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Abstract

We review the use of neural field models for mod-

elling the brain at the large scales necessary for in-

terpreting EEG, fMRI, MEG and optical imaging data.

Albeit a framework that is limited to coarse-grained

or mean-field activity, neural field models provide a

framework for unifying data from different imaging

modalities. Starting with a description of neural mass

models we build to spatially extended cortical models

of layered two-dimensional sheets with long range ax-

onal connections mediating synaptic interactions. Re-

formulations of the fundamental non-local mathemat-

ical model in terms of more familiar local differential

(brain wave) equations are described. Techniques for

the analysis of such models, including how to deter-

mine the onset of spatio-temporal pattern forming in-

stabilities, are reviewed. Extensions of the basic for-

malism to treat refractoriness, adaptive feedback and

inhomogeneous connectivity are described along with

open challenges for the development of multi-scale

models that can integrate macroscopic models at large

spatial scales with models at the microscopic scale.

1 Introduction

Systems of equations that can model the brain at the

very large scale are becoming increasingly important

for underpinning experimental techniques including

those of EEG, fMRI, MEG and optical imaging using

voltage sensitive dyes. All of these can reveal pat-

terns of spatio-temporal activity that span centimetres
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of tissue in the cerebral cortex. One brute-force ap-

proach to building models that can help make sense

of these rich dynamical patterns is to consider the de-

tailed properties of synapses, neurons, microcircuits

and cortical columnar organisation and build vast

computational compartmental models [1]. Although

such an approach may bring one close to the neurobi-

ology, the complexity of such models is a severe bar-

rier to gaining insight into emergent neurodynamics.

An alternative approach is to consider coarse-grained

cortical units, called neural masses, and use these as

building blocks for cortical tissue models. Such an ap-

proach has two main advantages. Firstly, as opposed

to the brute-force approach there is a drastic reduc-

tion in the dimensionality of both the parameter and

variable space. Secondly, since detailed knowledge of

single neuron properties (ionic currents and dendritic

structure) is not required, much of the experimental

data (on connectivity, neurotransmitter types, distri-

bution of axonal speeds) needed to constrain such

models is already available. The current mathematical

approach for understanding coarse-grained activity of

large ensembles of neurons in cortex is based around

the work of Wilson and Cowan [2, 3], Amari [4, 5] and

Nunez [6] in the 1970s. Because the number of neu-

rons and synapses in even a small piece of cortex is so

vast a natural first approximation is to take a contin-

uum limit and treat cortical space as continuous, giv-

ing rise to the notion of a neural field model. These

models typically take the form of integro-differential

equations. Their non-local nature (arising from long

range axonal connections) has led to the development

of a set of analytical and numerical tools for the study

of waves and patterns based around natural exten-

sions of those used for local partial differential equa-
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tion (PDE) models. Indeed they have been used in

a number of neural contexts including understand-

ing mechanisms for short term working memory [7],

motion perception [8], representations in the head-

direction system [9], and feature selectivity in the vi-

sual cortex [10]. For a review of such models in both

one and two dimensions that can incorporate real-

istic forms of axo-dendritic interactions we refer the

reader to [11, 12]. Albeit a framework that is limited

to coarse-grained or mean-field activity, neural field

models provide a direct connection from neural activ-

ity to EEG and fMRI data [13, 14] (unifying data from

different imaging modalities) as well as a providing

a bridge to cognitive theories of brain function [15].

Moreover, dynamic causal modelling (DCM) (see [16]

for a review), which is frequently invoked for the in-

terpretation of fMRI data, is now being extended from

a data-driven perspective to incorporate activity mod-

els based upon neural field equations [17]. In light of

the recent and rapid advances in the imaging of large

scale cortical dynamics it is thus timely to review how

neural field models can underpin empirical research

that emphasises brain structure, dynamics and func-

tion.

We begin this overview of the practical uses of neu-

ral field models by first describing their basic building

block, namely a neural mass model of a homogeneous

neuronal population (which we may loosely think of

as being a part of a cortical column). Next we describe

the dynamics of an interacting set of neural masses

(now at the scale of a whole cortical column) and ex-

plore their dynamics using bifurcation theory to un-

cover the natural time-scales for emergent rhythms.

Focusing on the Liley et al. model [18], we review

the success of such descriptions in generating oscil-

lations consistent with the alpha band of the human

EEG spectrum. Extensions to this population model

to treat refractoriness and spike-frequency adaptation

are also discussed. Next we show to model a cor-

tical area as a two-dimensional continuous network

of such cortical columns, defining a neural field. Af-

ter reviewing the basic instability mechanism that can

lead to the formation of travelling patterns of activ-

ity we show how to formulate the model in terms of

a PDE, recovering the Jirsa-Haken-Nunez brain wave

equation in one spatial dimension [19]. In two spa-

tial dimensions we show how the full non-local dy-

namics of a neural field model can be approximated

with a local PDE model and consider its extension to

treat patchy connections of the type that arise when

isotropic connectivity is periodically modulated. We

also discuss the effects that more general inhomoge-

neous connectivities can have on wave propagation

through cortex, using mathematical analysis to em-

phasise the conditions for wave propagation failure.

As an exemplar of the gains to be made with coarse-

grained modelling we report on recent work of Bojak

et al. [13] that utilises neural field models with realistic

anatomical and physiological parameters for a folded

cortex and a realistic head model to predict EEG and

fMRI responses. Finally we discuss future directions

for the mathematical descriptions of neural tissue rel-

evant to neuroimaging.

2 Population modules

It is common practice to define a neural mass as a col-

lection of thousands of near identical interconnected

neurons with a preference to operate in synchrony.

