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Internal wave drag in stratified flow over mountains on a beta
plane
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Abstract: The impact of the variation of the Coriolis paramefesn the drag exerted by internal Rossby-gravity waves opitl
mountains is evaluated using linear theory, assuming aohstind and static stability, and a beta-plane approxonatilhe
calculations of Smith (1979a) and Miranda and James (198R)entia-gravity wave drag are thus extended, in an attetopt
establish a connection with existing calculations of ptanewave drag (which have been developed until now priméoit fluids
topped by a rigid lid). It is found that the internal wave dfagzonal westerly flow strongly increases relative to thaeg by the
calculation wheref is assumed a constant, particularly at high latitudes andhfiuntains aligned meridionally. For sufficiently
wide mountains, the drag increases with the mountain wid#ing values much larger than those valid in the non-nogalimit.
This occurs because the drag receives contributions fromwavavenumber range, controlled by the beta-effect, whadoants
for the drag amplification found here. This drag amplificati® shown to be considerable for idealised analogues ofmeahtain
ranges, such as the Himalayas and the Rocky mountains, amzbcable to the barotropic Rossby wave drag addressedviopse
studies. Copyrigh© 0000 Royal Meteorological Society
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1 Introduction way to retain the essential features of Rossby waves, while
neglecting other geometrical complications. As a rule,

While the drag force exerted on mountains by intefM@ese studies also assume that the fluid under considera-
gravity and inertia-gravity waves has been reasonaly, is bounded above by a rigid lid or a sharp density
well studied (Smith, 1979a; Miranda and James, 199giarface. These studies are often concerned with oceanic
Grisogonoet al., 1993; Olafsson and Bougeault, 1997)o\s (e.g. Janowitz, 1975), although this approximation
to the authors’ knowledge there are no calculations fy also be viewed as a rough representation of the finite
the drag in the case of orographic internal Rossby-graviltent of the troposphere (Janowitz, 1977). Consequently,
waves, where the variation of the Coriolis parametgfiaral waves are either entirely absent (when constant-
with latitude is llmportant, in a continuously Strat'f'e‘aensityfluids are considered, e.g. Ingersoll, 1969; Thomp-
_atmosphere. This may be due to the fact that s_tand%{ﬂ'\ and Flierl, 1993) or discarded as insignificant com-
internal wave theory uses the Boussinesq approximatighyeq 1o the barotropic mode (Janowitz, 1977), a result
a Cartesian coordinate system and a continuous Spectyn rejies crucially on the existence of the rigid lid. The

of wavenumbers. As pointed out by Smith (1979D), theggequacy of this latter choice will be re-examined in the
approximations are no longer accurate for Rossby-gravb%sent study.

Y;erwsst’)esiIr?szftehcete\:jelsr)“i?]lev\\/l:\r/t‘iaclglnggsoitf t\r/]aer?:ti(\;vrﬁa/aets 'S Smith (1979c) qualitatively mentioned the relevance
g€, 9 y y of the beta-effect on the drag produced by internal

2;2;3'3&;:?’ Zr;f(jegt()e r(ljz%nta:u)étfslerszx\(/;\fesezg;g{rplag;et lesby-gravity waves in a study where he analysed the
' 9 y P 9 y dffects of the rigid lid approximation and the 2D approx-

Earth, and possessing a discrete wavenumber Specn#nr%tion. The impacts of these approximations on the sur-

Additionally, the orographic drag associated with thege e drag were not addressed, but it is clear that unlike

waves occurs at large scales resolved by even the mo(f]:l‘f%lecst)ntinuousl decreasing density (which in fact can be
with the coarsest horizontal resolutions, such as GCMs, SO y 9 y

. . : incorporated into Boussinesq models through a simple
in general it does not need to be parameterised. . . 2 T
hange of variables) the assumption of a rigid lid in a

Despite this, most of the studies addressing ROSSB ratified atmosphere will modify the internal wave drag

gravity waves, and the associated drag (e.g. ‘JanOWISchsiderably. In this situation, wave reflections at the top

