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ABSTRACT 

 

Market research has help to fuel an increased interest in plant-based biocontainers. Unlike the 

conventional plastic containers currently favored by greenhouse producers, biocontainers can be 

direct planted or composted after plant installation. While this effectively reduces landfill waste, 

biocontainers may influence other aspects of plant performance and production efficiency. 

Results of this work indicate that biocontainers impact growth both positively and negatively as 

compared to a conventional plastic control, depending on the plant species grown. Despite 

differences in aboveground size, plant visual condition remained similar for all containers tested. 

Containers varied in both strength and their ability to be processed in mechanized horticultural 

production systems. Injection molded plastic containers were the strongest of the containers 

tested. Other containers, such as peat, wood fiber, and manure had greatly reduced container 

strengths – especially when wet. These differences translated into greater damage rates during 

filling, handling, and shipping experiments. Plantable biocontainers (as compared to 

compostable) are marketed as a means of reducing labor costs and limiting transplant stress 

during installation. Outplanting trials showed aboveground plant growth differed by container in 

two of the three species tested (cleome and lantana). In these species, the conventional plastic 

control (removed at planting) was always in the top statistical grouping. This suggests direct-

plant containers offer little benefit with regard to plant establishment and, in some cases, have 

the potential to hinder plant growth. When the results of the individual applied trials were 

combined into an overarching carbon footprint assessment of secondary impacts, little difference 

existed between the containers tested. While the container itself was a significant component of a 

final plant’s carbon footprint (17%), other factors like lighting played a much more significant 

role (over 45%) and deserve greater attention.  
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CHAPTER 1. THE ROLE OF BIOCONTAINERS IN INCREASING THE 

SUSTAINABILITY OF THE GREEN INDUSTRY 

 

Sustainability in Ornamental Horticulture 

 

Conventional greenhouse and nursery-production practices in horticulture have been faulted for 

being unsustainable (Hall et al., 2009; Krug et al., 2008; Lopez et al., 2008). In summarizing the 

current state of the industry, Hall et al. (2009) noted that greenhouse crop production relies 

heavily on energy-intensive, non-renewable petroleum-derived products and energy sources for 

the pesticides, fertilizers, lighting, heating, and packaging needed to produce a uniform, high-

quality crop. Beyond its reliance on fossil fuels, the ornamental horticulture industry has also 

been widely criticized for its contributions to regional solid waste streams and ground and 

surface water contamination (Dennis et al., 2010; Garthe and Kowal, 1993).  

 

Unlike most traditional agricultural systems, nursery and greenhouse production sites are often 

located near or within urbanized areas (Dennis et al., 2010). The close proximity allows 

customers to see much of a business's production and disposal practices firsthand. For 

environmentally conscious consumers, one of the most visible reminders of horticulture's 

environmental shortcomings is the ubiquitous plastic container. Serving a variety of functions 

and found in a multitude of shapes, sizes, and colors, plastic containers are used for propagating, 

growing, transporting, and marketing ornamental crops (Hall et al., 2010; Helgeson et al., 2009; 

Evans and Hensley, 2004).  

 

The plastic containers’s consistent performance in production systems removes one of the many 

possible variables growers must contend with when attempting to produce a uniform crop of 

high-quality plants. This reliability and flexibility come at a relatively cheap price, which has 

helped establish the prominence of plastic containers in ornamental production. Unfortunately, 

this combination of characteristics also creates an overabundance of under-reclaimed plastic 

waste each production cycle.  
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Plastic Use in Horticulture 

 

Despite a general consensus that plastic plays a major role in horticultural production, there is an 

absence of peer-reviewed research that quantifies its use in the industry. Given this void, 

researchers have relied on reports and surveys from state agencies and university extension 

offices (Dennis et al., 2010; Evans et al., 2010; Hall et al., 2010; Hall et al., 2009). The most 

frequently cited of these publications was a non-peer-reviewed extension fact sheet by Garthe 

and Kowal (1994), which is clearly outdated. At the time of publication, it was estimated that 

between 145,000 and 222,000 metric tons of plastic were used nationwide each year for 

greenhouse films, mulch covers, containers, trays, packs, and flats. Greenhouse and nursery 

containers accounted for between 45 and 67 % of all plastic used in horticultural production with 

the remainder of plastic being used largely for products like mulches and greenhouse films. 

While it is difficult to speculate how plastic use in any of the individual categories has changed 

in comparison to the others over the past couple of decades, it seems reasonable to assume that 

overall plastic use in horticulture and agriculture has kept pace with increasing national plastic 

consumption trends (US EPA, 2011; Hall et al., 2010).  

 

In 2010, the United States generated a total of 28 million metric tons of plastic waste (US EPA, 

2011). Of this, only 8 % was recaptured through recycling. Recovery rates often vary 

dramatically given specific plastic type and use. PET bottles and jars and HDPE bottles are the 

most recycled, with recovery rates of 21 and 28 %, respectively (US EPA, 2011). In contrast, 

agricultural materials are less likely to be recycled given soil and pesticide contamination and 

ultraviolet photodegradation (Hall et al., 2010; Helgeson et al., 2009; Garthe and Kowal, 1994). 

