spectroscopy provides clear evidence for the substitution of the initial O-donor by the 

stronger N-donor ligand. The exchange ability of the individual VOCs follows the order CH3CN 

> Me2CO > THF > Et2O, i. e., acetonitrile is able to replace all oxygen donor ligands but not vice 

versa. This observation suggests that true ligand substitution reactions take place at the Au2Ag2 

core and that the vapochromic behavior of this class of compounds is not simply due to 

adsorption of the VOCs into the crystal lattice. Thermogravimetric analyses of the 75L2 

compounds reveal significant differences between the temperatures at which the donor ligands 

(L) are lost, and these variations were interpreted in terms of different boiling points of the 

individual VOCs and the strengths of their interactions with the Ag(I) centers.158 The 75L2 

compounds are emissive at room temperature and 77 K, presumably involving electronic 

transitions on the Au2Ag2 core which may be perturbed by changes in the Au(I)-Au(I) and Au(I)-

Ag(I) interactions. 

 

Scheme 33. Vapochromic Au2Ag2 compounds. R = C6F5. 
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Several compounds of the stoichiometry [Au2Ag2(C6F5)4L2]n have been the subject of more 

application-oriented studies in which these vapochromic materials were deposited on optical 

fibers. 161-163 VOC-induced changes in reflected optical power on the order of 2.5 dB – 4 dB 

were detected.161-163 In one set of experiments it was possible to distinguish isopropanol from 

ethanol and methanol, but discrimination between the two shorter alcohols proved more 

difficult.12 In several of these vapochromic sensor materials the donor ligand L was a bidentate 

2,2’-bipyridine (bpy) or 1,10-phenanthroline (phen) ligand, i. e., these materials can be 

formulated as [Au2Ag2(C6F5)4(bpy)2]n (76) and [Au2Ag2(C6F5)4(phen)2]n (77) (Scheme 33).12, 162 

Prior to VOC exposure many of these materials are bright yellow but then turn colorless upon 

sorption of different donor solvents. The loss of color has been attributed to the rupture of 

intermolecular Au(I)-Au(I) contacts between individual Au2Ag2 metallacycles.157, 159, 162 

The reaction between [Bu4N][Au(4-C6F4I)2] and AgClO4 affords a creme-colored solid which 

can be identified as [Au2Ag2(4-C6F4I)4]n (78).
164 Utilization of the 4-C6F4I group instead of C6F5 

was motivated by the possibility that the p-iodo-substituent might form noncovalent halogen-

bonds to Lewis donor atoms.165 Compound 78 is vapochromic toward Me2CO, THF, or CH3CN, 

but no response is detected for non-coordinating solvents such as diethyl ether or toluene. 

Solvates of compound 78 with the general formula [Au2Ag2(4-C6F4I)4L2]n·xL (78L2·xL) are 
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readily obtained when reacting [Au2Ag2(4-C6F4I)4]n in Me2CO, THF, or CH3CN. The respective 

substances are brightly colored and contain the desired halogen bonds with I-O, I-F, and I-N 

distances in the range from 2.837(23) to 3.494(15) Å.164 The acetone solvate 

(78(Me2CO)2·2Me2CO)) and the THF solvate (78(THF)2)) can both be converted to the 

acetonitrile solvate (78(CH3CN)2)) by exposure to vapors of CH3CN, manifesting in an emission 

color change from red to bright yellow. Combined structural and emission studies (the latter in 

fluid solution) lead to the conclusion that two factors drive the vapoluminescence response: (i) 

the degree of aggregation of individual Au2Ag2 clusters into polymeric chains, and (ii) the 

geometry of the Au2Ag2 clusters itself.164 The aggregation of individual clusters results from an 

interplay between aurophilic interactions (with Au(I)-Au(I) distances in the range from 

2.7853(14) to 2.9481(3) Å) and noncovalent halogen bonds. TD-DFT calculations indicate that 

in the acetone solvate the HOMO is mostly spread over the 4-C6F4I ligands with a some 

contribution of 5dz2σ* character from interacting Au(I)-Au(I) centers. The LUMO is a mixture of 

5pσ bonding density between the Au(I) and Ag(I) centers. 

Analogous tetranuclear Au2Ag2 compounds with vapochromic properties can be obtained 

when using 3,5-C6Cl2F3 or C6Cl5 groups as ligands to the gold atoms.166 From Et2O/CH2Cl2 

solution one obtains compounds with the formulas [Au2Ag2(3,5-C6Cl2F3)4(Et2O)2]n (79(Et2O)2) 

and [Au2Ag2(C6Cl5)4(Et2O)2]n (80(Et2O)2).
166 Upon exposure to the respective VOCs the diethyl 

ether molecules in 79(Et2O)2 and 80(Et2O)2 can be replaced with THF, acetone or acetonitrile, 

manifesting itself in a vapochromic response. X-ray crystal structure analyses of [Au2Ag2(3,5-

C6Cl2F3)4(THF)2]n and [Au2Ag2(3,5-C6Cl2F3)4(toluene)2]n demonstrate that there are polymeric 

chains of Au2Ag2 units held together via aurophilic interactions. The intermolecular Au(I)-Au(I) 

distances are 2.8617(7) and 2.8863(7) Å in 79(THF)2 which is appreciably shorter than in the 
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related pentafluorophenyl derivative with THF (75(THF)2) (3.1959(3) Å). However, the 

compounds with the 3,5-C6Cl2F3 ligand were found to exhibit a relatively poor thermal stability 

when compared to the pentachlorophenyl derivatives. Contrary to the behavior of compound 75 

which has a strong preference for acetonitrile over Et2O, THF, or acetone (see above),158 in the 

[Au2Ag2(3,5-C6Cl2F3)4(CH3CN)2]n material acetonitrile is displaced by vapors of THF or 

acetone.166 Similarly, the THF molecules of 79(THF)2 can be displaced by acetone from the 

gaseous phase, but exposure to vapors of acetonitrile leads only to solvate mixtures and 

incomplete THF substitution. 

 

 

Figure 41. Luminescence changes of compound 81 observed in the course of solvation with 

fluid CH3CN. The inset marks the reaction time in minutes. Reprinted with permission from ref. 

167. Copyright 2011 American Chemical Society. 

 

When using 2-C6F4I instead of 4-C6F4I as a ligand to gold(I), the iodine-atom can ligate to 

Ag(I), thereby mitigating the propensity for polymerization of this class of materials.167 

Accordingly, reaction of Ag(tfa) (tfa = trifluoroacetate) with an equimolar amount of 

NBu4[Au(2-C6F4I)2] in CH2Cl2 affords (NBu4)2[Au2Ag2(2-C6F4I)4](tfa)2 (81) which is comprised 

of tetranuclear monomers with Au(I)-Ag(I) distances in the range from 2.7738(7) to 2.9269(7) Å. 
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Both 2-C6F4I ligands of Au(I) coordinate to Ag(I) with Ag-I distances of 2.7987(9) – 2.9011(9) 

Å. Solvation of green emitting 81 with fluid CH3CN leads to the rapid formation of a yellow 

glowing intermediate (Figure 41), and finally a red luminescent polymeric compound of 

stoichiometry [Au2Ag2(2-C6F4I)4(CH3CN)2]n is obtained. The yellow intermediate is believed to 

be a material of stoichiometry [Au2Ag2(2-C6F4I)4]2 (82) composed of dimers of tetranuclear 

Au2Ag2 clusters. The dimer compound 82 can be obtained from reaction of NBu4[Au(2-C6F4I)2] 

with AgClO4 and is selectively vapochromic toward coordinating solvents such as CH3CN, THF, 

and acetone. The fact that the Ag(I) ions in 82 are coordinatively unsaturated seems to be key to 

the vapochromic behavior. 

 

3.5 Other Au(I) complexes 

 

Scheme 34. Solvoluminescent gold(I) complexes. 

 

 

Three carbene complexes of gold(I) (83PF6, 83BF4, 84PF6) (Scheme 34) are frequently cited in 

the context of vapochromism even though they show the phenomenon of solvoluminescence 

rather than true vapochromism or vapoluminescence.168 The 77 K emission of 83PF6 is green in 

acetonitrile, blue in DMSO and pyridine, and orange in acetone (Figure 42). 
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Figure 42. Photoluminescence of frozen solutions of compound 83PF6 in CH3CN, DMSO, 

DMF, pyridine, and acetone. Reprinted with permission from ref. 168. Copyright 2002 American 

Chemical Society. 

 

Detailed structural and spectroscopic studies lead to the conclusion that the emission changes 

induced by concentration and temperature variation are due to the formation of aggregates 

(dimers, trimers, and higher oligomers) of emissive gold(I) complexes. Thus it appears that 

aurophilic attractions can overcome the Coulomb repulsion between individual cationic 

complexes. This can lead to the formation of a band of orbitals made from overlapping (filled) 

5dz2 orbitals of interacting Au(I) centers and a corresponding unoccupied band made from 6pz 

orbitals of gold. The X-ray crystal structure of 83PF6·0.5(Me2CO) features extended columns of 

cations with an Au(I)-Au(I) separation of only 3.1882(1) Å. Hydrogen-bonding interactions 

between the emissive cations and the anions could potentially play an important role for the 

emission properties, at least this would explain the observable differences between 83PF6 and 

83BF4. The observation of a hydrogen-bonding network in the abovementioned crystal structure 

supports this interpretation. 

The [(cyclohexyl-isocyanide)2Au](PF6) compound (85PF6) exhibits similarly spectacular 

solvoluminescence behavior as the carbene compounds 83PF6, 83BF4, and 84PF6.
150 A colorless 
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polymorph of the isocyanide compound 86PF6 exhibits linear chains with regular Au(I)-Au(I) 

distances of 3.1822(3) Å, whereas the structure of a yellow polymorph is more complicated with 

4 independent Au(I)-Au(I) contacts ranging from 2.9643(6) to 2.9803(6) Å. Such distances are 

clearly on the short end of known aurophilic interactions.28 

 

Scheme 35. A vapochromic Cu(I)-Au(I)-Cu(I) complex (863+) and its reaction product (873+) 

after exposure to MeOH vapor. 

 

 

The heterotrinuclear Cu(I)-Au(I)-Cu(I) complex 863+ (Scheme 35) is one out of comparatively 

few vapochromic substances in which the VOC-induced color change is a direct consequence of 

a ligand exchange reaction.169 This complex formed by addition of [Cu(CH3CN)4](PF6) to an 

acetonitrile solution of the gold(I) imidazole (im) complex [Au(im(CH2-py)2)2](PF6) which has 

pendant pyridine (py) units that can bind to copper(I). The intermetallic distances are long (∼ 4.6 

Å) and presumably repulsive. Single crystals of 86(PF6)3 grown from acetonitrile solution 

contain two lattice CH3CN molecules which are lost upon evacuation or prolonged exposure to 

air, resulting in solvent-free and blue photoluminescent 86(PF6)3. Subsequent exposure of dry 

86(PF6)3 to methanol, H2O, or acetone causes a change in luminescence color from blue to green 

(Figure 43). THF and CH2Cl2 do not induce any change in emission behavior. Crystallization of 

the trinuclear complex from MeOH/Et2O mixture directly yields the green emitting compound, 

which has been identified as 87(PF6)3. X-ray diffraction on single crystals of 87(PF6)3 reveals the 
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presence of short (2.7915(7) Å) Au(I)-Cu(I) distances. This attractive interaction between 

individual metals is likely the consequence of the replacement of two CH3CN molecules per 

Cu(I) center by only one methanol ligand, making one coordination site of the tetrahedral 

copper(I) centers available for metal-metal bonding. Compound 87(PF6)3 can be converted to 

86(PF6)3 by exposure to CH3CN vapor, i. e., the vapoluminescence is reversible. 