The spatial extent of this population is taken to be on

the order of a few hundred micrometers. The state

variable describing the activity of the population is

the average membrane potential. Perhaps the most

well known neural mass model is that of Jansen and

Rit [20] based on the original work of Lopes Da Silva

et al. [21]. Such lumped parameter models are capa-

ble not only of producing EEG style alpha rhythms

but can generate more complex signals ranging from

delta to gamma seen in EEG and MEG recordings

(by appropriately modifying the population kinetics

within a physiologically plausible range) [22]. More-

over they are amenable to mathematical analysis us-

ing techniques from dynamical systems theory and

notably bifurcation theory [23]. However, it is well to

mention here that because of the “near to synchrony”

assumption, neural mass models are unable to say
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Figure 1: A diagram of a local cortical module repre-

sented by the interaction of two neuronal populations,

one excitatory (E) and the other inhibitory (I).

anything about more complex behaviours within a

single population, such as phase-locked states (away

from synchrony) or clustering. Recent approaches

that improve upon this situation have been devel-

oped by Stefanescu and Jirsa (using mode decompo-

sition techniques) [24] and Laing and Kevrekidis (us-

ing “equation free modelling” and generalised poly-

nomial chaos expansions) [25, 26].

One of the more successful population models for

generating rhythms consistent with those found in the

human EEG spectrum is that of Liley et al. [18]. In this

mesoscopic model cortical activity is locally described

by the mean soma membrane potentials of an interact-

ing excitatory and an inhibitory population. The in-

teraction is through a model of the synapse that treats

both shunting currents and a realistic time course for

post-synaptic conductance changes. Referring to the

diagram in Fig. 1 the model can be written in a suc-

cinct form as

τaȧ = −a+
∑
b

Wab(hb − a), (1)

with a, b ∈ {E,I}, where E (I) is the mean mem-

brane potential in the excitatory (inhibitory) popula-

tion. The relaxation time constants for the popula-

tions are given by τa, whilst ha describes a reversal

potential such that hE (hI ) is positive (negative) with

respect to the resting state. The weights Wab are the

product of a static strength factor and a dynamic con-

ductance Wab = W abgab, where

Qabgab = fb(b(t−∆ba)) + Pab. (2)

Here Qab represents a linear differential operator:

Qab =
(

1 +
1
αab

d
dt

)2

, (3)

and the conductances are considered to be driven by a

combination of firing from populations to which they

are connected and some external drive. The former is

modelled using a sigmoidal function:

fa(z) =
1

1 + e−βa(z−θa)
, βa > 0, (4)

and the latter, Pab, is considered constant. Note the

inclusion of delays ∆ba in (2) that represent the fixed

axonal communication lag for action potentials prop-

agating from population b to a. Exploiting the linear-

ity of Qab the model for the conductance can be inte-

grated to give gab = ηab ∗ [fb + Pab], where ∗ denotes

a temporal convolution: (η ∗ f)(t) =
∫ t

0
η(t− s)f(s)ds

and

ηab(t+ ∆ab) = α2
abte

−αabtH(t), (5)

where H is a Heaviside step function. We recog-

nise ηab(t) as a delayed α-function, commonly used

in computational neuroscience to mimic the rise and

fall of a post-synaptic conductance change.

To determine the properties of such a population

model it is natural to first consider the stability of the

steady state, which we shall denote by ass (defined by

ȧ = 0). Linearising about this fixed point and seeking

solutions of the form eλt gives a characteristic equa-

tion detE(λ) = 0 where the entries of the 2× 2 matrix

E(λ) are

[E(λ)]ab = (λτa + κa) δab − Ŵabη̃ab(λ). (6)

Here Ŵab = W ab(hb − ass)f ′b(bss), δab is the Kronecker-

delta, κa = 1 +
∑
bW abfb(bss) and η̃ab(λ) is a Laplace

transform given by:∫ ∞
0

dsηab(s)e−λs =
e−λ∆ba

(1 + λ/αab)2
. (7)

It is instructive to consider the limit τa → 0, αab = α,

κa = κ and ∆ab = ∆ in which case the characteristic

equation takes the simple form

κ(1 + λ/α)2 = Γ±e−λ∆, (8)
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where Γ± are the two eigenvalues of Ŵ . If a pair of

complex conjugate eigenvalues λ = ν ± iω crosses the

imaginary axis ν = 0 from left to right in the com-

plex plane, then a Hopf bifurcation can occur, lead-

ing to the formation of periodic oscillations. This is

almost generic in the presence of delays, see for ex-

ample [27]. For an interesting discussion on the role

of delays in models for generalised epileptic seizures

we refer the reader to Breakspear et al. [28]. For

zero-delay (∆ = 0) let us suppose that Ŵ has a pair

of complex conjugate eigenvalues re±iθ with 0 < θ <

π. In this case a Hopf bifurcation occurs when 1 =√
r/κ cos(θ/2) independent of α with a non-zero fre-

quency ω = α
√
r/κ sin(θ/2). However, in general a

Hopf bifurcation will depend on the relative time-

scales in the model and should be determined as the

solution of detE(iω) = 0. In practice it is much easier

to numerically determine the stability of fixed points

of the full ten dimensional model, defined by equa-

tions (1–5), using software such as XPPAUT [29].

Moreover, this allows us to construct bifurcation dia-

grams like those in Fig. 2, which shows the coexistence

of a large and small amplitude periodic orbit, with

time-course shown in Fig. 3. The large amplitude, (∼ 5

Hz) orbit has been suggested to correspond to a form

of epileptic dynamics, whilst the smaller amplitude

(∼ 10 Hz) oscillation is more consistent with the al-

pha band of the EEG spectrum. Moreover, a period

doubling cascade is supported and beyond this the

model is known to support chaos. Indeed the chaotic

behaviour has been extensively investigated in a se-

ries of papers [31, 32, 30], highlighting that the route

to chaos is actually via a novel Shilnikov saddle-node

bifurcation. Note that in contrast the chaotic EEG pat-

terns in the Freeman model of the olfactory system are

generated via the Ruelle-Takens-Newhouse route [33].

For further discussion on the use of neural mass mod-

els in epileptic modelling and human brain rhythms

we refer the reader to [34, 35] and [36] respectively.

It is possible to recover a solely activity based model

from the Liley model by treating the limit of fast re-

laxation τa → 0. In this case the mean membrane

voltages are slaved to the dynamically evolving con-
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Figure 2: Bifurcation diagram for the Liley population

model showing the absolute maximum of E in terms

of PEE for steady state (red), small amplitude periodic

(blue) and large amplitude periodic (green) orbits.

