Dynamics of subnuclear chromatin organization during C. elegans development: a role for H3K9 methylation

Inauguraldissertation

zur
Erlangung eines Doktors der Philosophie
vorgelegt der
philosophisch-Naturwissenschaftlichen Fakultät
der Universität Basel

von

Benjamin Daniel Towbin

aus
Basel, Basel-Stadt

Basel, 2012
Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von

Prof. Dr. Susan M. Gasser
Prof. Dr. Peter Askjaer

Prof. Dr. Martin Spiess
Dekan
Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz

Sie dürfen:

das Werk vervielfältigen, verbreiten und öffentlich zugänglich machen

Zu den folgenden Bedingungen:

Namensnennung. Sie müssen den Namen des Autors/Rechtsehers in der von ihm festgelegten Weise nennen (wodurch aber nicht der Eindruck entstehen darf, Sie oder die Nutzung des Werkes durch Sie würden entlohnt).

Keine kommerzielle Nutzung. Dieses Werk darf nicht für kommerzielle Zwecke verwendet werden.

Keine Bearbeitung. Dieses Werk darf nicht bearbeitet oder in anderer Weise verändert werden.

- Im Falle einer Verbreitung müssen Sie anderen die Lizenzbedingungen, unter welche dieses Werk fällt, mitteilen. Am Einfachsten ist es, einen Link auf diese Seite einzubinden.
- Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die Einwilligung des Rechtsehabers dazu erhalten.
- Diese Lizenz lässt die Urheberpersönlichkeitsrechte unberührt.

Die gesetzlichen Schranken des Urheberrechts bleiben hiervon unberührt.

Die Commons Deed ist eine Zusammenfassung des Lizenzvertrags in allgemeinverständlicher Sprache:
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de

Haftungsausschluss:

Quelle: http://creativecommons.org/licenses/by-nc-nd/2.5/ch/ Datum: 3.4.2009
Contents

Chapter 1: Introduction .. 7
 Chromatin as a regulated barrier to DNA associated processes .. 9
 Large scale chromatin structure within the nucleus and gene regulation ... 14
 Thesis overview .. 19

Chapter 2: The nuclear envelope - a scaffold for silencing? ... 27

Chapter 3: Repetitive transgenes in *C. elegans* accumulate heterochromatic marks and are sequestered
 at the nuclear envelope in a copy-number and lamin-dependent manner ... 37

Chapter 4: Step-wise methylation of histone H3K9 positions chromosome arms at the nuclear envelope
 in *C. elegans* embryos .. 51

Chapter 5: Concluding remarks and future prospects ... 81

List of abbreviations .. 84
Acknowledgements ... 85
Curriculum Vitae ... 86
Chapter 1: Introduction

Heritable organismal traits are encoded in the DNA sequence. The information within DNA is transcribed into RNA and subsequently translated into proteins. These ultimately confer the structural, sensory, and regulatory functions of cellular metabolism. However, the DNA sequence (or genotype) is not sufficient to define the physical appearance (or phenotype) of an organism or cell. All cell types of a multicellular organism share identical DNA sequence, but differ substantially in their macroscopic characteristics. This heterogeneity is the basis for the formation of tissues with fundamentally different functions such as skin, muscle or bone from cells of identical genotype.

Cellular heterogeneity is not restricted to multicellular organisms, for the genome of unicellular organisms similarly does not encode for a single phenotypic state. Within isogenic bacterial populations, cell-to-cell variability is ubiquitous and can range from minor adaptations of the metabolic machinery to substantial remodeling of gross physical appearance, such as the switch from vegetative growth to spore formation (Veening et al., 2008).

Hence, an organism’s DNA may be conceived as a description of all possible phenotypic states that are defined by the differential activity of distinct sets of genes rather than a deterministic floor plan. In principle, thousands of gene expression states are possible, but biological systems have evolved such that only a very small fraction of states ever occurs. Typically, a core set of genes conferring housekeeping functions is active in all cell types, but a subset of genes are specifically expressed in defined cell types. Cell-type specific expression patterns are tightly controlled, such that for example an epidermal cell never starts to express a neuron-specific gene. This apparently trivial characteristic is common to all forms of life. A core aspect for understanding cellular differentiation and tissue homeostasis is therefore to understand how defined gene expression states are acquired, and maintained over time and through cell division.

Figure 1. The epigenetics landscape. Waddington’s famous drawing describes a probability landscape of cellular states. Transitions between cell states are unlikely to occur spontaneously, since these would imply a temporary existence of a state with low probability (reprinted from, Waddington, 1957).
In 1957, Conrad Waddington pioneered a simplistic, but illustrative, representation of this concept which he called the \textit{epigenetic landscape} (Waddington, 1957). In a modern day interpretation of this graph, each theoretically possible cellular expression state is denoted as a point in a multidimensional landscape. Similar expression states are located next to each other, and the z-axis reflects the likelihood of a given state to occur. Depressions correspond to (semi-) stable gene expression states, whereas mountains describe expression states that occur only transiently or never at all. Natural cellular differentiation pathways are depicted as valleys connecting local depressions.

When Conrad Waddington coined the terminology and concept of the epigenetic landscape molecular insights on the regulation of genes were only about to emerge. Nevertheless, he predicted that the stable establishment of diverse cell types from a single fertilized oocyte must require a highly interconnected regulation of individual genes that includes regulatory feedback mechanisms. This prediction has stood the test of time and has been validated in today’s era of systems biology, which has shown that auto- and cross-regulation of genes is a ubiquitous feature of transcription factor networks (for review see Alon, 2007; Huang, 2009).

Apart from the initial establishment of defined cell types, a major question has been how cellular identity can be maintained throughout mitosis and cell division. Although classic transcription factor networks have the potential to transmit cell fate choices across cell division (Alon, 2007), regulation that is uniquely based on transcription factors becomes substantially more complex for larger genomes (Figure 2; Charoensawan et al., 2010; van Nimwegen, 2003). This augmented regulatory cost may be a reason why additional means to control gene expression have evolved in eukaryotes, where essentially every step involved in the production of functional proteins is tightly regulated.

The characterization of covalent modifications on histones and DNA as a mode of gene regulation has created a wave of excitement over the past 20 years and has led to the proposal that they act as a
regulatory code that carries heritable information on gene expression states (Jenuwein and Allis, 2001; Strahl and Allis, 2000). However, despite enormous research efforts that provide increasingly detailed insights into the regulation of chromatin modifications, the existence of such a heritable histone code remains controversial (Henikoff and Shilatifard, 2011).

The specific aim of this thesis was to investigate how post-translational histone modifications control the three dimensional architecture of chromatin within the nucleus and how subnuclear chromatin architecture contributes to tissue-specific gene regulation. The following section reviews aspects of chromatin biology that are most relevant for the experimental work presented in this thesis. A focus is therefore placed on the regulatory functions of histone methylation and acetylation, whereas the implications of DNA methylation and other chromatin modifications are not reviewed in detail. The second half of this introduction discusses the role of histone modifications in shaping the large scale organization of chromatin in the nucleus.

Chromatin as a regulated barrier to DNA associated processes

Virtually all DNA in the eukaryotic nucleus is wrapped around an octameric complex consisting of the four histone proteins H2A, H2B, H3 and H4, which form the core nucleosome. Each nucleosome is enwrapped by 147bp of DNA and individual nucleosomes are spaced by 20-50bp of linker DNA. In higher eukaryotes, this linker can be bound by H1, a fifth histone protein. Hence, DNA-based reactions, such as replication, repair and transcription must entail the recognition of DNA sequence within the context of a nucleosome or require the temporary displacement of histones from DNA. The packaging of DNA into chromatin therefore imposes a potential barrier to genetic processes, while at the same time offering the means for tight control.

As early as in the 1960s it has been suggested that posttranslational modification (PTM) of histone proteins by acetylation and methylation (Allfrey et al., 1964; Murray, 1964) may “affect the capacity of the histones to inhibit ribonucleic acid synthesis in vivo” (Allfrey et al., 1964). Since then, numerous covalent posttranslational histone modifications have been identified, culminating in a recent study describing 130 different PTMs, including acetylation, methylation, phosphorylation, ubiquitylation, sumoylation, propionylation, ADP ribosylation, butyrylation, formylation, citrullination and crotonylation (Tan et al., 2011).

Differential chromatin modification of active and inactive genes

Histone lysine acetylation and methylation are among the best studied histone PTMs and their presence on chromatin is tightly linked to transcriptional activity. Histone acetylation is generally associated with transcribed genes (Wang et al., 2008). In contrast, histone lysine methylation is correlated with both transcriptionally active and silent chromatin, depending on which lysine residue is methylated (Bannister and Kouzarides, 2011). Adding to this complexity, lysines can occur in a mono-, di-, or tri-methylated state.

Chromatin immunoprecipitation has been a powerful tool to associate specific histone marks with distinct genome functions (Orlando and Paro, 1993; Solomon et al., 1988). In brief, chromatin is cross-linked by formaldehyde and the DNA is fragmented mechanically or enzymatically into stretches of one or several nucleosomes. This is followed by immunoprecipitation of chromatin fragments using antibodies directed against specific histone marks, histone variants or non-histone chromatin proteins and quantification of the precipitated DNA. First applied in 1988 (Solomon et al., 1988), this method has been continuously improved and adapted. An important technological step was the quantification of precipitated DNA by DNA microarrays (ChIP-chip, Ren et al., 2000) or deep-sequencing (ChIP-seq, Robertson et al., 2007), which has allowed the characterization of histone modification states along the complete genome at the resolution of individual nucleosomes (Barski et al., 2007). The mapping of histone marks on the genome has revealed a remarkable association of specific modifications with distinct genome functions. For example, H3K4me3 occurs predominantly at active gene promoters or on promoters with poised RNA polymerase (Guenther et al., 2007; Mikkelsen et al., 2007; Zhou et al.,
Similarly, H3K36me3 is associated with gene activity, but is found throughout the transcribed region (Barski et al., 2007; Bell et al., 2007; Mikkelsen et al., 2007). In contrast to H3K4me3 and H3K36me3, methylation on H3K9, H3K27 and H4K20 occurs predominantly on silent chromatin (Zhou et al., 2011). H3K27me3 is enriched on promoters of inactive tissue- or stage specific genes that are silenced by the Polycomb pathway (Mohn et al., 2008; Sawarkar and Paro, 2010), whereas H3K9me3 and H4K20me3 have been mapped to silent repetitive DNA, such as transposons, telomeric repeats and satellite sequences (Mikkelsen et al., 2007). Similarly, non repetitive genes occupied by H3K9me3 tend to be transcriptionally inactive (Mikkelsen et al., 2007), although some highly transcribed genes have been reported to carry this mark as well (Kim et al., 2007; Vakoc et al., 2005b; van Steensel, 2011).

Direct modulation of chromatin structure by histone acetylation

The correlation of specific histone modifications with gene expression states strongly suggests a function in gene regulation, and a role for post-translational histone modifications in transcription is supported by ample evidence (Henikoff and Shilatifard, 2011). However, the molecular mechanism of chromatin mediated gene regulation has remained largely unclear. Two distinct models have been proposed, both of which are likely to play an important role. First, histone modifications can directly alter the molecular contacts between neighboring nucleosomes or between histones and the DNA. Second, PTMs regulate interactions between histones and other proteins, which are thereby recruited to chromatin.

Histone acetylation has long been predicted to directly affect chromatin structure, given that this modification neutralizes the positive charge of lysine residues (van Holde, 1989). Perhaps the best evidence for this effect exists for H4K16 acetylation, which was shown to inhibit the formation of higher order chromatin structures in vitro (Shogren-Knaak et al., 2006). Acetylation of H3K56 has also been shown to alter the physical properties of chromatin. In contrast to H4K16, which lies on the flexible N terminal tail of histone H4, H3K56 is positioned on the globular domain of H3 and lies on the core of the nucleosome. Specifically, H3K56 is located exactly at the entry/exit point of DNA (Luger et al., 1997), making its acetylation likely to modulate nucleosome-DNA interaction. Using nucleosomes homogenously acetylated at H3K56, the laboratory of Jason Chin showed that, in contrast to H4K16ac, H3K56ac does not affect the formation of higher order nucleosome-DNA interaction. However, as may be expected from its location, H3K56ac affected the local interaction of DNA with the nucleosome, leading to an enhancement of transient unwrapping of the DNA (nucleosome breathing, Neumann et al., 2009). So far, acetylation of H4K16 and H3K56 are the only two residues that have been studied in isolation, but it is likely that most acetylation on histones will alter their structure, and that multiple acetylation events have cumulative effects.

Recruitment of chromatin modifying enzymes by histone PTMs

In addition to direct modulation of chromatin structure, methylation and acetylation, are thought to act via the recruitment of non-histone proteins to chromatin. Indeed, numerous factors interacting with histones in a modification dependent manner have been identified (Suganuma and Workman, 2011) and proteomic approaches indicate that hundreds of proteins dynamically associate with chromatin (Bartke et al., 2010; Ohta et al., 2010; Vermeulen et al., 2010). Histone binding proteins tend to have a modular architecture and several protein domain classes have been characterized to recognize specific histone modification marks. Bromo domain proteins recognize histone lysine acetylation (Dhalluin et al., 1999), whereas methylated histone lysines are bound by various folds, including Chromo-, MBT-, Tudor- and PHD domains (Bannister et al., 2001; Kim et al., 2006; Lachner et al., 2001; Yun et al., 2011).

Domains recognizing modified histones frequently occur in enzymes that catalyze the deposition or removal of chromatin marks (i.e. histone (de)methylases or histone (de)acetylases). Enzymes that bind directly, or through an interacting protein, to the same modification that they deposit have the potential to confer spreading of a chromatin mark in cis, or reinstall the mark after cell division on newly
incorporated unmodified histones (Figure 3A & 3B). Evidence for such a mechanism exists for the propagation of H3K9me3 at centromeres in mouse and fission yeast (Bannister et al., 2001; Lachner et al., 2001; Nakayama et al., 2001), and for the inheritance of the H3K27me3 mark at Polycomb-repressed loci (Hansen et al., 2008). Experiments described in Chapter 4 of this thesis suggest the existence of a similar mechanism for the maintenance of H3K9 methylation at perinuclear chromatin in C. elegans.

Chromatin modifying enzymes that are recruited by a histone mark that differ from their reaction product can mediate cross-talk between histone modifications. For example, the C. elegans protein

Figure 3. Inheritance, spreading, and cross-talk of histone modifications. The occurrence of histone mark binding domains in chromatin modifying enzymes implies several modes histone modification cross-talk. (A) Enzymes recruited by the same mark as they deposit can ensure the propagation of a methylation state to unmodified nucleosomes incorporated during replication (dark grey). A similar mechanism may act to propagate a modification in cis along the chromosome (B). The best studied mammalian examples include the recruitment of the H3K9 histone methyltransferase (HMT) Suv39h to chromatin via interaction with HP1 (Bannister et al., 2001; Lachner et al., 2001) and the inheritable propagation of H3K27me3 by Ezh2, which gets recruited via the H3K27me3 binding protein EED (Hansen et al., 2008). (C) The modular architecture of HMTs also mediates cross-talk between distinct histone modifications as explained in the main text.
ceKDM7A contains a PHD domain that binds specifically to H3K4me3, whereas its JmjC domain demethylates H3K9me1, H3K9me2, and H3K27me2 (Lin et al., 2010). Conversely, the presence of a histone mark can prevent the deposition of another one, as is the case for the inhibition of the Polycomb Repressive Complex 2 (PRC2) by H3K4me3 (Schmitges et al., 2011). In this function, these enzymes may sharpen the boundaries between active and silent chromatin domains, or prevent an ambiguous modification status (Figure 3C).

Combinatorial functions of histone modifications

An early hypothesis that emerged with the discovery of the complexity of post-translational histone modification was that histone marks act as a combinatorial code that complements the genetic code of the DNA (Jenuwein and Allis, 2001; Strahl and Allis, 2000). This concept predicted that histone modifications would be recognized by a set of proteins that trigger downstream events controlling DNA associated processes. Additionally, the histone-code hypothesis proposed that histone modifications are interpreted in a combinatorial manner, such that a histone concurrently carrying two modifications would invoke a different response than the sum of the consequences of either mark alone.

The combinatorial analysis of many histone modification maps generated for several different cell types has recently been used to seek evidence for such a histone code (Ernst and Kellis, 2010; Ernst et al., 2011; Wang et al., 2008). To this end, computational algorithms were applied that classify chromatin domains into distinct states based on their combinatorial histone modification profiles without human supervision. In all studies, distinct chromatin states corresponding to defined functional categories have been extracted that would not be obvious from the profiles of individual marks. Maybe the best example for a combinatorial presence of different histone marks is the co-occurrence of H3K4me3 and H3K27me3 at inactive promoters with poised polymerase, which is particularly prevalent in embryonic stem cells (Bernstein et al., 2006; Ernst et al., 2011). Similarly, enhancers and promoters share largely similar modification profiles, but are distinguished by the relative abundance of H3K4me1 and H3K4me3 (Ernst et al., 2011; Heintzman et al., 2007). These experiments do not prove the existence of a histone code, but they at least show that the combined analysis of histone modifications can be used to identify distinct functional elements of the genome. For now, it remains unclear if multiple histone modifications truly reside on the same nucleosome or if the concurrent enrichment of to modifications at one genomic site reflects the occurrence of two populations of nucleosomes with each of them carrying a single mark. Similarly, only few examples of proteins have been reported that recognize specific combinations of histone marks (Moriniere et al., 2009; Ruthenburg et al., 2011; Wang and Patel, 2011) and thereby could elicit a cellular response caused by the co-occurrence of two modifications. It will be crucial to further characterize this type of behavior to evaluate the existence of a histone code that is interpreted by the cell.

Gene regulation by histone modification induced recruitment of factors to chromatin

How can histone modification control gene expression by the recruitment of non-histone factors? For histone marks associated with transcribed genes, at least two modes of action have been proposed. H3K4me3 has been shown to directly interact with the basal transcription factor TFIID via the PHD domain of its subunit TAF3 (Vermeulen et al., 2007). In this scenario, H3K4me3 could enhance the recruitment of RNA polymerase II by direct interaction with the basal transcription machinery. Alternatively, acetylated histones, as well as H3K4me3 have been shown to recruit chromatin remodelers (Erdel et al., 2011; Hassan et al., 2002; Ruthenburg et al., 2011). These large multi-subunit complexes have the potential to control transcription at the initiation, as well as the elongation step by catalyzing the removal, sliding or replacement of nucleosomes (reviewed in Flaus and Owen-Hughes, 2011). In this context, it is important to note that enzymes depositing H3K4me3 and H3K36me3, as well as histone acetylation, are recruited to chromatin via molecular interaction with RNA Polymerase II (reviewed in Sims et al., 2004). Consequently, the modification of histones at active genes is an intrinsic part of transcription and often occurs downstream of transcriptional activation. Nevertheless,
these modifications likely conduct important functions in gene regulation by the recruitment of factors to chromatin. For example, the deposition of H3K4me3 may facilitate repeated transcriptional initiation, whereas H3K36me3 has been proposed to prevent cryptic initiation events in the gene body (Carrozza et al., 2005; Keogh et al., 2005).

To assay how histone modifications negatively influence transcription in vivo has remained technically challenging. A classic model is that chromatin occurs in an “open” state that is accessible for DNA binding proteins such as transcription factors and in a “closed” state that is refractory to soluble proteins, thereby preventing transcription. This view was initially inspired by cytological preparations of chromatin within the nucleus visualized by light or electron microscopy (Heitz, 1928). Based DNA staining patterns, the nucleus was divided into two compartments: A dense staining compartment, termed heterochromatin is enriched at the nuclear periphery and around the nucleolus, whereas a lighter staining compartment termed euchromatin covers the rest of the nucleus. The dense staining of heterochromatin is generally interpreted to reflect a higher compaction of DNA, and this dense staining region is enriched for histone modifications characteristic for silent chromatin (H3K9me3 and H4K20me3).

At the molecular level, DNA accessibility has been probed by the efficiency of enzymes to process DNA within the context of native chromatin structure. For this purpose, chromatin is either exposed to DNase I (Weintraub and Groudine, 1976), or to DNA methylating enzymes (Bell et al., 2010; Gottschling, 1992) and inaccessible chromatin is identified as regions that are protected from DNase digestion or methylation. The main determinant for successful DNase I cleavage is the presence or absence of nucleosomes. DNase hypersensitivity assays have therefore been a powerful tool to identify genomic regions that lack nucleosomes or where nucleosomes are partially unfolded. These regions occur predominantly at regulatory regions and transcriptional start sites and, to a lesser extent, in the transcribed region of active genes (Boyle et al., 2008). However, it is difficult to determine whether nucleosome depletion is a consequence of transcriptional activity, or if opening of chromatin structure occurs upstream of transcription factor binding (Henikoff and Shilatifard, 2011). Protection from DNase I digestion in inactive chromatin regions in dependence of histone modifications on the other hand has not been very informative, maybe due to the low dynamic range of this method in nucleosome occupied regions (Bell et al., 2011).

The alternative strategy of using the efficacy of DNA methylating enzymes on chromatin was first applied by Daniel Gottschling in 1992 (Gottschling, 1992). By expression of the E. coli DNA methyltransferase dam in yeast he found that a reporter gene was methylated less efficiently when placed in a silenced subtelomeric region than at a euchromatic site. More recently, Bell and co-workers similarly used a bacterial CpG methylase, to probe chromatin accessibility genome-wide in cultured Drosophila cells (Bell et al., 2010). In this study, genes carrying the Polycomb repressive mark H3K27me3 were methylated slightly less efficiently than H3K27me3 free, but nevertheless inactive control genes. However, no difference in accessibility was apparent for H3K9me2 domains. It is unclear whether the apparent independence of DNA accessibility on H3K9me2 is of technical nature, or if H3K9me2 does indeed not confer a closed chromatin state. This would be in contrast to classic models, which implied that H3K9me2 inhibits transcription by the recruitment of auxiliary factors such as HP1 that condense chromatin and thereby reduce its accessibility (Bannister et al., 2001; Lachner et al., 2001).

The overall value of DNA accessibility to explain chromatin mediated repression has been questioned, given that protection from methylation or cleavage in heterochromatin is rarely more than two-fold better than in euchromatin (Chen and Widom, 2005; Filion et al., 2010; Sha et al., 2010; van Steensel, 2011). However, small effects on DNA accessibility could have a cumulative effect, given that for a productive transcription many factors need to be recruited. Moreover, accessibility of DNA modifying enzymes to chromatin may underestimate the sequestration from larger complexes, such as the RNA polymerase holocomplex. Nevertheless, the exact mechanism of how post-translational histone
modifications contribute to gene silencing remains an open question. One important step towards a better understanding will be the identification and in vivo characterization of proteins recruited to specific histone marks. Recent efforts to map chromatin associated non-histone proteins indicate that the bimodal classification into eu- and heterochromatin is too simplistic, and that several distinct chromatin based silencing mechanisms are likely to exist (Filion et al., 2010; Ram et al., 2011). A provocative model emerging from these studies is that combinations of chromatin proteins may directly recruit defined subsets of TFs by specific molecular interactions, rather than by a general mechanism of modulating chromatin structure and accessibility (Filion et al., 2010; van Steensel, 2011).

Large scale chromatin structure within the nucleus and gene regulation

Increasing evidence suggests that models depicting chromatin as a linear template for transcription do not capture all of its regulatory potential, but that higher order folding of chromatin also has important functions. Molecular characterization of chromatin structure beyond the scale of the nucleosome is poor, but at a macroscopic level chromatin structure has been intensively studied and yielded strong evidence for a non-random organization of chromatin within the nucleus (reviewed in Rajapakse and Groudine, 2011). A predominant theme is the spatial segregation of chromatin within the nucleus into domains with high transcriptional activity in the nuclear center, and silent domains associated with the nuclear periphery or the nucleolus. This model is supported by several fundamentally distinct experimental approaches that range from chromosome conformation capture methods to DamID and ChIP, as well as microscopy. The following section summarizes this evidence and compares insights gained from the different techniques.

Chromosome territory formation

One of the most apparent organizational features of the mammalian nucleus is the spatial separation of individual chromosomes, which leads to the formation of chromosome territories (CTs). This was first demonstrated by Thomas Cremer and colleagues in 1988 by the use of fluorescence in situ hybridization (FISH) probes targeting an entire chromosome (Cremer et al., 1988; Lichter et al., 1988). Several studies reported on defined patterns of CT organization relative to each other and with respect to the nuclear periphery (Bridger et al., 2000; Cremer et al., 2001; Sun et al., 2000), culminating in the concurrent visualization of all chromosomes in human fibroblasts using a combinatorial chromosome labeling scheme (Bolzer et al., 2005). A conclusion common to most of these studies is that gene poor and large chromosomes tend to locate close to the nuclear envelope.

