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Abstract. The goal of this review is to establish a broad and rigorous theoretical framework
to describe ion permeation through biological channels. This framework is developed in the
context of atomic models on the basis of the statistical mechanical projection-operator
formalism of Mori and Zwanzig. The review is divided into two main parts. The first part
introduces the fundamental concepts needed to construct a hierarchy of dynamical models at
different level of approximation. In particular, the potential of mean force (PMF) as a
configuration-dependent free energy is introduced, and its significance concerning equilibrium
and non-equilibrium phenomena is discussed. In addition, fundamental aspects of membrane
electrostatics, with a particular emphasis on the influence of the transmembrane potential, as
well as important computational techniques for extracting essential information from all-atom
molecular dynamics (MD) simulations are described and discussed. The first part of the review
provides a theoretical formalism to ‘ translate ’ the information from the atomic structure into
the familiar language of phenomenological models of ion permeation. The second part is aimed
at reviewing and contrasting results obtained in recent computational studies of three very
different channels : the gramicidin A (gA) channel, which is a narrow one-ion pore (at
moderate concentration), the KcsA channel from Streptomyces lividans, which is a narrow
multi-ion pore, and the outer membrane matrix porin F (OmpF) from Escherichia coli, which
is a trimer of three b-barrel subunits each forming wide aqueous multi-ion pores. Comparison
with experiments demonstrates that current computational models are approaching
semi-quantitative accuracy and are able to provide significant insight into the microscopic
mechanisms of ion conduction and selectivity. We conclude that all-atom MD with explicit
water molecules can represent important structural features of complex biological channels
accurately, including such features as the location of ion-binding sites along the permeation
pathway. We finally discuss the broader issue of the validity of ion permeation models and an
outlook to the future.
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1. Introduction

Ever since the early days of electrophysiology, the development of theoretical models of ion

channels has contributed to a better understanding and interpretation of experimental data

(Hille, 2001). Although the recent progress in the determination of three-dimensional (3D)

structures of biological ion channels provides a wealth of information (Ketchem et al. 1997 ;

Chang et al. 1998 ; Doyle et al. 1998 ; Schirmer, 1998 ; Morais-Cabral et al. 2001 ; Wang et al. 2001 ;

Zhou et al. 2001a, b), theoretical considerations are necessary for elucidating the (hidden)

microscopic factors governing ion conduction and selectivity at the atomic level. The combi-

nation of atomic resolution structures plus highly sophisticated computational approaches offers

the possibility of a virtual route for interpreting and relating a channel structure to its function.

But to achieve this, it is necessary to establish a rigorous language enabling us to ‘ translate ’ the

information from the atomic structure into the observed function. Addressing questions about

ion permeation and selectivity through molecular pores in a meaningful way is, however, difficult

because it requires an ability to calculate ion fluxes with quantitative accuracy. At the present

time, these questions cannot be addressed with a unique approach and a wide variety of com-

putational methods contribute to refine our understanding of ion channels (Kuyucak et al. 2001 ;

Tieleman et al. 2001b ; Chung & Kuyucak, 2002 ; Roux, 2002b).

Arguably, all-atom molecular dynamics (MD) represents the most detailed approach to study

complex biomolecular systems. It consists in constructing an atomic model of the macro-

molecular system, representing the microscopic forces with a potential function, and integrating

Newton’s classical equation ‘F=MA ’ to generate a trajectory (for a recent review of simulation

methods, see chapters 1–4 in Becker et al. 2001). The result is literally a ‘ simulation’ of the

dynamical motions of all the atoms as a function of time. With the availability of potential energy

functions for proteins and lipids, as well as fast and reliable numerical algorithms, current MD

methodologies have reached the point where one can generate trajectories of realistic atomic

models of complex biological-channel membrane systems. In recent years, MD simulations with

explicit membranes have been used extensively to study an increasingly large number of ion

channels ; gramicidin (gA) (Woolf & Roux, 1997 ; Chiu et al. 1999a ; Roux, 2002a ; Allen et al.

2003a, b), alamethicin (Alm) (Tieleman et al. 1999, 2001a ; Smith & Sansom, 2002), the trans-

membrane domain of the influenza virus (M2) (Forrest et al. 2000; Zhong et al. 2000), OmpF

porin (Suenaga et al. 1998 ; Tieleman & Berendsen, 1998; Im & Roux, 2002a), the mechano-

sensitive channel MscL (Elmore & Dougherty, 2001 ; Gullingsrud et al. 2001 ; Colombo et al.

2003 ; Gullingsrud & Schulten, 2003), and K+ channels (Allen et al. 1999, 2000 ; Guidoni et al.

1999, 2000 ; Åqvist & Luzhkov, 2000 ; Bernèche & Roux, 2000, 2001 ; Capener et al. 2000 ;

Luzhkov & Åqvist, 2000, 2001a, b ; Shrivastava & Sansom, 2000; Biggin et al. 2001 ; Crouzy et al.

2001 ; Burykin et al. 2002, 2003).

Simple MD trajectories, however, are somewhat limited in their ability to quantitatively

characterize complex biomolecular systems. Nonetheless their scope can be extended con-

siderably with advanced computational techniques that will be the focus of this review, such as

Abbreviations : Alm, alamethicin ; BD, Brownian dynamics ; DPPC, dipalmitoyl phosphatidylcholine ;

DMPC, dimyristoyl phosphatidylcholine ; EMF, electromotive force ; ERT, Eyring Rate Theory ; FEP,

free energy perturbation ; gA, gramicidin A; GCMC, Grand Canonical Monte Carlo ; GLE, generalized

Langevin equation; HNC, hypernetted chain ; LE, Langevin equation ; MD, molecular dynamics ; MSA,

mean-spherical approximation; MSD, mean square displacement ; NMR, nuclear magnetic resonance ;

PB, Poisson–Boltzmann; PB-V, Poisson–Boltzmann voltage ; PMF, potential of mean force ; PNP,

Poisson–Nernst–Planck ; PY, Percus–Yevick ; WHAM, weighted histogram analysis method.
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free energy perturbation (FEP) (Allen et al. 1999, 2000 ; Åqvist & Luzhkov, 2000 ; Luzhkov &

Åqvist, 2000, 2001a ; Bernèche & Roux, 2001) and umbrella sampling (Bernèche & Roux, 2001 ;

Crouzy et al. 2001; Allen et al. 2003b), or by the introduction of external forces applied on

the system (Suenaga et al. 1998 ; Crozier et al. 2001a, b ; Gullingsrud et al. 2001 ; Tieleman et al.

2001a ; Yang et al. 2003). FEP calculations use simulations generated with an unphysically altered

potential function ; thermodynamic integration is then performed to compute the free-energy

changes between different states of the system. Umbrella sampling calculations use simulations

generated in the presence of an imposed biasing potential to enhance configurational sampling ;

the effect of this bias is then removed in post-analysis to compute the unbiased potential of mean

force (PMF) of the system (Becker et al. 2001). It is also possible to monitor the dynamical

motions in the presence of imposed external forces to reproduce some aspect of the environ-

ment such as membrane surface tension (Gullingsrud et al. 2001), or transmembrane voltage

(Suenaga et al. 1998 ; Crozier et al. 2001a, b ; Tieleman et al. 2001a ; Yang et al. 2003). The latter is of

particular importance for simulations of ion channels.

In addition, approaches that are simpler and computationally less expensive than all-atom

MD are very important tools in studies of ion channels. In particular, macroscopic continuum

electrostatic calculations, in which the polar solvent is represented as a structureless dielectric

medium, can help reveal the dominant energetic factors related to ion permeation and, thus,

serve to illustrate fundamental principles in a particularly clear fashion (Roux, 1999a ; Roux et al.

2000). Brownian dynamics (BD), which consists in integrating stochastic equation of motions

describing the displacement of the ions with some effective potential function, generally

calculated on the basis of a continuum electrostatic approximation (Cooper et al. 1985 ; Chung

et al. 1998), is also an attractive computational approach for simulating the permeation process

over long time-scales without having to treat all the solvent molecules explicitly (Schirmer &

Phale, 1999; Im et al. 2000 ; Allen & Chung, 2001 ; Im & Roux, 2001 ; Mashl et al. 2001 ; Phale et al.

2001 ; Burykin et al. 2002, 2003). Lastly, there are continuum electrodiffusion theories, such as

Poisson–Nernst–Planck (PNP), which attempt to represent average ion fluxes directly in terms

of concentration gradient and average electric field (Onsager, 1926, 1927 ; Schuss et al. 2001).

Which approach is best to use may depend on the microscopic detail of a particular channel,

the specific questions being asked, and the available computational resources. There is, however,

a lack of consensus concerning the relative merits and limitations of the various approaches, and

their range of validity is often a matter of debate (Levitt, 1999; McClesky, 1999 ; Miller, 1999 ;

Nonner et al. 1999 ; Roux, 1999b). Biological ion channels are macromolecular many-body

systems. From this point of view, it is not surprising that such complexity calls for a hierarchy of

inter-related computational approaches, corresponding to different levels of approximations.

The existence of so many different approaches does, however, generate some confusion.

Sometimes, it even becomes difficult to distinguish important fundamental conceptual differences

from simple technical variations in computational schemes and procedures. Theoretical models,

at any level, are approximations and have intrinsic limitations. The result from any computation

is not meaningful if the underlying theory is taken beyond its range of validity. Comparing

and relating the different approaches is difficult, however, partly because of the lack of a unified

formal language.

One of the main goals of this review is to formulate a broad and general theoretical framework

to describe ion permeation. It is our hope that such a framework will help clarify the corre-

spondence between the various approaches that currently are used in computational studies of

ion channels. The review is divided into two main parts. The first part (sections 2–5) is mostly
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concerned with elaborating and establishing the fundamental concepts, laying the foundation for

a unified discussion of the various approaches used in theoretical studies of ion channels. The

second part (sections 6–7) is aimed at reviewing and contrasting the most important results

obtained in recent theoretical studies of three very different channels : the gA channel, the KcsA

K+ channel from Streptomyces lividans, and the outer membrane matrix porin F (OmpF) from

Escherichia coli. It is our hope that the basic elements discussed in the first part of the review

provide a rigorous theoretical framework to describe ion permeation through biological channels,

while the practical cases discussed in the second part can help illustrate the most important

concepts.

In Section 2, we first review and highlight some essential concepts concerning the dynamics

of many-body systems and the theoretical approaches that enable one to construct a hierarchy of

dynamical models, going from all-atom MD to BD. In particular, the PMF as a configuration-

dependent free energy will be first introduced, and its significance regarding equilibrium and

non-equilibrium phenomena will be discussed. In Section 3, we briefly review the main elements

of solvation free energy in liquid water, including a discussion of the Born model and ion–ion

interactions at the microscopic level. Then, we review some basic concepts of membrane elec-

trostatics, with a particular emphasis on the influence of the transmembrane potential. In

Section 4, a rigorous statistical mechanical theory of the equilibrium properties of ion channels is

formulated and the concept of multi-ion PMF is established from first principles. Finally, the

most important computational approaches for extracting essential ingredients from all-atom MD

to incorporate those into framework theories for simulating non-equilibrium ion flow are dis-

cussed in Section 5. In particular, a number of useful computational techniques for calculating

the PMF as well as the diffusion coefficient on the basis of all-atom MD simulations are briefly

reviewed, and important approaches such as Grand Canonical Monte Carlo (GCMC)/BD simu-

lations and PNP are exposed. The formal and technical part of the review (sections 2–5) is

then followed, in Section 6, by an overview of the results obtained in theoretical studies of the gA

channel, which is a narrow 1-ion pore (at moderately low ion concentrations), the KcsA channel,

which is a narrow multi-ion pore, and OmpF porin, which is a trimer of three b-barrel subunits

each forming wide aqueous multi-ion pores. The molecular structure of these channels is shown

in Fig. 1. Contrasting the properties of these three very different channels helps illustrate important

principles. In particular, the gA and KcsA channels exemplify important characteristics of a

narrow pore with tight interactions between the permeating ion and the protein, while KcsA and

OmpF reveal the role of ion–ion interactions in multi-ion channels. Furthermore, OmpF illus-

trates the influence of counterions and electrostatic screening in a wide aqueous pore. The main

strength and limitations of current models are discussed in. The review is concluded in Section 7

with a broad discussion of the validity of ion permeation models and an outlook to the future.

2. Dynamics of many-body systems

In MD, a trajectory of the system is generated by integrating numerically Newton’s classical

equation of motion,

mi€rri=Fi , ð1Þ

where mi, ri, and r̈i are the mass, position, and acceleration of the ith atom respectively, and the

microscopic force acting on atom i is

Fi=x=iU , ð2Þ
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where U is the potential function of the system. For computational efficiency, the potential

function used in biomolecular simulations are normally constructed from simple analytical

functions (Becker et al. 2001), though it is important to keep in mind that U is meant to represent

the quantum-mechanical Born–Oppenheimer energy surface of the molecular system. All-atom

MD provides a detailed structural and dynamical atomic model of the biomolecular system

of interest. Some examples of ion channel systems simulated by MD are shown in Fig. 2. In

those studies, the microscopic system includes explicitly the water molecules, the ions, as well as

the phospholipid membrane bilayer. Typically, such all-atom microscopic models may include

several tens of thousands of particles. Once such a system has been properly equilibrated,

average properties can be calculated directly from the trajectory of the atoms.

(a)

(b)

(c)

Fig. 1. (a) Gramicidin channel from Townsley et al. (2001). (b) KcsA channel from Zhou et al. (2001b).

(c) OmpF porin from Cowan et al. (1992). The three channels are not drawn to scale.
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The most striking drawback of all-atom MD is that the trajectory of a large number of atoms

must be calculated, although only a small number among them (e.g. the permeating ions in the

channel) might be truly relevant to understand the function that one wishes to investigate. It is

often tempting to try to decrease the size of the simulated system to ‘bare essentials ’, but this

may be at the risk of altering important microscopic factors, and ultimately undermining the value

and significance of an atomic model. Unavoidably, a large amount of what is being simulated is

not necessarily of immediate interest in such ‘brute force ’ calculations, but it is essential in order

to have a valuable microscopic model. An attractive approach would be to focus only on the

dynamics of the most relevant variables, i.e. the ions in the neighborhood of the channel, and yet

retain the ability to represent all their microscopic properties (structural and dynamical) correctly.

Certainly, such an approach might serve as a guide to design useful approximations and plan

efficient computational strategies aimed at reducing the computer time required to simulate ion

permeation. Gains in computational efficiency is not, however, the only motivation for adopting

this perspective on ion permeation. After all, there is a steady increase in computer power, and

relatively soon, one should be able to simulate ion permeation through biological channels

directly with all-atom MD. Nevertheless, even when the computational time will no longer be a

limiting factor, it would be difficult to extract fundamental principles and develop a rigorous

perspective on ion permeation solely based on atomic trajectories. Therefore, the ultimate value

of formulating a dynamical theory focused on the most relevant degrees of freedom should be

to provide a rigorous conceptual framework for representing the wide range of equilibrium and

non-equilibrium phenomena taking place in the complex molecular system that are ion channels.

2.1 Effective dynamics of reduced systems

The problem of representing the dynamics of a reduced set of degrees of freedom, itself part of a

large complex system, is a subject that has been extensively explored in statistical mechanical

theories over the last 50 years. One of the most powerful approaches to tackle this problem is the

projection operator theory, which was originally introduced by Zwanzig (1961) and Mori (1965).

The general idea consists in ‘projecting out ’ uninteresting degrees of freedom, in order to

(a) (b) (c)

Fig. 2.Molecular graphics representation of the atomic models simulated with all-atom molecular dynamics

(a) Gramicidin A in a DMPC bilayer (Allen et al. 2003a). (b) KcsA K+ channel in DPPC phosphilipid

membrane bathed by a 150 mM KCl aqueous salt solution. (c) Molecular graphics view of OmpF porin

embedded in a DMPC membrane in an aqueous solution of 1 M [KCl] salt (the K+ ions are magenta and the

Clx ions are green). For clarity, some lipid molecules were removed from the front view. The three channels

are not drawn to scale.
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develop an effective (but physically correct) dynamical scheme for representing the time evol-

ution of the most ‘ relevant ’ degrees of freedom realistically (Zwanzig, 2001). Typically, the

subset of coordinates that are treated explicitly evolves according to some effective, non-

deterministic (stochastic) dynamics, which incorporates the influence of the rest of the system

implicitly. In contrast, the classical MD trajectory of the all-atom system, which is calculated

according to Newton’s classical law of motion Eq. (1), is deterministic (because all the degrees of

freedom are included explicitly). Within certain limits discussed below, the projection operator

theory is formally exact. It provides a rigorous framework to construct approximate models of

ion permeation in a simple and physically appealing fashion.

To illustrate the main principles involved in the effective dynamics of reduced systems,

we consider a dense liquid solution. Let us choose the position of a subset of ‘ tagged ’ particles,

{r1, r2, _}, as the most ‘ relevant ’ coordinates. Based on projection operator theory, the

dynamics of these particles evolves according to a generalized Langevin Equation (GLE)

(Zwanzig, 1965 ; Mazur & Oppenheim, 1970, 1982 ; Adelman, 1980)

mi€rri (t )=F ix

Z t

0

dt kMi (txt k )_rri (t k )+f i (t ): ð3Þ

The GLE has some similarity with Newton’s classical equation of motion, Eq. (1), but there are

also some important differences. In particular, the force acting on the ith particle is not calculated

from the potential energy U, but from the effective potential W,

F i (r1, r2, . . . )=x=iW(r1, r2, . . . ): ð4Þ

While the potential energy U depends on the position of all the atoms in the system, it should

be stressed that the effective potential W, and the effective force F i, depend only on the subset

of relevant coordinates {r1, r2,_}. The significance ofW will be examined further below. There

are also two additional terms, not normally present in Newton’s equation. First, there is a

convolution in the time domain of the particle’s velocity with a memory function, M(t). On

average, this term gives rise to a dragging force opposing the movement of the particles. Lastly,

there is also a time-dependent external force, fi(t), acting on the reduced system. It can be shown

that, fi(t) is completely uncorrelated with the time-course of the set of variables {r1(t), r2(t),_},

i.e. it behaves as an external stochastic random force. Two important properties of this random

force are nfi(t)m=0 and nfi(t) . fi(0)m=3kBTMi(t), where kB is Boltzmann’s constant and T is the

temperature ; the amplitude of fi is typically assumed to be Gaussian-distributed (Zwanzig, 1965 ;

Mazur & Oppenheim, 1970, 1982 ; Adelman, 1980). The relationship between the random force

and the memory function is called the ‘fluctuation-dissipation theorem’ (Kubo, 1966). Both

the dissipative force arising from the dragging and the external random time-dependent force

incorporate the influence of impacts and collisions with those other particles that are not treated

explicitly.

A guiding rule to choose the set of relevant variables is that it should explicitly include all the

slowest processes that could possibly take place in the system. In dense molecular bulk media,

the memory function associated with a tagged particle typically decays very rapidly compared to

all other time-scales in the system (Mazur & Oppenheim, 1970, 1982 ; Adelman, 1980). Because

proteins are fairly rigid, the memory function for an ion inside a membrane channel may be

expected to decay quite rapidly. An example of a memory function of an ion in a model of the

gA channel is shown in Fig. 3. It decays to zero in y0�5 ps. The Markov assumption consists

in making the approximation that the memory function decays instantaneously compared to all

22 B. Roux et al.
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relevant time-scales,

x

Z t

0
dt kMi (txt k)_rri (t k ) �x_rri (t )

Z O

0
dt Mi (txt k )

�xci _rri (t ),

ð5Þ

where ci is the friction coefficient

ci=
Z O

0
dt Mi (t )

=
1

3kBT

Z O

0
dt nf i (t ) � f i (0)m:

ð6Þ

This assumption leads to the classical Langevin Equation (LE) (Chandrasekar, 1943 ;

McQuarrie, 1976)

mi€rri (t )=F ixci _rri (t )+f i (t ), ð7Þ

where fi(t) is a random Gaussian force obeying the fluctuation-dissipation theorem nfi(t) . fi(0)m
=6cikBTd(t). If the friction coefficient ci is large, the motions become overdamped and

the inertial term, mir̈i(t), may be neglected. This approximation yields the BD equation

(Chandrasekar, 1943)

_rri (t )=
Di

kBT
F i+fi (t ), ð8Þ

where Di=kBT/ci is the diffusion coefficient of the tagged particles, and fi(t) is a random

Gaussian noise with nfi(t) .fi(0)m=6Did(t). It may be noted that the mass of the diffusing

particle does not appear in the non-inertial high friction limit. This regime, which is sometimes

referred to as ‘ low Reynolds number ’ (Purcell, 1977), is somewhat counter-intuitive compared to

our own experience in the macroscopic world. For example, ions never undergo large ‘ballistic ’

displacements in a dense liquid or inside a channel.
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Fig. 3. Memory function of a Na+ ion in a model of the gramicidin A channel. The memory function was

calculated as a force–force correlation function (Roux & Karplus, 1991a).
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2.2 The constraint of thermodynamic equilibrium

A common ingredient in all the reduced dynamical models described above is the effective

potential W, which is used to compute the effective forces F i, in Eq. (4). Remarkably, it can

be shown that the equilibrium properties of all such effective dynamical system are independent of

the character of the dissipative and fluctuating forces included in the model (as long as these

forces correctly obey the fluctuation-dissipation theorem). In spite of important differences in

the time-dependent properties displayed by the various stochastic effective dynamics (GLE, LE,

or BD), ultimately, the probability distribution of the coordinates {r1, r2,_} is given by

Peq(r1, r2, . . . )PexW(r1 , r2 , ...)=kBT ð9Þ

(note that the temperature T appearing here entered the stochastic dynamics only via the relation

between the amplitude of the dissipative and fluctuating forces). For example, the time-

dependent probability distribution associated with the stochastic trajectories generated from BD

as in Eq. (8) evolves according to the multi-dimensional Smoluchowski diffusion equation

(Smoluchowski, 1916 ; Chandrasekar, 1943),

@P(r1, r2, . . . , t )

@t
=x

X
i

=i � xDi=iP(r1, r2, . . . , t )x
Di

kBT
=iW(r1, r2, . . . )P(r1, r2, . . . , t )

� �

ð10Þ

and it is easy to show that the equilibrium distribution Peq in Eq. (9) yields a time-independent

solution to Eq. (10).

W determines all the underlying equilibrium structural properties arising from the stochastic

dynamics of the reduced system. For this reason, it is the most crucial ingredient in constructing

meaningful models of reduced systems (GLE, LE or BD). Therefore, an important constraint on

W is that averages resulting from the stochastic dynamics of the reduced effective system be

equal to the average resulting from the all-atom MD simulation, for any observable quantity Q,

depending on the configuration of the tagged particles. But is this even possible in principle? Let

us examine this question in more detail. In the reduced system, such an average is expressed as,

nQm(red)=

R
dr1
R
dr2 � � �Q(r1, r2, . . . ) exW(r1 , r2 , ...)=kBTR
dr1
R
dr2 � � � exW(r1 , r2 , ...) ⁄kBT

, ð11Þ

and involves only the relevant coordinates {r1, r2,_}. In contrast, the corresponding average in

the all-atom system is

nQm(all)=
R
dr1
R
dr2 � � �

R
dXQ(r1, r2, . . . )e

xU (r1 , r2 , ...,X)=kBTR
dr1
R
dr2 � � �

R
dX exU (r1 , r2 , ...,X)=kBT

, ð12Þ

where X represents all the remaining degrees of freedom in the system others than the co-

ordinates {r1, r2,_}. For example, X could include all the solvent molecules, the protein channel

and the phospholipid bilayer. The two expressions in Eqs. (11) and (12) for the average will be

exactly the same if, and only if, W is constructed according to

exW(r1 , r2 , ...)=kBT=C

Z
dX exU (r1 , r2 , ...,X)=kBT , ð13Þ

where C is an arbitrary constant. Obviously, W does not correspond to some average of

the microscopic potential, i.e.W–nUm. An important property ofW and its relationship to the
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all-atom system is highlighted by considering the derivative with respect to a coordinate ri,

F i (r1, r2, . . . )=x=iW(r1, r2, . . . )

=

R
dXx=iU (r1, r2, . . . ,X)e

xU (r1 , r2 , ...,X)=kBTR
dX exU (r1 , r2 , ...,X)=kBT

=xn=iUm(r1 , r2 , ...)

=nFim(r1 , r2 , ...):

ð14Þ

This demonstrates that the effective force calculated from the gradient of W evaluated at

{r1, r2,_} is equal to the total average force acting on the tagged particles when they are in this

configuration in the all-atom system, i.e. the effect of all other atoms is included implicitly in W !

Because the effective potential ‘W ’ corresponds to a reversible thermodynamic ‘work’ done by the

average force, it is called the PMF. The concept of PMF was first introduced by Kirkwood (1935)

to describe distribution functions in liquids. The structure ofW in Eq. (13) is similar to that of a

configuration-dependent free energy. This is expressed in a particularly clear fashion by intro-

ducing a dimensionless thermodynamic coupling parameter l, varying between 0 and 1, such that

U(l=1) is the normal potential energy and U(l=0) is the potential energy of a reference system

in which all interactions involving the subset of tagged particles has been ‘ turned off’ (Kirkwood,

1935). According to Eq. (13), the PMF can be written as the ratio of configurational integrals,

exW(r1 , r2 , ...)=kBT=

R
dX exU (r1 , r2 , ..., X; l=1)=kBTR
dX exU (r1 , r2 , ..., X; l=0)=kBT

, ð15Þ

or equivalently, as a thermodynamic integration (Kirkwood, 1935),

W(r1, r2, . . . )=
Z 1

0
dl

@U

@l

� �
(l)

, ð16Þ

where the subscript l on the bracket indicates that the average is taken with the potential energy

U(l). It may be noted that the mass of the particles does not appear in Eqs. (15)–(16). As

a consequence, the PMF is a thermodynamic quantity independent of time-scales. Because it

governs all the underlying equilibrium properties in any effective dynamical model (GLE, LE,

BD), a rigorous formulation of equilibrium PMFs is a crucial first step in the formulation of a

non-equilibrium transport theory. The following two sections will be entirely dedicated to this

subject. Prior to this, we will briefly review the basis of mean-field theories of diffusion and how

they relate to the important constraint of thermodynamic equilibrium.