The absence of facilities willing or even able to process these compromised materials leaves 

many growers, landscapers, and consumers with few options for reliable means of disposing 

plant container waste. As such, nursery and greenhouse pots from unsold or transplanted 

materials seem largely destined for the landfill (Kuehny et al., 2011; Hall et al., 2010; Evans and 

Karcher, 2004; Garthe and Kowal, 1994).  
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Biocontainers as an Alternative to Plastic: Consumer Perceptions 

 

Bolstered by favorable results from product market testing, biocontainers (biodegradable, plant-

based pots) are gaining greater interest among growers, horticultural suppliers, and applied 

researchers. In studies where various sustainable greenhouse plant attributes were tested, 

container type was consistently listed as having the greatest impact on consumer product 

perception (Yue et al., 2011; Dennis et al., 2010; Hall et al., 2010). Yue et al. (2011) identified 

four key sustainable attributes that were valued by consumers. Three of these traits were directly 

related to container type (i.e.,plants in biodegradable, compostable, and recycled pots) and were 

valued equally with locally produced plants. Of the pot types listed, it was found that 

biodegradable and compostable pots were preferred to pots that were made of recycled plastic. 

 

In contrast, less obvious practices adopted during production failed to generate much consumer 

interest. No significant advantage was gained by indicating that plants were grown with organic 

fertilizers and only moderate interest was garnered with the knowledge that plants were grown 

sustainably or in efficient greenhouse spaces (Yue et al., 2011). Similar results were reported by 

Hall et al. (2010), who found that container type outweighed all other purchasing considerations, 

including price and carbon footprint (i.e.,the total set of greenhouse gases – expressed as carbon 

equivalents – linked to a given product).  

 

These findings have led researchers to conclude that consumers are more interested in the 

sustainability associated with pot production than in modifications associated with minimizing 

energy-intensive practices involved in growing plants (Yue et al. 2011). A plant grown in a 

sustainable setting with reduced inputs is considered a success if it looks identical to its 

conventionally grown alternative. This leaves much to the imagination of the consumer when 

trying to envision how a purchase reflects his or her environmental ideals. In contrast, plants in 

biocontainers are distinctly non-conventional, especially when natural materials like sawdust or 

straw are used in a relatively unprocessed form to make nursery and greenhouse pots. At some 

level, the purchase of a plant grown in a biocontainer becomes a symbol of one’s commitment 

(real or perceived) to sustainability.  

 



4 
 

Biocontainers as an Alternative to Plastic: A Practical Surrogate? 

 

While some of the more familiar peat and paper pots have been on the market for over half a 

century (Jiffy Group, 2011), biocontainers as whole have yet to be widely embraced by the 

greenhouse and nursery industry. Hall et al. (2009) found that over 22 % of growers surveyed 

indicated that they had used biocontainers in their operations. Of the remaining 78 % that 

participated in the study, only 6 % noted that they would like to add biocontainers to their current 

nursery processes (Hall et al., 2009). Other researchers reported that 12 % of greenhouse growers 

acknowledged prior use of peat pots in their operations (Dennis et al., 2010). Most telling in this 

study was that respondents who used these containers estimated that peat pots made up less than 

3% of their total container consumption (Dennis et al. 2010). These figures support a general 

consensus that the widespread use of biocontainers has been largely limited given their higher 

cost and perceived limitations (Kuehny et al., 2011; Helgeson et al. 2009).  

 

Maintaining a consistent level of quality is of paramount importance in ornamental horticulture 

where products are sold primarily for aesthetic purposes. The stakes can be high, as consumers 

have shown an unwillingness to purchase green alternatives if they prove to be less-effective or 

lower-quality than the conventional standards they replace (Hall et al., 2010). This unforgiving 

tendency may make it hard for growers to deviate from energy-intensive, conventional strategies 

that deliver reliable results. 

 

The hesitation of the industry to experiment with more environmentally friendly production 

methods was characterized by Hall et al. (2009) in a broad survey of greenhouse and nursery 

growers. In this report, researchers found that the majority of respondents (65.5%) felt 

sustainable growing practices were very important in regard to the environment. Furthermore, 

holding this belief increased the likelihood of a grower initiating sustainable initiatives in their 

businesses. However, potential risks associated with both yield loss (i.e.,a decrease in plant 

quality) and difficulties incorporating sustainable processes into existing production methods 

were found to be significant deterrents limiting the widespread adoption of green practices. 
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However, with the potential risks associated with adopting new sustainable technologies and 

practices come rewards. Market research has shown that customers do notice and support 

environmentally friendly business practices. Customers who value local or sustainably grown 

products will pay a higher price for products that meet these criteria (Yue et al., 2011; Dennis et 

al., 2010; Krug et al., 2008). Additionally, consumers have acknowledged being loyal to 

businesses that offered sustainable goods and services (Yue et al., 2011; Dennis et al., 2010; 

Krug et al., 2008).  