 

 

Figure 43. Crystal structures and emission colors of complexes 863+ and 873+. Reprinted with 

permission from ref. 169. Copyright 2010 American Chemical Society. 

 

Scheme 36. A cationic gold(I) complex whose vapochromic properties strongly depend on the 

counter-anion. 

 

 

The tetrahedral gold(I) complex [Au(dppb)2]
+ (88+) (Scheme 36) with two bidentate dppb 

(dppb = 1,2-bis-(diphenylphosphino)benzene) ligands was isolated  with seven different 

anions.170 Small anions such as NO3
-, Cl- or BF4

- permit symmetrical coordination of the two 
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dppb ligands to the Au(I) center in the crystal lattice, resulting in blue phosphorescence for 

88NO3 (Figure 44), 88Cl, and 88BF4. Larger cations (e. g., PF6 or B(4-C6H4F)4
-) enforce small 

conformational changes of the dppb ligands in the solid state, resulting in yellow-orange 

phosphorescence for 88PF6 and 88B(4-C6H4F)4. The nitrate salt is a vapoluminescent substance 

(Figure 44).170 Solid 88NO3 emits blue light, and the luminescence spectrum is similar to that of 

free dppb, indicative of ligand-localized phosphorescence (τ = 3.3 µs). Exposure of 

microcrystalline 88NO3 to vapors of ethanol and methanol leads to a rapid change in emission 

color from blue to orange-yellow (Figure 44), but longer alcohols trigger no response. The 

respective solvent adducts (88NO3·2EtOH and 88NO3·3MeOH) were characterized by single 

crystal X-ray diffraction and were found to contain structurally distorted [Au(dppb)2]
+ units 

similar to what has been noted above for larger anions. When heating the solvent adducts to 100 

°C for ∼20 minutes, blue-emitting neat 88NO3 is restored. 

 

 

Figure 44. Vapochromic response of 88NO3 to ethanol and methanol. (M. Osawa, I. Kawata, S. 

Igawa, M. Hoshino, T. Fukunaga, D. Hashizume: Vapochromic and Mechanochromic 

Tetrahedral Gold(I) Complexes Based on the 1,2-Bis(diphenylposphino)benzene Ligand. Chem. 
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Eur. J., 2010, 16, 12114-12126. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. 

Reproduced with permission.) 

 

The tetrafluoroborate salt of 88+ exhibits mechanochromism.170 Upon extensive grinding the 

emission color eventually changes from blue to yellow-orange, suggesting that a conformational 

change of the [Au(dppb)2]
+ complex can be induced mechanically. Ground 88BF4 is 

vapoluminescent and exhibits the reverse emission color change following exposure to vapors of 

acetone, acetonitrile, CH2Cl2, diethyl ether, and THF. 

A referee of this review article speculated that the cations in some of the emissive salts formed 

with 88+ have gold(I) only in a three-coordinate state, because luminescence is a common 

phenomenon for three-coordinate Au(I) but almost unknown for four-coordinate Au(I). 

Potentially, a hydrogen bond from an alcohol to an anion or to a phosphorus atom can give rise 

to structural changes, and mechanical stress might cause a flattening of the cations from a quasi-

tetrahedral structure. 

 

4. Compounds with metals other than platinum or gold 

 

Most of the platinum compounds and many of the gold materials from the previous two 

sections are type I vapochromic systems according to the definition used in section 1.3, i. e., 

changes in weak intermolecular interactions (e. g., metal-metal interactions, π-stacking, 

hydrogen-bonding, or C-H-π interactions) as a result of analyte uptake trigger the vapochromic 

response. This common theme and the large number of platinum and gold based vapochromic 
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substances compared to other VOC-sensitive materials provided the rationale for grouping them 

into two separate sections. 

Section 4 contains many 3d metal complexes which are inherently more labile than complexes 

of 4d or 5d elements. As a consequence type II vapochromic behavior, defined in section 1.3 as 

the vapochromism or vapoluminescence response triggered by analyte-induced changes in the 

first coordination sphere of the metal, is a unifying theme for many of the VOC-sensitive 

materials in this section. Specifically, this encompasses roughly 20 compounds which are treated 

in subsection 4.1, sorted along the metal component from vanadium to cobalt, nickel, copper, 

and tin; an additional short chapter on metalloporphyrins with various metal centers concludes 

this subsection on type II vapochromic materials containing metals other than Pt or Au. In the 

majority of the compounds presented in section 4.1, vapochromism is a direct consequence of 

changes in the ligand field around the metal leading to significant changes in the d-d and/or 

MLCT absorptions. 

Subsection 4.2 contains about 15 coordination compounds in which the vapochromism is the 

result of changes in weak intermolecular interactions. As a matter of fact, the origin of the 

vapochromism in these 15 type I materials is quite diverse, and the identification of common 

themes for the different classes of materials presented in this subsection is rather difficult; an 

attempt to do so has resulted in the division of subsection 4.2 into 5 individual chapters.   

 

4.1 Vapochromism as a result of analyte-induced changes in the first coordination sphere of 

the metal  

 

4.1.1 A vanadium complex 
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Scheme 37. A vapochromic oxovanadium(IV) complex. 

 

 

The oxovanadium(IV) complex 89 (Scheme 37) is the only vapochromic vanadium complex 

known to date.171 Green crystals are obtained from chloroform solution (89·CHCl3) whereas 

recrystallization from acetonitrile affords orange crystals (89·CH3CN). The two forms can be 

converted into one another and contain either monomeric complexes or polymeric chains 

thereof.172-174 In the monomeric green form, the vanadium(IV) center is in square-pyramidal 

coordination with the V=O group in apical position, in the orange form the vanadyl oxygen atom 

of one complex ligates to the sixth coordination site of the neighboring vanadium center, 

resulting in an infinite -V=O-V=O- chain. The polymeric acetonitrile adduct (89·CH3CN) 

contains two independent molecules per unit cell with V=O bond distances of 1.625(5) and 

1.636(5) Å, the distances between the vanadium center and the oxygen atom of a neighboring 

vanadyl group are 2.188(5) and 2.196(5) Å. When exposing orange crystals of 89·CH3CN to 

chloroform vapor they turn green (Figure 45). Conversely, green crystals of 89·CHCl3 change 

color to orange when exposed to acetonitrile vapor. Due to changes in V=O stretching 

frequencies the interconversion between the two forms can also be detected by IR spectroscopy. 

Another interesting observation is the occurrence of mechanochromism in the orange form: 

Grinding of 89·CH3CN affords a green powder, and subsequent addition of a small volume of 
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CH3CN regenerates the initial orange material. Thermochromism is observed for the green form 

as it turns orange when heated to 120 °C for a few minutes. 171 

 

 

Figure 45. Vapochromism of compound 89 observed following exposure to CH3CN (green to 

orange) or CHCl3 (orange to green). Reprinted with permission from ref. 171. Copyright 2003 

Elsevier. 

 

4.1.2 Cobalt complexes 

 

Cobalt(II) complexes are known to undergo relatively facile inter-conversion between 

octahedral and tetrahedral coordination geometries accompanied by drastic color changes.175 

This property forms the basis of the vapochromic behavior of a few compounds in which 

octahedral clusters of [Re6S8(CN)6]
4- or [Re6Se8(CN)6]

4- connect partially hydrated Co(II) 

complexes in extended solid frameworks with porous structures.176 The crystal structure of 

[Co2(H2O)4][Re6S8(CN)6]⋅12H2O (90⋅12H2O) exhibits a three-dimensional network comprised of 

[Re6S8]
2+ and [Co2(µ-OH2)2]

4+ cations linked by cyanides (Figure 46). 
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Figure 46. Extract from the crystal structure of (90⋅12H2O) showing the [Co2(µ-OH2)2] in the 

middle and the [Re6S8]
2+ clusters around it. Reprinted with permission from ref. 176. Copyright 

2000 American Chemical Society. 

 

The Co(II) ions are in fac-configuration with three N-atoms from cyanide and three water 

ligands, each Re6 moiety is in turn connected to six Co2 clusters yielding a Prussian blue type 

structure. The relatively large size of the [Re6S8]
2+ and [Co2(µ-OH2)2] cations entails the 

formation of large cube-like cages within the Prussian blue type structure comprising a volume 

of 258 Å3. Each of these cages contains 6 water molecules. The structure of 

[Co(H2O)3]4[Co2(H2O)4][Re6Se8(CN)6]3⋅44H2O (91⋅44H2O) contains a mixture of isolated Co(II) 

complexes with octahedral coordination and [Co2(µ-OH2)2]
4+ clusters which are linked via 

cyanide to the [Re6Se8]
2+ units. All framework atoms together occupy only 56% of the total 

volume of this structure hence the large content of crystal water. Exposure of 90⋅12H2O or 

91⋅44H2O to vapors of diethyl ether leads to a rapid change in color from orange to blue-violet 

and blue, exposure to THF induces a change to violet or green (Figure 47). 

 

Page 109 of 171

ACS Paragon Plus Environment

Submitted to Chemical Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

110

 

Figure 47. Powder samples of 90⋅12H2O (upper line) and 91⋅44H2O (lower line) treated with 

water (as prepared), THF, and diethyl ether (from left to right). Reprinted with permission from 

ref. 176. Copyright 2000 American Chemical Society. 

 

A range of VOCs influence the absorption properties of these two compounds, but diethyl 

ether leads to the most rapid response. For 90⋅12H2O substantial color changes are detected by 

the naked eye for nitromethane, THF, acetone, propionitrile, n-octanol, n-propanol, ethyl acetate, 

isopropanol, and diethyl ether. For 91⋅44H2O the most important color changes occur upon 

exposure to vapors of triethylamine, acetonitrile, THF, EtOH, DMF, acetone, propionitrile, n-

octanol, methyl tert-butyl ether, ethyl acetate, n-propanol, isopropanol, and diethyl ether. The 

changes in the optical absorption spectrum following VOC exposure are fully consistent with 

inter-conversion of some or all of the Co(II) ions from octahedral to tetrahedral coordination 

geometry. Specifically, one observes the characteristic 4T1(F) ← 4A2 and 4T1(P) ← 4A2 

transitions of tetrahedral e4t2
3 species. As far as the mechanism of this conversion is concerned, it 

has been proposed that VOCs enter the cavitites and channels of compounds 90⋅12H2O and 

91⋅44H2O, thereby disrupting the hydrogen-bonding network which stabilizes the octahedral 

coordination of Co(II). With bulkier VOC molecules present, labile water ligands are released 

and the tetrahedral coordination geometry is adopted. 
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Reaction of CoSO4⋅7H2O with the N,N’-ditopic 2-aminopyrazine (ampyz) ligand in aqueous 

solution gives a coordination framework with the composition 

[Co(H2O)4(ampyz)2][Co(H2O)6](SO4)2(H2O)2 (92).
177 Intermolecular hydrogen-bonding and π-π 

interactions lead to the formation of 2D sheets with the sulfate anion playing a key role as a 

structural element. In diffuse reflectance one detects d-d absorptions of high-spin Co(II) at ∼9000 

cm-1 and 19500 – 22000 cm-1 due to 4T2g ← 4T1g and 4T1g (P) ← 4T1g transitions. When heating 

compound 92 to 220 °C, a color change from orange to purple occurs, accompanied by a loss in 

crystallinity due to collapse of the supramolecular framework. The color change is most likely 

the result of a change in the coordination environment of the Co(II) centers, leading to shifts of 

the d-d absorption bands. Thermogravimetric analysis reveals that the resulting material has the 

composition [Co2(ampyz)2](SO4)]. Exposure of the dehydrated compound to laboratory air 

during 8 hours restores the initial orange crystalline material. An isostructural Fe(II) compound 

and a mixed Co(II)/Fe(II) compound exhibit similar behavior, but their water-vapor sensing 

properties are less favorable because the color changes occurring upon water uptake are minor.177 

 

4.1.3 Nickel complexes 

 

Scheme 38. A vapochromic Ni(II) complex (93) and its reaction product with acetonitrile (94). 
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A nickel(II) complex with a chelating diphenyl(dipyrazolyl)methane and two nitrate ligands 

(93) (Scheme 38) shows enough flexibility in its coordination sphere that one of the nitrates can 

undergo a change in hapticity from η2 to η1 as a function of temperature or acetonitrile vapor 

pressure.178 This ability makes complex 93 a thermochromic and vapochromic substance because 

the conversion of 93 into 94 is associated with a color change from green to blue. Shifts in d-d 

absorption bands due to electronic transitions from the 3A2g ground state to 3T2g, 
3T1g (

3F), and 

3T1g (
3P) excited states are responsible for this change in color. The nitrate hapticity switch is 

further associated with a change in the IR spectrum. Complexes 93 and 94 were both 

characterized structurally, and their most notable feature is the small bite angle of the bidentate 

nitrate ligands leading to cis-O-Ni-O angles of about 62°, causing significant distortions from the 

ideal octahedral geometry. The vapor-induced conversion from 93 to 94 can be reversed by 

heating to 100 °C for a few minutes. The formation of the η2 complex is favored at higher 

temperatures due to entropic effects associated with the release of CH3CN and chelation of the 

nitrate ligand. 