2.3 Mean-field theories

Considering the dynamics of a many-body system from the perspective of a diffusion equation

is attractive because, rather than having to extract the properties of the system from time

averages taken over stochastic BD trajectories, one deals directly with probability densities

and fluxes. However, the probability density of a many-body system, P(r1, r2,_ ; t), evolves

according the Smoluchowski Eq. (10). Such a multi-dimensional differential equation is virtually

impossible to solve, even with today’s computers. There is, however, a family of theoretical

approaches that attempt to follow a similar route. To reduce the dimensionality of the

many-body problem, these approaches consider only the non-equilibrium steady-state flux
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density of the particles

J(r)=xD =r(r)+
r(r)

kBT
=Weff (r)

� �
, ð17Þ

where r(r) is the particle density, andWeff(r) is some effective potential (Calef & Wolynes, 1983).

This expression is similar to the flux describing the diffusion of a single particle diffusing in a

potential Weff(r). In effect, Eq. (17) turns the many-body problem into a pseudo-single-particle

diffusion problem. This implies that the effective potential incorporates implicitly the influence

of all the particles in the system. To obtain a closed set of equations, one must express the

effective potential in terms of the average density,

W (eff)(r)=F(r; [r(r, t )]): ð18Þ

This means thatW(eff)(r) must be calculated using the number density r(r, t) as an input through

the functional F (a function of a function). As the density depends on the effective potential, via

Eq. (17), and the effective potential depends on the density, via Eq. (18), the two set of equations

must be solved self-consistently. Different mean-field theories, varying in their level of sophis-

tication, can be obtained by choosing different forms to approximate the effective potential in

terms of the particle density r(r). The approximation used in Eq. (18) to obtain a closed set of

equations is usually referred to as a ‘closure ’ [e.g. mean-spherical approximation (MSA), hyper-

netted chain (HNC), Percus–Yevick (PY)]. In application to ion channels, the most familiar

example of such mean-field approaches is perhaps the Poisson–Nernst–Planck (PNP) theory

(Kurnikova et al. 1999 ; Cardenas et al. 2000 ; Hollerbach et al. 2000, 2002 ; Schuss et al. 2001 ;

Gillespie et al. 2002 ; Im & Roux, 2002a ; Kournanov et al. 2003 ; Mamonov et al. 2003), which

originated from the electrodiffusion theory proposed by Onsager (1926, 1927).

Under equilibrium conditions (i.e. with no net flux), all the properties of any mean-field theory

are directly determined by the choice of functional. There is a vast experience, going back to

Debye & Hückel (1923), Kirkwood (1935), Percus & Yevick (1958), and Lebowitz & Percus

(1966) in the engineering of suitable functionals to represent the equilibrium structure of liquids.

There have been numerous computational studies aimed at examining the ability of different

functionals to accurately describe the equilibrium properties of a fluid, in the bulk phase (Fries &

Patey, 1985 ; Kusalik & Patey, 1988), near a hard wall (Torrie et al. 1988 ; Berard & Patey, 1992),

near a complex molecular solute (Beglov & Roux, 1996, 1997 ; Cortis et al. 1997 ; Kovalenko &

Hirata, 1998 ; Du et al. 1999), inside a pore (Beglov & Roux, 1995). Excellent textbooks reviewing

this subject are by McQuarrie (1976) and Hansen & McDonald (1986). The ultimate assessment

of the accuracy and usefulness of different closures is provided by comparison with so-called

‘exact results ’ from computer simulations (Hansen & McDonald, 1986). Years of experience

with this subject have shown that several aspects of the structures of complex liquids can be

reproduced with quantitative accuracy by all-atom MD (Hansen & McDonald, 1986 ; Allen &

Tildesley, 1989) but are only represented qualitatively, even by the most sophisticated mean-

field integral equation theories. There exists no exact closed-form functional expression for the

effective potential of a many-body system and an intrinsic limitation of this family of approaches

is that the underlying equilibrium properties have unavoidably an approximate mean-field

character. The impact of this approximation on non-equilibrium properties is unknown. We will

return to PNP electrodiffusion theory in Section 5.2.4 and its application to ion permeation

through OmpF porin in Section 6.3.3.
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3. Solvation free energy and electrostatics

The previous section established that the PMF, which governs the effective dynamics of a

reduced set of particles, is equivalent to a configuration-dependent solvation free energy. There-

fore, one can expect that a key quantity in ion permeation will be some sort of multi-ion PMF,

although Section 4 will further clarify this concept considerably. In liquid water, the importance

of electrostatic interactions essentially dictates the magnitude of the solvation free energy of

charged species. The electrostatic contribution to the solvation free energy of biomolecular

solutes is often modeled on the basis of classical continuum electrostatics (Honig & Nicholls,

1995). This approximation, in which the polar solvent is represented as a structureless continuum

dielectric medium, was originally pioneered by Born (1920) to calculate the hydration free energy

of spherical ions. Although the classical continuum approximation breaks down at length-scales

of a few angstroms, it remains an exceedingly useful approach to formulate many factors con-

cerned with long-range electrostatic effects that play a crucial role on ion permeation. In the

following, we will use a continuum electrostatic approximation to establish some fundamental

results concerning the importance of the low dielectric barrier presented by the lipid membrane

and the transmembrane potential.

3.1 Microscopic view of the Born model

According to the Born model (1920), the electrostatic contribution to the solvation free energy

of an ion in liquid water is

DGelec=
1

2

q2

Rion

1

ew
x1

� �
, ð19Þ

where q is the charge of the ion, Rion its radius, and ew is the macroscopic dielectric constant of

liquid water. A simple application of the Born model indicate that the electrostatic contribution

to the solvation free energy of a small ion is on the order of 100 kcal/mol, in qualitative agree-

ment with experiments (Noyes, 1962). The success of the Born model demonstrates that the

solvation free energy of an ion in water is largely dominated by electrostatic interactions arising

from the polarization of the high dielectric solvent. The Born model was later extended by

Kirkwood (1934) and Onsager (1936) for the treatment of arbitrary charge distributions inside a

spherical cavity. Nowadays, the treatment of solutes of arbitrary shape is possible with the use of

powerful computers and numerical methods (see Section 3.3 below).

To gain insight into the significance of the continuum electrostatic approximation, it is help-

ful to examine how the Born model arises at the microscopic level (Rashin & Honig, 1985 ;

Hirata et al. 1988 ; Jayaram et al. 1989; Roux et al. 1990). The electrostatic solvation free energy

can be calculated as the reversible work needed to charge-up an ion in the solvent, according to

Kirkwood’s thermodynamics integration (Kirkwood, 1935),

DGelec=
Z q

0
dqk

@U

@q

� �
(qk )

, ð20Þ

where U is the potential energy of the system (comprising one ion surrounded by solvent

molecules). The ion interacts with all the charges in the solvent molecules and the charging free

energy can be written as

DGelec=
Z q

0
dqk
Z

dr
1

r
nrelec(r ; qk )m, ð21Þ
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where the quantity nrelec(r ;qk )m is the average charge distribution function of the solvent around

the ion of charge qk. Typically, the solvent charge distribution function is sharply peaked at some

distance r=Rion, which corresponds to the radius of the ion, and nearly zero everywhere else.

Examples of the solvent charge distributions around K+ and Clx calculated from MD simu-

lations are shown in Fig. 4. A reasonable approximation to derive a closed form expression for

DGelec in Eq. (21) is to substitute the slowly varying integrand 1/r by its value at the dominant

peak of the solvent charge distribution 1/Rion, yielding,

DGelec�
Z q

0

dqk
1

Rion

Z
drnrelec(r ; qk )m: ð22Þ

The remaining integral over the solvent charge distribution function can be evaluated in

closed form. The total electrostatic potential at large distance is qk/ewr. By virtue of Gauss’s

theorem, this implies that the total charge enclosed by a spherical surface of radius r is qk/ew. This
corresponds to the charge of the ion, qk, plus the charge arising from the solvent polarization,

qk(1/ewx1). It follows that the total charge from the solvent obeys exactly the sum rule,Z
drnrelec(r ; qk )m=qk

1

ew
x1

� �
: ð23Þ

The Born model of ion solvation given in Eq. (19) is obtained after substitution of this ex-

pression in Eq. (22) followed by an integration over the charge qk yielding 1
2
q2. In reality, the

solvent charge distribution function is distributed over a microscopic region of space of finite

dimension (see Fig. 4). This shows that the optimal value for the Born radius Rion, which

corresponds to the peak in nrelec(r ; qk )m, is not a property of the ion alone. Born radii are effective
semi-phenomenological parameters depending on both the charge of the ion and the atomic

structure of the solvent molecules (Roux et al. 1990). They are not equivalent to the Pauling ionic
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Fig. 4. Radial distribution of the solvent charge around a K+ and a Clx in bulk water. Around K+ (solid

line), the solvent charge distribution is dominated by the large negative peak at r=2�6 Å arising from the

electronegative oxygen of the surrounding water molecules. Around Clx (dotted line), the solvent charge

distribution is dominated by the large positive at r=2�2 Å peak arising from the electropositive hydrogens

of the surrounding water molecules ; the peak at r=3�7 Å arises from the second hydrogen in a water

molecule. Details of the molecular dynamics simulations are given in Roux (1996).
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radii, which were deduced from analysis of salt crystals (Pauling, 1960), but empirical parameters

that must be adjusted to yield the solvation free energy accurately. These parameters are typically

not transferable from one environment to another.

3.2 Ion–ion interactions in bulk solution

As discussed above, the Born model is able to capture the dominant contributions to the

solvation free energy of a single ion in liquid water. What is, then, the character of the inter-

actions between ions in bulk water and how do they relate to the simple laws of classical

continuum electrostatics? From the perspective of statistical mechanics, the water-mediated

ion–ion effective interactions should be represented by a PMF, which is related to the pair

correlation function (Nienhuis & Deutch, 1972; Chandler, 1977 ; Pettitt & Rossky, 1986). At a

large distance r, the ion–ion PMF has the following asymptotic form (Chandler, 1977 ; Pettitt &

Rossky, 1986)

lim
r pO

W (i j )
bulk(r )p

qiqj

ewr
, ð24Þ

where qi and qj are the charge of the ions, and ew is the dielectric constant of bulk water.

Therefore, at large distances the ion–ion PMF does behave as a simple coulomb interaction

shielded by the dielectric constant of water, in accord with classical electrostatics ( Jackson,

1962). However, the PMF between two small ions is not represented accurately by this form at

all distances. At small distances, there are important structural packing effects caused by the

granularity and the finite size of the water molecules (Pettitt & Rossky, 1986 ; Guàrdia & Pardró,

1991 ; Llano-Restrepo & Chapman, 1994). For example, the effective interactions between K+

and Clx in liquid water shown in Fig. 5 displays damped oscillations of considerable complexity.

It is customary to express the ion–ion PMF as (Pettitt & Rossky, 1986)

W (i j )
bulk(r )=w(i j )

sr (r )+
qiqj

ewr
, ð25Þ

where wsr(r) represents some short-range solvent-mediated ion–ion interaction. Such potentials

may be useful approximations to simulate ionic solution with many ions (Im et al. 2000 ; Moy

et al. 2000),

W (i j )
bulk(r1, r2, . . . )=

X
i<j

w(i j )
sr (jrixrj j)+

qiqj

ewjrixrj j
: ð26Þ

If a simple Lennard–Jones 6–12 potential is taken to represent the short-range interaction po-

tential, then the model is equivalent to the restricted primitive model with soft core, which has

been extensively used in numerous statistical mechanical studies of ionic solutions (Ramanathan

& Friedman, 1971 ; Ermak, 1975 ; Wood & Friedman, 1987 ; Jardat et al. 1999).

3.3 Continuum electrostatics and the PB equation

We have reviewed some basic aspects of ion solvation and solvent-mediated ion–ion interactions

in bulk solution and highlighted the fact that the solvation free energy of polar systems in water is

often dominated by electrostatics. The treatment of complex molecular systems of arbitrary

geometries with classical continuum electrostatic methods follows essentially the same principles.
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It is made possible by mapping the problem onto a discrete grid and using finite-difference

relaxation numerical algorithms to solve the PB equation (Warwicker & Watson, 1982a ; Klapper

et al. 1986). To clarify the microscopic basis of the PB equation, let us consider a molecular solute

immersed in an aqueous salt solution. Let us collectively designate the coordinates {r1,_, rp,_}

of the fixed solute as Xp, where each atom p, located at rp carries a partial charge qp. It is assumed

that the average spatial density of the mobile ions in the aqueous regions around the microscopic

solute depends only on the local electrostatic potential w(r)

nra(r)m=�rrae
xqaw(r)=kBT , ð27Þ
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Fig. 5. Ion–ion radial distribution functions from molecular dynamics (thick lines), Brownian dynamics

(BD) simulation with short-range ion–ion interaction wsr (with circles), BD with the primitive model

(with triangles).
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where a refers to a specific type of mobile ion, and �rra is its number density in the bulk solution.

Such an approximation, which was pioneered by Gouy (1910), Chapman (1913), and Debye &

Hückel (1923), is expected to be valid at moderately low ionic concentration when core–core

interactions between the mobile ions may be neglected. The total space-dependent charge

density from the mobile ions is

nrions(r)m=exUcore(r)=kBT
X
a

qa�rrae
xqaw(r)=kBT , ð28Þ

where Ucore(r) is a core-repulsive potential excluding the ions from the interior of the solute.

The nonlinear form of the PB equation is obtained when nrions(r)m is inserted explicitly in the

Poisson equation for macroscopic media ( Jackson, 1962),

= � [e(r)=w(r)]=x4p rp(r)+
X
a

qa�rrae
xUcore(r)=kBT exqaw(r)=kBT

 !
, ð29Þ

where e(r) is the position-dependent dielectric constant at point r, and rp(r) is the charge density

of the solute

rp(r)=
X
p

qpd(rxrp): ð30Þ

Linearization of Eq. (29) with respect to the potential w yields the familiar Debye–Hückel

approximation or linearized PB equation (Debye & Hückel, 1923 ; Fowler & Guggenheim,

1939)

= � [e(r)=w(r)]x�kk2(r)w(r)=x4prp(r), ð31Þ

where �kk2(r) is the space-dependent screening factor which varies from zero, in the solvent-

excluded regions, to 4p
P

a q
2
a�rra ⁄kBT , in the bulk solvent. The electrostatic contribution to

the solvation free energy is calculated from

DGelec(Xp)=
1

2

X
p

qpwrf (rp), ð32Þ

where

wrf � wsystxwvac ð33Þ

is the reaction field ; wsyst is the electrostatic potential in the full system, calculated from PB

Eq. (29) with the complex dielectric boundaries defined from the non-uniform dielectric

constant e(r), and wvac is the electrostatic potential calculated in vacuum with a uniform

dielectric constant of 1.

Several programs are available for computing the electrostatic potential using this approach,

e.g. DelPhi (Klapper et al. 1986 ; Gilson et al. 1987), UHBD (Davis et al. 1991), and the PBEQ

module (Nina et al. 1997 ; Im et al. 1998) incorporated in the simulation program CHARMM

(Brooks et al. 1983). As shown by comparisons to simulations with explicit water molecules,

classical continuum electrostatic approximations are remarkably successful in reproducing the

electrostatic contribution to the solvation free energy of small solutes ( Jean-Charles et al. 1991 ;

Sitkoff et al. 1994), amino acids (Nina et al. 1997), and nucleic acids (Banavali & Roux, 2002).
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Furthermore, the PB equation (linear and nonlinear) is a particularly simple and powerful

approach to address questions about the influence of salt on complex biological systems (Sharp &

Honig, 1995 ; Misra & Honig, 1996 ; Misra et al. 1998). Excellent reviews of classical electrostatics

are, for example, Partenskii & Jordan (1992b), Honig & Nicholls (1995), and Warshel &

Papazyan (1998).

The total solvation free energy of a molecular system may be expressed as the reversible work

for its complete materialization into the bulk solvent in a step-by-step process (Roux & Simonson,

1999). In particular, one can envision the solvation free energy of a solute as the total reversible

work needed to first create a neutral van der Waals cavity into the solvent, and subsequently

switch-on the electrostatic interactions between the solute and the solvent molecules,

DG=DGnp+DGelec: ð34Þ

While the electrostatic contribution is calculated via Eq. (32) as described above, the non-polar

contribution is generally approximated in terms of the solvent-accessible surface area (SASA), S,

DGnp=csS, ð35Þ

where cs is the surface tension of the solvent. Both contributions depend on the configuration of

the solute.

In the case of simple monatomic ions, the total solvation free energy, DG, is equivalent to the

intrinsic excess chemical potential D�mm. Including all contributions, the solvation free energy of an

ion in a salt solution may be approximated as

D�mm=cs4pR
2
ion+

q2

2Rion

1

ew
x1

� �
x

q2k

2ew(1+kRion)
ð36Þ

(for the derivation see McQuarrie, 1976). For the sake of simplicity, a unique radius Rion was

assumed in Eq. (36). However, the parameterization of an accurate continuum electrostatic

model requires the development of optimal sets of radii to construct the cavity as well as the

space-dependent functions �kk2(r) and e(r). As illustrated in the microscopic derivation of the Born

model, the dielectric boundary is closely related to the nearest density peak in the solute–solvent

distribution function (Roux et al. 1990). Different schemes for obtaining atomic radii optimizing

to reproduce the solvation free energy of a collection of molecules have been suggested (Sitkoff

et al. 1994 ; Nina et al. 1997). The spatial dependence of �kk2(r) is often assumed to be similar to that

of e(r), though the region accessible to the mobile ions does not have to coincide precisely with

the region accessible to high dielectric water. The atomic radii that are optimal for setting

the protein–water dielectric interface may differ from the optimal atomic radii needed to set the

ion-accessible region near the protein surface (Im & Roux, 2002b).

3.4 Limitations of continuum dielectric models

Before going further, it is useful to expand a little more on the limitations of continuum dielectric

models leading to Eq. (31). One important aspect of linear macroscopic continuum electrostatics

is that the average polarization density P(r), at point r, obeys a linear relation involving the local

electrostatic field, E(r)

P(r)=
e(r)x1

4p

� �
E(r), ð37Þ
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where E=x=w is the total electrostatic field. As a consequence, P(r) and E(r) are co-linear

vectors. In typical application of the PB equation, the space-dependent dielectic e(r) is assigned a

value of 80 in bulk water, of 2 in the lipid hydrocarbon, and a value between 2 and 10 for

the protein (Honig & Nicholls, 1995). It should be emphasized that a local constitutive relation,

such as Eq. (37) is an approximation. A prerequisite to derive Eq. (37) from microscopic con-

siderations is that the total field, E, must be weak and vary only on a length-scale that is much

longer than the correlation length of the liquid (Nienhuis & Deutch, 1971 ; Chandler, 1977 ;

Partenskii & Jordan, 1992b ; Beglov & Roux, 1996). Generalizations of Eq. (37) often involve

a spatial convolution with a non-local dielectric response function, e(r, rk ). Such non-locality

should not be surprising. After all, the dielectric constant is a macroscopic concept, born out of

intrinsically non-local electrostatic interactions. Generally, the dielectric response function is

sharply peaked at r=rk, and decays rapidly to zero when |rxrk| becomes larger than the micro-

scopic correlation length of the liquid (typically a few Å for liquid water). Assuming that the

dielectric response function is local is an approximation that is valid only to describe electrostatic

features that are established over lengthscales that are larger than the correlation length of the

liquid. For example, the electrostatic potential arising from the average solvent polarization in

the neighborhood of a molecular solute may exhibit strong oscillations that are considerably

more complex than those expected from a continuum approximation (Beglov & Roux, 1996).

Furthermore, additional phenomena related to non-linear dielectric saturation of the solvent can

also take place when the local fields are too large (Warshel & Åqvist, 1991 ; Beglov & Roux,

1996). The concept of a local dielectric constant to represent the electrostatic response of

a fluctuating macromolecule encounters fundamental difficulties, which further highlight the

limitations of continuum approximations (Gilson & Honig, 1986 ; King et al. 1991 ; Warshel &

Papazyan, 1998 ; Schutz & Warshel, 2001 ; Simonson, 2003). While continuum electrostatics is

a useful and valid approximation to describe broad features related at moderate and large length-

scales, it is worth keeping these considerations in mind when such an approximation is applied

to microscopic systems.

3.5 The dielectric barrier

Cell membranes are supramolecular sheet-like structures formed by lipid molecules possessing

long non-polar hydrocarbon chains attached to a polar moiety (Gennis, 1989). The hydrocarbon

chains of the lipid molecules form a 20–30 Å non-polar (low dielectric) core at the center of

the bilayer. A pioneering study by Parsegian (1969) showed that the presence of the low dielectric

membrane has a great impact on ion permeation. He calculated the free energy of transfer of

an ion to the center of a planar membrane using a continuum electrostatic approximation. In

his model, the non-polar core formed by the hydrocarbon chains is approximated by a slab of

featureless material having a dielectric constant of 2 while the aqueous solutions are represented

by regions having a dielectric of 80. The main conclusion was that there is a large energy barrier

opposing the passage of an ion across the membrane. To illustrate this important concept, we

calculated the free-energy profile of a K+ across a low dielectric membrane. The result is shown

in Fig. 6a. It is observed that the free energy to transfer an ion to the center of the membrane is

y38 kcal/mol. This large free-energy barrier, opposing the passage of an ion across the low

dielectric membrane, is widely referred to as the ‘dielectric barrier ’ (Parsegian, 1969). The

dielectric barrier is a fundamental impediment to ion permeation across cell membranes. Ion

channels are specialized proteins whose primary role is to help overcome the dielectric barrier
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presented by the cell membrane. Using a continuum electrostatic model, Levitt (1978) and

Jordan (1981) showed that even the presence of small pore-containing high-dielectric medium

can help to reduce the dielectric barrier significantly. This important observation is illustrated in

Fig. 6a for cylindrical pore of 3 Å radius. Although such a model cannot account for ionic

selectivity, it highlights the importance of (high dielectric) water molecules along the permeation

pathway. Since this early work, similar electrostatic calculations based on channel models with

more complex shapes have been carried out ( Jordan, 1984; Jordan & Vayl, 1985). However, it is

not possible to go beyond this without further structural information about ion channels at the

atomic level.

40

30

20

10

0

0·0

–0·5

–1·0

–1·5

–2·0

–2·5

–20 –15 –10 –5 0 5 10 15 20

–20 –15 –10 –5 0 5 10 15 20

E
ne

rg
y 

(k
ca

l/m
ol

)
E

ne
rg

y 
(k

ca
l/m

ol
)

(a)

(b)

Low
dielectric slab

Aqueous
cylindrical pore

z (Å)

Fig. 6. Illustration of the important concepts in membrane electrostatics. (a) The dielectric barrier. The solid

line is the electrostatic reaction-field free energy of a K+ ion going across a 30 Å membrane represented by

a structureless continuum medium of dielectric 2. The dashed line is the electrostatic reaction-field free

energy of a K+ ion going through a 3 Å diameter cylindrical aqueous pore of dielectric constant 80. The

finite-difference calculations were done using the PBEQ module (Nina et al. 1997; Roux, 1997; Im et al.

1998) of the biomolecular simulation program CHARMM (Brooks et al. 1983). The total electrostatic

potential was calculated at each point of the grid by solving the finite difference Poisson equation.

No electrolyte was included in the bulk solution. (b) The transmembrane potential in the linear field

approximation with a potential difference of 100 mV.
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3.6 The transmembrane potential and the PB-V equation

The transmembrane potential is an important driving force governing the movement of charged

species across the cell membrane. As first discussed by Nernst (1889), a membrane potential

appears spontaneously between two ionic solutions separated by a semi-permeable membrane as

the result of a balance between the entropic tendency to homogenize the system and the

necessity to maintain local charge neutrality. The struggle between these two opposing forces

takes place near the semi-permeable membrane, and the potential difference is the result of

this interfacial phenomena. Alternatively, it is possible to impose a potential difference across

an impermeable membrane in the laboratory using an external electromotive force and ion-

exchanging electrodes. Both situations correspond to molecular systems in thermodynamic

equilibrium.

At the microscopic level the transmembrane potential arises from a small charge imbalance

distributed in the neighborhood of the membrane–solution interface. The net charge per area for

a transmembrane potential of 100 mV corresponds roughly to only one atomic unit charge per

surface of 130r130 Å2. Since a physiological salt concentration of 150 mM corresponds to

approximately one cation–anion pair per cubic volume of 22r22r22 Å3, the membrane

potential arises from a strikingly small accumulation of net charge compared to the bulk ion

density. As illustrated in Fig. 6b, the transmembrane potential has a particularly simple linear form

in the case of a perfectly planar membrane. Because there are no charges in the low dielectric

membrane, the potential is traditionally assumed to vary linearly across the membrane (constant

field approximation). Therefore, the potential is constant on both sides of the membrane with a

potential difference of Vmp. A constant field such as shown in Fig. 6b is, however, probably

inaccurate in the case of wide aqueous pores of irregular shapes. It is thus necessary to develop

a more general treatment of the membrane potential.

Let us consider a protein embedded in an impermeable membrane separating two salt sol-

utions. The system is illustrated in Fig. 7. Let Xp represent the configuration of the protein (a few

ions and water molecules at fixed positions could also be included explicitly as part of the

microscopic system). An external electromotive force (EMF), connected to sides I and II by two

electrodes, gives rise to the membrane potential Vmp. For simplicity, it is assumed that the

electrodes are ideal and that one ionic species can be transported from one side to the other

through the external electrical circuit. In a real system, the ionic species is not transported per se

through the external circuit by the EMF. The electrical communication between the external

circuit and the electrolyte is through electrode reactions of the type : AgCl+ex ’Ag+Clx, i.e.

the chloride anion is chemiabsorbed at the surface of the electrode on one side, yielding one

electron which is transported through the electric circuit, leading to the release of a chloride

anion on the other side (Bockris & Reddy, 1970). However, the exact detail of the electrode

reaction is unimportant in the present development.