Reproducible subnuclear localization was also found for the position of individual genes with respect to the bulk of their chromosome. A well studied example concerns the position of the Hox B cluster (Hoxb) relative to its CT in mouse cells. In embryonic stem cells, where all Hoxb genes are inactive, the locus is condensed and preferentially positioned inside its chromosome territory. However, during differentiation, when the Hoxb genes are consecutively activated, the cluster decondenses and the active Hoxb genes loop out of their territory (Chambeyron and Bickmore, 2004; Chambeyron et al., 2005; Morey et al., 2007). Originally described by FISH, these results were recently confirmed by high-resolution chromosome conformation capture (see below, Noordermeer et al., 2011b). Using this approach, a strong correlation was observed between the temporal change in structural organization of the Hox B cluster and the expression of individual Hoxb genes, as well as with the transition from a H3K27me3 to H3K4me3 modification state. These studies propose chromatin compaction and loop formation as a mode of developmental gene regulation. An important question will be if the change in local chromatin architecture contributes to Hox gene regulation, or whether it is merely a consequence of transcriptional activation.
Enhancer-promoter looping: regulation of gene expression through higher order chromatin architecture

A potential mechanism describing how gene movement or chromatin unfolding could influence transcription is by facilitating or inhibiting the interaction of gene promoters with distal regulatory elements (enhancers). In 2002, Job Dekker and colleagues developed chromosome conformation capture (3C) as a powerful method to detect such DNA-DNA contacts in vivo (Dekker et al., 2002). In a 3C experiment, chromatin is chemically cross-linked by formaldehyde in its native three dimensional conformation. Thereby, two genomic sites that are in spatial proximity can be covalently connected even when they are far away from each other in cis. Restriction digest followed by re-ligation is then used to generate linear DNA fragments from cross-linked interacting segments, which can subsequently be quantified by PCR using a primer pair specific for each of the ligated DNA elements.

3C has been extensively used to characterize enhancer-promoter looping at several complex mammalian loci, including the α- and β-globin loci (Palstra et al., 2003; Tolhuis et al., 2002; Vernimmen et al., 2007), the H19-Igf2 locus (Murrell et al., 2004), and the interleukin T3,2 locus (Spilianakis et al., 2005). These initial studies demonstrated that local DNA-DNA contacts are tissue-specifically controlled and that transcription factor binding is important for their establishment (Drissen et al., 2004; Splinter et al., 2006; Vakoc et al., 2005a). More recent data suggests that downstream of transcription factors, DNA looping is at least in part mediated by the cohesin complex (Hadjur et al., 2009; Nativio et al., 2009; Seitai et al., 2011). Cohesin has long been characterized to connect sister chromatids after replication by forming ring structures around the two replicated strands (reviewed in Peters et al., 2008). However, via the interaction with the sequence specific DNA binding protein CTCF (for CCCTC-binding factor), cohesin is also recruited to specific sites during G1 phase (Parelho et al., 2008; Rubio et al., 2008; Wendt et al., 2008), when no sister strand cohesion is required. CTCF has been described to mediate insulation of promoters from distal enhancer elements already in the 1990s (Bell et al., 1999) and is long known to control gene expression (reviewed in Phillips and Corces, 2009). These experiments suggest that CTCF regulates gene expression by initiating DNA loop formation via cohesin recruitment. In support of this model, inactivation of cohesin in post-mitotic cells demonstrated a replication independent function of the complex for gene expression and neuronal development in flies (Pauli et al., 2008; Pauli et al., 2010; Schuldiner et al., 2008) and T-cell receptor recombination in mice (Seitan et al., 2011). Whether these developmental defects are due to impaired DNA looping, or reflect other regulatory functions of cohesin remains to be determined.

Characterization of large scale chromosome architecture by genome-wide chromosome conformation capture

After the initial development of 3C in 2002, this technology has been continuously adapted to allow for a more open search for DNA-DNA contacts (reviewed in de Wit and de Laat, 2012). The nomenclature of these methods has been equally creative as confusing and is summarized here for reasons of clarity:

In 4C, the interaction between a single site (called the anchor or viewpoint) and the rest of the genome is measured using microarrays or deep sequencing (one against all, Simonis et al., 2006). 5C is an adapted version of 3C where many putative interaction pairs are examined at once using a large (but nevertheless restricted) set of primer pairs (many against many, Dostie et al., 2006). By exploiting deep-sequencing technology, the Hi-C method can theoretically measure interactions of all genomic loci with each other (all against all, Lieberman-Aiden et al., 2009), but with current sequencing technology, its use has been limited to a maximal resolution of 1Mb for mammalian genomes. Finally, ChIA-PET combines chromatin immunoprecipitation (ChIP) with Hi-C and is aimed at identifying DNA-DNA contacts that occur in the presence of a specific protein of interest (Fullwood et al., 2009).

In principle, genome-wide adaptations of 3C (such as 4C and Hi-C) can be used to identify specific DNA-DNA contacts without prior knowledge. However, in reality, due to the lack of resolution and a low signal-to-noise ratio most of the observed chromatin cross-linking events do not reflect stable interactions. Instead, a high 4C or Hi-C signal is more often explained by an increased frequency of
random collisions of two loci that is caused by other constraints. Nevertheless, chromosome conformation capture techniques have proven a powerful tool to study large scale chromosome folding, as outlined below.

Evidence for active and silent subnuclear compartments from 4C and Hi-C experiments

Given the arrangement of the genome in chromosome territories, two genomic loci on the same chromosome are expected to be more often in close proximity than two loci on distinct chromosomes. It is therefore not surprising that interactions detected by 4C predominantly occur within one chromosome (Simonis et al., 2006; Zhao et al., 2006). Interestingly, however, interaction frequencies along the chromosome cannot simply be explained by proximity in cis, but instead appear to be regulated in a tissue specific manner. 4C interactions of the β-globin locus for example, differ strongly when assayed in liver and in brain. In liver cells, where β-globin is highly transcribed, it preferentially interacts with other active genes, whereas it mostly contacts inactive loci in brain cells (Simonis et al., 2006). One interpretation of these results is that chromatin is segregated into spatial subnuclear compartments and that tissue specific genes occupy distinct regions in different cell types, in a manner that is correlated with gene activity.

This proposal was assessed more generally by measuring contact frequencies among all loci using Hi-C in human lymphoblasts. Again, CTs were an obvious feature of the contact maps, as interacting loci were mostly located on the same chromosome (Lieberman-Aiden et al., 2009). Two independent studies have applied distinct algorithms to analyze Hi-C data at a finer scale than CT formation (Lieberman-Aiden et al., 2009; Yaffe and Tanay, 2011). In agreement with 4C data (Simonis et al., 2006; Zhao et al., 2006), both approaches describe a classification of the genome into active and silent compartments within which interactions occur more frequently than across compartments. However, the exact identity of these compartments remains somewhat controversial. Whereas Lieberman-Aiden et al. propose the existence of two large subnuclear compartments (active and silent), Yaffe and Tanay suggest a further separation of the silent compartment into a centromere proximal and a centromere distal domain. Higher resolution contact maps and optimized normalization schemes will be required to fully characterize the subnuclear chromatin interaction space. Nevertheless, already at the resolution currently available, Hi-C studies corroborate the evidence for functional nuclear subcompartments.

Microscopic visualization of subnuclear compartments

Perhaps the most direct evidence for subnuclear compartments stems from fluorescence and electron microscopy (reviewed in Lanctot et al., 2007; Taddei et al., 2004). For example, the clustering of silent chromatin in DNA dense staining foci at the nuclear envelope and around the nucleolus is an obvious feature of nearly all cell types. More specifically, using FISH and live imaging, numerous loci have been reported to be associated with these peripheral or perinucleolar heterochromatic compartments when silent, and relocate away from them upon activation (Brown et al., 1997; Dernburg et al., 1996; Francastel et al., 2001; Grogan et al., 2001; Hewitt et al., 2004; Kosak et al., 2002; Meister et al., 2010; Williams et al., 2006). Similarly, many transcribed genes are non-randomly positioned in the nucleus and co-regulated loci are often spatially clustered in assemblies of multiple active RNA Polymerases (Osborne et al., 2004; Schoenfelder et al., 2010). Importantly, although correlated with transcription, the movement of genes away from heterochromatic compartments is unlikely to be a necessary consequence of transcriptional activation, since promoters of housekeeping genes can be highly active, but remain localized at the nuclear periphery (Meister et al., 2010; Chapter 4).

The nuclear lamina: a scaffold for silent chromatin

The visualization of genetic loci in living cells has shown that chromatin is undergoing constant Brownian-like motion in the nucleus (Heun et al., 2001; Marshall et al., 1997). Interestingly, silent genes that are associated with the nuclear periphery are much more constrained in their movement than active genes in the nuclear center (Chubb et al., 2002; Heun et al., 2001). This indicates that perinuclear genes are molecularly tethered to a relatively immobile nuclear landmark. Two structures have been
proposed to serve as such nuclear a scaffold. The nuclear lamina, which directly underlies the nuclear membrane is thought to interact with silent chromatin (reviewed in Dechat et al., 2010). In contrast, the nuclear pore complex (NPC) has been reported to serve as a binding platform for active genes, in addition to its well described role in nuclear transport (reviewed in Liang and Hetzer, 2011). Since the experimental scope of this thesis concerns the spatial organization of silent chromatin, this introduction focuses on the nuclear lamina, whereas scaffold functions of the NPC are not discussed in detail.

The central components of the nuclear lamina are the lamin proteins, which form a meshwork of intermediate filaments along the nuclear periphery (Aebi et al., 1986). Additionally, an increasing number of proteins is reported to directly or indirectly contact lamins and form a complex network of interacting proteins at the nuclear envelope (Figure 4; reviewed in Prokocimer et al., 2009). Interestingly, several nuclear envelope proteins can directly bind to chromatin. For example the chromatin binding protein BAF binds to the lamin associated transmembrane proteins Emerin, MAN1 and LAP2b (reviewed in Margalit et al., 2007) and lamin B receptor (LBR) interacts with the H3K9me2/3 binder HP1 (Ye and Worman, 1996). Lamins have also been shown to directly interact with histones (Goldberg et al., 1999) and DNA (Luderus et al., 1992) in vitro, but it is unclear if these direct interactions also occur in vivo. Importantly, a function of lamins as scaffold for perinuclear chromatin is also supported by genetic data since peripheral loci relocate to the nuclear center upon lamin depletion (Mattout et al., 2011; Shevelyov et al., 2009; Towbin et al., 2011).

Further evidence for a role of lamins in perinuclear gene targeting stems from DamID and ChIP experiments (Guelen et al., 2008; Handoko et al., 2011; Ikegami et al., 2010; Peric-Hupkes et al., 2010; Pickersgill et al., 2006). In a pioneering study, Pickersgill et al. reported the specific lamin interaction of 500 genes in Drosophila Kc cells. As expected, lamin association correlated with low expression, and with the absence of H3K4me3 and H4K16ac chromatin marks. Moreover, lamin interaction was shown to be dynamic since distinct changes in lamin binding were observed upon induction of differentiation by ecdyson treatment: Loss of lamin interaction correlated with gene activation, whereas repression was accompanied by gain in lamin binding (Pickersgill et al., 2006). Subsequent studies in mouse and human cells showed that the characteristics of lamin bound loci are conserved in mammals (Guelen et al., 2008; Peric-Hupkes et al., 2010) and consistent results have also been obtain from studies in C. elegans (Ikegami et al., 2010). Additionally, the higher mapping resolution of these studies revealed that lamin bound regions form large clusters in cis that often span multiple genes and

![Figure 4. Schematic view of the nuclear envelope (not comprehensive). Lamins form a meshwork of intermediate filament proteins underlying the nuclear envelope. They interact with several distinct classes of transmembrane proteins. i) Nuclear envelope associated LEM domain proteins (Emerin, LAP2b and MAN1) interact via their LEM domain with the small protein BAF, which has affinity for chromatin. ii) Lamin B receptor (LBR) contains seven transmembrane domains that span the inner nuclear membrane (INM). It interacts directly with the chromatin binding protein HP1. iii) SUN domain proteins span the INM. They interact with lamins at the nucleoplasmic side and with KASH domain proteins in the perinuclear space. KASH domain proteins (called Nesprins in human) pass the outer nuclear membrane where they contact the cytoskeleton. Different types of Nesprins exist, for which interactions with actin, microtubules, as well as the intermediate filament (IF) cytoskeleton have been reported (adapted from Prokocimer et al., 2009; Towbin et al., 2009).](image)
can be up to 10 Mb in size. An interesting feature of these mammalian lamin associated domains (LADs) is that their boundaries are correlated with the occurrence of CTCF binding (Guelen et al., 2008).

The influence of lamin attachment on large scale chromatin folding and the regulation of DNA-DNA contacts

The correlation of LAD boundaries and CTCF binding sites was revisited by a study that mapped CTCF associated chromatin loops genome-wide using ChIA-PET. CTCF mediated loops were seen strongly enriched at the border of LADs, whereas regions inside LADs were generally depleted from CTCF loops (Handoko et al., 2011). This suggests an intimate link between the anchoring of chromatin to the nuclear lamina, and the establishment of specific DNA contacts. Acting as an insulator protein, CTCF may control the spreading of lamin attachment in cis. On the other hand, lamin attachment and the resulting segregation of chromatin into subnuclear compartments may influence the formation of DNA loops by CTCF and thereby control interactions of promoters with distal regulatory elements. Existing Hi-C contact maps indicate that attachment to the nuclear lamina could have a major impact on the interaction space of a locus with the rest of the genome. At least at the resolution of 1Mb, DNA contacts within LADs or within non-LAD regions are substantially more frequent than interactions between lamin bound and unbound loci (Yaffe and Tanay, 2011). It remains to be determined whether this trend will also hold true at higher resolution, but these data indicate that among other mechanisms the attachment of genes to lamins may contribute to gene regulation by the physical spatial separation of distant enhancer elements and gene promoters. In support of such a model, it has been shown that large scale subnuclear chromatin organization constrains the ability of an ectopically integrated enhancer element to exclusively activate target genes located in its spatial proximity (Noordermeer et al., 2011a).

What is the mechanism for perinuclear chromatin anchoring?

The correlative studies summarized above strengthen the hypothesis that large scale chromatin architecture could influence gene expression. However, to functionally test this model one needs to interfere with chromatin organization and study the consequences on gene expression (Taddei et al., 2004). One approach has been to artificially tether a chromosomal domain to the nuclear periphery that is usually located internally. Inspired by experiments initially done in budding yeast (Andrulis et al., 1998), three groups have inducibly targeted genomic loci to the nuclear envelope in mammalian cells (Finlan et al., 2008; Kumaran and Spector, 2008; Reddy et al., 2008). These studies indicate that artificial relocation of chromatin to the periphery can restrict gene repression, at least for some promoters. Consistently, perinuclear tethering of several transgenes was also shown to cause repression in Drosophila (Dialynas et al., 2010). Chapter 2 of this thesis contains an in depth discussion of perinuclear targeting experiments and potential pitfalls in their interpretation.

Although targeting experiments support a function for artificial perinuclear gene targeting in gene repression, they do not address how endogenous chromatin is positioned at the nuclear envelope. Sequence analysis of mammalian and fly LADs did not reveal strongly enriched sequence motifs (Kind and van Steensel, 2010), indicating that perinuclear chromatin positioning is not directly determined by the DNA sequence. However, LADs are strongly correlated with specific histone modifications. LAD boundaries show high levels of H3K27me3 (Guelen et al., 2008; Peric-Hupkes et al., 2010) and H3K9me2 is enriched throughout 80% of all lamin bound regions (Peric-Hupkes et al., 2010; Wen et al., 2009).

Perhaps the most obvious correlation of perinuclear chromatin anchoring with histone modifications was observed in C. elegans. Here, chromatin associated with the nuclear envelope was determined by ChIP using antibodies raised against LEM-2, a lamin interacting transmembrane protein homologous to human MAN1 (see Figure 4, Ikegami et al., 2010). On all chromosomes, LEM-2 domains were consistently located on the outer segments of chromosomes (chromosome arms), whereas the central chromosomal regions were not associated with the nuclear envelope. Strikingly, all three methylation
states of H3K9 (me1, me2 and me3) showed a very similar pattern, as they were depleted from the chromosome center and enriched in LEM-2 domains (Liu et al., 2011). In addition to an enrichment of H3K9 methylation, chromosome arms also share other characteristics with mammalian lamin associated domains: As in LADs, genes density is lower on chromosome arms, whereas repetitive sequences are enriched (The C. elegans Sequencing Consortium, 1998). Furthermore, highly conserved and essential genes are enriched in chromosome centers (Kamath et al., 2003), indicating that genes on chromosome centers tend to be required for core metabolism.

In this thesis, evidence for a causal relationship between the perinuclear localization of C. elegans chromosome arms and H3K9 methylation is presented (see Chapter 4). Given the strong parallels between peripheral chromatin in C. elegans and in mammals it is likely that the concepts learnt from this study will also apply for other organisms, although some aspects of regulation may be more complex in mammals.

Thesis overview

This thesis comprises two experimental sections. In Chapter 3, I describe the establishment and use of repetitive transgenes as an experimental system to study perinuclear chromatin anchoring in vivo and throughout development of C. elegans. I find that repetitive transgenes accumulate high levels of histone modifications characteristic for silent chromatin (H3K9me3 and H3K27me3) in a copy number dependent manner. Transgenes with high repeat copy number (250 copies) become methylated at much higher levels than smaller transgenes insertions (50-70 copies), on which no enrichment of H3K9me3 is apparent. The accumulation of silent chromatin marks on large transgene arrays is correlated with a change in the subnuclear distribution of the transgenes. Small arrays are randomly distributed throughout nuclear space, whereas big arrays of identical sequence composition are enriched at the nuclear envelope. This indicates that histone modification status may influence perinuclear chromatin localization (Meister et al., 2010; Towbin et al., 2011). Furthermore, evidence is presented that depletion of lamin from C. elegans embryos by RNAi causes a partial detachment of arrays from the nuclear envelope, and genetic mutation of lamin leads to a stochastic derepression of array borne promoters in adult worms (Mattout et al., 2011).

The experiments described in Chapter 4, make use of transgene arrays as a tool to search for factors involved in perinuclear chromatin attachment. The main result of this study is the identification of the two major H3K9 histone methyltransferases in the worm that are essential for the anchoring of chromatin at the nuclear envelope. Importantly, this is not only true for gene arrays, but also for endogenous peripheral chromatin located on the chromosome arms. Interestingly, the enzyme required for the deposition of H3K9me3 associates with its own product, and thereby becomes enriched at the nuclear envelope as well. This generates a nuclear subcompartment with an increased concentration of H3K9 histone methyltransferase activity at the nuclear envelope. Based on these results, I propose a self-reinforcing mechanism that ensures high levels of H3K9 methylation on perinuclear chromatin.

The results described here support a mechanistic understanding of subnuclear chromatin organization in higher eukaryotes. Nevertheless, many questions remain unanswered. How is H3K9 methylated chromatin recognized and targeted to the nuclear envelope? Does H3K9 methylation and perinuclear chromatin sequestration contribute to gene silencing in the worm and if so, how? How does chromatin association with nuclear landmarks influence the constraints on DNA-DNA contact formation?

Genetic experiments presented in this thesis also indicate that H3K9 methylation is not required for viability of the worm, at least for development up to the first larval stage, although minor developmental defects may occur (see Chapter 5 for discussion). This opens the possibility to study the implications of complete loss of this chromatin modification on gene expression, which is not possible in many other metazoan model systems, where H3K9 methylation is essential. This thesis presents the establishment of important tools that will strengthen the worm as a powerful system to decipher the
mechanism and function of subnuclear chromatin organization in the developmental regulation of gene expression.

References

Chapter 2: The nuclear envelope - a scaffold for silencing?
Benjamin D. Towbin, Peter Meister and Susan M. Gasser

Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland

Current Opinion in Genetics & Development 2009, Volume 19, pg. 180–186

Summary
An increasing number of studies indicate that chromosomes are spatially organized in the interphase nucleus and that certain genes tend to occupy characteristic zones of the nuclear volume. FISH studies in mammalian cells suggest a differential localization of active and inactive loci, with inactive heterochromatin being largely perinuclear. Recent genome-wide mapping techniques confirm that the nuclear lamina, which lies beneath the nuclear envelope, interacts preferentially with silent genes. To address the functional significance of spatial compartmentation, gain-of-function assays in which chromatin is targeted to the nuclear periphery have now been carried out. Such experiments yield coherent models in yeast, however conflicting results in mammalian cells leave many questions unanswered. Nevertheless, the recent discovery that evolutionarily conserved inner nuclear membrane proteins support peripheral anchoring of yeast heterochromatin, suggests that certain principles of nuclear organization may hold true from yeast to human.

author contributions: BT, PM and SG wrote the manuscript. PM designed the figures
The nuclear envelope — a scaffold for silencing?
Benjamin D Towbin, Peter Meister and Susan M Gasser

An increasing number of studies indicate that chromosomes are spatially organized in the interphase nucleus and that some genes tend to occupy characteristic zones of the nuclear volume. FISH studies in mammalian cells suggest a differential localization of active and inactive loci, with inactive heterochromatin being largely perinuclear. Recent genome-wide mapping techniques confirm that the nuclear lamina, which lies beneath the nuclear envelope, interacts preferentially with silent genes. To address the functional significance of spatial compartmentation, gain-of-function assays in which chromatin is targeted to the nuclear periphery have now been carried out. Such experiments yielded coherent models in yeast; however, conflicting results in mammalian cells leave it unclear whether these concepts apply to higher organisms. Nevertheless, the recent discovery that evolutionarily conserved inner nuclear membrane proteins support the peripheral anchoring of yeast heterochromatin suggests that certain principles of nuclear organization may hold true from yeast to man.

Addresses
Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland

Corresponding author: Gasser, Susan M (susan.gasser@fmi.ch)

Introduction

The cell nucleus contains the essential genetic information of an organism and is responsible for the expression, duplication, and repair of this precious material. Its structure is defined by a double lipid bilayer studded with nuclear pores, which allow macromolecular trafficking in and out of the nuclear compartment. The outer bilayer of the nuclear envelope (NE) closely resembles the endoplasmic reticulum, while the inner nuclear membrane (INM) is specialized to meet the unique nuclear structural and functional needs [1]. In higher eukaryotes, the spherical shape of the nucleus is maintained by a dense network of specialized intermediate filaments, the nuclear lamins. Lamins extend from pore to pore, providing rigidity and a platform for the binding of a large number of lamin-associated proteins and specific genomic domains. A small fraction of lamins are found at internal sites in the nucleus, where again they are thought to organize genomic function [2]. Plants and lower, single-celled organisms do not have nuclear lamins, although other structural proteins of the INM are conserved both in primary structure and in function. In particular, the nuclear pore complex, an elaborate machine for macromolecular transport, harbors many highly conserved proteins [3].

Given this structural conservation it is to be expected that the functions of the NE are also conserved. Indeed, it has long been recognized that dense-staining, transcriptionally silent heterochromatin tends to lie next to the NE or surround the nucleolus, and is specifically excluded from nuclear pores. This has been demonstrated for the repetitive noncoding sequences of vertebrates, and also for silent telomeric chromatin in yeast [4].

Recently, genome-wide techniques have allowed the exploration of sequences and proteins involved in this organization of heterochromatin in higher eukaryotes [5–6] as well as in yeast [7]. A number of important questions have emerged from these studies: Does peripheral localization reflect a passive exclusion of heterochromatin from active zones, or do proteins that bind or nucleate heterochromatin have functional anchorage sites at the nuclear periphery? Do all types of silent chromatin bind the NE? Does positioning contribute actively to either heterochromatin establishment or maintenance? Recent reports showing that highly transcribed genes are actively recruited to nuclear pores [7–11] further complicate the picture. How are active and inactive domains kept apart in the nucleus? Nuclear pore attachment has been implicated in providing a boundary function to limit the spread of heterochromatin [12]. This imposes a further question: is localization essential for boundary function or does pore association occur by default?

Correlative evidence has long been used to argue that subnuclear repositioning of genes influences their transcriptional activity. However, such studies cannot directly prove the functional relevance of nuclear architecture. To demonstrate that functional read-outs stem from structural changes one must both perturb nuclear architecture genetically and evaluate gain-of-function assays, for example by tethering chromatin to the nuclear periphery. Such spatial targeting of chromatin was first applied in budding yeast a decade ago [13] and has recently been adapted to experiments in cultured mammalian cells [14–15,16,17].

The functions of the NE are also conserved. Indeed, it has long been recognized that dense-staining, transcriptionally silent heterochromatin tends to lie next to the NE or surround the nucleolus, and is specifically excluded from nuclear pores. This has been demonstrated for the repetitive noncoding sequences of vertebrates, and also for silent telomeric chromatin in yeast [4].