1977; McCartney, 1975; Thompson and Flierl, 1993) ug% he domain will surely originate resonances, in much

a beta-plane approximation, because this is the smpl?tﬁ% same way as described for pure gravity waves in Teix-

eiraet al. (2005) and Teixeira and Miranda (2005).
*Correspondence to: Centro de Geofisica da Universidadeislie

boa, Edificio C8, Campo Grande, 1749-016 Lisbon, Portugahail: The assumptions of Boussinesq approximation,
mateixeira@fc.ul.pt semi-infinite continuously stratified atmosphere and a
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continuous wave spectrum may not be strictly accurateadiabatic equations of motion for a beta-plane expressed
a geophysical context. However, they constitute leadirig-spectral space in the horizontal directions. It would at
order approximations to the problem of internal Rossbijrst sight seem questionable to expand the flow variables
gravity waves, and are not much more unrealistic thas Fourier integrals alongandy as is done traditionally
the assumption of a rigid lid, or of topographic barrin gravity and inertia-gravity wave theories, because ef th
ers with sharp, or even vertical, edges, such as useddependence of (the Coriolis parameter) ojm However,
Ingersoll (1969), McCartney (1975) or Thompson arthuburn (2006) (see also Thuburn and Woolings, 2005)
Flierl (1993). On the other hand, these assumptions hal&eloped an approach for this purpose, which respects
the great advantage of facilitating comparison with prere conservation of energy and is thus self-consistent.

vious models of gravity and inertia-gravity waves, which  The linearised equations of motion take the form:
adopted them, and for which any connection with exist-

ing Rossby-gravity wave drag studies is hard to establish. % k
Thus we believe the assumptions just listed and adopted Ukt — fov — ik2—+l2a = —i—p, 1)
here are acceptable for tackling our goal — an inclusion of % plo
Rossby wave effects in the existing mesoscale drag con- WUk + fou —i————=0 = —i—p, (2)
text. k2 + 12 Po

In the present paper, internal wave drag exerted on A +b = o0, 3)
an elliptical mountain on a beta-plane is calculated using Po
linear theory assuming, for simplicity, that the atmosgher iUkb+ N*w = 0, (4)

has constant zonal incoming wind and buoyancy (Brunt-
Vaisala) frequency. This work can be regarded as an
extension of the study of Smith (1979a) or the linearised i . o
calculations of Miranda and James (1992) to a situatidfyereV and N are the wind velocity and Brunt-Vaisala
where the Coriolis parameter varies with latitude. Invesf{€quency of the incoming flowy, is a constant refer-
gating the Rossby-gravity wave drag (RGWD) is relevafific& density, andi, o, @), p andb are, respectively, the
from a fundamental point of view, but may also have appfrourier transforms of the velocity, pressure and buoyancy
cations in, e.g., better estimating jet-stream weakeningh&rturbationsb = g6/6,, whereg is the acceleration of
intensification in future climate scenarios, or even mo@ltavity, ¢ is the Fourier transform of the potential tem-
elling the atmospheric circulation on other planets. ~ Perature perturbation arti is a reference potential tem-
This paper is organised as follows: in section 2 tfi€rature (assumed to be constant). In (1) and (2), the
model, including the governing wave equation and ti§eoriolis parameter is expressed As= fo + By (consis-
radiation boundary condition, is introduced. Section tgnt with the beta-plane approximation), whetes its
presents the main results, namely the dependence offfisidional derivative(k, [) is the horizontal wavenumber
drag on the dimensionless parameters controlling teisthe waves and the primes denote differentiation with
problem, and drag calculations for more realistic coféspect to height;. The third terms is (1) and (2) corre-
ditions, using simple approximations to real orograph§Pond to the beta-effect, in accordance with the arguments
Finally, section 4 contains the main conclusions of thigesented by Thuburn and Woolings (2005).
study. In (3), the hydrostatic approximation was adopted
also for the flow perturbations, which is acceptable at the
large horizontal scales addressed here. These equations
may be combined in order to eliminate all dependent

Flow over a mountain with an elliptical horizontal cross/ariables except the Fourier transform of the vertical
section is considered (cf. Phillips, 198@afsson and Vvelocity perturbation,o, yielding an equation akin to
Bougeault, 1997; Teixeira and Miranda, 2006). For sirfl?e Taylor-Goldstein equation (cf. Teixeira and Miranda,
plicity, the main axes of the ellipse are assumed to B806), but where both the effects pfand; are retained:
aligned in the zonala) and meridional ) directions.
This kind of orography is able to approximate, to a certain 2/1.2 | 12 B