Assuming that the system is in thermodynamic equilibrium (there is no flux), the probability of

any configuration is given according to the Boltzmann factor, exp[xUtot/kBT ], where the total

potential energy in the system is Utot=UxQextVmp, where U is the molecular potential energy

(protein, membrane and salt solutions), andx QextVmp is the energy of the total net charge that

has transited through the external EMF from side I to side II (there is a minus sign because the

potential energy of a positive charge is decreasing as it travels from side I to side II through

the EMF). Because any macroscopic charge imbalance in the bulk region would yield a pro-

hibitively large energy, the net charge Qext is very small and the salt solutions remain globally
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neutral. The bulk density of ions of type a is �rrI
a and �rrII

a on sides I and II of the membrane

respectively. The equilibrium condition for the ionic species a transported by the EMF is

�rr(I)
a

�rr
(II)
a

=
ex�mm

(I)
a =kBT

ex(�mm
(II)
a xqaVmp)=kBT

, ð38Þ

where �mm(S)
a is the excess chemical potential on side S. The excess chemical potential �mm(S)

a is

composed of two contributions, the intrinsic excess chemical potential, D�mm(S)
a , arising from

local interactions of the ion with the surrounding particles in the bulk (see above), and the

interaction with the overall electrostatic potential in the bulk solution (far away from the

membrane), �ww(S),

�mm(S)
a =D�mm(S)

a +qa�ww
(S) ð39Þ

The electrostatic potential �ww(S) results from the very small net charge imbalance carried by the

EMF. In an electrolyte solution, this net charge is distributed at the interfacial boundaries.

Equations (38) and (39) imply that the difference in the average electrostatic potential between

sides I and II is

�ww(II)x�ww(I)=Vmp+
kBT

qa
ln

�rr(I)
a

�rr
(II)
a

� �
+

1

qa
[D�mm(I)

a xD�mm(II)
a ]: ð40Þ

The intrinsic excess chemical potential D�mm(S)
a depends on the ionic strength of the solution (see

Section 3.3). Experimentally, one tries to control the composition of the solutions so that

Side II

Side I

ρα µα φα
–(II) –(II) –(II)

ρα µα φα
–(I) –(I) –(I)

Vmp

Fig. 7. Schematic representation of an intrinsic protein embedded in membrane under the influence of a

transmembrane potential. The system is assumed to be in thermodynamic equilibrium. The transmembrane

potential is 0 on side I and Vmp on side II. The density of the permeable ions, the excess chemical

potential, and the average electrostatic potential, are respectively, �rr(S), �mm(S), and �ww(S) on side S (I or II) of

the membrane.
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�ww(II)x�ww(I)�V mp. In the following, we will assume that those conditions are fulfilled and that

the difference in electrostatic potential simply corresponds to the EMF.

We now focus our attention on the total electrostatic contribution to the free energy Gelec.

This contribution may be calculated as the step-by-step reversible thermodynamic work required

to first impose the membrane potential Vmp, and then switch on the electrostatic interactions

between the protein and its surrounding. Introducing the coupling parameter l, varying between

0 and 1 to scale the protein charges, the electrostatic free energy may be expressed con-

veniently as

DGelec(Xp)=
Z Vmp

0
dVmp

@Utot

@Vmp

� �
(Vmp, l=0)

+
Z 1

0
dl

@Utot

@l

� �
(Vmp, l)

=x

Z Vmp

0
dVmpnQextm(Vmp, l=0)+

Z 1

0
dl
X
p

qpw(rp;Vmp, l),

ð41Þ

where p indicates the protein charges, and w(r ; Vmp, l) is the total average electrostatic potential

at point r, with protein charges scaled by l, and imposed membrane potential Vmp. To calculate

w(r ; Vmp, l), we use the Poisson equation for macroscopic media ( Jackson, 1962)

= � [e(r)=w(r)]=x4plrp(r)x4pnrions(r)m(Vmp, l)
, ð42Þ

where e(r) is a position-dependent dielectric constant equal to ew, ew, and ep in the bulk water,

membrane, and protein regions, respectively. The dielectric boundary of the protein corresponds

to the molecular surface which may be determined using effective atomic radii (Nina et al. 1997),

and lrp(r) and nrions(r)m(Vmp
,l) are the charge density associated with the protein and mobile

counter ions respectively. As indicated by the subscript (Vmp, l), the density of the mobile ions

in the salt solution on both sides of the membrane varies as a function of the membrane potential

Vmp and the coupling parameter l (in the following, the subscript on the density of mobile ions

will be omitted to simplify the notation). To make further progress it is necessary to have a

microscopic description of the ion-charge densities in the bulk solutions. The number density of

ions of type a at r on side S is

nra(r)m=�rr(S)
a ex(ma(r)x�mm

(S)
a )=kBT , ð43Þ

where ma(r) is the excess chemical potential of ion of type a at point r (this is equivalent to

the reversible work to insert an ion at point r). Neglecting ion–ion short-range interactions, the

chemical potential of an ion of type a at point r is

m(S)
a (r)=Ucore(r)+D�mm(S)

a +qaw(r), ð44Þ

where w(r) is the total average electrostatic potential at point r, and Ucore (r) is the repulsive core

overlap potential excluding the ions from the interior of the protein or the membrane. The total

charge density of the mobile ions at any point r is

nrions(r)m=
exUcore(r)=kBT

P
a qa�rr

(I)
a exqa(w(r)x �ww

(I)
)=kBT if r is on side I

exUcore(r)=kBT
P

a qa�rr
(II)
a exqa(w(r)x �ww

(II)
)=kBT if r is on side II:

(
ð45Þ

This expression is a generalization of Eq. (28). For physiological systems (i.e. a membrane

potential on the order of 100 mV and a salt concentration of 150 mM), the argument of the
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exponentials in Eq. (45) is expected to be small and the exponential functions may be linearized

(i.e. exp(x)B1+x). Assuming that �ww(I)=0 and �ww(II)=V mp, one has after linearization

nrions(r)m=
x�kk2(r)

4p

� �
[w(r)xV mpH(r)], ð46Þ

where H(r) is a Heaviside step-function equal to 0 on side I and equal to 1 on side II, and

�kk2(r)=
(4p=kBT ) exUcore(r)=kBT

P
a q

2
a�rr

(I)
a if r is on side I

(4p=kBT ) exUcore(r)=kBT
P

a q
2
a�rr

(II)
a if r is on side II ,

(
ð47Þ

which yields the modified PB equation for the total average electrostatic potential in the presence

of a membrane potential Vmp,

= � [e(r)=w(r)]x�kk2(r)[w(r)xVmpH(r)]=x4plrp(r): ð48Þ

We refer to this result as the linearized ‘PB-V equation’. Closely related equations may be found

in previous treatments of planar membranes (Läuger et al. 1967; Everitt & Haydon, 1968 ; Walz

et al. 1969). The PB-V Eq. (48) is equivalent to the standard PB Eq. (31) whenVmp=0 and l=1.

The solution of the PB-V equation may be expressed formally as the sum of two separate terms

w(r;Vmp, l)=Vmpwmp(r)+lw(r) ð49Þ

with

wmp(r)=x4p

Z
drkG (r, rk )�kk2(rk )H(rk ) ð50Þ

and

w(r)=
Z

drkG (r, rk )4prp(rk ), ð51Þ

where G(r, rk ) is Green’s function defined by

= � [e(r)=G (r, rk )]x�kk2(r)G (r, rk )=x4pd(rxrk ): ð52Þ

The function wmp(r) multiplied by Vmp is the solution of Eq. (48) with l=0, corresponding to

the electrostatic potential due to the transmembrane voltage Vmp in the absence of the protein

charges. The function wmp is dimensionless with 0fwmp(r)f1 because of the properties of

Eq. (48). It should be noted that wmp(r) is independent of Vmp and of the protein charges

(that formally are turned off when l=0). However, it does depend on e(r) and �kk2(r). The

function w(r) is the solution of Eq. (48) with Vmp=0, corresponding to the electrostatic

potential due to the protein charges in the absence of any transmembrane voltage.

The electrostatic free energy of the microscopic system (relative to vacuum) is obtained from

the reversible work required to build up the interactions in the system. The reversible work can

be expressed as two successive thermodynamic integrations, first over Vmp, and then over l,

DGelec(Xp)=
Z Vmp

0
dVmp

Z
drH(r)nrions(r)m(Vmp, l=0)+

Z 1

0
dl
X
p

qp[Vmpwmp(rp)+lwrf (rp)],

ð53Þ
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where qp and rp are the protein charges and their position respectively, and wrf is the reaction field

defined as in Eq. (33). The complete result may be written in the form

DGelec(Xp)=1
2
CV 2

mp+
X
p

qpwmp(rp)

" #
Vmp+

1

2

X
p

qpwrf (rp), ð54Þ

where C is the capacitance of the system (calculated with l=0, in the absence of protein

charges),

C=
Z

drH(r)
x�kk2(r)

4p

� �
[wmp(r)x1]: ð55Þ

The capacitance of the system depends very weakly on the configuration of the protein because

e(r) and �kk2(r) may vary if the protein is not entirely embedded in the membrane region. In

general, this contribution is negligible. The second term represents the interaction of the protein

charges with the membrane potential. It may be expressed asQVmp, whereQ corresponds to an

effective charge

Q=
X
p

qpwmp(rp): ð56Þ

The quantity wmp(rp) represents the fraction of the membrane potential seen by each charge qp.

In the case of a perfectly planar system, the electric field across the membrane is constant and

wmp(rp) is simply the fraction of the membrane thickness. For this reason, it is often referred to

as the ‘electric distance ’ (Sigworth, 1993 ; Hille, 2001). This is illustrated in Fig. 6. More generally,

the interaction of the protein charges with the membrane potential may be more complicated

than the simple linear field if the shape of the protein–solution interface is irregular. The last term

is independent of Vmp and corresponds to the self energy plus the reaction field contribution

due to the solvent polarization and electrolyte shielding. This is sometime called the image

interactions and electro-osmotic effect ( Jordan et al. 1989). According to Eq. (34) the total

configuration-dependent free energy G(Xp) of the microscopic system can be written as

G (Xp)=Up(Xp)+DGnp(Xp)+DGelec(Xp), ð57Þ

where Up(Xp) is the internal potential energy of the system. The equilibrium probability of the

system to be in the configuration Xp is

Peq(Xp)=
exG (Xp)=kBTR

dXkp exG (Xkp)=kBT
ð58Þ

which highlights the fact that the total configuration-dependent free energy, G(Xp), is equivalent

to a generalized macromolecular PMF. In analogy with Eq. (15), the total configuration-depen-

dent free energy G(Xp) can also be expressed as

exG (Xp)=kBT=

R
dXk d(XpxXkp) exUtot(Xk )=kBTR
dXk d(XpxXkp) exU *

tot(Xk )=kBT
, ð59Þ

where U *tot corresponds to the potential energy of a reference system in which all inter-

actions involving the microscopic subsystem have been turned off. This form will be useful in

Section 4.3.
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4. Statistical mechanical equilibrium theory

The previous theoretical development provided a continuum approximation to the total free

energy of a channel protein in a fixed configuration, embedded in a membrane and submitted to

an applied transmembrane voltage. The expression for G(Xp) remains valid, even if a number of

ions and water molecules are considered as part of the microscopic system and treated explicitly,

while the rest of the surrounding solvent is treated as a continuum. Nonetheless, important

aspects of the molecular system have not been incorporated into the previous developments and

further considerations are needed. In particular, the expression was developed in the context

of approximations based on macroscopic continuum electrostatics. Even though some aspects

of ions in aqueous solution (solvation free energy and ion-ion interaction) are well-described

by continuum electrostatics, this approximation breaks down at length-scales shorter than

5–10 Å. The atomic nature of a flexible protein and the granularity of the water molecules should

be taken into account for a meaningful representation of ion channels. Furthermore, several

questions related to the properties of a pore system in open equilibrium with the bulk solutions

need to be elucidated. For example, how many ions should partition into the pore region, and

where should these ions bind in the pore is unresolved. In the following, we review the main

elements of a statistical mechanical theory describing the equilibrium properties of ion channels

initially formulated by Roux (1999a).

4.1 Multi-ion PMF

Let us consider a selective ion channel embedded in a lipid membrane in equilibrium with

surrounding aqueous salt solutions. The electrolyte solutions are not symmetric and there is a

Nernst potential across the membrane. It is assumed that the channel is permeable to only one

ionic species and remains in the open conducting state with no gating transitions ; all other ions

cannot pass through the channel or the membrane. It should be noted that ideal selectivity of the

channel to one ionic species is a necessary condition for a true equilibrium situation to exist

in the presence of asymmetric solutions.

The microscopic system is illustrated schematically in Fig. 8. The permeating ions can trans-

locate from one side to the other, whereas the non-permeating ions cannot exchange from

sides I and II. Since their number N (S) is fixed on each side S, their configurational integral is

restricted to the side to which those ions are assigned. In contrast, the accessible configurational

space of the permeating ions corresponds to the whole volume of the system. The total potential

energy of the entire system is U and X represents all the degrees of freedom in the system. More

specifically, the coordinates of the N permeable ions are indicated as {r1,_ , rN}.

To make progress, it is useful to define a ‘pore ’ region from which all ions other than the

permeating species are excluded, and a ‘bulk ’ region which contains the electrolytic solutions.

The step-functions Hpore(r) and Hbulk(r) are introduced such that Hpore(r)=1 when r is in the

pore and 0 otherwise, and Hbulk(r)=1 if r is in the bulk and 0 otherwise. By completeness, it

follows that

Hpore(r)+Hbulk(r) � 1: ð60Þ

From this definition, it is possible to determine the total number of permeating ions inside

the pore for any instantaneous configuration of the pore system. It is given by the discrete
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function nk(r1, r2, _ , rN), defined as,

nk(r1, r2, . . . , rN )=
XN
i=1

Hpore(ri ), ð61Þ

where ri is the position of the ith ion. The probability, Pn, of having exactly n ions inside the pore

is calculated from the average,

Pn=ndnnkm

=

R
dX dn, nk e

xU (X) ⁄kBTR
dX exU (X) ⁄kBT

,
ð62Þ

where dknn is a Kroenecker function,

dnnk=
1 if n=nk(r1, r2, . . . , rN )

0 otherwise:

�
ð63Þ

By construction, the probabilities Pn are normalized, i.e. Sn Pn=1, via the completeness of the

Kroenecker function. To determine the probabilities of occupancy, it is useful to consider

the binding factor Bn corresponding to the ratio Pn/P0. For n=1, this is

B1=

R
dX d1, nk e

xU (X) ⁄kBTR
dX d0, nk exU (X) ⁄kBT

: ð64Þ

Side II ρα µα φα
–(II) –(II) –(II)

Side I ρα µα φα
–(I) –(I) –(I)

Pore region Vmp

Fig. 8. Schematic representation of the ion channel-membrane system with asymmetrical solutions on

sides I and II. The ‘pore region ’, which corresponds to the ideally selective part of a channel, is

highligted with a dashed line. The ‘bulk region’ corresponds to the remaining space in the system. As in

Fig. 7, the transmembrane potential is 0 on side I and Vmp on side II. The system is assumed to be

in thermodynamic equilibrium. The density of the permeable ions, the excess chemical potential, and

the average electrostatic potential, are respectively, �rr(S), �mm(S) and �ww(S) on side S (I or II) of the membrane.

For any instantaneous configuration, it is possible to know the number of ions occupying the pore

region.

Ion permeation through biological channels 41

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033583504003968
Downloaded from https://www.cambridge.org/core. WWZ Bibliothek, on 14 Nov 2017 at 10:31:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033583504003968
https://www.cambridge.org/core


Since the factor dk1,n in the integrand is zero unless one of the N ions is located inside

the pore (only ion 1 could be in the pore, or only ion 2, etc. _), the expression may be

re-written as

B1=N

R
dXHpore(r1)Hbulk(r2) � � �Hbulk(rN ) e

xU (X) ⁄kBTR
dXHbulk(r1)Hbulk(r2) � � �Hbulk(rN ) exU (X) ⁄kBT

, ð65Þ

where the ion number 1 was chosen arbitrarily to occupy the pore. The pre-factor of N is

included to account for the multiple ways to obtain equivalent configurations. The 1-ion binding

factor may be expressed as

B1=N

R
dr1Hpore(r1) e

xW(r1) ⁄kBTR
dr1Hbulk(r1) exW(r1) ⁄kBT

, ð66Þ

where W(r1) is a PMF corresponding to the reversible thermodynamic work to adiabatically

move one ion into the pore region (see Section 2.2 above). According to Eq. (66) the one-ion

PMF is determined relative to an arbitrary offset constant. To have a simple relationship with the

excess chemical potential of the ion in the bulk solution, we choose to define the PMF relative to

a system with one non-interacting ion,

exW(r1) ⁄kBT=
R
dXk d(r1xrk1)Hbulk(rk2) � � �Hbulk(rkN ) exU (Xk )=kBTR
dXkd(r1xrk1)Hbulk(rk2) � � �Hbulk(rkN ) exU (Xk; 1*)=kBT

, ð67Þ

where the notation U(X ; 1*) means that all interactions involving ion 1 with the rest of the

system have been switched off (this potential energy is used as a reference system). It should

be noted that, by construction, W(r1) is equal to the excess chemical potential �mm(S) as r1 goes on

side S far away from the pore region. The volume integral over the bulk region isZ
dr1 Hbulk(r1) e

xW(r1) ⁄kBT=V (I)exm(I) ⁄kBT+V (II)exm(II) ⁄kBT ð68Þ

=
N

�rr(I)
exm(I) ⁄kBT

ð69Þ

=
N

�rr(II)
exm(II) ⁄kBT

becauseN=V (I)�rr(I)+V (II)�rr(II) and ex�mm(II) ⁄kBT=(�rr(II) ⁄ �rr(I)) ex�mm(I) ⁄kBT according to Eq. (38). Since

the density and the excess chemical potential at equilibrium are related via Eq. (39), it is possible

to express the ratio B1 in terms of �rr(I) or equivalently �rr(II).

B1=�rr(I)

Z
dr1 Hpore(r1) e

x[W(r1)x�mm(I) ] ⁄kBT

=�rr(II)

Z
dr1 Hpore(r1) e

x[W(r1)x�mm(II) ] ⁄kBT :

ð70Þ

Similarly, the n-ion binding factor Bn is

Bn=
N !

n!(Nxn)!
r

R
dX Hpore(r1) � � �Hpore(rn)Hbulk(rn+1) � � �Hbulk(rN ) e

xU (X) ⁄kBTR
dXHbulk(r1) � � �Hbulk(rN ) exU (X) ⁄kBT

ð71Þ
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since there are N !/(n !(Nxn) !) equivalent configurations with identical ions. In the thermo-

dynamic limit, NpO and the prefactor N !/(Nxn) !BNn, and

Bn=(�rr(I))n
1

n!

Z
dr1 Hpore(r1) � � �

Z
drn Hpore(rn) e

x[W(r1 , ..., rn)xn�mm(I) ] ⁄kBT , ð72Þ

where the n-ion PMF have been defined relative to n non-interacting ions

exW(r1 , ..., rn) ⁄kBT=
R
dXk d(r1xrk1) � � � d(rnxrkn)Hbulk(rkn+1) � � �Hbulk(rkN ) exU (Xk) ⁄kBTR

dXkd(r1xrk1) � � � d(rnxrkn)Hbulk(rkn+1) � � �Hbulk(rkN ) exU (Xk; 1*, ..., n*) ⁄kBT
,

ð73Þ

where the notation indicates that all interactions involving ion 1,_,n have been switched off

in the reference energy U(X ; 1*, _, n*).

4.2 Equilibrium probabilities of occupancy

Once the binding factors Bn have been determined, the probability of any state of occupancy can

be obtained using B0=1 with the normalization condition ndn, nkm=nd0, nkmBn, yielding,

Pn=
Bn

1+B1+B2+B3+ � � � : ð74Þ

In particular, the probability that the pore be unoccupied is

P0=
1

1+B1+B2+B3+ � � � : ð75Þ

The denominator in Eqs. (74) and (75) may be expressed in the form of an effective Grand

Canonical Partition function of an open finite system in contact with a bath of particles,

J �
XO
n=0

en�mm
(I) ⁄kBT (�rr(I))n

1

n!

Z
dr1 Hpore(r1) � � �

Z
drn Hpore(rn) e

xW(r1 , ..., rn) ⁄kBT , ð76Þ

which provides a compact and useful notation for handling the multi-ion configurational dis-

tribution functions in the pore system. It follows that all equilibrium properties of the system

can be rigorously reconstructed from a hierarchy of PMFs, W(r1,_ , rn), representing the pore

region occupied by n ions.

For any realistic channel, all the probabilities of occupancy Pn must be necessarily zero if n is

larger than some value Nmax, the maximum number of ions that can occupy the pore simul-

taneously. One important special case, the so-called ‘one-ion’ pore theory (Läuger, 1973 ; Levitt,

1986 ; McGill & Schumaker, 1996), occurs if it is assumed that the pore cannot be occupied by

more than one ion at a time. According to this assumption, it follows that all the binding factors

B2=B3_=0 and the probability of finding one ion inside the pore is simply,

P1=
B1

1+B1
: ð77Þ

This equation can be compared with the familiar rectangular hyperbola expression for first-order

saturation of substrate binding

P1=
�rr(I)K1

1+�rr(I)K1
, ð78Þ
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where K1 is the 1-ion binding constant (expressed in terms of side I),

K1=
Z

dr1 Hpore(r1) e
x[W(r1)x�mm(I) ]=kBT : (79)

The n-ion binding constants Kn can be defined for multiply-occupied channels in a similar

fashion. In general, the probability of multiply-occupied states, with explicit number of ions, can

be expressed as

Pn=
Kn(�rr

(I))n

1+K1(�rr(I))+K2(�rr(I))2+K3(�rr(I))3+ . . .
: (80)

The form of Pn is very similar to the familiar result, expressed as probability of multiply-

occupied states with explicit number of ions inside the pore which are obtained from kinetic

models. Although such kinetic models are often formulated in terms of transition rate con-

stants, the present results show that the equilibrium properties follow directly from a statistical

mechanical analysis.

The hierarchy of constrained n-ion PMFs that was elaborated above is completely general and

can be used to describe all equilibrium properties of a channel for any ionic concentrations. To

describe the most general situation, the PMFs W(r1), W(r1, r2), W(r1, r2, r3), etc., are required.

Each of these PMFs is defined on the basis of the pore function Hpore(r), such that the number

of explicit ions inside the pore region is exactly 1, or 2, or 3, etc. In principle, the n-ion PMFs

should be recalculated for different conditions of voltage and ion concentration. However, the

dominant effect resulting from a change in ion concentration in the bulk is on the occupancy of

the pore region, via the factors (�rr(I) )n in Eq. (80), rather than the n-ion PMFs themselves. In

practice, the n-ion PMFs are expected to depend very weakly on the ionic concentration outside

the pore region (see Section 6.1.1 below). Nevertheless, for a correct description, the hierarchy of

PMFs should not be truncated too early at some small number of explicit ions in the pore region

if changes of concentration alter the occupancy of the pore significantly. For example, the gA

channel is mostly singly occupied at low ion concentration but can be doubly occupied at

moderately high concentration (Andersen & Koeppe, 1992). In this case, a complete description

valid for a wide range of concentration should include both the 1-ion and 2-ion PMFs.

4.3 Coupling to the membrane potential

So far, our treatment describes the most general situation with asymmetric solutions and a

Nernst membrane potential. Symmetrical solutions with no membrane potential correspond to

a particularly important special case. It may be anticipated that the equilibrium properties in

the general situation can be expressed in terms of a dominant contribution corresponding to the

symmetrical solutions with no membrane potential, plus other contributions associated with

the transmembrane potential. For this purpose, we separate the system into pore and bulk

subsystems and we represent all the degrees of freedom of the pore subsystem by Xp (including

ions, channels and water). One purpose of this separation is to enable us to use a continuum

electrostatic approximation to describe the influence of the transmembrane potential on the pore

subsystem. For the sake of simplicity, the present analysis will be carried for the 1-ion PMF

although the treatment can easily be generalized to the n-ion PMFs described above using a

similar route.
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The total free energy, G, of all the atoms of the pore subsystem in a fixed configuration Xp,

allowing only ion 1 in the pore, is defined as

exG (Xp) ⁄kBT=

R
dXk d(XpxXPk)Hbulk(r2) . . . Hbulk(rN ) e

xUtot(Xk) ⁄kBTR
dXk d(XpxXpk)Hbulk(r2) . . . Hbulk(rN ) exU *

tot(Xk) ⁄kBT
, (81)

Where U*tot corresponds to the potential energy of a reference system in which all interactions

in volving the pore subsystem have been turned off. A closed-form expression for the free energy

G(XP) of a macromolecular subsystem in the membrane field was previously derived based on

PB-V Eq. (48) [See Eq. (57) above]. One should note that the step-functions Hbulk in Eq. (81)

were not yet included in Eq. (59). Those are absolutely required in the definition of the 1-ion

PMF to ensure that ions 2 to n are restricted to the bulk region (see above). As a consequence, a

modified ionic screening factor �kk2(r)pHbulk(r)�kk
2(r) must be used in the PB-V equation

= � [e(r)=w(r)]xHbulk(r)�kk
2(r)[w(r)xVmpH(r)]=x4prp(r) (82)

to take this additional ion-exclusion constraint into account. In addition, the dielectric constant

in the pore region should be set to 1 where the water molecules are represented explicitly (but see

discussion below).

The free-energy function G(Xp) generally depends on the density of ions on sides I and II, and

on the transmembrane potential, i.e. G (Xp)=G (Xp; �rr
(I), �rr(II),Vmp): Let us define the free energy

of the pore region under equilibrium symmetrical conditions, with no membrane potential as,

Geq(Xp)�G (Xp; �rr
(I)=�rr(II)=�rr,Vmp=0): Following Eqs. (67) and (81), the 1-ion PMF may be

expressed as

exW(r1) ⁄kBT=

R
dXpk d(r1xrk1) exG (Xpk ) ⁄kBTR
dXpkd(r1xrk1) exG (Xpk ; 1*) ⁄kBT

, (83)

where the notation G(Xp; 1*) means that all interactions involving ion 1 with all atoms in the

system (bulk and pore) have been switched off. In the general case, the 1-ion PMF W(r1)

depends on all conditions influencing the system. Let us define the special case when there is

no membrane potential, the system is at equilibrium and the PMF is Weq(r1). We now seek an

expression for the difference W(r1)xWeq(r1),

ex[W(r1)xWeq(r1)] ⁄kBT=

R
dXkp d(r1xrk1) exG (Xkp) ⁄kBTR
dXkp d(r1xrk1) exG (Xkp ; 1*) ⁄kBT

r

R
dXkp d(r1xrk1) exGeq (Xkp ; 1*) ⁄kBTR
dXkp d(r1xrk1) exGeq (Xkp) ⁄kBT

=

R
dXkp d(r1xrk1) exG (Xkp) ⁄kBTR
dXkp d(r1xrk1) exGeq(Xkp) ⁄kBT

r

R
dXkp d(r1xrk1) exGeq(Xkp , 1*) ⁄kBTR
dXkp d(r1xrk1) exGeq(Xkp ; 1*) ⁄kBT

= exDG=kBT
� 	

(r1)
r exDG (1*) ⁄kBT
� 	x1

(r1*)
,

(84)

where DG=GxGeq and DG(1*)=G(1*)xGeq(1*) are the excess perturbation free-energy con-

tributions caused by asymmetrical conditions relative to symmetrical conditions relative to

symmetrical systems. The bracket with subscript (eq, r1) represents an average,

n � � � m(r1)
�
R
dXkp � � � d(r1xrk1) exGeq(Xkp) ⁄kBTR
dXkp d(r1xrk1) exGeq (Xkp) ⁄kBT

, (85)
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with the ion fixed at r1, the configurations being Boltzmann-weighted by the free energy, Geq, of

a symmetrical equilibrium system. A similar expression holds for the configurational averages

performed with the free energy Geq(1*) (in the latter case the subscript r1 can be dropped since

averages are equivalent to those that would be calculated in the absence of ion inside the pore

since its interactions have been switched off).