Recently, genome-wide techniques have allowed the exploration of sequences and proteins involved in this organization of heterochromatin in higher eukaryotes [5–6] as well as in yeast [7]. A number of important questions have emerged from these studies: Does peripheral localization reflect a passive exclusion of heterochromatin from active zones, or do proteins that bind or nucleate heterochromatin have functional anchorage sites at the nuclear periphery? Do all types of silent chromatin bind the NE? Does positioning contribute actively to either heterochromatin establishment or maintenance? Recent reports showing that highly transcribed genes are actively recruited to nuclear pores [7–11] further complicate the picture. How are active and inactive domains kept apart in the nucleus? Nuclear pore attachment has been implicated in providing a boundary function to limit the spread of heterochromatin [12]. This imposes a further question: is localization essential for boundary function or does pore association occur by default?

Correlative evidence has long been used to argue that subnuclear repositioning of genes influences their transcriptional activity. However, such studies cannot directly prove the functional relevance of nuclear architecture. To demonstrate that functional read-outs stem from structural changes one must both perturb nuclear architecture genetically and evaluate gain-of-function assays, for example by tethering chromatin to the nuclear periphery. Such spatial targeting of chromatin was first applied in budding yeast a decade ago [13] and has recently been adapted to experiments in cultured mammalian cells [14–15,16,17]. Here,
we review these recent experiments and discuss them in view of genetic studies of the nuclear periphery in yeast.

Gene organization along the chromosome arm: functional domains

Chromatin is a contiguous fiber of compact structure and limited flexibility [17]. Therefore, the relocation of a locus to a specific nuclear compartment will inevitably influence the subnuclear position of neighboring genes, encompassing several megabases in mammalian cells [15**]. Consequently, if subnuclear position plays a role in gene regulation, there may be evolutionary pressure toward a linear grouping of coregulated genes along the chromosome arm. A classic example is the linear alignment of the mammalian Hox genes, which are arranged in the order of their spatio-temporal activation during limb development [18]. Recent genome-wide analyses indicate that highly transcribed genes are frequently found in clusters [19,20] and that tissue-specific genes are also grouped along the chromosome in higher eukaryotes [21–24]. In *Drosophila*, a computational analysis of 30 occupancy maps extended this observation to chromatin-associated proteins and histone modifications. This study showed that at least 50% of all fly genes are organized in chromosomal domains in which genes bear a similar epigenetic status. Interestingly, the enrichment of common functional annotation keywords (Gene Ontology terms) associated with genes organized in this manner further supported the idea that genes with a common function are grouped into chromosomal units [25*].

Genome-wide studies on nuclear organization

Datasets obtained from microscopic analysis of gene position will never be sufficiently large to test generally whether the transcriptional activity of chromosomal domains correlates with their subnuclear position. However, genome-wide tagging methods such as DamID [26–28] have been used as an alternative method to determine the molecular association of genes with the nuclear lamina. In brief, lamin is expressed as a fusion to the *E. coli* dam methylase, which exclusively methylates adenines. DNA fragments located close to the nuclear lamina are then amplified by a methylation-specific PCR protocol and identified by hybridization to microarrays. This method was recently used to map genomic interactions with B-type lamins in *Drosophila* Kc cells [5**] and human fibroblasts [6**].

In *Drosophila* cells, as well as human fibroblasts, transcriptionally silent genes were found strongly enriched in the lamin-associated fraction. These lamin-bound genes clustered in domains of approximately 500 kb, in agreement with the domain-based model for genome architecture. These domains were depleted for active chromatin marks, were typically flanked by binding sites of the insulator protein CTCF and by CpG islands [6**], and frequently contained coregulated genes [5**]. These studies have shown that the association of silent genes with the nuclear periphery is true not only for the handful of genes analyzed by microscopic approaches, but is valid genome-wide. Key questions remaining are what function heterochromatic clustering at the periphery might serve, and which factors determine the peripheral association of silent genes. Studies done with yeast indicate that the structural proteins that form heterochromatin themselves anchor silent loci to the periphery. Indeed, a silenced gene can attach to the periphery even when excised from its genomic context [29]. However, one should not conclude from this that peripheral association is merely a consequence of repression without any functional impact. It is conceivable that the clustering of heterochromatin at the nuclear periphery stabilizes the silent state or helps ensure its epigenetic propagation, for instance by influencing chromatin assembly after replication [30]. The best way to experimentally assess the function of nuclear organization is to modify a gene’s subnuclear position. Below, we summarize results obtained using such approaches.

Lessons from genetic manipulation of yeast and flies

Early evidence for a regulatory role of nuclear organization stems from the study of a *Drosophila* translocation mutant allele (bwD), which contains a block of heterochromatic sequence inserted at the brown locus. The mutation causes brown to associate with centromeric heterochromatin [31,32]. In animals heterozygous for bwD, the wild-type allele also associated in *trans* with centromeric heterochromatin owing to the somatic pairing of homologous *Drosophila* chromosomes. Coincident with this association, the wild-type brown locus was silenced in a variegated manner. Similarly, silent mating-type loci (HML and HMR) associate in *trans* with telomeric repeats in yeast [33].

The influence of gene position on the silent mating-type locus *HMR* was assessed more directly in *S. cerevisiae* about 10 years ago [13]. Repression of this locus can be alleviated by the partial disruption of a *cis*-acting silencer element (Figure 1(a)b). However, silencing is restored when *HMR* is artificially recruited to the NE by the expression of a recombinant protein that specifically binds a sequence motif inserted next to *HMR* (Figure 1(a)d). The proposed mechanism for this facilitated silencing was that the perinuclear tethering positioned *HMR* near telomeric foci that sequester the silencing factors (SIR factors) [34]. In support of this concept, it was recently shown that peripheral tethering is unable to restore silencing in a genetic background in which SIR factors are dispersed from foci [35*]. However, placing a gene near SIR foci is not sufficient to cause gene repression, as the *HMR* locus lacking silencer elements is still expressed when recruited to the NE (Figure 1(a)e).
Thus, anchorage near SIR pools at the nuclear envelope facilitates, but is not sufficient for repression.

The influence of peripheral attachment on gene transcription in mammalian cells

Three laboratories have recently adapted such perinuclear targeting experiments to mammalian cell culture systems (Figure 1(b)) [14**,15**,16**]. All three studies made use of cell lines carrying stable genomic integrations of tandem repeats of lac operator (lacO) sites. Through expression of the lacO-binding lacI protein fused directly to Lamin B1 or to the lamin-associated INM proteins Emerin and Lap2β, the lacO arrays and adjacent genes could be tethered to the NE.

The laboratory of David Spector compared the activation dynamics of a doxycyclin-inducible transgene that encodes a fluorescently marked RNA, in the presence or absence of tethering by a LaminB1–lacI fusion (Figure 1(b)a) [14**]. Careful quantification of fluorescence intensity did not reveal any effect of peripheral location on the kinetics of mRNA accumulation in individual cells. However, the fraction of cells in which the transgene could be activated at all was reduced from 90% to 70%.

Similarly, the Bickmore laboratory observed that peripheral tethering using a lacI–Lap2β fusion led to a reduction in the fraction of cells in which a lacO-tagged transgene showed an RNA-FISH signal, and the corresponding

Figure 1

<table>
<thead>
<tr>
<th>(a) Budding yeast</th>
<th>Location</th>
<th>Transcription</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Wild-type silent loci</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>b. Crippled silent loci</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>c. Nontethered with crippled silencer</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>d. Tethered with crippled silencer</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>e. Tethered without E silencer</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Mammalian cells</th>
<th>Location</th>
<th>Transcription</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Tethered loci</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>b. Chr 4 / 11</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>c. Tethered loci</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

Artificial tethering of chromatin at the nuclear periphery in yeast and mammalian cells. (a) Transcription of tethered loci at the nuclear envelope in budding yeast. a. The wild-type silent mating-type locus HMR, encoding the mating pheromone is naturally silenced in yeast. The gene is flanked by two silencers, E and I, which target the locus to the nuclear periphery. b. Partial disruption of the E silencer leads to gene expression and delocalization of the locus away from the nuclear envelope. c. Targeting of the locus is achieved by the insertion of binding sites for a DNA binding domain (DBD). Binding of the DBD alone has no effect on gene expression and subnuclear localization. d. Targeting of the DBD (light blue) fused to an inner nuclear membrane protein (dark blue) leads to the relocation of HMR to the nuclear envelope. Relocation of a crippled silencer to the nuclear rim can restore silencing. e. This displacement has no effect if the E silencer is entirely removed. This shows the need for cis-acting factors for nucleation of silencing. (b) Tethering systems used to target chromatin to the nuclear lamina in mammalian cells. a. The system set up by Kumaran and Spector allows one to follow in real time and in live cells inducible transcription and translation of a gene using fluorescent reporters. The locus can be targeted using a fusion between a lac repressor and laminB1. The authors show that the induction rate is similar whether the construct is tethered to the lamina or not. However, tethering decreases the efficiency of induction, since only 70% of the genes can be activated, compared to 90% in the untethered condition. b. A fusion protein between lacI and the lamin associated protein LAP2β is used by Finlan et al. to monitor the effects of peripheral tethering. Expression of a transgenic reporter (blasticidin) is decreased by 20–30%. Transcription of most flanking genes is unaffected, except for three genes which show significantly reduced mRNA levels. c. Reddy et al. use a fusion protein with another lamin binding protein, Emerin. A truncated form of Emerin is used that has no transcriptional modulatory function. Tethering a reporter gene (Hyg) at the nuclear lamina decreases the transcription level significantly.
mRNA levels were decreased by 20–30% (Figure 1(b)b) [15**]. More importantly, the expression of most endogenous genes in the neighborhood of the lacO array remained unchanged upon tethering, with the exception of three genes located within 5 Mb of the lacO array whose mRNA levels dropped between 35% and 50%.

The Singh laboratory found that two genes located next to lacO repeats had reduced expression levels when the locus was recruited to the periphery by an Emerin–lacI fusion (Figure 1(b)c) [16**]. Again, the majority of the neighboring genes were unaffected. In contrast to the two other studies, however, the expression of a transgenic reporter located next to the lacO array was robustly reduced by 75%.

In summary, all three studies show that, as in yeast [13,36,37], attachment to the nuclear periphery does not generally preclude transcriptional activity. Nonetheless, the expression of at least some genes is influenced by peripheral tethering. It is likely that the fraction of affected genes is underestimated because of experimental noise that can obscure small expression changes of tethered genes. Moreover, in all cases in which endogenous gene activity was measured, only one of the two homologs was lacO-tagged. Consequently, even complete silencing of a tethered locus would generate only a 50% reduction in expression. Furthermore, the changes in activity may be masked by upregulation of the non-targeted allele through regulatory feedback loops.

It remains to be explored why only a subset of the reporter genes is affected by peripheral attachment. We note that a different peripheral anchor was used in each study, and it is possible that the anchor itself contributes to silencing [14**,15**,16**]. Different anchoring proteins or pathways may function to create distinct microdomains with various levels of transcriptional repression (Figure 2(b)).

Inherent promoter strength could also account for the differential effects of peripheral attachment. For instance, it is well established in yeast that strong promoters block the spread of heterochromatin [38,39]. Similarly, in human cells, active promoters were often found at the edge of lamin-associated chromosomal domains [6**], and in flies it was shown that not all genes respond equally to association with heterochromatic domains [40]. Thus, there is likely to be a complex relationship between gene promoter strength and the effects of tissue-specific factors that influence whether a gene’s spatial position affects its expression.

What mechanism confers repression on tethered genes? A simple explanation would be that silencing is not induced by subnuclear relocation, but by the recruitment of transcriptional repressors that are known to bind the INM proteins used for tethering [41]. However, this model was ruled out for Emerin, since the targeting of an Emerin–lacI construct lacking its transmembrane domain failed to induce gene silencing [16**]. Alternatively, gene repression may be stabilized at the nuclear lamina by interaction with other heterochromatic domains in trans. In such a model, the NE could serve as a platform for efficient chromatin packing, and its silencing properties would depend on heterochromatin itself.

Finally, a combination of these two models is possible: Lap2B has been shown to directly interact with a histone-deacetylase (HDAC) [42], and inhibition of HDAC activity by Trichostatin A (TSA) was able to relieve Lap2B tethering-induced repression [15**]. In this experiment the tethered locus remained attached at the periphery, whereas in Drosophila Kc cells naturally occurring heterochromatin domains were released from the nuclear periphery by the treatment with TSA [5**]. Together these studies suggest a model in which peripheral localization facilitates silencing owing to a peripherally sequestered HDAC activity. At the same time, deacetylated histones themselves may serve as a signal to anchor chromatin at the NE.

This model is reminiscent of the mechanism suggested for telomere silencing in yeast. In brief, yeast telomeres are maintained at the nuclear periphery by two partially redundant pathways that depend on the DNA-end binding heterodimer Ku70/Ku80, and a structural component of yeast silent chromatin — the silent information regulator Sir4 [43]. In the so-called ‘Circle Effect’, the nuclear periphery facilitates gene repression by clustering telomeric repeats, which in turn sequester and accumulate the factors required for silencing, including the histone deacetylase Sir2 [30]. Silencing and tethering are thus interdependent: repression promotes attachment, and attachment favors repression as long as telomeric tethers are in place [35*,44].

The yeast nuclear envelope: conserved functions in the absence of lamins

Although an understanding of silencing at the nuclear periphery in yeast is conceptually informative, the mechanistic relevance for mammalian systems has been debated since yeast lack nuclear lamins. Challenging this view, members of evolutionary conserved SUN-domain and LEM-domain INM-protein families have recently been described to play a role in heterochromatin localization and genome stability in budding yeast (Figure 2(a)) [45*,46*,47**].

Members of the SUN-domain family are transmembrane proteins that span the INM and which are anchored in place by binding lamins or other factors. The C-terminal SUN domain of these proteins interacts with Nesprins in the intermembrane space, which forms a link to the cytoplasm through the outer nuclear membrane.
SUN and LEM domains proteins organize chromatin at the nuclear periphery in both yeast and mammalian cell nuclei. (a) In budding yeast nuclei, where nuclear lamins are absent, telomeres are clustered together at the nuclear periphery (green domains). This depends on Esc1 and the INM SUN-domain protein, Mps3. The nucleolus (red domain) is maintained close to the nuclear envelope by Src1, a LEM-domain family protein. For both proteins, however, no direct interaction with chromatin has been shown to date. (b) In mammalian cell nuclei, LEM-domain and SUN-domain containing proteins interact with nuclear lamins and probably indirectly with chromatin (for review, see [50]). LEM-domain proteins may create microdomains at the nuclear periphery. These microdomains may vary in their silencing efficiency which would explain the differences between the three tethering experiments presented in the text. More experiments will have to be carried out using different targeting constructs for tethering of the same reporter to resolve whether anchor specificity or reporter dependent characteristics, such as promoter strength, lead to the variable results.

(ONM), while the N-terminus reaches into the nucleoplasm [48]. Bupp and coworkers have recently shown that even in yeast, where no lamin is present, the SUN-domain protein Mps3 is involved in silent telomere anchoring. The N-terminal domain of Mps3 interacts with Sir4 by pull-down and yeast-two-hybrid experiments, although it is unclear whether this interaction is direct. Via an adjacent domain, called the PAD domain, Sir4 also interacts with the NE protein Esc1 [34]. Nonetheless, in an mps3 mutant lacking the N-terminal domain, telomeres are partially detached from the periphery, weakly compromising telomeric repression [45*].

Similarly, a role in gene regulation has been shown for a yeast LEM-domain protein by Grund and coworkers. The three types of LEM-domain proteins present in mammalian cells are sequestered at the INM by nuclear lamins. Two of these, Lap2β and Emerin, have an effect on gene expression when tethered to a locus (see above). The yeast protein Src1 (also called Heh1 [47**]) shares homology with the third mammalian LEM protein Man1. Src1 is found at subtelomeric regions, the silent mating-type loci, and the heterochromatin-like rDNA. Gene deletion of src1 does not affect telomere localization or silencing, although a group of subtelomeric genes is misregulated. This again suggests a role for NE association in gene regulation [46*]. Derepression of subtelomeric genes was also shown to result from telomere delocalization [35*].

Independently, the group of Danesh Moazed reported a function of Src1 at the tandemly repeated yeast rDNA locus [47**]. The deletion of src1 causes decondensation of the rDNA and partial release of the nucleolus from the nuclear periphery. This release does not affect the silencing of a PolII-transcribed reporter within the rDNA array, which is maintained by the Sir2 HDAC. Instead, the rDNA showed increased recombination rates and changes in array size [47**]. This finding supports another model whereby the sequestration at the nuclear periphery plays a role in the regulation of DNA repair and genomic stability [49*], rather than gene repression. It is not clear whether these two phenomena are linked.

Conclusions
Recent advances have shown that clusters of silent genes associate with the nuclear lamina in mammalian cells [6**]. It is likely that the peripheral localization of heterochromatin is both a cause and a consequence of its repressed state. Careful analysis in mammalian cells using identical reporter systems with a range of peripheral anchors is needed to resolve the conflicts among current results. Nonetheless, these important studies show that, as demonstrated in budding yeast, the positioning of
chromatin at the nuclear periphery can affect gene expression. On the other hand, new studies in yeast reveal another type of perinuclear anchoring that helps to stabilize the genome, rather than conferring transcriptional repression. Whether this also parallels events in higher eukaryotic cells remains to be seen.

Acknowledgements

We apologize to the many workers in the field whose work we could not cover owing to space constraints. We thank Vincent Dion, Stephanie Kueng, Shigeki Nagai, and Briett Pike for carefully reading the manuscript and for helpful comments. The Gasser laboratory is supported by the EU FP6 Epigenome and the Novartis Research Foundation.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

• of special interest
•• of outstanding interest

7. Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA: Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 2006, 38:1005. This is the first study demonstrating genome-wide that silent genes have an increased chance to interact with the nuclear lamina in Drosophila Kc cells. Lamin-associated genes were released upon treatment with an HDAC inhibitor and upon differentiation-induced activation.

10. Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA: Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 2006, 38:1005. This is the first study demonstrating genome-wide that silent genes have an increased chance to interact with the nuclear lamina in Drosophila Kc cells. Lamin-associated genes were released upon treatment with an HDAC inhibitor and upon differentiation-induced activation.

The function of telomere clustering in yeast: the Circe Effect

A. Taddei, A. Gasser, S. Neumann, F. Van Houwe, G. Gasser

The sequestration of SIR factors by clustered telomeres is shown that the sequestration of SIR factors by clustered telomeres is essential for favoring repression at the nuclear envelope. Dispersed SIR factors lead to misregulation genome-wide.

The study reports a function of the LEM-domain-containing protein Src1 as a peripheral anchor protein for yeast telomeres. This is of particular interest, as molecular conservation of chromatin anchoring mechanisms between mammals and yeast has previously been unclear.

This study identifies the conserved SUN-domain containing protein Mps3 as a peripheral anchor protein for yeast telomeres. This is of particular interest, as molecular conservation of chromatin anchoring mechanisms between mammals and yeast has previously been unclear.

The authors identify the gene SRC1 as a yeast homolog of the mammalian lamin-associated protein Man1. Interestingly, even though yeast does not have lamins, its function to interact with heterochromatin at the nuclear envelope seems to be conserved.

The study reports a function of the LEM-domain-containing protein Src1 as a peripheral anchor protein for yeast telomeres. This is of particular interest, as molecular conservation of chromatin anchoring mechanisms between mammals and yeast has previously been unclear.

The study reports a function of the LEM-domain-containing protein Src1 as a peripheral anchor protein for yeast telomeres. This is of particular interest, as molecular conservation of chromatin anchoring mechanisms between mammals and yeast has previously been unclear.

The study reports a function of the LEM-domain-containing protein Src1 as a peripheral anchor protein for yeast telomeres. This is of particular interest, as molecular conservation of chromatin anchoring mechanisms between mammals and yeast has previously been unclear.

Chapter 3: Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number and lamin-dependent manner

Benjamin D. Towbin, Peter Meister, Brietta L. Pike and Susan M. Gasser

Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland

Cold Spring Harbor Symposia on Quantitative Biology, Volume 75, pg. 555-565

Summary

Chromatin is non-randomly distributed in nuclear space, yet the functional significance of this remains unclear. Here, we made use of transgenes carrying developmentally regulated promoters to study subnuclear gene positioning during development of C. elegans. We found that small transgenes (copy number ≤50) are randomly distributed in early embryonic nuclei, independent of promoter activity. However, in differentiated tissues, these same transgenes occupied specific subnuclear positions: when promoters are repressed, transgenes are found at the nuclear periphery, whereas active, developmentally regulated promoters are enriched in the nuclear core. The absence of specific transgene positioning in embryonic nuclei does not reflect an absence of proteins that mediate perinuclear sequestration: embryonic nuclei are able to sequester much larger transgene arrays (copy number 300-500) at the periphery. This size-dependent peripheral positioning of gene arrays in early embryos correlates with the accumulation of heterochromatic marks (H3K9me3 and H3K27me3) on large arrays. Interestingly, depletion of nuclear lamina components caused release of arrays from the nuclear envelope, and interfered with their efficient silencing. Our results suggest that developmentally silenced chromatin binds the nuclear lamina in a manner correlated with the deposition of heterochromatic marks. Peripheral sequestration of chromatin may in turn support the maintenance of silencing.

author contributions: BT did the experiments of figures 1-5. BP did the experiments in Figure 6. PM significantly contributed to the design of the experiments. BT, PM and SG wrote the manuscript.
Repetitive Transgenes in *C. elegans* Accumulate Heterochromatic Marks and Are Sequestered at the Nuclear Envelope in a Copy-Number- and Lamin-Dependent Manner

B.D. Towbin, P. Meister, B.L. Pike, and S.M. Gasser

Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland

Correspondence: susan.gasser@fmi.ch

Chromatin is nonrandomly distributed in nuclear space, yet the functional significance of this remains unclear. Here, we make use of transgenes carrying developmentally regulated promoters to study subnuclear gene positioning during the development of *Caenorhabditis elegans*. We found that small transgenes (copy number ≤50) are randomly distributed in early embryonic nuclei, independent of promoter activity. However, in differentiated tissues, these same transgenes occupied specific subnuclear positions: When promoters are repressed, transgenes are found at the nuclear periphery, whereas active, developmentally regulated promoters are enriched in the nuclear core. The absence of specific transgene positioning in embryonic nuclei does not reflect an absence of proteins that mediate perinuclear sequestration: Embryonic nuclei are able to sequester much larger transgene arrays (copy number 300–500) at the periphery. This size-dependent peripheral positioning of gene arrays in early embryos correlates with the accumulation of heterochromatic marks (H3K9me3 and H3K27me3) on large arrays. Interestingly, depletion of nuclear lamina components caused release of arrays from the nuclear envelope and interfered with their efficient silencing. Our results suggest that developmentally silenced chromatin binds the nuclear lamina in a manner correlated with the deposition of heterochromatic marks. Peripheral sequestration of chromatin may, in turn, support the maintenance of silencing.

Differentiation of a pluripotent stem cell into specified cell types is a tightly regulated process that requires multiple layers of control. Cell identity is first set by the activation of tissue-specific gene programs. The expression status of a gene can subsequently be maintained by a local modification of chromatin structure through posttranslational modification of the histone octamer and binding of additional chromatin-associated factors (Boyer et al. 2006; Mohn and Schübeler 2009). Local modulation of chromatin structure may change a gene’s accessibility to DNA-binding factors and to the transcriptional machinery and hence regulate its activity.

It has been postulated that the higher-order structure of chromatin, and its spatial organization within the nucleus, may also contribute to gene regulation, possibly independent of local chromatin structure and accessibility (Wilson and Berk 2010). In particular, the spatial separation of inactive loci from active genes in nuclear subdomains is thought to support their efficient repression by locally increasing the concentration of silencing factors (Gasser et al. 2004). Conversely, spatial separation may prevent promiscuous silencing that would occur by silencing factors bound to normally active genes (Taddei et al. 2009). Although specific genes have been found to interact with the nuclear pore and subnuclear bodies, the best evidence for a functional role of subnuclear organization in gene regulation concerns the association of facultative heterochromatin to the perinuclear lamina.

The nuclear lamina consists of a dense meshwork of intermediate filament proteins (lamins) that mechanically maintain the spherical shape of the nucleus (Dechat et al. 2008). In addition to this morphological function, the nuclear lamina serves as a binding platform for various factors involved in transcriptional regulation and chromatin metabolism, supporting the idea of a regulatory role of perinuclear gene localization (Taddei et al. 2004). Moreover, scientific interest in the association of chromatin with the nuclear lamina has been fostered by the discovery of a large number of genetic diseases (laminopathies) that are caused by mutations in lamin itself or other structural components of the nuclear envelope (Verstraeten et al. 2007).

