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A key challenge facing modern airborne delivery systems, such as parafoils, is the ability
to accurately and consistently deliver supplies into difficult, complex terrain. Robustness
is a primary concern, given that environmental wind disturbances are often highly un-
certain and time-varying, coupled with under-actuated dynamics and potentially narrow
drop zones. This paper presents a new on-line trajectory planning algorithm that enables
a large, autonomous parafoil to robustly execute collision avoidance and precision landing
on mapped terrain, even with significant wind uncertainties. This algorithm is designed to
handle arbitrary initial altitudes, approach geometries, and terrain surfaces, and is robust
to wind disturbances which may be highly dynamic throughout the terminal approach. Ex-
plicit, real-time wind modeling and classification is used to anticipate future disturbances,
while a novel uncertainty-sampling technique ensures that robustness to possible future
variation is efficiently maintained. The designed cost-to-go function enables selection of
partial paths which intelligently trade off between current and reachable future states.
Simulation results demonstrate that the proposed algorithm reduces the worst-case impact
of wind disturbances relative to state-of-the-art approaches.

I. Introduction

A key challenge facing modern airborne delivery systems, such as parafoils, is the ability to accurately
and consistently deliver supplies into difficult, complex terrain. This terminal guidance problem – guiding
the parafoil from a potentially high altitude to land precisely with a desired position and heading – presents
significant technical challenges, particularly for the large-scale systems considered in this work. Parafoil
dynamics are highly non-linear and under-actuated, with potentially large turning radii and severely limited
(if any) vertical control, resulting in a descent rate determined by atmospheric conditions and disturbances.
Parafoil drop locations have arbitrary, non-convex terrain maps, which can pose a significant problem for
constraint satisfaction even if mapped in advance. Parafoils are subject to uncertain and variable wind
environments, which, if uncompensated, often result in unacceptably large errors between predicted and
actual trajectories. Finally, many applications often have tight landing restrictions; missing the target
location, even by a small distance, can lead to unintended collisions with natural or man-made hazards
(including the parafoil itself), or even theft of cargo. Precise delivery is essential to avoid loss of supplies or
unacceptably dangerous recovery efforts.

This paper presents a new on-line trajectory planning algorithm that enables a large, autonomous parafoil
to robustly execute collision avoidance and precision landing on mapped terrain, even with significant wind
uncertainties. This algorithm is designed to handle arbitrary initial altitudes, approach geometries, and
terrain surfaces, and is robust to significant wind disturbances which may be highly dynamic throughout
terminal approach, including updrafts and downdrafts. The planner is able to quickly identify, refine, and
update accurate landing trajectories, even subject to nonlinear dynamics and low controllability.
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The developments in this paper build upon chance-constrained rapidly-exploring random trees (CC-
RRT), an online framework for robust motion planning in cluttered, non-convex environments1. CC-RRT
leverages the benefits of sampling-based algorithms (e.g., incremental construction, trajectory-wise constraint
checking, no state-space discretization) and particularly RRTs2 (e.g., rapid exploration of high-dimensional
configuration spaces, dynamically feasible trajectories by construction), while using chance constraints3 to
ensure probabilistic feasibility with guaranteed, user-specified bounds. By utilizing trajectory-wise constraint
checking, CC-RRT can efficiently evaluate the risk of constraint violation online due to multiple sources of
both internal and external uncertainty, including dynamic obstacles4. Previous work has extended this
formulation to nonlinear dynamics and/or non-Gaussian uncertainty5. These formulations use full time-
series simulation of the future uncertainty distribution (or its particle-based approximation) along each
trajectory, approximating probabilistic feasibility guarantees against polyhedral constraints.

This paper considers three contributions to this RRT-based framework which result in superior perfor-
mance on the parafoil terminal guidance problem (Section III) compared to state-of-the-art algorithms6

(Section II). First, a novel wind uncertainty model is developed, using real-time observed wind data to clas-
sify and anticipate the wind uncertainty environment online (Section IV). The wind model consists of the
sum of two components: a simple moving-average filter for the mean wind, and multi-modal, colored-noise
dynamics for the transient wind that are trained offline from previous wind observations. A trained SVM
classifier then classifies the observed wind profile in real-time, using features such as intensity and invariance.
The resulting model is shown to accurately represent true wind behavior, while adjusting the conservatism
to reflect prevailing conditions.

Second, we utilize this multi-class wind model to derive the analytic a priori uncertainty distribution
over future possible trajectories (Section V). This is leveraged in a novel variation of the CC-RRT path
planner (Section VI), which uniformly samples the uncertainty distributions for constraint checking, ensuring
robust avoidance of undesirable collisions with arbitrary, possibly aggressive terrain maps. Unlike previously-
proposed particle-based formulations5,7, dynamic state propagation is not required, yielding a more efficient
robustness formulation.

Finally, the relative value of paths is assessed via a novel terminal cost-to-go function, which utilizes a
fixed-horizon discrete approximation of the parafoil reachability set. This enables selection of partial paths
from any altitude that intelligently trade off between current and reachable future states (Section VII).

Extensive simulation results (Section VIII) show the effectiveness of each of these components, and that
the full parafoil CC-RRT algorithm can achieve superior landing accuracy in both average-case and worst-
case performance relative to state-of-the-art algorithms, such as BLG6. In particular, we demonstrate that
the analytic-sampling approach achieves stronger wind robustness than mean-wind estimation or replanning
alone, and that the planner is largely invariant to changes in altitude or terrain, unlike previously-developed
planners.

II. Background and Related Work

Autonomous resupply is an active area of military research, which can be largely subdivided into two
categories of terminal guidance. The first category, glide-slope-based planning, utilizes the concept of the
glide-slope surface or cone: the set of all position/heading states which, assuming constant velocities and
disturbances, guide the parafoil to the goal state. Calise and Preston8 utilize a series of scripted maneuvers
to estimate the parameters required to accurately compute the glide-slope, then execute turning maneuvers
to drive the parafoil to the glide-slope. Though useful as an approach trajectory, this framework heavily
constrains the solution space, and requires tracking from a large initial distance, both vertically and laterally.
This makes the approach sensitive to uncertainty in both the vehicle dynamics and environment, especially
given that the glide-slope surface shifts as a function of current wind conditions. Slegers et al.9 track the
glide-slope using nonlinear model predictive control (MPC), improving rejection of small-scale disturbances,
but still require long-term glide-slope tracking. Bergeron et al.10 use feedback control, known as glide-
slope guidance (GSG), to drive the goal approach based on the estimated glide-slope and wind conditions.
This minimizes the effect of coupled system uncertainty and ensures a maximum heading deviation from
the estimated wind direction. While this approach takes some measures to account for the effect of wind
uncertainty on the parafoil landing position, the approach offers no robustness to interaction with terrain
obstacles, nor does it overcome the fundamental constraint of the solution space imposed by the glide-slope
approach paradigm.

2 of 27

American Institute of Aeronautics and Astronautics



Trajectory-based approaches, on the other hand, generate arbitrary reference trajectories online to op-
timize a pre-determined cost function, utilizing various control schemes to track these trajectories. Gi-
madieva11 formulates parafoil terminal guidance as an optimal control problem and establishes necessary
conditions for optimality, but this approach lacks the computational efficiency needed for real-time imple-
mentation (thus making it unable to adjust for varying wind conditions and model uncertainties during
flight).

The Band Limited Guidance (BLG) algorithm6 uses direct optimization via Nelder-Mead simplex search
to minimize a cost function of the predicted terminal vehicle state. BLG guarantees that control bandwidth
constraints are satisfied to ensure accurate trajectory following, and its computational efficiency enables
the use of online replanning, making it effective for many nominal wind and terrain conditions. However,
BLG is fundamentally limited in its starting altitude due to optimization scalability and high dimensionality,
constraining mission flexibility. BLG incorporates no notion of wind variations in the planner planner, instead
relying on reactive replanning to address unexpected wind effects. The direct optimization technique does
not consider the possibility off-nominal, adverse terrain interactions caused by changing wind conditions,
particularly on complex terrain maps.

The IDVD algorithm developed by Yakimenko and Slegers12 utilizes inverse dynamics to connect the
initial vehicle state to the target terminal state, while guaranteeing the terminal conditions of this nonlinear
boundary value problem (BVP) are satisfied. While also computationally efficient, this approach cannot
guarantee satisfaction of control bandwidth constraints, requiring iteration in order to ensure the trajectory
plan can be tracked by the controller. Moreover, this approach also relies on rapid, reactive replanning to
offset uncertainties during execution, assuming a constant wind during planning. Subsequent work has added
robustness to wind variations in the formulation, by utilizing GPUs to parallelize a Monte Carlo simulation of
possible future winds, and the resulting parafoil trajectories, based on available measurements13. However,
significant computational effort is required to run these simulations online. Within these simulations, the
solution space is restricted to a limited number of candidate solutions of the original BVP (e.g., constant-rate
turn), and all simulated wind profiles are assumed constant. While this constant-wind approach effectively
incorporates the overall, trajectory-wide wind effect, it is overly optimistic: failing to consider dynamic
wind changes may result in missing future possible terrain collisions. Recent work considers the use of
Bezier curves to perform optimized path planning (and replanning) for a small parafoil in three-dimensional
obstacle fields14. However, the proposed optimization is highly sensitive to initial conditions, and scales
poorly with its degrees of freedom (i.e., the control points of the Bezier curves), limiting the environmental
complexity and starting altitude. Further, robustness is only demonstrated against wind conditions that are
either constant or show little variation throughout the descent.

In summary, the general body of parafoil terminal guidance algorithms is subject to some or all of the
following limitations: (1) an artificially-constrained solution space, often based on pre-conceived notions
of the solution form; (2) reliance on a previous descent phase (see Section III) to bring the parafoil to
initial conditions suitable for successful terminal guidance; (3) implicit or explicit constraints on the starting
altitude; and/or (4) a reactive approach to handling the effect of wind uncertainty. The algorithm developed
in this paper is designed to address these limitations, allowing for real-time parafoil planning with arbitrary
environment geometries, initial conditions (including altitude), and dynamic wind uncertainty. Though the
proposed algorithm is not optimal, it can quickly identify feasible solutions taking the parafoil near the
target, then using remaining computation time online to refine and update the solution with changing wind
conditions.