We must now evaluate the excess perturbation free energies, DG and DG(1*). Their form is

remarkably simple. The non-polar free-energy contribution, Gnp, can be ignored because it

is independent of the membrane potential. Furthermore, even though the reaction-field free-

energy arises from long-range electrostatic interactions between the charges in the pore sub-

system and the environment, it does not contribute to the excess perturbations if the ionic

strength of the solution is kept unchanged on both sides of the membrane as the transmembrane

potential is applied. It follows that

DG (Xp;Vmp)=Vmp

X
p

qpwmp(rp)

" #

=Vmp q1wmp(r1)+
X
p>1

qpwmp(rp)

" #
,

(86)

where particle 1 is the ion (the sum with p>1 runs over all particles other than the ion). Similarly,

DG (Xp; 1*)=Vmp

X
p>1

qpwmp(rp)

" #
(87)

because the interactions of the ion with the surrounding are switched off. The function wmp(r)

represents the influence of the polarization of the counterions in the solvent at the membrane-

bulk interface. It is calculated using Eq. (82) for a fixed configuration of the atoms in the

pore region with all charges turned off. It is possible to treat the couplings DG and DG(1*)

perturbatively and express the complete PMF as a series in increasing powers of the membrane

potential Vmp. To this end, we develop the exact expression Eq. (84) in terms of a cumulant

expansion (Balescu, 1975)

nexDG ⁄kBT m=exbnDGm+b2[nDG 2mxnDGm2] ⁄2+��� (88)

(b=1/kBT and the subscripts on the bracket have been omitted for the sake of clarity). To be

valid, such a cumulant expansion does not require that the perturbation be small, but that the

structure of the coupling with the reference system be simple. For example, it is rigorously exact

if the fluctuations of the pore subsystem are Gaussian. From Eq. (84) the 1-ion PMF is, to lowest

order in the perturbation,

W(r1)=Weq(r1)+W (1)(r1)+W (2)(r1)+ � � � , (89)

where the first-order term is

W (1)(r1)=nDGm(r1)
xnDGm(r1*)

=Vmp q1wmp(r1)+
X
p>1

qpwmp(rp)

* +
(r1)

x
X
p>1

qpwmp(rp)

* +
(r1*)

2
4

3
5 (90)
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[the explicit expressions for DG and DG(1*) have been used]. Thus, to linear order in Vmp, the

influence of the membrane potential arises from the interaction of all the charges of the pore

subsystem (i.e. the ion, the channel and its water content) with wmp. The second-order term

(quadratic in Vmp) is related to fluctuations. Because the ion is fixed at r1, the direct term

q1wmp(r1) does not contribute to the fluctuations, although its presence has a direct influence on

the magnitude of the fluctuations of the other components (water and protein) inside the pore.

Although the coupling of the pore region with the transmembrane potential has been detailed for

the case of a 1-ion PMF, the expressions in Eqs. (81)–(89) are easily generalized for multi-ion

PMFs.

One could use the present development representing the multi-ion PMFs in a pore region

and its coupling to the transmembrane potential in different ways, depending on the ion channel.

The equilibrium PMF corresponds to a thermal average for the molecular system under equi-

librium conditions in which all the microscopic interactions (i.e. ion–channel, ion–water and

water–channel) are expected to play an essential role. In the case of wide aqueous pores, an all-

atom MD approach may not be practical and it may be necessary to calculate the n-ions PMFs

assuming that the solvent is represented by a continuum dielectric in all aqueous regions. In this

case, the total PMF can be calculated directly on the basis of PB-V Eq. (82) using the closed-

form expression Eq. (57) previously derived for the free energy G(Xp) of a macromolecular

subsystem embedded in a membrane. This approximation is elaborated in more detail in Section

5.2.3 in the context of the GCMC/BD algorithm. Nonetheless, the equilibrium PMF is expected

to be sensitive to the structural flexibility of the protein and the granularity of the water mol-

ecules near the ions, particularly in the case of narrow pores such as gA or KcsA. At such length-

scales, a continuum dielectric representation of the water molecules in the pore is not valid (see

Section 3.1 above). For narrow pores, meaningful estimates of the relevant equilibrium PMFs

can be obtained only using all-atom MD simulations including explicit water molecules (see

Section 5.1.2 below). It may be possible, then, to use all-atom MD simulations to compute all

the averages required for the cumulant expansion to represent the coupling of the pore system

to the transmembrane potential (Allen et al. 2003b). However, calculating the cumulant averages

W(1)(r1) and W(2)(r1) required in Eq. (89) becomes difficult when there is a wide vestibule con-

taining many water molecules, such as in the case of the KcsA channel. Nevertheless, the

coupling with the transmembrane potential is expected to be reasonably well-represented by a

continuum dielectric approximation because it is essentially electrostatic in nature. This suggests

an intermediate approach in which the equilibrium PMF is calculated from all-atom MD but the

coupling to the transmembrane potential is calculated assuming that the solvent in the pore is

represented by a continuum dielectric (Bernèche & Roux, 2003),

Wmp(r1, r2, . . . )=Vmp

X
i

qiwmp(ri ), (91)

where wmp is calculated by solving PB-V Eq. (82) with no explicit water molecules (i.e. the

space-dependent dielectric constant e(r) is set to ew). Accordingly, the total PMF is simply

expressed as

W(r1, r2, . . . )=Weq(r1, r2, . . . )+Vmp

X
i

qiwmp(ri ): (92)

One may note that, in this case, the fluctuations corresponding to the second cumulant are

implicitly incorporated via the dielectric response of the solvent and the expansion in Eq. (89) is
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limited to the first cumulant. For the sake of clarity, one should distinguish between the effect of

the transmembrane potential when it is calculated using the PB-V equation and averages in the

cumulant expansion extracted from all-atom MD, or when it is calculated as in Eq. (91) using

the PB-V equation, but representing the solvent inside the pore as a continuum dielectric.

For the sake of clarity, we shall refer to the former as Vmp(PB-V, MD), and to the latter as

Vmp(PB-V) (see also Table 1).

4.4 Ionic selectivity

The selectivity of an ion channel reflects the difficulty that an ‘undesired ’ ion type has to replace

a ‘desired ’ ion type. One should distinguish selectivity arising from equilibrium ion binding versus

selectivity arising from kinetic and non-equilibrium processes (Andersen & Koeppe, 1992).

Furthermore, selectivity may manifest itself very differently, depending on experimental con-

ditions or the properties of a particular channel. For example, the cation-selective OmpF, like

most porins, exhibits only a very modest charge specificity (Cowan et al. 1992 ; Schirmer, 1998).

Such modest selectivity in the case of OmpF is not surprising given that the permeation pathway

is a wide aqueous pore and that the permeation process involves ion and counterions (Im &

Roux, 2002a). In contrast, KcsA, like most biological K+ channels, is very selective for K+ over

Na+ (Heginbotham et al. 1999 ; LeMasurier et al. 2001 ; Nimigean & Miller, 2002). The gA

channel, exhibits a somewhat intermediate selectivity, is very specific for the small univalent

cations H+, Li+, Na+, K+, Rb+, and Cs+, but is essentially impermeable to anions and divalent

cations (Andersen & Koeppe, 1992). The modest selectivity of porins is best represented in

terms of the reversal potential at zero net current in asymmetric salt solution. In the case of gA

or KcsA, where the ion permeation process involves a small number of well-defined states of

ion occupancy, it may be expected that ion selectivity arises largely from the properties of the

equilibrium PMF. To make progress, let us consider the permeation of one ion of type g through

a channel that is very selective for ions of type a. A quantity of particular interest is the free-

energy difference needed to replace a single ion of type a by an undesired ion of type g at

point r. According to Eq. (73)

ex[Wg(r)xWa(r)] ⁄kBT=

R
dXk d(rxrk) exUg(Xk) ⁄kBTR
dXk d(rxrk) exUa(Xk) ⁄kBT

, (93)

where the previous notation has been simplified for the sake of clarity. Expressions such as

Eq. (93) are naturally evaluated using the techniques of alchemical FEP (McCammon &

Straatsma, 1992 ; Kollman, 1993),

ex[Wg(r)xWa(r)] ⁄kBT=nex[UgxUa] ⁄kBT m(a, r), (94)

where the bracket implies an average from an ensemble of equilibrium configurations with an

ion of type a held fixed at point r. According to Eq. (79), the occupancy of the pore is governed

by the relative free energy of the two ions in the bulk and in the channel

DDWgxa=[Wg(r)x�mmg]x[Wa(r)x�mma]: (95)
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More generally, the same FEP technique can be used to assess the selectivity in a multi-ion

pore by considering the PMF difference between a pore occupied by different numbers of

ions of type a and g. For example, the selectivity of the KcsA K+ channel can be assessed

by calculating the free energy required to alchemically transform a single K+ into a Na+ ion,

while the other K+ ions in the pore are not transformed (Allen et al. 1999, 2000 ; Åqvist &

Luzhkov, 2000 ; Bernèche & Roux, 2001 ; Luzhkov & Åqvist, 2001a).

4.5 Reduction to a one-dimensional (1D) free-energy profile

As shown in the previous section, a hierarchy of n-ion PMFs in 3D space arises naturally

from a rigorous statistical mechanical formulation of equilibrium properties. However, ion

permeation is traditionally discussed in terms of the free-energy profile of ions along the

channel axis (Hille, 2001). In particular, such quantity is an essential input to simple kinetic

rate models (Läuger, 1973) and in the 1D Nernst–Planck (1D-NP) electrodiffusion equation

(Levitt, 1986 ; McGill & Schumaker, 1996). From a dynamical point of view, the reduction

in dimensionality from r to z is based on the assumption that all motions perpendicular

to z reach equilibrium rapidly and that z is the only relevant slow variable in the system,

i.e. it can be chosen as a meaningful reaction coordinate (see the discussion in Section 2.1).

This assumption seems reasonable for narrow channels, such as gA of KcsA, although

even in those cases small systematic departures from the main axis can also play an im-

portant role in ion dynamics (e.g. see Roux & Karplus, 1991a ; Elber et al. 1995). Never-

theless, the 1D free-energy profile is a useful concept and for this reason, it is worthwhile

examining its microscopic significance. The 1D free-energy profile, W1D(z ) is formally

defined as

ex[W1D(z)xW1D(zref )] ⁄kBT=C

R
dx
R
dy exW3D(x, y, z) ⁄kBTR

dx
R
dy exW3D(x, y, zref ) ⁄kBT

, (96)

where C is an arbitrary constant and W3D(x, y, z) is the complete PMF in 3D and zref is some

reference position (for the sake of clarity, subscripts 1D and 3D on the PMFs will be used

explicitly for the present development). Obviously, such integration has significance only in the

pore region, where the lateral displacements of the ion are bounded. Far away from the channel,

the 1D free-energy profile is mathematically ill-defined and can actually diverge because the ion

has infinitely more lateral freedom in the bulk region than inside the pore. Furthermore, because

the constant C is arbitrary, only the relative variations of the 1D free profile are meaningful.

Consequently, there is no unique way to assign a value toW1D(z ) with respect to some absolute

free-energy scale [e.g. it is incorrect to assume that W1D(z ) must be equal to zero for large z,

where the ion is in the bulk region and its lateral motions are not bounded]. One convenient

choice for the normalization of the 1D free-energy profile is

exW1D(z) ⁄kBT � ex[W3D(0, 0, zref )x�mm(I) ] ⁄kBT

R
dx
R
dy exW3D(x, y, z) ⁄kBTR

dx
R
dy exW3D(x, y, zref ) ⁄kBT

, (97)

where �mm(I) is the excess chemical potential far away from the channel in the bulk region.

A unique definition of the cross-section of the pore, S, is consistent with this definition of the

Ion permeation through biological channels 49

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033583504003968
Downloaded from https://www.cambridge.org/core. WWZ Bibliothek, on 14 Nov 2017 at 10:31:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033583504003968
https://www.cambridge.org/core


1D free-energy profile,

S=
Z

dx

Z
dy ex[W3D(x, y, zref )xW3D(0, 0, zref ) ⁄kBT : (98)

This definition is very convenient to establish a link with well-known expressions for the 1-ion

equilibrium binding constant in terms of the free-energy profile and the cross-sectional area of

the channel (Levitt, 1986)

K1=S

Z
pore

dz exW1D(z) ⁄kBT (99)

which is rigorously equivalent to Eq. (79). As defined by Eq. (98), the cross-sectional area of the

pore is related the amount of lateral fluctuations that the ion position can undergo at some

prescribed position zref along the axis of the channel. Based on this analysis, a single value is

defined for the cross-sectional area of the pore. The definition can then be used with the

definition of the 1D free-energy profile given by Eq. (97) to yield the correct binding constant via

Eq. (79). This way of defining S is quite convenient for a channel that does not have large

variations in geometry and width (e.g. gA or the selectivity filter of KcsA). But it may not

particular useful for describing a wide pore such as OmpF. Alternatively, one can choose to

consider a cross-sectional area S(z) that varies along the channel axis (Smart et al. 1993). But then,

one must be careful to combine S(z) with a 1D free-energy profile. In particular, it would be

incorrect to compute a 1D free-energy profile W1D(z) for a channel using umbrella sampling,

then compute the z-dependent cross-sectional area S(z), and finally incorporate these two

quantities into some BD or NP model to simulate ion permeation. The 1D free-energy profile

includes the variations of lateral freedom of the ion, i.e. kBT ln(S(z)/Sref), and those should not

be double counted by the cross section.

5. From MD to I–V : a practical guide

The previous sections (2–4) have presented a very formal perspective on the ion permeation. In

the first part of this section, we will review some of the special computational techniques that can

be used to extract key information from all-atom MD simulations. We will first summarize

fundamental results from linear response theory and relate the conductance of a channel to the

fluctuations observed during unbiased equilibrium MD trajectories. We will also briefly discuss

how the conductance can be estimated from non-equilibrium MD trajectories. We will then

review the methods for calculating the PMF and the diffusion coefficient of ions inside a channel

using biased MD simulations. This first part ends with a brief discussion of various issues

concerning computational efficiency using different approaches.

In the second part of this section, we will briefly go over a number of permeation models that

can be used to calculate ion fluxes. We will review the single-ion NP model (Lewitt, 1986 ;

McGill & Schumaker, 1996), which is of particular interest because it can be solved analytically.

We will also describe framework models based on continuous time discrete-state Markov chains,

which can handle multi-ion pores (McGill & Schumaker, 1996; Schumaker et al. 2000, 2001 ;

Bernèche & Roux, 2003). Such framework models are the most convenient and powerful

approaches to incorporate the information extracted from MD simulations, such as the PMF
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and the diffusion coefficient. We will then review the GCMC/BD algorithm (Im et al. 2000) and

the PNP electrodiffusion theory for simulating ion flow through wide pores.

5.1 Extracting the essential ingredients from MD

5.1.1 Channel conductance from equilibrium and non-equilibrium MD

According to the fluctuation-dissipation theorem (Kubo, 1966), all the information required to

estimate the near-equilibrium conductance of an ion channel at small voltage is, in principle,

included in the fluctuations observed during straight unbiased all-atom equilibrium MD simu-

lations. Expressions for transport coefficients can be derived using the formalism of linear

response theory (Kubo, 1966; McQuarrie, 1976). Those expressions have typically the form of

a time correlation function that must be evaluated from a system at equilibrium. To establish

the fundamental expression for the conductance of an ion channel, let us consider an external

electric circuit connected via two chemiabsorption electrodes to a membrane-channel system

surrounded by aqueous salt solutions. An EMF controls exactly the relative potential between

the two electrodes. The instantaneous amount of electrical current flowing through the external

circuit is _QQext(t ). It is assumed that the resistance of the external circuit is negligible and that the

exact detail of the chemiabsorption process is unimportant. When a voltage of zero is imposed,

there is no net current on average and n _QQext(t )m(eq)=0. At time t=0, a small potential step Vmp

is applied giving rise to a non-equilibrium perturbation. After a long time, the average current

reaches a stationary state and the system obeys Ohm’s law, I=gVmp, where the conductance g

is given by

g=
1

kBT

Z O

0
dtn _QQext(t ) _QQext(0)m(eq) (100)

according to linear response theory (Kubo, 1966 ; McQuarrie, 1976). The relationship of the

conductance of the system and the current autocorrelation function, which was first discovered

by Nyquist (1928), is a realization of the fluctuation-dissipation relation for an electrical circuit.

Following the general properties of flux–flux correlation functions (Helfand, 1960), one can

conveniently re-express Eq. (100) as

g= lim
t pO

1

kBT

njQext(t )xQext(0)j2m(eq)

2t
: (101)

It may be noted that the charge Qext(t) in Eq. (101) plays a role similar to that of the position

during a random walk. This analysis shows how, to linear order in the perturbation potential, the

conductance of the system is fundamentally related to the thermal fluctuations in the charge

movements through the external circuit. Equation (101) can be used to relate the magnitude of

the channel conductance to the number of ions observed to randomly move across a channel

during an equilibrium MD trajectory. Let us suppose that N complete ion-crossing events

(forward and/or backward) are observed during a trajectory of length t. Assuming that the

crossing events are independent and can be represented as a Poisson process with an average

number of crossings per unit of time of N /t, the estimated conductance is simply

g � N q2

2tkBT
: (102)
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Equation (102) provides a direct relation between the number of independent ions observed to

randomly move across an ion channel during an equilibrium trajectory, and the channel’s con-

ductance.

Alternatively, it is conceivable to monitor the net average current during non-equilibrium

trajectory in the presence of an applied external transmembrane potential Vmp (Suenaga et al.

1998 ; Crozier et al. 2001a, b ; Yang et al. 2003). The channel conductance can then be estimated

from the average number of crossings per unit of time

g � N q

tVmp

: (103)

Although this would appear to be the most obvious approach to calculating the conductance of

an ion channel, it is not as straightforward as it appears. In particular, it is important to ensure

that the external field be introduced in a physically realistic and meaningful way. The simplest

approach to simulate a transmembrane potential in MD consists in applying a constant electric

field acting on all the charges in the system along the axis perpendicular to the membrane bilayer

(Crozier et al. 2001a, b ; Tieleman et al. 2001a ; Yang et al. 2003). By virtue of the periodic boundary

condition, the electrostatic potential is discontinuous at the boundary of the simulation system

though the electric field and the forces acting on all the charges are continuous. Nonetheless,

the significance of such an approach might require further clarification to relate the externally

applied constant electric field to the true physical transmembrane potential, that arises from a

small charge imbalance and a polarization of the membrane-solution interface (see Section 3.6).

One might be able to relate the constant external electric field to the polarization interface in

regions of space that are far away from the simulation system, in a spirit similar to the treatment

of boundary conditions in the Ewald lattice sum (DeLeeuw et al. 1980).

5.1.2 PMF techniques

The multi-ion PMF, which corresponds to the reversible work by the average microscopic forces

arising in the complex environment of the pore is, perhaps, the most important quantity in trying

to understand ion permeation. As shown in Section 2.2, all equilibrium properties of the multi-

ion pore are completely determined by the equilibrium PMF. Much of Section 4 was dedicated

to the clarification of the detailed formulation of multi-ion PMFs and the coupling to the

transmembrane potential in the context of ion channels. Although such a discussion of the PMF

at an abstract conceptual level is needed to define these fundamental ideas, it is necessary to

calculate the equilibrium PMF to proceed any further. In practice, all-atom MD is the only

approach that can be used to calculate a meaningful PMF that incorporates the influence of all

known microscopic factors (e.g. fluctuations of the protein channel and solvation by discrete

water molecules). We shall refer to such an equilibrium PMF as PMF(MD). When the reaction

coordinate is a simple Cartesian coordinate, e.g. the position z of an ion along the channel axis,

the PMF can be calculated using holonomic constraints (stringent geometric conditions) and the

free-energy simulation technique (Zwanzig, 1954). The PMF at a position W(z+Dz) can be

expressed in terms of W(z) (Tobias & Brooks, 1987 ; Roux & Karplus, 1991b),

DW(zp z+Dz)=W(z+Dz)xW(z)

=xkBT ln nexDU ⁄kBT m(z),
(104)

52 B. Roux et al.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033583504003968
Downloaded from https://www.cambridge.org/core. WWZ Bibliothek, on 14 Nov 2017 at 10:31:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033583504003968
https://www.cambridge.org/core


where the parentheses with subscript z represents a thermal average with the ion coordinate

held fixed at z and DU is the change in potential energy obtained by displacing the coordinate

from z to z+Dz (but keeping all other coordinates unchanged). It should emphasized that the

x and y coordinate of the ion are allowed to move during the sampling trajectory. The average in

Eq. (104) is calculated from an ensemble of configurations generated by a computer simulation

of the system in thermal equilibrium with the ion coordinate fixed at z using a holonomic

constraint. In practice it is necessary to generate several trajectories of the system with the ion

coordinate fixed at different values of z and the complete profile is constructed by joining the

free energy differences obtained with Eq. (104). The PMF may also be calculated by integrating

the reversible work done by the mean force nF(z)m acting on the ion in the z direction

W(z)=W(z0)x

Z z

z0

dz knF (z k)m: (105)

An advantage of this formulation is that the mean force can be decomposed linearly into a

sum of contributions (Roux & Karplus, 1991b ; Allen et al. 2003b). However, it is difficult to

apply this approach to multi-dimensional cases. Another method to compute the PMF is the

‘umbrella sampling ’ technique (Torrie & Valleau, 1974 ; Valleau & Torrie, 1977). In this method,

the microscopic system of interest is simulated in the presence of an imposed biasing window

potential, ui(z), introduced to enhance the sampling in the vicinity of a chosen value zi. The

biased simulations are generated using the potential energy, U(X)+ui(z). Typically, the biasing

potential serves to confine the variations of the coordinate z within a small interval around some

prescribed value zi, helping to achieve a more efficient configurational sampling in this region (this

is the reason why the biasing potential is called a window potential). For example, a reasonable

choice to produce the biased ensembles, though not the unique one, is to use harmonic functions

of the form, ui (z)=1
2
K (zxzi )

2, centered on successive values of zi. Because the sampling is

confined to a small region during a given biased simulation, only a small piece of the estimated

PMF is sufficiently accurate to be useful. The piece of unbiased PMF from the ith window is,

W i (z)=FixkBT ln nr(z)m(biased)
(i)

h i
xui (z), (106)

where nr(z)m(biased)
(i) is the biased histogram from the ith simulation and Fi is an undetermined free

energy constant. To obtain the PMF over the whole range of interest of z, it is necessary

to perform a number of biased window simulations, each biasing the configurational sampling

around a different region of z. To obtain the complete PMF, the bias introduced by the con-

straining potential has to be removed and the data from several windows have to be combined

together. The most efficient procedure to do this is the weighted histogram analysis method

(WHAM) (Kumar et al. 1992). One of the main advantages of WHAM is that it can be easily

extended to treat the case of a PMF depending on more than one variable (Boczko & Brooks,

1993 ; Roux, 1995), e.g. Bernèche & Roux (2001) calculated a 3D PMF depending on the Z

position of 3 K+ in KcsA and Smith & Sansom (2002) calculated a 3D PMF for a single ion going

through the Alm channel.

5.1.3 Friction and diffusion coefficient techniques

The multi-ion PMF, which relates to the average and systematic forces arising in the environ-

ment of the pore, is not sufficient to completely characterize ion permeation. The random
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chaotic movements of ions through a molecular pore is also affected by processes that are

intrinsically dynamical and dissipative. Effective dynamical models, such as the GLE, LE or BD

incorporate the influence of such factors into the memory function, friction coefficient c,

or diffusion coefficient D. The ion diffusion coefficient at different position inside the pore is

a particularly important parameter in a number of theoretical models of permeation (Chiu et al.

1993 ; McGill & Schumaker, 1996 ; Kurnikova et al. 1999 ; Smith & Sansom, 1999 ; Im et al. 2000 ;

Allen & Chung, 2001 ; Im & Roux, 2001). The diffusion coefficient is often defined in terms

of the average mean-square displacement (MSD) (Einstein, 1926),

D= lim
t pO

n[z(t )xz(0)]2m
2t

, (107)

where the time, t, has to be large compared to the relaxation times of microscopic processes in

the solution. Though this expression is rigorously valid only for a isotropic uniform environ-

ment, it has been used to calculate the space-dependent diffusion coefficient D(z) of freely

moving ions and water molecules in transmembrane pores (Tieleman & Berendsen, 1998 ; Smith

& Sansom, 1999 ; Allen et al. 2000). However, this procedure is incorrect because it ignores the

systematic influence of free-energy barriers and wells on the local movements of a diffusing

particle (Roux & Karplus, 1991a ; Im & Roux, 2002b). For example, an ion may appear to diffuse

slowly in a region of the pore, while in fact the MSD is small because it is trapped in a free-energy

well. To avoid double counting the effect of free-energy wells and barriers, it is important

to separate the local dissipative forces from the systematic mean force. This problem can be

addressed by considering an analogy with the overdamped random movements occurring during

a BD trajectory of a particle along the axis z in a potential W(z). We consider the dynamical

displacement Dz of a particle that was at position z(t) at time t and is found at z(t+Dt) at a time

Dt later during an unbiased MD trajectory. According to the BD algorithm, the displacement

is calculated as DzBhDzi+R, where hDzi=DFDt/kBT is the systematic displacement of

the particle under the influence of the mean force F , and R is a Gaussian random number with

zero mean and standard deviation hR2i=2DDt. If follows that the diffusion coefficient can be

estimated from the average fluctuations of the random dynamical steps

D(z)=
n[DzxnDzm]2mz(t )

2Dt
, (108)

where the subscript implies that the diffusing ion was located at z at time t. If the dynamical

displacements corresponded to a purely Brownian motion, Dt could be chosen arbitrarily

small. In reality Dt must be sufficiently large to incorporate all dynamical memory effects present

in solution. According to the velocity autocorrelation functions of ions in solution (Lyubartsev

& Laaksnen, 1996) and estimated memory functions of ions inside channels (see Fig. 3), Dt must

be approximately 0�5–1�0 ps. In practice, the function D(z) is extracted from unbiased MD

trajectories by dividing the z-axis into intervals (bins) and averaging over a large number of

dynamical steps which all started from z in a given interval.