 

Truly sustainable products must be environmental feasible, economically sound, and socially 

acceptable. While market research has shown biocontainers meet the latter requirement, they 

have yet to be fully assessed with regard to environmental and economic viability. If found less 

sustainable than their conventional plastic counterparts, the green marketing appeal behind 

biocontainers will essentially turn into greenwashing or the misrepresentation of a product or 

business as being environmentally friendly. With the notable exception of irrigation demand 

(Evans and Karcher, 2004; Evans et al., 2010), little or no peer-reviewed literature exists which 

attempts to assess if biocontainers are more environmental friendly than their plastic 

counterparts. What is present in the current literature is a small, but growing collection of studies 

aimed at determining the economic implications associated with biocontainer use in greenhouse 

and nursery production. These works cover a range of topics from yield performance to wet- and 

dry-pot strength (Evans and Hensley, 2004;  Evans and Karcher, 2004; Evans et al., 2010; 

Keuhny et al., 2011). 

 

A major factor contributing to the success of container production, regardless of pot type, is 

irrigation. Evans and Hensley (2004) conducted two experiments involving a conventional 

plastic pot and two biocontainer alternatives (i.e.,a feather-based pot and a peat-based pot). The 

first was conducted under uniform watering conditions where pots were watered when the media 

of approximately 25 % of all experimental units – regardless of pot type – were visibly dry. Not 

surprisingly, plants in pots made from plastic, the only impermeable material tested, performed 

the best. Plants in peat pots, which dried fastest and were prone to wilting under these watering 

conditions, had significantly lower rates of growth. Plants grown in poultry feather pots, which 
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were somewhat permeable, tended to fare better than those in peat pots, but did not reach the 

growth potential of those in conventional plastic containers.  

 

In a second trial, where water was administered based on need, these differences in growth were 

all but absent (Evans and Hensley, 2004).When comparing these two related studies, the authors 

acknowledged that water availability appeared to be the key factor for plant success. Subsequent 

tests by Evans and Karcher (2004) determined that water loss in the peat containers was three 

times greater than that of the plastic control and 2.5 times greater than that of the feather pot. 

This water loss translated into a higher irrigation demand and could ultimately diminish the 

economic and environmental sustainability of the more porous alternatives. Expanding on the 

protocol established in the uniform watering study above, Keuhny et al. (2011) investigated a 

wider range of biocontainers in a multi-location greenhouse study. However, in this experiment, 

the researchers found no clear pattern to indicate any of the pots tested offered a significant 

advantage across the species investigated (Kuehny et al., 2011).  

 

In addition to plant growth, a major concern with the use of biocontainers is their strength. 

Automation in pot filling, planting, and movement of containers during production can offer 

significant cost savings. Any pots that are not rugged enough or are otherwise incompatible with 

mechanized processing equipment come at an added labor cost to producers. One indirect means 

of assessing whether a pot can withstand the rigors of production and transport has been to 

compare various strength properties of biocontainers to similar-sized plastic pots that are 

currently used in the industry. In 2004, Evans and Karcher evaluated the top-to-bottom crush 

strength, sideways crush strength, and sidewall puncture resistance for plastic, paper and feather 

pots. When assessing dry material strength properties, none of the containers consistently out-

performed the rest. When wetted, plastic containers were clearly the strongest in all three 

assessments (Evans and Karcher, 2004). Peat pots had the lowest post strength when wet, 

making them difficult to handle without breaking. While this research offers a direct comparison 

of the structural and material strength of pots, the measures are largely meaningless unless one 

can draw parallels to the forces experienced in production and transport. To date, all published 

research falls short of this requirement.  
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Biocontainers in the Landscape 

 

While container wall permeability and degradation can lead to challenges in a production system 

(i.e.,increased water usage and decreased pot longevity), these two material characteristics are 

considered beneficial in the landscape. Plantable pots have been marketed as a time- and waste-

saving alternative to plastic containers as there is no need to remove and dispose of leftover 

packaging at planting. Fine roots can easily penetrate many of the more permeable pots (e.g., 

peat or wood fiber containers) during greenhouse production. As emerging roots are exposed to 

air, they are effectively air-pruned back toward the container wall. This process helps limit root 

circling that can slow establishment into the surrounding soil (Kuehny et al., 2011; Evans and 

Hensley, 2004). With the plant's entire rooting zone left intact at installation, plantable pot use is 

also commonly believed to limit root damage, reduce transplant shock, and decrease the time 

needed for plants to establish in the landscape (Kuehny et al., 2011; Hall et al., 2010; Evans and 

Hensley, 2004; Evans and Karcher, 2004). 

