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Original Article

Movements and Home Ranges of
White-Tailed Deer in Response to
Roadside Fences

WILLIAM D. GULSBY,1 Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA

DANIEL W. STULL, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA

GEORGE R. GALLAGHER, Department of Animal Science, Berry College, Mount Berry, GA 30149, USA

DAVID A. OSBORN, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA

ROBERT J. WARREN, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA

KARL V. MILLER, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA

LAWRENCE V. TANNENBAUM, Environmental Health Risk Assessment Program, U.S. Army Institute of Public Health,
Aberdeen Proving Ground, MD 21010, USA

ABSTRACT Although roadside fences have been proven effective at reducing deer–vehicle collisions
(DVCs), information on how these fences alter deer behavior is lacking. We evaluated the effects of a
traditional and a novel fencing design, constructed alongside a roadway, on movements and home ranges of
white-tailed deer (Odocoileus virginianus). From January to April 2009, we fitted 14 adult female deer with
Global Positioning System collars, programmed to collect�24 locations/day. In June 2009 we constructed a
3.2-km fence that included a 1.6-km section of 2.4-m vertical-wire fence and a 1.6-km section of a prototype
outrigger fence (i.e., 0.6 m, shade-cloth [50% opaque plastic sheeting] on a 458 outrigger angled toward the
deer attached to the top of a 1.2 m, vertical-wire fence). We retrieved collars between January and March
2010. We compared home ranges, fence crossings, and fence circumventions among deer that encountered
the outrigger and 2.4-m fences as well as for deer that encountered neither fence (i.e., controls), before and
after fence construction. Actual crossings of the fence area were reduced, postconstruction, by 98% and 90%
for the 2.4 m and outrigger treatment groups, respectively, suggesting that the fences were sufficiently
effective to simulate how deer respond to roadside barriers. Deer with pretreatment home ranges that
approached or encompassed the fence endings maintained a high degree of site fidelity by circumventing the
endings. This study highlights the importance of incorporating information on deer behavior and resource
usage into DVC-reduction strategies. If these factors are not accounted for, DVC frequency will likely stay
the same, or increase, near fence endings. Thus, roadside fences should likely end at natural barriers to
deer movements (i.e., heavy development) or incorporate some means of safe crossing into their endings.
� 2011 The Wildlife Society.

KEY WORDS deer–human interactions, deer–vehicle collisions, fencing, Georgia, GPS, Odocoileus virginianus, roads,
white-tailed deer, wildlife damage management, wildlife–vehicle collisions.

Abundant white-tailed deer (Odocoileus virginianus) popu-
lations, an expanding roadway system, and increased vehic-
ular traffic have resulted in an increase in deer–vehicle
collisions (DVCs) in many areas of the United States
(Romin and Bissonette 1996). An estimated 1.5 million
DVCs (Conover et al. 1995) occur each year in the
United States, resulting in US$1.1 billion in vehicle damages
and as many as 200 human fatalities/yr (State Farm
Insurance Company 2009). According to the Insurance
Information Institute (2008), the average insurance claim
for damage incurred from a DVC is US$2,800. When
medical costs for bodily injury are included, the average

cost increases to US$10,000. The Georgia Department of
Natural Resources, Wildlife Resources Division estimates
that as many as 51,000 DVCs occur each year in Georgia,
USA, accounting for 13.5% of all collisions in the state
(Bowers et al. 2005).
Devices and strategies promoted to reduce DVCs include

animal-detection systems, vehicle-mounted sound-produc-
tion systems, exclusion fences, herd reduction, intercept
feeding, roadway lighting, roadside reflectors, roadway sign-
age, and wildlife underpasses or overpasses. Of these, exclu-
sion fencing is perhaps the most frequently utilized and
studied. Although the construction costs of deer-proof fenc-
ing are high, it is the most economical and effective option
when deer-damage tolerance is low, as is the case in areas
with high incidence of DVCs (Bashore et al. 1985, Bryant
et al. 1993, Craven and Hygnstrom 1994, DeNicola et al.
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2000, VerCauteren et al. 2006). Huijser et al. (2007) esti-
mated the cost of DVC-mitigation fencing to be US$3,760/
km/yr (assuming a lifespan of 25 yr, not including mainte-
nance) with a benefit (e.g., collisions prevented as a result of
the fencing) of US$32,728/km/yr.
Woven-wire fencing �2.4 m in height is effective in pre-