III. Problem Statement

The terminal guidance paradigm typically utilizes a combination of a homing phase, designed to steer
the parafoil directly toward the target, and an energy management phase, designed to descend above the
target until an appropriate altitude is reached for terminal guidance6,12,14. Such algorithms typically assume
that terminal guidance will begin in relative proximity to the target location, in both lateral distance and
altitude. Though the approach in this work will often operate under similar conditions, such assumptions
are not necessary. The parafoil CC-RRT algorithm, introduced below, will guide the parafoil as close to the
target as possible from any initial conditions, including altitude.

The vehicle state is represented as x =
[

pT ψ sT
]T

, where p = (px, py, pz) is the position, ψ is

the heading, and s represents a vector of any additional states needed to characterize the parafoil’s motion.
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In the terminal guidance problem, the objective is to guide the parafoil from some initial position pI and
heading ψI (full state xI) to some target location pG (full state xG). The parafoil dynamics are represented
as the nonlinear state-space system

ẋ = f(x,u,w), x(tI) = xI , (1)

where tI is the initial time, u are the control inputs and w = (wx, wy, wz) are the wind disturbances. The
parafoil model used in this work is detailed in Section III.A.

The wind disturbances are unknown at current and future times; denote the most recent wind observation
as wI (if none have been taken, a prior value from forecasting data may be applied, or simply assume wI = 0).
In this work, we choose to represent the wind disturbances using the generalized model

ẇ = fw(w,w,v), w(tI) = wI , (2)

where w is an estimate of the mean wind, assumed to be available to the planner, and v is unknown model
noise. The wind model chosen for this work is derived in Section IV.

The parafoil terminal guidance problem is a specific case of a more general trajectory planning problem.
At each time step, the path planner attempts to solve the optimal control problem

min
u

φf (x̂(tf ),xG) +

∫ tF

tI

φ(x̂,xG) (3)

s.t. ẋ = f(x,u,w), x(tI) = xI , (4)

˙̂x = f(x̂,u, ŵ), x̂(tI) = xI , (5)

ẇ = fw(w,w,v), w(tI) = wI , (6)

˙̂w = fw(ŵ,w, 0), ŵ(tI) = wI , (7)

u ∈ U ∀t, (8)

Pv (x ∈ X ) ≥ psafe. (9)

The wind state ŵ and parafoil state x̂ are those in which v ≡ 0, representing deterministic, nominal
propagation of the dynamics under the assumption of mean wind w. This is utilized to ensure that the
objective (3) being optimized is deterministic, though stochastic formulations may be applied.

The sets U and X represent constraints on the input and state, respectively. The state constraints X
must be probabilistically satisfied, i.e., satisfied with probability over all possible v (represented by Pv) of at
least psafe, specified by the user. These constraints include the terrain map T (px, py), which is assumed to be
perfectly known; the terminal time tF is the time at which pz ≤ T (px, py). Additional state constraints may
be included, such as internal state bounds or environmental conditions, such as no-fly zones, though this is
not explored further in this work. Note that the cost objective (3), which utilizes functions φ and φG (Section
VII), depends only on x̂.a As such, the stochastic elements of this optimization manifest themselves only
in the final chance constraint (9); Section V details the implementation of this chance constraint, yielding a
deterministic optimization.

In practice, the optimization (3) is solved repeatedly during the descent, with xI and wI being set to the
most recent state and wind measurements, respectively, at current time tI . The algorithm developed in this
work functions identically regardless of the extent of planning that previously took place. For example, it is
not required to be preceded by a guidance phase which places the parafoil in a favorable initial state. As it
result, the framework developed in this paper can be incorporated into a variety of planning architectures.

III.A. Parafoil Model

The parafoil is modeled as a Dubins vehicle15 descending at a rate fixed by atmospheric conditions subject
to updrafts/downdrafts, with the input-to-heading-rate mapping governed by complex lag dynamics. The
lack of altitude control, coupled with a large minimum turning radius and slow turning rate, necessitates
significant advance planning for precision guidance and landing. This is exacerbated by the presence of heavy
winds, which can lead to loss of goal reachability or terrain collisions if not properly anticipated.

aIn practice, the tf used in this objective is based on which the deterministic state x̂ is expected to intersect with the terrain,
acknowledging that, even though vertical mean wind wz is incorporated, wind variation may affect the true landing time.

4 of 27

American Institute of Aeronautics and Astronautics



The parafoil velocity v(pz) is assumed to be a function of the vehicle altitude pz, via16

v(pz) = v0e
pz/2τz , (10)

where τz = 104 m, and v0 is the nominal vehicle velocity at sea level. In this work, we adopt the 10,000-
pound Dragonfly parafoil used by Carter et al.17, with v0 = 17.8 m/s and lift-to-drag ratio LD = 2.8. The
heading rate of the parafoil is modeled as a second-order approximation of the canopy Dutch roll mode;
our specific model selects random values of the parameter ranges as specified by Carter et al.17. As in that
work, a first-order lag is used to model the differential toggle control input mechanism, while the controller
is a PID with feedforward gains tuned to achieve comparable performance17. In total, this yields a 5th
order state s and dynamics (A,B,C,D), augmented to the state vector x and dynamics (1) respectively.
The control input is a scalar, u ≡ u ≡ ψ̇d, representing the desired heading rate, subject to the symmetric
bounds U = {u | |u| ≤ omegamax}.

The overall parafoil dynamics (1) thus take the form

ṗx = v(pz) cosψ + wx, (11)

ṗy = v(pz) sinψ + wy, (12)

ṗz =
−v(pz)

LD
+ wz, (13)

ṡ = As +Bu, (14)

ψ̇ = sat(Cs +Du,−ωmax, ωmax), (15)

where the saturation function sat(a, b, c) bounds a between b and c and is linear in between, and ωmax =
π/15 = 0.2094 rad/s18 (such that the vehicle’s minimum turning radius is Rmin = v0/ωmax = 85 m). Note
that in this formulation, only the position states p are affected by the wind disturbance uncertainty w,
including possible effects on altitude pz by updrafts and downdrafts via wz. Within the RRT planning
framework, which operates in discrete time, the optimization (3)) is discretized via the timestep dt = 0.1 s.

IV. Real-Time Wind Modeling

The wind model detailed in this section is utilized by the planner to improve prediction accuracy and
robustness for the parafoil terminal guidance problem. The development of this wind model is based on
satisfying three main objectives. First, the wind model should improve predictability of future wind effect,
compared to a zero-wind assumption (e.g., w = 0). Improved predictability, especially in scenarios where
there is significant prevailing wind, can mitigate the amount of replanning required and improve the quality of
solutions provided by the RRT. Second, the wind model should capture the uncertainty of future wind effects,
given the planner knowledge of a distribution over possible outcomes of a planned trajectory. Characterizing
and utilizing such an uncertainty distribution in a probabilistic framework (Section V) facilitates planner
robustness to terrain obstacles. Finally, the wind model should be kept as simple as possible, to maintain
real-time planner operation and discourage data overfitting.

Given the importance of wind modeling in many engineering applications, there has been considerable
work on developing wind prediction and estimation models, including the case of online estimation. Delahaye
and Puechmorel19 utilize linear and unscented Kalman filters to estimate wind vectors from radar data,
but requires either accurate airspeed measurement or excitation via the vehicle trajectory. In contrast,
the approach of Petrich and Subbarao20 requires only onboard sensing to achieve real-time wind sensing,
without trajectory excitation. However, such approaches cannot provide forward prediction for UAV systems,
in either space or time. Hunt and Nason21 use wavelets to generate time series models for wind prediction,
but on a timescale of days, rather than the minutes during which a parafoil descends. Conversely, the
approach of Jiang et al.22, which uses adaptive Gaussian processes, requires months of training data for
accurate prediction, an assumption which may not be satisfied by typical parafoil drop zones. None of these
modeling approaches address the wind prediction problem over the short timescales and limited datasets
inherent in parafoil precision guidance. This section fits an uncertainty model to the wind which can be
incorporated into the planner to enforce robustness.

This approach includes online learning to determine, in real time, the class of wind scenario being expe-
rienced by the parafoil. Such a class determines the parameters of the variational estimate; the variational
model associated with each class is tuned to capture the amount of uncertainty typical to wind profiles
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within its class. In this manner, the level of conservatism in the planner can be adjusted online to reflect
the wind conditions being observed. Draper Laboratories has released 194 altitude-dependent wind profiles
from parafoil drops23, collected using the sensor configuration and estimation procedure outlined in work
by Carter et al.6. These profiles are used as training data for various components of the wind model, as
discussed below.

IV.A. Model Form

The wind model is assumed to take the form (2) (Section III), written in discrete-time form as

wt+1 = fw(wt,w,vt), w0 = wI , (16)

where timestep 0 occurs at system time tI (Section III). The 3-D wind estimate at timestep t, wt, is assumed
to take the form

wt = w + δwt, (17)

comprising the sum of a 3-D persistent estimate w and a 2-D variational estimate δwt.
The persistent estimate w reflects the notion that there typically exists a prevailing wind which acts

on the parafoil throughout the entire mission, and must be accounted for during the state prediction. It is
represented using a finite impulse response filter,

w =
1

m

tI∑
i=tI−m−1

wi, (18)

where m is the filter window width.
The filter width m is chosen by optimizing a metric representing the predictive accuracy of the filter24.

Consider propagating the parafoil dynamics from some initial state pI to ground, assuming zero input
(u ≡ 0), zero lag dynamics (s ≡ 0), and flat terrain (T (px, py) ≡ 0). Assume that previous observations
of the wind profile have been observed prior to the parafoil reaching pI , such that the filter (18) could
be applied. The dynamics are propagated from the same initial state and observations according to each
available 3D wind profile, including updrafts and downdrafts23. For the wth wind profile, three possible
landing positions are of interest:

• The landing position under true wind, p
(w)
T ;

• The landing position under zero wind, p
(w)
0 ; and

• The landing position under constant wind as predicted by (18) with width m, p
(w)
m .

Define the quantity

δd(w)
m =

∥∥∥p(w)
0 − p

(w)
T

∥∥∥− ∥∥∥p(w)
m − p

(w)
T

∥∥∥ , (19)

which takes the difference in accuracy between the zero-wind model and the impulse-filter model in predicting
the true landing position. For those wind profiles in which prediction accuracy degrades with the impulse-

filter model, δd
(w)
m < 0; denote Dm = {δd(w)

m | δd(w)
m < 0}. The filter width is then chosen as

m = arg max
m>0
{min(Dm) + β mean(Dm)− λm} , (20)

where β, λ > 0; in this work, β = 2 and λ = 1. This cost function includes terms for the worst-case and
average-case accuracy in Dm, as well as a regularization term24.