 

Scheme 39. Vapochromic Ni(II) complexes. 

 

 

The bis(pyrrolizinato)nickel(II) complex 95 (Scheme 39) acts as a vapochromic substance in 

polyvinylbutyral (PVB) matrices.179 The initially prepared spin-coated film containing about 
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0.02 moles of 95 per liter of PVB is light blue but changes to colorless on heating to 90 °C for a 

few minutes. The colorless state persists at room temperature unless the films are exposed to 

vapors of various VOCs with alcohols triggering the most rapid response and manifesting in the 

appearance of an absorption maximum at 661 nm. It is believed that the blue form of 95 is in fact 

an octahedral complex with two solvent molecules completing the coordination sphere of Ni(II) 

whereas the colorless form corresponds to the four-coordinate NiN4 complex represented by 

structure 95. The selectivity for alcohols has been attributed to their coordinating ability, the poor 

response to acetonitrile vapor has been explained by the observation that this solvent shows little 

tendency to coordinate to 95 even in solution.  Curiously, toluene triggers a vapochromic 

response as well, but this has been ascribed to the affinity of the PVB matrix for this particular 

solvent. 

 

 

Figure 48. Top: 1D chain structure of [Ni(cyclam)]2+ and 5,5’-dcbpy2-. Bottom: (a) Crystal of 

[Ni(cyclam)(dcbpy)]⋅5H2O in the mother liquor; (b) same crystal after evacuation at 150°C; (c) 

same crystal after subsequent exposure to water vapor. (E. Y. Lee, M. P. Suh: A Robust Porous 

Material Constructed of Linear Coordination Polymer Chains: Reversible Single-Crystal to 

Single-Crystal Transformation upon Dehydration and Rehydration. Angew. Chem. Int. Ed., 2004, 

43, 2798-2801. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with 

permission.) 
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The [Ni(cyclam)]2+ complex (962+) and 2,2’-bipyridine-5,5’-dicarboxylate (5,5’-dcbpy2-) form 

together a robust metal-organic open framework of composition [Ni(cyclam)(dcbpy)]⋅5H2O 

which is able to undergo reversible single crystal to single crystal transformations.180 The Ni(II) 

center is octahedrally coordinated with axial 5,5’-dcbpy2- ligands binding in monodentate fashion 

and resulting in a linear coordination polymer chain (Figure 48). Individual chains are linked to 

each other through C-H-π interactions involving a carbon atom of the macrocycle and the pyridyl 

rings of 5,5’-dcbpy2-. When heating single crystals of [Ni(cyclam)(dcbpy)]⋅5H2O to 150 °C 

under 10-5 Torr for several hours there is a color change from yellow to pink. The packing of the 

porous framework stays intact, and it appears that the C-H-π interactions are largely responsible 

for this. The Ni-O(carboxylate) bonds shorten by 0.025 Å upon dehydration which may be 

responsible for the observed color change. In this sense, complex 962+ is not a clear type II 

vapochromic substance (according to the definition used in section 1.3), yet the metal-ligand 

bond length change is clearly a significant modification of the first coordination sphere of the 

metal center. When exposing the pink dehydrated crystals to air the yellow color is restored 

within minutes with retention of single crystallinity. 

 

4.1.4 Copper complexes 

 

When adding excess 4-picoline (4-pic) to a solution of CuI in concentrated aqueous KI one 

obtains the material [CuI(4-pic)]∞ (97) which crystallizes  in a double-zigzag configuration with -

Cu(I)-I-Cu(I)- connections propagating along the crystallographic b axis (Figure 49). The 

shortest Cu(I)-Cu(I) distances in this compound are 2.8087(8) Å,181, 182 and this polymeric 
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material is blue photoluminescent (λmax = 437 nm) due to the presence of an emissive XLCT 

(halogen-to-ligand charge transfer) state.20 When exposing it to toluene vapors in a sealed vial 

for 2 days, it converts into [CuI(4-pic)]4⋅2C6H5CH3 (98⋅2C6H5CH3). The tetrameteric copper(I) 

species of the toluene adduct exhibits comparatively short Cu(I)-Cu(I) distances ranging from 

2.651 to 2.735 Å, and the yellow emission of this compound (λmax = 580 nm) has been attributed 

to a cluster-centered (3CC) electronic transition.20 The incorporation of toluene molecules 

permits arrangement of the tetrameric units into chains without leaving too many voids between 

them, and this fact presumably facilitates the conversion of [CuI(4-pic)]4⋅2C6H5CH3 back to 

[CuI(4-pic)]∞ occurring upon exposure to pentane vapor, simply because the copper units are 

already pre-arranged into chains. It has been noted that for practical sensing applications the 

slowness of the VOC-induced chemical conversions between 97 and 98⋅2C6H5CH3 is a problem. 

 

 

Figure 49. Left: Polymer chain of [CuI(4-pic)]∞ (97) propagating along the b-axis. Right: 

Structure of the [CuI(4-pic)]4 (98) cluster. Reprinted with permission from ref. 180. Copyright 

2000 American Chemical Society. 
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Figure 50. 2D network of compound 99 (with square-planar Cu(II)) and 1D network of 

compound 100 (with tetrahedral Cu(II). Reprinted with permission from ref. 182. Copyright 2007 

American Chemical Society. 

 

Reaction of CuCl2 and 3-chloropyridine (3-Clpy) in methanol solution affords the charge-

neutral coordination compound trans-[CuCl2(3-Clpy)2] (99) in which the copper(II) center is in 

square planar coordination.183, 184 This material is blue and reacts with gaseous HCl to form the 

yellow salt (3-ClpyH)2[CuCl4] (100) in which Cu(II) is tetrahedrally coordinated. This vapor-

induced conversion is remarkable because it not only involves cleavage of two Cu-N 

coordination bonds but also the rupture of the covalent H-Cl bonds to form two new Cu-Cl and 

N-H bonds. The crystal structure changes from a 2D-network propagated via Cu-Cl – Cl-C 

halogen bonds (99) (Figure 50) to a 1D-network propagated via N-H – Cl2Cu hydrogen bonds 

and Cu-Cl – Cl-C halogen bonds (100). HCl uptake has been monitored by FTIR spectroscopy 

from which an equilibrium constant of 1.03(5)⋅10-5 was determined, indicating good sensitivity 

for HCl detection in the 200 – 20000 ppm concentration range. Temperature dependent FTIR 

studies show that HCl extrusion is endothermic. X-ray diffraction at a synchrotron facility was 

used to search for intermediate crystalline phases present at small concentrations but occurring in 

the process of interconversion between 99 and 100. However, no such phase could be found and 
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Rietveld analysis of X-ray powder patterns gave an excellent fit to a two-phase model without 

the need for involvement of an intermediate (amorphous) phase. This study shows that the 

molecular solid state can be far more flexible and dynamic that it is generally perceived to be.183, 

184 

 

 

Figure 51. Reaction of trans-[CuBr2(3-Brpy)2] (101) to (3-BrpyH)2[CuBr2Cl2] (102). (G. 

Mínguez Espallargas, J. van de Streek, P. Fernandes, A. J. Florence, M. Brunelli, K. Shankland, 

L. Brammer: Mechanistic Insights into a Gas-Solid Reaction in Molecular Crystals: The Role of 

Hydrogen Bonding. Angew. Chem. Int. Ed., 2010, 49, 8892-8896. Copyright Wiley-VCH Verlag 

GmbH & Co. KGaA. Reproduced with permission.) 

 

Subsequent related work focused on the isostructural trans-[CuBr2(3-Brpy)2] (101) complex 

and its reaction with gaseous HCl.185 This study provided significant new insight into the 

mechanism of HCl uptake. One important observation is that upon conversion of green 101 to 

brown (3-BrpyH)2[CuBr2Cl2] (102) (Figure 51) the initially present bromo-ligands are not lost. It 

has been hypothesized that insertion of HCl into Cu-N bonds of 101 is followed by a structural 

reorientation of the [CuBr2Cl2]
2- anions which is driven by the formation of hydrogen bonds and 

halogen bonds. Indeed it was found that the chloride population of a given crystallographic site 

correlates with the total number of strong intermolecular interactions formed, either hydrogen or 

halogen bonds. Thus, the hypothesis from above makes sense because the respective noncovalent 

Page 117 of 171

ACS Paragon Plus Environment

Submitted to Chemical Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

118

(and mainly electrostatically driven) interactions are expected to be stronger with chloride than 

with bromide due to the more negative electrostatic potential of Cl-. Methodologically, the 

reaction of trans-[CuBr2(3-Brpy)2] with HCl resembles isotope labeling experiments only that Cl 

and Br exhibit sufficiently different X-ray scattering power that differentiation of the two halides 

becomes easily possible with X-ray diffraction. 

Green trans-[CuBr2(3-Brpy)2] (101) reacts with HBr to brown (3-BrpyH)2[CuBr4], but this 

material has a different crystallographic structure with different supramolecular connections than 

100 and 102.186 However, release of HBr from (3-BrpyH)2[CuBr4] or HCl from 100/102 leads to 

an isostructural series of compounds. 

 

Scheme 40. Vapochromism based on ligand flip isomerization. 

 

 

An interesting case of linkage isomerism has been reported for [Cu2(dppy)3(CH3CN)](BF4)2 

(dppy = diphenylphosphino-pyridine) (Scheme 40).187 This binuclear complex has its dppy 

ligands arranged in head-to-tail fashion with two phosphorus atoms binding to one copper(I) 

center and the third to the other one (103a). Recrystallization of 103a from a mixture of CH2Cl2 

and CH3OH affords the methanol adduct (103b⋅CH3OH) which has one of its dppy ligands 

flipped, resulting in head-to-head orientation of all three ligands. Because of the hemilability of 
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the dppy ligand it is further possible to convert blue photoluminescent 103a (λmax = 489 nm) into 

green emissive 103b⋅CH3OH (λmax = 520 nm) by exposure of solid 103a to methanol vapor, and 

this process can be fully reversed when heating the methanol adduct to 203 °C. The linkage 

isomerization reaction is accompanied by a significant increase of the Cu(I)-Cu(I) separation 

from 2.721(3) Å in 103a to 2.7961(4) Å in 103b⋅CH3OH and by an increase of π-π interactions 

manifesting by short distances between the phenyl and pyridyl planes in the methanol adduct. 