Stable (unstable) branches are solid (dashed). Chaotic

solutions are found after the period doubling cascade.

Parameters are modified from [30] as PIE = 0.005763

ms−1, αEE = αIE = 1.01 ms−1, αII = αEI = 0.142

ms−1, WEE = WIE = 43.31, WII = WEI = 925.80,

βE = 0.3, βI = 0.27, θE = 21.0 mV, θI = 29.0 mV hE =

115.0 mV, hI = −20.0 mV with zero-delays ∆ab = 0.
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Figure 3: An example of multistability in the Liley

population model. A small and large amplitude sta-

ble rhythm co-exist over a range of parameter values.

Here parameters are as in Fig. 2 with PEE = 0.006216

ms−1.
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ductances and we may write E = E(gEE , gEI) and

I = I(gII , gIE). Symbolically the model now takes the

closed form

g = η ∗ [f + P ], f = f ({g}) , (9)

where we suppress indices and use the notation {g}
to emphasise that the firing rate depends on the set of

network conductances. A whole host of models can

be described with such a system of equations, rang-

ing from networks with many more than two mod-

ules and a complicated dependence of the firing rate

on the set of network conductances down to a single

population with self-excitation. A very simple exam-

ple of this latter case for a single conductance g= u can

be obtained for the choice of an exponential synapse

η(t) = αe−αtH(t) and assuming f = f(u) with P = 0,

so that (
1 +

1
α

d
dt

)
u = f(u). (10)

In some sense we may regard this model as one of

the most basic to arise in mathematical neuroscience.

Interestingly it has been subjected to modifications

that improve its ability to model neuronal dynamics

without recourse to abandoning the fast relaxation as-

sumption. One of the main extensions of this type has

been the inclusion of a term to describe refractoriness

[2]. A particular example is that of Curtu and Ermen-

trout [37]:

1
α

du
dt

= −u+
(

1− 1
R

∫ t

t−R
u(s)ds

)
f(u), (11)

where R is the absolute refractory period of the neu-

rons in the population. The fixed point uss satisfies

the equation −uss + (1− uss)f(uss) = 0. For a sigmoid

with 0< f < 1 then there is at least one solution of this

equation for uss ∈ (0,1/2). The characteristic equation

determining the linear stability of the steady state is

calculated as E(λ) = 0, with

E(λ) =
λ

α
+A+ f(uss)

1− e−λR

λR
, (12)

where A = 1 − (1 − uss)f ′(uss). This transcendental

equation allows for the possibility of complex roots,

and not surprisingly it is possible to choose values

for the slope and threshold of the sigmoid such that

0
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Figure 4: Relaxation oscillations in an activity based

single population with self-excitation and refractori-

ness. r = 1000, T ∼ 1.29. r = 100, T ∼ 1.43. r = 10, T ∼
2.24. β = 8, θ = 1/3. The cubic curve is z = 1− u/f(u).

a dynamic bifurcation defined by E(iω) = 0 can occur

[37]. Interestingly periodic solutions that emerge be-

yond such a bifurcation can be analysed explicitly in

some singular limit. To see this we write (11) as a two-

dimensional delay differential equation:

εu̇ = −u+ (1− z)f(u), (13)

ż = u(t)− u(t− 1), (14)

where we have re-scaled time according to t 7→ t/R

and set ε = (αR)−1. Formally setting ε = 0 gives the

graph z = 1 − u/f(u), which we show an example

of in Fig. 4. Note the ’cubic’ shape of this curve,

reminiscent of the nullcline for the fast variable seen

in many excitable systems, and particularly those of

FitzHugh-Nagumo type [38]. In the limit ε → 0 dy-

namics consists of slow evolution along the left and

right branches of the ’cubic’ with fast transitions from

one branch to another. In this case it can be shown

that the period of oscillation satisfies T < 2R (and nu-

merical experiments show that the actual oscillation

period scales linearly with R). Hence, the inclusion

of refractoriness in activity based models is a natural

way to induce oscillations with an emergent period

that is largely set by the refractory time-scale. Another

extension of the basic model (10) is to recognise that

in cortical tissue there are an abundance of metabolic
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processes whose combined effect is to modulate neu-

ronal response. It is convenient to think of these pro-

cesses in terms of local feedback mechanisms. For ex-

ample, spike frequency adaptation (SFA) is a prop-

erty of many single neurons and has been linked to

the presence of a Ca2+ gated K+ current, IAHP [39].

The generation of an action potential leads to a small

calcium influx that increments IAHP, with the end re-

sult being a decrease in the firing rate response to per-

sistent stimuli. A simple phenomenological model of

this process is to add a current, that activates in the

presence of high activity, I − gs, to the right hand side

of (10) [40], where

τ
ds
dt

= −s+ f(u), (15)

and I is a constant bias. This form of SFA leads nat-

urally to the emergence of periodic behaviour. In-

deed in the limit of large τ (slow adaptation) and a

for a steep sigmoid (large β) this period can be cal-

culated explicitly as τ log((g− I)(1 + I)/(I(g− 1− I))

for g > 1 + I and shows a classic relaxation oscillation

between up and down states like those seen in biophys-

ical models of slow (< 1 Hz) oscillations [41]. An al-

ternative approach, consistent with observations first

made by Hill in 1936 [42], is to treat the threshold in

the firing function to be state-dependent. This is ex-

plored in detail in [43, 44] and shown to lead to exotic

dynamics at the network level, including the emer-

gence of dissipative solitons. However, rather than

pursue these extensions in more detail we shall in-

stead next show how to build tissue level models tak-

ing as a starting point models of the form (9).

3 Tissue models

Here we will view a macroscopic part of the neocor-

tex as being adequately modelled as a spatial assem-

bly of population models – a neural field model. Such

a viewpoint has already proven useful in understand-

ing spatial aspects of the alpha rhythm and in partic-

ular cortical travelling waves [6, 45]. For a recent per-

spective on the use of neural field models in interpret-

ing extrinsic optical imaging data (from in vitro exper-

iments on pharmacologically treated brain slices) we

refer the reader to [46].