_ . ° . i N2 (k= +17) {1 U(k2+l2)}
extent, real, anisotropic mountain ranges. The incoming ,;” _
flow is assumed to be constant and in the zonal direc- k202 {1
tion. This flow automatically satisfies the conservation of

absolute (or potential) vorticity — if the incoming flow was »
constant and simultaneously had a meridional compondftthe case of a neutrally stratified atmosphere, such as

it would violate this constraint. The flow is also assumé&@nsidered in the study of barotropic Rossby waves by

to be steady and in geostrophic and hydrostatic equiliinowitz (1977), (6) gives the trivial result thatvaries

rium, having a westerly orientation, since it is known thifi€arly with height. ForN > 0, since the coefficient

Rossby waves only exist for westerly flow. multiplying @ in (6) is constant, this equation will have
The basic equations of Thuburn (2006) (his set (190lutions of the form

(6)) are adopted here, but the Boussinesq approximation

is further imposed on them. These are the inviscid and W(z) = w(z = 0)e'™*, (7)

ikt + o+ 0" = 0, (5)

2 The vertical structure equation

5 w = 0. (6)
_ L} — f2
U(k2+12) 0
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wherem is a vertical wavenumber. By direct substitutiowherep is the Fourier transform of the pressure perturba-
of (7) in (6), one obtains: tion and the asterisk denotes complex conjugate.
The pressure perturbation at the surface may be

NZ(k?* + 1) {1 B W] obtained in terms ofv by combining the equations of
me= 07 5 2 5 (8) motion (1)-(5) and using also (7). If the lower boundary
kU [1 - W} —fo condition (9) is additionally used, this yields:
It may be checked that this definition is consistent with )
Eqg. (58) of Thuburn and Woolings (2005), giving the {(U’f)Q [1 - W} _fg}mﬁ
dispersion relationship of planetary internal wavesy if Bz =0) =ipo
(the angular frequency) is replaced by/k and the non- (k2 +12) {1 - W}
Boussinesq terms are neglected. Note that (8) reduces to (13)

the usual definition ofn for inertia-gravity waves when On inserting (13) into (12), and using also (8) and
B =0, and to them appropriate for pure gravity Waveg 1) to substituten, the RGWD becomes
when bothd =0 andf, =0

Equation (6) is subject to two boundary condi- +00 1490 (1 1) |2
tions. The lower boundary condition (free-slip condition) (Dg,Dy) = 47T2p0NU/ / -
requires that the flow be tangential to the topography at —ooJoo (K24 1%)7
the surface, i.e.

1
2 2 2
2 Jil S
k [1 - U(k2+l2)} —

W(z = 0) = iUkh, (9) xsign(k)Re .

dkdl,

B
.. . . T URZHI2)
wherer is the Fourier transform of the surface elevation.

The upper boundary condition requires that the wave (14)

energy radiates upwards (since the waves are generated

at the surface), and specifies the sigmafwhich is left Where ‘Re’ denotes ‘real part'.

undetermined by (8). Since this is the type of orography used in most of
For the wave energy to propagate upward, the vertitae stud_ie_s that thq present calculations aim to extend

component of the group velocity of the waves must Kfe.9. Phillips, 19840Olafsson and Bougeault, 1997) the

positive. The vertical group velocity is defined as= mountain is assumed to have an elliptical horizontal cross-

dw/dm, wherew is the angular frequency of the wavesection and a bell-shaped profile:

in a non-stationary version of (6). Although for= 0, the

phase velocity of the waves is zero (because they are by _ ho

definition sta’uo_nary), t_he group velocity is not, and it can (1 by y_z)

be shown that its vertical component consistent with (6) a b

takes the form ) ) ) ) (15)
omUk where hy is the maximum heightg is the zonal half-

Cory = ——"" (10) width andb is the meridional half-width. It may be noted
9 N2(k2 + 12) L :
that, for this kind of mountain or any other orography

hgabe_(azkz_'_lez)%
27 ’

ol

U2 [1 5 2 9 2 that is symmetric with respect tg, the corresponding
(UK) [ B U(k2+l2)} — 1 Fourier transform is even ih. So the integral ofD,
2 : cancels in (14) by symmetry, because the integrand is odd
N2(k242
{(U/f)Q + (m2 )} {1 - U(k26+l2)} +13 in {. Consequently, we will only focus on the zonal drag

componeniD,,, which hereafter will be called judb.