These two structural changes are most likely jointly responsible for the shift in emission 

wavelength upon CH3OH uptake. 

 

Scheme 41. A copper complex exhibiting concentration lumichromism. 

 

 

 

Figure 52. Conversion of dimeric blue 104⋅2H2O to a tetrameric green product. Copyright 2010 

The Royal Society of Chemistry. 
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A dinuclear copper(I) complex with 2-(2-hydroxyethyl)pyridine (µ-hep) and n-propionate 

(OnPr) ligands (104) shows the unusual phenomenon of a vapor-induced single crystal to single 

crystal transformation.188 Initially the [(OnPr)Cu(µ-hep)2Cu(OnPr)] complex is obtained as a di-

hydrate (104⋅2H2O). When heated to 110 °C this blue compound releases water and undergoes a 

structural change to a green tetrametric complex under retention of its crystallinity (Figure 52). 

The tetramer has the structure of a double open cubane. The same structural conversion can be 

induced at room temperature when exposing 104⋅2H2O to various VOCs, albeit with different 

response times. Whereas CH3OH produces a response within 5 minutes, ethanol, isopropanol, 

and acetonitrile require exposure times of 2 hours, 24 hours, and 8 days, respectively. In view of 

the fact that multiple bond breaking and bond making processes must occur, this structural 

conversion in the single crystalline state is remarkable. However, the overall process is 

irreversible.  Analogous compounds with acetate instead of n-propionate were also investigated 

but did not show vapochromic behavior.188 

 

 

Figure 53. Reactivity and luminescence behavior of [(Cu4I4)L(CH3CN)2]n (105⋅(CH3CN)2). 

Reprinted with permission from ref. 189. Copyright 2008 American Chemical Society. 
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Reaction of a calix[4]-bis-monothiacrown (L) with CuI in acetonitrile leads to the formation of 

a 1D polymeric material with the formulation [(Cu4I4)L(CH3CN)2]n (105⋅⋅⋅⋅(CH3CN)2) (Figure 

53).189 It contains cubane-like Cu4I4 clusters which are linked to one another by the calix[4]-bis-

monothiacrown ligands through two of the four Cu(I) ions, while the two other metal centers 

bear acetonitrile ligands. The yellow photoluminescence of compound 105 (λmax = 567 nm) was 

assigned to a cluster-centered excited state with admixed halide-to-metal charge transfer (XLCT) 

character. Addition of KI leads to the incorporation of K+ ions into the thiacrowns, a process 

which is accompanied by emission quenching, perhaps because of η
5-type cation – π 

interactions. When heating potassium-free samples to 150 °C for 1 hour the acetonitrile ligands 

are released, producing a red photoluminescent (λmax = 600 nm) compound. Bulk crystallinity is 

maintained and thus the process is reversible, manifesting in a vapoluminescence response upon 

exposure of the de-solvated material to CH3CN. 

Six different coordination compounds have been isolated as products from the reaction 

between CuI and triphenylphosphine (PPh3).
190 One out of two cubane-type polymorphs with the 

stoichiometry [CuI(PPh3)4] (106a) converts to an isomer when exposed to vapors of acetonitrile, 

dichloromethane or ethanol. In the product (106b), two opposite edges of the cubane-like 

structure are broken up, and a molecular structure resembling that of cyclooctane is formed. 

Compound 106a emits green light (λmax = 518 nm, τ = 3.2 µs) upon UV excitation at room 

temperature whereas its isomer 106b is essentially nonluminescent under these conditions, 

paving the way to vapor-induced luminescence on/off switching. 

Copper(I) cyanide (107) reacts with a variety of different amines (both in the liquid and vapor 

phase) to produce adducts of the stoichiometry CuCN·Ln with n = 0.75 – 2.0.191-193 Neat CuCN 

emits at the edge of the visible spectral range with λmax = 392 nm, but the solvent adducts 
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luminesce with different colors throughout the visible spectral range with λmax depending on the 

exact nature of the amine (L) (Figure 54).191 The CuCN·Ln adducts can be obtained on the 

preparative scale by heating CuCN suspensions in neat amines and hence can be characterized 

structurally. Single crystals suitable for X-ray diffraction were obtained with L = pyridine, 2-

methylpyridine, 4-methylpyridine, 3-ethylpyridine, 4-(t-butyl)pyridine, piperidine, N-

methylmorpholine, and N,N-dimethylcyclohexane. Each of these structures contains chains of 

CuCN with the cyano C/N positions disordered in most cases, and in each structure (except for 

CuCN·4-(t-butyl)pyridine) the amine is directly bonded to copper(I). Depending on the amine 

content (n), the Cu(I) centers are either 3- or 4-coordinate. The photoluminescence behavior of 

these authentic solvent adducts is identical to that observed for samples of CuCN that have been 

exposed to vapors of the respective amines. However, powder X-ray diffraction reveals that only 

a fraction of vapor-exposed CuCN reacts to the adduct CuCN·Ln, and thus it seems that only the 

surface of CuCN is able to react with the amine vapors. This interpretation is compatible with the 

high reversibility of the vapoluminescent response. Based on DFT calculations the HOMO of the 

CuCN·Ln compounds is mostly comprised of the 3dz2 orbital of the metal while the LUMO is a 

mixture of 4p orbitals of Cu(I) and π* orbitals of the cyano ligand,194 and consequently it might 

be argued that the emission has mixed d-d and MLCT character. 
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Figure 54. Luminescence of neat CuCN (upper left) and various solvent adducts of CuCN (A- 

Q). Copyright 2010 The Royal Society of Chemistry. 

 

The reaction of CuI with selected N,N’-disubstituted piperazines (pip) in acetonitrile yields 

(CuI)2(pip) compounds consisting of chains with piperazine-linked Cu2I2 rombs.195 These 

structures with 3-coordinate Cu(I) are obtained only for sterically crowded N,N’-

diethylpiperazine (Et2pip), N,N’-dibenzylpiperazine (Bnpip), N,N’-bis-phenylethylpiperazine 

(PhEtpip), producing compounds (CuI)2(Et2pip) (108a), (CuI)2(Bn2pip) (108b), and 

(CuI)2((PhEt)2pip) (108c), whereas sterically less demanding piperazines lead to structures with 

4-coordinate Cu(I). The Cu(I)-Cu(I) distances in 108a-c range from 2.4716(11) to 2.4837(14) Å 

and are significantly below the van der Waals distance (∼2.80 Å), indicative of substantial 

metallophilic interactions. Exposure of 108a and 108b to vapors of amine and sulfide 

nucleophiles (Nu) leads to brightly photoluminescent materials which show identical 

luminescence properties as the respective (CuI)4(Nu)4 compounds, suggesting that Nu vapor 

exposure induces the reaction 2 (CuI)2(pip) + 4 Nu → (CuI)4(Nu)4 + 2 pip. Depending on the 

nucleophile, luminescent materials with emission colors ranging from blue (Nu = 2-

methylpyridine) to red (Nu = morpholine) are obtained. Other nucleophiles which give a 

vapoluminescence response are pyridine, 3-methylpyridine, , piperidine, pyrrolidine, pyrrolidine, 

diethylamine, dimethyl sulfide.195 Vapors of 2-chloropyridine, 3-chloropyridine, and N-

methylpiperidine yield non-emissive compounds. 

 

4.1.5 Tin 
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Four commercial tin(II) salts were found to be useful for optical sensing of amine vapors at 

concentrations as low as 100 ppb.196 Specifically, tin(II) sulfate (SnSO4, 109a), tin(II) 

methanesulfonate (Sn(CH3SO3)2, 109b), tin(II) triflate (Sn(OTf)2, 109c), and tin(II) 

fluorophosphate (SnPO3F, 109d) were found to display visible room temperature emission after 

exposure to vapors of NH3, EtNH2, Et2NH, Et3N, or N(C5H5)3. Importantly, each of the four 

tin(II) salts responds differently to the five amines, and consequently similar analytes can be 

distinguished from each other rather easily. Many other nucleophilic analytes have little impact 

on the emission properties, but it has been noted that for real-world applications the water-

sensitivity of several of the tin(II) salts is problematic. For instance the emission intensity of 

amine-vapor exposed Sn(CH3SO3)2 and Sn(OTf)2 drops considerably in presence of atmospheric 

humidity. The fundamental reasons for the luminescence turn-on response in presence of amines 

is unclear,196 it was merely noted that tin(II) is known to form complexes with amine-containing 

molecules.197, 198 

 

4.1.6 Metalloporphyrins 

 

Due to their intense colors and the presence of axial binding sites metalloporphyrins are of 

interest for sensing of coordinating VOCs. An application-oriented study falling into the 

category of “electronic nose” research made use of arrays containing 11 different 

tetraphenylporphyrin-based compounds for achieving chemoselective vapor visualization. The 

tetraphenylporphyrin was either used as a free base, or with Sn(IV), Co(III), Cr(III), Mn(III), 

Fe(III), Co(II), Cu(II), Ru(II), Zn(II) and Ag(II).199 These metals span a wide range of ligand 

affinity which opens the possibility for obtaining unique color fingerprints upon VOC exposure 
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at analyte concentrations below 2 ppm. A wide range of ligating solvents including alcohols, 

amines, thiols, thioethers, and phosphines can be detected and distinguished from each other by 

taking the difference before and after vapor-exposure of the scanned images of the arrays. The 

porphyrins were dissolved in dibutylphtalate in polystyrene matrix, and deposition of small spots 

with 0.5 mm diameter was found to optimize the response time. The porphyrin spots can be 

deposited using an ink-jet technique in order to obtain cheap disposable sensor arrays. 

Zinc(II) tetraphenylporphyrin (110) dissolved in silicone rubber can be used for detection of 

ammonia vapor at concentrations as low as 0.7 ppm.200 In the course of NH3 ligation to ZnTPP 

the Soret band shifts from 414 to 424 nm, and similar spectral changes were observed on 

exposure to triethylamine. Silicone films of ZnTPP produce significantly better results than 

Nafion or ethyl cellulose support matrices. The latter is apparently impermeable for ammonia gas 

while the Nafion films were very thin (10 µm) and resulted in weak absorption. 

 

4.2 Vapochromism as a result of indirect analyte-metal interactions 

 

This subsection treats the remainder of metal-containing vapochromic substances that cannot 

easily be grouped according to a single unifying theme. These materials contain different metals 

and their vapochromism has diverse origins. The division into 5 chapters is an attempt to group 

these substances according to common themes and/or origin of their vapochromic properties.  