The variational estimate δwt is represented as multi-modal linear dynamics subject to Gaussian noise,

δwt+1 = (I + dtAc)δwt + dtBcvt, c ∈ {1, . . . , NC}, (21)

where NC is the number of modes/classifications used, Ac and Bc are the tuned matrices used for the cth
wind classification, corresponding to the continuous-time state-space system (Ac, Bc) (Section IV.B), and
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vt ∈ N (0, 1), i.e., zero-mean, unit-variance Gaussian noise. This colored noise process is chosen to reflect
the idea that, while wind at lower altitudes is correlated with the wind measured at the current altitude,
this correlation degrades with further separation.

By substituting (17) into (21), the wind model function (16) can be written as

fw(wt,w,vt) = w + (I + dtAc)(wt −w) + dtBcvt, c ∈ {1, . . . , NC}. (22)

The remaining questions, then, are (1) how to identify the number of classifications NC and corresponding
wind model dynamics (Ac, Bc), c ∈ {1, . . . , NC}, and (2) how to select the appropriate classification online.
These topics are discussed next.

IV.B. Wind Model Training

The wind profiles used for training23 list each component of the measured wind velocity vector as a function
of altitude, i.e., {wx(pz), wy(pz), wz(pz)}. This can pose problems for clustering and classification algorithms,
which are typically designed to operate on observations, rather than functions. By using feature selection,
the dimension of the system model can be reduced, allowing for the use of many efficient clustering and

classification schemes25. Denote ρ =
√
w2
x + w2

y + w2
z and θ = atan2(wy, wx); for this work, we use the

feature vector

Φ =
[

mean(ρ) max(ρ) mean
(
dρ
dpz

)
max

(
dρ
dpz

)
mean

(
dθ
dpz

)
max

(
dθ
dpz

) ]
. (23)

This feature vector takes the mean and maximum value, over all data points in a wind profile, of three
quantities: the wind magnitude, the rate of change of wind magnitude, and the rate of change of wind
direction. Collectively, these features were chosen to represent the power and variability inherent in each
profile.

The objective now is to use the feature-representation of each wind profile (23), denoted for the wth wind
profile as xw, to classify the NW wind profiles into NC classes. We represent each possible disjoint partition
of these profiles as S = {S1, S2, . . . , SNC}. The partition is chosen so as to minimize the squared sum of the
distance from the mean within each cluster, µi, such that

S = arg min
S

(
NC∑
i=1

∑
xw∈Si

‖xw − µi‖2
)

+ λk, (24)

where a regularization term is included. This algorithm might be conventionally solved using the k-means
algorithm26, which assumes the number of clusters NC is known a priori. Here, this optimization is solved
using the DP-means algorithm27, which extends k-means such the appropriate number of clusters NC can be
incrementally identified without a priori knowledge. During the DP-means assignment step, if an observation
is further than λ from the nearest cluster center, a new cluster is added, with the center defined as the
observation xw which created it. Using the aforementioned Draper wind profiles23, three distinct classes
were identified, representing successively more variational (and hence more conservative) models for the
evolution of the wind distribution.

For each classification, the variational wind model dynamics (Ac, Bc) are constructed by matching the
analytic uncertainty distribution to the empirical distribution identified from the wind profiles. We construct
the variational wind model to be two-dimensional, i.e., δwz = 0, though incorporating vertical components
will be considered in future work. (Observed updrafts and downdrafts are still incorporated in the wind
model, via the mean wind w.) We further assume that δwx and δwy are independent and symmetric. As a
result, the variational wind model dynamics Ac ∈ R3×3 and Bc ∈ R3×2 can alternatively be written as

Ac = αc

 1 0 0

0 1 0

0 0 0

 , Bc = βc

 1 0

0 1

0 0

 , (25)

where αc, βc ∈ R.

For each wind profile in the cluster, compute the miss distances
∥∥∥p(w)

m − p
(w)
T

∥∥∥ as used in (19); let di

denote the ith largest miss distance, and ni the fraction of profiles with a miss distance less than or equal
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(a) Class 1 (least variation) (b) Class 2 (moderate variation) (c) Class 3 (most variation)

Figure 1. Comparison of miss distance CDFs for the wind profiles (blue) and tuned wind model (red) for each wind
class.

to di. These characteristics of the cumulative density function (CDF) will be compared against the analytic
wind model for tuning.

Represent the wind model (21) in continuous-time form as

˙δw = Acδw +Bcv, (26)

and define the position variation δp =
[
px − E[px] py − E[py] pz − E[pz]

]T
. We can then construct

the augmented dynamics [
˙δp
˙δw

]
=

[
03 I3

03 Ac

]
︸ ︷︷ ︸

Aaug

[
δp

δw

]
+

[
03×2

Bc

]
︸ ︷︷ ︸

Baug

v. (27)

The covariance at impact time tF , ΣF ≡ Σ(tF ), can then be propagated forward using the dynamics

Σ̇ = AaugΣ + ΣATaug +BaugB
T
aug, (28)

Σ(tI) =

[
Σp 03

03 Σw

]
, (29)

where Σp and Σw are the initial covariance for the position and wind, respectively. Either quantity is zero
if perfectly known, but may be non-zero if, for example, an estimator is providing data to the system.

For comparison with the empirical wind profile data, the covariance in lateral position is isolated via

Σ′F = CTΣFC
T
T , (30)

CT =
[
I2 02×4

]
. (31)

Given the independence and symmetry assumptions on δwx and δwy, Σ′f can be written as Σ′f = σ2I2, where
σ > 0 is a scalar. This can be thought of as a distribution on landing miss distances, represented as a χ
distribution with standard deviation σ; denote its CDF for dynamics (Ac, Bc) as χ(x,Ac, Bc). This CDF
can be matched directly to the empirical wind profile CDF with characteristics (di, ni) as described above.
For the cth wind classification, the dynamics (Ac, Bc) are identified by minimizing the root mean square
error between the two CDFs,

(Ac, Bc) = argmin
(A,B)

∑
i∈Sc

(ni − χ(di, A,B))
2
, (32)

implemented in MATLAB via fminunc.
Figure 1 compares the analytic and “true” (empirical) CDFs for each of the classes identified from the

Draper wind profiles. Class 1 represents the “optimistic” class, where the wind is believed to have low power
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and/or variability. Class 2 represents a “moderate” class, in which the wind is believed to have more of an
effect relative to Class 1. Finally, Class 3 represents the “pessimistic” class, in which the wind is believed
to have the most significant effect on the parafoil. Section VIII demonstrates that by adjusting the level
of conservatism online, the multi-classification wind model achieves better performance (in terms of miss
distance) than using any one wind class alone.

IV.C. Online Classification Selection

In order to utilize the varying levels of uncertainty associated with the C classifications determined by DP-
means in Section IV.B, the planner must have a methodology for using the observed wind estimates to assign
the wind that is being experienced by the vehicle to a classification, i.e., statistical classification. This is
accomplished using support vector machines (SVM)28. An SVM binary inclusion classifier is generated for
each of the C classes, which can be used to identify if the wind estimates being received are a member of a
particular class. It is possible for multiple classifier to result in affirmative classifications. If this is the case,
the algorithm chooses the class which is the most conservative, i.e., has the fastest-growing uncertainty24.
The trained SVM classifier then classifies the observed wind profile online.

V. Analytic Uncertainty Sampling and Robust Planning

This section presents a novel framework for modeling future uncertainty in trajectory predictions, such
that robustness to possible future variation in disturbances can be achieved. Recall that in the formulation
of the parafoil terminal guidance problem (Section III), satisfaction of state constraints is specified via the
chance constraint (9), restated below:

Pv (x ∈ X ) ≥ psafe.

where psafe is a risk parameter specified by the user. This represents a minimum likelihood that all state
constraints, here consisting of the terrain surface pz ≥ T (px, py), be satisfied with a minimum probability of
psafe along each trajectory. In CC-RRT, the chance constraint (9) must be satisfied at each timestep, rather
than over the entire path, and is converted to a tightened, deterministic constraint1. Under the assumptions
of linear dynamics and Gaussian noise, these tightened constraints are shown to guarantee probabilistic
feasibility to polyhedral constraints at each timestep. Whereas the traditional RRT algorithm grows a tree
of states which are known to be feasible, CC-RRT grows a tree of state distributions which are known to
satisfy the lower bound on feasibility psafe. Further, due to RRT’s trajectory-wise constraint checking, a risk
bound can be explicitly computed online against each uncertainty source at each timestep.

In previous work, removing the assumptions of linear dynamics and/or Gaussian dynamics requires ei-
ther linearizing the dynamics at each timestep or performing full time-series simulations of particle-based
uncertainty approximations5. While such formulations allow the evaluation of path-wise feasible, they can
be computationally intensive, cannot be simulated a priori (i.e., independently of the individual RRT tra-
jectories), and can only approximate theoretical guarantees for probabilistic feasibility. It is shown here
that, though the parafoil dynamics are nonlinear, the effect of the wind uncertainty is linear-Gaussian. As
a result, uncertainty distributions can be derived analytically a priori at all future timesteps, and theo-
retical guarantees maintained – but subject to polyhedral state constraints. In subsequent developments,
we choose to take equi-spaced samples of the uncertainty distributions, such that they can be checked for
collision against arbitrary, possibly aggressive terrain map functions of the form T (px, py) (Section III).
Though probabilistic guarantees are approximated statistically, uncertainty samples are obtained without
dynamic state propagation. As a result, this variant of CC-RRT is more efficient, and better representative
of uncertainty distributions, than previous particle-based formulations5. Furthermore, the use of sampling
allows for path-wise probabilistic feasibility to be evaluated.