venting deer crossings (Bryant et al. 1993, Craven and
Hygnstrom 1994, Seamans 2001, Kaneene et al. 2002,
VerCauteren et al. 2006). However, alternative fencing
designs such as angled fences and outrigger fences also
have proven effective at reducing deer crossings. For exam-
ple, Jones and Longhurst (1958) tested a 0.6-m vertical fence
with a 1.8-m outrigger angled at 258 and a 1.2-m vertical
fence with a 1.2-m outrigger angled at 458. In both cases,
deer were more likely to attempt to go under the fence when
the outrigger was angled toward them. Similarly, Stull
(2009) found that a 1.2-m woven-wire fence with a 0.6-m
50% opaque plastic outrigger angled at 458 acted as a 1-way
barrier, meaning deer were less likely to cross when the
outrigger was angled toward them. However, maximum
effectiveness of any fence design requires that the fence is
properly constructed and maintained, located on both sides
of the road, is of sufficient length to extend beyond the home
ranges of deer in high-risk areas, and has some way for
animals to escape from the right-of-way should they breach
the barrier (Knapp et al. 2004, Huijser et al. 2007).
Fencing trials conducted on captive deer allow direct

observation of crossing events and increased experimental
control, but fail to account for the potential consequences
that result from excluding deer from portions of their home
ranges. For example, a deer that is excluded from a portion of
its home range may concentrate its activity in another area or
circumvent the barrier, thereby potentially increasing DVCs
elsewhere (Owen and Owen 1980, Isleib 1995, Clevenger
et al. 2001, VerCauteren et al. 2006). Past research con-
ducted along roadsides has given some indication of how
deer respond to barriers, but these studies have typically done
so using indirect measures such as carcass counts, track
counts, or surveys of deer in the right-of-way (Puglisi
et al. 1974, Carbaugh et al. 1975, Falk et al. 1978,
Clevenger et al. 2001). To the best of our knowledge,
only Feldhamer et al. (1986) have directly studied deer
movements in relation to roadside fencing. However,
because deer movements in Feldhamer et al. (1986) were
monitored using very high frequency (VHF) telemetry, the
investigators lacked the fine-scale data needed to quantify the
effects of the fencing on daily deer movements.
The combination of widespread use of roadside fencing and

the lack of knowledge surrounding how deer respond to these
fences could potentially exacerbate deer–vehicle interactions.
Herein, we report on a study of a prototype fencing design,
compare its efficacy to a commonly used fence design, and
determine their effects on home ranges and movements of
free-ranging deer.

STUDY AREA

We conducted our study on the Berry College Wildlife
Refuge (BCWR) within the 11,340-ha Berry College

Campus in northwestern Georgia. The 1,215-ha refuge
was located in the Ridge and Valley physiographic province
(Hodler and Schretter 1986) with elevations ranging from
172 m to 518 m. Hunting was prohibited on the refuge, for
>40 yr, and deer were abundant, with an estimated density
of 40 deer/km2 (J. Beardon, Georgia Department of Natural
Resources, personal communication). As a result, 12–24
DVCs were reported annually, although the actual number
of collisions was likely higher (Berry College Police
Department, unpublished data).
The campus was divided into the main campus and the

mountain campus. Both campuses were characterized by
buildings and facilities interspersed with pastures, woodlots,
and manicured lawns. They were connected by a 4.8-km road
known as Lavender Mountain Road (LMR). This was a
straight, 2-lane blacktop road with a speed limit ranging
from 40 km/hr to 64 km/hr. Running parallel to LMRwas a
power-line right-of-way known as the Viking Trail (VT).
The area surrounding LMR and the VT was forested and
consisted of pine stands (Pinus taeda and P. palustris) and
mixed forest dominated by oaks (Quercus spp.), hickories
(Carya spp.), and pines. Lavender Mountain Road and
the VT were separated by a strip of mixed forest that ranged
from 30 m to 125 m wide. We selected the VT as the
construction site for the roadside fencing because it was
open, flat, straight, and simulated a common situation
where a roadway travels through a wooded area harboring
an abundant deer population.