 

4.2.1 Vapochromism as a consequence of a change in spin state 
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A single crystal to single crystal transformation has been reported for the spin-crossover 

compound Fe(tpa)(NCS)2 (111) (tpa = tris-(2-pyridylmethyl)amine).201 This molecule 

crystallizes in a relatively open structure with individual molecules arranged via π-π interactions 

in one direction and hydrogen bonds in a second direction. The Fe-N distances are between 

1.977(8) to 2.091(6) Å, which is typical for low-spin Fe(II)-N bonds. Exposure to methanol 

vapor leads to a new compound which is best formulated as 

[Fe(tpa)(NCS)2]⋅[Fe(tpa)(NCS)2⋅CH3OH] (111⋅[111⋅CH3OH]). In the crystal structure 

determined at 120 K this methanol adduct exhibits Fe-N distances contracted by about 0.2 Å, 

indicating that a low-spin to high-spin transition has taken place. The change in spin state has 

been confirmed by Mössbauer spectroscopy and is accompanied by a change in color from 

yellow (111) to red (111⋅[111⋅CH3OH]) (Figure 55). Remarkably, the methanol molecule is not 

directly interacting with any of the two metal centers, but it merely changes the way individual 

molecules interact with each other yet this suffices to induce the spin transition. As an additional 

subtlety the two crystallographically distinct iron centers give rise to three different spin 

crossover phases: At 120 K both metal centers are low-spin, at 298 K one Fe(II) is high-spin 

while the other is low-spin, and at 350 K both metals are high-spin.  
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Figure 55. Change in appearance and crystal structure of compound 111 upon exposure to 

MeOH vapor. The red form contains two crystallographically distinct types of Fe complexes and 

is best formulated as 111⋅[111⋅CH3OH]. Reprinted with permission from ref. 201. Copyright 2010 

American Chemical Society. 

 

Ethanol gives an adduct of similar stoichiometry as methanol (111⋅[111⋅C2H5OH]), i. e., a 

compound with two crystallographically distinct Fe(II) centers. By contrast, all other tested 

solvents (n-PrOH, i-PrOH, CH3CN, CH2Cl2, and CHCl3) yield adducts of the same stoichiometry 

as the solvent-free parent compound (111) in which all Fe(II) centers are identical.202 Adducts of 

111 with any of the latter five solvents undergo a color change from yellow/brown to red 

following exposure to ethanol vapor, indicating that a similar low-spin to high-spin transition as 

discussed above for methanol is occurring. When 111⋅[111⋅C2H5OH] is exposed to vapors of 

CH2Cl2 or CHCl3 the color reverts to yellow. Comparison of magnetic and structural properties 

within this family of materials has led to the conclusion that hydrogen-bonding interactions 

between solvent molecules and the metal complexes tend to enhance the ligand field exerted on 

the Fe(II) center, and this obviously plays a key role for the spin-crossover behavior.203 

 

4.2.2 Hydrogen-bonded proton transfer assemblies 
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Figure 56. Extract from the crystal structure of 112⋅2THF. Reprinted with permission from ref. 

204. Copyright 2011 American Chemical Society. 

 

A vapochromic hydrogen-bonded proton transfer (HBPT) assembly is obtained from reaction 

between Fe(pbph)2⋅3H2O (pbph = 2-(diphenylphosphino)benzaldehyde-2-pyridylhydrazone) and 

chloranilic acid (H2CA) in THF.204 The stoichiometry of the final compound is 

Fe(Hpbph)2(HCA)2⋅2THF (112⋅2THF), i. e., two protons are transferred from two chloranilic 

acid molecules to the pbph ligands. In the crystal structure of this compound (Figure 56) there 

are two 2D hydrogen-bonded sheets containing interactions between cationic metal complexes 

and HCA-, as well as interactions between individual HCA- anions. The THF guest molecules are 

located between these sheets. When 112⋅2THF is heated to 158 °C all THF molecules are 

eliminated from the lattice. Subsequent exposure to vapors of THF restores the initial assembly. 

Adduct 112⋅2THF itself is susceptible to various organic vapors including aprotic and protic 

solvents. Diffuse reflectance reveals spectral changes around 610 nm with CH2Cl2 and Et2O 

producing distinctly different changes than MeOH, EtOH or acetic acid. The spectral changes 
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occurring with the protic solvents are perceived as a color change from brick-red to orange, 

resulting presumably from perturbation of hydrogen-bonding interactions in the HBPT assembly. 

The iron(II) center does not appear to be directly involved in the vapochromic behavior. 

Palladium has also been incorporated into a vapochromic hydrogen-bonded proton transfer 

(HBPT) assembly.205 Specifically, a Pd(II)-hydrazone complex (PdBr(Hmtbhp); Hmtbhp = 2-(2-

(2-methylthio)benzylidene)hydrazinyl)pyridine) was combined with bromanilic acid (H2BA), a 

widely used building block for supramolecular architectures known for its ability to accept one 

electron and donate two protons.206, 207 The HBPT assembly 113 

([PdBr(Hmtbhp)]2(HBA)2(H2BA)) can uptake CH3CN reversibly, resulting in a color change 

from reddish purple to dark red. In the resulting solvent adduct the acetonitrile molecules form 

1D channels along the crystallographic b-axis (Figure 57), and upon heating to 100 °C in argon 

atmosphere the guest-free assembly can be recovered. 

 

 

Figure 57. Packing diagram of HBPT assembly 113 with CH3CN guest molecules shown as 

space filling models. Reprinted with permission from ref. 205. Copyright 2010 American 

Chemical Society. 

 

However, acetonitrile removal alters the powder X-ray diffraction pattern significantly, 

indicating that the supramolecular assembly is not robust enough to retain its structure without 
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the CH3CN guests. Depending on what solvent vapors HBPT assembly 113 is exposed to, the 

lowest energetic absorption band either blue-shifts (DMF, pyridine, dimethylacetoamide, 

DMSO) or red-shifts (1,4-dioxane, CH3CN, MeOH, EtOH). The absorption band shifts seem to 

correlate with Gutmann donor and acceptor numbers of the solvents.208 Presumably, the 

hydrogen-bonding mode of the supramolecular assembly is fundamentally changed upon 

sorption of solvents with a high donor number, and such proton-accepting solvents seem to be 

adsorbed more easily than proton-donating solvents with a large acceptor number. Palladium 

does not appear to be directly involved in the vapochromic behavior of assembly 113; in this 

regard the classification of this material as a Pd-based vapochromic substance is not optimal. 

 

4.2.3 Metallophilic, π-π, and donor-acceptor interactions 

 

A zinc(II) complex of 1,3,5-tris(p-(2,2’-dipyridylamino)phenyl)benzene (TPDPB) (Scheme 

42) can selectively detect benzene vapors at concentrations of ∼500 ppm.209 Depending on 

crystallization conditions, two different forms are obtained. When using a small amount of 

benzene in CH2Cl2, form A with the composition [(ZnCl2)3(TPDPB)]·3CH2Cl2·0.25C6H6 

(114·3CH2Cl2·0.25C6H6) crystallizes, whereas a 1:1 mixture of benzene and CH2Cl2 affords form 

B with the composition [(ZnCl2)3(TPDPB)]·3C6H6 (114·3C6H6). In the crystal structure of form 

A individual molecules of 114 build pairs with a separation of 3.85(1) Å between their central 

phenyl rings, and the TPDPB ligands are rotated by 120° relative to each other to give a 

staggered face-to-face orientation. Benzene guest molecules are sandwiched between two pairs 

of host molecules, undergoing π-π stacking with the central phenyl rings of 114 at an interplanar 

distance of 3.60(1) Å. In form B the molecular packing is fundamentally different with both 
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edge-to-edge and face-to-face interactions between benzene and the host present. The occurrence 

of two forms of benzene inclusion structures was taken as evidence for the affinity of 114 for 

benzene, and hence the benzene-sensing properties of this compound were tested by depositing it 

onto a polydimethylsiloxane (PDMS) bead which was attached onto an optical fiber tip. In the 

solid state, 114 is blue photoluminescent (λmax = 430 nm) with an emission band resembling that 

of the free TPDPB ligand, only red-shifted by ∼30 nm. Upon exposure to vapors of benzene the 

emission is quenched, presumably because the benzene guests undergo π-π stacking with the 

host, similar to what is observed in the two crystal structures discussed above. Interestingly, 

toluene, xylene, and ethyl benzene induce a much weaker response, similar to what is observed 

for hexane, cyclohexane, methanol, ethanol, CH2Cl2, trichloroethylene, or perchloroethylene. 

Thus, compound 114 exhibits a remarkable selectivity for benzene vapors. 

 

Scheme 42. Zinc(II) complexes investigated in the context of vapochromism.  

 

 

A helical zinc(II) dimer complex with two 3,3’-di-tert-butylsalen (tBusalen) ligands (115) 

shows mechanochromic and vapochromic behavior.210 The [Zn2(
tBusalen)2] complex is green 
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photoluminescent (λmax = 473 nm), quite different from its monomer analogue (116) which emits 

blue light upon UV irradiation (λmax = 456 nm). The X-ray crystal structure of the dimer 

complex 115 reveals significant intramolecular π-π stacking interactions between individual 

phenyl rings of the tBusalen ligands. Mechanical grinding of 115 or exposure to THF vapor 

produces a blue luminescent substance, suggesting at first glance that these external stimuli 

disrupt the intramolecular π-π interactions, leading to non-interacting luminophors which exhibit 

similar emission properties as the monomer reference substance (116). However, careful analysis 

of X-ray diffraction and emission data of 115·THF and 115·MeOH reveals that the emission 

color is in fact correlated with the crystal packing structure and that intermolecular π-π stacking 

is the key to the change in photoluminescence color.210 

 

Scheme 43. A vapochromic silver(I) complex. 

 

 

The trinuclear pyrazolyl-bridged silver(I) complex [[3,5-(CF3)2pz]Ag]3 (117) (Scheme 43) 

forms π-acid/π-base binary adducts with benzene and some of its methylated derivatives.211 X-

ray crystal structure analysis of a benzene adduct reveals the presence of discrete tetramolecular 

units comprised of a benzene/117/117/benzene sequence. Being a stronger π-base than benzene, 

mesitylene is able to overcome the argentophilic interactions between neighboring complexes, 
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and consequently an infinite chain of 117/mesitylene/117/mesitylene units is formed with this 

compound. This difference in packing structure between benzene and mesitylene adducts has 

important implications for the photoluminescence behavior. While neat 117 is non-emissive, the 

benzene adduct shows green luminescence (λmax ≈ 520 nm) and the mesitylene adduct emits in 

the blue spectral range (λmax ≈ 410 nm). The green luminescence has been attributed to excimeric 

states involving argentophilic interactions,212 the disruption of these intermetallic contacts in the 

mesitylene adduct leads to blue emission. Thin films of 117 respond to vapors of benzene, 

toluene, and mesitylene with a luminescence turn-on response, in line with the formation of the 

solvent adducts described above. Aromatic solvents with electron-withdrawing substituents such 

as chlorobenzene and hexafluorobenzene do not switch on the luminescence. Similarly, non-

aromatic solvents such as acetone, methanol, and THF do not trigger a response. These 

observations support the notion of π-acid/π-base interactions in the benzene, toluene, and 

mesitylene adducts. 

Hupp and coworkers explored a variety of molecular rectangles based on rhenium(I) 

tricarbonyl diimines,213 and one of them exhibits vapoluminescence.214 Notably, it is a charge-

neutral compound (118) (Scheme 44) in which no counterions are blocking the channels formed 

within and between individual rectangles. The crystal structure of [Re(CO)3(bibzim)(4,4’-

bpy)Re(CO)3]2 (118) (bibzim = 2,2’-bibenzimidazole) contains both intra- and intermolecular 

vacancies of rectangular shape and similar size (∼10 Å × 6 Å). The emission intensity of 118 

changes upon exposure to various VOCs, the affinity of thin films of 118 for aromatic 

compounds decreases along the series toluene > 4-fluorotoluene > benzene > fluorobenzene > 

hexafluorobenzene. This order suggests that electron donor/acceptor (host/guest) interactions 

might play an important role for guest uptake. The host/guest stoichiometry can exceed unity, 
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indicating that the guest molecules fill both intra- and intermolecular cavities. The estimated 

internal surface area is ∼120 m2/g. 