Historically, one addressed the functional implications of chromatin association to the nuclear lamina by describing the nature of lamina-bound chromatin. The earliest of these studies used electron microscopy to show that electron-dense material is in close proximity to the nuclear lamina (Busch 1966). Subsequently, a number of specific loci have been shown by fluorescent in situ hybridization (FISH) to specifically associate with the nuclear periphery when inactive (Spector 2003; Deniaud and Bickmore 2009). Most recently, a method termed DamID was applied to characterize the nature of DNA bound to the nuclear lamina on a genome-wide level in *Drosophila* embryos (Pickersgill et al. 2006) as well as human cell culture systems (Guelen et al. 2008; Peric-Hupkes et al. 2010). Together, these studies demonstrated that chromatin bound to the nuclear lamina is generally inactive and carries post-translational histone modifications characteristic of silent loci.
Complementing this correlative approach, several laboratories have artificially targeted specific loci to the nuclear periphery (Andrulis et al. 1998; Finlan et al. 2008; Kumar and Spector 2008; Reddy et al. 2008). In all cases, at least a mild reduction in transcriptional activity was observed for some promoters, although the magnitude of repression varied from study to study and seemed to depend on the nature of the targeted promoter (for discussion, see Towbin et al. 2009). Tethering of chromosome segments to the nuclear envelope could identify a function of the nuclear lamina in repressing genes that are artificially recruited to it. However, these experiments did not address how genes are recruited to the nuclear envelope without an artificial anchor and whether positioning might be used during development to control cell-type-specific expression.

Here, we tracked the subnuclear position of transgenes that contain developmentally regulated promoters during development of the nematode Caenorhabditis elegans. We find that subnuclear localization of low-copy transgenes carrying developmentally regulated promoters depends on a cell’s differentiation state: In early embryos, transgenes were randomly distributed through nuclear space, independent of promoter activity. In contrast, following differentiation, active and inactive promoters were spatially separated. Transgenes with inactive promoters were peripherally enriched, whereas transgenes with active developmentally regulated promoters were located in the nuclear interior. In contrast to low-copy transgenes, large repetitive gene arrays accumulated heterochromatic marks (H3K9me3 and H3K27me3) and were peripherally anchored in embryonic cells, correlating peripheral attachment with a heterochromatic state. Finally, we show that an intact nuclear envelope is required for efficient gene silencing because promoters located on transgene arrays are strongly up-regulated in animals depleted for the C. elegans lamin homolog LMN-1 or associated proteins.

Figure 1. Visualization of lacO-tagged transgenes by GFP-LacI.
(A) Developmental promoters used for generation of lacO-tagged transgenes. (B) Outline of transgenesis: Reporter transgenes ofpha-4 or myo-3 promoter were cobombarded with the unc-119 rescuing construct and repeats of 256 lacO sites. (C) C. elegans embryo expressing GFP-LacI only (left) or carrying in addition a lacO-tagged transgene insert (right). Bar, 1 μm. (Adapted from Meister et al. 2010a.)

LOW-COPY TRANSGENES RANDOMLY DISTRIBUTED IN EARLY EMBRYOS

To determine the subnuclear position of the bombardment-derived pha-4 transgene during early developmental stages, we labeled transgenic C. elegans embryos with antibodies directed against the nuclear lamina (LMN-1) to mark the nuclear periphery and with GFP to visualize the site of integration is random. This allows us to separate the localization potential of an individual promoter from the influence of surrounding genomic regions by analysis of several independent integration sites. Using this method, we generated multiple transgenes that harbor the muscle-specific promoter of the myo-3 gene (2.5 kb upstream of ATG) or a fragment of the pha-4 promoter that drives expression exclusively in the intestine (3.1 kb upstream of ATG). As a control, we included a strain that carries a lacO-tagged transgene with only the selection marker unc-119. We quantified the subnuclear distribution of these transgenes in embryonic cells as well as in three different differentiated tissues: muscle, intestine, and hypodermal and seam cells of ectodermal origin. Here, we focus our discussion on one of the pha-4::his-24::mCherry transgenes but emphasize that all of the transgenes that we generated behaved very similarly (Meister et al. 2010a).
position of the transgene. Intestinal precursor cells (E cells), where the pha-4 promoter is active, could be identified by the presence of the mCherry signal (Fig. 2A). We subsequently acquired z stacks of embryos and for each GFP focus, we identified the focal plane with maximal signal. To quantify the radial distribution of transgene position, we divided the nuclear cross section at this focal plane into three concentric zones of equal surface and determined the relative occupancy of these three zones by the transgene (Fig. 2B). When repeated for many nuclei, the distribution of a randomly positioned locus yields equal occupancy of all three zones (33% of the foci in each zone). In contrast, a peripheral or a centrally located focus will be enriched in zone 1 or 3, respectively (Meister et al. 2010a).

We first quantified the subnuclear distribution of the pha-4 transgene in very early embryos of 30–50 cells. At this developmental stage, most embryonic cells are still uncommitted to cell fate such that they can be differentiated into all classes of tissues by ectopic expression of the corresponding transcription factor (Sulston et al. 1983; Zhu et al. 1998; Yuzuyk et al. 2009). Analysis by three-zone scoring revealed that the pha-4 transgene was randomly distributed throughout the nuclear space (Fig. 2C).

This was true for independent transgene integrations of the pha-4 promoter as well as for small arrays of the inactive tissue-specific myo-3 promoter and the control strain carrying only the unc-119 selection marker (Meister et al. 2010a). Note that at this developmental stage, none of the transgene-borne promoters are active, and no mCherry signal was detected.

Previous work has shown inactive loci at the nuclear periphery in tissue culture cells and Drosophila embryos (Pickersgill et al. 2006; Guelen et al. 2008; Peric-Hupkes et al. 2010). Our results on the other hand suggest that transcriptional inactivity alone is insufficient for a perinuclear localization, at least in early C. elegans embryos.

Figure 2. Differentiation-associated spatial separation of active and silent loci. (A) Maximum intensity projection of an 8E-stage C. elegans embryo carrying an integrated lacO-containing pha-4::his-24-mCherry transgene. The embryo is stained for LMN-1 (yellow), mCherry (red), GFP-Lacl (green), and DNA (Hoechst blue). Bar, 5 μm. (B) Quantification of radial spot position. Nuclear cross section at the focal plane with highest spot intensity is divided into three concentric zones of equal surface, with zone 1 being the outermost. Spots are then binned into these three zones, and a randomly localized spot is equally distributed among the three zones. (C,D,F) Quantification of radial distribution of pha-4 transgene at indicated developmental stages and cell types, using the method described in B. (Red line) Expected random distribution. (E) Hypodermal and intestinal nuclei of L1 larva carrying the same transgene as in A, crossed to a strain expressing GFP-LMN-1. Bar, 1 μm. (Arrowheads) GFP-Lacl foci, (asterisk) autofluorescent gut granule. (Adapted from Meister et al. 2010a.)

LOW-COPY TRANSGENES OCCUPY DEFINED POSITIONS IN DIFFERENTIATED TISSUES

C. elegans embryos undergo cell-type commitment at a developmental stage where eight intestinal precursor cells are present (8E stage) (Zhu et al. 1998). This restriction in cell-fate potential coincides with a global compaction of chromatin (Yuzuyk et al. 2009).

In our system, the 8E stage can be easily identified by the presence of eight cells expressing HIS-24::mCherry (Fig. 2A, red). To investigate the effect of cell-type commitment and promoter activity on gene position, we next quantified the pha-4 transgene position at the 8E stage in cells, where it is active in the eight intestinal precursors but silent in the rest of the embryo. In contrast to the situation in nuclei in the 30–50 cell embryos, the pha-4 transgene was now enriched at the nuclear periphery in cells where the promoter was silent (Fig. 2D, black bars). On the other hand, in cells in which his-24::mCherry was expressed, the random distribution shifted slightly toward the nuclear center (Fig. 2D, gray bars).

Finally, we analyzed transgene distribution in fully differentiated cells of the first larval stage. Because immunofluorescence staining under conditions where nuclear structure is preserved is technically challenging in C. elegans larvae, we used a strain expressing GFP-tagged lamin (GFP-LMN-1) to mark the nuclear envelope, and we imaged live larvae. Three larval cell type were analyzed: ectodermal hypoderm and seam cells, which do not express pha-4, and intestine, where pha-4 is active (Fig. 2E). Similar to the subnuclear distribution at the 8E stage, the transgene was enriched at the periphery in the hypodermis and seam cells, with nearly 90% of the foci located in zone 1. In contrast, in intestinal nuclei, the transgenes were depleted from the nuclear periphery and most often located in the nuclear center (Fig. 2F).

We performed equivalent experiments with a small transgene array (called gwIb28) carrying the muscle-spe-
cific myo-3 promoter driving mCherry. Similar to the pha-4 promoter, this transgene was randomly distributed in early embryonic nuclei. In contrast, the myo-3 promoter-containing transgenes were enriched at the periphery in differentiated intestine and hypodermal nuclei. This is consistent with the promoter inactivity in these tissues. Importantly, we observed that the myo-3 promoter transgene relocated to the nuclear center in muscle cells of L1 larvae, where this promoter is active (Meister et al. 2010a).

To summarize, these results indicate that in undifferentiated and uncommitted cells, developmentally regulated promoters have no specific subnuclear position. When cells undergo differentiation, genes are spatially separated based on their activity: Silent loci are relocated to the nuclear envelope, whereas active loci become enriched in the nuclear center. Similar to our findings, in a mouse embryonic stem cell (ESC) differentiation system, stronger lamin-DamID signals were found in differentiated astrocytes (ACs) than in pluripotent ESCs (Peric-Hupkes et al. 2010). However, in this case, it is unclear whether measurement of increased lamin interaction is due to technical differences in the analysis of ACs and ESCs or truly reflects a change in gene position. Moreover, it is unclear as to what degree pluripotent ESCs mimic early embryonic states.

COPY-NUMBER-DEPENDENT PERIPHERAL ATTACHMENT OF REPETITIVE TRANSGENES IN EMBRYONIC CELLS

Given that peripheral attachment of developmentally regulated promoters only occurs in differentiated tissues, we next asked what distinguishes embryonic nuclei from differentiated cells in their ability to recruit the same locus to the nuclear envelope. In principle, at least three explanations are possible: (1) Anchoring may be mediated by a binding factor recognizing the pha-4/myo-3 promoter that is only expressed after differentiation in the cells where these are inactive. (2) The nuclear envelope in embryonic cells may be unable to bind silent chromatin and only gain this function by incorporation of additional factors during development. (3) Finally, perinuclear anchoring may be mediated by chromatin modifications that are deposited on developmentally regulated promoters after differentiation.

To test whether the nuclear envelope contains the proteins needed to bind heterochromatin in early embryonic cells, we next investigated a chromosomally integrated, lacO-containing [pha-4::lacZ] transgene that was generated by gonadal microinjection (Azzaria et al. 1996; Meister et al. 2010a). In contrast to transgenes generated by microparticle bombardment, gonadal injection results in large repetitive arrays of 300–500 copies of the injected DNA. Quantitative polymerase chain reaction (qPCR) revealed that the copy number of the [pha-4::lacZ] array used in this study was approximately 300 (Fig. 3A).

As a consequence of their repetitiveness, promoters on large arrays are often at least partially repressed and in a heterochromatic state (Hsieh and Fire 2000; Bessler et al. 2010). Therefore, visualization of the large [pha-4::lacZ] array by GFP-LacI allowed us to test whether a large heterochromatic domain was able to bind the nuclear envelope in early embryos. Indeed, these arrays were strongly enriched at the nuclear periphery with >80% of the foci found in the outermost zone (Fig. 3A,C). We similarly generated another chromosomally integrated, large array (called gwIs4) by microinjection and X-ray irradiation. This array contains a GFP-LacI expression plasmid, a plasmid with a myo-3 promoter driving rfp, as well as lacO sites and can be visualized microscopically by GFP-LacI that is transcribed from the array itself. By qPCR, we estimate the plasmid copy number of gwIs4 to be ~500 copies (Meister et al. 2010a). Quantification of the radial distribution of the gwIs4 array revealed that, similar to the [pha-4::lacZ] array, this large array was strongly enriched at the nuclear envelope (Fig. 3E). Thus, the embryonic nuclear envelope is able to recruit large gene arrays.

To confirm that peripheral sequestration is size dependent and not reflective of the site of transgene integration, we isolated a strain in which the large [pha-4::lacZ] array had spontaneously reduced its copy number. qPCR confirmed that the array was about sixfold smaller than in the parental strain (Fig. 3B). Remarkably, this smaller array was no longer found almost exclusively at the nuclear envelope (Fig. 3D). Similarly, a bombardment-derived myo-3::mCherry transgene (gwIs28) with 10-fold fewer copies than the large gwIs4[myo-3::rfp] array was randomly distributed in early embryos (Fig. 3F) (Meister et al. 2010a).

We note that the low- and high-copy version of the [pha-4::lacZ] array are integrated at the same position on the chromosome because the low-copy array was generated from the high-copy array through a spontaneous recombination event. From this, we can therefore exclude that the differential subnuclear localization of these arrays is due to differences in their genomic integration site or method of transgenesis. We conclude that the high copy number of a transgene can direct it to the nuclear envelope. Furthermore, our findings argue against a sequence-specific DNA-binding factor initiating perinuclear gene attachment because the large and small [pha-4::lacZ] array share the same sequence composition but are differently localized in the nucleus. However, we cannot rule out that in later development, a tissue-specific factor also contributes to anchoring.

HIGH-COPY BUT NOT LOW-COPY TRANSGENES ACCUMULATE HETEROCHROMATIC MARKS

What could distinguish high- from low-copy transgenes in their nuclear localization? Given that promoters on large arrays have previously been shown to be subject to transcriptional silencing (Hsieh and Fire 2000) and to accumulate heterochromatic marks (Bessler et al. 2010), we tested whether small and large arrays differ in their histone modifications. Indeed, when we stained embryos that contain the large array gwIs4[myo-3::rfp] for the heterochromatic mark H3K9me3, we saw a spotty pattern with two bright spots in every nucleus. These bright foci colocalized precisely with the GFP signal marking the array position (Fig.
4A). Similarly, the gwIs4 array was enriched for the Polycomb-associated mark H3K27me3 (Fig. 4B). In agreement with its repressed state, we found no H3K4me3, which marks active promoters, enriched on the array (Fig. 4C). This exclusion of H3K4me3 was not due to potential technical problems in the staining procedure because this modification was enriched on the gwIs4 array in muscle cells of late-stage embryos when the myo-3 promoter on the array is activated (Fig. 4D).

To compare the level of histone modifications on large and small arrays, we created a strain carrying both the large gwIs4[myo-3::rfp] array and the low-copy gwIs28[myo-3::mCherry] transgene. Hence, four GFP foci in every nucleus were detected. Two of these foci had an extended shape and correspond to the large array gwIs4, whereas the other two GFP signals had a spot-like appearance, with a size close to the diffraction limit, reflecting the smaller size of the low-copy transgene gwIs28 (Fig. 3E,F; GFP). When we stained these embryos with antibodies against H3K9me3 and H3K27me3, only the two large GFP foci showed colocalization with either of the methylated histones (Fig. 3E,F). We therefore conclude that low-copy transgenes accumulate far less histone modifications typical for heterochromatic marks than large arrays.

The observation that copy-number-dependent perinuclear anchoring of repetitive transgenes correlated with their acquisition of H3K9me3 and H3K27me3 marks indicates that the heterochromatic state itself could serve as a signal for gene repositioning to the nuclear envelope. Genetic mutation of the histone methyltransferases that deposit these methyl marks will allow us to test this model.

C. ELEGANS LAMIN HOMOLOG LMN-1 REQUIRED FOR PERINUCLEAR ATTACHMENT OF GENE ARRAYS

To determine what might provide peripheral chromatin anchoring in trans, we tested whether an intact nuclear lamina was important for peripheral binding of gene arrays. C. elegans encodes a single lamin protein (LMN-1) that shares characteristics of both A- and B-type lamins. As previously described, down-regulation of lmn-1 by RNA interference (RNAi) reduced LMN-1 levels in C. elegans embryos to <10% of wild-type levels (Fig. 5A) and caused arrest at early embryonic stages (Liu et al. 2000).

To test whether a functional nuclear lamina is required to maintain gene arrays at the nuclear envelope, L4 larvae carrying the large transgene array gwIs4 were subjected to lmn-1 RNAi for 24 h. Array position was determined in the 50-cell-stage embryonic progeny of these animals.
In 20% of the embryonic nuclei, at least one, and sometimes two, arrays shifted away from the nuclear envelope (Fig. 5B, lmn-1[RNAi]). In contrast, only 5% of the nuclei had at least one internal focus in embryos treated with a control RNAi vector (Fig. 5B,C; mock[RNAi]). An intact nuclear lamina is therefore necessary to retain arrays at the nuclear periphery. It remains unclear, however, whether there is a direct interaction between LMN-1 and the array or whether this involves lamin-associated chromatin-binding factors.

DEPLETION OF LMN-1 CAUSES STOCHASTIC DEREPRESSION OF ARRAY-BORNE PROMOTERS

The gwIs4 array used in this study serves a dual purpose: The position of the GFP focus reflects the position of the transgene in the nucleus, and total GFP levels reflect the activity of the array-borne baf-1 promoter that controls GFP-LacI expression. By monitoring GFP levels in animals carrying the genetic null allele lmn-1(tm1502), we
could therefore test whether loss of array anchoring correlated with a reduced ability to maintain its partially repressed state.

In contrast to the high penetrance of embryonic death observed after RNAi against *lmn-1*, most animals homozygous for the genetic null allele *tm1502* complete embryogenesis and form sterile adults (Haithcock et al. 2005). This weaker phenotype of the *lmn-1* null allele is most likely due to rescue by the maternal load of *lmn-1* transcripts. Using the *tm1502* null allele, we examined whether the nuclear lamina had a role in array repression in differentiated tissues.

Whereas GFP-LacI was hardly detectable in adult wild-type animals (Fig. 6A), 67% of the *lmn-1(tm1502)* homozygous mutants had a few cells with very high GFP signal stemming from a derepressed gwIs4 array (Fig. 6B). Array derepression seemed to occur stochastically in most tissues of the worm but always only in a subset of cells per animal. The reason for this low penetrance is unclear but may reflect either a stochastic loss of maternally con-
distributed lamin during cell divisions or the stochastic nature of heterochromatin control over transcription. Nevertheless, this result suggests that the nuclear lamina is necessary to stably maintain transcriptional repression of arrays.

MUTATION OF LAMIN-INTERACTING FACTORS BAF-1, EMR-1, AND LEM-2 PHENOCOPY ARRAY DEREPRESSION IN LMN-1–DEPLETED WORMS

LMN-1 interacts with the two transmembrane proteins, EMR-1 (homolog of human Emerin) and LEM-2 (hMAN1), that span the inner nuclear membrane (Liu et al. 2003). At their nucleoplasmic amino terminus, both proteins contain a LEM (LAP2, Emerin, and MAN1) domain that binds the small DNA cross-linking protein BAF-1 (Margalit et al. 2005).

Mutation of baf-1, or concurrent depletion of the lamin-associated LEM domain containing transmembrane proteins EMR-1 and LEM-2, causes phenotypes very similar to lmn-1 mutation (Liu et al. 2000, 2003; Margalit et al. 2005), including chromosome segregation defects and promiscuous chromatin condensation. Therefore, we tested whether BAF-1 and EMR-1/LEM-2 were also required for array silencing. Indeed, we observed array derepression at high penetrance in animals homozygous for the baf-1 null allele gk324 (60%; Fig. 6D, baf-1). Single mutants of emr-1 and lem-2 had only minor defects in array silencing, in agreement with their previously described redundant functions (Fig. 6E, emr-1 and lem-2) (Liu et al. 2003). By down-regulation of emr-1 with RNAi in a lem-2 null-mutant background, we depleted both proteins concurrently. This caused high-penetration embryonic lethality (>98%; data not shown), as previously described for double RNAi against these two factors (Liu et al. 2003). The rare escapers arrested at the L2 or L3 larval stage, and 90% of these showed strong up-regulation of GFP-LacI in at least one cell (Fig. 6C, lem-2, emr-1[RNAi]).

Derepression cannot be explained exclusively by the larval arrest phenotype of emr-1 lem-2(RNAi) double-depleted animals because unrelated RNAi clones causing larval arrest (let-767[RNAi], acn-1[RNAi], and vha-5[RNAi]) did not cause array derepression (Fig. 6E). Finally, the observed increased levels of GFP-LacI are not due to a promoter-specific activation, because an mCherry-LacI transgene driven by the unrelated tbb-1 promoter (β-tubulin) shows a similar derepression as the baf-1 promoter (Fig. 6E, Pαub). In conclusion, perturbation of the nuclear lamina by depletion of LMN-1, or its interacting partners BAF-1, EMR-1, and LEM-2, results in strong up-regulation of a usually silent transgene.

CONCLUSIONS

Our studies on nuclear organization in C. elegans have revealed that active and inactive developmentally regulated promoters are spatially separated in the nuclei of differentiated tissues of the first larval stage: Tissue-specific promoters are in the nuclear lumen when active and close to the nuclear periphery when silent. This is in agreement with studies in other experimental systems, where inactive genes were often found close to the nuclear lamina (Pickersgill et al. 2006; Guelen et al. 2008; Peric-Hupkes et al. 2010). In contrast to previous studies, we exogenously inserted fragments of developmentally regulated promoters (3.1 kb and 2.5 kb for pha-4 and myo-3, respectively) at random sites in the genome. We analyzed multiple insertions of these two different promoters in a range of tissues (intestine, muscle, hypodermal cells, and seam cells). In all cases, the developmentally regulated promoters assumed a position within the nucleus that reflected their activity state, i.e., inactive promoters were perinuclear and active promoters internal. Our results therefore strongly suggest that the tissue-specific promoter fragments that we inserted are sufficient to control subnuclear position.

Although low-copy transgenes were randomly distributed in early embryonic cells, the nuclear envelope is capable of recruiting chromatin even at this early developmental stage. Much larger arrays of transgenes (repetitive copy number 250–500) were strongly enriched at the nuclear periphery in embryos as well as larval cells. This peripheral sequestration correlated with an accumulation of heterochromatic marks and is unlikely to be dictated by the site of integration or by sequence-specific binding factors. Promoters of identical sequence inserted at the same locus, in reduced copy number, were not peripherally enriched. It is therefore tempting to speculate that the formation of heterochromatin itself drives nuclear organization. According to such a model, the relocation of inactive low-copy transgenes to the nuclear envelope during development may be a consequence of a change in chromatin state of the promoters upon cell commitment and differentiation. The exact nature of the molecular players involved in this process remains to be identified.

Although our findings suggest that deposition of heterochromatin marks itself contributes to peripheral chromatin anchoring, we find that a functional nuclear envelope is required, for both chromatin sequestration and efficient silencing. Arrays are delocalized upon RNAi against lmn-1, whereas depletion of the nuclear envelope components LMN-1 and BAF-1 or codepletion of EMR-1 and LEM-2 caused a stochastic derepression of heterochromatin transgene arrays. This result is reminiscent of a recent study showing up-regulation of a normally silent testis-specific gene cluster in flies deficient for the Drosophila lamin homolog lamDm0 (Shevelyov et al. 2009).

To summarize, our data suggest that the peripheral sequestration of heterochromatin reinforces its silent state (Fig. 7). This may occur through local abundance of histone methyltransferases and methylhistone-binding factors or through indirect effects such as late replication or local depletion of active RNA polymerase. The value of RNAi screens in resolving this is an obvious advantage of the C. elegans system described here.

MATERIALS AND METHODS

Molecular Biology and Transgenic Strains

Table 1 lists the strains used in this study; most strains and plasmids are described elsewhere (Meister et al. 2010a).
Figure 7. Model for function of perinuclear gene attachment in gene silencing. (A) Low-copy transgenes are randomly distributed in undifferentiated embryonic cells, independent of promoter activity. During differentiation, inactive promoters relocate to nuclear envelope, and active promoters become enriched in nuclear center. (B) Large heterochromatic transgene arrays are bound to nuclear lamina in wild-type embryos, and promoters on the transgene are transcriptionally repressed. Depletion of LMN-1 by RNAi or its mutation causes release of large arrays from the nuclear lamina. Not all arrays detach from the nuclear periphery; some LMN-1 remains due to incomplete RNAi or because of remaining maternally contributed LMN1 protein. Detachment of arrays impairs their efficient silencing, such that a fraction of the arrays gets derepressed stochastically.