The wind uncertainty is assumed to follow the multi-modal wind model introduced in Section III and
detailed in Section IV, in particular (22). Each wind classification represents the estimated possible variation
in the wind.
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V.A. Analytic Uncertainty Derivation

Consider the dynamics for the vehicle state (11)-(15), written here in discrete-time form as

px,t+1 = px,t + dt [v(pz,t) cosψt + wx,t] , (33)

py,t+1 = py,t + dt [v(pz,t) sinψt + wy,t] , (34)

pz,t+1 = pz,t + dt
[
v(pz,t)

(
−L−1

D

)
+ wz,t

]
, (35)

st+1 = st + dt [Ast +But] , (36)

ψt+1 = ψt + dt · sat(Cst +Dut,−ωmax, ωmax). (37)

The final two equations (36)-(37) are unaffected by the uncertainty vt. As in Section IV.B, take the variation

δp =
[
px − E[px] py − E[py] pz − E[pz]

]T
. Recalling that δwz = 0 (and thus pz = E[pz]), combining

(33)-(35) with (26) in discrete-time form yields

δpx,t+1 = δpx,t + dt (δwx,t) , (38)

δpy,t+1 = δpy,t + dt (δwy,t) , (39)

δpz,t+1 = δpz,t, (40)

δwx,t+1 = (I + dtαc)δwx,t + dtβcvx,t, (41)

δwy,t+1 = (I + dtαc)δwy,t + dtβcvy,t; (42)

note that (40) has decoupled from the other variational dynamics. By defining the variation state vector

δxt =
[
δpx,t δpy,t δwx,t δwy,t

]T
, the variation dynamics (38)-(39),(41)-(42) can be clearly written in

the linear form

δxt+1 = Aδxt + Bvt, (43)

A =


1 dt 0 0

0 1 + dtαc 0 0

0 0 1 dt

0 0 0 1 + dtαc

 , B =


0 0

dtβc 0

0 0

0 dtβc

 . (44)

Because this linear system is driven by Gaussian noise, all future state distributions take the form
xt ∈ N (x̂t, Pt), i.e., Gaussian with mean x̂t and covariance Pt ≡ E[δxtδx

T
t ]. The mean can be computed

using the disturbance-free dynamics (50)-(51), while the covariance can be represented either implicitly as

Pt+1 = APtAT + BBT (45)

or explicitly as

Pt = AtP0(AT )t +

t−1∑
k=0

At−k−1BBT (AT )t−k−1, (46)

where P0 depends on whether the initial state and wind measurement are perfectly known or not (Section
IV-IV.B). Note that, as in the conventional CC-RRT framework, (45)/(46) can be computed a priori, in-
dependently of any individual trajectory simulated1. Finally, the covariance of the position states can be
isolated via the transformation

Qt = CTPtC
T
T , CT =

[
1 0 0 0

0 0 1 0

]
. (47)

V.B. Covariance Sampling Generation

In order to efficiently check path-wise feasibility of the terrain constraint pz ≥ T (px, py), the likelihood of
collision with terrain is approximated by generating equi-spaced samples at specified levels of the uncertainty
distribution at each prospective trajectory node. Sampling the distribution in this way allows for coverage
of the uncertainty space with relatively few samples, as well as removing the need to dynamically propagate
each sample, significantly reducing computation time. The discretization level of the samples Ns, as well the
the minimum probability of feasibility psafe, can both be specified by the user to allow for tunable levels of
robustness.
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Figure 2. Screenshot of a simulation in progress, show-
ing covariance samples. The planner constructs a tree of
feasible trajectories (teal), and executes a path (orange)
which guides the parafoil (blue) to land on the terrain (back-
ground; changes from green to red with increasing altitude)
at the goal (green circle). Covariance samples for each path
node are shown in black, for σ = 1.5.

The covariance samples are placed at a series of
equi-spaced points along uncertainty ellipses. The
covariance matrix Qt describes a contour of equal

probability of points δpt =
[
δpx,t δpy,t

]T
, rel-

ative to the nominally propagated trajectory x̂t by
the conic relaxation δpTt Q

−1
t δpt = 1. Denote the

elements of Qt as

Qt =

[
σ2
x,t σxy,t

σxy,t σ2
y,t

]
, (48)

with eigenvalues σ2
a and σ2

b (σa > σb). The prin-
ciple axis of the uncertainty ellipse has angle θP =
1
2 tan−1

(
2σxy.t

σ2
x,t−σ2

y,t

)
. The Ns samples are spaced at

equal angular intervals relative to this principle axis;

the jth sample δp
(j)
t has angle θj = 2π

Ns−1j, relative
to θ′. The samples are then placed at

δp
(j)
t = σRQR(−θ′)

[
cos(θj − θ′)
sin(θj − θ′)

]
, (49)

RQ =
σaσb√

(σb cos(θj − θ′))2 + (σa sin(θj − θ′))2
,

where σ > 0 is the covariance scale factor and R(α) is the 2D rotation matrix for a counterclockwise rotation
of α. The parameter σ represents the number of standard deviations within the uncertainty ellipse; empirical
analysis has shown a value of about σ = 1.75, used in subsequent work, to be a reasonable approximation of
the uncertainty environment in practice24. Note that using this approach, nodes can be generated at a rate
3-6 times faster than particle CC-RRT24.

Samples may also be distributed across multiple values of σ. In subsequent results, two rings of covariance
samples are used, one at σ and another at 0.4σ, a ratio empirically found to work well. Figure 2 shows an
example of a parafoil CC-RRT tree generated for the valley terrain (Section VIII.A) for σ = 1.5. Covariance
samples are shown for the path currently selected for execution.

VI. Parafoil CC-RRT Path Planning

This section presents the parafoil CC-RRT algorithm, for robust motion planning using the previously-
developed wind model (Section IV) and covariance samples (Section V). The core algorithm upon which
the parafoil CC-RRT framework builds is the rapidly-exploring random tree (RRT)2, which incrementally
constructs a tree of dynamically feasible trajectories from the current state. While many algorithms are
available for motion planner problems of this nature29,30, an RRT-based approach is particularly well-
suited to this application. The lack of controllability in the altitude state pz largely precludes the use of
graph-based approaches. An RRT can quickly identify and refine feasible solutions online within the 9-
dimensional configuration space (3 for position, 1 for heading, 5 for lag dynamics), without discretizing the
solution space. Furthermore, its incremental construction and constraint checking allows it to scale with
both problem complexity and available computational resources.

Let the current time step be t; the tree is rooted at the current vehicle state, xt, and the most recent
wind measurement is denoted as wt. Each simulated trajectory within the tree uses the nominal dynamics
(5) and wind model (7), written as

x̂t+k+1|t = f(x̂t+k|t,ut+k|t, ŵt+k|t), x̂t|t = xt, (50)

ŵt+k+1|t = fw(ŵt+k|t,wt, 0), ŵt|t = wt, (51)

where the subscript (·)α|β denotes simulation time step α and execution time step β (< α).
Whereas the nominal RRT algorithm grows a tree of states which are known to be feasible, with any

uncertainties assumed to maintain nominal values (in this case, v ≡ 0), CC-RRT grows a tree of state
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Algorithm 1 Parafoil CC-RRT: Tree Growth

1: Take a sample xsamp from the environment
2: Identify the m nearest nodes using heuristics
3: for m ≤M sorted nearest nodes do
4: Nnear ← current node, (x̂t+k|t, ŵt+k|t)← final vehicle and wind state of Nnear
5: pcollide ← 0
6: while pcollide < psafe and (54) true and x̂t+k|t has not reached xsamp do
7: Select input ut+k|t ∈ U
8: Simulate (x̂t+k+1|t, ŵt+k+1|t) using (50),(51)
9: Create intermediate nodes as appropriate

10: Compute/retrieve Pt+k+1|t using (45)
11: Compute pcollide using (49),(53)
12: k ← k + 1
13: for each identified node N do
14: Add N to tree
15: Try connecting N to xG

distributions, which are checked for feasibility by satisfying an upper bound on probability of collision1 at
each timestep. The parafoil CC-RRT algorithm similarly generates a tree of uncertainty distributions around
trajectories, rather than just the nominal trajectories itself. Instead of evaluating collision probabilities using
the full distributions, however, we sample these analytic uncertainty distributions, using the novel sampling
technique introduced in Section V.A. This allows path-wise probabilistic feasibility checks to be enforced
against arbitrary terrain maps.

As shown in Section V.A, the uncertainty at each prediction timestep t+k, relative to execution timestep
t, can be represented as a Gaussian state distribution

xt+k|t ∼ N (x̂t+k|t, Pt+k|t). (52)

The mean x̂t+k|t, with position (p̂x,t+k|t, p̂y,t+k|t, p̂z,t+k|t), can be simulated using the disturbance-free dy-
namics (50)-(51), while the covariance Pt+k|t can be computed offline via (45). Using (49), the samples are

placed at offsets δp
(j)
t+k|t =

(
δp

(j)
x,t+k|t, δp

(j)
y,t+k|t, 0

)
, j ∈ {1, . . . , Ns}.

Probabilistic feasibility is checked statistically, by seeing whether the fraction of covariance samples for a
given trajectory point xt+k|t that have intersected with the terrain exceeds 1− psafe, at this or any previous
simulation step. Given the terrain map T (px, py), the probability of terrain collision pcollide is estimated to
be

pcollide =
1

Ns

Ns∑
j=1

I

[
k∧
i=0

p̂z,t+i|t ≤ T
(
p̂x,t+i|t + δp

(j)
x,t+i|t, p̂y,t+i|t + δp

(j)
y,t+i|t

)]
, (53)

where I[·] is the indicator function, i.e., 1 if the contained statement is true and 0 otherwise, and
∧

represents
a conjunction of the indexed constraints. If pcollide > 1 − psafe, then the trajectory is considered to have
landed.

In addition to the uncertainty-based feasibility check, a trajectory is also considered to have landed if
the nominal trajectory intersects the terrain. In other words,

p̂z,t+k|t > T
(
p̂x,t+k|t, p̂y,t+k|t

)
(54)

is added as an additional state constraint.
As with the conventional RRT algorithm, the parafoil CC-RRT algorithm consists of two core components:

a “tree growth” step that incrementally constructs the tree, and an “execution” step that selects paths from
the tree for parafoil execution with some frequency. The tree growth step is detailed in Algorithm 1.