To develop the extension of (9) to treat spatially con-

tinuous neural sheets (such as a two-dimensional cor-

tex) we will adopt the continuum assumption and treat

a density of neurons at a point with inputs that arise

from the delayed and weighted contribution of activ-

ity at other points in the tissue. Because these interac-

tions are mediated by long-range axonal fibres the re-

sulting tissue-level model is inherently non-local and

is often cast in the form of an integral equation. We

represent this symbolically in the form

g = w⊗ η ∗ f, (16)

where the operator⊗ captures information about both

anatomical connectivity patterns and the distribution

of axonal delays. As a concrete example consider a set

of two-dimensional interacting layered sheets (with

both self and layer to layer interactions), each contain-

ing only one cell type (either excitatory or inhibitory).

The activity in layer a induced by that in layer b (gen-

eralising equation (9)) then takes the form

uab = ηab ∗ψab, (17)

where ψab = ψab(r, t) is given by∫
R2

dr′ wab(r, r′)fb (r′, t− |r− r′|/vab) (18)

and fb is the firing rate in layer b. Here r ∈ R2 and

wab(r, r′) prescribes the coupling strength between po-

sition r in layer a and position r′ in layer b. The veloc-

ity of an action potential travelling along a fibre con-

necting layer b to layer a is denoted vab and under-

lies the space-dependent delay |r− r′|/vab for signals

propagating over a distance |r− r′|. Note that (18) pro-

vides meaning for the operator on the right hand side

of the expression ψ = w ⊗ f . To close the system of

equations one could choose the firing rate to depend

on some dynamic mean-membrane potential as in the

Liley model. Alternatively, to recover a purely activity

based model in the spirit of Wilson-Cowan and Amari

one could set fa = fa(ha), where ha =
∑
b uab. For

simplicity we shall restrict further discussion to this

case. For a recent historical perspective of the Wilson-

Cowan model we refer the reader to [47]. Suffice to
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say that, apart from their relevance to neuroimaging,

neural field models have found many applications in

neuroscience, including to understanding the gener-

ation of visual hallucinations [48, 49], modelling ori-

entation tuning in visual cortex area v1 [10], describ-

ing travelling waves of activity in v1 during binocular

rivalry [50, 51], models of working memory [7] and

encoding of continuous stimuli [52], motion percep-

tion [8], somatosensory illusions [53], and developing

a theory of cognitive robotics [54] for example.

Neural field models of the type (16) are nonlinear

spatially extended systems and thus have all the nec-

essary ingredients to support pattern formation. The

analysis of such behaviour is typically performed with

a mixture of linear Turing instability theory, weakly

nonlinear perturbative analysis and numerical simu-

lations (see [55] for a review). In the absence of de-

tailed anatomical data it is common practice to con-

sider cortico-cortical connectivity functions to be ho-

mogeneous and isotropic so that wab(r, r′) = wab(|r−
r′|). In this case a homogeneous steady state is ex-

pected and can be defined by hss
a =

∑
bWabfb(hss

b ),

where Wab =
∫

R2 drwab(r). For concreteness we shall

take

wab(r) = w0
abe
−r/σab/(2π), (19)

where r = |r|. Linearising around the steady state

and considering perturbations of the form ha(r, t) ∼
eλteik·r, gives an equation for the continuous spec-

trum λ = λ(k), for k = |k|, in the form E(k,λ) = 0 [56],

where E(k,λ) = det(D(k,λ)− I), and

[D(k,λ)]ab = η̃ab(λ)Gab(k,−iλ)γb. (20)

Here γa = f ′a(hss
a ) and Gab(k,ω) is the Fourier trans-

form of Gab(r, t) = wab(r)δ(t− r/vab) defined by

Gab(k,ω) =
∫

R3
dr dtGab(r, t)e−i(k·r+ωt)

= w0
ab

Aab(ω)
(A2

ab(ω) + k2)3/2
, (21)

where Aab(ω) = 1/σab + iω/vab. Here we use a nota-

tion that distinguishes functions and their transforms

simply by their arguments, namely (r, t) for the orig-

inal space and (k,ω) for the Fourier space. An in-

stability occurs when for the first time there are val-

ues of k at which the real part of λ is non-negative.
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Figure 5: Critical curves showing the instability bor-

ders for dynamic instabilities in the (v, γ) plane, where

γ = f ′(hss).

A Turing bifurcation point is defined as the smallest

value of some order parameter for which there ex-

ists some non-zero kc satisfying Re (λ(|kc|)) = 0. It

is said to be static if Im (λ(|kc|)) = 0 and dynamic if

Im (λ(|kc|)) ≡ ωc 6= 0. The dynamic instability is often

referred to as a Turing-Hopf bifurcation and generates

a global pattern with wavenumber |kc|, which moves

coherently with a speed c = ωc/|kc|, i.e. as a periodic

travelling wave train. If the maximum of the disper-

sion curve is at |kc| = 0 then the mode that is first ex-

cited is another spatially uniform state. If ωc 6= 0, we

would then expect the emergence of a coherent net-

work oscillation with frequency ωc.

For example, consider two populations, one exci-

tatory and one inhibitory with a common firing rate

function fa = f and single axonal conduction velocity

vab = v, and use the labels a ∈ {E,I}, withw0
EE,IE = 1,

w0
II,EI = −4, αab = 1 and ∆ba = 0. In neocortex the

extent of excitatory connections WaE is broader than

that of inhibitory connections WaI , and so we take

σaI = 1 and σaE = 2. In Fig. 5 we show a plot of the

critical curves in the (v, γ) plane above which the ho-

mogeneous steady state, hss
E,I = hss, is unstable to dy-

namic instabilities with |kc|= 0 (bulk oscillations) and

|kc| 6= 0 (travelling waves). Figure 6 shows a pattern of

parallel moving stripes seen beyond the Turing-Hopf
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Figure 6: Snapshots of a periodic travelling wave in

uEE , each 1/4 of a period later than the previous one

(ordered top left, top right, bottom left, bottom tight),

for the 2D model of Fig. 5 at v = 12 and γ = 15 (on a

30× 30 domain).

bifurcation.