Table 1. Strains used in this study

<table>
<thead>
<tr>
<th>Strain name</th>
<th>Genotype</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>Wild-type Bristol isolate</td>
<td>Meister et al. (2010a)</td>
</tr>
<tr>
<td>GW76</td>
<td>gwl4[myo-3::rfp baf-1::gfp-lacI let-858 3’UTR]</td>
<td>Meister et al. (2010a)</td>
</tr>
<tr>
<td>GW115</td>
<td>gwl4; imn-1(tm1502)/h2[bli-4(e937) let-7(q782) qls48]</td>
<td>This study</td>
</tr>
<tr>
<td>GW164</td>
<td>gwl4; emn-1(gk119)</td>
<td>This study</td>
</tr>
<tr>
<td>GW201</td>
<td>gwl4; lem-2(tm1582)</td>
<td>This study</td>
</tr>
<tr>
<td>GW205</td>
<td>gwl4; baf-1(gk324)/h2[bli-4(e937) let(q782) qls48]</td>
<td>This study</td>
</tr>
<tr>
<td>GW318</td>
<td>gwl4; gwl28[myo-3::mCherry; 256xlacO; unc-119]+; unc-119(ed3)]</td>
<td>Meister et al. (2010a)</td>
</tr>
<tr>
<td>GW395</td>
<td>gwl39[baf-1::gfp-lacI::let-858 3’UTR; vit-5::gfp]; unc-119(ed3)</td>
<td>Meister et al. (2010a)</td>
</tr>
<tr>
<td>GW397</td>
<td>gwl39; gwl28; unc-119(ed3)</td>
<td>Meister et al. (2010a)</td>
</tr>
<tr>
<td>GW429</td>
<td>gwl39; gwl59[pha-4::mCherry::his-24; 256xlacO; unc-119]; unc-119(ed3)</td>
<td>Meister et al. (2010a)</td>
</tr>
<tr>
<td>GW430</td>
<td>gwl25 [tbb-1::wmCherry-LacI::tbb-2 unc-119(“)]; unc-119(ed3); lem-2(tm1582)</td>
<td>This study</td>
</tr>
<tr>
<td>GW431</td>
<td>gwl39; gwl59; ygl3[imn-1::imn-1::gfp::imn-1 3’UTR, unc-119(“)]</td>
<td>Meister et al. (2010a)</td>
</tr>
<tr>
<td>GW457</td>
<td>gwl4; gwl39</td>
<td>This study</td>
</tr>
<tr>
<td>GW470</td>
<td>gwl39; cals*pha-4::lacZ; rol-6(su1006)]; unc-119(ed3)</td>
<td>This study</td>
</tr>
<tr>
<td>GW471</td>
<td>gwl39; cals[pha-4::lacZ; rol-6(su1006)]; unc-119(ed3)</td>
<td>Meister et al. (2010a)</td>
</tr>
</tbody>
</table>

*Transgene with reduced copy number.
Strains were made by back-crossing deletion alleles obtained from the C. elegans knockout consortium to wild-type N2 animals and subsequently to GW76. GW76 is an 8x outcrossed strain that carries a large integrated array expressing GFP-LacI under control of a baf-1 promoter (gwIs44) but is otherwise wild type. The following alleles were used: lmn-1(tm1502), emr-1(gk119), lem-2(tm1582), and baf-1(gk324). For lmn-1 RNAi experiments, GW76 was supplemented with a transgene (gwIs39) expressing GFP-LacI under the baf-1 promoter to enhance the GFP signal for microscopy. gwIs39 does not contain lacI0 sites and is therefore not visible as a fluorescent focus.

RNAi and Microscopy

RNAi was performed by feeding according to standard methods (Timmons et al. 2001). RNAi clones were obtained from the Vidal library (Rual et al. 2004) (lmn-1) or Ahringer library (Kamath et al. 2003) (all others). The empty vector L4440 was modified by removal of an Ahringer library (Kamath et al. 2003) (all others). The promoter to enhance the GFP signal under control of a baf-1 promoter to spatial dynamics of tissue-specific promoters during differentiation. Nature 421: 231–237.

Liu J, Ben-Shahar TR, Riemer D, Treinin I, Brugman W, Gasser SM. 2003. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc Natl Acad Sci USA 100: 4598–4603.

ACKNOWLEDGMENTS

We thank Y. Gruenbaum for strains and helpful discussions, J.D. McGhee and the Caenorhabditis Genetics Center for strains, T. Jenuwein for antibodies, R. Waterston for plasmids, and M. Thomas for excellent technical assistance. This work was supported by the European Union Network of Excellence “Epigenome,” the Swiss National Science Foundation National Center of Competence in Research “Frontiers in Genetics,” the Novartis Research Foundation, and a fellowship from the Human Frontiers Science Program to B.L.P.

REFERENCES

Chapter 4: Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery

Benjamin D. Towbin1,3, Cristina Gonzalez2, Ragna Sack1, Dimos Gaidatzis1, Véronique Kalck1, Peter Meister1,4, Peter Askjaer2, and Susan M. Gasser1,3

1) Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
2) Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville 41013, Spain
3) Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
4) current address: University of Bern, Institute of Cell Biology, Baltzerstrasse 4, CH-3012 Bern, Switzerland

Cell 2012, Volume 150 (5), pg. 934-947

Summary

The factors that sequester transcriptionally repressed heterochromatin at the nuclear periphery are currently unknown. In a genome-wide RNAi screen, we found that depletion of S-adenosylmethionine (SAM) synthetase reduces histone methylation globally and causes derepression and release of heterochromatin from the nuclear periphery in *Caenorhabditis elegans* embryos. Analysis of histone methyltransferases (HMTs) showed that elimination of two HMTs, MET-2 and SET-25, mimics the loss of SAM synthetase, abrogating the perinuclear attachment of heterochromatic transgenes and of native chromosomal arms rich in histone H3 lysine 9 methylation. The two HMTs target H3K9 in a consecutive fashion: MET-2, a SETDB1 homolog, mediates mono- and dimethylation, and SET-25, a previously uncharacterized HMT, deposits H3K9me3. SET-25 colocalizes with its own product in perinuclear foci, in a manner dependent on H3K9me3, but not on its catalytic domain. This colocalization suggests an autonomous, self-reinforcing mechanism for the establishment and propagation of repeat-rich heterochromatin.

author contributions: BT designed and performed the experiments in all figures except figure 5D-F, figure S5 and S3. CG did the experiments in Figure 5D-F and Figure S5. RS did the mass-spectrometry for experiments in Figure 3D and S3, DG did the computational analysis in Figure 5D-F and Figure S5, VK created strains in Figure 6, PM designed the experiments and did the experiments in Figure S2F. SG designed the experiments and wrote the manuscript together with BT.
Step-Wise Methylation of Histone H3K9 Positions Heterochromatin at the Nuclear Periphery

Benjamin D. Towbin,1,2 Cristina González-Aguilera,3 Ragna Sack,1 Dimos Gaidatzis,1 Véronique Kalck,1 Peter Meister,1,4 Peter Askjaer,3 and Susan M. Gasser1,2,*
1Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
2Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
3Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville 41013, Spain
4Present address: University of Bern, Institute of Cell Biology, Baltzerstrasse 4, 3012 Bern, Switzerland
*Correspondence: susan.gasser@fmi.ch
http://dx.doi.org/10.1016/j.cell.2012.06.051

SUMMARY

The factors that sequester transcriptionally repressed heterochromatin at the nuclear periphery are currently unknown. In a genome-wide RNAi screen, we found that depletion of S-adenosylmethionine (SAM) synthetase reduces histone methylation globally and causes derepression and release of heterochromatin from the nuclear periphery in Caenorhabditis elegans embryos. Analysis of histone methyltransferases (HMTs) showed that elimination of two HMTs, MET-2 and SET-25, mimics the loss of SAM synthetase, abrogating the perinuclear attachment of heterochromatic transgenes and of native chromosomal arms rich in histone H3 lysine 9 methylation. The two HMTs target H3K9 in a consecutive fashion: MET-2, a SETDB1 homolog, mediates mono- and dimethylation, and SET-25, a previously uncharacterized HMT, deposits H3K9me3. SET-25 colocalizes with its own product in perinuclear foci, in a manner dependent on H3K9me3, but not on its catalytic domain. This colocalization suggests an autonomous, self-reinforcing mechanism for the establishment and propagation of repeat-rich heterochromatin.

INTRODUCTION

Transcriptional control of the eukaryotic genome involves the differential organization of chromatin into euchromatic and heterochromatic domains (Kind and van Steensel, 2010). These two active and silent compartments differ in characteristic posttranslational modifications of the core histones, as well as in the incorporation of specific histone variants, linker histones, and nonhistone proteins. Trimethylation of lysine 9 on histone H3 (H3K9me3) or H3K27me3 is associated with silent domains, whereas euchromatin is enriched for acetylated histones and H3K4me3 (Black and Whetstine, 2011).

From yeast to man, euchromatin and heterochromatin are spatially segregated within the nucleus. In metazoans, repeat-containing centromeric heterochromatin is typically clustered into foci that are enriched for H3K9me3 and Heterochromatin protein 1 (HP1) (Maison and Almouzni, 2004). Similarly, the Polycomb repressor complex is found in nuclear foci that bear H3K27me3 (Luo et al., 2009). A distinct type of heterochromatin enriched for both H3K9 and H3K27 methylation binds the nuclear lamina (Kind and van Steensel, 2010), a meshwork of intermediate filament proteins and several lamin-associated factors that underpin the inner nuclear membrane (INM) (Goldman et al., 2002). Genome-wide analysis has shown that lamin-bound heterochromatin comprises up to 40% of the mammalian genome and occurs in lamin-associated domains (LADs) that often span several megabases in cis (Guelen et al., 2008; Peric-Hupkes et al., 2010). Similarly, in the nematode Caenorhabditis elegans, LADs cover large regions of the repeat-rich distal third of all chromosome arms (Ikegami et al., 2010).

Downregulation of C. elegans lamin, or of the lamin-associated proteins EMR-1 and LEM-2, leads to the derepression of promoters on perinuclear heterochromatoid arrays (Mattout et al., 2011). In flies as well, lamin is required to repress testis-specific genes in somatic tissues (Shevelyov et al., 2009), suggesting that the attachment of a locus to the nuclear lamina can affect its expression. In support of this, artificial relocation of genes to the nuclear lamina contributes to their transcriptional repression in mammals and flies, although in a promoter-specific manner (reviewed in Kind and van Steensel, 2010). How this is achieved is unclear.

To understand the functional implications of chromatin attachment to the INM one must identify and interfere with the factors involved. Only a few lamin ligands with chromatin binding capacity have been described. One example, BAF (barrier to autointegration factor), binds both histones and DNA and associates with the lamin-interacting INM proteins LAP2, MAN1, and Emerin (Margalit et al., 2007). A second example is HP-1, which binds the INM-associated Lamin B receptor (Ye and Worman, 2000).
The relevance of these interactions in vivo and how they might selectively recruit genes to the nuclear periphery remain unclear.

Repetitive gene arrays have been useful tools to study the mechanism and dynamics of perinuclear heterochromatin anchoring (Meister et al., 2010; Yuzuyk et al., 2009). In worms, as well as in mammals, transgene arrays are frequently subject to transcriptional repression (Hsieh and Fire, 2000; Martin and Whitelaw, 1996) and accumulate repressive histone marks, namely histone H3K9me3 and H3K27me3 (Bessler et al., 2010; Meister et al., 2010). Most important for this study, repetitive arrays integrated into the worm genome recapitulate the perinuclear sequestration of endogenous heterochromatin on chromosome arms.

Here, we used such gene arrays in a genome-wide RNAi screen to identify conserved factors required for the anchoring of heterochromatin. This screen yielded a single RNAi target whose loss impaired both repression and anchoring in C. elegans embryos. The target encodes S-adenosyl methionine synthetase, which generates S-adenosylmethionine (SAM), the universal donor for methylation reactions in eukaryotic cells. Given that interference with SAM synthesis caused a drop in histone methylation, we systematically monitored the roles of histone methyl transferases (HMTs) and found that the peripheral anchoring of arrays depends on two HMTs, MET-2 and SET-25, both of which target H3K9. Consistently, endogenous domains of H3K9 methylation on chromosome arms were released from the nuclear lamina in the met-2 set-25 double mutant.

We show that MET-2, a SETDB1 homolog, deposits mono- and dimethyl groups at H3K9, whereas SET-25, a previously uncharacterized HMT, trimethylates the same residue. SET-25 colocalizes with peripheral heterochromatin in an H3K9me3-dependent fashion, thus becoming sequestered at the nuclear periphery by the product of its own methylation reaction. The increased concentration of SET-25 in perinuclear heterochromatin is compatible with a self-reinforcing mechanism, whereby this enzyme acts to establish and stabilize heterochromatic repression at the nuclear periphery.

RESULTS

A Genome-Wide RNAi Screen Identifies Regulators of Gene Array Silencing in C. elegans Embryos

To identify factors required for perinuclear sequestration of heterochromatin, we designed a genetic screen, in which we monitored the derepression and relocalization of two genomically integrated gene arrays in C. elegans embryos at the 50- to 100-cell stage. Both arrays encode green fluorescent protein (GFP) under the control of a ubiquitously expressed promoter (either the let-858 or the ba-1 promoter). Each reporter was integrated in approximately 300 copies at a single site in the genome, generating a transcriptionally repressed locus bearing the heterochromatic histone modifications H3K9me3 and H3K27me3 (Bessler et al., 2010; Meister et al., 2010).

In a strain that is homozygous for an integrated let-858::GFP gene array, we downregulated 80% of all C. elegans genes by RNAi and selected clones that could derepress the ubiquitously active let-858::GFP reporter in embryos (Figure 1A). Specifically, synchronized L1 worms carrying the array were exposed to RNAi for 4 days (Kamath et al., 2003). As the larvae developed to gravid adults, we visually inspected the embryonic progeny in utero for increased GFP expression (Figure 1A). We retained only hits that caused array upregulation throughout embryonic cell types. Similarly, we discarded clones targeting essential genes (based on Kamath et al., 2003) because embryonic lethality often led to an unspecific deregulation of the let-858::GFP transgene in a small number of cells per embryo (unpublished observation). Viable hits were retested in triplicate next to negative controls on the same plate. We identified 29 RNAi clones that reproducibly caused array derepression in at least two out of three replicates without inducing embryonic death (Table S1; Figure 1C). These 29 hits were enriched for chromatin factors (Figure 1C; p = 9.7 × 10⁻⁶, DAVID gene ontology term enrichment, Dennis et al., 2003), including two histone methyl transferases (mes-4 and set-25), three histone binding proteins (mrg-1, lin-61, hpl-2), and the Polycomb repressor complex 2 (PRC2) components mes-3 and mes-6. The catalytic subunit of PRC2, mes-2, was among the 20% of genes that were not covered by the RNAi library used for this screen, but an analysis of mutant alleles confirmed derepression upon loss of mes-2 as well (see below; Figure S2B available online).

Depletion of Two Related S-Adenosylmethionine Synthetases Causes Array Detachment

We subsequently used confocal microscopy to test which of the factors involved in array repression were also required to position arrays at the nuclear periphery (Figure 1B). To this end, we used a second array (termed gwls4), which contains 300 copies of the ubiquitously active ba-1 promoter driving the expression of GFP fused to the bacterial repressor LacI (Meister et al., 2010). Each plasmid copy within the gwls4 array contained a lacO site, allowing the GFP-LacI protein to bind the transgene array from which it is expressed, generating a focus visible by fluorescence microscopy (Meister et al., 2010; Figure 1B). This array thus serves a dual purpose: total GFP levels monitor the expression level of the ba-1 promoter, whereas the position of the GFP-LacI focus marks the position of the array relative to the nuclear periphery.

Visual inspection by confocal microscopy revealed that arrays were displaced from the nuclear periphery in only two of the 29 primary hits. Both positive clones targeted the SAM synthetases sams-3 and sams-4 (Figures 2A–2D). Because the two genes share extensive homology with each other (100% identity over 665 nucleotides of coding sequence, Figure S1A), including the sequences targeted by the RNAi, it was clear that each RNAi clone alone downregulated both genes. Therefore, for all subsequent experiments a single RNAi clone (sams-3) was used.

To quantify the degree of array detachment upon sams-3/4 downregulation, we acquired focal stacks of RNAi-treated embryos. We determined the radial distribution of GFP-foci by binning the spots into three concentric zones of equal surface area in the focal plane with the highest GFP-spot intensity (Figure 2E). For spherical nuclei, this method yields an equal distribution among the three zones for a randomly positioned focus (Meister et al., 2010). Whereas the gwls4 array was strongly...
enriched in the most peripheral zone in embryos treated with control RNAi (>90% in zone 1; Figure 2F, left, gray bars), the array consistently shifted toward the nuclear center after sams-3/4 RNAi (<25% in zone 1, p < 2.45 × 10⁻¹¹, Fisher’s exact test; Figure 2F, left, black bars).

To see whether array detachment upon sams-3/4 RNAi required activation of an array-borne promoter, we repeated the sams-3/4 RNAi experiment with an array that carried two tissue-specific promoters, namely a truncated pha-4 promoter driving LacZ and the rol-6 gene, instead of the baf-1 promoter. Both of these tissue-specific promoters are silent in most early embryonic cells (Azzaria et al., 1996; Sassi et al., 2005). To visualize the array, we expressed GFP-LacI in trans from an independent transgene that lacked lacO sites. As observed for the gwls4 array, depletion of SAMS-3/4 abrogated the association of the [pha-4::lacZ;rol-6] array with the INM (Figure 2F, right), yet pha-4::lacZ remained silent in all cells except the four to eight intestinal precursor cells that expressed the factors necessary for pha-4 promoter induction (Figure S1B). Because the array was efficiently delocalized in all cells, we conclude that array detachment from the INM arising from the downregulation of SAMS-3/4 synthetases can occur independently of transcriptional activation.

We did not observe array detachment for any of the other 27 primary screen hits that showed derepression of the array-borne GFP reporter. This argues against the simple explanation that transcriptional activation drives array delocalization. To ensure that the persistence of derepressed arrays at the INM was not due to inefficient RNAi, we generated strains carrying the gwls4 array and a genetic null allele of a subset of the screen hits. Using genetic null mutants, we observed a 20% drop in array attachment in the set-25 mutant (70% bound, Figure 3B; see below). For all other mutants, including the H3K27 and H3K36 HMTs mes-2 and mes-4, arrays remained firmly anchored at the nuclear periphery (Figures 3B and S2B and S2C). We conclude that transgene array derepression is neither sufficient nor necessary for detachment. This does not exclude, of course, roles for other factors that are either redundant or insufficiently sensitive to RNAi, in array anchoring.

High Levels of SAM Synthetase Are Required for Normal Histone Methylation

The enzymes SAMS-3/4 generate SAM, the unique cellular methyl-group donor. Although there are other, more divergent SAM synthetases in the C. elegans genome, the downregulation of sams-3/4 is expected to reduce cellular methylation, including that on histones. Because specific histone H3 methylation sites are robustly associated with heterochromatic
arrays (Bessler et al., 2010; Meister et al., 2010), we probed RNAi-treated embryos with antibodies specific for a range of methylated histones, namely trimethylated K4, K9, K27, and K36 on histone H3. The fluorescent immunostaining of methylated histone H3K9, K27, and K36 was strongly reduced, often to a point below the background signal (Figures 2G, 2H, and S1C). Interestingly, we did not detect a strong reduction in trimethylation of H3K9 (Figures 2H and S1C), although we cannot exclude that the high residual signal after sams-3/4 RNAi stems from off-target antibody binding. Alternatively, the H3K4 methyltransferase may be less sensitive to reduced SAM levels than are other HMTs. Remarkably, the severe reduction in methylation of H3K9, K27, and K36 provoked by sams-3/4 RNAi was compatible with embryonic development. We did not observe an increase in embryonic lethality after sams-3/4 depletion for up to three generations, although we did detect a significant reduction in brood size (Figure S1D). This is consistent with results showing that HMT mutations affecting H3K9, K27, and K36 methylation have relatively mild somatic defects but much stronger phenotypes in
the germline (Andersen and Horvitz, 2007; Bender et al., 2004; Bender et al., 2006).

In addition to sams-3 and sams-4, the C. elegans genome encodes two more divergent SAM synthetases (sams-1 and sams-5). RNAi of sams-3/4 in a sams-1/5 double mutant was not compatible with somatic growth, causing larval arrest at high penetrance (Figure S1E). Hence, despite the presence of multiple, partially redundant enzymes in C. elegans, downregulation of the enzymes SAMS-3 and SAMS-4 reduced SAM sufficiently to have a pronounced effect on histone methylation and transgene array localization while supporting embryonic development.

The Methyltransferases MET-2 and SET-25 Act Redundantly to Position Chromatin at the Nuclear Periphery

To test whether histone methylation itself is required for perinuclear chromatin anchoring, we next focused specifically on HMT mutants. We retrieved loss-of-function alleles for all HMTs identified in our primary screen, as well as for those predicted to target the same histone residues. Using this genetic resource, we scored for defects in heterochromatic array attachment at the INM in 11 different strains carrying mutations for individual or multiple SET domain proteins (Table S2). The tested single and double mutants included all known HMTs that target wild type.

Figure 3. H3K9 Methyltransferases MET-2 and SET-25 Are Required for Gene Array Anchoring
(A) Scheme of met-2 and set-25 exon and domain structure, and deletion alleles used. * STOP codon caused by frame shift.
(B) Quantification of array distribution in 50–100 cell embryos as described in Figure 2E. Significant array detachment occurs in set-25 and set-25 met-2 but not in mes-2 and mes-4 mutants (p ≤ 8 × 10^{-4} for comparisons: set-25 versus wild-type, set-25 met-2 versus wild-type, and set-25 versus set-25 met-2; p ≥ 0.16 for comparisons wild-type versus met-2, wild-type versus mes-2, and wild-type versus mes-4, Fisher’s exact test). Dotted line, expected random distribution.
(C) Partial z-projection of GFP signal of wild-type and set-25(n5021) met-2(n4256) double-mutant embryos carrying the gwIs4[baf-1::GFP-LacI] array.
(D) Quantification of H3K9 and H3K27 methylation levels in met-2 and set-25 single- and double-mutant early embryos by quantitative mass spectrometry. Data are shown relative to wild-type (dotted line, 100%). Error bars indicate the SEM in positive direction from three biological replica. See also Figures S2 and S3 and Tables S2 and S4.
H3K9, K27, K36, or combinations of multiple of these, all of which yielded viable embryos. For mutations in mes-2 and mes-4, which cause maternal effect sterility (Capowski et al., 1991), we scored embryos of the second homzygous generation, which lack both maternal and zygotic MES proteins.

Ten out of the 11 single and double mutants tested were defective in array silencing, albeit not all to the same degree (Figure S2B; Table S2). However, arrays remained peripheral in all but two strains (Figure 3B; Table S2). The only single mutant with even partial array detachment was a set-25 deletion (Figure 3B). Although the effect of set-25 mutation on array position was significant ($p < 8 \times 10^{-7}$), 70% of the arrays nonetheless remained at the nuclear periphery in this mutant (Figure 3B).

Complete release of arrays was only seen when we additionally deleted met-2, another HMT. Notably, the mutation of met-2 alone did not cause significant array detachment and only mildly derepressed it (Figures 3B and S2A and S2B).

We confirmed that the observed array detachment in the double set-25 met-2 mutant did not stem from allele-specific effects, or an unrelated background mutation, by scoring transgene position in another deletion allele of met-2 combined with a set-25 mutation and in a met-2 mutant treated with set-25 RNAi (Figure S2E). All three deletion alleles either span the SET domain or introduce a premature stop codon upstream of it (Figure S2D). These results allow us to conclude that met-2 and set-25 function redundantly to promote perinuclear localization and gene array silencing in C. elegans embryos. Loss of both recapitulates the loss of heterochromatin anchoring phenotype associated with sams-3/-4 RNAi.

met-2 and set-25 Are Required for Mono-, Di- and Trimethylation of H3K9

The SET domain of SET-25 is homologous to the mammalian enzymes EHM1/G9a (28.8% identity, 44.6% similarity) and Suv39h1/2 (27.9% identity, 45.7% similarity), which both target histone H3K9 (Rea et al., 2000; Tachibana et al., 2002). SET-25, however, lacks both the Chromodomain and the Ankyrin repeats present in Suv39h1/2 or G9a (Figure 3A). Similarly, MET-2 is homologous to the mammalian H3K9 HMT SETDB1 (Andersen and Horvitz, 2007; Bessler et al., 2010). This suggests that MET-2 and SET-25 target H3K9, although additional nonhistone targets may exist.

To test whether the deletion of met-2 and set-25 indeed altered specific histone methylation states, we measured global histone methylation in early C. elegans embryos carrying mutations in either met-2, set-25, or in both genes by relative quantification using LC-MRM mass spectrometry. We found no systematic differences in the methylation levels of H3K23, K27, or K36 in either single or double mutants, but we found striking changes in the methylation of H3K9 (Figures 3D and S3). In agreement with previous reports (Andersen and Horvitz, 2007; Bessler et al., 2010), mono-, di-, and trimethylation of H3K9 were all reduced in the met-2 single mutant, although each could be detected at 10% to 30% of wild-type levels (Figure 3D). In the set-25 single mutant, on the other hand, H3K9me1 and me2 were at wild-type levels, whereas no H3K9me3 could be scored. Importantly, in the met-2 set-25 double mutant, we could detect no mono-, di- or trimethylation of H3K9 whatsoever (Figure 3D). This shows that there are no other histone H3K9 methyltransferase activities in the worm embryo and allows us to conclude that in the absence of SET-25, MET-2 catalyzes only H3K9 mono- and dimethylation. Moreover, whereas SET-25 alone can generate all three methylation states, its efficiency for H3K9 trimethylation is strongly increased when H3K9me1/2 is provided by MET-2. Together these data suggest that the two enzymes act in a step-wise manner. First, MET-2 mono- and dimethylates H3K9. Subsequently, SET-25 uses H3K9me1/2 as a substrate for trimethylation.