Each time Algorithm 1 is called, first a sample state is taken from the environment (line 1; Section
VI.A), and the nodes nearest to this sample (Section VI.B), in terms of some heuristic(s), are identified as
candidates for tree expansion (line 2). An attempt is made to form a connection from the nearest node(s) to
the sample by generating a probabilistically feasible trajectory between them (lines 6–12). This trajectory
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Algorithm 2 Parafoil CC-RRT: Execution

Require: Initial vehicle state xI , initial wind measurement wI , goal state xG
1: t← 0, xt ← xI , wt ← wI

2: Initialize tree with node at xt
3: while xt 6∈ X do
4: Update current vehicle state xt, wind measurement wt, and mean wind estimate wt

5: Propagate mean state xt by the computation time → xt+∆t using (5),(7)
6: Update tree feasibility and costs using (55)
7: while time remaining for this time step do
8: Expand the tree by adding nodes (Algorithm 1)
9: Use cost (55) to identify lowest-cost path {Nroot, . . . , Ntarget}

10: if at least one path exists then
11: Apply best path
12: else
13: Apply “safe” action
14: t← t+ ∆t
15: Mark vehicle as landed at xt

is incrementally simulated by selecting some feasible input (line 7), then simulating the disturbance-free
vehicle/wind dynamics (line 7). This input may be selected at the user’s discretion, such as through random
sampling or a closed-loop controller31, but should guide the state distribution toward the sample; here, we
use a circular-arc-based reference model to construct trajectories to samples (Section -VI.C). Note that the
propagated vehicle state and wind state are represented as x̂t+k|t and ŵt+k|t, reflecting that parafoil CC-RRT
is propagating the mean values of the uncertainty distributions, rather than the states themselves. Inter-
mediate nodes may be occasionally inserted during the trajectory generation process (line 9), to encourage
future expansion.

To check feasibility, the algorithm computes or retrieves (if previously computed offline) the covariance
Pt+k+1|t at each simulation step (line 10), then computes pcollide based on the covariance samples that are
feasible up to that simulation step (line 11). This is used to check probabilistic feasibility via pcollide < psafe

along with (54) (line 6). Trajectory simulation continues until the state has either reached the sample or is
no longer feasible (line 6). As each node is added to the tree (line 14), an attempt is made to connect it
directly to the goal state (line 15). Note that unlike conventional RRT algorithms, every simulated node is
added to the tree, even if it does not reach its target (px, py)-sample before intersecting the terrain. Many
of these nodes may still be useful as the tree is updated and new paths are selected for execution, discussed
next.

Algorithm 2 details the execution step, which executes some portion of the tree while continuing to grow
and update it. The planner updates the current best path to be executed by the system every ∆t seconds
(here, ∆t = 1 s). After updating the current vehicle state, wind measurement, and mean wind estimate (lines
4–5), the tree is updated via re-propagation (line 6). All nodes are re-checked for probabilistic feasibility;
any nodes which have become infeasible are pruned, along with their descendants. Additionally, costs are
updated for each node using the cost function (3), written in discrete form as

J(Ntarget) = φF (xtF |t+∆t,xG) + ∆t

tF∑
i=t+∆t

φ(xi|t+∆t,xG). (55)

After these updates, the tree is repeatedly expanded using Algorithm 1 for the duration of the time step
(lines 7–8). Following this tree growth, (55) is used to select the lowest-cost path in the tree for execution
(lines 9–11). If no path exists in the tree, some “safe” motion primitive is applied to attempt to keep the
vehicle safe (lines 12–13).

In this approach, we have chosen to re-propagate the entire tree for both feasibility and cost, rather
than simply re-check the feasibility of the lowest-cost path via “lazy check”31 without updating costs. In the
context of the parafoil terminal guidance problem, where feasibility and cost are both inextricably linked and
highly dynamic as a function of the uncertainty, it is useful to update all possible trajectories with changing
conditions, in order to achieve reliable performance. While additional computation is required to perform
this update, in practice this computation will be balanced over time with the tree size, via the amount of
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time spent in lines 7–9 of Algorithm 2. Section VIII demonstrates the effectiveness of the analytic CC-RRT
algorithm in improving worst-case planning for parafoil terminal guidance, particularly subject to complex
terrain and pathological wind conditions.

VI.A. Sampling Strategy

The sampling strategy used by the planner (Algorithm 1, line 1) is designed specifically for the parafoil
guidance problem, and can be broken up into two parts: random sampling, which generates randomly
across the entire planning space, and directed sampling, which creates samples geared toward incorporating
specifically planning options into the tree.

The random sampling consists of four regions of interest within the 3-D Euclidean planning space; a
region is selected for each sample probabilistically based on tunable probabilities.

1. Goal sampling: Samples an upper hemisphere centered on the goal pG. The radius is sampled from
a folded-normal distribution, while the azimuth and elevation angles are sampled uniformly.

2. Local sampling: Samples a sphere centered on the current parafoil location pt. The radius is sampled
from a folded-normal distribution, while the azimuth and elevation angles are sampled uniformly.

3. Line sampling: Samples a sphere in the same manner as local sampling, but centered on a convex
combination of the parafoil and goal locations, λpt + (1− λ)pG, λ ∈ [0, 1], sampled uniformly.

4. Global sampling: Samples uniformly in a large, rectangular 3D region around the goal pG.

Figure 3 shows a “heat map,” showing relative sample density, of a typical RRT sampling distribution. In
this example, the parafoil is located at xI = (−300,−300, 500) m, while the goal is located at xG = (0, 0, 0).

Figure 3. Typical sampling distribution for RRT planner
(blue = fewer samples, red = more samples)

After connecting new nodes to the tree via random
sampling, two kinds of directed sampling may be ad-
ditionally, and immediately, applied to the newest
node. In addition to directing all newly-connected
nodes to goal samples (Algorithm 1, line 13), sam-
ples are sometimes generated to direct the parafoil
to “turn around.” Denote the final state of the
newest node’s trajectory as plast = (pxl, pyl, pzl)
with heading ψl, and let ∆ψ = ψl − ψG (wrapped).
When such a sample is selected, it is placed in posi-
tion

psamp = plast + R (ψl) (−Rmin, sign(ψ̇)Rmin, 0), (56)

placing the sample behind the parafoil in a direc-
tion matching the most recent rotation rate. The
likelihood of such a sample being chosen is

pturn ∝

√
p2
xl + p2

yl

Rmin

(
∆ψ

π

)2

. (57)

Note that pturn increases with both distance from goal and heading offset, conditions in which it is favorable
to bias sampling toward turning the parafoil around.

VI.B. Nearest Node Metric

The nearest node metric (Algorithm 1, line 2) is a distance metric over the state space which prioritizes
which nodes in the tree should be connected to a new sample. For this work, the distance metric d(n) used
is a variant of Euclidean distance designed to not penalize altitude above the sample, based on propagation
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along the glide slope. Suppose the sample has position ps = (pxs, pys, pzs), while a node’s trajectory ends
at pn = (pxn, pyn, pzn). The distance metric is then

d(n) = ‖pn − [ps + (0, 0, δ)] ‖2, (58)

δ =

√
(pxn − pxs)2 + (pyn − pys)2

LD
. (59)

This effectively “shifts” ps upward to the point the parafoil would reach if it glided directly over sample,
and computes the Euclidean 2-norm from there. Additionally, this metric has the effect of biasing toward
connections when a sample is below the node. This is an advantageous bias, as the parafoil has no method
of vertical control, and therefore must descend to all future states.

VI.C. Reference Model

Recall that for the parafoil model, the input is u = ψ̇d, the desired angular rate. A reference model is used
to generate a sequence of inputs u (Algorithm 1, line 7) to guide a trajectory from a nearest node, with
position pn and heading ψn, to a sample with position ps. Since the altitude state pz is uncontrollable, this
is accomplished by generating the 2D circular arc to the sample from the nearest node, while tangent to
the heading at the nearest node. Such a circular arc can be followed by the ideal (i.e., no lag dynamics)
parafoil in 2D, by applying a constant input u for some time duration t. Resulting trajectories within the
RRT framework are thus sequences of piecewise-constant-angular-rate segments. The number of segments
and the duration of each segment are not fixed, such that very complex trajectories can still be specified
within this reference model. The radius of this circle can be shown to be

R =
δ2

2(δy cosψn − δx sinψn)
, (60)

δ =
√
δ2
x + δ2

y, (61)

δy = ys − yn, (62)

δx = xs − xn; (63)

note that the sign of R in (60) encodes the turn direction. This is then used with the velocity model (10) to
yield the desired angular rate,

u =
v(pzn)

R
. (64)

The duration of the reference command is computed by computing the arc subtended angle θ:

θ = 2 sin−1

(
δ

|2R|

)
, (65)

t = θ/u. (66)

Alternative reference generation models could be considered; options might include Bezier curves14, B-
splines, or piecewise linear (rather than piecewise constant) angular rate commands. Closed-loop propagation
may also be used to limit uncertainty growth over time; this will be explored further in future work.

VII. Reachability-based Cost-to-go

One of the advantages of using RRTs, due to their incremental construction, is the capability to select a
path which has not yet terminated in planning, use it as the basis for vehicle execution, and complete the
path during later planning cycles. Critical to this capability is an informative cost-to-go function, which
should provide the ability to compare two prospective paths which have not yet terminated, as well as to
compare paths that have not terminated with actual path costs of paths that have terminated in planning.
This section develops a cost-to-go formulation (55) which combines the cost at the point of interest, the end
of a trajectory within the tree, with a discrete approximation of the reachability set beyond that point. In
this manner, the cost-to-go function weighs the value of the system’s present state against possible near-term
future states, which are heavily constrained by the present state and particularly heading.
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In this formulation, it is assumed that the cost is purely a function of the state at the terminus of a
trajectory or trajectory segment, i.e., it is path-independent. The primary quantity of interest in this cost
is the location where interaction with the terrain occurs, whether intentional (e.g., nominal behavior) or
not (e.g., off-nominal behavior). In view of (55), this implies that φ ≡ 0, and we are focusing on functions
of the form φF (xt′|t+∆t,xG), where t′ is the terminal time of the current trajectory segment. Under many
circumstances, it may make sense to incorporate other conditions within a path cost, such as penalizing large
heading rates, though this is not considered further in this work.

The use of a reachability set addresses the intention to incorporate the effect of approach direction on
the cost of a particular node. The full reachability set of a state is defined as all possible future states that
can be reached by the system from that state, by applying the appropriate sequence of future inputs. In
the case of the parafoil, this set can be constructed by propagating all input sequences from the initial state
until intersection with the terrain. Constructing such a set is intractable, at best, so for the purposes of
utilizing it within the cost-to-go function, several simplifying assumptions are made.

First, it is assumed for the purposes of constructing the reachability set that the parafoil dynamics (11)-
(15) have “ideal,” lag-free angular rate dynamics, i.e., A = B = C = 0 and D = 1. This eliminates (14) and
simplifies (15) to ψ̇ = u, where |u| ≤ ωmax. Second, the reachability set is bounded to consider the possible
evolutions of the system state over a finite propagation time tP .