METHODS

During January to April 2009, we fitted 10 adult female deer
(�1.5-yr old) with Televilt Tellus1, 5H1D (Televilt/TVP
Positioning AB, Lindesberg, Sweden) and 4 with
Lotek 3300L (Lotek Engineering, ON, Canada) Global
Positioning System (GPS) collars. We captured deer using
either dart projectors or rocket nets. When darting, we used
2-mL transmitter darts (Pneu-Dart, Inc., Williamsport, PA)
to intramuscularly inject a Telazol1 (300 mg; Fort Dodge
Animal Health, Fort Dodge, IA)–xylazine hydrochloride
(400 mg; Congaree Veterinary Pharmacy, Cayce, SC) com-
bination to immobilize deer. We immobilized deer captured
in rocket nets with an intramuscular Telazol–xylazine
hydrochloride (100 mg/320 mg) injection. We calculated
dosages assuming an average deer weight of 45 kg.
During immobilization, we monitored vital signs, treated
minor injuries, lubricated eyes, and blindfolded each
deer. After 90 min, we administered a 100-mg injection
(50 mg [IV] þ 50 mg [IM]) of yohimbine hydrochloride
(Antagonil1, Wildlife Laboratories, Fort Collins, CO) to
reverse the effects of the xylazine hydrochloride. We moni-
tored all deer until they were ambulatory. Animal handling
procedures were approved by the University of Georgia
Institutional Animal Care and Use Committee (no.
A2007-10127-0).
We programmed the GPS collars to collect and store GPS

locations (in the form of X, Y coordinates) on their nonvola-
tile memory. We programmed Lotek collars to collect
48 locations/day at equal intervals throughout the study
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period. Because of battery-life limitations, we programmed
Televilt collars to collect 48 locations/day at equal intervals
from 1 January to 30 June (immediately before and after
fence construction) and 24 locations/day at equal intervals
from 1 July to 31 December. For all statistical comparisons
between collar brands, we filtered data to ensure equal sam-
pling frequencies. Collars were equipped with mortality
sensors that emitted a double-pulse VHF beacon after
8 hr of inactivity. We monitored deer once per week using
VHF-telemetry equipment to ensure they were alive and that
collars were functioning properly. If a mortality signal was
detected, the collar was retrieved immediately. We recovered
collars from January to March 2010 by activating a remote-
release mechanism that caused functioning collars to fall
from the deer. The release mechanisms failed on 9 collars,
so we retrieved these collars via lethal means (gunshot).
We used the Televilt Tellus TPM Project Manager
software (Televilt/TVP Positioning AB) and the Lotek
GPS 3000 Host Application (Lotek Wireless, Inc.,
Newmarket, ON, Canada) to download data. To decrease
the probability of erroneous points in the datasets, we filtered
out any points representing nonfixes, impossible locations,
and locations with dilution of precision values >6. After
data censoring, we imported GPS fixes for each deer into
ArcMap 9.3 (Environmental Systems Research Institute,
Inc., Redlands, CA) and projected them in Universal
Transverse Mercator North American Datum 1983 Zone
17 North (m).
Construction of the 3.2-km fence treatment along the VT

began on 18 May 2009 and ended on 10 June 2009. The
fence included a 1.6-km section of 2.4-m woven wire
(Solidlock1 Game Fence; Bekaert Corporation, Marietta,
GA) to which we attached a 1.6-km section of the outrigger
fence. The outrigger fence consisted of 1.2-m woven wire
(Solidlock Game Fence) with 0.6-m-long outriggers
(Hearne Steel Company, Hearne, TX) attached to the
top, and angled at 458 away from the road. We threaded
5 strands of white Bayco1 Finish Line wire (Ag-liner, Inc.,
Mars, PA) into precut slots spaced 12.5 cm apart on the
outriggers. Total construction costs were US$9,356/km
(US$9.36/m) and US$7,370/km (US$7.37/m) for the
2.4-m and outrigger fences, respectively.
We assigned each deer to outrigger fence (n ¼ 4) or 2.4-m