Dissipative factors can also be calculated from biased simulations. For example, when the

reaction coordinate is Cartesian, the value of the diffusion can be obtained, via the Einstein

relation D=kBT/c, by calculating the friction coefficient, c, from a MD trajectory during

which the ion is fixed at some position along the z-axis (all other coordinates including

the x and y coordinates of the ion are allowed to move). The friction coefficient is defined

54 B. Roux et al.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033583504003968
Downloaded from https://www.cambridge.org/core. WWZ Bibliothek, on 14 Nov 2017 at 10:31:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033583504003968
https://www.cambridge.org/core


in terms of a time correlation function

c(z)=
1

kBT

Z O

0
dtndFz (t )dFz (0)m(z), (109)

where dFz(t)=Fz(t)xhFzi(z), is the deviation of the instantaneous force relative to the average

force acting in the z direction on the constrained ion (Berne et al. 1988, 1990 ; Roux & Karplus,

1991a). Lastly, it is also advantageous to design a method to extract the diffusion coefficient from

the biased simulations generated during umbrella sampling. This can be done using a general

technique proposed by Straub and Berne (Berne et al. 1988 ; Straub et al. 1990). The technique is

based on an analysis of the velocity autocorrelation function in terms of a GLE,

kBT

n _zz2m(i)

_CC (t ; zi )=x
kBT

ndz2m(i)

Z t

0
dt kC (t k; zi )x

Z t

0
dt kM (txt k; zi )C (t k; zi ), (110)

where and C(t ; zi) is the z-dependent velocity autocorrelation function n _zz(t ) _zz(0)m(i), and dz

represents the deviation of z from its average, dz=zxhzi(i). The subscript i indicates that

all averages in Eq. (110) are performed in the presence of a biasing harmonic window potential

ui. The diffusion coefficient at zi is related to the sp0 limit of the Laplace transform of the

memory function,

M̂M (s; zi )=
Z O

0
dt exstM (t ; zi ), (111)

through Einstein’s relation

D(zi )= lim
sp 0

kBT

M̂M (s; zi )
: (112)

The latter yields, after some algebra (Crouzy et al. 1994 ; Woolf & Roux, 1994a),

D(zi )= lim
sp 0

xĈC (s; zi )ndz2m(i)n _zz2m(i)

ĈC (s; zi )[sndz2m(i)+n _zz2m(i) ⁄ s]xndz2m(i)n _zz2m(i)

: (113)

In practice, it is necessary to extrapolate from small values of s to avoid the numerical instabilities

as sp0.

5.1.4 About computational times

It is of interest to compare the computer time required by the various computational approaches

for widely different channels. We assume that the concentration of permeant ions is sufficiently

high to saturate the pore (e.g. 1–2 M KCl). Under those conditions, the conductance should

be very close to the ideal maximum conductance gmax. The maximum conductance is y30 pS

for the gA channel (Andersen & Koeppe, 1992), 500 pS for the KcsA channel (LeMasurier

et al. 2001 ; Bernèche & Roux, 2003), and 1250 pS for OmpF (Im & Roux, 2002a) respectively.

The time needed to observe 10 complete ion-crossing events during an equilibrium MD simu-

lation, estimated using Eq. (102), is y1 ms for gA, 62 ns for KcsA, and 25 ns for OmpF.

Assuming ohmic behavior, the time required to observe 10 ion crossing becomes considerably

smaller if a membrane potential of 150 mV is applied, being y356 ns for gA, 21 ns for KcsA,

and 8 ns for OmpF. In comparison, the computational requirements are very different if the
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permeation process is characterized by performing biased MD simulations to calculate a PMF.

In a recent calculation of the 1 ion PMF for K+ going through gA, yy100 umbrella sampling

windows of 1 ns each were generated, for a total of 100 ns (Allen et al. 2003b). However, the

PMF converged in less than half of this time. In the case of KcsA, a 3-ion PMF was calculated

using 340 umbrella-sampling windows of 100 ps, for a total ofy34 ns (Bernèche & Roux, 2001).

Evaluating the gain in computational efficiency with PMF calculations can be, however, quite

subjective. For example, the computational time gained by using umbrella-sampling PMF

simulations may become arbitrarily large compared to straight unbiased MD if there is a large

free-energy barrier. Interestingly, even when there is no large free-energy barrier, it is still com-

putationally more efficient to generate a number of biased simulations than to generate long

unbiased simulations (van Duijneveldt & Frenkel, 1992 ; Roux, 1995). This can be illustrated

using a simple example. Assuming that the dynamics of the umbrella-sampling coordinate is

governed by a simple friction coefficient c, the sampling of the window histogram (in one

dimension) should take place on a time-scale of twyc/K, where K is the force constant of the

harmonic window potential. If Nw simulations are used to cover the whole range L, the force

constant K of the umbrella-sampling potential must be chosen to ensure a proper overlap

between the adjacent windows, i.e. each window should cover a range of DL=L/Nw and the

value of K should be in the order of kBT/DL
2, based on the magnitude of the RMS fluctuations.

It follows that the total simulation time Ttot needed to generate the Nw windows varies as

yL2/Nw, decreasing with the number of windows. One further advantage of PMF calculations

is that the individual biased simulations in umbrella sampling do not need to communicate from

one another and can be generated independently. This leads to the possibility of performing

‘coarse-grained ’ calculations that are massively distributed over a large number of relatively

inexpensive computers. Therefore, the PMF calculations appear to be efficient tools to

characterize ion permeation.

5.2 Ion permeation models

5.2.1 The ID-NP electrodiffusion theory

Assuming that we now have calculated the PMF and the diffusion coefficient profile from MD,

how can we use these quantities to quantitatively assess the ion permeation of a channel? The

simplest situation corresponds to that of a channel that can, at most, contain a single permaent

ion at a time. The motion of the ion could easily be represented as random trajectories using

BD (Cooper et al. 1985 ; Jakobsson & Chiu, 1987). However, in this simple case, the diffusion

process can be treated analytically by using the 1D-NP equation to represent the net stationary

flux J of ions through the channel (Levitt, 1986)

J=xD(z)
dP(z)

dz
xP(z)

D(z)

kBT

dW(z)

dz
, (114)

where P(z) is the probability density per unit length of finding the ion, D(z) is the ion diffusion

coefficient and W(z) is the total free-energy profile of the ion along the channel axis. According

to Eq. (89), the total free-energy profile can be expressed as a sum of a first contribution

corresponding to the equilibrium PMF, and a second contribution arising from the presence

of the electrostatic potential across the membrane (see Section 4.3). To construct suitable ‘1-ion

pore ’ boundary conditions for the 1D-NP equation, it is assumed that the ends of the pore,
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at ¡L/2, are in equilibrium with the solution with which they are in contact (Levitt, 1986).

The linear probability density P(z) is related to the bulk concentrations c1 and c2 by

P(xL ⁄ 2)=c1P0

Z
dt kd(z kxL ⁄ 2) exW3D(rk ) ⁄kBT

=c1P0S e
xW1D(z=xL ⁄ 2) ⁄kBT ,

(115)

where S corresponds to an effective cross-section defined by Eq. (98). A similar equation holds

for P(+L/2). The factor P0 in Eq. (115) is the total probability that the channel is empty

P0=1x

Z +L ⁄ 2

xL ⁄ 2
dz kP(z k): (116)

This empirically enforces the constraint that no more than a single ion can simultaneously

occupy the channel. If the concentration of ions is increased, the occupation of the pore will

saturate to one ion per channel according to Eq. (78). The boundary conditions Eq. (115) could

be (or must be) modified to account for the access resistance at the pore’s entrance and for

interfacial polarization (Andersen, 1983 ; Chiu & Jakobsson, 1989). The 1D-NP model can be

solved analytically in closed form, for any concentration and transmembrane potential (Levitt,

1986). For a small transmembrane potential Vmp, the net current is expected to obey a linear

relationship following Ohm’s law, I=g(c)Vmp, where g is the concentration-dependent conduc-

tance of the channel. Under such conditions, the channel conductance follows a simple first-

order saturation relation

g(c)=
K1c

1+K1c
gmax, (117)

where K1 is the 1-ion equilibrium-binding constant defined by Eq. (99). The maximum con-

ductance gmax is,

gmax=
Deff

L2

q2

kBT
, (118)

where Deff is an effective diffusion coefficient of the ion in the pore

Deff=nD(z)x1e+Weq (z) ⁄kBT mx1nexWeq(z) ⁄kBT mx1, (119)

calculated as a spatial average over the full length of the pore, xL/2<z<+L/2.

5.2.2 Discrete-state Markov chains

We saw above that the 1D-NP equation provides a very convenient framework for describing

ion permeation through a channel using the PMF and diffusion coefficient profile calculated

from MD for a single-ion pore. However, it is generally not possible to solve the diffusion

problem analytically in closed form in the case of a multi-ion pore. In this case, it is more

practical to extract the non-equilibrium properties of the system using BD trajectories. One

possible treatment is to map the problem onto a continuous-time Markov chain with discrete

states corresponding to the ion positions, and generate the trajectory of the ions as a state-

to-state random walk using exponentially distributed random survival times. Such a treatment

is computationally efficient and numerically stable. This feature is particularly attractive when
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a PMF calculated from MD and stored on a discrete grid is being used. The forward and

backward transition rates are given by (Agmon & Hopfield, 1983 ; Schumaker et al. 2000 ; ’

Bernèche & Roux, 2003)

k[(... zi , ... )p (... zitdz , ...)]=
D(zi )+D(zitdz)

2dz2

� �
ex[W(...; zitdz , ...)xW(...; zi , ...)] ⁄ 2kBT , (120)

where D(z) is the space-dependent diffusion coefficient of the ions in the channel, and dz is

the grid spacing. The random walk generated by Eq. (120) satisfies the condition of detailed

balance under equilibrium conditions in the absence of net flux, and the stochastic evolution

of the system obeys the multi-dimensional Smoluchowski diffusion Eq. (10) as dz becomes

increasingly small (McGill & Schumaker, 1996; Schumaker et al. 2000, 2001). The resulting

equations are closely related to the coupled multi-ion diffusion theory that was formulated by

Stephan et al. (1983). However, it should emphasized that such framework model differs essen-

tially from traditional kinetic models based on classical Eyring Rate Theory (ERT) (Hille, 2001).

Entry and exit of ions into the simulation region can be represented as a first-order process.

In the case of a channel that can be occupied by n ions, one ion can attempt to exit the system

as soon as it reaches the ends of the pore, at zmin or at zmax. The exit rate of the ion at zmin is

kexit=
D(zmin )+Dbulk

2dz2

� �
ex[W(z1 , z2; ...; zix1)xW(z1 , z2; ..., zi=zmin)] ⁄ 2kBT : (121)

An ion can attempt to enter a two-ion occupied channel at any time with a rate (e.g. on the

intracellular side)

kentry=cintSdz
D(zmin)+Dbulk

2dz2

� �
ex[W(z1 , z2 , ..., zix1 , zi=zmin)xW(z1 , z2 , ..., zix1)] ⁄ 2kBT , (122)

where cint is the ion concentration on the intracellular side, and S is the cross-sectional area of

the vestibule. Similar expression holds for the entry and exit on the extracellular side. Because

it is so generic, the continuous-time Markov chain framework model is related to other

approaches such as the dynamic lattice Monte Carlo model of Graf et al. (2000), where the ions

are undergoing a random walk on a discrete grid. One important difference is that the theory

of Graf et al. (2000) describes all interactions on the basis of continuum electrostatics whereas

a PMF and a diffusion coefficient profile calculated from all-atom MD are used as inputs in

the framework model described by Eqs. (120)–(122).

5.2.3 The GCMC/BD algorithm

In the case of wide aqueous pores, a large number of ions and counterions may be required

to describe the permeation process. Calculating all the multi-ion PMFs using all-atom MD

simulations may not be feasible. In such a case, assuming that water is a dielectric continuum

may be a valid and useful approximation to calculate the multi-ion PMFs. Furthermore, the total

number of ions must be allowed to fluctuate under the influence of the specific non-equilibrium

boundary conditions because ions can enter and leave such an open system. This can be ac-

complished by combining the BD stochastic dynamics with the GCMC algorithm (Im et al. 2000).

The implementation of the GCMC/BD algorithm (Im et al. 2000) for simulating the diffusion

of ions through a channel embedded in a bilayer membrane surrounded by aqueous salt solutions
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is schematically illustrated in Fig. 9. A spherical geometry for the simulation region is shown

for convenience, though other choices are also possible. The system is divided into five specific

spatial regions : the inner region, the buffer regions on sides I and II, and the outer regions

on sides I and II. There are n explicit ions in the ‘simulation region ’ (inner and buffer regions) ;

all other ions in the bulk are excluded from the pore region and are restricted to the bulk region

where they are represented implicitly. The channel is assumed to be rigidly fixed in space and

water is represented as a continuum dielectric in all the regions. The BD trajectory of the n ions

is generated according to the algorithm of Ermark (1975),

ri (t+Dt )=ri (t )+
Di

kBT
F i+=iDi

� �
Dt+f i , (123)

where Dt is the BD timestep, Di(ri) is the diffusion coefficient of the ion, and fi is a random

Gaussian vector with zero average and nfi � fim=6DiDt . The forces acting on the ions are

calculated from the gradient of the multi-ion PMF W of the system according to Eq. (4). The

total multi-ion PMF is written as (Im & Roux, 2001)

W(r1, r2, . . . )=
X
i<j

W (ij)
bulk(jrixrj j)+

X
i

Ucore(ri )+
X
i

qiwsf (ri )+DWrf (r1, r2, . . . ), (124)

where W (ij)
bulk is the spherically symmetric PMF between ions i and j in an isotropic bulk

solution (Pettitt & Rossky, 1986 ; Guàrdia & Pardró, 1991 ; Llano-Restrepo & Chapman, 1994),

Side II ρα µα φα
–(II) –(II) –(II)

Inner region Vmp

Side I ρα µα φα
–(I) –(I) –(I)

Outer region
Buffer region

Fig. 9. Schematic representation of the Grand Canonical Monte Carlo Brownian dynamics (GCMC/BD)

algorithm. As in Fig. 8, the transmembrane potential is 0 on side I and Vmp on side II. The ions in the

inner and buffer regions evolve according to Eq. (123) with the total multi-ion PMF given in Eq. (124). In

the buffer regions, ions can be created with probability Eq. (129) and destroyed with probability Eq. (130)

according to the GCMC algorithm.
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Ucore is the non-electrostatic repulsive core overlap potential (excluding the ions from the

interior of the protein or the membrane), wsf is the static field arising from the channel charges

and the transmembrane potential, and DWrf is the electrostatic reaction-field free energy of

the ions in the system. The ion–ion PMF DWbulk
ij , which incorporates the short-range hydration

structure, is expressed in Eq. (26) (Moy et al. 2000 ; Im & Roux, 2002a). The static field is

calculated using the PB-V equation formulated in Section 3.6

= � [e(r)=wsf (r)]xHbulk(r)�kk
2(r)[wsf (r)xVmpH(r)]=x4prc(r), (125)

where rc(r) is the charge density of the channel. On the basis of the developments of Section

4.3, the function Hbulk(r) is set to 1 in the outer (bulk) regions (where the ions are represented

implicitly) and set to zero in the inner and buffer regions (where the ions are represented

explicitly). [See also Eq. (82).] The electrostatic fields arising from the protein charges and the

potential difference across the membrane could be calculated separately by setting Vmp=0

or rc(r)=0 in Eq. (125), respectively. By virtue of the linearity of Eq. (125), they are simply

superimposed in wsf(r). The contribution of the reaction field to the multi-ion PMF can be

expressed as (Im & Roux, 2001)

DWrf (r1, r2, . . . )=
1

2

Z
dr drkrions(r)Grf (r, rk)rions(rk)

=
1

2

X
i

qiwrf (ri ),

(126)

where rions(r) is the charge density of all the explicit ions in the system and Grf(r, rk) is Green’s

function corresponding to the reaction-field potential at r arising from a point charge located

at rk. It may be noted that Grf(r, rk) depends crucially on the shape of all the dielectric boun-

daries in the system. The reaction field is calculated as wrf (r)=[wsyst(r)xwbulk(r)], where wsyst(r)

is the electrostatic potential computed in the full system, with the complex solvent-channel

dielectric boundaries,

= � [e(r)=wsyst(r)]xHbulk(r)�kk
2(r)wsyst(r)=x4prions(r) (127)

and wbulk(r) is the electrostatic potential computed for a reference system corresponding to

a uniform bulk solvent at zero salt concentration.

ew=
2wbulk(r)=x4prions(r): (128)

In principle, Grf(r, rk) could be calculated once and stored, but it is a function of six independent

cartesian coordinates and this can require substantial memory resources and computations

for channels of arbitrary geometries. These difficulties are circumvented by expressing the

ion charge distribution in the simulation region using a set of normalized basis functions

(Im & Roux, 2001). Lastly, it should be noted that, while the decomposition described by

Eq. (124) is not unique, each separate contribution can be determined without ambiguity.

To ensure that proper external conditions are maintained on the boundaries of the inner

region, the ions in buffer regions I and II on both sides of the membrane are kept in equilibrium

with the bulk solution with which they are in contact. This is enforced via the GCMC algorithm

with particle creations and destructions in the two buffer regions (Im et al. 2000). Given that the

system contains na ions of type a, the creation probability of an ion of that type in a randomly
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selected buffer region is

Pcreat=
(�nna ⁄ (na+1)) exp[xDWx�mma) ⁄kBT ]

1+(�nna ⁄ (na+1)) exp[x(DWx�mma) ⁄kBT
, (129)

where �nna is the expectancy for the number of ions of type a from the bulk density �rra and the

volume of the buffer region, �mma is the chemical potential, and DW � [W( . . . , na+1, . . . )

xW( . . . , na, . . . )] is the change in the total multi-ion PMF of the system due to the new

ion. The destruction probability of an ion of type a is

Pdestr=
1

1+(�nna ⁄ na) exp[x(DWx�mma) ⁄kBT ]
, (130)

where DW � [W( . . . , na, . . . )xW( . . . , nax1, . . . )] is the change in the total multi-ion PMF

of the system due to particle removal. The chemical potential of ions of type a in each buffer

region is specified by

�mma(I)=Dma(I) side I

�mma(II)=Dma(II)+qaVmp side II

)
(131)

where Vmp is the imposed transmembrane potential, and Dma(I) and Dma(II) are the excess

chemical potential in bulk solution. The latter are influenced by ion–ion interactions in the

bulk solution and are, thus, concentration-dependent [see Eq. (36)]. The multi-ion PMF takes

into account the interactions between all the ions present in the simulation region and the

influence of the channel, the transmembrane potential as well as implicit salt in the outer region.

The GCMC procedure has the effect of enforcing boundary conditions corresponding

to constant electro-chemical potential in the two buffer regions and can be used to simulate

equilibrium as well as non-equilibrium conditions of ion diffusion and permeation (Im et al.

2000). One cycle of GCMC/BD corresponds to one step of BD followed by a few steps

of GCMC (typically 1–10) to maintain the buffer regions in equilibrium. No ion creation or

destruction are taking place in the inner region and the time-course of the ions in the inner

system evolves dynamically according to BD. When the system is at equilibrium, the electro-

chemical potential of any ion is the same in all the regions of the system and there is no net flow.

However, when non-equilibrium conditions are imposed at the boundaries, a stationary state

is simulated as particles flow from the regions with a high value of electro-chemical potential to

the regions with lower values. Since the buffer regions cannot run out of particles nor be filled

by particles, they essentially act as infinite thermodynamic reservoirs and sinks for the particles

with respect to the central inner region. The GCMC/BD algorithm (Im et al. 2000) is closely

related to the dual-volume-control molecular dynamics method (DCV/MD) (Heffelfinger &

Ford, 1998 ; Thompson et al. 1998 ; Pohl & Heffelfinger, 1999 ; Thompson & Heffelfinger, 1999)

that has been used to simulate the diffusion of gases across porous membranes.

The GCMC procedure described above does not present a significant additional burden

to standard BD simulations. This can be understood using simple arguments. The evaluation

of the forces acting on the ions is required at every BD time-step of the stochastic trajectory.

Assuming that n ions are present, the calculation of the ion–ion forces is of order n(nx1)/2.

In contrast, each GCMC trial requires only energy differences caused by the insertion or deletion

of a single ion and are of order n. Furthermore, by choosing the position and dimension of
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the buffer region wisely, it is possible to reduce the size of the system and focus on the most

important parts of a channel and thus further decrease the computational expense.

5.2.4 PNP electrodiffusion theory

PNP continuum electrodiffusion theory represents the average ion fluxes in terms of densities

and potential gradients (Kurnikova et al. 1999 ; Cardenas et al. 2000 ; Hollerbach et al. 2000, 2002 ;

Hille, 2001 ; Schuss et al. 2001 ; Gillespie et al. 2002 ; Im & Roux, 2002a ; Koumanov et al. 2003 ;

Mamonov et al. 2003).

Ja(r)=xDa(r) =ra(r)+
ra(r)

kBT
=Weff

a (r)

� �
, (132)

where Da(r) is the diffusion coefficient, ra(r) is the density, and Weff
a (r) is an effective potential

acting on the ions. By continuity, the average density of the ion of type a also obeys

@ra(r, t)

@t
+= � Ja(r)=0: (133)

Under steady-state conditions, the densities do not vary with time and r � Ja=0. The effective

potential is represented as

Weff
a (r)=Ucore(r)+qaw(r), (134)

where Ucore(r) is the non-electrostatic core repulsive potential (excluding the ions from the

interior of the protein or the membrane) and w(r) is the average electrostatic potential arising

from all the interactions in the system, which is calculated from the Poisson equation (Jackson,

1962).

= � [e(r)=w(r)]=x4p rc(r)+
X
a

qara(r)

 !
: (135)

Because the NP Eq. (132) and the Poisson Eq. (135) are coupled partial differential equations,

they must be solved in a self-consistent manner for the electrostatic potential w(r), and ion

concentrations ra(r). For this reason, PNP is called a ‘mean-field theory ’ (see also Section 2.3).

The early form of such theory can be traced back to Nernst (1890) and Onsager (1926, 1927).

Equation (132) is equivalent to a 1-ion Smulochowski diffusion equation (Smoluchowski, 1916 ;

Chandrasekar, 1943) driven by the effective potential Weff
a (r). PNP is a mean-field theory which

treats discrete ions in channel as a continuum charge distribution. In the absence of any net

flux [i.e. Ja(r)=0 for all a], the PNP theory becomes equivalent to the equilibrium nonlinear

PB continuum Eq. (29). As highlighted by Moy et al. (2000) and Corry et al. (2000), this can lead

to serious problems and the theory must obviously be used with caution. Ultimately, the mean-

field construction underlies all non-equilibrium and equilibrium properties of the theory.

The PNP theory has been applied to simple cylindrical pores (Corry et al. 2000 ; Koumanov

et al. 2003), the gA channel (Kurnikova et al. 1999 ; Cardenas et al. 2000 ; Hollerbach et al. 2000,

2002 ; Mamonov et al. 2003) and OmpF porin (Im & Roux, 2002a). Kurnikova et al. (1999)

proposed a robust and stable algorithm allowing numerical solution of the PNP equations in

3D space to solve Eqs. (132) and (135). To solve coupled PNP Eqs. (132) and (135) according
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to this algorithm, the flux density Ja(r) in Eq. (132) is re-written as

Ja(r)=xDa(r) e
xWeff

a (r) ⁄kBT= ra(r) e
Weff

a (r) ⁄kBT
h i

: (136)

Eq. (136) is then transformed to the Laplace equation assuming that the system is at a steady

state,

= � ~DDa(r)=~rra(r)

 �

=0, (137)

where ~DDa(r)=Da(r) e
xWeff

a (r) ⁄kBT and ~rra(r)=ra(r) e
Weff

a (r) ⁄kBT . Equation (137) is isomorphic

to the Poisson Eq. (135). For this reason, both equations can be solved numerically in a self-

consistent manner on a discrete 3D grid using similar finite-difference relaxation method

(Warwicker & Watson, 1982b; Klapper et al. 1986). It is usually assumed that the non-electro-

static potential Ucore(r) in Eq. (132) corresponds to a hard repulsive potential by the channel

and membrane which prevents the ions from entering forbidden regions. In practice, instead

of handling Ucore(r) explicitly, the repulsive potential is implemented by setting ra(r)=0 to zero

in non ion-accessible regions and setting the normal component of Ja(r) to zero at the surface

of the forbidden regions (Kurnikova et al. 1999 ; Cardenas et al. 2000). One cycle of a PNP

iterations consists of solving the Poisson Eq. (135) for electrostatic potential and then the steady-

state NP Eq. (137) for concentration of each ion type. To ensure the numerical stability during

PNP iterations, a relaxation method can be implemented by performing a mixing of potential

and concentrations in each step of iterations with the values in the previous iteration (Im &

Roux, 2002a). The Debye–Hückel approximation can be used to setup the boundary potential

on the edge of the grid, for the Poisson Eq. (135) (Im & Roux, 2002a). Because the potential

obtained from PB is much closer to the correct answer than the unscreened potential from

the Poisson equation without any background ion charge distribution, a reasonable initial guess

of concentrations for the first PNP cycle is obtained by solving the linearized (or nonlinear) PB

equation. Such a scheme can help significantly reduce both numerical instability and computa-

tional time. Once the equations have been solved self-consistently, the total current is the sum

of the current carried by each ion species, I=
P

a Ia.

6. Computational studies of ion channels

We have now reviewed and laid out the basic principles of a unified theoretical framework as

well as the most important techniques for describing ion permeation. In this section, we will

attempt to illustrate those concepts by reviewing the main results obtained in recent theoretical

studies of three channels which have important similarities and differences : gA, KcsA and

OmpF. They are illustrated in Figs 1 and 2. Let us first review the main features of these three

channels.