 

In 2011, Keuhny et al. conducted a landscape trial that compared a number of plantable pots to a 

plastic control (i.e., the pot was removed prior to planting). The results of this experiment 

indicated that none of the containers tested appeared to have a significant impact on plant growth 

or establishment in the surrounding landscape. These results suggest that if plants grown in 

direct-bury pots did experience reduced transplant shock, the difference was not enough to have 

a lasting effect on plant growth over the course of the season. The findings of this research also 

suggest that the walls of plantable pots do not serve as a barrier for roots growing out into the 

surrounding soil. 

 

There is a fine balance between producing pots that degrade too quickly to survive production 

and producing pots that remain intact too long to be considered plantable. Bio-based plastics can 

be seen as a compromise between conventional and plantable pots. Bio-plastics provide the 

consistency of conventional plastic containers in the greenhouse or nursery while also retaining 

some of the perceived environmental benefits associated with plantable pots
 
(e.g., smaller 

contribution to landfill waste streams) made from less resilient raw plant materials. Bio-plastic 

containers are typically labeled as biodegradable or compostable as they will break down 
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naturally in soil or as compost. However, they differ from plantable containers in that their 

relatively slow rate of degradation can restrict root growth for a growing season or more. Some 

bioplastic containers have overcome this limitation by incorporating small slits or other openings 

in their designs that allow for outward root growth. 

 

Research Need and Justification 

 

Recent surveys have shown that there is both industry and public interest in biocontainers as part 

of a larger effort to increase the sustainability of ornamental horticulture production (Dennis et 

al., 2010; Hall et al., 2010; Hall et al., 2009). However, biocontainers remain a minor player in 

the greenhouse and nursery industry. Many obstacles have been identified which are believed to 

block the widespread use of these products. Some may be real barriers that need to be overcome; 

however, others may simply be misconceptions bred from an absence of scientific proof. In order 

to separate actuality from anecdote, this body of research will address the following perceived 

barriers: 

 

CHAPTER 2: USE OF BIOCONTAINERS FOR LONG- AND SHORT-TERM 

GREENHOUSE CROP PRODUCTION 

 Justification: A key consideration when adopting any new sustainable process is whether 

or not one can still produce a uniform crop that is of the same quality (or better) as the 

standard practice. Evans and Hensley (2004) conducted greenhouse trials on a limited 

selection of pot types under both uniform and prescriptive watering regimes. This work 

was later expanded to include a broader range of containers, but only under uniform 

watering conditions (Kuehny et al., 2011). Under this design, any potential effects 

associated with the containers themselves were confounded with a non-treatment 

watering effect. There is need for an expanded study that incorporates the newest 

containers and applies irrigation based on need at the treatment level. This will more 

closely replicate conditions found in a commercial greenhouse – an environment 

optimized for vigorous plant growth. Additionally, past work investigating container 

integrity at the end of production were limited to 4-5 weeks. This project includes a long-
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term crop cycle (12 wks) to assess which biocontainers are suitable for slower-growing 

ornamentals.  

 Summary: This greenhouse study was designed to investigate the impact of bio-pot type 

on plant performance for a short-and long-term crop. It also assessed the impact of 

standard greenhouse production practices on the wall integrity and degradation of 

biocontainers with a 6-week or 12-week crop cycle. 

 Hypotheses:  

o Ho1: Plant growth parameters (e.g., shoot weight, area) and quality ratings will 

not differ significantly among treatments (containers). 

o Ho2: Soil environmental measures (e.g., pH and EC) will not differ by treatment 

over the duration of the study.  

 

CHAPTER 3: BIOCONTAINER WATER USE IN SHORT-TERM GREENHOUSE CROP 

PRODUCTION 

 Justification: While measurement intensive, water use studies provide per plant estimates 

of irrigation demand which can be scaled up to larger production systems. Past works 

investigating this response do not include two of the newer biocontainer alternatives.  

 Summary: This greenhouse study investigates the impact of biocontainers on plant 

growth and water consumption for a short-term (5-week) floriculture crop. Results of the 

work will be used to assess the overall environmental impact associated with biocontainer 

adoption in greenhouse production. 

 Hypotheses:  

o Ho1: Plant growth parameters (e.g., shoot weight, area) will not differ 

significantly among treatments (containers). 

o Ho2: Total water use will not differ by treatment.  

 

CHAPTER 4: PLANTABLE BIOCONTAINERS IN THE LANDSCAPE: RATE OF 

DEGRADATION AND IMPACT ON PLANT ESTABLISHMENT 

 Justification: Many of the perceived benefits of plantable pots stem from the belief that 

they outperform non-plantable containers in regard to planting time and plant 

establishment. A past study investigated how a wide range of direct-bury pots affected 



10 
 

plant growth and establishment in the landscape (Kuehny et al., 2011). This work was 

originally conducted at a single site. We have expanded this past study to include a 

variety locations in North America that represent a wide range of soil and climate 

conditions.  