 

Scheme 44. Vapochromic rhenium(I) and iridium(III) complexes. 

 

 

Many cyclometalated iridium(III) complexes exhibit favorable emission properties which 

makes them interesting for triplet harvesting in OLEDs.215, 216 The [Ir(ppy)2(qxn)] (ppy = 2-

phenylpyridine, qxn = quinoxaline-2-carboxylate) complex (119) can be crystallized in two 

differently colored forms one of which can be converted into the other by exposure to CH3CN 

vapor.217 From mixed ethanol/chloroform solution one obtains black crystals of 

119⋅0.25EtOH⋅0.5CHCl3 while from acetonitrile/chloroform red crystals of 119⋅CH3CN are 

formed. In the black form there are π-π interactions between qxn ligands from different 

complexes which may lead to an energetic stabilization of the ligand-based LUMO with respect 

to the red structure in which such π-π interactions are absent hence the different colors of the two 

forms. The black form is weakly emissive with λmax = 692 nm and a decay time of only 43 ns, 

but the red form exhibits intense photoluminescence at 654 nm with a lifetime of 130 ns. 

Exposure of black 119⋅0.25EtOH⋅0.5CHCl3 to acetonitrile vapor converts it to the red form 

within ∼1 minute while several other VOC vapors (propionitrile, acetone, acetic acid, ethyl 
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acetate, methanol, ethanol, 2-propanol, pyridine, THF, diethyl ether, CH2Cl2, CHCl3, CH3I, 

hexane, benzene) gave no response. Reconversion of the red form to the black form does not 

occur as easily, and the most efficient procedure is to dissolve the complex in CHCl3 followed by 

subsequent evaporation of the solvent. 

 

4.2.4 Vapochromism in coordination polymers and metal-organic frameworks 

 

 

Figure 58. Left: Anhydrous Cu(pz)2 (120); middle: Cu(pz)2⋅H2O (120⋅H2O); right: Cu(pz)2⋅NH3 

(120⋅⋅⋅⋅NH3). Reprinted with permission from ref. 218. Copyright 2009 American Chemical Society. 

 

The Cu(pz)2 compound (pz = pyrazolato) (120) is most easily obtained in the form of a pink 

hydrate (120⋅H2O). This material forms a 1D coordination polymer with weakly bound water 

molecules and Cu-O distances of 2.913(4) Å.219 Gentle heating leads to the anhydrous beige 

form. In humid air the beige substance readily reconverts to the pink hydrate but under dry 

conditions anhydrous 120 can be used for detection of NH3, methylamine, methanol, ethanol, 

acetonitrile, and pyridine vapors. The resulting materials are solvent adducts of the general 

formula 120⋅solvent and exhibit colors ranging from pink (methanol and acetonitrile adduct) to 

blue (other adducts). However, vapor uptake is slow and requires between 20 minutes (NH3) and 

2 days (ethanol) in order to be complete. 
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The structural changes accompanying water sorption of 120 have been studied in detail.218 

Interestingly the anhydrous form has no pores yet H2O uptake occurs with remarkable ease 

(within 2 minutes), and hence it has been noted that this material exhibits “porosity without 

pores”.  

 

 

 

Figure 59. (a) Chain of [Cu(bhnq)(H2O)2] complexes in (121⋅H2O⋅3EtOH); (b) schematic 

representation of the hinge-like behavior of the 2,2’-bi(3-hydroxy-1,4-naphthoquinone) ligand 

upon VOC uptake. (K. Yamada, S. Yagishita, H. Tanaka, K. Tohyama, K. Adachi, S. Kaizaki, H. 

Kumagai, K. Inoue, R. Kitaura, H.-C. Chang, S. Kitagawa, S. Kawata: Metal-Complex 

Assemblies Constructed From the Flexible Hinge-Like Ligand H2bhnq: Structural Versatility and 

Dynamic Behavior in the Solid State. Chem. Eur. J., 2004, 10, 2647-2660. Copyright Wiley-

VCH Verlag GmbH & Co. KGaA. Reproduced with permission.) 

 

When reacting CuSO4 and the 2,2´-bi(3-hydroxy-1,4-naphthoquinone) ligand (H2bhnq) in 

water-ethanol mixtures one obtains a coordination polymer of formulation 

[[Cu(bhnq)(H2O)2(H2O)(EtOH)3]n (121⋅H2O⋅3EtOH) which has infinite 1D chains of 

[Cu(bhnq)(H2O)2] units (Figure 59) with interstitial ethanol and water molecules.220 The 

chelating bhnq2- ligands bridge neighboring Cu(II) centers in an anti fashion to form zigzag 
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chains, the coordination sphere around each metal is a distorted octahedron with four O-atoms 

from two bhnq2- ligands and two water molecules. Once removed from the mother liquor red 

crystals of 121⋅H2O⋅3EtOH turn black due to loss of ethanol, but this process is reversible for 

example when using MeOH or EtOH vapor. Crystallographic investigations show that the 

Cu(II)-Cu(II) distance shortens when going from the black to the red form, the reason being that 

sorbed EtOH molecules establish a hydrogen-bonding network with the bhnq2- ligands and the 

coordinated waters. These noncovalent interactions lead to a contraction of the 1D chains which 

is possible thanks to the flexible hinge-like structure of the bhnq2- ligand (Figure 59). 

In THF the reaction between CuSO4 and the H2bhnq ligand leads to the compound 

[[Cu(bhnq)(THF)2](THF)]n (122⋅THF).221 This material forms similar 1D chains as compound 

121⋅H2O⋅3EtOH  only with THF ligands and additional interstitial THF molecules which can be 

removed in vacuum. The de-solvated form has a longer Cu(II)-Cu(II) distance than the THF 

solvate (6.45 vs. 7.8 Å), and a shift of the absorption band maximum in the visible spectral range 

from 500 to 540 nm accompanies de-solvation. THF uptake restores the initial material, and the 

reversibility of this transformation has been attributed to the hinge-like bhnq2- ligand. 

Depending on reaction conditions two different forms of a vapochromic metal-organic 

framework (MOF) can be obtained from the reaction of CuI with 1,4-diazabicyclo[2.2.2]octane 

(DABCO).222 In both forms DABCO completes the coordination sphere of Cu(I) by ligating to 

four corners of the Cu4I4 cubane-like clusters. In form A (obtained from aqueous solution) the 

supertetrahedral [Cu4I4(DABCO)4] units are arranged in a self-interpenetrating network (123a). 

In form B (obtained from CH3CN solution, 123b) two independent networks interpenetrate each 

other. In both forms there is ∼20% of volume accessible for solvent molecules because there are 

channels of ∼7 Å diameter propagating through the crystalline lattices. Both forms exhibit long-
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lived (τ = 8.0, 13.4 µs) emission from cluster-centered excited states (3CC) which might have 

some admixture from XMCT states resulting from iodide-to-copper charge transfer. Emission 

occurs with large Stokes shifts (11400 and 10700 cm-1) indicative of strong excited-state 

distortions and significant structural reorganization of the photoexcited cubane-like clusters. The 

clusters are not exactly identical in both forms, consequently, the emission occurs at slightly 

different wavelengths (form A: λmax = 580 nm; form B: λmax = 556 nm). This fact can be 

exploited for vapoluminescence sensing because exposure of form A to vapors of acetonitrile 

induces a structural conversion to form B. 

 

 

Figure 60. Left: Nanotubular structure of [(WS4Cu4)I2(dptz)3]n (124); right: UV-Vis spectra and 

photographs of different solvent adduct of 124. Reprinted with permission from ref. 223. 

Copyright 2011 American Chemical Society. 

 

Reaction of (NH4)2WS4, CuI, and dptz (dptz = 3,6-(dipyridin-4-yl)-1,2,4,5-tetrazine) in DMF 

yields a nanotubular metal-organic framework with the stoichiometry 

[[(WS4Cu4)I2(dptz)3]·DMF]n (124·DMF) in which each WS4
2- anion chelates four Cu(I) cations 

(Figure 60).223 Each Cu(I) center is tetrahedrally coordinated, individual WS4Cu4
2+ units are 

paired up by pyrazines which exhibit π-π interactions at interplanar distances of 3.578(2) Å. 
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There are square-shaped (5.4 × 5.3 Å) nanotubes along the c-axis containing DMF guests which 

can be removed at 100 °C. Immersion of the de-solvated MOF into various organic solvents 

causes significant color changes that can also be induced by exposure to the respective vapors, 

albeit leading to a much slower response. Systematic studies revealed a negative solvatochromic 

effect with a solvent-induced absorption band shift of 245 nm between CH3CN and CHCl3 

(Figure 60). Moreover, there is a good correlation between the magnitude of the absorption band 

shift and the Reichardt solvent polarity parameter.224 The strong π-acceptor property of the dptz 

ligand is believed to play a key role for this solvatochromic and vapochromic behavior, a 

structurally analogous MOF with 2,2’-bipyridine instead of dptz does not show such behavior.223 

 

4.2.5 Vapochromism in cyanometallates 

 

2,2’-Bipyridinetetracyanoruthenate(II) complexes exhibit strongly solvent-dependent 

absorption and luminescence properties,225-229 and a few of them (or closely related complexes) 

are sensitive to vapors of certain chemical substances. For instance, the Ru(4,4’-tBubpy)2(CN)2 

complex (125) is responsive to water vapor.230 125, 125·H2O, and 125·2H2O exhibit 

luminescence band maxima at 740, 685, and 640 nm, i. e., there is a correlation between 

emission peak and number of crystal waters. Simultaneously, the increase in the number of 

crystal waters is accompanied by a decrease of the CN stretching frequency in the IR spectrum. 

Thin films of 125 are most sensitive to moisture, operating at water vapor pressures as low as 10-

2 Pa. Complex 125 is also responsive to vapors of various VOCs.231 Neat 125 has an emission 

band maximum at 740 nm, but λmax shifts to 700 nm when exposed to benzene, to 660 nm for 

quinoline, 650 nm for CH2Cl2, and 640 nm for MeOH and pyridine. Thus, complex 125 has a 
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certain discrimination capability for several VOCs, which parallels its solvatochromic behavior. 

In fluid solution there is a good correlation between the MLCT energy and the acceptor number 

(AN)232 of the solvent, furthermore the CN stretching frequencies correlate with AN. 

The tetrakis(bis-3,5-trifluoromethylphenylborate) (tfpb-) salt of tris(5,6-dimethyl-1,10-

phenanthroline)ruthenium(II) (126) is an excellent sensor for benzene vapors at concentrations 

down to 7600 ppm.233 The vapoluminescence effect manifests in a rapid spectral change 

dominated by a shift in emission band maximum from 572 to 558 nm. The most interesting 

aspect of [Ru(5,6-Me2phen)3](tfpb)2 is its cross-sensitivity for the simultaneous sensing of 

benzene and oxygen. O2 quenches the luminescence of neat 126, but simultaneous exposure to 

vapors of benzene and O2 leads to benzene uptake and very little emission quenching is 

observed. A crystal structure of 126·1.5C6H6 reveals that benzene guest molecules block 

channels in the crystal structure in such a way that oxygen diffusion can be suppressed. 

 

5. Summary of detectable VOCs 

 

Even though many of the vapochromic and vapoluminescent coordination complexes from the 

previous sections cannot realistically be used in real-world applications for reasons explained for 

each individual case above, a summary of analytes which can be detected and, where available, 

quantitative information regarding sensitivity is given in Table 1. The table lists the vapochromic 

substances in the same order as they appear in the text, for the abbreviations used the reader is 

referred to the text.  