Despite the natural framework for neural field

models being non-local integral equations with space-

dependent delays the techniques for analysing them

are nowhere near as developed as they are for local

PDE models. Thus for this reason it is sometimes

worth constructing equivalent PDE models. To date

progress in this area has been made by Nunez [6] and

Jirsa and Haken [19] for neural field models in one

spatial dimension with axonal delays, making links

to the theory of damped inhomogeneous wave equa-

tions. For example in a one-dimensional setting with

wab(x) = e−|x|/σab/(2σab), the equivalent PDE model

to ψ = w⊗ f is[
A2
ab − ∂xx

]
ψab =

1
σab
Aabfb, (22)

where

Aab =
(

1
σab

+
1
vab

∂t

)
. (23)

Equation (22) is the Jirsa-Haken-Nunez brain wave

equation [19, 6, 57]. Turing instabilities in such mod-

els (built from two populations) have been exhaus-

tively analysed in [58, 59] and lead to bifurcation sce-

narios consistent with those in Fig. 5, when consider-

ing analogous architectures. Moreover, a weakly non-

linear analysis of the travelling and standing waves

that develop beyond the point of instability has been

developed. The appropriate amplitude equations are

found to be the coupled mean-field Ginzburg-Landau

equations describing a Turing-Hopf bifurcation with

modulation group velocity of O(1). In particular this

has allowed an investigation of Benjamin-Feir mod-

ulational instabilities in which a periodic travelling

wave (of moderate amplitude) loses energy to a small

perturbation of other waves with nearly the same fre-

quency and direction. For asymmetric kernels (w(x) 6=
w(−x)) or symmetric kernels with a peak away from

the origin then the stability analysis of the homoge-

neous steady state involves the solution of transcen-

dental equations (as it would for an ordinary differen-

tial equations with a fixed delay), though can be anal-

ysed making use of Lambert functions [60].

For a single self-coupled population with σaa = σ,

vaa = v and a simple exponential synaptic filter ηaa =

αe−αtH(t), (22) also supports travelling fronts [61].

Moreover, for steep sigmoids (β →∞ and θa = θ) the

speed can be calculated in closed form as

c =
(2θ− 1)v

2θ− 1− 2θv/(ασ)
. (24)

This strong dependence of the wave speed on the

threshold θ has now been indirectly established in

rat cortical slices (bathed in the GABAA blocker pi-

crotoxin) [62]. An applied positive (negative) electric

field across the slice increased (decreased) the speed of

wave propagation, consistent with (24) assuming that

a positive (negative) electric field reduces (increases)

the threshold θ. Of course travelling waves are also

possible solutions of the more general non-local for-

malism described by (16), and have been explored

mathematically in a number of papers, reviewed in

[11], with a particular regard to studying waves in cor-

tical slices [63], and notably epileptiform activity [64].

As well as supporting periodic travelling waves the

brain wave equation (22) can support propagating

pulses. A detailed mathematical analysis of waves of

this type has been performed in [65] for the case of a

Heaviside firing rate function (a sigmoid with infinite

gain). The treatment of smooth firing rates can be pur-

8



t0 50 100 150 200 250 300

0

5

10

15

20 0

0.2

0.4

0.6

0.8
x

Figure 7: Numerical simulations of a coupled neural

field model in one spatial dimension showing the in-

teraction of two travelling pulses and the emergence

of transient complex behaviour ultimately leading to

an elevated firing rate across the whole tissue. The

model is defined by [A2
a − ∂xx]ψa = ΓaAaH(ue − ui −

θ)/σa, Aa = (σ−1
a + v−1

a ∂t), (1 + α−1
a ∂t)ua = ψa, with

a ∈ {e, i}, describing a model with short range inhi-

bition and long range excitation. The plot shows the

evolution of ue with ve = 0.2, vi = 1, αe = αi = 1,

Γe = 1, Γi = 0.7, σe = 2, σi = 1 and θ = 0.07.

sued for waves in one space-dimension using a stan-

dard travelling wave analysis (in which one looks for

stationary profiles in a co-moving frame ξ = x− ct of

speed c < v). This can often only be done numerically,

say using the techniques of spatial dynamics and con-

structing homoclinic connections, as in [61]. Interest-

ingly propagating pulses of (22) can scatter in novel

ways, leading to an elevated firing across the whole

tissue [65]. An example of this is shown in Fig. 7.

Finding equivalent brain wave equations in two-

spatial dimensions has proved far more challenging

[18], with various approximations being made to ob-

tain a local model. The most common of these is the

so-called long-wavelength approximation, although

this has recently been improved upon in [56]. In the

former case this amounts to expanding (21) around

k = 0 for small k, yielding a “nice” rational poly-

nomial structure to give (A2
ab(ω) + 3k2/2)ψab(k,ω) =

fb(k,ω) which may then be inverse transformed to

give the telegraph PDE:(
A2
ab −

3
2
∇2

)
ψab = w0

abfb. (25)

This model has been intensively studied by a number

of authors in the context of EEG modelling, see for ex-

ample [66, 67, 68].

Undoubtedly the assumption of isotropic connec-

tivity is a strong one for the modelling of cortical tis-

sue. That it has been pursued so aggressively to date

is more a reflection of the mathematical tractability of

such models as opposed to their relation to real tis-

sue. Indeed questions about the existence, unique-

ness and absolute stability of solutions for truly in-

homogeneous models are only just beginning to be

addressed using tools from functional analysis [69].