 Summary: This study was designed to identify the impact of biocontainers on plant vigor 

(i.e.,visual rating), plant development (i.e.,height and width growth until planting space 

reached full stocking/saturation), and pot degradation (i.e.,visual analysis and weight 

loss) in the landscape. In addition, labor required for planting was recorded for use in the 

economic analysis. 

 Hypotheses: 

o Ho: Measured response variables below (i.e.,plant growth and development 

metrics, plant appearance rating, pot degradation, and planting time) will not be 

significantly different among treatments.  

 

CHAPTER 5: BIOCONTAINER USE IN PETUNIA XHYBRIDA GREENHOUSE 

PRODUCTION – A CRADLE-TO-GATE CARBON FOOTPRINT ASSESSMENT OF 

SECONDARY IMPACTS.  

 

 Justification:  Currently, it is believed that biocontainers are more environmentally sound 

than their plastic alternatives as they are not derived from oil and are not destined for the 

landfill. However, these are just two of many considerations which can be used to gauge 

environmental efficacy. Life-Cycle Analysis of the pots (themselves and as part of a 

larger greenhouse production system) will account for differences in inputs, waste 

generation, water usage, and energy associated with greenhouse production using 

biocontainers. To date, no published work exists which accounts this broader 

environmental concern.  

 Summary: Using a local wholesaler as a case study, a cradle-to-gate life cycle assessment 

will be conducted. Industry data and data generated through the studies above will be 

used to gauge the overall sustainability of ornamental crop production systems using the 

various containers selected for these studies.  
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APPENDIX 1: COMPATIBILITY OF BIOCONTAINERS IN COMMERCIAL 

GREENHOUSE CROP PRODUCTION 

 

 Justification: Hall et al. (2009) found that producers were less likely to adopt sustainable 

practices if they were not compatible with existing production process. However, later 

work indicated that issues of compatibility were regarded as one of the smallest obstacles 

greenhouse growers faced when looking to implement new, greener practices (Dennis et 

al. 2010). This contradiction is rooted in the machinery used for production. While filling 

and handling devices can be adjusted to accommodate a wide range of containers, trays, 

and flats, biocontainers may not withstand the rigors faced during processing. Any 

container incompatible with existing production schemes will be of little interest to 

growers.  

 Summary: This study investigates the impact of several mechanical greenhouse systems 

(e.g., pot fillers, spacers, and transport systems) on biocontainer integrity. This work 

determined damage from mechanical systems as well as the speed laborers and machines 

were able to process them. 

 Hypotheses: 

o Ho1: The time required to prepare pots for mechanized processing will not be 

significantly different among treatments (pot types; controlling for pot damage).  

o Ho2: Pot damage ratings associated with the actual mechanized processing will 

not be significantly different among treatments. 
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CHAPTER 2: USE OF BIOCONTAINERS FOR LONG- AND SHORT-TERM 

GREENHOUSE CROP PRODUCTION  

 

Note: This work was completed as part of a multi-institutional research initiative with additional 

trials conducted at research facilities associated with the University of Arkansas, University of 

Kentucky, and West Virginia University. Only work conducted at the University of Illinois Plant 

Science lab is reported in this chapter. The final revision to be submitted for peer review will 

include analyses from all four locations.  

 

Summary 

 

While research on the use of biocontainers for greenhouse production is growing, most studies 

have focused primarily on short-term greenhouse crops. With the recent release of several new 

bioplastic alternatives, production of longer-rotation ornamental crops may be more feasible. 

This work investigates ten commercially available biocontainers and their effects on both a 

short-term (Impatiens xhybrida ‘Sunpatiens Compact’) and a long-term greenhouse crop 

(Lavendula angustifolia 'Elegans Ice’). Results indicate that plant growth in terms of leaf area 

and dry shoot mass differed by container. However, the pattern of growth varied by species. 

Visual yield responses such as plant condition and days after transplanting (DAT) to flowering 

did not vary with container. Leachate pH and EC varied by container and by week. However, a 

significant interaction between the two main effects made it difficult to identify any clear trends. 

Post-harvest container strength varied significantly by container, with the plastic control 

maintaining the highest puncture resistance after both 6 and 12 weeks. Results show that while 

some biocontainers were linked to increased growth, this gain should be weighed against 

potential losses associated with container damage during handling and shipping.  

 

Background 

 

Biocontainers differ from petroleum-based plastic pots in that they are made of plant-derived 

materials and are plantable or compostable. In order to break down in soil or in a composting 

environment, biocontainers are essentially designed to degrade over a relatively short period of 
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time. While this design characteristic reduces end-of-use landfill waste, it may also limit 

biocontainer compatibility with longer-term or multi-season ornamental nursery crop production 

systems. This potential limitation is reflected both in the market and in recent research. 