fence (n ¼ 4) treatment groups according to the fence design
that their home range overlapped. These experimental
groups were independent, because no deer had a home range
that overlapped both fence designs. We selected 6 collared
deer with home ranges that did not overlap either fence
design as our experimental control group. We structured
the dataset for each treatment group into 3 time blocks based
on when the fence was constructed, and to account for
expected seasonal changes in home range size. We defined
the pretreatment period as the duration from the date when
deer were collared until the date immediately before fence
construction began. We defined the first posttreatment
period (posttreatment 1) as 11 June to 11 September
2009. This period was designed to assess the immediate
effects of each fence design on deer movements and home

ranges. This treatment period also included fawning season,
when home ranges of adult females are known to decrease in
size. We defined the posttreatment 2 period as 12 September
2009 until collar recovery. Sample sizes during this period
were 3 and 2 for the outrigger and 2.4-m fence treatments,
respectively, because of 2 premature collar failures and 1 deer
mortality that was not related to the experiment.
To assess the impacts of the fences on deer home ranges

and core areas, we calculated 90% home ranges and 50% core
areas for each deer during each treatment period. Home
ranges and core areas were constructed using the adaptive-
local convex hull (a-LoCoH) method in the Adehabitat
Package (Calenge 2006) for the R software version 2.10.1
(R Development Core Team 2009). We selected a-LoCoH
over a parametric kernel method because of its ability to
capture hard boundaries (e.g., fences or roadways) to animal
movements. For a more thorough review of a-LoCoH, see
Getz et al. (2007). Because this method of home range
estimation is computer-intensive, we removed non-top
hour fixes (i.e., those occurring on the half-hour) from
each dataset to expedite processing. The resulting datasets
contained far greater than the minimum number of 10 posi-
tions/animal/month recommended by Börger et al. (2006).
We used the maximum distance between any 2 points in the
data set as the starting point for a (Getz et al. 2007), then
examined plots of the area covered by a particular utilization
distribution against a wide range of values of a. When the
plot of the estimated area stabilized, we assumed all spurious
holes (i.e., those representing an artifact of the algorithm
rather than an actual area of nonuse) in the utilization
distributions were covered, and selected this value of a
(Getz and Wilmers 2004, Ryan et al. 2006). We compared
mean home range and core area sizes among treatment
groups and periods. We considered means with nonoverlap-
ping standard errors as significantly different.
We used ‘‘Mean Center’’ in ArcToolbox (Environmental

Research Systems Institute, Inc.) to calculate the mean geo-
graphic center of fixes for each deer during each treatment
period. We then measured the distance between the mean of
center points for each deer from pretreatment to posttreat-
ment 1 and from posttreatment 1 to posttreatment 2. We
compared mean shifts in the geographic center of fixes
among treatment groups and periods. We considered means
with nonoverlapping standard errors as significantly
different.
To determine the efficacy of each fence design, we identi-

fied and quantified crossing events by examining the daily
movement paths of each deer before versus after fence con-
struction. We used several criteria to differentiate actual
crossings from spurious (i.e., the result of GPS-location
error) ones. When a deer’s movement path crossed the fence,
we classified the event as a crossing if the following criteria
were met: 1) �2 sequential locations occurred on the oppo-
site side and�20 m from the fence during the 1-hr sampling
frequency; 2) �3 sequential locations occurred on the oppo-
site side and �20 m from the fence during the 30-min
sampling frequency. An event was recorded as a circumven-
tion when a distinct movement path around the fence end
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was observed. We recorded the date and time of each cross-
ing and circumvention and also recorded the direction of
crossing (i.e., outrigger toward vs. away) for the outrigger
fence. To account for the difference in duration of pre- versus
postconstruction periods, we calculated the average number
of crossing events per sample day (crossings/day) for each
deer, before and after fence construction, by dividing the
total number of crossing events by the number of sample days
in each treatment period. We used repeated-measures
ANOVA to compare the efficacies of the outrigger toward,
outrigger away, and the 2.4-m treatments.
We also compared the distribution of each deer’s point

locations relative to the fences, for each treatment period.We
used ‘‘Multiple Ring Buffer’’ in ArcToolbox (Environmental
Research Systems Institute, Inc.) to create 50-m-wide linear
buffers, starting directly adjacent to each fence and radiating
out to 650 m, on both sides of the fence. We then joined
these buffer polygons to the point layer of each deer for each
treatment period, and divided the sum of point locations
occurring in each 50-m buffer by the total number of point
locations contained in the entire multiple-ring buffer to
calculate the proportion of points occurring in each buffer.