Heterochromatin anchoring was only partially compromised in the absence of SET-25 but was completely lost in the double mutant (Figure 3B). This suggests that H3K9me1/2 is sufficient to anchor ~70% of the arrays at the INM in the C. elegans embryo (versus 90% in wild-type). Even though the arrays remained peripheral in the absence of H3K9me3 arrays, they were strongly derepressed (Figure 3B and S2A and S2B). Trimethylation of H3K9 on peripheral arrays by SET-25 is therefore crucial for efficient array repression but anchoring can be mediated by either H3K9me1/2 or H3K9me3.

Mass spectrometry of histones from L1 larvae also showed strongly reduced levels of H3K9 methylation in the set-25 met-2 double mutant, yet peripheral anchoring in these differentiated cells was affected to a much smaller degree (Figures S2F and S3). This suggests that additional anchoring mechanisms exist in differentiated tissues that may not rely exclusively on H3K9 methylation.

H3K9me1 and me2 Are Enriched at the Nuclear Periphery, Independently of H3K9me3

We next asked whether endogenous genomic domains carrying H3K9 methylation are similarly enriched at the INM. To test this, we localized H3K9me1, me2, and me3, and total histone H3 by indirect immunofluorescence with specific antibodies (Figure S4A) in the nuclei of wild-type and set-25 mutant embryos lacking a transgene array. We counterstained the INM with antibodies for either C. elegans lamin (LMN-1) or nuclear pores (Figure 4A).

We measured ~150 H3K9 methylation profiles across the nuclear diameter of the equatorial focal plane of embryonic nuclei. As expected, the distribution of total histone H3 was identical to that of the DNA signal. In contrast, all three methylated forms of H3K9 showed enrichment at the nuclear periphery (Figure 4B, left). Repeating the same analysis in the set-25 mutant, in which we detected no H3K9me3, revealed persistent perinuclear enrichment of H3K9me1 and H3K9me2 (Figure 4B, right). This is consistent with the INM attachment observed for gene arrays in the absence of H3K9me3 and suggests that endogenous domains carrying H3K9me1/2 bind the nuclear envelope independently of H3K9me3.

Mutation of met-2 and set-25 Globally Reduces Lamin Interaction of Chromosome Arms

We next asked whether the positioning of endogenous domains bearing H3K9 methylation is similarly sensitive to the loss of SET-25 and MET-2. In the worm, H3K9 methylation is enriched in the distal third of each chromosome arm (Liu et al., 2011; Figure 5C). In agreement with our proposal that H3K9me
serves as a trigger for perinuclear chromatin anchoring. H3K9me-rich chromosome arms were found to coimmunoprecipitate with LEM-2, a lamin-associated component of the INM (Ikegami et al., 2010). To see whether H3K9me contributes to the peripheral localization of these endogenous domains, we applied lamin-DamID (Pickersgill et al., 2006) to probe their subnuclear position in wild-type and set-25 met-2 mutant worm embryos.

Specifically, we expressed a fusion protein between C. elegans lamin (LMN-1) and the E. coli adenine DNA methyltransferase (Dam) at low levels in C. elegans embryos. The LMN-1-Dam fusion was incorporated into the endogenous lamin meshwork at the nuclear periphery (data not shown) where it preferentially methylated DNA in close proximity. We amplified adenine methylated DNA by PCR from three biological replicas of each genotype and hybridized it to genomic tiling arrays by using DNA extracted from strains expressing a freely diffusible Dam-GFP fusion as competitor. This neutralizes the impact of sequence context on Dam activity.

Consistent with published chromatin immunoprecipitation (ChIP) results for the lamin interacting factor LEM-2 (Ikegami et al., 2010), we found that the LMN-1-DamID signal was strongly enriched on the arms of all autosomes and on the left arm of the X chromosome in wild-type embryos (Figure 5A, black line). In contrast, the enrichment of the LMN-1-DamID signal on chromosome arms as compared to central domains was significantly reduced in the set-25 met-2 double mutant (Figure 5A, red line). This argues that the methylation deposited by SET-25 and MET-2 plays a role in the peripheral positioning of endogenous heterochromatin.

Intriguingly, the magnitude of reduction in LMN-1 DamID upon mutation of met-2 and set-25 was correlated with levels of H3K9 methylation in wild-type cells (Figure 5D and S5A). The more enriched for H3K9 methylation, the stronger the effect of the double mutant. This suggests that regions on chromosome arms with low H3K9me (e.g., ChrIV-R) use an alternative anchoring mechanism that is independent of this mark that accounts for the residual enrichment of LMN-1 on the distal chromosome arms in the set-25 met-2 double mutant. Interestingly, positioning of the X chromosome was completely insensitive to loss of H3K9 methylation (Figure 5A).

To verify that domains with either high or low H3K9 methylation levels behave differentially in response to the double mutant, we measured the subnuclear position of two loci on the right arm of chromosome V (ChrV-R) by fluorescence in situ hybridization (FISH) and microscopy. We first scored a 30 kb domain next to the C18D4.6 locus that lies in a region of very high H3K9me3 and showed strongly reduced LMN-1 interaction in the set-25 met-2 mutant (Figures 5A and 5C). Indeed, 3D FISH confirmed that this locus shifted from a peripherally enriched to a near random distribution upon loss of H3K9 methylation (Figures 5E and 5F). On the other hand, for thepha-4 locus, which is 170 kb away from the telomere of ChrV-R and has comparatively low levels of H3K9 methylation, we did not score a significant shift away from the nuclear lamina in the double mutant, either by DamID or by microscopy (Figures S5B and S5C). This suggests that thepha-4 locus may be positioned at the INM by an H3K9me-independent mechanism.

Taken together, by lamin-DamID and by microscopy we confirm an important role of SET-25 and MET-2 HMTs and the mono-, di-, and trimethylation of histone H3K9 in the anchoring of native chromosome arms. At the same time, we identify a residual anchoring pathway that confers H3K9-independent positioning.

We next compared gene expression of wild-type and set-25 met-2 mutant embryos by using genome-wide expression
arrays. Consistent with our conclusion that transcriptional activity and position are not obligately linked, we did not find a strong genome-wide correlation of gene detachment and upregulation (data not shown). Nevertheless, among the genes upregulated in the double mutant, the C18D4.6 locus had strongly increased expression (12-fold) in the set-25 met-2 mutant (Figure 5G). This indicates that subnuclear position mediated by H3K9me correlates with the silencing of some, but not all, genes.

MET-2 Is Enriched in the Cytoplasm
To examine the direct function of SET-25 and MET-2 in chromatin anchoring and silencing, we next studied the subcellular localization of the enzymes themselves. This was performed by expressing each enzyme as a fusion to mCherry (mCh). Both fusions were functional, as their expression in the set-25 and met-2 mutants restored H3K9 methylation (Figure S4B). Intriguingly, mCh-MET-2 was primarily cytoplasmic, whereas mCh-SET-25 was strongly enriched in the nucleus (Figure 6A).
We scored an identical localization for MET-2 with either a C-terminal or an N-terminal tag (Figure S4C). It is therefore unlikely that the cytoplasmic localization of mCh-MET-2 is due to a disruption of normal protein function by mCherry. In the cytoplasm, MET-2 would methylate nonnucleosomal histones, similar to the role proposed for the cytoplasmic fraction of the mammalian MET-2 homolog SETDB1 (Loyola et al., 2006; Loyola et al., 2009). The cytoplasmic localization of MET-2 also agrees with the step-wise deposition of H3K9 methylation, as suggested by our mass spectrometry data (Figure 3D).
SET-25 Localizes to Heterochromatic Perinuclear Foci

Careful inspection of mCh-SET-25 localization revealed that it was enriched in subnuclear foci that were often located at the nuclear periphery (80% in zone 1, Figures 6B and 6D) and which colocalized with both H3K9me3 and the worm HP1 homolog HPL-1 (Figure S6A). We did not see overlap of mCh-SET-25 with both H3K9me3 and the worm HP1 homolog nuclear periphery (80% in zone 1, Figures 6B and 6D) and which was enriched in subnuclear foci that were often located at the nuclear periphery. Careful inspection of mCh-SET-25 localization revealed that it was enriched in subnuclear foci that were often located at the nuclear periphery. SET-25 localization was dependent on H3K9 methylation.

Although mRNA levels of transgenic mCh-SET-25 were significantly higher than endogenous SET-25 (data not shown), the appearance of mCh-SET-25 foci is not simply a result of its expression level. Notably, we find that SET-25 foci are completely dispersed in embryos depleted for sams-3 but have equal or even higher levels of mCh-SET-25 expression (see below). More importantly, the overexpressed mCh-SET-25 protein is functional because it rescued the loss of H3K9me3 in the met-2 set-25 mutant (Figure S4B). To see whether the SET-25 foci correspond to heterochromatic domains, we next expressed mCh-SET-25 in embryos carrying the repetitive gwls4 array. In this strain, over the weaker perinuclear signal stemming from endogenous SET-25 foci, mCh-SET-25 formed two very bright foci that precisely colocalized with the GFP-LacI signal in every cell (Figure 6C).

SET-25 Localization Depends on H3K9 Methylation, but Is Independent of Its SET Domain

The colocalization of SET-25 with H3K9me3 and its enrichment on repetitive transgene arrays prompted us to test whether SET-25 localization was dependent on H3K9 methylation. Indeed, upon depletion of sams-3/4 mCh-SET-25 distribution became diffuse, and it no longer accumulated in subnuclear foci (Figures 6B and 6C). To test whether SET-25 foci depend specifically on H3K9 methylation, we created a point mutation in the catalytic site of SET-25 (C645A), which corresponds to a catalytic null mutation in the homologous SET domain of human Suv39h (Rea et al., 2000). Like the wild-type mCh-SET-25, the C645A mutant still formed perinuclear foci, yet mCh-SET-25-C645A was completely dispersed in the met-2 set-25 mutant, which specifically loses H3K9 methylation (Figure 6E). We conclude that SET-25 enrichment at the INM and focus formation are dependent on methylated H3K9 yet do not require that the bound SET-25 itself is catalytically active.

Given that SET-25 has no obvious methyl-binding domain, we tested whether its recruitment to peripheral foci would depend on its SET domain. To this end, we expressed an mCh-SET-25 fusion that was truncated upstream of the SET domain (SET-25SET) in a strain carrying the repetitive gene array gwls4. Like full-length SET-25, SET-25SET was strongly enriched on the gwls4 array (Figure 6F) and was dispersed in both a met-2 set-25 double mutant and the set-25 single mutant that lose H3K9me3 (Figure 6F and S6C). We conclude that the localization of SET-25 to perinuclear foci involves molecular interactions outside its catalytic domain and requires H3K9me3.

We can exclude that SET-25 is recruited to H3K9me3 by the Chromodomain-containing HP1 homologs HPL-1 and HPL-2. Although SET-25 colocalizes with HPL-1, it remained enriched on the gwls4 array in endogenous perinuclear foci in the hpl-1 hpl-2 double-deletion strain (Figure S6B). Because we have not seen a specific direct interaction of SET-25SET with H3K9me3 in peptide binding assays (data not shown), we propose that SET-25 acts in a complex with other factors.

In summary, our results show H3K9me-dependent recruitment of gene arrays and chromosome arms to the nuclear envelope. SET-25, which deposits trimethylation, becomes enriched in H3K9me3 foci at the nuclear periphery, in a manner dependent on its own reaction product. This circularity could generate a self-sustaining subnuclear compartment that is enriched for H3K9 HMT activity, which in turn stabilizes silencing by efficiently trimethylating H3K9me1 and me2 (Figure 7).

DISCUSSION

Methylation of H3K9 Provides a Molecular Signal for Perinuclear Chromatin Localization

The eukaryotic nucleus shows remarkable spatial organization, with heterochromatin often associated with the nuclear envelope (NE) (Akhtar and Gasser, 2007; Kind and van Steensel, 2010).
Here, we report the first systematic screen for factors required for the perinuclear sequestration of heterochromatin within a multicellular organism. Using a repetitive GFP-expressing transgene as a model for heterochromatin, we performed a genome-wide RNAi screen for both derepression and detachment. The only targets that compromised both encoded S-adenosylmethionine synthetases (Figure 2). This prompted us to carry out a systematic survey of putative HMTs, from which we identified two enzymes, MET-2 and SET-25, that mediate anchoring by methylation of histone H3K9 (Figure 3). In mutants lacking only one of the two HMTs, repetitive gene arrays remained perinuclear (Figure 3), whereas loss of both removed all H3K9me and eliminated array anchoring.

The only histone residue for which we scored reduced methylation in met-2 and set-25 mutants is H3K9. However, we do not exclude that it has other nonhistone substrates. The loss of HMTs that modify residues other than H3K9 did not affect array anchoring. We tested conditions that eliminated H3K27me3 (Figure S2C, mes-2; Bender et al., 2004), as well as H3K36me2/3 (Table S2, mes-4 met-1; Furushashi et al., 2010), yet arrays remained anchored. Thus, we conclude that H3K9 methylation is a molecular signal for chromatin positioning at the NE and rule out a requirement for other histone H3 methyl marks in this process.

Despite strong correlations between peripheral localization and transcriptional inactivity, the two are not strictly linked in worms or in mammals (Meister et al., 2010; Peric-Hupkes et al., 2010). Indeed, we show that expression from the worm or in mammals (Meister et al., 2010; Peric-Hupkes and transcriptional inactivity, the two are not strictly linked in (Figures S2B and S2C; Table S2). We can therefore exclude provoked strong derepression without altering array position mutations, and loss of several other chromatin factors, hpl-2 marks in this process.

H3K9 Methylation Correlates with Lamin-Associated Domains from Worms to Man
The role of SET-25 and MET-2 in tethering chromatin to the NE is not limited to transgene arrays. We have shown that the same is true for endogenous loci in the repeat-rich arms of C. elegans chromosomes. Thus, our study provides the first causal evidence for a role of H3K9 methylation in perinuclear chromatin anchoring. DamID studies showed that 80% of non-centromeric H3K9me2 domains overlap with LADs in mammals (Peric-Hupkes et al., 2010; Wen et al., 2009). The anchoring of mammalian LADs has not previously been shown to be H3K9 dependent, but this striking correlation makes it likely that the function of H3K9me1/2 in perinuclear chromatin anchoring is conserved beyond worms.

We show that H3K9me provides a signal to position chromatin at the NE. But what recognizes the H3K9me mark? Using genetic null alleles, we show that none of the H3K9me binding factors previously characterized in C. elegans are involved: array anchoring was unaltered upon loss of the HP1 homologs HPL-1 or HPL-2, alone or together, even in cells lacking the MBT domain protein LIN-61 (Figure S2C). This indicates that a novel class of yet uncharacterized factors mediates the molecular link between the nuclear periphery and H3K9me. Given that we identify a two-step anchoring process in which either H3K9me1/2 or H3K9me3 can signal peripheral localization, we also expect redundancy among these H3K9me readers, requiring combinatorial RNAi and/or screens in sensitized backgrounds to allow their identification.

Additional Pathways Position Chromatin in an H3K9me3-Independent Manner
Diminished H3K9 methylation levels or loss of met-2 causes a reduction in brood-size, low-penetration embryonic lethality, a high incidence of males, and the formation of ectopic vulvae in sensitized backgrounds (Andersen and Horvitz, 2007; Koester-Eiserfunke and Fischle, 2011 and data not shown). Nevertheless, most set-25 met-2 double-mutant animals are viable and fertile even though they lack detectable H3K9 methyl-ation. Given the strict conservation of perinuclear chromatin anchoring from yeast to man (Kind and van Steensel, 2010), it is perhaps surprising that loss of anchoring is compatible with worm development. We note, however, that although the amplitude of L MN-1-DamID on chromosome arms was strongly reduced in the met-2 set-25 mutant, chromosome arms retained slightly higher LMN-1-DamID signals than did chromosome centers (Figure 5). We also found that arrays become peripheral even in the absence of H3K9me upon cell differentiation (Figures S2F and S3). Thus, although we demonstrate a clear role for H3K9 methylation in perinuclear anchoring of chromatin in C. elegans embryos, partially redundant pathways of chromatin anchoring may ensure normal worm development even in the absence of H3K9 methylation.

A Conserved Two-Step Model for Generating H3K9me3-Containing Heterochromatin Foci
The establishment of H3K9me3 at mammalian centromeres has been proposed to occur in a step-wise manner by at least two enzymes (Loyola et al., 2006; Loyola et al., 2009; Peters et al., 2001). The methylation specificities of MET-2 and SET-25 argue for a similar step-wise methylation of H3K9 on perinuclear heterochromatin. Moreover, a step-wise mechanism is supported by the distinct subcellular localizations of the two enzymes. H3K9me1/2 is deposited by MET-2, which largely resides in the cytoplasm (Figure 6A). Similarly, SETDB1, the mammalian homolog of MET-2 (Loyola et al., 2006), and the two redundant mouse enzymes PRDM3 and PRDM16 (Pinheiro et al., 2012, this issue of Cell) are abundant in the cytoplasm and mediate H3K9me1. Indeed, one-third of nonnucleosomal H3 carries K9me1 in mammals (Loyola et al., 2006). The anchoring function of H3K9me1/2 is deposited by MET-2, which largely resides in the cytoplasm (Figure 6A). Similarly, SETDB1, the mammalian homolog of MET-2 (Loyola et al., 2006), and the two redundant mouse enzymes PRDM3 and PRDM16 (Pinheiro et al., 2012, this issue of Cell) are abundant in the cytoplasm and mediate H3K9me1. Indeed, one-third of nonnucleosomal H3 carries K9me1 in mammals (Loyola et al., 2006). We propose that after nuclear import and incorporation into nucleosomes, H3K9me1/2 serves as a substrate for trimethylation by SET-25 (Figures 6B and 7). Given the enrichment of SET-25 in perinuclear foci, this latter step may occur preferentially at the nuclear periphery. The ability of H3K9me1/2 to mediate association with the nuclear envelope thus would promote trimethylation and repression. In mammalian cells...
lacking both Suv39h isozymes, centromeres are devoid of H3K9me3, yet they remain clustered. A proposed explanation was that H3K9me1, which accumulates on centromeres in suv39h1/2 double mutants (Peters et al., 2001), compensates for me3. Here, we show that this model holds for peripheral heterochromatin in C. elegans: arrays remained peripherally enriched in the absence of H3K9me3, but were entirely released in the set-25 met-2 double mutant, which lacks all H3K9 methylation.

It has so far not been possible to deplete H3K9me1 completely from mammalian centromeres. However, recent evidence suggests that this can be achieved by simultaneous downregulation of the two H3K9-specific monomethyltransferases, PRDM3 and PRDM16 (Pinheiro et al., 2012, this issue of Cell). Analogous to our data implicating H3K9me1/2 in chromatin positioning, loss of H3K9me1 in mice provokes dispersion of centromeric foci and transcription of major satellite (Pinheiro et al., 2012, this issue of Cell).

A Self-Reinforcing Mechanism to Sequester Silent Chromatin at the Nuclear Periphery

Several HMTs are recruited to chromatin by the marks they deposit. It is generally assumed that this triggers the modification of neighboring nucleosomes and results in spreading of the chromatin mark (Bannister et al., 2001; Lachner et al., 2001). Evidence for such a mechanism exists for the propagation of H3K27me3 by PRC2 (Hansen et al., 2008), for the spreading of H3K9me3 in fission yeast by Ctr4 (Zhang et al., 2008), and for the maintenance of H3K9me3 at centromeric repeats in mammals by Suv39 (Bannister et al., 2001; Lachner et al., 2001). In this sense, SET-25 fits the paradigm because it becomes enriched in foci that colocalize with H3K9me3. However, in contrast to Suv39h1/2, which are recruited to methylated H3K9 via HP1 (Bannister et al., 2001; Lachner et al., 2001), localization of SET-25 to perinuclear foci is independent of the two worm HP1 homologs (Figure S6). Moreover, SET-25 has little or no sequence homology to Suv39h outside its SET domain and lacks an identifiable Chromodomain. Future work will determine whether SET-25 binds directly to H3K9me3 or whether it is recruited by another nonhistone protein.

If H3K9 methylation is the trigger for perinuclear anchoring, the formation of heterochromatin itself should be able to drive its spatial separation from active chromatin domains. Because SET-25 associates with H3K9me3, the spatial separation of euchromatin and heterochromatin generates an unequal subnuclear distribution of the HMT that deposits the repressive H3K9me3 mark. Its perinuclear sequestration, in turn, has the potential to render the nuclear periphery a favorable zone for H3K9 trimethylation. This could act as a self-reinforcing silencing mechanism that ensures a robust spatial separation of active and inactive chromatin domains (Figure 7).

In conclusion, the histone modification and deposition pathway documented here suggests a means for the autonomous assembly of a subnuclear compartment that supports efficient heterochromatin formation. The many analogies to mammalian silencing suggest that the principles identified here have cross-species relevance.

EXPERIMENTAL PROCEDURES

Molecular Biology and Transgenic Strains

All plasmids, except plasmids for DamID constructs, were generated by MultiSite Gateway clonning (Invitrogen). The C645A mutation in set-25 was introduced by site-directed mutagenesis. Strains used in this study are listed in Table S3. DamID strains were backcrossed twice, the set-25(n5021) and met-2(n4256) alleles five times to wild-type strains. Worms were grown at 22.5°C, except for the zoning assays in lin-61 hapl-2 mutants (25°C) and for DamID (20°C).

RNAi

For individual assays, RNAi was performed by feeding on plates (Timmons et al., 2001). The RNAi screen was done in liquid cultures (adapted from Lehner et al., 2006, see Extended Experimental Procedures). An EcoRIV fragment containing 25 bp identical to GFP-LacI was removed from vector L4440 (Fire vector library) and used as mock RNAi control. A strain supplemented with an additional copy of a lacO free baF-1::GFP-lacI transgene was used to enhance the GFP signal for gre4 visualization.

Immunofluorescence and Fluorescence In Situ Hybridization

Immunofluorescence (IF) was carried out as previously described by freeze-cracking and brief fixation in 1% paraformaldehyde followed by short post-fixation in methanol (Meister et al., 2010). For quantitative histone IF and antibodies used see Extended Experimental Procedures.

Fluorescent probes were made by nick-translation using fluorescent dUTP-Atto647N (Jena Bioscience) and fosmid WRM0637aA03 as a template. For FISH, embryos were fixed in methanol (−20°C, 2') followed by 4% paraformaldehyde (4°C, 10') after freeze-cracking. Embryos were permeabilized in PBS-Triton X-100 (0.5%) and treated briefly with 0.1M HCl and RNase. FISH probe and sample were denatured at 72°C and hybridized in 50% formamide/2X SSC for 3 days at 37°C, followed by three low- and two high-stringency washes (2X SSC, 37°C / 0.2X SSC, 55°C).

Microscopy

Microscopy was carried out on a spinning disc confocal microscope (Visitron, Puchheim), as previously described (Meister et al., 2010). Deconvolution (Huygens Pro) was applied to Figures 5, 6, S5, and S6. 3D reconstructions were generated by using Imaris (Bitplane). Quantitation of array distribution on focal stacks of images using the ImageJ plugin PointPicker (http://bigwww.epfl.ch/thevenaz/poinrticker/) was performed as previously described (Meister et al., 2010). For radial quantitation of H3K9me2, 200 nm spaced image stacks were acquired and processed by deconvolution. Using >120 independent manually selected line profiles (5 pixels wide) at the central nuclear plane, lines were extended laterally by 12.5% of the nuclear diameter, and signal intensities were extracted and pooled into 100 bins. Individual profiles were normalized, averaged, and plotted by using R.

Isolation of Histones and Mass Spectrometry

Early embryos were obtained by bleeding from synchronized young adults grown from 53 to 58 hr after L1 stage at 22.5°C. H3 was isolated for mass spectrometry as described in Extended Experimental Procedures. Free and monomethylated amino groups were chemically modified with propionic anhydride prior trypsin digestion (Peters et al., 2003). After elution from gel the differently methylated peptides were quantified by LC-MRM on an AB SCIEX 4000 QTRAP, and peak area ratios were normalized to wild-type and histone H3.

LMN-1-DamID

All DamID constructs were integrated as a single-copy on Chromosome II by MosSCI (Frøkjaer-Jensen et al., 2008). Details on strains, plasmids, DNA isolation, and computational analysis are in Extended Experimental Procedures.

ACCESSION NUMBERS

The GEO accession number for the DamID microarray raw data is GSE37226.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six figures, and four tables and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2012.06.051.