Finally, rather than consider all possible input sequences over the finite time window, only a finite number
NP of constant heading rates are propagated. These heading rates should be representative of the full input
set, such that the resulting points are representative of the full reachability set. With this in mind, we elect
to use a set of equi-spaced inputs, sampled evenly between the minimum and maximum angular rates (which
are equal and opposite):

ωi = −ωmax +
2ωmax

NP − 1
i, i ∈ {0, . . . , NP − 1}. (67)

It is generally desirable to choose an odd value for NP , such that the propagation with zero angular rate
(ωi = 0, for i = (NP − 1)/2) is included. The system dynamics will be simulated from the current state at
the angular rates ωi to identify points on the frontier of the reachability set.

Consider a given parafoil state with position x0 = (px0, py0, pz0) and heading ψ0. Given that the parafoil
is descending at the rate vz = v(pz)/LD, the goal altitude pzG will be reached after time tzG = (pz−pzG)/vz.
The propagation time is chosen to be the lesser of this value and tP ,

τ ≡ min{tzG, tP }. (68)

For the ith control input ωi and propagation time τ , the ith point xi = (pxi, pyi, pzi) in the frontier of the
reachability set approximation is computed to be

pxi = px0 +

∣∣∣∣v(pz0)

ωi

∣∣∣∣ (cos(ψ0 + sign(ωi)
π

2
) + cos(ψ0 + (2 + sign(ωi))

π

2
+ ωiτ)

)
, (69)

pyi = py0 +

∣∣∣∣v(pz0)

ωi

∣∣∣∣ (sin(ψ0 + sign(ωi)
π

2
) + sin(ψ0 + (2 + sign(ωi))

π

2
+ ωiτ)

)
, (70)

pzi = pz0 −
v(pz0)

LD
τ. (71)

Figure 4 illustrates the result of the reachability set approximation for NP = 3 and τ = tP = π
2ωmax

,
representing a quarter-turn at maximum angular rate.

The cost-to-go function is constructed by assigning costs Ji to each state xi, i ∈ {0, . . . , NP }, then
comparing those values. The cost Ji is the Euclidean distance from the point xi to the goal xG at position
pG = (pxG, pyG, pzG), modified to account for drift due to the persistent wind estimate w = (wx, wy, wz) as
discussed in Section IV. The cost takes the form

Ji =

√
(pxi − pzG − tzGwx)

2
+ (pyi − pyG − tzGwy)

2
+ (pzi − pzG)

2
. (72)

The final cost-to-go function takes the maximum between the cost of the initial point, J0, and the minimum
of the cost of the points of the reachability set approximation (69)-(71):

φF (x0,xG) = max(J0,min(J1, J2, . . . , JNP )). (73)
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Figure 4. Diagram of the reachability set approximation for
NP = 3 and τ = tP = π

2ωmax
.

Each piece of the cost-to-go function (73) incor-
porates a different understanding about the parafoil
planning problem. The first piece, J0, encourages
the planner to situate the vehicle directly above the
goal (after correcting for wind), which is as far from
the glide-slope boundary as possible while remaining
inside it. Such a placement enables significant dis-
turbance rejection later in the planning sequence.
The second piece, min(J1, J2, . . . , JNP ), represents
the most favorable state the vehicle can reach within
the (approximated) finite-time reachability set. The
cost-to-go function considers the minimum cost of these points, rather than the maximum or average, as
the planner has the control authority to choose the executed trajectory (assuming idealized heading rate
dynamics) and could therefore choose to execute the control yielding the lowest cost. When this piece of the
cost-to-go function is active, i.e., min(J1, J2, . . . , JN ) > J0, it is implied that all possible choices available to
the planner are less desirable than remaining at the current state. Simulation results in Section VIII show
that this combined cost-to-go is more effective that using either of the individual components alone.

Note that the cost-to-go function as presented does not include cost terms on the desired heading at
landing ψG. It is typically desirable, or even critical, in many parafoil applications to land aligned with
the upwind heading, in order to minimize impact speed. Preliminary results have shown that augmenting
this cost function with a penalty on an impact speed can achieve landing heading accuracy comparable to
existing algorithms, with minimal effect on performance; this will be explored further in future work.

Extensive analysis has been performed to determine suitable values for tP and NP
24. Analysis for tP is

based on which component of the cost-to-go (73) is active when the state is on the glide-slope boundary. When
on the glide-slope boundary facing the goal (i.e., a desirable state), the J0 term should be active, whereas if
on the boundary facing away from the goal (i.e., a highly undesirable state), the min(J1, J2, . . . , JNP ) term
is active. It can be shown that this asymmetry only occurs for values of tP < t∗, where

L2
D sinωmaxt

∗ = ωmaxt
∗. (74)

For LD = 2.8 and ωmax = π/15 rad/s (Section IV.A), t∗ ≈ 13.27s. Empirical results have demonstrated that
a value approximately half that is effective in simulation24; we choose tP = 7.5 s, representing one quarter-
turn in the reachability set. Regarding NP , analysis has shown that there is a significant information gain
in moving from NP = 1 to NP = 3, whereas increasing NP beyond 3 has minimal-to-no effect on the shape
of the cost-to-go function. Thus NP = 3 is chosen24 (Figure 4).

VIII. Simulation Results

After providing details of the algorithm software implementation, this section presents simulations demon-
strating that parafoil CC-RRT, also referred to here as “analytic CC-RRT,” achieves superior landing ac-
curacy to both nominal RRT and BLG6 on a challenging terrain scenario. In particular, parafoil CC-RRT
demonstrates significant improvement in mean accuracy over BLG, and superior worst-case landing accuracy
to both RRT and BLG. Further analysis shows that while BLG performance tends to degrade as the difficulty
of the terrain increases, parafoil CC-RRT is largely invariant to changes in terrain, in both the mean and
worst-case. Parafoil CC-RRT is also shown to be not only capable of use at higher initial drop altitudes, but
also invariant to initial drop altitude. Additional simulation results show that the multi- classification wind
model (Section IV) and max-min cost-to-go formulation (Section VII) each yield better accuracy than their
individual components.

Three algorithms are compared throughout this section:

RRT with mean wind, which represents a nominal RRT planner in which uses the mean wind
estimate w, but assumes no future wind variation (i.e., δw ≡ 0, wt ≡ w). This approach makes no
active attempt at robustness against uncertainty, but does utilize replanning at every timestep to try
to counteract system disturbances.

Analytic CC-RRT, the full parafoil CC-RRT algorithm presented throughout this paper and specified
in Algorithms 1 and 2. It utilizes the multi-classification wind model (Section IV) to inform the choice
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of analytic covariance samples, used to select paths which are robust to future wind uncertainty (Section
V). The reachability-based cost-to-go (Section VII) is also incorporated.

BLG, or band-limited guidance, which utilizes band-limited control to ensure accurate tracking and
prediction, as well as knowledge of the mean wind estimate w and replanning to account for system
disturbances6. (The implementation of BLG is detailed below.)

Most results in this section are presented in the form of CDFs on radial 2D miss distance, aggregated over
a large collection of trials in which the initial conditions, wind profile, and (for the RRT-based algorithms)
sample randomization are varied. On such plots, each data point (q, r) implies that the fraction r of all
trials performed achieved a miss distance of q or less. Thus, when comparing relative performance, it is
desirable for an algorithm’s CDF to move “upward” (i.e., larger fraction achieves the same miss distance)
and “leftward” (i.e., same fraction achieved a lower miss distance). The “tail” of the CDF, representing the
worst-performing trials, is also of particular interest; a long tail may indicate that performance is inconsistent,
or not robust to certain pathological conditions. Confidence bounds at 95% (computed using MATLAB’s
norminv function) and tabular representation of the data, which includes mean accuracy, are also provided.

VIII.A. Implementation

For each scenario, each algorithm is tested on a large series of simulation trials, which vary in the com-
bination of wind profile and initial conditions used. Of the hundreds of wind profiles released by Draper
Laboratories23, a set of 25 representative wind profiles are used. These 25 wind profiles consist of 18 pro-
files from collected drop data and 7 artificially-generated profiles. Of the 7 artificially-generated profiles,
6 are constant-wind profiles moving in the cardinal directions, varying in intensity from zero wind to 25
knots (over 70% of the parafoil airspeed). The 7th artificially-generated profile represents an exponentially-

decaying wind, with average and maximum wind speed changes (with respect to altitude) of 0.0025 m/s
m

and 0.05 m/s
m , respectively. The actual drop wind profiles are significantly more aggressive, with an average

overall intensity of 6.7 m/s and gusts up to 17.1 m/s (nearly matching the parafoil airspeed). These profiles

are subject to average and and maximum wind speed changes (with respect to altitude) of 0.025 m/s
m and

2.4 m/s
m , respectively. They are also subject to rapid directional changes, potentially as large as 115◦/m.

In each trial, the parafoil state is initialized 500 meters above the goal (assumed in all scenarios to be
located at pG = (0, 0, 0)) with a random heading and a lateral distance between 100 and 400 meters from
the goal. Each algorithm is subject to the same sequence of wind profile/initial condition combinations. A
total of 500 trials are performed for each algorithm in each scenario, representing 20 uses of each wind profile
for different initial conditions.

The primary terrain used in the simulations is the valley terrain, Tvalley(px, py), pictured in Figure 5. This
represents a particularly challenging terrain for the parafoil terminal guidance problem, for several reasons.
First, the slope of the valley is greater than the glide-slope of the parafoil, making approach from either side
impossible. Second, the large low-altitude regions away from the goal (bottom-right and top in Figure 5(a)),
where terrain collisions can be avoided for longer path durations, are likely to lead to terrain interactions as
the parafoil’s path crosses in and out of those regions.

To test how algorithmic performance varies with terrain “difficulty,” this section also considers scaled-
down versions of the valley terrain, i.e., αTvalley(px, py) for α ∈ [0, 1]. In particular, simulations are performed
for α = 0, representing completely flat terrain, and α = 0.75, representing intermediate conditions.

The CC-RRT algorithm has been implemented as a single-threaded Java application. To simplify com-
parisons, a fixed number of samples, or iterations of Algorithm 1, are performed per loop of Algorithm 2
(lines 3–17). In the subsequent results, 165 samples per loop are used, representing the average number of
samples generated in a 1 Hz planning cycle with 60% duty cycle by the nominal RRT algorithm. The mean
wind impulse filter (Section IV) has a width m = 8, while two rings of 10 covariance samples each are used
with an overall psafe = 0.9 (Section V).