RESULTS

Deer with home ranges interrupted by the 2.4-m fence
(n ¼ 4) crossed the VT 124 times before fence construction,
and only 2 times after fence construction (98% reduction).
One deer (no. 20) was responsible for both of the docu-
mented 2.4-m fence crossings. She crossed the fence,
remained on the opposite side for 2 hr, then crossed
back. On average (� SE), deer crossed the VT 0.337 �
0.09 times/day before construction of the 2.4-m fence,
and 0.002 � 0.002 times/day after construction.
Efficacy of the outrigger fence did not differ when the

outrigger angled toward (outrigger toward) versus away
(outrigger away) from the deer (F1,6 ¼ 1.46, P ¼ 0.27).
Therefore, we pooled outrigger fence crossing data for com-
parison with the 2.4-m fence. Deer encountering the out-
rigger-fence (n ¼ 4) crossed the VT 228 times before fence
construction, and 22 times after fence construction (90%
reduction). On average (� SE), deer crossed the VT
1.02 � 0.26 times/day before construction of the outrigger
fence and 0.05 � 0.035 times/day after construction.
Mean crossings/day decreased posttreatment for both

treatment groups (F1,6 ¼ 20.10, P ¼ 0.004), but the 2.4-
m fence was more effective than the outrigger fence
(F1,6 ¼ 7.96, P ¼ 0.03) at preventing crossings.
During the postfence construction periods, we documented

50 and 54 circumvention events for the 2.4-m and outrigger
fences, respectively. One deer (no. 20), whose home range
extended beyond the fence during posttreatment 2 was re-
sponsible for all of the 2.4-m circumventions (Fig. 1). Three
of 4 deer (nos. 1, 10, and 19) were responsible for the 54
recorded outrigger circumventions. Each of these deer had
posttreatment home ranges that extended beyond the fence
end (Fig. 2). Twenty-six (48%) and 28 (52%) circumventions
of the outrigger fence occurred during posttreatment 1 and
posttreatment 2, respectively.

The deer whose postconstruction home range did not
encompass the end of the outrigger fence (no. 16) accounted
for 10 (45%) of 22 outrigger crossings. Eight of these cross-
ings occurred within a 1.5-month period following fence
construction, and 2 occurred on 22 October 2009. On
8 December 2009, a flood event downed a 50-m section
of the outrigger fence. On 12 December 2009, deer number
16 began breaching the fence through this gap and continued
to do so, almost daily, until her collar was recovered on
4 February 2010. Crossings of the fence area by this deer,
after the flood event, were excluded from analysis.
Home range and core area sizes decreased from pretreat-

ment to posttreatment 1, and increased again during post-
treatment 2. There were no differences in home range or core
area sizes among 2.4-m, outrigger, or control groups
(Table 1). There was no effect of fences or treatment period
on the mean of center points for each deer (Table 2).
Although deer with home ranges that overlapped the future

site of the 2.4-m fence spent the majority of their time on one
side of the VT during the pretreatment period, there were a
small proportion of points for each deer that occurred on the
opposite side (Fig. 3). However, postconstruction, the pro-
portion of points on the opposite side declined to nearly zero
for all deer except number 20, which accessed the other side
by circumventing the fence during posttreatment 2 (Fig. 3).
Two deer (nos. 12 and 13) showed an increase in the pro-
portion of points in the 50-m buffer closest to the fence after
construction (Fig. 3). Relative to the 2.4-m fence, distribu-
tions of deer that would encounter the outrigger fence were
more centered along the fence prior to construction (Fig. 4).
Although the proportion of points on one side of the out-
rigger fence tended to decrease after its construction, the
decline was not notable in 3 (nos. 1, 10, and 19) of 4 outrigger
deer, because they frequently circumvented the barrier
(Fig. 4). Three deer (nos. 1, 16, and 19) showed an increase
in the proportion of points in the 50-m buffer region closest
to the outrigger fence after construction (Fig. 4).