ACKNOWLEDGMENTS

We thank Y. Gruenbaum and T. Jenuwein for antibodies; M. Thomas, Katic for help with injections; the Caenorhabditis Genetics Center; R. Horvitz, M. Tijtsman and F. Palladino for strains; D. Schübeler, A. Peters, and H. Ferreira for critical reading of the manuscript; and L. Hoerner for help with array hybridization. This work was supported by the European Union Network of Excellence “Epigenome”, the Novartis Research Foundation, the “Fondation Suisse de recherche sur les maladies musculaires”, the Spanish Ministry of Science and Innovation (BFU2010-15478 to P.A.), and EMBO (ASTF 478-2011 to C.G.A.).

Received: June 12, 2011
Revised: April 5, 2012
Accepted: June 26, 2012
Published: August 30, 2012

REFERENCES

Cell 150, 934–947, August 31, 2012 ©2012 Elsevier Inc. 947
Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

RNAi Library Screen
For the genome-wide screen RNAi was performed in liquid by using a protocol adapted from (Lehner et al., 2006). L1 larvae of strain NL2507 were synchronized by hatching in the absence of food, pelleted, and resuspended in S-basal (supplemented with 1 mM Carbenicillin and 4 mM IPTG). One hundred microliters worm suspension, containing approximately 20 larvae were dispensed in 96 well plates, where each well contained pelleted bacteria expressing dsRNA from a genome-wide RNAi library (Kamath et al., 2003). Worms were grown for 4 days at 22.5°C under agitation (150 rpm) and subsequently anesthetized with 1 mM Levamisol. Embryonic F1 progeny within the uterus of the P0 worms manually checked within the 96 well plates for increased GFP expression on an inverted fluorescent microscope (Zeiss Axiovert, 10× air objective). Positive hits were reproduced three times, and clone identity was verified by sequencing.

Antibodies
Antibodies used for IF were as follows. Figure 3: anti-H3K9me3, (gift from T. Jenuwein, #4861), anti-H3K27me3 (Upstate 07-449), anti-H3K36me3 (Abcam, ab9050), anti-H3K4me3 (Upstate 07-473), anti-GFP (Roche, 11 814 460 001). Figures 5 and S5: anti-H3K9me1 (gift from T. Jenuwein, #4858), anti-H3K9me2 (Abcam, ab1220), anti-H3K9me3 (Cell Signaling Technology, #9754S, Lot 1), anti-H3 (Abcam, ab1791), anti-nuclear pore/Mab414 (Abcam, ab24609), anti-LMN-1 (gift from Y. Gruenbaum).

Quantitative IF
sams-3 and control RNAi were performed for two generations separately with strains that do (NL2507) and do not (JM50) express GFP. Embryos from both strains were mixed prior to staining and imaged at same illumination conditions. GFP signal was used to classify embryos, and maximum intensity projections were quantified by using ImageJ.

Isolation of Histones from C. Elegans Embryos and Mass Spectrometry
Early embryo populations were obtained by bleaching from young adults grown for 53 to 58 hr at 22.5°C on peptone enriched plates starting with synchronized L1 larvae, and histones were isolated for mass spectroscopic analysis. For each replica, embryos were extracted from approximately 300,000 worms per strain, frozen as droplets in liquid N2, and ground to powder by using a ball mill (30 s, 30 Hz). The frozen powder was resuspended in lysis buffer (LB) (100 mM HEPES pH7.5, 50 mM NaCl, 1% Triton X-100, 0.1% DOC, 1 mM EDTA, Protease inhibitors). To remove soluble proteins the suspension was centrifuged at high speed (10 min, 16,000 g) and the supernatant was discarded. The insoluble pellet was resuspended in LB and sonicated to shear DNA and solubilize chromatin. Aliquots of the soluble chromatin fraction were separated by SDS-PAGE and the Coomassie-blue stained band containing histone H3 was cut from gel. The bands were processed twice by propionylation of free, as well as monomethylated amino groups prior trypsin digestion as adapted from Garcia et al. (2007) and Peters et al. (2003). The eluted peptides were analyzed on an Agilent 1100 nanoLC system coupled to an AB SCIEX 4000 QTRAP by LC-MRM. For unambiguous assignment of the signals two transitions prior trypsin digestion as adapted from Garcia et al. (2007) and Peters et al. (2003). The eluted peptides were analyzed on an Agilent 1100 nanoLC system coupled to an AB SCIEX 4000 QTRAP by LC-MRM. For unambiguous assignment of the signals two transitions were monitored for each peptide. Relative intensities were calculated using Analyst 1.4.2 and subsequent area ratios were calculated relative to the corresponding wild-type histone H3 peptides.

Lamin-DamID

Strains and Plasmid
Strains used for DamID experiments were made by using the MosSCI technique (Frokjaer-Jensen et al., 2008) leading to single-copy insertion of Dam-fusion constructs in chromosome II. Strains BN195 (bqSI195[pBN65(unc-119+) hsp16.41p: dam::myc::lmmn-1]) II) and BN196 (bqSI196[pBN67(unc-119+) hsp16.41p: gfp: myc::dam]) II), were constructed injecting the plasmids pBN65 and pBN67, respectively, together with transformation markers (pJL43.1, pCFJ90, pCFJ104 and pBN1) in strain EG4322 (ttt5605 II, unc-119[ed3] III) (Frokjaer-Jensen et al., 2008). Strains carrying the integrations were outcrossed twice with N2. Strains BN239 (set-25(n5021) met-2(n4256) bqSI195[pBN65(unc-119+) hsp16.41p: dam::myc::lmmn-1]) II) and BN241 (set-25(n5021), met-2(n4256) bqSI196[pBN67(unc-119+) hsp16.41p: gfp: myc::dam]) II) were constructed crossing BN195 and BN196 with GW638, respectively.

Amplification of Methylated DNA
Wild-type and set-25 met-2 strains carrying identical single-copy LMN-1-Dam or GFP-Dam constructs were grown in parallel and in three independent biological replicates. For each of the twelve cultures, 35,000 L1 larvae were grown synchronously to adults in 50 ml S-medium containing dam- GM119 E. coli strain as food source under continuous agitation (180 rpm) at 20°C for 66 hr. Embryonic progeny was harvested from adult worms by using hypochlorite treatment and genomic DNA (gDNA) was purified from 30 mg of embryos. Methylated fragments were amplified from 5 μg of gDNA by sequential Dpnl / Dpnl digest, adaptor ligation, and PCR by using adaptor-specific primers as described (Greil et al., 2006) with minor modifications. 1 μg of PCR product of LMN-1-Dam and GFP-Dam samples were fluorescently labeled and competitively hybridized on NimbleGen C. elegans whole-genome-tiling arrays (NimbleGen_Celegans_2.1M array). For each condition, a dye-swap experiment was done for one of the three replicates.
Normalization of the DamID Tiling Array Data

The probe sequences of the NimbleGen_Celegans_2.1M array were remapped to ce6 (genome.ucsc.edu) by extracting the actual probe sequences from the file 100718_Celegans180_ChIP_HX1.ndf provided by NimbleGen and mapping the probes to ce6 by using Bowtie (Langmead et al., 2009). Only uniquely mappable probes were used for the downstream analysis (97.4%). All tiling arrays were processed in R (Ihaka and Gentleman, 1996; Development core team, 2004) by using bioconductor (Gentleman et al., 2004) and the package Ringo (Toedling et al., 2007). The arrays were normalized by using the following command: normalizeWithinArrays (RG, method = "loess"). Due to substantial variability in the data, we smoothed the enrichment values by using a window size of 2,000 probes. All depicted genome tracks are based on this resolution.

Reanalysis of H3K9 Data from modENCODE

We downloaded ChIP-chip data for H3K9me1 (GSM562776), H3K9me2 (GSM562756) and H3K9me3 (GSM562716) from GEO (http://www.ncbi.nlm.nih.gov/geo/) and remapped the probe sequences extracted from GPL8647_080922_modEncode_CE_chip_HX1.ndf to ce6 by using Bowtie (Langmead et al., 2009). Enrichment values were loess normalized by using the package Ringo (Langmead et al., 2009) and smoothed based on a window size of 2,000 probes.

The DamID microarray raw data are deposited at GEO (www.ncbi.nlm.nih.gov/geo, accession number GSE37226).

SUPPLEMENTAL REFERENCES

Figure S1. Redundant Function of Four C. elegans SAM Synthetases, Related to Figure 2

(A) Schematic drawing of sams-3 and sams-4 coding regions (blue), and sams-3/4 RNAi clones (brown). Both genes and RNAi clones are highly similar (100% sequence identity over 665 nucleotides coding region, red dotted line), and are therefore both equally downregulated by available RNAi clones that target either gene.

(B) Immunofluorescence staining for GFP-LacI (green), lamin (yellow), and LacZ (red) of strain GW471 treated with sams-3 RNAi and control. DNA was counterstained with Hoechst (blue). The strain GW471 carries a caIs3[pha-4::LacZ; rol-6(su1006)] gene array, and expresses GFP-LacI from an independent source to monitor transgene position. The array is found internal in the nucleus after sams-3 RNAi, but LacZ expression remains restricted to the 8 intestinal precursor cells present at this developmental stage, in both mutant and control animals (white asterisk).

(C) Images of sams-3 and control RNAi treated embryos stained for indicated histone methyl marks by immunofluorescence. H3K27me3 and H3K36me3, but not H3K4me3 are strongly reduced upon sams-3 RNAi.

(D) Downregulation of sams-3 does not increase embryonic lethality, but reduces brood-size. Wild-type worms were subjected to sams-3 RNAi for the indicated numbers of generations (up to 3) and the number of progeny per worm and embryonic survival rate were counted at each generation. Error bars = SEM.

(E) SAMS-3 and SAMS-4 act redundantly with SAMS-1. L1 larvae of the indicated genotypes were subjected to sams-3/4 or control RNAi and imaged after 2 days. The sams-1 and the sams-1/5 double mutant had a slight growth delay, but developed into fertile adults on control RNAi. In contrast to wild-type and sams-5 mutant animals, sams-1 and sams-1/5 mutants arrested at larval stages on sams-3/4 RNAi with high penetrance. Scale bar, 200 μm.
Figure S2. Array Derepression Is Not Sufficient for Array Detachment, Related to Figure 3

(A) Embryos carrying the repetitive array gwIs4[baf-1::GFP-LacI;myo-3::RFP] and indicated genotypes were imaged at identical exposure conditions. Shown is a maximum intensity projection of the GFP signal of 3D focal stacks of images. All panels are adjusted to identical contrast settings.

(B) Quantification of GFP intensity in embryos of indicated genotypes from images equivalent as shown in A. Whiskers: 10th and 90th percentile; black dots: outliers; black line: median; blue line: mean. See Table S2 for number of embryos scored.

(C) The H3K9me3 binding proteins LIN-61 and HPL-1/2 are not required for array anchoring. Three-zone scoring of the gwIs4 array in 50-100 cell embryos in lin-61 and hpl-1/2 single, double, and triple mutants. The gwIs4 array is strongly derepressed in the hpl-2 mutant (see B), but remains peripheral.

(D) Schematic representation of set-25 and met-2 coding sequences (blue) and domain structure (brown). Deletion alleles used in this study are marked in black. All three alleles induce a frame-shift that causes a premature STOP codon shortly downstream of the deletion (asterisk).

(E) Quantification of gwIs4 array position in met-2(ok2307) set-25(n5021) and met-2(n4256) set-25(RNAi) embryos by three-zone scoring assay as described in Figure 2.

(F) Mutation of set-25 and met-2 does not abolish perinuclear anchoring of the gwIs4 array in L1 larvae. (left) L1 larvae of strain GW712 carrying the gwIs4[baf-1::GFP-LacI;myo-3::RFP] array, a LMN-1-GFP transgene, and the set-25(n5021) met-2(n4256) mutation were imaged, and array position was quantified as described in Figure 2 in indicated tissues. In contrast to embryonic cells, the array is at the nuclear periphery in differentiated tissues. Nuclei of muscle cells were excluded from this analysis, since in muscle cells the array is central independent of the genetic background, due to the presence of the muscle-specific myo-3 promoter on the gwIs4 array (Meister et al., 2010).
Figure S3. Mutation of met-2 and set-25 Strongly and Specifically Reduces Methylation of Histone H3K9 in Embryos and in L1 Larvae, Related to Figure 3

Histone H3 was extracted from early embryos and L1 larvae mutated for met-2, set-25 or both genes. The abundance of the indicated peptides was measured by quantitative mass spectrometry and is shown relative to levels in wild-type extracts (gray dotted line, 100%). H3K9 methylation is strongly reduced in early embryos and L1 larvae, but no systematic changes are seen in either developmental stage for H3K23, 27, and 36. Error bars indicate the SEM in positive direction from 3 (embryos) or 2 (larvae) independent biological replica.
Figure S4. Validation of Antibodies and Fusion Proteins Used in This Study, Related to Figure 4

(A) Validation of H3K9me antibodies. Embryos of indicated genotypes were stained with indicated antibodies. H3K9 methylation signal was strongly reduced upon mutation of set-25 and met-2 demonstrating the specificity of the antibodies. The minor remaining signal for H3K9me3 in the set-25(n5021) mutant suggests that this antibody has a minor cross-reactivity to another modification or to unmodified histones. In agreement with previous reports (Bessler et al., 2010), H3K9me2 levels were also below detection levels in the met-2(n4256) single mutant (data not shown).

(B) mCh-SET-25 and mCh-MET-2 have H3K9 methylase activity. Fusion proteins were expressed in embryos carrying the transgene array gwiIs4 and the indicated deletion alleles. Both transgenes rescue the severe reduction of H3K9 methylation in the relevant mutant.

(C) MET-2-mCh localizes to the cytoplasm independent on the position of the fluorescent tag. MET-2 was C terminally tagged with mCherry and expressed under the control of its endogenous promoter. In worms as in embryos, MET-2 is localized in the cytoplasm. Top: MET-2-mCh in L1 larvae. Bottom left: magnified view of an intestinal cell. Bottom right: single focal plane of an embryo.

Scale bars, 5 μm.
Figure S5. Reduced LMN-1 Interaction Found in Sites of High H3K9 Methylation, Related to Figure 5

(A) Changes in LMN-1-Dam methylation between wild-type and set-25 met-2 mutant correlate with high levels of H3K9 methylation. Scatter plots of H3K9me1, me2, and me3 against the differential of LMN-1-Dam methylation between wild-type and set-25 met-2 mutant is shown.

(B) Magnified view of LMN-1-DamID signal on Chr V. The dotted lines mark the position of the C18D4.6 locus (gray) and the pha-4 locus (blue).

(C) 256 lacO sites were integrated next to the endogenous pha-4 locus on Chr V by transposon replacement. By expression of GFP-LacI in this strain the locus position was identified by fluorescence microscopy and quantified by three-zone scoring. Consistent with DamID data (see B) the peripheral localization of the endogenous pha-4 locus is not affected by mutation of set-25 and met-2. n = number of foci scored per condition.
Figure S6. SET-25 Colocalizes with HPL-1, but Not HPL-2 and Associates with Arrays Independently of HPL-1/2, Related to Figure 6

(A) Representative nuclei of embryos expressing mCh-SET-25 and HPL-1/2-GFP and embryo expressing mCh-SET-25 stained for H3K9me3. Scale bar, 2 μm.

(B) mCh-SET-25 is enriched on repetitive gene arrays and in perinuclear foci in hpl-1(tm1624) and hpl-1(tm1624) hpl-2(tm1489) double mutant. Embryos with and without the repetitive transgene gwIs4 and expressing mCh-SET-25 are shown. Scale bar, 2 μm.

(C) mCh-SET-25ΔSET is not enriched on the gwIs4 array in a set-25 met-2 double mutant. mCh-SET-25 levels was quantified in individual nuclei of wild-type and set-25 met-2 embryos. For each nucleus, the mCherry intensity in the nuclear volume occupied by the array was measured and divided by the mCherry intensity in an equivalent region outside the array. SET-25-mCh is significantly enriched on arrays in wild-type embryos (p < 0.001), but not in set-25 met-2 mutants (p = 0.552). Number of array foci measured: n = 9 (wild-type), 20 (set-25 met-2). Whiskers indicate 10th and 90th percentiles.
Table S1. Hits of Primary Screen for *let-858::GFP* Array Derepression, Related to Figure 1

<table>
<thead>
<tr>
<th>Chromatin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mes-3</td>
<td>PRC2 complex</td>
</tr>
<tr>
<td>mes-6</td>
<td>PRC2 complex</td>
</tr>
<tr>
<td>mes-4</td>
<td>NSD1 homolog</td>
</tr>
<tr>
<td>set-25</td>
<td>putative histone methyl transferase (G9a/Suv39h-like)</td>
</tr>
<tr>
<td>mrg-1</td>
<td>MRG15 homolog</td>
</tr>
<tr>
<td>hpl-2</td>
<td>HP1 homolog</td>
</tr>
<tr>
<td>lin-61</td>
<td>MBT domain protein</td>
</tr>
<tr>
<td>ZK1127.3</td>
<td>NuA4 complex</td>
</tr>
<tr>
<td>his-37</td>
<td>Histone H4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Splicing factors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gut-2</td>
<td>snRNP protein</td>
</tr>
<tr>
<td>lsm-5</td>
<td>snRNP protein</td>
</tr>
<tr>
<td>lsm-6</td>
<td>snRNP protein</td>
</tr>
<tr>
<td>sap-1</td>
<td>Spliceosome-associated Protein</td>
</tr>
<tr>
<td>K04G7.11</td>
<td>SYF2 splicing factor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metabolism</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sams-3</td>
<td>S-adenosylmethionine (SAM) synthetase</td>
</tr>
<tr>
<td>sams-4</td>
<td>S-adenosylmethionine (SAM) synthetase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>emb-4</td>
<td>helicase domain protein</td>
</tr>
<tr>
<td>mel-46</td>
<td>DEAD-like helicase</td>
</tr>
<tr>
<td>ubl-5</td>
<td>Ubiquitin-like family</td>
</tr>
<tr>
<td>F52C6.12</td>
<td>Ubiquitin-conjugating enzyme, E2</td>
</tr>
<tr>
<td>F25H5.5</td>
<td>Claspin homolog</td>
</tr>
<tr>
<td>Y65B4A.1</td>
<td>Transcription elongation factor TAT-SF1</td>
</tr>
<tr>
<td>Y57A10A.31</td>
<td>zinc-finger, RING type</td>
</tr>
<tr>
<td>mrp-5</td>
<td>multi drug resistance protein (ABC transporter)</td>
</tr>
<tr>
<td>spe-15</td>
<td>special myosin</td>
</tr>
<tr>
<td>gsp-3</td>
<td>Serine/threonine specific protein phosphatase</td>
</tr>
<tr>
<td>C35D10.7</td>
<td>unknown function</td>
</tr>
<tr>
<td>F33H1.3</td>
<td>unknown function</td>
</tr>
<tr>
<td>F54D10.5</td>
<td>unknown function</td>
</tr>
</tbody>
</table>
Table S2. List of HMT Mutants Tested for gwIs4 Array Detachment, Related to Figure 3

<table>
<thead>
<tr>
<th>Strain</th>
<th>genotype</th>
<th>GFP</th>
<th>sem</th>
<th>n</th>
<th>zone 1 [%]</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW76</td>
<td>wild-type</td>
<td>1.0</td>
<td>0.05</td>
<td>39</td>
<td>91</td>
<td>75</td>
</tr>
<tr>
<td>GW469</td>
<td>mes-4(bn23)</td>
<td>4.5</td>
<td>0.66</td>
<td>43</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>GW468</td>
<td>mes-2(bn11)</td>
<td>2.7</td>
<td>0.41</td>
<td>32</td>
<td>96</td>
<td>82</td>
</tr>
<tr>
<td>GW639</td>
<td>met-2(n4256)</td>
<td>2.4</td>
<td>0.24</td>
<td>37</td>
<td>83</td>
<td>90</td>
</tr>
<tr>
<td>GW640</td>
<td>set-25(n5021)</td>
<td>3.7</td>
<td>0.35</td>
<td>49</td>
<td>71</td>
<td>188</td>
</tr>
<tr>
<td>GW637</td>
<td>set-25(n5021) met-2(n4256)</td>
<td>5.2</td>
<td>0.69</td>
<td>29</td>
<td>20</td>
<td>181</td>
</tr>
<tr>
<td>GW650</td>
<td>set-25(n5021) met-2(ok2307)</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>39</td>
<td>77</td>
</tr>
<tr>
<td>GW556</td>
<td>mes-4(bn23) met-2(n4256)</td>
<td>9.1</td>
<td>1.08</td>
<td>30</td>
<td>88</td>
<td>33</td>
</tr>
<tr>
<td>GW554</td>
<td>mes-4(bn23) met-1(n4337)</td>
<td>6.9</td>
<td>1.57</td>
<td>29</td>
<td>90</td>
<td>31</td>
</tr>
<tr>
<td>GW555</td>
<td>mes-2(bn11) met-1(n4337)</td>
<td>n.d.</td>
<td>n.d.</td>
<td>-</td>
<td>91</td>
<td>33</td>
</tr>
<tr>
<td>GW524</td>
<td>met-1(n4337) met-2(n4256)</td>
<td>4.5</td>
<td>0.63</td>
<td>39</td>
<td>94</td>
<td>35</td>
</tr>
<tr>
<td>GW516</td>
<td>met-1(n4337) met-2(n4337)</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>n.q.*</td>
<td>-</td>
</tr>
<tr>
<td>GW631</td>
<td>lin-61(n3809)</td>
<td>1.9</td>
<td>0.17</td>
<td>44</td>
<td>84</td>
<td>49</td>
</tr>
<tr>
<td>GW214</td>
<td>hpl-2(tm1489)</td>
<td>6.2</td>
<td>0.40</td>
<td>51</td>
<td>81</td>
<td>85</td>
</tr>
</tbody>
</table>

GFP: mean GFP intensity
sem: standard error of the mean
zone 1 [%]: % of foci in zone 1
n: number of embryos/foci scored
n.d. not determined
n.q.* not quantified, but no detachment was apparent by gross visual inspection
Table S3. Strains Used in This Study, Related to the Experimental Procedures

<table>
<thead>
<tr>
<th>Strain</th>
<th>genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>wild-type, Bristol isolate</td>
<td></td>
</tr>
<tr>
<td>GW76</td>
<td>gwls4 [baf-1::GFP-lacI::let-858; myo-3::RFP] X.</td>
<td>(Meister et al., 2010)</td>
</tr>
<tr>
<td>NL2507</td>
<td>pklts1582[let-858::GFP; rol-6(su1006)]</td>
<td>(Tijsterman et al., 2004)</td>
</tr>
<tr>
<td>GW566</td>
<td>gwls4[myo-3::RFP; baf-1::GFP-lacI::let-858] X.; gwls39[baf-1::GFP-lacI::let-858 3'UTR; vit-5::GFP] III.</td>
<td>this study</td>
</tr>
<tr>
<td>GW471</td>
<td>cals3[pha-4::lacZ; rol-6(su1006)]; gwls39[baf-1::GFP-LacI::let-858 3'UTR; vit-5::GFP]III.</td>
<td>(Meister et al., 2010)</td>
</tr>
<tr>
<td>JM50</td>
<td>cals3[pha-4::lacZ; rol-6(su1006)]</td>
<td>(Azzaria et al., 1996)</td>
</tr>
<tr>
<td>GW639</td>
<td>met-2(n4256) III.; gwls4 [baf-1::GFP-lacI::let-858; myo-3::RFP] X.</td>
<td>this study</td>
</tr>
<tr>
<td>GW640</td>
<td>set-25(n5021) III.; gwls4 [baf-1::GFP-lacI::let-858; myo-3::RFP] X.</td>
<td>this study</td>
</tr>
<tr>
<td>GW637</td>
<td>set-25(n5021) III.; met-2(n4256) III.; gwls4 [baf-1::GFP-lacI::let-858 myo-3::RFP] X.</td>
<td>this study</td>
</tr>
<tr>
<td>GW650</td>
<td>set-25(n5021) III.; met-2(ck2307)III.;gwls4 [baf-1::GFP-lacI::let-858 myo-3::RFP] X</td>
<td>this study</td>
</tr>
<tr>
<td>GW516</td>
<td>met-1(n4337) I.; gwls4 [baf-1::GFP-lacI::let-858; myo-3::RFP] X.</td>
<td>this study</td>
</tr>
<tr>
<td>GW468</td>
<td>mes-2(bn11) unc-4(e120)/mnC1[dpy-10(e128) unc-52(e444)III.]; gwls4[myo-3::RFP; baf-1::GFP-lacI::let-858] X.</td>
<td>this study</td>
</tr>
<tr>
<td>GW469</td>
<td>dpy-11(e224) mes-4(bn23) unc-76(e911) V/nT1unc(n754) let; gwls4[baf-1::GFP-lacI::let-858; myo-3::RFP]</td>
<td>this study</td>
</tr>
<tr>
<td>GW553</td>
<td>met-1(n4337) I.; gwls4 [baf-1::GFP-lacI::let-858; myo-3::RFP] X.</td>
<td>this study</td>
</tr>
<tr>
<td>GW554</td>
<td>dpy-11(e224) mes-4(bn23) unc-76(e911) V/nT1unc(n754) let; met-1(n4337);gwls4 [baf-1::GFP-lacI::let-858; myo-3::RFP] X.</td>
<td>this study</td>
</tr>
<tr>
<td>GW555</td>
<td>met-2(n4256) III.; mes-2(bn11) unc-4(e120)/mnC1[dpy-10(e128) unc-52(e444)III.]; gwls4[myo-3::RFP]; baf-1::GFP-lacI::let-858; myo-3::RFP] X.</td>
<td>this study</td>
</tr>
<tr>
<td>GW556</td>
<td>dpy-11(e224) mes-4(bn23) unc-76(e911) V/nT1unc(n754) let; met-2(n4256) III.; gwls4 [baf-1::GFP-lacI::let-858; myo-3::RFP] X.</td>
<td>this study</td>
</tr>
<tr>
<td>GW524</td>
<td>met-1(n4337) I.;hT2[blkl-4(e937) let(q782) qls48] (I;III); met-2(n4256) III.;hT2[blkl-4(e937) let(q782) qls48] (I;III); gwls4 [baf-1::GFP-lacI::let-858; myo-3::RFP] X.</td>
<td>this study</td>
</tr>
<tr>
<td>GW712</td>
<td>set-25(n5021) III.; met-2(n4256) III.; gwls4 [baf-1::GFP-lacI::let-858; myo-3::RFP] X.; Is[lmn-1::GFP-LMN-1::lmn-1]</td>
<td>this study</td>
</tr>
<tr>
<td>GW638</td>
<td>set-25(n5021) III.; met-2(n4256) III.</td>
<td>this study</td>
</tr>
<tr>
<td>GW641</td>
<td>set-25(n5021) III.</td>
<td>this study</td>
</tr>
<tr>
<td>MT13293</td>
<td>met-2(n4256) III.</td>
<td>(Andersen and Horvitz, 2007)</td>
</tr>
<tr>
<td>GW694</td>
<td>gwls85[his-72::mcherry-set-25::his-72 3'UTR; unc-119(+)]; unc-119(ed3);ttTi5605 II.</td>
<td>this study</td>
</tr>
<tr>
<td>GW699</td>
<td>gwls90[his-72::mcherry-met-2::his-72 3'UTR; unc-119(+)]; unc-119(ed3);ttTi5605 II.</td>
<td>this study</td>
</tr>
<tr>
<td>GW697</td>
<td>gwls85[his-72::mcherry-set-25::his-72 3'UTR; unc-119(+)]; gwls4 [baf-1::GFP-lacI::let-858; myo-3::RFP] X.; unc-119(?); ttTi5605 II</td>
<td>this study</td>
</tr>
</tbody>
</table>
GW761 set-25(n5021) III.; met-2(n4256) III.; gwEx71[his-72::mcherry-set-25-c645a::his-72 3' UTR; unc-122::GFP; hpl-1::GFP]

GW765 gwEx75[his-72::mcherry-set-25-c645a::his-72 3' UTR; unc-122::GFP; hpl-1::GFP]

GW756 gwEx66[his-72::mcherry-set-25ΔSET::his-72 3' UTR; vit-5::GFP]; gwls4 [baf-1::GFP-lacl::let-858; myo-3::RFP] X.