The BLG algorithm, against which parafoil CC-RRT is compared, determines an optimal control by
choosing coefficients ψk for the heading rate profile,

ψ′(h) =

N∑
k=0

ψk
sin(π(z − k∆z)/∆h)

π(z − k∆z)/∆h
, (75)
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(a) top view (b) skew-side view

Figure 5. Valley terrain used in several of the parafoil terminal guidance scenarios. Green shades indicate lower
altitudes; the goal is located at the yellow diamond.

based on simulating forward simplified dynamics,

x′ = −LD cos(ψ) + wx/ż,

y′ = −LD sin(ψ) + wy/ż,

(cos(ψ))′ = −ψ(z)′ sin(ψ),

(sin(ψ))′ = ψ(z)′ cos(ψ), (76)

where (·)′ denotes a derivative with respect to altitude z. It then optimizes a cost function consisting of
a weighted sum of x2, y2, and (sin(∆ψ/2))2, where ∆ψ is the difference between final heading and desired
heading, using the Nelder-Mead simplex optimization algorithm6. This vehicle model is fundamentally
different from the one used by analytic CC-RRT (Section IV.A) in the way heading rate is handled. Whereas
CC-RRT assumes heading rate is the output of a linear lag-dynamics model, the BLG vehicle model assumes
lag-free control over the heading rate, provided that the controls are bounded by (75).

The BLG algorithm has been implemented in MATLAB for comparison. For comparison with CC-RRT,
rather than using a tolerance-based stopping criterion, BLG is permitted to simulate the parafoil to the
ground through 75 iterations per planning cycle. This number of iterations requires a comparable amount
of computation to the number of RRT samples per planning cycle, as described above.

VIII.B. Valley Terrain Simulations

First, 500 trials were run for each algorithm – RRT with mean wind, analytic CC-RRT, and BLG – on
the valley terrain scenario (Figure 5). Figure 6 and Table 1 show the CDF (with 95% error bounds)
and statistics, respectively, for these trials. Analytic CC-RRT demonstrates matching or improved landing
accuracy, relative to RRT with mean wind and BLG, at nearly all percentiles.

Both RRT-based algorithms show significant improvement over BLG for all but the worst-case trials.
The mean landing accuracy for both is lower than BLG by a factor of 2. This ratio continues up to the
95th percentile, and increases to a factor of 3-4 by the 98th percentile (Table 1). In particular, about 12%
of BLG trials have an miss distance exceeding 100m, whereas only about 5% of the RRT-based trials have
a miss distance exceeding 100m (Figure 6(b)). The BLG algorithm also demonstrates a “long tail”: 4% of
trials have a miss distance of 300m or worse, while the worst-case trial misses by 581m.

Landing accuracy is comparable between RRT with mean wind and analytic CC-RRT up to the 95th
percentile; however, analytic CC-RRT demonstrates superior performance over both RRT and BLG over
the worst 5% of trials. Up to the 95th percentile, performance is similar between the two algorithms,
though analytic CC-RRT shows slight improvement at most percentiles (and also has a 10% better mean
accuracy). This suggests that for those trials in which terrain interaction is unlikely, the robustness-based
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(a) full CDF (b) zoomed in to (0, 400)m× (0.8, 1)

Figure 6. Miss distance CDF for valley terrain comparison, over 500 trials.

Table 1. Miss distance data for valley terrain comparison, over 500 trials (in meters).

Algorithm Mean StDev 50% 80% 90% 95% 98% Max

RRT with mean wind 33.9 49.3 19.3 56.6 79.7 101 151 548

Analytic CC-RRT 30.8 32.8 18.7 52.5 75.8 103 126 218

BLG 63.5 89.0 37.9 66.1 153.2 226.9 430.5 581

enhancements in analytic CC-RRT do not significantly influence performance relative to RRT with mean
wind prediction alone. However, the two CDF curves diverge beyond the 95th percentile (Figure 6(b)).
At the 98th percentile, analytic CC-RRT miss distance is 17% lower than RRT. By the worst-case trial
(i.e., 99.8%), analytic CC-RRT miss distance is 60% lower. All trials of analytic CC-RRT have an accuracy
of 218m or less, whereas RRT demonstrates some trials exceeding 500m (Table 1). This “shorter tail” for
analytic CC-RRT, relative to RRT with mean wind (Figure 6), demonstrates the robustness of the algorithm
to pathological uncertainty conditions, which might otherwise drive the vehicle prematurely into the terrain.

Both RRT with mean wind and BLG encounter trials where landing accuracy exceeds 500m. Such
situations are the product of an interaction between the uncertain wind and the difficult terrain encountered
by the parafoil. Figures 7 and 8 demonstrate how changing wind conditions can cause selected/executed
paths from RRT and BLG, respectively, to become infeasible despite replanning.

Figure 7 shows the planned paths (green) for nominal RRT on successive timesteps. On the first timestep
(Figure 7(a)), the RRT planner has identified a semi-circular path which brings the parafoil relatively close
to the goal (yellow circle). However, after a new wind measurement, this trajectory is now predicted to
collide with the terrain only about halfway through this path (Figure 7(b)). This causes the second half
of the path to be pruned, leaving the parafoil on a trajectory which now has poor terminal accuracy. The
issue, in this case, is that several of the intermediate path nodes are very close to the terrain, such that a
wind shift causes them to become infeasible.

Figure 8 compares a planned trajectory (solid red line) and executed trajectory (dashed blue line) for a
parafoil using a BLG planner. The planned, nominal trajectory (based on the mean wind estimate) takes
the parafoil very close to the goal, but also comes very close to the terrain surface on the right side of the
valley before turning back toward the goal (Figure 8(a)). About one-quarter of the way through execution,
a small wind shift takes place, resulting in a deviation between prediction and execution (Figure 8(b)) that
yields a mismatch of less than 1m (yellow line). Yet this mismatch is sufficient to cause the parafoil to collide
with the terrain (blue star), resulting in a miss distance exceeding 450m. The direct optimization technique
of BLG does not consider off-nominal, future terrain interactions caused by changing wind conditions. As a
result, such adverse terrain interactions are possible in the worst case. In the analytic CC-RRT formulation,
such proximity to this sloping terrain would be captured by the analytic samples (Section V), such that the
original path with low robustness margin would not have been chosen for execution.
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(a) Timestep 1 (b) Timestep 2

Figure 7. Trajectory planned using RRT with mean wind, during the first two timesteps. Trajectory history is shown
in blue, while the current, feasible path being executed is shown in green.

(a) top view (b) zoomed-in view

Figure 8. Trajectory planned using BLG (red) vs. executed trajectory (blue); note that the premature crash is caused
by a mismatch of less than 1 meter (yellow line).

Table 2 shows the average computation time per node generated for both RRT with mean wind (i.e., 0
samples) and analytic CC-RRT, for various numbers of covariance samples. The time per node for analytic
CC-RRT scales favorably with both the number of covariance samples and relative to RRT alone.

VIII.C. CC-RRT Invariance to Terrain

Figure 9 and Table 3 show the CDF and statistics, respectively, for 500 trials performed on a completely flat
terrain, i.e., T (px, py) ≡ 0. Though the terrain poses less challenges to the planner, this is still a challenging
planning problem, due to the parafoil’s underactuated dynamics and the wind uncertainty.

Here, the miss distance accuracy of RRT with mean wind and analytic CC-RRT have converged to
approximately the same CDF, with RRT with mean wind showing only a slight decrease in miss distance
relative to analytic CC-RRT at most percentiles, including the worst-case. This is consistent with using
obstacle-free terrain: because the covariance sampling is performed in the 2D horizontal plane relative to the
prospective trajectories, said samples will either all be feasible (pz > 0) or all be infeasible (pz ≤ 0) at any
given timestep, and thus provide no new information to the planner. As a result, analytic CC-RRT functions
identically to RRT with mean wind, which has a binary feasibility check, in this scenario. There has also
been a slight improvement in the performance of both algorithms relative to the valley terrain, though the
improvement is more pronounced for RRT with mean wind.

On the other hand, the BLG algorithm demonstrates significant improvements in accuracy, relative to
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Table 2. Average node generation times for nominal RRT and analytic CC-RRT.

# samples Time per Node (ms)

0 (RRT) 10.4

10 17.00

20 26.24

30 33.19

50 46.00

(a) full CDF (b) zoomed in to (0, 200)m× (0.85, 1)

Figure 9. Miss distance CDF for flat terrain comparison, over 500 trials.

Table 3. Miss distance data for flat terrain comparison, over 500 trials (in meters).

Algorithm Mean StDev 50% 80% 90% 95% 98% Max

RRT with mean wind 27.8 27.7 18.7 46.5 66.1 82.2 107 149

Analytic CC-RRT 28.4 28.1 19.3 43.6 67.1 90.0 112 174

BLG 15.9 19.7 8.9 20.7 35.2 71.3 86.1 107

both the RRT-based algorithms and its own performance on the valley terrain. Compared to the valley
terrain, the mean miss distance has decreased by 75%, while the worst-case miss distance has decreased by
over 80% (from nearly 600m to just over 100m). BLG also demonstrates up to 40% better accuracy than
RRT with mean wind and analytic CC-RRT, in both mean and worst-case miss distance (Table 3). The
improvement is most noticeable between the 50th and 90th percentiles (Figure 9). Because of the absence
of terrain features, the BLG algorithm does not have to consider off-nominal terrain interactions in this
scenario, creating the ideal environment for the algorithm to converge on optimal solutions. Here, finding
feasible solutions (the primary strength of RRT-based algorithms) is a relatively simple task compared to
more complex terrain, such that optimizing the planned trajectory (a task BLG is more effective at) is a
more efficient use of available computational resources. Replanning alone, without robustness modifications,
is sufficient to counteract the shifting wind conditions.

Based on this analysis, we consider how the performance of both BLG and analytic CC-RRT varies as
the “difficulty” of the terrain is changed. As stated in Section VIII.A, this is done by considering scalings of
the valley terrain, αTvalley(px, py). In addition to the cases of α = 1 and α = 0 already considered, we also
consider “75% Valley Terrain,” in which α = 0.75, representing a terrain of intermediate difficulty. Figures
10(a) and 10(b) show the resulting CDFs over 500 trials for BLG and analytic CC-RRT, respectively, with
tabular data provided in Tables 4 and 5, respectively.