 

Table 1. Summary of vapochromic sensing materials and analytes considered in this review. 
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sensing material analyte 

[Pt(bpy)(CN)2] (1) HF, H2O, H2S 35, 38 

[Pt(5,5’-Me2bpy)(CN)2] (5) H2O 37 

[Pt(4,4’-H2dcbpy)(CN)2] (6) DMSO, DMF, CH3CN, EtOH, MeOH, 
Me2CO, CH2Cl2, CHCl3, CH3COOH, CCl4, 
C6H6 

13, 39 

Na2[Pt(dcbpy)(CN)2]·2H2O (7·2H2O) MeOH, Me2CO, DMF 40 

[Pt(4,4’-H2dcbpy)(SCN)2] (8) DMSO, DMF, dimethylacetamide,  MeOH, 
EtOH, Me2CO, CH3CN 50 

Zn[Pt(5,5’-dcbpy)(CN)2] (Zn9) H2O 41 

Mg/Ca/Sr/Ba[Pt(5,5’-dcbpy)(CN)2] 
(Mg/Ca/Sr/Ba9) 

H2O, MeOH 42 

[Pt(tBu2bpy)(4-ethynylpyridine)2] (10) CH2Cl2 (25 ppm), CHCl3 (450 ppm) 59 

[Pt(tBu2bpy)(C≡C-C6F5)2] (11) CH2Cl2 
59 

Pt(tBu2bpy)(ethynyltriarylboron)2] (12) CH2Cl2, CHCl3, Me2CO, EtOH, CH3CN, 
THF: green luminescence; toluene, hexane, 
MeOH: luminescence quenching; benzene, 
cyclohexane: red emission 60 

[Pt(5,5’-bis(TMS-C≡C)-bpy)2(5-ethynyl-bpy)2] 
(13) 

Me2CO, CH2Cl2, n-hexane, and many 
others 66 

[Pt(5,5’-bis(TMS-C≡C)-bpy)2(C≡CC6H5)2] (14) CH2Cl2, CHCl3, CH3I 
67 

[Pt(5,5’-bis(TMS-C≡C)-bpy)2(C≡CC6H4F-3)2] 
(15) 

CHCl3 
68 

[Pt(5,5’-bis(TMS-C≡C)-bpy)2(C≡CC6H4F-4)2] 
(16) 

CH2Cl2, CHCl3 
68 

[Pt(5,5’-bis(TMS-C≡C)-bpy)2(C≡CC6H4-CF3-4)2] 
(17) 

dioxane, THF, THP 69 

cis-[Pt(CN-C6H4-C2H5)2(CN)2], (cis-18) toluene, benzene, chlorobenzene, p-xylene, 
mesitylene, EtOH 70 

cis-[Pt(CN-iC3H7)2(CN)2] (cis-19) benzene (selective) 72 

[Pt(CN-tBu)2(CN)2] (20) MeOH, CH3CN, toluene; no response to: 
THF, Me2CO, EtOAc, Et2O, petroleum 
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ether, hexane, CH3NO2, NH3, 
chlorobenzene, cyclohexane, CH2Cl2, 
CHCl3, N2H4 

73, 74 

[Pt(CN-iC3H7)4][Pt(CN)4] (21) H2O, MeOH, CF3CH2OH, CHCl3 
75 

[Pt(CN-C6H4-C10H21)4][Pd(CN)4] (23) CHCl3 (response time 350 ms), MeOH, 
CH2Cl2, acetone ;76, 77 detection limit for 
CHCl3: a few mg/m3  

[Pt(CN-C6H4-C10H21)4][Pt(CN)4] (24c) CHCl3 (response time 500 ms), CH2Cl2, 
MeOH, EtOH, 2-propanol, Et2O, CH3CN, 
hexanes, acetone, C6H6 

78 

[Pt(CN-C6H4-C10H21)4][Pt(NO2)4] (25) Me2CO 81 

electronic nose made from 26, 27, 28 CHCl3, H2O, MeOH, CH2Cl2, 1-PrOH, n-
hexane, cyclohexane 83 

electronic nose made from 26, 27, 29 Me2CO (12% saturation, 75g/m3), MeOH 
(3% saturation, 6 g/m3) 84 

[Pt(CN-cyclododecyl)4][Pt(CN)4] (30) H2O (unique two-step response); 
CH2Cl2/CHCl3 (weaker two-step response); 
benzene, toluene, p-xylene (one-step 
response) 86 

[Pt(R/S-β-methylphenethylisocyanide)4][Pt(CN)4] 
(31) 

differentiates between R-2-BuOH and S-2-
BuOH at 90% confidence level 87 

[Pt(R-tpy)Cl]X (R = H, OC4H9, OC6H13, OC8H17, 
OC12H25; X = Cl-, ClO4

-, PF6
- (32+X-); [Pt(tBu3-

tpy)Cl]X (X = Cl-, ClO4
-, PF6

-) (33+X-) 

CH3CN, piperidine, DMF, and other VOCs 
with lone pairs88 

[Pt(Cl-tpy)Cl]Cl (34Cl) MeOH (selective) 90 

[Pt(tpy)(NCS)]SCN (35SCN) MeOH, two-step response 91 

[Pt(tpy)(NCS)]SCN (35SbF6) selective for CH3CN, DMF, pyridine 92 

[Pt(tpy-nicotinamide)Cl](PF6)2 (37(PF6)2) MeOH, CH3CN, pyridine 93 

[Pt(pentaphenyl-benzene-tpy)Cl]Cl (38) selective for CH2Cl2, EtOH, CH3CN, 
EtOAc 94 

[Pt(Me2bzimpy)Cl]Cl (39Cl) MeOH, EtOH, CHCl3, CH3CN 95 

[Pt(Me2bzimpy)Cl]PF6 (39PF6) CH3CN, DMF (unresponsive to H2O, 
MeOH, EtOH, 2-PrOH, Et2O, CH2Cl2, 
CHCl3, CCl4, Me2CO, hexanes, benzene) 95, 
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97 

[Pt(Me2bzimpy)Cl]Cl in ZrP (39+ in ZrP) H2O, MeOH, CH3CN, Me2CO, CH2Cl2, 
THF, benzene, toluene, n-hexane 98 

[Pt(R2bzimpy)Cl]X (40a: R = C8H17, 40b: C12H25, 
40c: C16H33; X = Cl, PF6, BF4, ClO4, OTf, OAc) 

Me2CO, CH3CN, MeOH, EtOH, CH2Cl2, 
CHCl3, EtOAc, benzene 99 

[Pt(2,6-bis (1H-imidazol-2-yl)pyridine)Cl]Cl (41) CH2Cl2, CH3CN, CH3OH, Me2CO 100 

[(Pt(2,6-diphenylpyridine))2(dppm)] (42) CH2Cl2, CH3OH, Me2CO, benzene, pentane 
101 

[Pt(2,6-di(hexanoylamide-phenyl)pyridine)] (43) DMF, CH3OH 102 

[Pt(4,6-di(phenyl)-2,2’-bipyridine)] (44) on silica 
gel  

pentane, benzene, CH2Cl2, CHCl3 
103 

[(Pt(C^N^N))2(cis-1,2-
bis(diphenylphosphino)ethylene)](ClO4)2 
(45(ClO4)2) 

CH3CN, EtOH, Et2O, THF, EtOAc, 
CH2Cl2, CHCl3 

104 

 

[(Pt(2,6-di(2’-naphthyl)pyridine))2(dppm)] (46) strong response: CH2Cl2, CH2Br2, CHCl3, 
ClCH2CH2Cl, BrCH2CH2Br, CH3I; weak 
response: Me2CO, Et2O, THF, EtOAc; no 
response: CH3CN, MeOH, EtOH, benzene, 
toluene, n-hexane 105 

K[Pt(bzq)(CN)2]·H2O (K47·H2O) MeOH (response time: ∼5 s), EtOH (∼10 
s), CH3CN (∼30 s), Me2CO (∼2 min), THF 
(∼45 min) 106 

K[Pt(bzq)(CN)2] (K47) H2O 106 

K[Pt(ppy)(CN)2] (K48) H2O 106 

[Pt(NCN-pincer)Cl] (49)  SO2 
107 

[Pt(NCN-pincer)Cl]3-dendrimers (50 and 51) SO2 at conc. of 100 µM (6 µg SO2 cm-3), 
response time: 2 ms 108 

[Pt(NHC-butyl2)Cl]Cl (53) H2O 116 

[Pt(NHC-mesityl2)(CO)](PF6)2 (54) MeOH, H2O, THF, Et2O, DMF, pyridine; 
no response to CH2Cl2, CHCl3, benzene 117 

[Pt(bpy)(pyridine-2-thiolate)](PF6)2 (55) Rapid response: MeOH, CH3CN; slow 
response: EtOH, iPrOH; no response: 
tBuOH 118 
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[Pt(dithiooxamide)2] (56) HCl 119 

[Pt2Ag2] cluster made from two Pt(II) 
benzoquinoline pyrrolidinedithiocarbamate units 
(57(ClO4)2) 

CH3CN; does not respond to MeOH, H2O, 
CH2Cl2, Et2O, DMF, DMSO, n-hexane, 
toluene 121 

cis-[Pt(aminophosphine)2] (58) MeOH, EtOH, iPrOH; no response: tBuOH 
122 

[PtI2(diarsinine)2] (59) CH2Cl2, Me2CO, toluene 123 

[NH3(CH2)4NH3]2[Pt2(pop)4I] (60)  H2O 126, 128 

[NH3(CH2)5NH3]2[Pt2(pop)4I] (61) H2O 127 

Cu[Au(CN)2]2(DMSO)2 (62⋅(DMSO)2) H2O, CH3CN, DMF, dioxane, morpholine 
pyridine, NH3 

14, 129 

Zn[Au(CN)2]2 (63) NH3 (1 ppb detection limit) 17, 130 

[Au(S2CN(C5H11)2)]2 (64) Me2CO, CH3CN, CH2Cl2, CHCl3, 
insensitive to: MeOH, EtOH 134 

[Au2(µ-thiouracilato)(µ-dppm)CF3COO 
(65CF3COO) 

Et3N vs. CF3COOH 136 

[Au3(CH3N=COCH3)3] (66) solvent-stimulated luminescence strongest 
with CHCl3 and CH2Cl2 

138 

[Au3(CH3N=COCH3)3] (66) conductivity in microwires (not 
vapochromism): significant response for: 
MeOH, EtOH, CH3CN; no response: THF,  
acetone, n-PrOH, n-BuOH, n-pentanol, 
benzene, and p-xylene 143 

[Au3(H3C-p-C6H4-N=COC2H5)3] (67) C6F6 
144 

Au2(µ-bis-(diphenylphosphino)ethane)2Br2 (68) CH2Cl2, Me2CO; no response to: CH3CN, 
Et2O, DMF, DMSO, benzene, pyridine, 
nitrobenzene, CS2 

146 

Au2(µ-bis-(diphenylphosphino)ethane)2I2·2Me2CO 
(69·2Me2CO) 

CH2Cl2, Me2CO 148 

[(C6F5Au)2(µ-1,4-diisocyanobenzene)] (70) CH2Cl2 
149 

[Au(PPh2C(CSSAuC6F5)PPh2Me)2](ClO4) (71) Me2CO, CH2Cl2, CHCl3, ClCH2CH2Cl, 
EtOH, EtOAc, THF, toluene 151, 152 

[Tl[Au(C6Cl5)2]]n (72) Me2CO, Hacac, CH3CN, THF, Et3N, 
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pyridine, 2-fluoropyridine, or 
tetrahydrothiophene 153, 155 