GW759 gwEx69[his-72::mcherry-set-25ΔSET::his-72 3' UTR; vit-5::GFP]; gwls4 [baf-1::GFP-lacl::let-858 myo-3::RFP] X.; set-25(n5021) III.; met-2(n4256) III.

GW719 gwls85[his-72p::mcherry-set-25::his-72 3’UTR; cb-unc-119(+); unc-119(?); ttTi5605 ll ?; Is[hpl-1::GFP; rol-6] X.

GW725 gwls85[his-72p::mcherry-set-25::his-72 3’UTR; cb-unc-119(+)]; unc-119(?); ttTi5605 ll?; Is[hpl-2::GFP; rol-6(su1006)]

GW767 gwls85[his-72p::mcherry-set-25::his-72 3’UTR; unc-119(+)]; hpl-1(tm1624)X.; unc-119(?); ttTi5605 ll?

GW766 gwls4[myo-3::RFP; baf1::GFP-lacl::let-858] X.; gwls85[his-72p::mcherry-set-25::his-72 3’UTR; unc-119(+)]; hpl-1(tm1624)X.; unc-119(?); ttTi5605 ll?

VC2428 sams-1(ok2946) X.

VC239 sams-5(gk147) IV.

GW642 sams-1(ok2946) X.; sams-5(gk147) IV.

BN195 bqSi195[pBN65(unc-119(+)); hsp16.41p::dam::myc::lmn-1] ll.

BN196 bqSi196[pBN67(unc-119(+)); hsp16.41p::gfp::myc::dam] ll.

BN239 set-25(n5021) ll.; met-2(n4256) bqSi195[pBN65(unc-119(+)); hsp16.41p::dam::myc::lmn-1] ll.

BN241 set-25(n5021) ll.; met-2(n4256) bqSi196[pBN67(unc-119(+)); hsp16.41p::gfp::myc::dam] ll.

Alleles marked with a question mark (?) were not genotyped after genetic crosses.

Table S3 References

Table S4. MRM Transition List for Selected, Differently Methylated Histone H3 Peptides, Related to Figure 3

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Modification</th>
<th>Precursor m/z</th>
<th>Fragment m/z</th>
<th>Fragment ion</th>
<th>CE</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptide H3(9-17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSTGGKAPR</td>
<td></td>
<td>535.3</td>
<td>241.2</td>
<td>b1+</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>KSTGGKAPR</td>
<td></td>
<td>535.3</td>
<td>829.5</td>
<td>y8+</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>KSTGGKAPR K9me1</td>
<td></td>
<td>542.3</td>
<td>255.2</td>
<td>b1+</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>KSTGGKAPR K9me1</td>
<td></td>
<td>542.3</td>
<td>829.5</td>
<td>y8+</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>KSTGGKAPR K9me2</td>
<td></td>
<td>521.3</td>
<td>829.5</td>
<td>y8+</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td>KSTGGKAPR K9me2</td>
<td></td>
<td>521.3</td>
<td>770.4</td>
<td>b7+</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td>KSTGGKAPR K9me3</td>
<td></td>
<td>528.3</td>
<td>784.5</td>
<td>b7+</td>
<td>32.9</td>
<td></td>
</tr>
<tr>
<td>KSTGGKAPR K9me3</td>
<td></td>
<td>528.3</td>
<td>641.3</td>
<td>y6+</td>
<td>32.9</td>
<td></td>
</tr>
<tr>
<td>Peptide H3(18-26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR</td>
<td></td>
<td>577.9</td>
<td>914.5</td>
<td>y8+</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR</td>
<td></td>
<td>577.9</td>
<td>241.2</td>
<td>b1+</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR K23me1</td>
<td></td>
<td>584.9</td>
<td>928.6</td>
<td>y8+</td>
<td>35.7</td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR K23me1</td>
<td></td>
<td>584.9</td>
<td>241.2</td>
<td>b1+</td>
<td>35.7</td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR K23me2</td>
<td></td>
<td>563.9</td>
<td>886.5</td>
<td>y8+</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR K23me2</td>
<td></td>
<td>563.9</td>
<td>241.2</td>
<td>b1+</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR K23ac</td>
<td></td>
<td>570.8</td>
<td>900.6</td>
<td>y8+</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR K23ac</td>
<td></td>
<td>570.8</td>
<td>241.2</td>
<td>b1+</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR K18ac</td>
<td></td>
<td>570.9</td>
<td>914.5</td>
<td>y8+</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR K18ac</td>
<td></td>
<td>570.9</td>
<td>227.1</td>
<td>b1+</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR K18ac K23ac</td>
<td></td>
<td>563.8</td>
<td>900.6</td>
<td>y8+</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td>KQLATKAAR K18ac K23ac</td>
<td></td>
<td>563.8</td>
<td>227.1</td>
<td>b1+</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td>Peptide H3(27-40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR</td>
<td></td>
<td>822.5</td>
<td>623.4</td>
<td>y11++</td>
<td>47.6</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR</td>
<td></td>
<td>822.5</td>
<td>702.4</td>
<td>y13++</td>
<td>47.6</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me1</td>
<td></td>
<td>829.5</td>
<td>702.4</td>
<td>y11++</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me1</td>
<td></td>
<td>829.5</td>
<td>623.4</td>
<td>y13++</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me2</td>
<td></td>
<td>539.3</td>
<td>409.2</td>
<td>y3+</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me2</td>
<td></td>
<td>539.3</td>
<td>777.5</td>
<td>y5+</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me3</td>
<td></td>
<td>544.0</td>
<td>409.2</td>
<td>y3+</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me3</td>
<td></td>
<td>544.0</td>
<td>777.5</td>
<td>y5+</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me2 K36me1</td>
<td></td>
<td>544.0</td>
<td>371.2</td>
<td>b3+</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me2 K36me1</td>
<td></td>
<td>544.0</td>
<td>409.2</td>
<td>y3+</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me2 K36me2</td>
<td></td>
<td>530.0</td>
<td>371.2</td>
<td>b3+</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me2 K36me2</td>
<td></td>
<td>530.0</td>
<td>609.4</td>
<td>y11++</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me3 K36me1</td>
<td></td>
<td>548.7</td>
<td>409.2</td>
<td>y3+</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K27me3 K36me1</td>
<td></td>
<td>548.7</td>
<td>791.5</td>
<td>y5+</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR K36me1</td>
<td></td>
<td>829.5</td>
<td>709.4</td>
<td>y13++</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td>Peptide</td>
<td>K36me1</td>
<td>K36me2</td>
<td>K36me2</td>
<td>y11++</td>
<td>y13++</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>KSAPASGGVKKPHR</td>
<td>829.5</td>
<td>609.4</td>
<td>688.4</td>
<td>428.2</td>
<td>33.7</td>
<td></td>
</tr>
</tbody>
</table>

For normalization

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Region</th>
<th>Value</th>
<th>y2</th>
<th>y7+</th>
<th>y6+</th>
<th>y7+</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIAQDFKTDLR</td>
<td>H3(73-83)</td>
<td>724.4</td>
<td>288.2</td>
<td>42.7</td>
<td>42.7</td>
<td>40.6</td>
</tr>
<tr>
<td>EIAQDFKTDLR</td>
<td>H3(73-83)</td>
<td>724.4</td>
<td>950.5</td>
<td>42.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YQKSTELLIR</td>
<td>H3(54-63)</td>
<td>681.9</td>
<td>832</td>
<td>40.6</td>
<td>33.7</td>
<td></td>
</tr>
<tr>
<td>YQKSTELLIR</td>
<td>H3(54-63)</td>
<td>681.9</td>
<td>744.9</td>
<td>40.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YRPGTVALR</td>
<td>H3(41-49)</td>
<td>544.3</td>
<td>713.4</td>
<td>33.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5: Concluding remarks and future prospects

In this thesis I have investigated mechanisms that generate the spatial organization of the genome and the dynamics of chromatin organization during development. Using transgene-based reporters in *C. elegans*, we characterized cis, as well as trans acting factors required for the recruitment of chromatin to the nuclear envelope. Importantly, we could confirm that our findings based on transgenes were relevant for endogenous loci, using FISH and DamID methods. Two major conclusions can be drawn from this study:

i. **Subnuclear chromatin organization is subject to developmental control**

In several instances we found pronounced differences in the subnuclear organization of chromatin between embryonic and differentiated tissues. Namely, there was no specific subnuclear position apparent for transgenes carrying developmentally regulated promoters when present in low copy number (<50 copies) in embryos up to the 50-100 cell stage. In contrast, we observed a pronounced non-random organization for the same transgene insertions in differentiated cell types of first larval stage worms. Transgenes carrying tissue specific promoters were localized to the nuclear periphery in cells where the promoters were silent, but were positioned internally when active (Meister et al., 2011; Towbin et al., 2011).

The molecular mechanisms underlying these differences between embryonic and differentiated tissues remain unclear. Given that repetitive promoter arrays with larger copy number (>250 copies) were positioned peripherally in embryos as well as in larvae, the nuclear envelope appears to contain all the components required to bind chromatin throughout development. This suggests that changes in chromatin status, rather than in the composition of the nuclear envelope control the developmentally regulated remodeling of gene position.

Interestingly, chromatin has been described to be more dynamic in human and mouse embryonic stem (ES) cells than in differentiated tissues (reviewed in Gaspar-Maia et al., 2011). Chromatin associated proteins, such as HP1 have lower residence times in ES cells than differentiated neuronal lineages (Meshorer et al., 2006), and dense staining heterochromatic structures are less pronounced in ES cells (Efroni et al., 2008). These characteristics of ES cells are hypothesized to contribute to their pluripotency (Gaspar-Maia et al., 2011). The lower spatial constraints of chromatin positioning that we observed in early *C. elegans* embryos may functionally relate to the more dynamic chromatin state in ES cells. If so, this system would offer an experimental tool to address the functional relationship between large-scale chromatin characteristics and cell fate potential.

ii. **Two enzymes that deposit H3K9 methylation are required to maintain perinuclear chromatin anchoring in C. elegans embryos**

Our studies revealed a role for two SET domain proteins, MET-2 and SET-25, in perinuclear chromatin anchoring. We provide evidence that the two enzymes act consecutively, depositing H3K9me1/2 and H3K9me3 in a step-wise manner. MET-2 appears able to deposit only the former and does not catalyze H3K9 tri-methylation. In contrast, SET-25 can carry out all three modifications, albeit at low efficiency. Importantly, H3K9 tri-methylation by SET-25 is greatly enhanced when H3K9me1/2 is provided by MET-2.

In embryos lacking both enzymes, no H3K9 methylation is detectable by mass spectroscopy and repetitive transgene arrays, as well as repeat-rich chromosome arms are displaced from the nuclear periphery. Although this finding implies causality between the action of MET-2 and SET-25 and subnuclear chromatin organization, we cannot entirely exclude that substrates other than H3K9 methylation are involved. However, correlative data strongly supports the simplest model where H3K9 methylation targets chromatin to the nuclear envelope.
In agreement with a function of H3K9 methylation in perinuclear chromatin targeting, we show an enrichment of this mark at the nuclear periphery by immuno-fluorescent staining. Similarly, using genome-wide ChiP assays, it was shown that H3K9 methylation strongly correlates with nuclear envelope association (Ikegami et al., 2010; Liu et al., 2011), which predominantly occurs on repeat-rich chromosome arms. We confirm this data by DamID and show that H3K9 methylated regions are enriched for contacts with the nuclear lamin protein LMN-1. Importantly, lamin association was compromised in strains lacking MET-2 and SET-25 and the reduction in LMN-1 contacts was most pronounced in regions that normally carry high levels of H3K9 methylation under wild-type conditions. Finally, we find that SET-25 is strongly enriched in H3K9me3 foci at the nuclear periphery, indicating that histones are its major target.

Formally excluding a role for other potential SET-25 targets would require mutating K9 on H3, an experiment that is technically not feasible given the many genomic copies of histone genes in *C. elegans*. Instead, we are currently screening for additional genetic mutants with perturbed perinuclear chromatin anchoring. Our initial efforts suggest an important role for a previously uncharacterized protein with a chromodomain and homology to mammalian H3K9me binding proteins (data not shown). Characterization of this protein will undoubtedly reveal important insights into the mechanism of perinuclear chromatin anchoring. Moreover, single point mutations that specifically disrupt H3K9me binding of this protein will allow us to evaluate our proposal of a direct function for this modification in chromatin anchoring.

Future directions

An important question that is not answered in this thesis concerns the functional implications of perinuclear chromatin anchoring on gene regulation and development. Intriguingly, set-25 met-2 double mutants are viable and display only minor phenotypes, even though they lack all detectable H3K9 methylation and have severely impaired subnuclear chromatin organization. Should one conclude that subnuclear chromatin organization and H3K9me have no or little biological relevance? Given the conservation of perinuclear chromatin localization from yeast (Steglich et al., 2012; Taddei et al., 2010) to man (Guelen et al., 2008) this seems unlikely. Instead, a selective fitness advantage resulting from subnuclear chromatin organization may not be apparent under laboratory conditions. Alternatively, the peripheral localization of chromatin may act redundantly with other pathways of gene regulation. Existing data provides evidence for both of these possibilities. In a search for subtle phenotypes of the set-25 met-2 mutant, we found that DNA transposons are desilenced in the absence of H3K9 methylation. Furthermore, transcriptome data shows a marked upregulation of genes located on the X-chromosome in set-25 met-2 double mutants and we also detect a slightly elevated number of males, which is indicative of defects in chromosome segregation (data not shown). Arguing for redundant functions of H3K9me with other pathways, mutation of met-2 in a sensitized background causes ectopic vulva formation (Andersen and Horvitz, 2007). Synthetic RNAi screens may be used to identify genetic interactors of met-2 and set-25. These may characterize pathways that function redundantly with H3K9 methylation and reveal developmental functions of subnuclear chromatin organization.

More generally, the genetic toolbox offered by the experimental system described here may be applied to study numerous important questions on the role of nuclear organization in gene regulation. A particularly attractive focus concerns the emerging post-mitotic functions of cohesin in guiding chromatin architecture. Cohesin depletion experiments are typically difficult to design, due to the dual function of this complex in S-phase and G1. Since all somatic cells of adult worms are post-mitotic, this issue is alleviated in *C. elegans*. Moreover, available temperature sensitive alleles offer simple tools for time resolved cohesin inactivation (Baudrimont et al., 2011).

Conversely, it will be interesting to study the importance of chromatin attachment to nuclear landmarks, such as the nuclear lamina, on global chromatin folding. The mutants described here, as well as direct depletion of nuclear landmark proteins offer simple means of genetic interference.
Although never applied in the worm, there is no apparent reason why chromosome conformation capture methods should not be applicable to *C. elegans*. The comparatively small size of the worm genome may even facilitate data analysis and allow one to map DNA contacts at a higher resolution than is possible in mammalian systems. An important technical obstacle, however, will be the large scale purification of material from a single tissue.

In brief, this thesis has validated the importance of histone modification in the subnuclear positioning of chromatin in *C. elegans*. Moreover, it has established a robust genetic system which will provide powerful means for further assessment of the function of subnuclear chromatin organization in gene regulation and the molecular machinery involved. Still unclear is to what extent the higher-order organization of genes contributes to the determination of cell fate. The interplay between developmental gene expression, chromatin modifications, chromatin folding, and gene attachment to nuclear landmarks remains a challenge, for which *C. elegans* has been shown to be a powerful model system.

References

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C</td>
<td>Chromosome Conformation Capture</td>
</tr>
<tr>
<td>4C</td>
<td>Chromosome Conformation Capture on Chip</td>
</tr>
<tr>
<td>5C</td>
<td>Chromosome Conformation Capture Carbon Copy</td>
</tr>
<tr>
<td>ac</td>
<td>acetylation</td>
</tr>
<tr>
<td>ChIA-PET</td>
<td>Chromatin Interaction Analysis using Paired End Tag sequencing</td>
</tr>
<tr>
<td>ChIP</td>
<td>chromatin immunoprecipitation</td>
</tr>
<tr>
<td>CT</td>
<td>chromosome territory</td>
</tr>
<tr>
<td>CTCF</td>
<td>CCCTC-binding factor</td>
</tr>
<tr>
<td>DamID</td>
<td>DNA adenine methyltransferase identification</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ES cells</td>
<td>embryonic stem cells</td>
</tr>
<tr>
<td>FISH</td>
<td>fluorescence in situ hybridization</td>
</tr>
<tr>
<td>HMT</td>
<td>histone methyltransferase</td>
</tr>
<tr>
<td>HP1</td>
<td>heterochromatin protein 1</td>
</tr>
<tr>
<td>HxKx</td>
<td>lysine residue at position x on histone x</td>
</tr>
<tr>
<td>INM</td>
<td>inner nuclear membrane</td>
</tr>
<tr>
<td>Jmj</td>
<td>Jumonji</td>
</tr>
<tr>
<td>KDM</td>
<td>lysine demethylase</td>
</tr>
<tr>
<td>LAD</td>
<td>lamin associated domain</td>
</tr>
<tr>
<td>LAP2</td>
<td>lamin associated protein 2</td>
</tr>
<tr>
<td>LBR</td>
<td>lamin B receptor</td>
</tr>
<tr>
<td>MBT</td>
<td>malignant brain tumor</td>
</tr>
<tr>
<td>me (1,2,3)</td>
<td>methylation (mono-, di-, tri-)</td>
</tr>
<tr>
<td>NPC</td>
<td>nuclear pore complex</td>
</tr>
<tr>
<td>PHD</td>
<td>plant homeo domain</td>
</tr>
<tr>
<td>PRC</td>
<td>polycomb repressive complex</td>
</tr>
<tr>
<td>PTM</td>
<td>posttranslational modification</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>SAM</td>
<td>S-adenosylmethionine</td>
</tr>
<tr>
<td>SAMS</td>
<td>S-adenosylmethionine synthetase</td>
</tr>
<tr>
<td>TF</td>
<td>transcription factor</td>
</tr>
</tbody>
</table>
Acknowledgements

I am grateful to Susan Gasser for mentoring and continuous support, as well as to Dirk Schübeler and Peter Askjaer for helpful discussions during and outside of thesis committee meetings. Special thanks also go to Peter Meister for sharing and teaching his enthusiasm on science and microscopy, as well as extensive experimental training and helpful discussions.

During the course of this thesis I have learnt to appreciate the importance of a highly communicative and supportive lab atmosphere. I am thankful to Susan Gasser for her great efforts to maintain this state within and across generations of students and post-doc. Similarly, I thank Monika Tsai and Razel Arpagaus for organizing the laboratory in a way that avoids conflicts on shared of reagents and equipment and fosters a productive communication among lab members.

Important insights and technical help came from numerous lab members. In particular, I would like to thank Véronique Kalck and Monique Thomas for help with experiments and worm maintenance, Leslie Hoerner for microarray hybridization, Helder Ferreira for help in proof-reading numerous abstracts and conference applications, as well as this thesis, Stephanie Kueng for critical evaluation of faulty conclusions, Mariano Oppikofer for help with protein purification and Lutz Gehlen for support in theoretical and statistical questions.

Research at FMI is greatly supported by the enormous efforts of the technical platforms. Among them, special thanks go to Laurent Gelman for coordination and continuous maintenance of the microscopy facility together with Steven Bourke. I am also thankful to Aaron Ponti and Patrick Schwarb for help with image analysis and Iskra Katic for support in C. elegans transgenesis. Similarly, Ragna Sack, Tim Roloff and Dimos Gaidatzis from mass-spec and genomics/computational biology were instrumental for this thesis.

Finally, I am thankful to Peter Askjaer and Cristina Gonzalez, as well as Yosef Gruenbaum and Anna Mattout for fruitful and enjoyable research collaboration.

Acknowledgements to family and friends outside the scientific community are equally appropriate, but will be communicated elsewhere.
Curriculum Vitae

Home address
Jungstrasse 2
CH-4056 Basel
Switzerland

Institute address
Friedrich Miescher Institute for Biomedical Research
Maulbeerstrasse 66
CH-4058 Basel
Switzerland

Tel.: +41 61 69 75583
Nationality: Swiss
Date of birth: 7 September 1982
email: benjamin.towbin@fmi.ch

Research experience and education

Since Dec 2007 PhD studies at the Friedricher Miescher Institute (FMI), Basel (CH)

Project title: Step-wise methylation of histone H3K9 positions heterochromatin at
the nuclear envelope in C. elegans embryos

Supervisor: Prof. Dr. Susan Gasser.

Repressed and active genes are spatially separated within the nucleus. Silent
heterochromatin is located peripherally, whereas active loci reside in the nuclear
center. In this project we aimed at identifying factors that are involved in the
repression and perinuclear sequestration of heterochromatin. To this end, I have
setup a genome-wide RNAi screen using a GFP reporter system, which has
identified the H3K9 methylation pathway to be involved.

2005-2007 Masters in Cancer genomics and Developmental Biology at the
University of Utrecht (NL)

final grade: 8.9 (scale: 1-10), GPA: 4.00, top 5%

Project 1 (9 months): Silencing of Tc1 DNA transposons in somatic cells of C.
 elegans requires the polymerase β nucleotidyl transferase RDE-3

Supervisor: Prof. Dr. R. Plasterk/ Dr. M. Tijsterman

Project 2 (5 months): The efficiency of DNA double strand break repair by
homologous recombination is limited by recombination template concentration in
budding yeast.

Supervisor: Prof. Dr. S. Gasser/Dr. H. Van Attikum

2002 - 2005 Bachelor in Molecular Biology at the University of Basel (CH)

final grade: 5.9 (scale: 1-6)

2001 - 2002 Internships in Molecular Biology laboratories at the University of California
Davis (3 months, Supervisor: Prof. Dr. Paul FitzGerald) and at the FMI (5
months, Supervisor: Dr. Ruth Chiquet)
First author publications

Co-author publications

Talks at conferences and workshops