Biocontainers are more readily available in sizes commonly used in commercial greenhouse 

production, while they are much less prevalent in larger sizes most suitable for woody nursery 

production. Additionally, a survey of greenhouse professionals and nursery producers found that 

compatibility with existing equipment and production practices was a minor hindrance for 

greenhouse professionals but a significant obstacle for nursery producers when adopting 

sustainable production practices like biocontainers (Dennis et al., 2010). 

 

The integrity and longevity of biocontainers are impacted by the specific conditions of the 

greenhouse. High-input greenhouse production accelerates plant growth and shortens production 

time. However, the elevated temperature, humidity, and substrate nitrogen levels associated with 

these controlled environments hasten organic matter degradation as well as plant development. 

As such, even the comparatively short crop rotations common in greenhouse operations may be 

too long with respect to container appearance and integrity. Given that unsightly or damaged 

containers may be largely unsellable to the plant-buying public, both of these measures of 

container performance may ultimately affect the economic sustainability of biocontainers.  

 

Past research has investigated biocontainer degradation and strength loss after simulated 

greenhouse production. However, these assessments are generally limited to short-term crop 

production. In 2004, Evans and Karcher assessed residual pot strength for plastic, peat, and 

feather pots after a 5-week growing period. Evans et al. (2010) later expanded on this work by 

measuring pot crush and puncture for eight commercially available biocontainers after four 

weeks in production. While a longer, 10-week study was conducted by Helgeson et al. (2009), 

the sole biocontainer tested in the work was a prototype container constructed by hand using a 

zein-based bioplastic, which is not commercially available to greenhouse producers. 

 

The study reported herein investigates plant growth and residual container strength for nine 

biocontainers and a plastic control. Beyond the addition of a new container type (bioplastic 

sleeve), our research expands on the past work of Evans et al. (2010) by investigating two crop 
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lengths, a short-term (6-week) production period and a long-term (12-week) production period. 

In adding the longer production cycle, this work investigates the feasibility of biocontainer use in 

the production of slower-growing greenhouse plants. Beyond measures of container 

performance, this study also investigates impacts on plant growth and quality. The combined 

results are intended to assist commercial growers interested in adopting biocontainers for their 

own greenhouse operations.  

  

Materials and Methods 

 

LOCATIONS. The greenhouse trial for this study was conducted at the Plant Science Laboratory 

facilities at the University of Illinois at Urbana-Champaign, Urbana, IL (lat. 40º 6' N, long. 88º 

13' W, USDA Hardiness Zone 5b). Container strength testing and algal growth assessment were 

conducted at the University of Arkansas, Fayetteville, AR.  

 

CONTAINERS. Ten container types were used in this study (Table 2.1 and Fig. 2.1). One 4-inch 

(10 cm) plastic standard pot was selected as the study's control. For the nine biocontainer 

alternatives, the manufacturer's closest substitution (with regard to volume) to the control pot 

was selected for comparison.  
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Fig. 2.1. Images of container treatments used to grow a short-term crop of ‘Yellow Madness' 

petunias. Plants were grown under greenhouse conditions for 5 weeks in order to gauge the 

effect of container type on irrigation demand. Containers used included (A) plastic control, (B) 

bioplastic, (C) coir, (D) manure, (E) peat, (F) sleeve, (G) slotted rice hull, (H) solid rice hull, (I) 

straw, and (J) wood fiber. 
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Table 2.1. Container treatments selected for this experiment (including manufacturer 

information and approximate volume). 

Container type Product name
z
 Volume (cm

3
) Manufacturer 

Plastic  Dillen 04.00 Standard 

Thinwall Green 

480 Myers Industries Lawn & Garden 

Group, Middlefield, OH 

Bioplastic TerraShell
TM 

10cm H Wheat 

Pot 

473 

 

Summit Plastic Company, Akron, OH 

Coir Coir 4.0” Std Fiber Gro Pot 406 Dillen Products, Middlefield, OH 

Manure  #4 Square CowPot 450 CowPots Manufacturing and Sales, 

East Canaan, CT 

Peat 4” Jiffy Pot 379
y
  Jiffy Products of America Inc., Lorain, 

OH 

Bioplastic sleeve 

(Sleeve) 

4.5” Standard Assembled 

SoilWrap
®

 

709
y
  Ball Horticultural Company, West 

Chicago, IL 

 Slotted rice hull 4.5” NetPot 591 Summit Plastic Company, Akron, OH 

Solid rice hull Rice Pot 4” 473 Summit Plastic Company, Akron, OH 

Straw n/a 646
y
  Ivy Acres, Baiting Hollow, NY 

Wood fiber 10 X 10 cm Round 

Individual Fertilpot 

430
y
 Fertil SAS, Boulogne Billancourt, 

France  

z
As indicated in manufacturers on-line/print catalog. 

y 
Not included in manufacturer specifications. Volume approximated. 