However, one symmetry breaking effect that can be

tackled without too much effort is that of the loss of

continuous rotation symmetry. This is an important

issue to treat in light of the fact that it is now known

that (visual) cortex has a crystalline micro-structure at

the millimeter length scale (reviewed in [70]). This

has given rise to the notion of patchy connections that

break continuous rotation symmetry (but not neces-

sarily continuous translation symmetry). The natural

way to model this is to introduce a modified connec-

tivity kernel wP
ab(r, r′) as

wP
ab(r, r′) = wab(|r− r′|)Jab(r− r′), (26)

where Jab(r) varies periodically with respect to a reg-

ular planar lattice L. Note that the patchy kernel wPab
is homogeneous, but not isotropic. The generalisation

of brain wave equations to treat patchiness that arise

via periodic modulation of an isotropic kernel has re-

cently been developed by Robinson [71] and analysed

further in [56]. In essence the brain wave equation (25)

is replaced by an infinite set of PDEs – indexed by the

reciprocal lattice vectors q of the underlying lattice L,

that arise in the Fourier series representation

Jab(r) =
∑

q

J
q
abe

iq·r. (27)

In the long-wavelength approximation this set of

PDEs is obtained from (25) under the replacement

∇ → ∇ − iq, ψab → ψ
q
ab and uab → ηab ∗

∑
q J

q
abψ

q
ab.

Assuming that there is a natural cut-off in q, then

we need only evolve a finite subset of these PDEs to

see the effects of patchy connections on solution be-

haviour. For example with a square lattice we would

need only to specify two reciprocal lattice vectors.

In this case a Turing instability analysis shows that,
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compared to the unmodulated case shown in Fig. 5,

the Hopf bifurcation is transformed to a Turing-Hopf

bifurcation with critical wavevectors coinciding with

those of the lattice. With increasing v the dominant bi-

furcation is also of Turing-Hopf type. However, in this

case it is a ring of wavevectors surrounding the recip-

rocal lattice vectors that go unstable first. In both cases

this suggests the emergence of periodic travelling

waves aligned to the lattice size and direction, which

are indeed observed in direct numerical simulations

[56]. For a more general inhomogeneous kernel of

the form wI
ab(r, r′) = wab(|r− r′|)Jab(r′), then the PDE

formulation goes over with the source term fb(r, t)

in (25) replaced by Jab(r)fb(r, t). When the modulat-

ing kernel Jab(r) varies both weakly and rapidly in

space then one may use techniques from homogeni-

sation theory to study wave propagation and its fail-

ure [72]. Indeed recent work avoiding the assumption

of rapid spatial variation shows that for a one dimen-

sional neural field model with J(x) = 1 + ε sin(2πx/σ)

and f(u) = H(u− θ) then pulsating waves can occur

(where say a front edge is modulated in space) with

a wave speed c0
√

1− (ε/εc)2 so that propagation fail-

ure occurs for some ε > εc = εc(σ, θ) [73]. Here c0 is

the speed of the wave in the homogeneous case (when

ε= 0 and see equation (24) for example). Further treat-

ment of heterogeneous connection topologies can be

found in [74, 75, 76, 77].

One of the more recent and compelling uses of neu-

ral field modelling is by Bojak and colleagues [13, 14].

They relate different (co-registered) imaging modal-

ities to one another, namely EEG (with its excellent

temporal resolution) and fMRI (with its superior spa-

tial resolution) by modelling an underlying neural

generator that is based upon the Liley model [18] dis-

cussed earlier. Importantly regional connectivity data

is incorporated using the CoCoMac database [78],

which contains information on structural connectiv-

ity in the macaque brain (from tract-tracing experi-

ments). In order to be compatible with true fMRI im-

ages their computational model uses triangular spa-

tial grids matched to cortical geometries extracted

from structural MR images. From the activity of the

Figure 8: An EEG scalp isopotential (left) generated

from the mean membrane excitatory potential of a

neural field model (middle) and the corresponding

fMRI BOLD signal construction on the cortical surface

(right), illustrating the capabilities of the recent com-

putational framework developed by Bojak and col-

leagues [13, 14]. Associated animations may be found

at http://www.mbfys.ru.nl/neuropi/cns09/.

model cortical sheet, the simulated EEG at the scalp is

found using a realistic volume conductor model. The

response for fMRI BOLD is constructed using an es-

tablished model for neurovascular coupling and con-

volving with “Balloon-Windkessel” haemodynamics

[79]. This is one of the first attempts to seriously com-

bine neuronal dynamics and brain connectivity along

the lines advocated in [80]. An example of output

from their modelling approach is shown in Fig. 8. For

a recent review on the challenges in combining EEG

and fMRI imaging modalities using neural models we

refer the reader to Valdes-Sosa et al. [81], and for work

on folded three-dimensional cortical sheets and their

use in forward EEG and MEG prediction see Jirsa et

al. [82]. Other work on using realistic anatomical con-

nectivities in large scale neural models (especially as

it relates to the resting brain state) can be found in

[83, 84, 85].

There are a number of natural extensions to neu-

ral field models to incorporate ever more biological

realism, including the incorporation of slow intrin-

sic currents that underlie bursting behaviour in single

neurons [86, 11], synaptic depression and adaptation

[87], dendritic processing [61], neuromodulation, say

by endo-cannabinoids [88], and anaesthetic drug ac-

tion [66, 89, 68, 90]. Moreover, it is possible to gener-
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alise such models even further to treat feature selec-

tivity such as that observed in visual cortex for ori-

entation [10], spatial frequency [91] and texture [92].

In this case neural activity is now also considered to

be a function of some set of features χ and interac-

tions must be specified by a feature dependent kernel

wab(r′, t′, χ′|r, t, χ). Indeed with the increasing march

of experimental progress in recording from popula-

tions of neurons we are now ideally poised to push

forward with the development of multi-scale models

that can integrate macroscopic models at large spa-

tial scales with models at the microscopic scale [93].

One outstanding challenge for the development of tis-

sue level firing rate models is how best to include gap

junction coupling [94].

4 Discussion

A known limitation of neural field models is that

they only try to track mean activity levels and can-

not, by definition, track the higher order correlations

of any underlying spiking model. Of course one

approach would be to abandon them altogether in

favour of more biophysically detailed models. How-

ever, as we have discussed here they can go a re-

markably long way to providing a framework for

interpreting neuro-imaging data whilst maintaining

contact with known brain structure, dynamics and

function. Rather it is preferable to work with spik-

ing models and establish more concretely the link to

mean activity models, and when more sophisticated

kinetic models of brain activity are required [95, 96].