The gA channel is currently one of the best characterized molecular pore, structurally

and functionally (Andersen & Koeppe, 1992 ; Roux & Karplus, 1994 ; Hille, 2001). In a phos-

pholipid bilayer membrane, this small pentadecapeptide adopts a head-to-head b-helical dimer

conformation to form an ion-conducting narrow pore of y4 Å in diameter (Arseniev et al.

1985 ; Ketchem et al. 1993, 1997 ; Townsley et al. 2001 ; Allen et al. 2003a). The channel is

illustrated in Fig. 1a. The hydrogen-bonded carbonyls line the pore and the alternating D and

L amino-acid side-chains, most of them hydrophobic, extend away into the membrane lipid.
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The diameter of the pore is such that the permeation process involves the translocation in

single file of the ion and water molecules through the channel interior, the large energetic

loss due to dehydration being compensated by coordination with the backbone carbonyl oxygens

(see Fig. 10a). The gA channel exhibits a functional behavior similar to far more complex

macromolecular biological structures, and for this reason, has proved to be an extremely useful

model system to study the principles governing ion transport across lipid membranes, both

theoretically and experimentally (Andersen & Koeppe, 1992).

The KcsA channel was the first biological potassium-selective channel for which a structure

was determined at atomic resolution using X-ray crystallography (Doyle et al. 1998). The ion

conducting pore is along the axis of symmetry of four identical membrane-spanning subunits.

The channel is illustrated in Fig. 1b. The pore comprises a wide non-polar aqueous cavity on

the intracellular side, leading up, on the extracellular side, to a narrow pore 12 Å long, lined

exclusively by main chain carbonyl oxygens. Formed by the residues corresponding to the

signature sequence TTVGYG common to all K+ channels, this region of the pore acts as a

‘ selectivity filter ’ by allowing only the passage of K+ ions across the cell membrane, whereas

the wide vestibular cavity helps overcome the desolvation barrier due to the cell membrane

(Roux & MacKinnon, 1999). The width of the selectivity filter is such that a permeating K+ ion

must shed most of its surrounding waters. The large energetic loss due to dehydration being

compensated by coordination with the main chain carbonyl oxygens (see Fig. 10b). The move-

ment K+ ions through this region is the rate-limiting step in the conduction mechanism. The

ability of K+ channels to conduct K+ ions at nearly the diffusion limit is traditionally described

in terms of concerted mechanisms in which ion-channel attraction and ion–ion repulsion play

compensating effects as several K+ ions are moving simultaneously in single file through the

narrow pore (Hodgkin & Keynes, 1955 ; Hille & Schwarz, 1978 ; Neyton & Miller, 1988a, c).

Porins from the outer membrane of Eschericha coli are large macromolecular structures which

allow the diffusion of hydrophilic molecules with a molecular weight up to 600 Da and exhibit

modest ionic selectivity. For a recent review see Schirmer (1998). The cation-selective matrix-

porin (OmpF) is produced under normal conditions, while the anion-selective phsophoporin

(PhoE) is expressed under phosphate limitations. OmpF was the first membrane protein

crystallized with detergent (though the structure determination was completed almost a decade

later). The channel is illustrated in Fig. 1c. OmpF and PhoE, as most of the porins, folds

into similar homo-trimeric structures (Schirmer, 1998). Each monomer consists of a 16-stranded

(a) (b) (c)

Fig. 10. (a) Ion in the inner binding site of the gramicidin A channel (Woolf & Roux, 1997). (b) K+-binding

sites in the selectivity filter of KcsA [(only two subunits are shown) ; from Zhou et al. 2001b]. (c) K+ and Clx

in the constriction zone of OmpF.
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b-barrel with eight short turns (T1–T8) at the periplasmic side and eight relatively large loops

(L1–L8) at the cell surface which confers a significant stability and rigidity to the structure.

Each monomer possesses a wide aqueous pore narrowed by the loops on the outer entrance of

the b-barrel. One of these loops (L3) is folded inside the b-barrel forming a narrow region

of y6 Å diameter within the wide aqueous channel at roughly halfway through the membrane.

This narrowest region of the pore, called the ‘constriction zone ’, illustrated in Fig. 10c, is thought

to be responsible for the charge specificity of the porins (Cowan et al. 1992).

As illustrated in Fig. 10, permeating ions going through these three channels experience

widely different environments. Thus, comparing and contrasting the main features of the ion

permeation mechanism for these three channels helps illustrate important fundamental princi-

ples. For example, many of the important principles governing ion permeation through narrow

pores an be clarified by considering the gA and KcsA channels. In both cases, the large energy

cost required for dehydrating the permeating ion must be compensated by strong and tight

interactions with the protein channel. On the other hand, the importance of ion–ion interactions

in multi-ion channels in the confined environment of a molecular pore may be examined by

considering KcsA and OmpF. Furthermore, OmpF provides a great opportunity to examine the

influence of counterions and electrostatic screening in an aqueous pore and assess the validity

of approximate theories such as PB and PNP. Because they differ significantly, different com-

putational framework may be more practical for the various systems. Those differences concern

mostly the construction of the total PMF that governs ion permeation. The different models

are listed in Table 1.

6.1 Computational Studies of gA

Computer simulations of atomic models of the gA channel have a long history that dates back

to the simple periodic array of dipoles used by Läuger (1973), and the ‘stylized ’ periodic helix

introduced by Fischer et al. (1981). The MD simulation of Mackay et al. (1984) was the first

to exploit the new possibilities in MD (McCammon et al. 1977), incorporating completely the

flexibility of the channel molecule in all its atomic detail. On the basis of this detailed atomic

model, Mackay et al. (unpublished observations) then went on to compute the free energy of

Cs+ at a few locations along the axis of the gA channel using FEP. A free-energy barrier

of +40 kcal/mol opposing permeation was found, most certainly as a result of the severe

limitations in the accuracy of the potential function and in computational resources at the time.

The results of their calculations was briefly reported in Jordan (1987). Unfortunately, the full

manuscript entitled ‘Free energy calculation for cesium ion transport along Gramicidin A’

Table 1. Total potential of mean force (PMF) W=Weq+Wmp

Acronym Contribution Microscopic systems Equations

PMF (MD) Weq All region : all-atom MD with explicit solvent (104) or (105)
or (106)

Vmp (PB-V, MD) Wmp Pore region : all-atom MD with explicit solvent
Outer region : solvent continuum

(82)–(90)

Vmp (PB-V) Wmp All regions : atomic protein with solvent
and membrane dielectric continuum

(91)

PMF (PB-V) W All regions : atomic protein with solvent and
membrane dielectric continuum

(124)–(128)
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by D. H. Mackay, P. M. Edelsten and K. R. Wilson (1985) remains unpublished. Nonetheless, it

had a very wide circulation and had a profound impact on computational studies of ion per-

meation. In the two decades following this seminal work, there were several computational

studies of the gA channel, aimed at addressing various questions (for a recent review see Roux,

2002a). The gA channel has become an important test case for theories of ion permeation, as will

be discussed here. It is also an ideal prototypical benchmark system for investigating water

permeability (Chiu et al. 1999a, b ; deGroot et al. 2002) and the Grotthus-like mechanism of

proton conduction along a single file of hydrogen-bonded water molecules (Nagle & Morowitz,

1978 ; Pomes & Roux, 1996, 1998 ; Sagnella & Voth, 1996; Sagnella et al. 1996 ; Schumaker et al.

2000, 2001 ; Brewer et al. 2001), the effects of anesthetics (Tang & Xu, 2002), and for testing

the methodology used in the refinement of solid-state NMR structures (Ketchem et al. 1993 ;

Kim et al. 2001 ; Allen et al. 2003a). Since the simulation of Woolf & Roux (1994b), most MD

simulations of gA have represented the membrane environment by explicitly including the

phospholipid as well as the water molecules. However, it is only recently that progress in

simulation methodology, force-field developments, and increased availability of inexpensive

computers have made it possible to attempt to characterize ion permeation quantitatively, even

for this simple channel.

6.1.1 Free-energy surface for K+ permeation

Rather than broadly summarize a large number of studies, we will focus our attention on the

results of a recent study in which the complete free-energy landscape governing the passage

of K+ through the gA channel embedded in a lipid bilayer was characterized (Allen et al. 2003b).

The 2D PMF W(z, r), function of both axial (z) and radial (r) coordinates of K+ was calculated

using umbrella-sampling techniques. A total of 101 window simulations were used where an

ion was placed at regular positions along the z-axis and simulations were continued for 1 ns to
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Fig. 11. The 2D PMF of a single K+ ion as a function of axial position, z , and radial displacement, r, relative

to a gramicidin A channel embedded in a DMPC bilayer (Allen et al. 2003b). The simulation system is shown

in Fig. 2a. Contours are drawn at each 1 kcal/mol. The PMF was calculated using umbrella-sampling

simulations with 101 biasing windows.
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ensure sufficient sampling for a converged PMF. The microscopic simulation system is shown

in Fig. 2a, constructed initially from pre-equilibrated and pre-hydrated lipids using extensions

of established techniques (Woolf & Roux, 1996). Simulations were carried out with CHARMM

(Brooks et al. 1983) using the PARAM27 force-field. As shown in Fig. 11, the full 2D PMF

reveals a flat landscape in the bulk, far from the channel, the depth and position of binding sites

at the channel entrances, the scale of the free-energy barrier that must be surmounted by the

ion translocating across the narrow channel, and the extent of lateral motion of the ion. The

value of the 2D PMF in the bulk region far from the channel is used to set the absolute reference

for the complete free-energy surface. The free energy of an ion at the center of the channel

relative to the bulk has been confirmed using FEP calculations (Allen et al. 2003b). Because the

2D PMF is determined in the laboratory frame, lateral movements of the ion and channel

wobbling lead to fairly broad free energy wells near the channel entrances.

It is of interest to examine how the complete free-energy surface relates to the classical

concept of a ‘ free-energy profile ’ W1D(z), function of the position of the ion along the channel

axis. Formally, it is defined from Eq. (97) by integrating out the lateral motions of the ion

in the xy-plane. As observed from the 2D PMF shown in Fig. 11, the ion is only confined laterally

when it is approximately within the range of z from x15 to +15 Å. Outside this region, the

ion may be displaced to any extent in the xy-plane, and the concept of a free energy profile

W1D(z) along the channel axis is not valid. Furthermore, by virtue of Eq. (97), the value of

W1D(z) cannot be set with respect to some absolute reference [e.g. it is incorrect to assume

thatW1D(z) is equal to zero for large z]. Consequently, the true depth of the binding sites relative

to the bulk can be defined only via the complete free-energy surface provide by the 2D PMF.

The 1D PMF of K+ along the channel axis is shown in Fig. 12a, with the¡15 Å limits indicated

as broken lines. In order to obtain a meaningful estimate of the free-energy profile some lim-

itations and shortcomings of the simulations required further consideration in the calculation of

Fig. 12a. First, a spurious destabilization of the ion in the channel arises from the finite size, the

imposed periodicity and the heterogeneous polarity of the system (high dielectric water and

low dielectric membrane). Secondly, some significant stabilization arising from the induced

polarizability of the hydrocarbon chains of the lipid molecules is completely ignored because a

non-polarizable force field is used. In the current non-polarizable model, the dielectric constant

of the lipid chains is 1, whereas it should be closer to 2, the value for liquid hydrocarbons (Stern

& Feller, 2003). A continuum electrostatic approximation was used to correct for the artifacts

caused by periodicity (Hunenberger & McCammon, 1999) and lack of induced polarization of

the lipids. Correcting for the spurious destabilization arising from the finite-size and periodicity

of the simulated system leads to free energy of x1�6 kcal/mol while correcting for the lack

of polarization of the lipid chains leads to a further x2�1 kcal/mol stabilization (with the ion

at the center of the channel). Changes in ionic concentration correspond to minor corrections,

on the order of 0�2 kcal/mol. The barrier in the 1D PMF (Fig. 12a), which has been corrected

for these artifacts, is approximately 8 kcal/mol with respect to the binding site. The free energy

of an ion at the deepest binding site at z=¡11�3 Å is set to x3�2 kcal/mol in this 1D PMF,

to match the value in the full 2D PMF of Fig. 11. In addition to this deep outer binding site

at z=11�3 Å, there is a shallow well around 9�5 Å (the inner binding site), and an additional three

local free-energy minima inside each subunit of the gA dimer that contribute little to channel

binding. The outer and inner binding sites have been shown to correspond to sites where a K+

ion is solvated by 3 and 2 water molecules respectively (Allen et al. 2003b). The main features of

the 1D PMF of K+ in gA, shown in Fig. 12a, are in qualitative agreement with other calculations
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(Allen et al. 2003c), although there are significant differences because a non-Boltzmann averaging

of free-energy profiles calculated with a dragging procedure was used in those simulations, which

introduced large uncertainties.

It is known that monovalent cations partition spontaneously into the channel, although

the equilibrium binding constant of the monovalent cations is relatively weak (Hinton et al. 1988).

The one-ion equilibrium binding constant can be calculated from Eq. (79) using the PMF W(r).

The equilibrium dissociation constant for the entire channel is 0�34 M, within the range of

reported experimental values determined from NMR and conductance studies on gA: 0�017 M

( Jing et al. 1995) and 0�019–0�73 M (Hinton et al. 1986). This suggests that the large solvation free

energy of the ion in bulk water is adequately compensated by the interactions with the gA in the

MD model.
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Fig. 12. (a) Free-energy profile, or 1D PMF, of K+ going through the gA channel (Allen et al. 2003b).

Broken lines at |z|=15 Å indicate that the 1D PMF is not rigorously defined beyond those points. The PMF

has been corrected for size, membrane dielectric constant and concentration effects (see text). (b) Mean

force decomposition. The corrected 1D PMF and contributions from the gA dimer and single-file water are

plotted with the remaining contribution from the bulk electrolyte and membrane (with corrections).
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6.1.2 Mean-force decomposition

The mean-force decomposition expressed in Eq. (105) is a useful technique to resolve particular

contributions to the total free-energy profile. The mean-force decomposition of the 1D PMF is

shown in Fig. 12b. Obviously, the seemingly flat PMF with its relatively small free-energy barrier

arises from the cancellation of very large opposing contributions from protein, single-file water

and the remaining bulk electrolyte and membrane. In this respect, it is easy to understand

how the PMF can be in error by a few kcal/mol. The contribution from the membrane and

bulk electrolyte is 63�5 kcal/mol, roughly as expected for the Born energy barrier correspond-

ing to the transfer of a K+ from bulk solution to the center of a membrane slab with dielectric

constant of 1 (Parsegian, 1969 ; Levitt, 1978 ; Jordan, 1981). This barrier is eliminated, almost

completely, by interactions with the protein and single-file water. The most striking observation

is that the single-file water itself accounts for x39�2 kcal/mol stabilization, i.e. nearly half of

the x80 kcal/mol solvation free energy of K+ in bulk water (Cox et al. 1974). The importance

of this contribution, which was conjectured by Wilson and co-workers nearly 20 years ago

(Mackay et al. 1984 ; Mackay & Wilson, 1986), is surprising given that only two water mol-

ecules are in direct contact with the ion in the narrow pore. For comparison, a FEP calculation

(with the same potential function) shows that the solvation free energy of K+ surrounded by

its first hydration shell of eight water molecules is about x46 kcal/mol (Roux et al. 2000).

As suggested by the results obtained from the semi-microscopic models developed by

Jordan and co-workers (Partenskii & Jordan, 1992a, b ; Dorman et al. 1996), it is likely that the

restricted orientational freedom of water molecules aligned in single file is the cause of this

phenomenon.

6.1.3 Cation-binding sites

The location of the cation-binding sites, at the C terminus of the monomers, has been deduced

indirectly from various experimental measurements (Urry et al. 1982 ; Smith et al. 1990a ; Olah

et al. 1991 ; Andersen & Koeppe, 1992 ; Woolf & Roux, 1997). Nonetheless, the results from

these various sources is remarkably consistent : analysis of ion-flux data indicates that the cation

in the binding site is 14% into the transmembrane potential, corresponding to 9 Å using the

constant field assumption (Andersen & Koeppe, 1992) ; low-angle X-ray scattering on gA

incorporated in oriented bilayers shows that Tl+ binds at 9�6¡0�3 Å from the center of the

channel, and K+ also binds predominantly at this site, though slightly further from the center

of the channel (Olah et al. 1991) ; analysis of solid-state NMR 13C and 15N chemical shift

anisotropy data (Smith et al. 1990b ; Tian et al. 1996), using MD simulations, indicate that

Na+ binds at 9�2 Å (Woolf & Roux, 1997). Therefore, the main cation-binding site is the inner

site according to numerous experimental sources. In contradiction with the experimental results,

the outer site is slightly deeper than the inner site in the current PMF (Allen et al. 2003b). Clearly,

the relative depth of the inner and outer cation-binding sites near the entrance of the gA channel

is very sensitive to the details of the potential function. Previous calculations have found

that either the inner (Roux & Karplus, 1993 ; Roux et al. 1995) or outer (Woolf & Roux, 1997 ;

Allen et al. 2003b) binding site was the most stable position. Overall, there are no large structural

distortions of the channel due to the presence of the ion. In the inner-binding site, the main

channel ligand is provided by the carbonyl group of the Leu10–Trp11 peptide linkage, which

exhibits the largest deflection relative to the ion-free channel structure. This is in the order of
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10 to 15 degrees for Na+ (Woolf & Roux, 1997) and only 5 degrees for K+ (T. W. Allen, O. S.

Andersen and B. Roux unpublished results). According to the mean force decomposition, the

inner- and outer-binding sites in the PMF are seen to arise from a delicate interplay between

water and protein interactions. Figure 12b shows that the inner-binding site (the dominant

binding site experimentally) arises from the mean force exerted by the protein. It has often been

assumed that the inner-binding sites, near the channel entrances owe their existence to a

superposition of a broad electrostatic ion-membrane image repulsion Fig. 6 and a short-range

ion-channel attraction (Andersen & Procopio, 1980 ; Finkelstein & Andersen, 1981). Interest-

ingly, in the b-helical structure, Leu10 corresponds to the first backbone carbonyl oxygen

pointing toward the bulk solvent which is not forming a backbone–backbone hydrogen bond.

For this reason, only the carbonyls on this linkage, or further away from the channel center, are

able to provide ligands for a cation without loosing backbone hydrogen bonds.

6.1.4 Channel conductance

To ascertain the magnitude of the current that can pass through the channel, the net stationary

flux of ions across the channel was calculated using the calculated single ion equilibrium

PMF and a 1D-NP theory (Levitt, 1986). Two additional ingredients are needed: the trans-

membrane potential and the diffusion coefficient along the channel axis. The transmembrane

potential along the gA channel was calculated by solving Eq. (82) with a finite-difference method

implemented in the PBEQ module (Im et al. 1998) of CHARMM (Brooks et al. 1983). In the

calculation, the channel and the membrane were represented in full atomic detail, while the

electrolyte was represented as a uniform dielectric constant of 80 with a salt concentration of

1 M. The calculated transmembrane potential field along the channel axis is shown in Fig. 13. The

field is linear, except for small deviations near the entrance of the channel. The inner-binding

site, y9�5 Å at the entrance of the channel, is at 14�5% of the transmembrane potential, in

excellent agreement with ion-flux measurements (Andersen & Koeppe, 1992). The diffusion

coefficient D(z) was extracted from the Laplace transform of the velocity autocorrelation

1·0

0·8

0·6

0·4

0·2

0·0

–20 –15 –10 –5 0 5 10 15 20

z (Å)

Fr
ac

tio
n 

of
 tr

an
sm

em
br

an
e 

po
te

nt
ia

l

Fig. 13. Transmembrane voltage profile across the gA channel.
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function calculated from the umbrella-sampling simulations using an analysis based on the GLE

for non-uniform systems Eq. (113). The diffusion coefficient profile, which is shown in Fig. 14,

reveals that the diffusion of the ion within the channel drops to about 67% of its value in

the bulk. That the diffusion coefficient remains near bulk levels throughout the channel, suggests

that ion permeation through the gA channel is governed by the features of the PMF rather

than by dynamical and dissipative factors.

To assess the ability of the computational model to reproduce the magnitude of the ion

flux observed experimentally, we only consider the maximum single-channel conductance gmax,

calculated from Eq. (118). This calculation may be summarized using the acronyms given

in Table 1 as 1D-NP/[PMF(MD)+Vmp(PB-V,MD)], to indicate that a 1D-NP diffusion

theory is used with a PMF calculated from all-atom MD and a transmembrane potential cal-

culated from the PB-V equation used in Eq. (90). This analysis provides a rough estimate because

the 1-ion PMF is extended into the regime of large concentration, ignoring the changes in

conduction that could be associated with multiple ion occupancy (Roux et al. 1995). The length

of the pore L, corresponds to the diameter of the sphere defining the single ion region (chosen

to be 28 Å) and is within the range where the 1D PMF is meaningful (|z|<15 Å). The

PMF leads to a maximum conductance of 0�8 pS, approaching the experimental value of

24 pS better than any previous MD study of gA. The agreement is encouraging because

the discrepancy could be accounted for by only small changes to the PMF; reducing the barrier

by less than 3 kcal/mol reproduces the experimental gmax. This demonstrates that a detailed

all-atom force-field is able (in principle) to describe the energetics of ion permeation through the

gA channel with at least semi-quantitative accuracy, with minor changes to the ion-carbonyl

Lennard–Jones parameter. It can be expected that including electronic polarization from

the protein, water and lipid molecules, will be needed to reach quantitative agreement with

experiment.

1·0

0·9

0·8

0·7

0·6

0·5
–20 –15 –10 –5 0 5 10 15 20

z (Å)

R
el

at
iv

e 
di

ff
us

io
n 

co
ns

ta
nt

Fig. 14. K+ ion diffusion profile. Calculated values of the axial component of the ion diffusion coefficient,
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6.1.5 Selectivity

The agreement with experimental dissociation and conductance measurements is promising

and indicative of the overall correctness of the computational method. Ultimately, it will be

of interest to elucidate the factors governing the selectivity of the gA channel using a similar

computational approach. For example, although the gA channel is electrically neutral, it is

ideally selective for small univalent cations, as it is blocked by divalent cations and completely

impermeable to anions (Andersen & Koeppe, 1992). It was shown previously, on the basis of

alchemical FEP simulations, that Clx has a much lower affinity for the interior of the gA channel

than K+ (Roux, 1996) even though these two ions have similar solvation free energies in

bulk water (approximately x80 kcal/mol). The cation specificity of the gA arises from the

strong asymmetry in the permanent charge distribution of the peptide backbone, a mechanism

that was first proposed by Urry (1971). In simple terms, the backbone carbonyl CO group

can compensate favorably for the loss of hydration by a cation, whereas the corresponding

interaction between the backbone amide group NH and anions are not as favorable. One may

therefore anticipate that the PMF of anions will present a very large free-energy barrier opposing

their passage through the channel. The factors governing the exclusion of divalent cations could

be elucidated by similar calculations.

6.2 Computational studies of KcsA

The structure of KcsA, the first one available at atomic resolution for a K+ channel triggered

a large number of computational studies based on MD (Allen et al. 1999, 2000 ; Guidoni et al.

1999, 2000 ; Åqvist & Luzhkov, 2000 ; Bernèche & Roux, 2000, 2001 ; Capener et al. 2000 ;

Luzhkov & Åqvist, 2000, 2001a, b ; Shrivastava & Sansom, 2000 ; Biggin et al. 2001 ; Crouzy et al.

2001), PB (Roux & MacKinnon, 1999 ; Roux et al. 2000 ; Ranatunga et al. 2001), and BD (Allen &

Chung, 2001 ; Mashl et al. 2001 ; Burykin et al. 2002, 2003). Because of the moderate resolution of

the X-ray data (3�2 Å), the computational studies initiated from the original 1998 KcsA structure

(pdb id 1BL8) had to proceed with a limited amount of information. In particular, the exact

number and configurations of the ions and water molecules in the selectivity filter was not

known, the conformation and ionization state of Glu71 near the selectivity filter could not be

resolved, and whether the channel was in an open or closed state in the crystal structure was

unclear.

The picture was rapidly refined during the following few years, as additional structural and

functional information became available. X-ray structures of the KcsA channel were obtained

at higher resolution (up to 2�0 Å) (Morais-Cabral et al. 2001 ; Zhou et al. 2001a, b), followed

by structures for other K+ channels : MthK (3�4 Å), a calcium-activated channel crystallized in

an open state ( Jiang et al. 2002a), KvAP (3�2 Å), a voltage-gated channel ( Jiang et al. 2003), and

KirBAC (3�65 Å), an inward rectifier (Kuo et al. 2003). Further information about the molecular

movements of the transmembrane helices of KcsA and their role in channel gating was obtained

by electron paramagnetic resonance (EPR) (Gross et al. 1999 ; Cortes et al. 2001; Liu et al. 2001 ;

Gross & Hubbell, 2002) and mass spectroscopy (Kelly & Gross, 2003). At the same time, the

results of electrophysiological experiments on KcsA became available (Heginbotham et al. 1999 ;

LeMasurier et al. 2001 ; Nimigean & Miller, 2002 ; Kutluay et al. In Press). In retrospect, it is

encouraging that many results from the computational studies were consistent with the rapidly

emerging data, sometimes even in advance of the fact. As emphasized by Miller (2001), these
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successful predictions reinforce the confidence in computational studies of ion channels based

on atomic models.