. 9 ) :
It is clear that whenn® > 0 (i.e. the waves are vertically Given (15), it is convenient to perform a change of

propagating) the denominator of (10) is always pOSitiv\(?ariables in the integrals of (14), adopting polar elliptic

_The_n, the condmon_ that must be satisfied fgk > 0 coordinates for the horizontal wavenumbers, as follows
is simply mUk > 0 in the numerator of (10). So, the

radiation boundary condition has the same form as I((():rf Teixeira and Miranda, 2006):
non-rotating flow (Holton, 2004, Eq. (7.45b)), or rotating

K K .
flow on an f-plane (Wurteleet al., 1996, Eq. (3.2b)), k= 2 cost, = > sin 6. (16)
namely:
m = vVm?2sign(Uk). (11) Then, using (15), (14) may be expressed as
This result will be used in the drag calculations that follow 27 oo ~26] o8 6
D= pONUbhg/ / recosf
2.1 Wave drag o Jo  (cos?6+~2sin® )3
The drag exerted on the mountain is defined in Fourier K2 cos? 0 [1 - m " Ro?)’
space as (Teixeira and Miranda, 2006) Re N”
1—— N
5. +00 p+too R R K2 (cos? 0+~2 sin? 0)
(Da, D,) = dr Z/_m/_oo (k.Dp*(z = Ohdkdl, 12) 400 an
Copyright(© 0000 Royal Meteorological Society Q. J. R Meteoral. Soc. 00: 1-8 (0000)
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wherey = a/b is the horizontal aspect ratio of the moun3 Results and discussion

tain, Ro = U/(foa) is a Rossby number and; = 3a%/U i

is a dimensionless number quantifying the importance l6fhould first be noted that, whew;; = 0, e.g. at the poles
the beta-effect. A dimensionless number similarng ©f the Earth, (17) reduces to

was called3 by Bannon (1980) and by McCartney

o m oo ke 25| cosd|
(1975), to give just a few examples. D= poNUbhg/ / 5 Y
In order to facilitate its interpretation, the drag is 00 I(COS 0477 sin0)2
normalised by its value in the absence of rotation, which xRe (K cos® @ — Ro™?)* drd®, (24)

results from (17) wheko~! = N = 0:
which, for the case of a circular mountain € 1) is
21 ptoo 262K o2 0 equivalent to Eq. (A15) or Miranda and James (1992). In
Dy = poNUbRZ / /
o Jo (co

> S5, drdf.  this case, the incoming flow should be understood as not
5?6 4 7% sin” )2 zonal (which would not make sense at the pole), but rather
having any orientation. This is admissible because the
“bsence of the beta-effect removes the anisotropy present
in the original problem formulation. A lower cutoff for the
, horizontal wavenumbers that contribute to the drag is set
™ p+oo —2K -
Doc — poNfoabh?)/ / IZG |2co.s 6;| _ by the condition -
o Jo  (cos?26+~2sin”0)z o> 0 (25)
|cosf|’

coming from the requirement that the expression between
brackets at the bottom in (24) be positive. For this reason,
- . as the mountain becomes wider (@s~! increases) the
While in (18) all wavenumbers confmbute to the drag, '(ﬁ'rag decreases rapidly, i.e. approximately exponentially
(19) only the wavenumbers that satisfy as in Appendix A of Miranda and James (1992) (and in
Smith, 1979a and Grisogombal., 1993 for a 2D ridge).

N2 WhenNg # 0, however, a lower range of wavenum-

A (20) bers contribute to the drag, as was seen above. For wide
mountains (i.eNg relatively high), this leads to large val-
ues of the drag coming from contributions of the integrand

contribute, and in (17) the patter is still more compleR€&/+ = #1, as will be seen next. In fact, there must be a
with wavenumbers both above a certain threshold ajy/e" limitimposed on the wavenumbers that contribute

contained in a lower interval contributing, namely to th_e .drag' addit!onally o that expres_s;ed by (22), due to
the finite dimensions of the Earth. This has a very small