Moreover, in some instances it is possible to analyse

spiking networks directly (usually under the assump-

tion of global coupling and fast synaptic interactions)

as in the spike-density approach [97, 98, 99], which

makes heavy use of the numerical solution of cou-

pled partial differential-integral equations. In other

situations equations going beyond the mean-field ap-

proach have been proposed that govern second-order

correlations [100, 101, 102, 103]. Indeed there has

been a recent upsurge of interest in this area adapting

methods from non-equilibrium statistical physics to

determine corrections to mean-field theory involving

equations for two-point and higher-order cumulants

[104, 105]. One immediate, yet potentially tractable,

challenge would be to develop a framework for un-

derstanding networks of synaptically interacting non-

linear integrate-and-fire networks. At the single neu-

ron level such models are already known to be able

to capture many different physiological firing pat-

terns and at the network level are computationally far

cheaper to implement than their conductance based

cousins yet still able to generate the rich repertoire of

behaviour seen in a real nervous system [106]. One

step in this direction has already been undertaken for

the absolute-integrate-and-fire model [107] and this

may well be a natural spiking model to pursue for

the development of a specific soluble spiking neuro-

dynamics.
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Buitenweg. A dynamic neural model of localization

of brief successive stimuli in saltation. BMC Neuro-

science, 10:P350, 2009.

[54] W Erlhagen and E Bicho. The dynamic neural field

approach to cognitive robotics. Journal of Neural Engi-

neering, 3:R36–R54, 2006.

[55] P C Bressloff. Les Houches Lectures in Neurophysics,

chapter Pattern formation in visual cortex. Springer-

Verlag, 2004.

[56] S Coombes, N A Venkov, L Shiau, I Bojak, D T J

Liley, and C R Laing. Modeling electrocortical activ-

ity through improved local approximations of integral

neural field equations. Physical Review E, 76:051901,

2007.

[57] P l Nunez. Neocortical Dynamics and Human EEG

Rhythms. Oxford University Press, 1995.

[58] N A Venkov, S Coombes, and P C Matthews. Dy-

namic instabilities in scalar neural field equations

with space-dependent delays. Physica D, 232:1–15,

2007.

[59] N A Venkov. Dynamics of Neural Field

Models. PhD thesis, School of Mathemat-

ical Sciences, University of Nottingham,

http://www.umnaglava.org/pdfs.html, 2009.

13



[60] P Grindrod and D Pinotsis. On the spectra of certain

integro-differential-delay problems with applications

in neurodynamics. Physica D, submitted, 2009.

[61] S Coombes, G J Lord, and M R Owen. Waves

and bumps in neuronal networks with axo-dendritic

synaptic interactions. Physica D, 178:219–241, 2003.

[62] K A Richardson, S J Schiff, and B J Gluckman. Control

of traveling waves in the mammalian cortex. Physical

Review Letters, 94:028103, 2005.

[63] J-Y Wu, X Huang, and C Zhang. Propagating Waves

of Activity in the Neocortex: What They Are, What

They Do. The Neuroscientist, 14(5):487–502, 2008.

[64] D J Pinto and G B Ermentrout. Spatially structured

activity in synaptically coupled neuronal networks: I.

Travelling fronts and pulses. SIAM Journal on Applied

Mathematics, 62:206–225, 2001.

[65] C Laing and S Coombes. The importance of differ-

ent timings of excitatory and inhibitory pathways in

neural field models. Network: Computation in Neural

Systems, 17:151 – 172, 2006.

[66] M L Steyn-Ross, D A Steyn-Ross, J W Sleigh, and

D T J Liley. Theoretical electroencephalogram sta-

tionary spectrum for a white-noise-driven cortex: Ev-

idence for a general anesthetic-induced phase transi-

tion. Physical Review E, 60:7299–7311, 1999.

[67] P A Robinson, C J Rennie, J J Wright, H Bahramali,

E Gordon, and D l Rowe. Prediction of electroen-

cephalographic spectra from neurophysiology. Physi-

cal Review E, 63:021903, 2001.

[68] I Bojak and D T J Liley. Modeling the effects of anes-

thesia on the electroencephalogram. Physical Review

E, 71:041902, 2005.

[69] O Faugeras, F Grimbert, and J-J Slotine. Absolute sta-

bility and complete synchronization in a class of neu-

ral fields models. SIAM Journal on Applied Mathemat-

ics, 69:205–250, 2008.

[70] P C Bressloff and J D Cowan. The visual cortex as a

crystal. Physica D, 173:226–258, 2002.

[71] P A Robinson. Patchy propagator, brain dynamics,

and the generation of spatially structured gamma os-

cillations. Physical Review E, 73:041904, 2006.

[72] P C Bressloff. Traveling fronts and wave propagation

failure in an inhomogeneous neural network. Physica

D, 155, 2001.

[73] S Coombes and C R Laing. Neural fields with periodic

modulation. Physical Review E, in preparation, 2009.

[74] V K Jirsa and J A S Kelso. Spatiotemporal pattern for-

mation in neural systems with heterogeneous connec-

tion topologies. Physical Review E, 62:8462–8465, 2000.

[75] P C Bressloff. Spatially periodic modulation of cortical

patterns by long-range horizontal connections. Phys-

ica D, 185:131–157, 2003.

[76] H Schmidt, A Hutt, and L Schimansky-Geier. Wave

fronts in inhomogeneous neural field models. Physica

D, 238:1101–1112, 2009.

[77] C A Brackley and M S Turner. Two-point heteroge-

neous connections in a continuum neural field model.

Biological Cybernetics, 100:371–383, 2009.

[78] R Kötter and E Wanke. Mapping brains without co-

ordinates. Philosophical Transactions of the Royal Society

B, 360:751–766, 2005.