DISCUSSION

The reduction in crossings after fence construction suggests
that both fences were sufficiently effective to examine the
effects of roadside fencing on deer movements and home
ranges. Although mean home range size did decrease during
posttreatment 1, this likely occurred because of fawning
season, when female home ranges are typically smaller
(Ozoga et al. 1982). Deer with home ranges that significantly
overlapped the fence area were able to gain access to their
entire home range, and avoid shifting their mean geographic
center, by circumventing the fence ends. Those deer with a
lesser degree of home range overlap with the fence ceased use
of small portions of their home ranges, but these small
changes did not result in a shift in the mean geographic
center of their home ranges.
It is of particular concern that 3 of 4 deer encountering the

outrigger fence, and 1 of 4 deer encountering the 2.4-m
fence, maintained use of their entire home ranges through
circumvention. These deer had pretreatment home ranges
that came close to or encompassed the fence endings.
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Furthermore, our finding that 5 of 8 deer showed an increase
in the proportion of their point locations (i.e., time spent)
just adjacent to the fence highlights the danger of imple-
menting short lengths of DVC-mitigation fencing to treat
‘‘hot-spots’’ or longer stretches of fences that lack structures
allowing safe crossing or escape from the roadway. This
finding is in agreement with those of Ludwig and
Bremicker (1981), who reported that barrier efficacy is
reduced when fences are of insufficient length, because
deer will circumvent the ends. In situations where fencing
is not of sufficient length to extend beyond home ranges of
deer in high-risk areas, crossings are concentrated at the
end of the fence, thereby moving or exacerbating existing
hot-spots (Knapp et al. 2004, Huijser et al. 2007).

In our study, mean pretreatment home range size was 44 ha
and the mean long axis of home ranges was 1,164 m in
length. In contrast, Rogers (1996) found that home ranges
of adult females on another study site in northwestern
Georgia were, on average, 6 times larger than what we
observed during the same season. If long axis length increases
proportionally to home range size, up to 7 km of fencing may
be necessary to prevent circumvention by deer in this region.
Furthermore, because home ranges of adult males, and both
sexes of other deer species (e.g., mule deer [Odocoileus hemi-
onus]), are typically much larger than those of the adult
females in our study, extension of fences beyond the home
ranges of all deer in a high-risk area may be difficult. Thus,
where DVC-mitigation fencing is used as a hot-spot treat-

Figure 1. Ninety percent home ranges for white-tailed deer encountering a 2.4-mwoven-wire fence onBerryCollegeWildlife Refuge in northwesternGeorgia,
USA. Pretreatment was from the time the deer was collared (Jan–Apr 2009) until fence construction began on 17May 2009, posttreatment 1 was from the time
fence constructionwas completed on 10 June 2009 until 11 September 2009, and posttreatment 2 was from 12 September 2009 until collar recovery in early 2010.
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Figure 2. Ninety percent home ranges for white-tailed deer encountering an outrigger fence on Berry CollegeWildlife Refuge in northwestern Georgia, USA.
Pretreatment was from the time the deer was collared (Jan–Apr 2009) until fence construction began on 17May 2009, posttreatment 1 was from the time fence
construction was completed on 10 June 2009 until 11 September 2009, and posttreatment 2 was from 12 September 2009 until collar recovery in early 2010.

Table 1. Ninety percent home range and 50% core-area size, before and after fence construction, for white-tailed deer encountering a 2.4-m woven-wire fence
(n ¼ 4), outrigger fence (n ¼ 4), and no fence (controls; n ¼ 6) on Berry CollegeWildlife Refuge in northwestern Georgia, USA from January 2009 to January
2010. Pretreatment was from the time the deer was collared (Jan–Apr 2009) until fence construction began on 17 May 2009, posttreatment 1 was from the
time fence construction was completed on 10 June 2009 until 11 September 2009, and posttreatment 2 was from 12 September 2009 until collar recovery in
early 2010.

Home range or core-area size

Pretreatment Posttreatment 1 Posttreatment 2

N Mean (SE) N Mean (SE) N Mean (SE)

90% a-LoCoH home range (ha)
2.4 m 4 62 (7) 4 29 (2) 2 82 (62)
Outrigger 4 41 (14) 4 24 (5) 3 46 (7)
Control 6 34 (7) 6 23 (3) 5 51 (9)