impact on the drag. A more stringent limit, since we are
2 3 considering zonal incoming flows (except at the pole),
k> {"% +h5+ [(’Q% +r3)" = “ﬂ } (21) would be the length of the Earth’s parallels at each lati-
1 tude considered. It was verified that this also has a very
or {K% + R [(ﬁ% + ﬁgf _ ﬁﬂ } < K< ki, modest impact, for IatltUQes Iovyer_ th_ﬁﬁo.
Another, more serious, limitation of the present
(22) approach is that it does not take into account the discrete
nature of the zonal wavenumbers that can exist on the
where spherical Earth. This aspect is, again, especially retevan
. in the lowest wavenumber range for which the integral
— Roi, (23) in (17) gives contributions to the drag, (22). While this
V2| cos )| limitation can probably introduce large errors in geophys-
ically realistic conditions, we decide here to keep the con-
The upper wavenumber range (which vanishes in thieuous formulation, because it facilitates the treatment
quasi-geostrophic limit) clearly corresponds to the drag different orography shapes, and the study of asymp-
produced by gravity waves, as in Smith (1979a), Appendixic drag regimes, avoiding the obscuring discontinaitie
A of Miranda and James (1992) or Grisogombal. in drag behaviour brought about by a discrete approach.
(1993), while the lower wavenumber range accounts fphe continuous approach can be considered suitable for a
the drag produced by internal Rossby waves. It is interegéneric planet with very large radius, but qualitativelg th
ing how, in contrast, for a non-stratified flow with a rigidhehaviour of the RGWD is similar to that occurring when
lid, all contributions to the drag come from the singulahe wavenumbers are discrete.
wavenumber where the expression inside square brackets A rough idea of the impact of this aspect may be
in (19) is zero — the wavenumber of free barotropic Rossbitained by noting that (22) may be expressed in terms
waves (see Janowitz, 1977). of k£ (the zonal wavenumber), defining an interval for

(18)
Another important reference value is the qua
geostrophic drag, to which (17) reduces whan< 1:

N
K2(cos? 6 + 2 sin? 0

xRe [ ) — 1} o drdf. (29)

K< |K1 = 5 1
(cos? 0 + 42 sin” 0)=

N[=

M

K2
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Figure 1. Amount of discrete zonal wavenumbers compatilifie w
the Earth’s radius that can exist, at each latitude, and &ohe Figure 2. Normalised RGWD as a function &o~! and Nj
wavenumber direction, within the interval defined by (22); & for a circular mountain;y = 1. Solid lines: labelled contours,
circular mountainy = 1. short-dashed lineg7 = 10ms ™" for different latitudes in degrees
(labelled), long-dashed lines: parameteas given by (27). Grey
Shading: region where > 1.
which this quantity contributes to the drag. We may

note additionally that in the spherical Earth, the zonalh.I the | dashed li tval fthe rati
wavenumbers that can exist are given by while the long dashed lines represent values of the ratio

b Ng
_P_ s 27
(26) c fo  ~YRo™V’ 27)
_ _ _ _ which must be at most of order one for the beta-plane
whereRy; is the radius of the Earth,is an integer number approximation to be valid. For this reason, in the region

and¢ is the latitude. Figure 1 shows how many of thesgith the grey shading (where > 1), the results are
discrete wavenumbers fit into the interval fodefined by deemed to be unreliable. The short-dashed lines illus-

(22), and so that contribute to the RGWD, as a functigmte conditions for flows witl/ = 10ms~!, at latitudes

of ¢ (the wavenumber angle) and latitude. A circulayf 30°, 400, 50° and 60 (these relations are independent
mountain,y = 1, is considered, an®p = 6.37 x 10°m  of the ridge widtha, because they have been obtained
andU = 10ms™" are used as reference values. It is algfiminating this quantity betweeRo~? and N;). As can
noted thatfy = 2Q2sin ¢ and 3 = 2Q/ R cos ¢, whereQ  pe seen, for this range of latitudes and valueskof*

is the angular velocity of rotation of the Earth. It is seefhd V4, the short-dashed lines generally stay outside the
that the amount of possible discrete wavenumbers is zgiaded region, indicating that the beta-plane approxima-
both for ¢ = 0° and ¢ = 90°, or whenl is very large tion is essentially valid. For lower values ©f this condi-

(8 = 90°), because the amplitude of the interval definen is satisfied even more closely, while for higliéror

by (22) goes to zero in these limits. Fbe= 0, the amount for lower latitudes, the opposite happens.