Based on Figure 10(a) and Table 4, it is clear that the BLG algorithm is highly sensitive to the complexity
and steepness of the terrain. As the terrain becomes more complex, feasible paths become more difficult to
find, and thus cannot be optimized to the same extent. On the 75% valley terrain, there exists a regime of
nominal performance, up to around the 80th percentile, where BLG performance matches or even exceeds
performance on flat terrain, with a miss distance under 40m (Figure 10(a)). It is in these cases where
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(a) BLG (b) Analytic CC-RRT

Figure 10. Miss distance CDF for BLG and Analytic CC-RRT on various terrain scalings, over 500 trials.

Table 4. Miss distance data for BLG on various terrain scalings, over 500 trials (in meters).

BLG Mean StDev 50% 80% 90% 95% 98% Max

Flat Terrain 15.9 19.7 8.9 20.7 35.2 71.3 86.1 107

75% Valley Terrain 22.5 39.5 8.5 20.1 67.1 105 184 247

Valley Terrain 63.5 89.0 37.9 66.1 153 227 431 581

Table 5. Miss distance data for Analytic CC-RRT on various terrain scalings, over 500 trials (in meters).

Analytic CC-RRT Mean StDev 50% 80% 90% 95% 98% Max

Flat Terrain 28.4 28.1 19.3 43.6 67.1 90.0 112 174

75% Valley Terrain 32.0 32.2 21.6 51.2 76.0 103 133 191

Valley Terrain 30.8 32.8 18.7 52.5 75.8 103 126 218

finding a feasible solution is relatively straightforward, and BLG is able to spend significant time optimizing
the solution. For the remaining approximately 100 trials, however, terrain interactions are a serious issue,
and BLG miss distance begins to increase significantly relative to the flat terrain (Figure 10(a)). At the
98th-percentile, both the miss distance and worst-case miss distance on 75% valley terrain are more than
twice their flat-terrain counterparts. Once the terrain scaling is increased to the full valley terrain (Section
VIII.B), the possibility of terrain interactions becomes much more significant, and miss distances increase
at all percentiles, especially the worst-case trials.

On the other hand, the performance of the analytic CC-RRT algorithm (Figure 10(b) and Table 5)
is largely invariant to the terrain scaling considered. The gap in mean performance between all terrains
considered is only 4m or about 12%, while the gap in the worst-case is only 45m or about 20%. Though
the best performance (by a slight margin) is observed on the flat terrain, there is no statistically significant
distinction between the 75% and 100% valley terrain at any percentile (Table 5). Indeed, there is little
discernible difference between the shapes of the CDF curves for any terrain (Figure 10(b)). This suggests
that analytic CC-RRT is able to maintain consistent performance, regardless of the difficulty of the terrain
scenario. While other algorithms may be able to leverage highly simplified terrain to improve accuracy, such
as via BLG’s direct optimization, analytic CC-RRT can ensure reasonable performance even under worst-
case terrain and wind conditions.

VIII.D. CC-RRT Invariance to Initial Altitude

One of the key advantages of analytic CC-RRT (and RRT algorithms in general), relative to other parafoil
terminal guidance algorithms, is the ability to start planning from any initial altitude. Other approaches in
the literature require an upper limit on the initial altitude for terminal guidance to remain computationally
tractable6,8–10,12,13. Figure 11 and Table 6 present simulation results on the valley terrain when the initial

23 of 27

American Institute of Aeronautics and Astronautics



Figure 11. Miss distance CDF for Analytic CC-RRT from various initial altitudes, over 500 trials.

Table 6. Miss distance data for Analytic CC-RRT from various initial altitudes, over 500 trials (in meters).

Init. Alt. Mean StDev 50% 80% 90% 95% 98% Max

pzI = 500m 30.8 32.8 18.7 52.5 75.8 103 126 218

pzI = 1000m 29.8 32.9 19.2 43.5 72.7 92.6 120 245

pzI = 2000m 30.7 33.4 19.0 49.8 76.7 89.8 118 231

altitude, pzI , is varied from 500m (as in Section VIII.B) to 1000m and 2000m; all other conditions are the
same as in Section VIII.B. As when varying the terrain, the performance of analytic CC-RRT is seen to be
largely independent of the starting altitude. Compared to starting at 500m, worst-case performance only
increases 12% at 1000m and 6% at 2000m, while the mean miss distance actually decreases slightly (less
than 4%) at higher initial altitudes (Table 6). Again, the shape of the CDF curves for all three cases are
nearly the same (Figure 11). This data suggests that analytic CC-RRT is capable of operating at higher
altitudes without any deterioration in performance.

VIII.E. Multi-Classification Wind Model

Simulation results in this section compare performance of the multi-classification wind model (Section IV),
used in all previous simulation results, to when only a single wind classification/model is used. Here, tests are
performed on the same conditions as in Section VIII.B, including the use of the valley terrain, with analytic
CC-RRT and 3 wind classes. In the “Combined” case, the full wind model is used, whereas in the “Class X
only” cases, the algorithm is artificially forced to classify all wind profiles into a single classification, Class
X. This can be considered to be a forced misclassification of the observed wind profile.

Figure 12 and Table 7 give the miss distance CDF and statistics, respectively, for these simulations.
When all wind profiles are classified as Class 1, which assumes low power and/or variability (Section IV.B),
the planning algorithm is expected to take considerable risks, some of which would pay off with low miss
distances, whereas others may result in poor worst-case performance. Indeed, compared to the other single-
class results, using Class 1 demonstrates the lowest mean and the highest worst-case miss distance. Moving
to Class 2 and Class 3, the planner takes fewer risks and plans more conservative paths. As a result, the
mean miss distance increases, but the worst-case performance decreases (Table 7).

On the other hand, the combined wind model achieves the best performance in both the mean and
the worst-case. Compared to the least conservative Class 1, the full wind model has only a slightly better
mean (4% decrease), but a significantly better worst-case accuracy (38% decrease). Compared to the most
conservative Class 3, the full wind model has the same worst-case miss distance, but a significantly better
mean miss distance (25% decrease). In the context of the CDFs (Figure 13), the combined CDF nearly
matches the Class 1 CDF at most percentiles, but has a significantly shorter tail. By identifying the wind
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Figure 12. Miss distance CDF for combined wind model
and its individual components, over 500 trials.

Figure 13. Miss distance CDF for combined cost-to-go
function and its individual components, over 500 trials.

Table 7. Miss distance data for combined wind model and its individual components, over 500 trials (in meters).

Components Mean StDev 50% 80% 90% 95% 98% Max

Combined 30.8 32.8 18.7 52.5 75.8 103 126 218

Class 1 only 32.0 39.7 18.8 50.4 74.8 102 134 349

Class 2 only 35.4 38.6 21.2 61.1 86.2 113 138 284

Class 3 only 41.2 41.2 26.1 70.6 109 127 157 218

Table 8. Miss distance CDF for combined cost-to-go function and its individual components, over 500 trials (in meters).

Components Mean StDev 50% 80% 90% 95% 98%

Piece 1 only 40.0 59.3 22.0 64.1 95.1 124 181

Piece 2 only 55.9 51.1 43.2 95.3 117 135 170

Combined 33.9 49.3 19.3 56.6 79.7 101 151

classification online, and adapting the wind variation model accordingly, analytic CC-RRT is able to plan
robustly while only using as much conservatism as the current wind conditions dictate.

VIII.F. Cost-to-Go Components

Simulation results in this section compare performance of the reachability-based cost-to-go (Section VII),
used in all previous simulation results, to accuracy when only a subset of the cost-to-go points are used.
Here, tests are performed using nominal RRT with mean wind on the valley terrain (Section VIII.B). In
the “Combined” case, the full cost-to-go function as presented in Section VII is used. In the “Piece 1 only”
case, only the current state is used in the cost-to-go function, represented as the J0 piece of (73). In the
“Piece 2 only” case, only the future, propagated states are used in the cost-to-go function, represented as
the min(J1, J2, . . . , JNP ) piece of (73).

Figure 13 and Table 8 give the miss distance CDF and statistics, respectively, for these simulations. Here,
it can be seen that the combined cost-to-go yields superior performance to the individual cost components,
along the entire CDF (Figure 13) and at all percentiles of interest (Table 8). Of the individual components,
the “Piece 2 only” cost has slightly better worst-case performance than “Piece 1 only,” but worse mean
performance. The combined CDF more closely tracks Piece 1, but has better performance at the higher
percentiles.

IX. Conclusions

This paper has presented a new approach to online trajectory planning and robust obstacle avoidance
for the parafoil terminal guidance problem. This algorithm, analytic CC-RRT, robustly executes collision
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avoidance with arbitrary, non-convex, mapped terrain, subject to wind disturbances which may be highly
dynamic through the terminal approach. The wind is modeled as the sum of a filtered mean wind and a
multi-modal variation model. Through online classification, this approach achieves superior performance to
a single-class model, by adjusting the level of conservatism to reflect current wind conditions. This wind
model is utilized to derive and sample the uncertainty around each simulated trajectory, extending the
previously-developed CC-RRT framework for robust planning against arbitrary terrain. Finally, a cost-to-go
function is developed which considers both the current state and possible future states on the frontier of
an approximated finite-time reachability set, allowing for more intelligent partial path selection (and better
landing accuracy) than either component alone. Simulation results have demonstrated that analytic CC-
RRT achieves smaller miss distances, both in the mean and in the worst-case, than nominal RRT and BLG
(both of which use replanning) on complex terrain scenarios. It is further shown that analytic CC-RRT is
largely invariant to both terrain complexity and initial altitude, key deficiencies of existing algorithms.

Future work will focus on considering other kinds of uncertainty that may be acting on the parafoil,
extending their use in components of the planning algorithm, and considering other problem constraints.
More complex models of the parafoil dynamics will be considered, including descent rates that are partially
influenced by the vehicle kinematics (particularly the turn rate), as well as model uncertainty. Depending on
the nature of the model uncertainty, the assumption of Gaussian uncertainty at future timesteps (Section V)
may no longer hold. Though the mean wind filter already considers 3D wind, the variation wind model will
be extended to three dimensions (e.g., covariance samples from a 3D uncertainty ellipsoid), such that the
possible future effect of updrafts and downdrafts can be explicitly modeled. We will explore modifications to
the cost function, including incorporating statistics from the covariance samples13, adding path costs, and
imposing heading constraints ( eg upwind) at landing via penalties on impact speed. Finally, we will explore
extensions which incorporate optimality, such as the newly-developed CC-RRT? algorithm32 which builds
on the asymptotic optimality guarantees of RRT? 33.
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