 

  



18 
 

EXPERIMENTAL DESIGN, GROWING CONDITIONS, AND PLANT CARE. Two species, 

Impatiens xhybrida ‘Sunpatiens Compact’ (impatiens) and Lavendula angustifolia 'Elegans Ice’ 

(lavender) were selected as representative short- and long-term ornamental crops, respectively, 

for the greenhouse trial. Given differences in production length and watering requirements, each 

species was assessed separately as its own unique experiment. Trial length for the short-term 

crop (impatiens) was set at 6 weeks. The trial length for the long-term crop (lavender) was 12 

weeks. Both experiments were arranged as completely randomized designs, with trays containing 

six identical containers serving as the experimental unit (total n=30 trays). Each of the 6 

individual pots constituted a pseudo-replicate of its associated tray (total n=180 pots).  

 

All containers were filled with a commercial soil-less growing mix (Fafard 2, Conrad Fafard 

Inc., Agawam, MA) and planted with either an impatiens or a lavender plug. Trays were 

arranged tightly together on raised greenhouse benches. A one-plant-wide border row surrounded 

the outer edge of the experiment.  

 

Both trials were initiated on April 25, 2011. Plants were grown under ambient light conditions 

with minimum day- and night-time temperatures set at 24ºC and 18ºC, respectively. The median 

temperature over the course of both experiments was 26.5ºC, with a high of 39.8ºC recorded on 

May 10, 2011 and low of 21.7ºC recorded on April 27, 2011. Relative humidity during the study 

period ranged from 19.4% to 89.5%, with a median value of 61.8%. 

 

Irrigation was supplied by hand on an as-needed basis at the experiment (i.e., plant) and 

treatment (i.e., container type) level. For lavender, this watering threshold was defined as the 

point when soil moisture levels at or below 30% were detected for a given container type. 

Similarly, impatiens plants were watered when soil moisture readings of 40% or lower were 

detected. Soil moisture levels were originally measured with the aid of an electronic soil 

moisture sensor (ThetaProbe Soil Moisture Sensor – ML2x, Delta-T Devices Ltd, Cambridge, 

United Kingdom). Once the visual indicators of drying for each of these moisture thresholds 

were identified (e.g., graying of the substrate surface), watering demand was assessed by sight, 

as repeated measurements with the sensor in the same soil space can lead to questionable 

measurements (Evans, personal communication). In addition to this watering, plants were 
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fertigated weekly with a 150 ppm 20N-4.4P-16.6K solution (Plantex® 20-10-20 All Purpose 

High Nitrate, Plant Products Co. Ltd. Brampton, ON) . This solution was applied to all of the 

plants on the same day (Wednesday), regardless of any particular container type's watering needs 

for that day.  

 

MEASUREMENTS. Measurements for this experiment were categorized broadly as plant-

focused measurements and container-focused measurements. The former included measures of 

shoot dry mass, leaf area (using a LI-3100C Area Meter, LI-COR, Lincoln, NE), days after 

transplant (DAT) to anthesis (full flowering), and a visual ranking of plant quality (Table 2). All 

measures were conducted at harvest or, in the case of flowering, as it occurred.  

 

Container-focused measurements included bi-weekly electrical conductivity (EC) and pH testing 

of growing mix leachate, post-harvest container puncture strength, and post-harvest container 

fungal/algae coverage. EC and pH measurements were taken at the individual tray level from a 

leachate sample of approximately 50 mL using a portable multi-parameter solution tester (HI 

98130 pH/Conductivity/TDS Tester, Hanna Instruments, Woonsocket, RI). 

 

Puncture strength was defined as the amount of pressure required to punch through a container's 

wall with a 5-mm ball probe. This test was performed using a texture analyzer (TAXT 2I; 

Texture Technologies, Scarsdale, NY). Algal growth was quantified with a leaf area meter (LI-

3100C Area Meter, LI-COR, Lincoln, NE). Patches of algal growth were removed from the 

container with a razor utility knife and run through the area meter to gauge total area covered. 

 

DATA ANALYSIS. All end-of-harvest measurements (i.e., shoot dry mass, leaf area, and pot 

strength) were analyzed as a series of one-way Analysis of Variances (ANOVAs). Pseudo-

replication in the dry mass and leaf area measurements was averaged away prior to data analysis 

and analyzed in R (R Development Core Team, 2012). Mean separation was conducted, when 

appropriate, as a protected Fisher's Least Significant Difference test (de Mendiburu, 2012). End-

of-trial, visual plant condition ratings were analyzed using a Kruskal-Wallis rank sum test (de 

Mendiburu, 2012). DAT to anthesis was modeled as a general linearized model with a gamma 

distribution in R (R Development Core Team, 2012). As some of the lavender did not flower 
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before the end of the trial, its DAT flowering response was modeled with censoring in the 

survival package in R (Therneau, 2012).  