of discrete wavenumbers is a maximum and goes from 6 at |t can be seen that the drag is near one for low
¢ = 30° to 3 at¢ = 60°, reaching an absolute maximunvalues of Ro—! and N, as expected. On the other hand,
of 7 slightly below¢ = 30°. So the results to be presentedhen Ro~! is large, the drag takes high values. These
at higher latitudes should be less reliable because of Yagues are largest whes = O(1), being somewhat

. n
~ Rpcos¢’

assumed continuous spectrum. smaller when eitheVz < 1 or Ng > 1. The existence
of high values of the drag due to the beta-effect is a
3.1 RGWD as a function ako~! andN; well-known result since early studies on planetary waves,

and is illustrated neatly, for example, in Thompson and
Figure 2 shows the RGWD (17) normalised by its nomHierl (1993) for barotropic Rossby waves in a neutrally
rotating value (18) iNRo~! — Nj3) parameter space, forstratified and vertically bounded fluid. In the present
Ro~! between10~2 and 10? and Nz between10=% and study, this drag amplification can be explained by making
102. Only the case of a circular mountain was consider#te quasi-gestrophic approximation, which corresponds to
(y = 1), because differences in drag behaviour for othking Ro—! — +oc in (17). The RGWD then takes the
values ofy were found not to be very striking in thisasymptotic form (19), which when normalised by (18) is
representation. Anisotropic mountains will be considergdoportional to Ro~*, thus growing indefinitely as this
later. The solid lines are contours of the normalised drggarameter increases.
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WhenNj is small, the drag takes values below 1 for 10 w w w w

Ro~! = O(10). This is a manifestation of the processes @ o
that dominate the mesoscale drag in the study of Smith 8r 30 T
(1979a) or in Appendix A of Miranda and James (1992), [ = - =40° ,.-’_"/'/
however this is notimmediately recognisable, because the ~_  °f o i:g ]
drag behaviour a®Vs tends to zero, (24), is approached g — 90"
here gradually, particularly for higRo~!. In fact, it can ar / 1
be shown from (19) that, in the limit8o~! — +oc0 and P
Ng — 0, the normalised RGWD is asymptotically 2r {__{,j;"f’/ 1
Dqc ~ 4Ro~1! N (28) 0 200 200 600 800 1000
0 a (km)
10 T T T T
for a circular mountain+ = 1). It suffices to note that, (b)
whenNg is small, the exponential in (19) is approximately sl P
one and the remaining terms may be integrated directly, Tmees0 ,;f/"
yielding the desired result. 6l T ]
In this same limit, the barotropic Rossby wave drag & —a 0 /
calculated by McCartney (1975) and Janowitz (1977, his © 4| =90 S |
Eq. (6)), when normalised by (18) for= 1, can be shown e
to take the approximate form: . )
1
%f ~ N—U;{R072N57 (29) 800 1000
where H is the depth of the troposphere in Janowitz’s 10 * * * *
notation. From (28) and (29), the ratio of the internal and ©
barotropic drags (ignoring proportionality constantsyma 8r 30 1
be estimated as follows: [ . ¢=40°
6F - ¢=50 A
1 S e =60° 4
Doe  NH 3y _NH (B)® 5 —Ego" AT
DB ~ U RONB = fO <U> (30) 4+ /{_:__4:;’/,‘
(see analogous relation near the top of pg. 805 in Janowitz, 2r A.{{f? o 1
1977). Taking values of these parameters typical of S
mid latitudes, such a&l = 10*m, fo = 107%s~!, N = 500 800 1000

1072571, U=10ms™ ! and 8=10""s"tm™!, this a (km)

ratio takes the value 1, indicating that internal wave drag

may well be of comparable magnitude to the barotrogitgure 3. Normalised RGWD as a function of the zonal halfivid
wave drag. This most likely also happens wh¥p = of the mountain for flow with/ = 10ms™', and various latitudes
O(1) (see discussion in Janowitz, 1977), which partialfg§ = 90” corresponds to (24)). See legend for details. (a) Mountain
motivates the relevance of the present calculations. #jgned meridionallyy = 0.25, (b) circular mountainy =1, (c)
other parameter ranges, the relative magnitude of internal mountain aligned zonally; = 4.

and barotropic drag depends more strongly on the shape

of the orography, so it is not so easy to evaluate. . - . . .
grapny y i.e. a meridional ridge perpendicular to the wind. The