[79] K J Friston, L Harrison, and W Penny. Dynamic causal

modelling. NeuroImage, 19:1273–1302, 2003.

[80] M Breakspear and V K Jirsa. Neuronal dynamics and

brain connectivity. In V K Jirsa and A R McIntosh,

editors, Handbook of Brain Connectivity, pages 3–64.

Springer, 2007.

[81] P A Valdes-Sosa, J M Sanchez-Bornot, R C Sotero,

Y Iturria-Medina, Y Aleman-Gomez Y, J Bosch-

Bayard, F Carbonell, and T Ozaki. Model driven

EEG/fMRI fusion of brain oscillations. Human Brain

Mapping, 30:2701–2721, 2009.

[82] V K Viktor Jirsa, K J Jantzen, A Fuchs, and J A Scott

Kelso. Information Processing in Medical Imaging, chap-

ter Neural Field Dynamics on the Folded Three-

Dimensional Cortical Sheet and Its Forward EEG and

MEG, pages 286–299. Springer Berlin, 2001.

[83] C J Honey, R Kötter, M Breakspear, and O Sporns.

Network structure of cerebral cortex shapes func-

tional connectivity on multiple time scales. Proceed-

ings of the National Acadamy of Sciences USA National

Academy of Sciences, USA, 104:10240–10245, 2007.

[84] A Ghosh, Y Rho, A R McIntosh, R Kötter, and V K

Jirsa. Noise during rest enables the exploration of the

brain’s dynamic repertoire. PLoS Computational Biol-

ogy, 4(10):e1000196, 2008.

[85] G Deco, V K Jirsa, A R McIntosh, O Sporns, and

R Kötter. Key role of coupling, delay, and noise in

resting brain fluctuations. Proceedings of the National

Academy of Sciences, 106:10302–10307, 2009.

14



[86] S Coombes. Dynamics of synaptically coupled

integrate-and-fire-or-burst neurons. Physical Review E,

67:041910, 2003.

[87] Z P Kilpatrick and P C Bressloff. Effects of synaptic

depression and adaptation on spatiotemporal dynam-

ics of an excitatory neuronal network. Physica D, to

appear, 2009.

[88] M Zachariou, D W N Dissanayake, S Coombes, M R

Owen, and R Mason. Sensory gating and its modula-

tion by cannabinoids: electrophysiological, computa-

tional and mathematical analysis. Cognitive Neurody-

namics, pages 159–170, 2008.

[89] D T J Liley, P J Cadusch, M Gray, and P J Nathan. Drug

induced modification of the system properties asso-

ciated with spontaneous electroencephalographic ac-

tivity. Physical Review E, 68:051096, 2003.

[90] B L Foster, I Bojak, and D T J Liley. Population based

models of cortical drug response: insights from anaes-

thesia. Cognitive Neurodynamics, 2:283–296, 2008.

[91] P C Bressloff and J D Cowan. Spherical model of ori-

entation and spatial frequency tuning in a cortical hy-

percolumn. Philosophical Transactions of the Royal Soci-

ety B, 358:1643–1667, 2003.

[92] P Chossat and O Faugeras. Hyperbolic planforms

in relation to visual edges and textures perception.

http://arxiv.org/abs/0907.0963v2, 2009.

[93] O Faugeras, J Toubal, and B Cessac. A constructive

mean-field analysis of multi population neural net-

works with random synaptic weights and stochastic

inputs. Frontiers in Computational Neuroscience, 3, 2009.

[94] S Coombes. Neuronal networks with gap junctions:

A study of piece-wise linear planar neuron models.

SIAM Journal on Applied Dynamical Systems, 7:1101–

1129, 2008.

[95] M Breakspear and S Knock. Kinetic models of brain

activity. Brain Imaging and Behavior, 2:270–288, 2008.

[96] G Deco, V K Jirsa, P A Robinson, M Breakspear, and

K J Friston. The dynamic brain: From spiking neurons

to neural masses and cortical fields. PLoS Compututa-

tional Biology, 4:e1000092, 2008.

[97] D Q Nykamp and D Tranchina. A population density

approach that facilitates large-scale modeling of neu-

ral networks: Extension to slow inhibitory synapses.

Neural Computation, 13:511–546, 2001.

[98] D Cai, L Tao, M Shelley, and D W McLaughlin. An

effective kinetic representation of fluctuation-driven

neuronal networks with application to simple and

complex cells in visual cortex. Proceedings of the Na-

tional Academy of Sciences of the United States of America,

101:7757–7762, 2004.

[99] F Apfaltrer, C Ly, and D Tranchina. Population

density methods for stochastic neurons with realistic

synaptic kinetics: Firing rate dynamics and fast com-

putational methods. Network: Computation in Neural

Systems, 17:373 – 418, 2006.

[100] I Ginzburg and H Sompolinsky. Theory of correla-

tions in stochastic neural networks. Physical Review E,

50:3171–3191, 1994.

[101] H Soula and C C Chow. Stochastic dynamics of a

finite-size spiking neural network. Neural Computa-

tion, 19:3262–3292, 2007.

[102] S E Boustani and A Destexhe. A master equation for-

malism for macroscopic modeling of asynchronous ir-

regular activity states. Neural Computation, 21:46–100,

2009.

[103] B Kriener, T Tetzlaff, A Aertsen, M Diesmann, and

S Rotter. Correlations and population dynamics in

cortical networks. Neural Computation, 20:2185–2226,

2008. PMID: 18439141.

[104] M A Buice, J D Cowan, and C C Chow. System-

atic fluctuation expansion for neural network activity

equations. Neural Computation, to appear, 2009.

[105] P C Bressloff. Stochastic neural field theory and the

system-size expansion. SIAM Journal on Applied Math-

ematics, submitted, 2009.

[106] E M Izhikevich and G M Edelman. Large-scale model

of mammalian thalamocortical systems. Proceedings of

the National Academy of Sciences, 105:3593–3598, 2008.

[107] S Coombes and M Zachariou. Coherent Behavior in

Neuronal Networks, chapter Gap junctions and emer-

gent rhythms. Springer, 2009.

15