50% a-LoCoH core area (ha)
2.4 m 4 17 (1) 4 8 (0.3) 2 28 (21)
Outrigger 4 12 (4) 4 6 (1) 3 13 (2)
Control 6 9 (2) 6 6 (0.7) 5 11 (2)
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ment, fences likely should end at natural barriers to deer
movements (e.g., large bodies of water), or the fence endings
must incorporate some means (e.g., wildlife overpasses or
underpasses) of facilitating crossings by deer so as to avoid
vehicular traffic.
Although the outrigger design we tested was designed to

allow deer to escape the roadway, should they become
entrapped, we found no difference in the efficacy of the
outrigger fence in the outrigger-toward versus away direc-

tion. Despite the fact that this finding is in disagreement
with that of Stull (2009), we believe that the distance from
the fence to the road (30–125 m), and the presence of cover
between the two may have decreased the pressure for deer to
cross in the reverse direction. In most situations where
DVC-mitigation fencing is used, it is placed on both sides
of the road and closer to the roadway. Deer trapped between
the road and fences in those situations may be more moti-
vated to cross than the deer in our study.
Less substantial fences, such as the outrigger fence, are

typically more effective when motivation to cross is low
(Goddard et al. 2001). In our study, motivation to cross
likely remained low because deer maintained use of their
entire home range, and the resources therein, via circumven-
tion with the exception of deer number 16, which crossed the
outrigger fence more than any other deer. The incorporation
of devices such as highway overpasses or underpasses into
fence designs allows deer full use of their home range without
crossing the roadway.
This suggests that the outrigger fence design may be

effective in situations where crossing structures are in place.
Both fencing designs were of sufficient efficacy to allow

examination of their effects on deer home ranges and move-

Table 2. Mean distance between the mean geographic center of all point
locations, from pretreatment to posttreatment 1 and from posttreatment 1 to
posttreatment 2, for white-tailed deer encountering a 2.4-m woven-wire
fence, outrigger fence, and no fence (controls) on Berry College Wildlife
Refuge in northwestern Georgia, USA. Pretreatment was from the time the
deer was collared (Jan–Apr 2009) until fence construction began on 17 May
2009, posttreatment 1 was from the time fence construction was completed
on 10 June 2009 until 11 September 2009, and posttreatment 2 was from 12
September 2009 until collar recovery in early 2010.

Distance between mean
center of points (m)

Pre- to Post-1 Post-1 to Post-2

N Mean (SE) N Mean (SE)

2.4 m 4 181 (62) 2 180 (139)
Outrigger 4 317 (152) 3 209 (68)
Control 6 153 (28) 5 281 (64)

Figure 3. Distributions of point locations of white-tailed deer around a 2.4-m woven-wire fence on Berry College Wildlife Refuge in northwestern Georgia,
USA. Pretreatment was from the time the deer was collared (Jan–Apr 2009) until fence construction began on 17May 2009, posttreatment 1 was from the time
fence constructionwas completed on 10 June 2009 until 11 September 2009, and posttreatment 2 was from 12 September 2009 until collar recovery in early 2010.
The fence is represented by the vertical axis with the southwestern side to the left of it.
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ments. However, if our fence treatments were of sufficient
length to prevent circumvention, more crossings may have
occurred.

MANAGEMENT IMPLICATIONS

Our results emphasize that both deer behavior and fence
efficacy are important considerations when attempting to
mitigate DVCs. Even fences that are highly effective at
reducing deer crossings may simply relocate DVCs if they
are of insufficient length. Alternately, less substantial fences
may be adequate if they extend beyond deer home ranges and
have crossing structures incorporated into their design.
However, further research is needed to determine whether
motivation of deer to cross a fence is lowered when some
crossing mechanism (e.g., overpasses) is incorporated, allow-
ing access to both sides of the roadway. Although these
structures often are expensive, they may become economi-
cally feasible when combined with a less expensive exclusion
fence such as the outrigger design tested herein. In addition,
we recommend the use of localized data on deer home range
sizes to determine the minimum length of fencing needed to
prevent circumvention in high-risk areas.
Finally, because our fences were not of sufficient length to

prevent circumvention, we suggest that further testing be

done to assess the performance of longer stretches of outrig-
ger fences with and without crossing structures (e.g., wildlife
overpasses or underpasses) incorporated into them. In addi-
tion, future research addressing the impacts of excluding deer
from former portions of their home ranges with roadside
fencing should address motivation of deer to cross or cir-
cumvent barriers through quantification of important resour-
ces (i.e., food and cover).
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