6.2.1 Multi-ion free-energy surface and cation-binding sites

To characterize the ion conduction process, Bernèche & Roux (2001) calculated the complete

multi-ion free-energy surface governing the movement of K+ in the pore of KcsA using MD

umbrella-sampling simulations. The atomic simulation system at the basis of this work is shown

in Fig. 2b. The results of the calculations are shown in Fig. 15. For the sake of visualization

the results are presented as two-dimensional (2d ) topographic maps of the free-energy land-

scape governing the ion conduction through the selectivity filter of the K+ channel. To produce

the 2D maps, the full free-energy function W(z1, z2, z3), which depends on the position of the

three ions along the channel axis has been projected onto two different planes with reduced

reaction coordinates (see caption of Fig. 15). Typical configurations of the selectivity filter with

the three K+ permeating ions and nearby water molecules labeled (a) to ( f ) are given in Fig. 15

to illustrate the elementary steps along the ion conduction process. The free-energy barrier

separating these configurations is in the order of 2–3 kcal/mol.
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Fig. 15. Topographic free-energy maps of ion conduction calculated from umbrella-sampling molecular

dynamics simulations. Each color level corresponds to an energy of 1 kcal/mol ; the axes are given in

angstroms. The position of the ions (numbered in successive order from 1 to 3 starting from the ion on the

extracellular side), Z1, Z2, and Z3 are defined relative to the center-of-mass of the backbone atoms of

residues Thr75–Val76–Gly77–Tyr78 which constitute the central core of the selectivity filter. The definition

of the reduced reaction coordinates (Z12, Z3) and (Z1, Z23) is indicated in (c) and (e), with Zij corresponding to

the center of mass of ions i and j. A direct comparison of the energy levels in the two 2D free maps is

meaningful. The lowest energy pathway (highlighted by a dotted line) follows the configurations a–b–d–f [a

spontaneous transition along this pathway has been observed previously during an unbiased simulation of

the KcsA channel (Bernèche & Roux, 2000)]. A secondary pathway (highlighted by a thin dashed line)

following the configurations a–c–d–f is also possible.
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Even though no large free-energy barriers opposing ion conduction are observed in the free-

energy maps, five position along the permeation pathway are preferably occupied by K+ ions,

hereafter referred as S0, S1, S2, S3, and S4, from the extracellular side of the selectivity filter.

Those are illustrated in Fig. 10b. Ions located in S1, S2 or S3, are in contact with the main chain

carbonyl oxygens (S1 : Gly77 and Tyr78 ; S2 : Val76 and Gly77; S3 : Thr75 and Val76) and only 1–2

water molecules. The ion in S4 is hydrated by 2–3 water molecules and making intermittent

contacts with the carbonyl oxygens and the side-chain of Thr75 while the ion in site S0 is

hydrated by 3–4 water molecules and making some contacts with the carbonyl oxygens of Tyr78.

The multi-ion free-energy surface was calculated on the basis of the X-ray structure at 3�2 Å
resolution of Doyle et al. (1998). It reproduces the four cation-binding sites (S1, S2, S3 and S4)

located in the narrow selectivity filter, which were already known (Doyle et al. 1998), and also

predicted the two additional sites (Sext and S0) located on the extracellular side of the channel,

which were observed at 2�0 Å resolution (Zhou et al. 2001b). A concerted multi-ion transition

leading to a configuration in which a K+ was bound in the site S0 had also been previously

observed during MD simulations (Bernèche & Roux, 2000).

6.2.2 Channel conductance

The full free-energy function W(z1, z2, z3) provides the essential information to describe the

conduction mechanism in the pore of KcsA (i.e. single-file diffusion of the ions with water in

between). The absence of large energy barriers is traditionally interpreted as a strong evidence

that the ion conduction process ought to be essentially diffusion limited. But what could be the

throughput of K+ across the selectivity filter? Such a question cannot be addressed without

further considerations about dynamical processes. To simulate ion conduction through the

selectivity filter of KcsA, we constructed a ‘ realistic ’ BD model using the PMF calculated from

all-atom MD (Bernèche & Roux, 2003). Two additional ingredients are needed to simulate
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Fig. 16. Transmembrane potential profile along the pore of an open-state model of the KcsA channel

(Doyle et al. 1998) generated from the structure of the MthK channel (Jiang et al. 2002a). The curve is drawn

assuming a positive unitary value of the intracellular potential. The potential at the position of the five most

important cation binding sites, S0, S1, S2, S3 and S4, is highlighted ($). For comparison, the profile calculated

for the closed state of KcsA is also shown (Roux et al. 2000).

74 B. Roux et al.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033583504003968
Downloaded from https://www.cambridge.org/core. WWZ Bibliothek, on 14 Nov 2017 at 10:31:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033583504003968
https://www.cambridge.org/core


non-equilibrium ion conduction: the transmembrane potential and the diffusion coefficient

along the channel axis. The transmembrane potential was calculated for a model of the KcsA

channel in the open state constructed on the basis of the X-ray structure of the calcium-activated

MthK channel ( Jiang et al. 2002a) using the PB-V Eq. (82). The result is shown in Fig. 16. For

comparison, the voltage profile along the axis of the channel in the closed state is also shown

(Roux et al. 2000). In accord with previous results (Roux et al. 2000 ; Jiang et al. 2002b), the

variation in the transmembrane potential difference becomes increasingly localized across

the selectivity filter as the channel opens. The main cation binding sites (S0–S4) are located in the

region where variation in the transmembrane potential is the steepest, while the potential

difference across the wide aqueous intracellular vestibule is very small. The diffusion coefficient

D(z) was extracted from the umbrella-sampling simulations using an analysis based on the

GLE for non-uniform systems. (Berne et al. 1988 ; Straub et al. 1990 ; Crouzy et al. 1994). The

calculated diffusion coefficient varies weakly throughout the entire permeation pathway,

decreasing to roughly 70% of its bulk value in the selectivity filter region (see Fig. 17). Because

there are no abrupt variations in D(z), the character of the random ion movements governing

the conduction mechanism is largely determined by the structure of the multi-ion free-energy

surface W rather than the dissipative and frictional forces. This model may be summarized

using the acronyms given in Table 1 as BD/[PMF(MD)+Vmp(PB-V)], to indicate that BD

trajectories are generated using a PMF that was calculated with all-atom MD and a trans-

membrane potential that was calculated with Eq. (91).

Several BD trajectories on the ms time-scale were generated to simulate ion conduction

under various non-equilibrium conditions of ion concentration and transmembrane voltage. The

BD trajectories were generated using a discrete-state Markov chain framework model (Bernèche

& Roux, 2003). As an illustration, a 100 ns segment from a typical BD trajectory corresponding
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Fig. 17. Diffusion coefficient of K+ relative to its value in the bulk as a function of the position along the

channel axis. An analytical form fitted to the results from the simulations was used in the Brownian

dynamics trajectories (dashed line). The absolute value of the calculated diffusion coefficient in bulk solution

(0�37 Å2/ps) was uniformly scaled to the corresponding experimental value of 0�185 Å2/ps (Mills & Lobo,

1989) in order to account for the underestimated viscosity of the TIP3P water model (Feller et al. 1996) at

the temperature of the molecular dynamics simulations (330 K) (Bernèche & Roux, 2001).
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Fig. 18. Typical Brownian dynamics trajectory generated with an applied membrane potential of +50 mV

and under symmetric conditions of K+ concentration chosen to yield a channel occupied by 3 ions 50% of

the time. The Z(t) of the 2 or 3 ions in the system is alternatively plotted in blue, red and green for the sake

of clarity. The relative ion density along the pore is shown in relation to the different binding sites.

Many outward translocation events can be observed ; for example, the red curve shows some of these

events between 5 and 10 ns, 25 and 30 ns, 35 and 45 ns, 90 and 95 ns. A re-entry of a translocating ion in

the direction opposite to the transmembrane potential can be observed between 45 and 68 ns. Binding of

an ion from the extracellular solution briefly to the site S0 stabilizes ions in sites S2 and S4 (e.g. around

t=48 ns).
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Fig. 19. (a) Current–voltage (I–V) relation calculated from Brownian dynamics simulations under sym-

metric conditions and K+ concentration of 400 mM. (b) Conductance of the KcsA channel at¡50 mV as a

function of permeant ion concentration. The variation of the channel conductance as a function of K+

concentration follows a first-order saturation with KD of 740 and 640 mM, for +50 and –50 mV respect-

ively. Experimental data from LeMasurier et al. (2001) (open symbols and thin gray lines) were taken from:

http://www.jgp.org/cgi/content/full/118/3/303/DC1/1.
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to the evolution of the position of the three ions along the pore with an applied transmembrane

potential of +100 mV is shown in Fig. 18. During the BD trajectories, the ions stay in well-

defined states for some time, followed by sudden concerted ‘hopping ’ transitions occurring

in a random fashion. The relation of the BD trajectory to the average density of ions along

the pore axis is illustrated schematically in the bottom part of Fig. 18 (right). Because the

trajectories were generated using a PMF calculated from all-atom MD, the dominant positions

of the K+ during the trajectories are consistent with the cation-binding sites observed in the

pore (Bernèche & Roux, 2001 ; Zhou et al. 2001b).

The calculated conductance as a function of ion concentration is shown in Fig. 19 and com-

pared with the experimental results from LeMasurier et al. (2001). The calculated conductance

g exhibits a typical first-order saturation, which is expected because the model represents ion

conduction solely in terms of two- and three-ion occupied states. The observed deviations from

the first-order behavior in the experimental data at low concentration could reflect the onset

of a different ion conduction mechanism with less than 3 K+. The values of gmax, the maximum

conductance of the channel at saturating concentration, estimated from Fig. 19 is in the order of

550 pS and 360 pS for outward and inward ions flux respectively. These values are in remarkable

agreement with the experimental measurements (LeMasurier et al. 2001). The calculated gmax

correspond to maximum K+ throughput of the pore, extending from the center of the intra-

cellular cavity to the external binding site, Sext. Incorporating diffusion-limited access resistances

at the ends of the pore (not taken into account in the current simulations) would only decrease

the gmax. The variation of the conductance as a function of the ion concentration depends

sensitively on the equilibrium factors that governs the occupancy of the pore. In the model, the

free-energy difference between 2 and 3 K+ in the pore was empirically set to yield a pore

occupied by 3 K+ ions 50% of the time at 800 mM, in accord with experimental observations

(LeMasurier et al. 2001). Nonetheless, no adjustable parameter affects the calculated gmax itself.

For instance, it is independent of the value of the equilibrium-binding constant, the value of

the cross-sectional area, and the details of the exit and entry steps as modeled in the BD by

Eqs. (121) and (122). The magnitude of gmax corresponds to the maximum throughput that

the selectivity filter can sustain.

6.2.3 Mechanism of ion conduction

A few typical events resulting in the net translocation of 1 K+ can be observed in Fig. 18

(see caption). Such ‘productive ’ translocation events frequently occur according to a particular

pattern during which the five cation-binding sites (S0, S1, S2, S3, S4) are occupied by three ions

for a very brief period of time. Such configurations, with alternatingly 2 and 3 K+ ions in the

selectivity filter, are reminiscent of the discrete states postulated in kinetic rate models of multi-

ion channels (Hille & Schwarz, 1978). The elementary microscopic events leading to outward

ion conduction can be summarized as follow. For extensive periods of time, the selectivity filter

is occupied by 2 K+ ions located alternatively in the S1 and S3 sites, or the S2 and S4 sites, while

a third ion frequently attempts to enter the channel on the intracellular side or the extracellular

side. The exchange between the configurations [S1, S3] and [S2, S4], which occurs on a time-scale

of y1–2 ns, corresponds to a rapid but non-productive ‘back-and-forth shuttling ’ of the 2 K+

in the selectivity filter. While the two ions are located in the sites S1 and S3, a third ion hops from

the intracellular vestibule into the site S4 and collides with the ion in S3. This induces a concerted

transition to a state in which the three ions occupy sites S4, S2 and S0. This is then followed by
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the rapid dissociation and departure of the outermost ions in S0 on the extracellular side, yielding

the conduction of one net charge.

This process leading to productive translocation events is qualitatively similar to the ‘knock-on ’

mechanism proposed by Hodgkin & Keynes (1955). A typical ‘knock-on’ event can be observed

in Fig. 18 between t=26 ns and t=35 ns. The details of the ion conduction process does,

however, present a challenge to our understanding of repulsive forces at play in multi-ion sys-

tems. The ‘knock on’ mechanism is possible because simultaneous occupancy of the adjacent

sites S3 and S4 is not energetically prohibitive while the dissociation of the outermost ion in S0
is accelerated by ion–ion repulsion (Bernèche & Roux, 2001). When the two ions are in S4 and S3,

the ‘bare ’ electrostatic energy is +83 kcal/mol and the mutual repulsive coulombic force

between the 2 K+ ions corresponds to an electric field of 9r109 V/m, which is equivalent to

the field produced by a transmembrane potential of 27 V! Yet, according to the PMF shown

in Fig. 15, the free energy of this state is only 1 kcal/mol higher than a state in which the ions

occupy the cavity and site S3. Similar collisions between two ions occupying adjacent sites can

also briefly occur in the selectivity filter. For example, the back-and-forth shuttling process of the

two ions in the binding sites is typically initiated by a brief transition to a state with two ions in

adjacent sites S2 and S3 (however, simultaneous occupancy of the adjacent sites S1 and S2 is

energetically unfavorable and is not observed). Such rapid collisions suggest that the effective

electrostatic repulsion between the ions in the filter is manifested mostly at short distances.

Though, without the repulsion from the other two incoming ions, the outermost ion would be

tightly bound to its site and its exit toward the extracellular side would require a significant

activation of free energy. Therefore, repulsive forces are absolutely essential for rapid conduction.

6.2.4 Selectivity

The calculations show that the conduction of K+ ions in KcsA is extremely rapid, but can

the model also show that the channel remains at the same time selective for K+ over Na+?

Selectivity arises primarily from the relative free energy of K+ and Na+ in the channel and in

the aqueous solution (Eisenman, 1962). To address this question, we performed MD FEP,

in which 1 K+ is alchemically transformed into a Na+ at specific locations along the pore axis

(McCammon & Straatsma, 1992 ; Kollman, 1993). The calculated free energy, relative to the

aqueous solution, is approximately +2�8 and +6�6 kcal/mol for site S1 and S2 respectively.

Similar results have been obtained from FEP calculations performed using reduced models

of the KcsA channel (Allen et al. 1999, 2000 ; Åqvist & Luzhkov, 2000). The selectivity of the

so-called ‘external lock-in site ’ detected in Ba2+ blockade experiments (probably site S2 ; see

Jiang & MacKinnon, 2000) has been estimated to be approximately +5�5 kcal/mol (Neyton &

Miller, 1988a, b). In conclusion, the calculations show that the KcsA has the ability to both

rapidly conduct K+ and discriminate against Na+. However, one should note that the magnitude

of the dynamical fluctuations of the carbonyl oxygens forming the selectivity filter is un-

ambiguously larger than the difference in the radius of Na+ and a K+ ion, i.e. the atomic

fluctuations of the backbone atoms forming the selectivity filter are in the order of 0�75 Å,
whereas the radii of K+ and Na+ differ by less than 0�4 Å (Roux & Karplus, 1995 ; Hille, 2001).

Therefore, the high specificity of KcsA for K+ over Na+ ions (which is reproduced by the

calculations) cannot simply arise from a discrimination based on ion size provided by a rigid pore

of a precise geometry. One might think that, in a flexible pore, the selectivity could arise from the

slightly greater distortional energy needed to accommodate a smaller cation. However, the
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magnitude of the atomic fluctuations implies that the strain energy associated with sub-angstrom

protein distortions is much smaller than kBT. Clearly, further work will be needed to elucidate the

microscopic factors that make selectivity a robust property of the K+ channel despite thermal

fluctuations and protein flexibility.

6.3 Computational studies of OmpF

The porins represent ideal systems for addressing fundamental questions about the importance

of electrostatic interactions on ion flow through wide aqueous pores. There have been a number

of computational studies of porins based on equilibrium MD (Bjorksten et al. 1994 ; Soares et al.

1995 ; Watanabe et al. 1997 ; Suenaga et al. 1998; Tieleman & Berendsen, 1998; Tieleman et al.

1998 ; Bond et al. 2002 ; Faraldo-Gomez et al. 2002, 2003 ; Im & Roux, 2002b ; Danelon et al. 2003 ;

Zachariae et al. 2003). Several advanced computational techniques have been used to extend the

scope of simple equilibrium MD, e.g. MD with applied external electric field (Suenaga et al. 1998 ;

Crozier et al. 2001a, b ; Yang et al. 2003), alchemical FEPs (Danelon et al. 2003), and umbrella-

sampling MD simulations (Zachariae et al. 2003). Nonetheless, the majority of the results aimed

at elucidating the role of electrostatic interactions on ion permeation through the porins have

been obtained using approximate approaches such as PB (Weiss et al. 1991 ; Karshikoff et al.

1994 ; Zachariae et al. 2002), BD (Schirmer & Phale, 1999 ; Im et al. 2000 ; Im & Roux, 2001,

2002a ; Phale et al. 2001), and PNP (Im & Roux, 2002a).

6.3.1 The need to compare the different level of approximations

Depending on the salt concentration, the permeation process through the wide aqueous pores

of OmpF involves the correlated movements of several ions and counterions ; at 1 M KCl, there

can be up to 10 K+ and 10 Clx in one pore (Im & Roux, 2002b). But it is not practical to

compute all the n-ion PMFs describing all the relevant ion configurations needed to represent

the multi-ion permeation process using all-atom MD. Furthermore, it is not yet feasible to

simulate ion fluxes directly with non-equilibrium MD in the presence of an applied membrane

potential (although that should become possible in the near future). Because of these difficulties, a

study of ion permeation through OmpF must rely on a combination of inter-related computa-

tional approaches corresponding to different levels of approximation. The different approaches

used here are all-atom MD, PB, BD and PNP. How valid are those approaches in the context

of ion permeation through OmpF? To address this question, we compared the results obtained

from all-atom MD, PB, BD and PNP. The atomic system simulated by MD, which comprises

theOmpF trimer embedded in a fully solvated phospholipid bilayermembrane bathed by a 1 MKCl

aqueous salt solution, is shown in Fig. 2 c. From a computational point of view, the high

salt concentration is advantageous because the large number of ions included explicitly

in the simulations significantly helps to obtain statistically meaningful averages of the ion pro-

perties in the pore. The results from this all-atom equilibrium MD simulation serve as a bench-

mark to assess the validity and accuracy of two approaches that are intrinsically more approximate :

equilibriumGCMC/BD, in which the solvent is represented as a continuum dielectric but the ions

are included explicitly, and PB, in which the both the solvent and the ions are represented as

continuum. Accordingly, the PMF underlying the BD/GCMC simulations may be summarized

using the acronyms given in Table 1 as PMF(PBV). In the same way, we use the results from non-

equilibrium GCMC/BD to assess the validity of PNP. Similar comparison of BD with PB and

PNP have been made for pores of simple geometries (Corry et al. 2000 ; Moy et al. 2000).
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6.3.2 Equilibrium protein fluctuations and ion distribution

Overall, the picture emerging from the all-atom MD simulation of OmpF in a lipid bilayer

suggests that the approximation of a rigid protein and a continuum solvent are qualitatively

reasonable, though some aspects of reality are clearly oversimplified by these approximations.

The conformation of OmpF in the membrane is very stable, in large part because of the rigidity

of the b-barrel structure. However, the size of the pore depends most directly on the structural

fluctuations of the residues Pro116–Glu117–Phe118–Gly119–Gly120 (PEFGG motif), which

forms the most flexible region in the narrowest region of the pore. The orientation of the water

molecules in the constriction zone is strongly anisotropic and perpendicular to the pore axis

due to the strong transversal electrostatic field arising from the cluster of three arginines (Arg42,

Arg82, Arg132) and two acidic residues (Asp113, Glu117) (Cowan et al. 1992 ; Karshlkoff et al.

1994 ; Dutzler et al. 1999 ; Schirmer & Phale, 1999 ; Im et al. 2000 ; Im & Roux, 2002b). The

occurrence of K+ and Clx pairing in the pore is relatively small, though it is more important

in the constriction zone, where the pore is narrowest. An ion pair in the constriction zone

is shown in Fig. 10 c. Permeating ions are not completely dehydrated, which suggest that a

continuum dielectric representation of water may be valid. As K+ and Clx move into the OmpF

pore, the contributions from water and the protein atoms varies in a complementary fashion

in order to keep the total solvation number of both ions approximately constant. There are

approximately four water molecules around both ions in the constriction zone, where their

hydration number appears to be minimum. This can be compared with the values in bulk

solution, where there are approximately 6�5 and 7�2 water molecules in the first shell of K+ and

Clx ions respectively.

To assess the ability of the three approaches, MD, GCMC/BD, and (nonlinear) PB, in de-

scribing the equilibrium partitioning of ions in teh pore, we examine the 3D spatial distribution

of K+ and Clx in the 1 M system. The results are shown in Fig. 20. All three approaches clearly

indicate that K+ and Clx ions distribute according to two well-separated average pathways

spanning over nearly 40 Å along the axis of the pore. In the center of the monomer, the two

screw-like pathways have a left-handed twist, undergoing a counter-clockwise rotation of 180x

from the extracellular vestibule to the pore periplasmic side. Remarkably, GCMC/BD and PB

reproduce the well-separated ion pathways, although the screw-like pathway in GCMC/BD and

PB is not as clear as in MD. This seems to suggest that MD samples narrower range of configur-

ations than GCMC/BD or PB. The average number of ions inside the pore are 5�1 K+ and 3�9
Clx (MD), 4�9 K+ and 2�8 Clx (GCMC/BD), and 5�6 K+ and 3�4 Clx (PB) respectively. All three

computational approaches show that K+ has a higher propensity to occupy the aqueous pore

than Clx, consistent with the cation-selectivity of the OmpF channel. Overall, the agreement

is quite reasonable between MD and GCMC/BD, indicating that a continuum dielectric de-

scription of water with a rigid channel structure in GCMC/BD can be a valid approximation for

OmpF porin. Furthermore, the present analysis shows that the (nonlinear) PB is able to capture

the important electrostatic interactions between ions in the aqueous pore.

6.3.3 Non-equilibrium ion fluxes

On the basis of the macroscopic helical paths shown in Fig. 20, one can envision the average

journey of K+ and Clx ions from the extracellular side to the periplasmic side. But, in order to

fully characterize OmpF, it is necessary to simulate non-equilibrium ion flow. This is done with

GCMC/BD or with PNP. The transmembrane potential wmp(r), which is needed to generate
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non-equilibrium GCMC/BD simulations, is readily incorporated into the static field via PB-V

Eq. (125). The potential profile along the axis of the pore is illustrated in Fig. 21. It is observed

that the dominant effect of the transmembrane potential is in the narrowest part of the pore,

where the driving field is approximately linear. The profiles of the diffusion coefficients for

K+ and Clx along the pore is also the important ingredient needed for GCMC/BD and PNP.

The profiles of the diffusion coefficient of K+ and Clx along the channel axis, calculated using

Eq. (107) from the all-atom MD simulation of OmpF at 1 M KCl, are shown in Fig. 22.

It is observed that, inside the pore, the diffusion coefficient of K+ and Clx is reduced to y50%

relative to their value in bulk solution. The lack of abrupt variations in the diffusion coefficient

suggests that the random walk of the ions inside OmpF is largely governed by the structure of

the multi-ion PMF rather than by the dissipative factors themselves.

MD

BD

PB

Fig. 20. Two well-separated specific ion pathways with a left-handed screw-like fashion. The K+ ions are

magenta and the Clx ions are green. MD: A superimposition of 100 snapshots of ions every 50 ps from the

5 ns trajectory ; all the ions in two other pores were superimposed into one pore by rotations. BD: A

superimposition of 300 snapshots of ions every 60 ps from the 60 ns trajectory. PB: A ion distribution 3D

grid map. Left : view from perpendicular to the three-fold symmetric axis. Middle : left view rotated by 120x.
Right : left view rotated by 240x. The figure was produced with DINO (http://www.dino3d.org).
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The calculated current–voltage (I–V ) relation in 1 M KCl is shown in Fig. 23. The I–V

relation appears to be asymmetric, i.e. both IK and ICl at a positive potential are always larger than

those at the corresponding negative potential, resulting in the asymmetry in the channel con-

ductance upon the polarity of the applied potential. At 1 M KCl, the conductance of OmpF
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Fig. 21. One-dimensional free-energy profiles of K+ (dotted line) and Clx (dashed line) with the trans-

membrane potential of+150 mV (solid line). 150 mV corresponds to 3�46 kcal/(mol.e). The fraction of the

transmembrane potential is also shown on the right. The free-energy profiles of both ions were calculated as

Wa(z)=xkBT ln (ra(z)/r
bulk
a ) in a 1 M KCl symmetric solution, where ra(z) was calculated using a 0�5 Å

bin along the z-axis and the cross-sectional area of the GCMC/BD system in the xy-plane.
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Fig. 22. A (fractional) non-uniform diffusion coefficient profile for K+ and Clx ions in GCMC/BD and

PNP; 1 when z>36�5 or z<x25�5, 0�5 ( fmin) when x1�5<z<12�5, and fmin+(1xfmin) * gsw
in switching regions, where a switching function centered at zc=5�5 over L=24 Å length, gsw=
¡2 * ((zxzc)/L)

3 – 3 * ((zxzc)/L)
2, is applied. For comparison, the molecular dynamics results for K+

(dotted line) and Clx (dashed line) scaled by their bulk values are also shown. We used 0�196 (K+) and

0�203 (Clx) Å2/ps for the bulk diffusion coefficient (Hille, 2001).
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calculated with GCMC/BD is 1�36 and 1�15 nS for ¡150 mV respectively. Under the same

condition, the conductance calculated with PNP is 1�97 and 1�77 nS for ¡150 mV respectively.

For comparison, the measured conductance of OmpF inserted in a planar lipid bilayer with

the same salt concentration is 1�25 and 1�13 nS at ¡160 mV respectively (N. Saint, personal

communication). Although the conductance and its asymmetry calculated from GCMC/BD is

slightly higher than the experimental data, the agreement is excellent (no parameters were

specifically adjusted to match those experimental data). The ion-accessible aqueous pore

of OmpF is markedly asymmetric, with a relatively small extracellular vestibule and a large
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Fig. 23. Current–voltage curve in a 1 M KCl symmetric solution from (a) GCMC/BD simulations and (b)

PNP calculations. The total current (solid line) is the sum of K+ (dotted line) and Clx (dashed line) currents.
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intracellular vestibule. The asymmetry increases with decreasing salt concentration, indicating

that the permanent charge distribution of OmpF porin is responsible rather than the irregular

geometry of the pore itself.

The conductance–concentration relation, shown in Fig. 24, appears to be sublinear at high

concentrations. There are 1�55 K+ inside the pore in 0�01 M, which is only about three times

smaller than the number of K+ in 1 M KCl, whereas the number of Clx ions is then almost

negligible (additional simulations indicate that there is still roughly 0�17 K+ on average inside

the pore even in 1 mM). As a result, the conductance at low concentration is significantly larger

than a simple naive extrapolation from the value at high concentration would suggest. Quali-

tatively similar results are obtained with PNP.

6.3.4 Reversal potential and selectivity

According to both non-equilibrium GCMC/BD and PNP calculations, more current is carried

by K+ ions than Clx ions. This is consistent with the cation selectivity of the channel (Saint et al.