] o RGWD for a latitudeg = 90°, which is given by (24)
3.2 RGWD as a function of mountain width and reduces to the linear result of Miranda and James

It is of geophysical relevance to consider the variation G¥992) wheny = 1, is also represented. It can be seen that,
the RGWD with the mountain width for realistic valueds latitude increases betwegt® and 60°, the RGWD
of Ro~' and Ns. This will be done next on notingtends to be amplified progressively more as the mountain
the definitions of these two dimensionless parametéfddthincreases, attaining values more than 10 times larger
and also thatf = 2Qsin¢ and 3 = 2Q/Rp cos . The than that of the drag without rotation far= 1000 km.
situations considered will be those represented as fhgualitatively similar behaviour was observed for very
short-dashed lines in Figure 2, but now for mountains wigtifferent conditions (a bounded, neutrally stratified flow
different aspect ratios. over a cylindrical mountain) by Thompson and Flierl
Figure 3(a) shows the normalised RGWD, given Kit993). The RGWD attains a minimum betwees- 100
(17) over (18), as a function of zonal mountain halkm anda = 200 km, due to the competing effects ¢
width, for an incoming wind of magnitudé = 10ms~! and 3. On the other hand, whem > 200 km, the drag
and latitudes between = 30° and¢ = 60°, for v = 0.25, is many orders of magnitude larger than given by the
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expression obtained in Appendix A of Miranda and Jamgsasi-geostrophic approximation is quite accurate, sur-
(1992). prisingly being better for the Rocky Mountains than for
In Figs. 3(b) and 3(c), similar results are showithe Himalayas. This may be due to the following reasons:
but for v = 1 (a circular mountain) angt = 4 (a zonally althoughRo~! is larger for the Himalayas than for the
oriented mountain, parallel to the flow), respectively. Rockies,Ng is also larger by a bigger factor. When (17)
can be seen that, as could perhaps be anticipated, rguitices to (19) in the quasi-geostrophic approximation,
drag increase is more modest for wind along the mountéie term that must be neglected involvds, therefore
than across the mountain, for a similar zonal half-widtthe larger this parameter is, the poorer this approximation
This happens because, the loweis, the larger is the will be. In this sense, the quasi-geostrophic approxima-
meridional extent of the mountain, thereby leading tot@n applied to (17) not only requires th#&to < 1, but
greater deflection of the flow and the generation of maaso roughly thatVs < Ro~* and N3 < Ro~2. Clearly,
intense Rossby-gravity waves. these conditions are better satisfied by the Rocky Moun-
As latitude increases, a point must be reached whiais than by the Himalayas (see Table I).
the RGWD starts decreasing toward its low polar values These results, despite all the cautions entailed by
(due to the narrowing of the wavenumber interval (2#)e strong approximations made, suggest that the inter-
that contributes to the drag in (17)). The parameter regimm@ RGWD is a highly relevant force, and perhaps not
where the drag is stationary with before it begins surprisingly, that it can be treated accurately in a quasi-
decreasing seems to occur aroune: 50° or ¢ = 60° in geostrophic framework.
Fig. 3(c), but appears to occur only at higher latitudes for
lower values ofy, as shown in Figs. 3(a) and 3(b). 4 Concluding remarks
The present study has shown that the drag due to inter-
nal Rossby-gravity waves existing in a stably stratified
In order to better illustrate the practical relevance of theesterly flow is not only much larger than the equivalent
calculations developed here, two examples of the RGWhirtia-gravity wave drag (Smith, 1979&lafsson and
produced by approximations to real mountain ranges wilbugeault, 1997), but also larger than the equivalent pure
be presented: the Himalayas and the Rocky Mountaiggavity wave drag (Phillips, 1984). Additionally, it is typ
The surface elevation for both mountain ranges was takeally comparable with the barotropic wave drag existing
from the US Navy elevation database. The Himalayas #tiea neutral but vertically bounded atmosphere (Janowitz,
arbitrarily defined as the region betweg2? E and107° 1977). The drag attains a maximum enhancement for large
E longitude and betwee?8° N and40° N latitude. The Ro~! and N of order one. It is also larger for merid-
Rocky mountains, on the other hand, are assumed to eiiatal mountains than for zonal ones, as would perhaps
betweeri16° W and101° W longitude and2° N and47° be expected. The RGWD is found to increase with moun-
N latitude. The surface elevation distribution contained fain width and latitude, at least far between 30 and 60
these boxes is then centred and adjusted, through a ledetyrees.
squares fit, to an idealised mountain with Gaussian shape: This force, along with the barotropic Rosshy wave
drag, may significantly enhance the zonal torque exerted
h = ho exp (_a:_2 B y_2> (31) on the Earth by Rossby-gravity waves, contributing to
2 ) a deceleration of the jet-streams, or the mean west-
erly flow in general, in mid-latitudes. Admittedly, inter-
The Fourier transform of this surface elevation thetal Rossby-gravity waves are resolved by most meteoro-
replaces (15) in the drag expressions. logical models running at the current resolutions except
This type of orography is used here rather than theasi-geostrophic models or climate models of interme-
bell-shaped mountain employed previously, since the ldtate complexity. However, their existence, which seems
ter was judged to be too spiky to provide a reasonabletéithave been overlooked (except for brief references by
to the mountain ranges under consideration. Note also tBaiith, 1979c and Janowitz, 1977), must be taken into
(31) still assumes a meridional or zonal orientation of tle&count in the global angular momentum budget.
mountain ranges, which is not too bad for the Himalayas, The calculations presented in this paper aim to pro-
which are approximately zonal, or for the Rockies, whialide a leading-order treatment of a problem which appears
are approximately meridional. Finally, consistent with thto the authors not to have been addressed before. They
beta-plane approximation, the geometry of the level teire probably of more qualitative than quantitative value.
rain was approximated as Cartesian, with zonal displa@bviously, many improvements and extensions to this
ments converted from degrees to distances, assumingeatment are possible. In particular, a discrete speadfum
mean latitudeb,. zonal wavenumbers could replace the continuous one used
Table | shows that, for a wind speéd= 10ms~! here. The Boussinesq approximation could also be aban-
or U =20ms~!, the impact of the beta-effect is quiteloned by using a procedure analogous to that described,
important for the RGWD exerted on both mountaifor example, by Smith (1979b, pg. 95). It would pre-
ranges, making it take values considerably larger than thenably be more difficult (and probably less necessary)
non-rotating limit. It is also interesting to note that the abandon the beta-plane approximation in favour of an