[Tl(en)[Au(C6X5)2]]n (73a X = F; 73b X = Cl) Me2CO, acetophenone 156 

[Au2Ag2(C6F5)4L2]n (L = Et2O) (75(Et2O)2) Me2CO, THF, CH3CN 158 

[Au2Ag2(C6F5)4(bpy)2]n (76) MeOH, EtOH, iPrOH 12 

[Au2Ag2(C6F5)4(phen)2]n (77) MeOH, EtOH, Me2CO 162 

[Au2Ag2(4-C6F4I)4]n (78) Me2CO, THF, CH3CN; insensitive to: Et2O, 
toluene 164 

[Au2Ag2(4-C6F4I)4(Me2CO)2]n·2Me2CO (78 
(Me2CO)⋅2Me2CO) 

CH3CN 164 

[Au2Ag2(4-C6F4I)4(THF)2]n (78(THF)2) CH3CN 164 

[Au2Ag2(3,5-C6Cl2F3)4(Et2O)2]n (79(Et2O)2) Me2CO, THF, CH3CN 166 

[Au2Ag2(3,5-C6Cl2F3)4(THF)2]n (79(THF)2) Me2CO, partial reaction with CH3CN 166 

[Au2Ag2(3,5-C6Cl2F3)4(CH3CN)2]n (79(CH3CN)2) Me2CO, THF 166 

[Au2Ag2(C6Cl5)4(Et2O)2]n (80(Et2O)2) Me2CO, THF, CH3CN 166 

[Au2Ag2(2-C6F4I)4]2·4NBu4ClO4·THF 
(81·4NBu4ClO4·THF) 

Me2CO, THF, CH3CN 167 

[Au(im(CH2-py)2)2(Cu(CH3CN)2)2](PF6)3 (86) MeOH, H2O, Me2CO; insensitive to: THF, 
CH2Cl2 

169 

[Au(im(CH2-py)2)2(Cu(CH3OH))2](PF6) (87b) CH3CN 169 

[Au(dppb)2](NO3) (88NO3) MeOH, EtOH; insensitive to longer 
alcohols 170 

[Au(dppb)2](BF4) (88BF4) Me2CO, CH3CN, CH2Cl2, Et2O, THF 170 

[VO(sal-(R,R)-stien)]⋅ CHCl3] (89·CHCl3) CH3CN 171  

[VO(sal-(R,R)-stien)]⋅ CH3CN] (89· CH3CN) CHCl3 
171  

[Co2(H2O)4][Re6S8(CN)6]⋅12H2O (90⋅12H2O) CH3NO2, Me2CO, CH3CH2CN, n-octanol, 
1-PrOH, 2-PrOH, EtOAc, Et2O, THF 176 

[Co(H2O)3]4[Co2(H2O)4][Re6Se8(CN)6]3⋅44H2O 
(91⋅44H2O) 

Et3N, CH3CN, CH3CH2CN, THF, EtOH, 
DMF, Me2CO, n-octanol, MTBE, EtOAc, 
1-PrOH, 2-PrOH, Et2O 176 
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[Co2(ampyz)2](SO4)] (= dry form of 92) H2O 177 

[(dpdpm)Ni(η2-NO3)2] (93) CH3CN 178 

Bis(1,2,6,7-tetracyano-3,5-dihydro-3,5-
diiminopyrrolizinido)nickel(II) (95) 

CH3OH, toluene; poor response to CH3CN 
179 

[Ni(cyclam)(dcbpy)] (96(dcbpy)) H2O 180 

[CuI(4-pic)]∞ (97) toluene 181, 182 

[CuI(4-pic)]4⋅2C6H5CH3 (98⋅2C6H5CH3) pentane 181, 182 

trans-[CuCl2(3-Clpy)2] (99) HCl 184 

trans-[CuBr2(3-Brpy)2] (101) HCl, HBr 185, 186 

[Cu2(dppy)3(CH3CN)](BF4)2 (103) CH3OH 187 

[(OnPr)Cu(µ-hep)2Cu(OnPr)]⋅2H2O (104⋅2H2O) MeOH, EtOH, iPrOH, CH3CN with 
response times of 5 min, 2 h, 24 h, 8 d 188 

[(Cu4I4)(calix[4]-bis-monothiacrown)]n (105) CH3CN 189 

[CuI(PPh3)4] (106a) CH3CN, CH2Cl2, EtOH 190 

CuCN (107) amines (Py, 2-MePy, 3-MePy, 4-MePy, 3-
EtPy, 4-EtPy, 4-tBuPy, piperidine, N-
methylpiperidine, N-ethylpiperidine, 
Me2NCy) and other nucleophilic VOCs (N-
methylmorpholine) 191 

(CuI)2(Et2pip) (108a), (CuI)2(Bn2pip) (108b) Py, 2-MePy, 3-MePy, pyrrolidine, 
pyrrolidine, morpholine, Et3N, dimethyl 
sulfide 195 

SnSO4 (109a), Sn(CH3SO3)2 (109b), Sn(OTf)2, 
(109c), SnPO3F (109d) 

NH3, EtNH2, Et2NH, Et3N, N(C5H5)3 
196 

Zn(II)tetraphenylporphyrin (110) NH3, Et3N 200 

Fe(tris-(2-pyridylmethyl)amine)(NCS)2 (111) MeOH 201 

[Fe(tpa)(NCS)2]⋅[[Fe(tpa)(NCS)2]⋅EtOH] 
(111⋅[111⋅EtOH]) 

CH2Cl2, CHCl3 
202 

Fe(Hpbph)2(HCA)2⋅2THF (112⋅2THF) CH2Cl2, Et2O, MeOH, EtOH, CH3COOH 
204 

Fe(Hpbph)2(HCA)2 (112) THF 204 
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[PdBr(Hmtbhp)]2(HBA)2(H2BA) (113) DMF, pyridine, dimethylacetoamide, 
DMSO, 1,4-dioxane, CH3CN, MeOH, 
EtOH; with discrimination ability 205 

[(ZnCl2)3(1,3,5-tris(p-(2,2’-
dipyridylamino)phenyl)benzene)] (114) 

benzene (500 ppm) 209 

[Zn2(3,3’-di-tert-butylsalen)2] (115) THF 210 

[[3,5-(CF3)2pz]Ag]3 (117) selective to: benzene, toluene, mesitylene 
211 

[Re(CO)3(bibzim)(4,4’-bpy)Re(CO)3]2 (118) toluene, 4-fluorotoluene, benzene, 
fluorobenzene, hexafluorobenzene, THF 214 

[Ir(ppy)2(qxn)]⋅0.25EtOH⋅0.5CHCl3 
(119⋅0.25EtOH⋅0.5CHCl3) 

CH3CN 217 

[Cu(pz)2] (120) NH3, CH3OH, EtOH, CH3CN, pyridine, 
MeNH2 

218, 219 

[[Cu(bhnq)(H2O)2(H2O)n]n (121⋅(H2O)n) MeOH, EtOH 220 

[Cu(bhnq)(THF)2]n (122) THF 221 

[Cu4I4(DABCO)2] (123) CH3CN 222 

[(WS4Cu4)I2(dptz)3]n (124) CH3CN, H2O, CH3OH, DMF, Me2CO, 
C2H5OH, CHCl3 

223 

Ru(4,4’-tBubpy)2(CN)2 (125) H2O 230, MeOH, CH2Cl2, benzene, 
quinoline, pyridine with discrimination 
ability 231 

[Ru(5,6-Me2phen)3](tfpb) (126) benzene, detection limit: 7600 ppm 233 

 

 

 

Challenges associated with the use of vapochromic substances in practical sensor device 

applications differ from material to material; details are found in sections 2 – 4. Some frequently 

occuring issues are the following: Long-term stability of the chemical sensors, interference by 

atmospheric oxygen or humidity, reversibility of the vapochromic response, selectivity to certain 
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VOCs, and sufficiently rapid response times. The targeted synthesis of vapochromic materials is 

very difficult because even the most basic structure / function relationships have remained 

elusive for many vapochromic substances. Even the optimization of known vapochromic 

materials is difficult since very minor structural changes may lead to complete disappearance of 

the vapochromic property. In many cases the application potential of newly discovered 

vapochromic materials was apparently considered low and therefore quantititative analytical 

measurements were only performed in rather few selected cases. 17, 84, 108, 130, 209, 233 It seems fair 

to state that with respect to quantified sensitivity data, the field is still much in its infancy. 

Changing this situation is certainly a challenge for the future in this field.   

   

 

 

6. Concluding remarks 

 

Vapochromism and vapoluminescence in coordination complexes is possible through a variety 

of different mechanisms. Changes in metal-metal interactions play an important role in many 

platinum(II) and gold(I) based substances, 13, 14, 17, 35, 37, 36, 50, 41, 66, 67, 68, 69, 70, 72, 73, 88, 91, 92, 93, 95, 97, 

98, 99, 100, 102, 105, 106, 116, 117, 118, 121, 129, 128, 135, 144, 146, 148, 149, 156, 155, 158,
 

157, 160, 164, 212 and 

modifications in π-π stacking are relatively widespread as well.59, 88, 91, 93, 95, 97, 99, 101, 105, 116, 117, 187, 

209, 210, 217. For transition metal ions other than platinum or gold (particularly the 3d elements 

vanadium, iron, cobalt nickel, and copper) changes in the coordination environment of the 

central metal ion are a frequent source of the vapochromism phenomenon. 14,17, 107-109, 112, 121, 129, 

128, 156, 167, 169, 171, 174, 175, 176, 177, 178, 181, 182, 188,  189, 190, 191, 187, 188, 189, 190, 191, 195, 196, 199, 200. 

Occasionally, vapochromsim is triggered through reaction of the analyte at a remote ligand site 
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in a complex.156, 181, 182, 234 Host-guest interactions in materials with vapor-accessible channels 

are quite prominenently represented and in the future are likely to become increasingly important 

since much current effort appears to be devoted to the synthesis of new functional metal-organic 

frameworks.69, 70, 220, 222, 190, 223, 234, 205, 214 

Until now the field of vapochromism and vapoluminescence was mostly driven by 

coordination chemists with a strong interest in understanding the vapor-induced phenomena at a 

fundamental (mechanistic) level. The application potential of many of the investigated 

substances was considered rather limited, and hence quantitative analytical data is available only 

for relatively few cases. However, it is clear that sensors based on vapochromic and 

vapoluminescent materials are potentially very sensitive towards VOCs, especially when a 

luminescence turn-on response can be induced. Provided a sufficiently rapid response time can 

be obtained, such sensing materials therefore hold great promise for real-time monitoring of 

VOCs in air. This might be a less cumbersome procedure than adsorbing VOCs on adsorbates for 

later extraction and chromatographic analysis. When compared to electrochemical gas sensors 

vapochromic or vapoluminescent sensors have the advantage that detection is not limited to 

redox-active analytes. However, selectivity for a certain specific analyte is very difficult to 

achieve with vapochromic or vapoluminescent materials. An important basic problem in this 

context is that the discovery of such substances frequently relies on serendipity because there is 

no other choice: In many cases even very minor modifications of the chemical structure of a 

known vapor-responsive substance leads to disappearance of the vapochromism / 

vapoluminescence phenomena. 

For real-world analytical applications, the future of vapochromic and vapoluminescent 

substances probably lies in cross-reactive sensor arrays in which many different sensing 
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materials are combined, and in which characteristic fingerprint responses for individual analytes 

can potentially be obtained. On the other hand, the phenomena of vapor-induced color and 

luminescence changes are interesting in their own right and are likely to continue to fascinate 

chemists in academic research. 
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