1996). Assuming that the current ratio IK/ICl is representative of the channel selectivity at

a given concentration, OmpF becomes increasingly more selective for K+ and excludes Clx as

the concentration is decreased because of the reduction of ionic screening of the negative

electrostatic potential arising from the protein charges. Experimentally, the selectivity of porins

is extracted from a measurement of the reversal potential at zero net current in asymmetric salt

solution. The permeability ratio is then obtained from the Goldman–Hodgkin–Katz (GHK)

voltage equation (Goldman, 1943 ; Hodgkin & Katz, 1949 ; Hille, 2001).

Vrev=
kBT

e
ln

PK[C ]o+PCl[C ]i
PK[C ]i+PCl[C ]o

� �
, (138)

where [C ]i and [C ]o are the intracellular and extracellular KCl concentrations. Therefore, in

order to rigorously examine the charge specificity of OmpF, it is necessary to simulate the
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Fig. 24. Conductance–concentration (G–c) relation (solid line) from GCMC/BD atVmp=+150 mV. The

contributions from K+ (dotted line) and Clx (dashed line) ions are also shown. Similar results were obtained

from PB or PNP, but are not shown for clarity.
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correct non-equilibrium conditions that are used in experiments. Figure 25 shows the I–V curves

calculated from GCMC/BD and PNP in the case of asymmetric salt solution of 0�1 :1 M KCl.

The reversal potential, Vrev, at zero net current is determined to be 27�4 mV (GCMC/BD)

and 22�1 mV (PNP), in excellent accord with the experimental value of 24�3 mV (Schirmer &

Phale, 1999).

The reversal potentials calculated from PNP are reasonable but the ion current is over-

estimated by y40–50% relative to GCMC/BD. Empirically scaling down the diffusion coef-

ficient of the ions inside the pore produces a similar I–V relation to GCMC/BD from PNP

calculations. Such a scaling of the diffusion coefficient of both K+ and Clx changes only the
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Fig. 25. Current–voltage curve in 0�1 :1 M KCl asymmetric solution from (a) GCMC/BD simulations and

(b) PNP calculations. The total current (solid line) is the sum of K+ (dotted line) and Clx (dashed line)

currents.

Ion permeation through biological channels 85

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033583504003968
Downloaded from https://www.cambridge.org/core. WWZ Bibliothek, on 14 Nov 2017 at 10:31:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033583504003968
https://www.cambridge.org/core


slope of the I–V curve but does not affect the value of the reversal potential. This suggests that

the PNP mean-field approximation can be helpful to understand the dominant features of ion

permeation and selectivity through OmpF. Interestingly, the I–V curves calculated from both

GCMC/BD and PNP show that the current carried by each ionic species becomes nearly zero

at its own Nernst equilibrium potential, as if the flux of one type of ion is not strongly affected

by the flux of other ions. The value of the reversal potential from PNP follows directly from

the sum of two currents of different magnitude that behave independently from one another.

The value of the voltage at which the total current becomes zero is more or less determined

by the relative magnitude of the two currents. In this context, one might anticipate that the

ratio of the currents at zero potential under asymmetric conditions of concentration |IK/ICl|
should be closely related to the ratio of the permeability coefficients PK/PCl. The permeability

ratios extracted from the GHK voltage equation are 3�9 (BD) and 2�9 (PNP). Remarkably,

the calculated current ratios at zero potential are 3�4 (BD) and 2�4 (PNP), in excellent accord

with the corresponding permeability ratios.

The apparent applicability of the GHK voltage equation in the context of a complex molecular

pore is intriguing and surprising. The GHK equation is derived using a 1D-NP equation under

the simplifying assumptions that the potential is linear over the length of the pore and that

the diffusion coefficient is constant throughout the pore (Goldman, 1943 ; Hodgkin & Katz,

1949 ; Hille, 2001). Those assumptions are not satisfied in the case of OmpF. Furthermore,

the presence of K+ ions in the OmpF pore is needed to screen the excess negative electro-

static potential arising from OmpF and help permeation of Clx ions. This observation rep-

resents a clear violation of ion independence, which is an essential assumption in deriving

the GHK equations (Goldman, 1943 ; Hodgkin & Katz, 1949 ; Hille, 2001). However, within the

framework of the GHK voltage equation, it can be shown that the equivalence between

the current and permeability ratios is preserved if the free-energy barriers opposing the

passage of cations and anions are located along the channel axis at a position where the trans-

membrane potential is roughly half of Vmp (Im & Roux, 2002a). Average ‘effective ’ 1D free-

energy profiles of K+ and Clx along the pore axis can be calculated from the average equilibrium

density of ions,

Wa(z)=xkBT ln
nra(z)m

�rra

� �
: (139)

As shown in Fig. 21, the barrier in the effective free-energy profile is located where the trans-

membrane potential is approximately half of Vmp. This is the reason why, despite the presence

of strong ion–ion correlations, the system behaves as if there is some effective independence of

the ion fluxes.

Based on a comparison of PB and PNP with BD in various simple model pores, Chung and

co-workers argued that there should be large discrepancies between BD and so-called mean-field

theories such as PB or PNP because the latter two methods overestimate the shielding effect

by counterions due to underestimation of the self-energy in narrow channels (Moy et al. 2000 ;

Corry et al. 2000). Such a large discrepancy between the two theories is not observed in our

simulations of OmpF, presumably because the pore is sufficiently wide and the electrostatic

potential arising from the fixed charges of the protein atoms is quite strong. Interestingly,

although BD and PB are in excellent accord for equilibrium situations, the ionic currents cal-

culated from PNP are always larger than those from BD simulations. Since all the microscopic
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model and input parameters are identical in the two models, the difference between BD and PNP

is necessarily caused by the mean-field approximation in which some dynamical ion–ion corre-

lations are neglected. This is consistent with the fact that a significant amount of ion–ion pairing

was observed in the narrowest region of the OmpF pore during MD simulation (Im & Roux,

2002b). In bulk solution, it is known that such correlations which increase with ion concentration

result in a small reduction of the effective ion diffusion coefficient (by a few per cent) (Mills &

Lobo, 1989). Correlations are particularly important here because the ion concentration inside

the molecular pore is much higher than the bulk concentration, e.g. in 1 M KCl solution both

K+ and Clx concentrations in the constric zone of OmpF are more than 5 M. Thus, a reduction

of ion mobility which is not captured in PNP is expected inside the pore.

GCMC/BD multi-ion simulations, constructed upon the information extracted from all-atom

MD, is a powerful approach to examine non-equilibrium ion flow in wide aqueous pores such

as OmpF and address questions about the microscopic origin of their charge specificity.

The existence of two well-separated pathways for cations and anions suggests that the charge

specificity of OmpF porin does not arise from a few local interactions in the constriction zone,

but rather from a number of residue distributed over a large fraction of the aqueous pore

(Im & Roux, 2002a, b). Future efforts will focus on quantitatively characterizing the effect of

site-directed mutuations on the conductance and cation/anion selectivity for OmpF, PhoE

and OmpK36, and comparing with available experimental data.

6.4 Successes and limitations

6.4.1 Channel structure

In trying to assess the strengths and weaknesses of the various computational models, it is

important to clearly distinguish the equilibrium and the non-equilibrium aspects. As emphasized

previously in sections 2–4, an accurate representation of equilibrium properties is essential for

meaningful studies of ion permeation. In particular, the overall stability and integrity of the

channel structure during the dynamical trajectory is one important indicator of the validity of

all-atom MD simulations. It should be emphasized that accurate experimental structures, deter-

mined at atomic resolution, are absolutely essential to carry detailed theoretical studies of ion

permeation. Atomic resolution X-ray crystallographic structures were available for both KcsA

and OmpF. During the MD trajectories of those channels, the protein conformation typically

was very stable, with relatively small deviations from the experimental structures. In the case of

gA, the available structures were determined by solution (Townsley et al. 2001) and solid-state

NMR (Ketchem et al. 1997). The two structures are similar but display some differences and

assessing their relative accuracy is difficult. Nonetheless, dynamical averages taken from the

channel simulated in a membrane were shown to be in excellent agreement with the solid-state

NMR experimental data (Woolf & Roux, 1994b ; Allen et al. 2003a), demonstrating that the

overall accuracy of the current atomic model of gA.

6.4.2 Ion-binding sites

A correct representation of the energetically favorable locations along the permeation pathway

(binding sites) is of paramount importance to begin understanding the selectivity and the con-

duction properties of narrow biological channels. In the case of gA, cation-binding sites are
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found around 9–11 Å, at each ends of the channel, in good agreement with experiments.

However, the precise location of the cation-binding site appears to be very sensitive to the details

of the potential function, with small variations of 1�0–1�5 Å. According to various experimental

measurements, the actual position of the main binding site is probably close to 9�5 Å. Many of

the previous calculations based on atomic models have found cation-binding sites at 9�5 and

11 Å, near the entrance of the gA channel. In the case of KcsA, the original X-ray structure

provided only a few elements of information about the binding sites of K+ in the selectivity

filter (Doyle et al. 1998). The PMF calculation reproduced all the main four cation-binding sites

located in the narrow selectivity filter (Doyle et al. 1998 ; Zhou et al. 2001b), though the position

of site S0 differs by y1�5 Å from the high-resolution structure. There is no direct information

about the position of bound ions in the X-ray structure of OmpF, therefore, only a comparison

of the computational results from MD, BD/GCMC and PB is possible. Remarkably, in all three

approaches, K+ and Clx ions follow two well-separated left-handed screw-like average pathways

undergoing a counter-clockwise rotation of 180x from the extracellular vestibule to the pore

periplasmic side that spans over 40 Å along the axis of the pore. This shows that the approximate

models BD/GCMC and PB are able to capture the most important features of the electrostatic

interactions between ions and the charge distribution of OmpF. The existence of two well-

separated pathways for cations and anions suggests that the charge specificity of OmpF

porin does not arise from a few local interactions in the constriction zone, but rather from

a number of residues distributed over a large fraction of the aqueous pore (Im & Roux, 2002b).

The results for the narrow channels gA and KcsA show that MD simulations based on carefully

constructed atomic models are able to describe the location of the main ion binding sites with

an accuracy of y1�0–1�5 Å. In contrast, models that use a rigid channel structure and a con-

tinuum solvent approximation are unable to reproduce this essential feature of those channels

(Edwards et al. 2002). In the case of gA, a PNP calculation found the dominant binding site in

the center of the dimer, nearly 10 Å away from the correct position (Kurnikova et al. 1999). In the

case of KcsA, BD simulations do not reproduce any of the five most important K+-binding sites

(S0–S4) located in the selectivity filter (Mashl et al. 2001 ; Chung et al. 2002 ; Burykin et al. 2002,

2003). This in itself shows that simplified models, which treat the protein rigidly and represent

the solvent as a dielectric continuum, are severely limited. Although such approximations pro-

vide a qualitative representation of a multi-ion channel, they cannot capture the influence of

the structural dynamical fluctuations of the selectivity filter observed in MD (Guidoni et al.

1999 ; Allen et al. 2000 ; Åqvist & Luzhkov, 2000 ; Bernèche & Roux, 2000, 2001 ; Shrivastava

& Sansom, 2000).

6.4.3 Ion conduction

The ion conductance is by far the most difficult property of an ion channel to calculate with

quantitative accuracy from an all-atom model. A small deviation in the equilibrium PMF of

permeating ion is sufficient to change the ion flux by several orders of magnitude. Furthermore,

the absolute conductance is generally more difficult to calculate because it is very sensitive to

the all details of the environment of the channel, the buffer solution, and the lipid composition.

In the case of gA and KcsA, modern all-atom potential functions together with a computational

strategy based on a systematic sampling of the PMF has allowed the conductance to be com-

puted with reasonable success. For gA, the maximum conductance appears to be underestimated

by 20- to 30-fold. In contrast, the calculated maximum conductance of the selectivity filter
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of KcsA is in remarkable agreement with experimental data. Because a small increase of about

kBT in one energy barrier along the ion conduction pathway would be sufficient to decrease

the ion flux by a factor of almost 3, it is clear that such a striking success is partly fortuitous.

Nonetheless, considering that none of the microscopic parameters used here were optimized

specifically for these systems, the present results are very encouraging. In the case of OmpF,

a multi-ion continuum electrostatic GCMC/BD approach was used and the conductance

was reproduced over a very wide range of concentration, in excellent agreement with exper-

iments. These results show that a simplified model in which the protein channel is represented

as a rigid structure and the solvent as a continuum dielectric is reasonable to simulate ion

permeation through a wide aqueous pore such as OmpF. These approximations are valid in

this case because the ions are not dehydrated and are not tightly coordinated by the protein they

are translocated through the pore ; it may be all right to ignore the 0�5–1�0 Å RMS atomic

fluctuations of the protein in the case of a pore of 6 Å diameter.

Although gA is the simplest channel considered here, the calculated conductance displays

the largest discrepancy with the experimentally value. Why are the results from MD apparently

better for KcsA than for gA since both are narrow pores lined by backbone carbonyls? In the

case of gA, two corrections were introduced in the PMF: for the spurious destabilization arising

from the finite-size and periodicity of the simulated system (x1�6 kcal/mol), and the neglect

of induced polarization of the lipid hydrocarbon chains (x2�1 kcal/mol). An estimate of the

same corrections reveals that they would be much smaller in the case of KcsA. The finite-size

periodicity effect is negligible because the size of the periodic box used for MD is much larger,

the polarization of the hydrocarbon is also negligible because the lipid chains are much further

away. Some additional energetic and structural effects are perhaps also at play. In gA, b-helical

backbone hydrogen bonds involving the carbonyl groups must be slightly perturbed to stabilize

the permeating cation ; some amount of carbonyl reorientation is absolutely required for stabil-

izing the cation (Chiu et al. 1993 ; Dorman et al. 1996 ; Woolf & Roux, 1997). Modeling this

process requires a very accurate representation of not only intermolecular ion–channel and ion–

water interactions, but also intramolecular channel–channel interactions. Clearly, such delicate

balance of interactions (ion–peptide versus peptide–peptide) is imperfectly represented by current

non-polarizable force fields. In contrast, the structure of the selectivity filter of the KcsA, which

evolved for maximum throughput, can conduct K+ without altering its structure appreciably. For

instance, the carbonyl group point directly toward the center of the pore. For this reason, small

inaccuracies in channel–channel interactions do not have as large an impact as in the case of gA.

Nevertheless, the present results demonstrate that the calculation of the permeation properties

of a selective ion channel with semi-quantitative accuracy, from first principles, is possible.

6.4.4 Ion selectivity

The selectivity is a very important property of ion channels which can be addressed by com-

putational models. As discussed in Section 4.4, FEP calculations based on MD simulations are

an appropriate strategy to examine the selectivity of narrow selective pore. For example, MD

simulations and FEP calculations revealed the microscopic basis of the cation specificity of

the gA channel (Roux, 1996). In the case of a wide multi-ion pore such as OmpF, which exhibits

only a moderate charge-specific selectivity, it becomes more difficult to use FEP calculations

because the number of relevant states of occupancy becomes unwieldy. Such a case is better

described in terms of the reversal potential established at steady-state in the presence of
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asymmetric ionic solutions. The selectivity of KcsA for K+ against Na+ is a much more difficult

problem, because it concerns two cations of very similar size. Remarkably, in this case as well,

a number of FEP calculations based on different simulation methodologies are in general

agreement with experimental data (Allen et al. 1999, 2000 ; Åqvist & Luzhkov, 2000 ; Bernèche

& Roux, 2001 ; Luzhkov & Åqvist, 2001a). This suggest that the dominant factors giving rise

to the selectivity of K+ channels is incorporated, at least in an approximate way, in the current

models. Nonetheless, it is likely that induced polarization will play an important role and

that current biomolecular force field can provide only a semi-quantitative representation of

the interaction between small metal cations and the selectivity filter (Roux, 1993 ; Guidoni &

Carloni, 2002). Lastly, it should be stressed that questions about the ion selectivity in narrow

channels only can be addressed in a meaningful way using all-atom MD models that allow the

full flexibility of the channel. Models that treat the protein rigidly and represent the solvent

as a dielectric continuum are not able to account for the exquisite ion selectivity observed in

narrow channels because sub-angstrom atomic displacements of the channel can have a huge

energetic impact.

7. Conclusion

In this review, we have developed a theoretical and computational framework based on a rig-

orous formulation of a hierarchy of dynamical models to describe ion permeation. As illustrated

by the results discussed in Section 6, adopting this strategy helped considerably in making

important progress in understanding gA, KcsA and OmpF. Comparison with experiments

demonstrates that current computational models are rapidly approaching semi-quantitative

accuracy. But beyond the specifics of the actual numerical results, we would like to emphasize

that an important strength of the present strategy is to help provide a rigorous conceptual

framework to discuss ion permeation rationally. Theoretical models, at any level, are approxi-

mations. While classical trajectories are generated using an approximate potential function in

all-atom MD simulations, PB, PNP and BD representing the solvent as a continuum dielectric

are based on further simplifications which leave out some of the atomic reality we know is

important at the microscopic level (e.g. van der Waals interactions, core–core repulsion, hydro-

gen bonding, induced polarizability, hydration structure, and protein flexibility). Simplified

models can still be very valuable when they assist in highlighting some fundamental principles

in a particularly clear fashion. For example, Eisenman (1962) was able to use exceedingly simple

arguments based on ion size to provide a very insightful perspective on selectivity ; Parsegian

(1969), Levitt (1978) and Jordan (1981) used calculations based on continuum electrostatic

models to reveal important principles of ion permeation through membrane channels ; a PNP

mean-field treatment in one-dimension provides an incisive perspective on the importance of

electrostatics in the selectivity of calcium channels for divalent and monovalent ions (Nonner

et al. 2000) ; semi-microscopic models including a few discrete water molecules have clarified

important energetic principles about ion solvation in narrow pores (Dorman et al. 1996 ; Garofoli

& Jordan, 2003) ; many fundamental aspects of single file diffusion in multi-ion pore were

revealed by studies based on the rate models of Hille & Schwarz (1978), BD in one-dimension

(Bek & Jakobsson, 1994) and three-dimensions (Allen & Chung, 2001). In the last few years,

the development of robust and stable finite-difference algorithms to solve the PNP equations

(Kurnikova et al. 1999) as well as detailed multi-ion BD models in 3D space with a consistent

treatment of continuum electrostatic static and reaction fields (Chung et al. 1998) made it possible
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to test explicitly the validity of PNP mean-field electrodiffusion theories for channel models of

arbitrary geometries (Corry et al. 2000 ; Moy et al. 2000 ; Im & Roux, 2002a).

But simple models must also be used wisely, within the limits of their validity. As a principle,

all theoretical approaches used to describe ion permeation should be, as much as possible, solidly

anchored into the physical reality of these macromolecular systems. The properties of the

physical system being investigated dictate which approximations are suitable for a given

problem; it is not a matter of personal preference. Ultimately, the significance of approximate

models should not be expected to exceed the validity of the approximations upon which they

are built and approaches that do not explicitly acknowledge this may be seriously in error. For

example, most approaches related to continuum electrostatics need to map out the atomic

charge distribution as well as the space-dependent dielectric constant onto a numerical grid for

each calculation of the electrostatic potential. In those calculations, the channel is generally

represented as a static rigid structure and the influence of atomic fluctuations is ignored. This is

a drastic approximation which is incorrect in the case of narrow channels where the small

atomic fluctuations of the protein can have a very large energetic impact. The importance of

dynamical fluctuations and the structure of the water molecules in single file in a narrow pore

were revealed by the MD simulations of the gA channel performed by Mackay et al. (1984). Yet,

it seems that even 20 years later many of these observations need to be restated again. Atomic

fluctuations of proteins are usually in the order of 0�5–1�0 Å RMS. Ion–protein interactions

are very large and the flexibility of ion channels, as of any proteins, plays an important role in

its function. Furthermore, the validity of approximate treatments that represent the solvent as

a structureless dielectric continuum is probably quite limited, particularly in the case of narrow

pores. Although continuum electrostatics is successful in treating processes taking place in bulk

solution, there are significant effects arising from the granularity of water molecules and their

ability to form hydrogen bonds. In bulk solution, continuum dielectric behavior is observed only

at distances larger than a few water diameters, i.e. 5–6 Å (Pettitt & Rossky, 1986) ; the effective

ion–ion interaction energy has some microsocpic structure (wells and barriers) and deviates from

the smooth and simple Coulomb’s law, q1q2/er12. For example, the PMF between two anions or

two cations in bulk water are different, whereas continuum electrostatics is unable to make that

distinction. In single-file channels the deviations from the continuum behavior are expected to

be even more significant. For example, cation–cation interactions in the gA channel are species-

dependent even at a distance of 20 Å because of the specific interactions with water molecules

(Becker et al. 1992 ; Roux et al. 1995).

Representations that are more detailed and closer to the physical reality should serve as

benchmarks to assess the validity of more approximate models. Even atomic models and

potential functions used in MD simulations may correspond to varying degrees of accuracy.

Some potential function include all atoms, e.g. AMBER (Cornell et al. 1995) and CHARMM

PARAM22 (Schlenkrich et al. 1996 ; MacKerell et al. 1998), whereas others are extended-atom

models which treat only the polar hydrogens (those able to form hydrogen bonds) explicitly,

e.g. CHARMM PARAM19 (Brooks et al. 1983) and GROMOS (van Gunsteren et al. 1999).

Furthermore, the treatment of electrostatic interactions, with or without truncation, has major

implications for the significance of the results obtained by MD. Unavoidably, these differences

lead to considerable variations in the accuracy and significance of MD simulations that are

generated (Roux & Bernèche, 2002). One direction where important progress is eagerly antici-

pated is in the development of a biomolecular force field including the explicit treatment of

induced polarizability. Current biomolecular potential functions typically account for many-body
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polarization effects in an average way using an effective parametrization of the atomic partial

charges (Becker et al. 2001). Because of this approximation, the optimal parametrization is the

result of a compromise between an accurate representation of the microscopic energies and bulk

solvation properties. Such potential functions can yield meaningful results of semi-quantitative

accuracy, as long as they are based on effective potential functions that have been calibrated to

correctly reproduce solvation free energies (Roux & Bernèche, 2002). But such an effective force

field may not be consistently reliable, under all the conditions relevant to biomolecules. For

example, this is one reason why it is possible to obtain excellent agreement with experiments

for KcsA while there are additional difficulties with gA (see sections 6.1, 6.2). If the potential

function was an exact representation of the Born–Oppenheimer energy surface, success in

reproducing the microscopic interactions would automatically lead to accurate thermodynamic

properties (assuming quantum effects involving the nuclei are negligible). Accordingly,

improvements in the representation of biomolecules are anticipated if non-additive many-

body polarization is explicitly taken into account. Currently, the development of a new gener-

ation of force fields for computational studies of biological systems that will include induced

polarization is actively pursued (Rick et al. 1994 ; Halgren & Damm, 2001 ; Lamoureux et al. 2003).

Lastly, a very powerful approach is to calculate the Born–Oppenheimer energy surface ‘on-

the-fly ’ by considering explicitly the electronic structure at the quantum mechanical level

using density functional theory (DFT) (Sagnella et al. 1996 ; Guidoni & Carloni, 2002). But

this approach is computationally intensive, which severely limits the length of the trajectories

that can be generated (typically 10–20 ps), the amount of sampling that can be achieved, and

the possibility to make contact with experiments.

Our own perspective on ion permeation has been developed in the context of atomic models

from the statistical mechanical Mori–Zwanzig projection-operator formalism (Zwanzig, 2001).

Within this framework, the fundamental key ingredients such as the PMF and the memory

function (related to the friction coefficient) are best calculated using all-atom detailed MD

models. Many of these ideas were first evoked by Kent Wilson during the Biophysical Discussion

on Ionic Channels in Membranes in 1983 (Airlie House, Virginia). As illustrated in Section 6,

such a hierarchy of inter-related ion permeation models provides a powerful approach to set up

and design practical computational strategies for calculating ion fluxes. It is extremely satisfying

that many of the results are qualitatively coherent with classical theoretical models of ion per-

meation widely used by electrophysiologists (see Hille, 2001 and references therein). The present

theoretical framework provides a road-map for interpreting the basic elements entering such

classical models from the atomic and molecular level, without altering the useful conceptual

language developed from those models over more than 50 years of electrophysiology.

Considering only the permeant ions as the most relevant dynamical variables has obvious

advantages, but also some pitfalls. Effectively, this is valid only if there are no slow processes

associated with the solvent or the protein and that the memory function decays very rapidly

compared to all time-scales relevant to ion permeation (see Fig. 3). This is probably a reasonable

approximation in the case of gA, KcsA and OmpF, as long as gating processes are not con-

sidered explicitly. For times long compared to the permeation of a single ion, these channels

undergo small and rapid atomic fluctuations in the order of 0�5–1�0 Å RMS around well-defined

structures and the progression from Eq. (3) to Eq. (8). is valid. If inertial and memory effects

become important, it is possible to use Eq. (3) instead of Eq. (8). In more complex cases, it

might become necessary to include some protein and solvent degrees of freedom explicitly

into the set of relevant variables. For example, the isomerization of acidic side-chains, as well
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as the permeating Clx ions must be included in the set of relevant variables to describe the

concentration-dependent gating properties of the ClC channel (Dutzler et al. 2002). Furthermore,

there are some indications that the orientation of the water molecules in the single-file region

of gA could be a slow variable which may need to be considered explicitly (Schumaker et al.

2000, 2001 ; Allen et al. 2003b). The current framework, based on the Mori–Zwanzig projection

operator formalism (Zwanzig, 2001), can be extended to incorporate all these other ‘ relevant ’

degrees of freedom, if necessary. Alternatively, it is possible to use special techniques to

determine multi-atom reaction coordinates for the permeation process (Fischer & Karplus,

1992 ; Siva & Elber, 2003). The genuine dynamical path linking two stable states can be sampled

and characterized in its full details using the powerful transition path sampling (TPS) method

developed by Chandler (Bolhuis et al. 2000 ; Bolhuis & Chandler, 2000). One can anticipate that

such considerations will become increasingly important when examining large conformational

transitions associated with gating processes. Undoubtedly, one day computers will be sufficiently

powerful to allow the direct simulation of non-equilibrium ion fluxes from MD (Crozier et al.

2001a, b ; Yang et al. 2003). But even then, the basic elements discussed in sections 2–5 will

continue to provide a fundamental conceptual framework to rigorously ‘ translate ’ the properties

of the atomic level into the language of simple phenomenological permeation models.
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