3.3 Representative orography
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Table I. Input and output parameters for the Himalayas aedRbcky Mountains: Mean latitude, zonal half-width, megithl half-
width, aspect ratio, beta-plane small parameter, incomiimgl velocity, inverse Rossby number, beta-effect numthery normalised by
non-rotating value and drag normalised by quasi-geostrogatue.

Range @0(°N) | a(km) | b(km) 0 e | Ums™") | Ro T Ng | D/Dy | D/Dga
Himalayas 33 2597 959 | 2.708 | 0.2318 10 | 20.57| 1291 | 11.75 0.964
20 | 10.29| 6.46 6.77 0.962
Rockies 39 997 1297 | 0.769 | 0.2514 10 9.13 | 1.764 7.21 0.991
20| 4.563| 0.882| 2.598 0.987

explicit treatment of the spherical geometry of the Eartieixeira MAC, Miranda PMA, Argain, JL, Valente, MA. 2005. Re
Nevertheless, all these developments (some of which havant gravity wave drag enhancement in linear stratified fhoer

... _mountainsQ. J. R. Meteorol. Soc. 131 1795-1814.
already been pursued elsewhere for neutrally Stratmﬁ#gmpson L, Flierl GR. 1993. Barotropic flow over finite isteld

stratified fluids topped by a rigid lid or a free surface) topography: steady solutions on the beta-plane and thialinélue
remain open to further investigation. We must emphasiseiroblem.J. Fluid Mech. 250 553-586.

; uburn J. 2006. Vertical discretizations giving optimapresentation
however, that our goal was merely to give a flavour of tr:l-gof normal modes: Sensitivity to the form of the pressuredigat

inclusion of internal Rossby-gravity waves in the existingterm.Q. J. R Meteorol. Soc. 132 2809-2825.

mesoscale drag context. Thuburn J, Woollings TJ. 2005. Vertical discretizationsdompressible
Euler equation atmospheric models giving optimal repriegem of
normal modesJ. Comput. Phys. 203 386—404.
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