 

Both pH and EC were assessed as repeated measures in R (Lawrence, 2012). For both the long- 

and short-term trials, the data from the puncture strength testing failed to meet two key criteria 

needed to conduct a one-way analysis of variance through ordinary least squares. Namely, the 

variances among the containers tested were dissimilar and residuals were non-normal. After 

investigating several transformations and finding none sufficient, the data were ultimately 

analyzed via a parametric bootstrap comparison of trimmed means (Wilcox, 2012). Mean 

separation for puncture strength was conducted using the mcppb20() function (Wilcox, 2012).  

 

Results and Discussion 

 

As noted in Table 2.1, some differences in volume existed among the pots selected for this trial 

despite our efforts to find the closest comparable surrogate for the plastic control. This variation 

reflects the realities a commercial grower would face when looking for an alternative to a 4-inch 

(10 cm) plastic pot. Beyond size, other factors such as pot geometry, material, and the 

presence/absence of drainage holes are all factors that contribute to overall pot design. The 

results below are reflective of the combined impact of all of the considerations noted above.  

 

PLANT GROWTH AND APPEARANCE RESULTS. Dry shoot mass varied significantly by 

pot type for both impatiens (P = 0.0538) and lavender (P = 0.0040). Similarly, final leaf area 

differed significantly for both impatiens (P = 0.0255) and lavender (P = 0.0430). However, 

container type did not noticeably impact visual plant condition ratings for either impatiens (P = 

0.2750) or lavender (P = 0.7362). Treatment means for these two plant growth measures are 

displayed below for both impatiens (Fig. 2.2) and lavender (Fig. 2.3). Dry shoot mass and leaf 

area were analyzed as multiple univariate ANOVAs (as opposed to MANOVA) to allow 

comparisons between similar analyses seen in past biocontainer work (Evans and Hensley, 2004; 

Kuehny et al., 2011). In adopting this approach, Huberty and Morris (1989) suggest that authors 

report the calculated correlation between responses to show no correlation exists (or as a caveat 

in the event it does). Correlation was calculated and tested using the cor.test function in R. For 
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impatiens, the correlation between dry mass and leaf area was 0.7534 (P < 0.0001). For lavender, 

correlation between these two growth responses was 0.8253 (P < 0.0001).  

 

Though plant growth differences in biocontainers appear to be somewhat species specific, a few 

patterns emerged. For example, the sleeve container was associated with the lowest mean dry 

shoot for both lavender and impatiens (Figs. 2.2 and 2.3). Similarly, plants in the coir containers 

were, on average, among the largest in the group (Figs. 2.2 and 2.3). Interestingly, dry shoot 

mass in the control plants was not among the top group of pots tested (Figs. 2.2 and 2.3).  
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Fig. 2.2. Dry shoot mass (A) and leaf area (B) for Impatiens xhybrida 'Sunpatiens Compact' 

grown under greenhouse conditions for six weeks in ten container types (one plastic control and 

nine biocontainer alternatives). Error bars depict Fisher's Least Significant Difference values 

(α=0.05).  
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Fig. 2.3. Dry shoot mass (A) and leaf area (B) for Lavendula angustifolia 'Elegans Ice’ grown 

under greenhouse conditions for 12 weeks in 10 container types (1 plastic control and 9 

biocontainer alternatives). Error bars depict Fisher's Least Significant Difference values 

(α=0.05).  
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Kuehny et al. (2011) also investigated shoot dry mass of impatiens grown in 4-inch biocontainers 

at three sites. While results for each location differed, dry shoot mass in plastic controls was 

generally higher than in most of the other containers. For two sites in their study, mean shoot dry 

weight for plants in coir containers was reduced compared to the other treatments. Our findings 

are somewhat contrary to these results, but this discrepancy is not too surprising. Plant growth 

patterns differed even among the three sites featured in the Kuehny paper (2011), showing that 

despite efforts to replicate watering, fertilization, and environmental conditions through a 

standardized research protocol, it was difficult to elicit the same response at each site. We 

suspect that water availability may be the key to these differences. Despite having a set watering 

threshold, there is some subjectivity associated with the decision to irrigate. A soil moisture 

probe which continuously monitors rooting conditions and triggers irrigation the moment the 

threshold is reached may eliminate some variation associated with measurement error. However, 

these systems are expensive and are not without their own programing and maintenance 

concerns.  

 

While size and overall quality are commonly associated with ornamental crop yield, DAT to 

flowering is an often overlooked response variable (Evans, personal communication). Even 

slightly stunted plants can be shipped off to market once in bloom. For impatiens, DAT to 

anthesis did not differ by container type (P = 0.3289). Similarly, DAT to flowering did not differ 

significantly by container for the lavender (P = 0.1866).These results show that for crops where 

marketability is driven largely by the presence of flowers, the adoption of a biocontainer will not 

delay crop availability.  

 

SUBSTRATE CHEMISTRY RESULTS. For impatiens, pH varied by container (P < 0.0001), 

week (P < 0.0001), and the container x week interaction (P < 0.0001). Leachate EC varied 

significantly by container (P = 0.0007) and week (P < 0.0001). Additionally, there was a 

significant container x week interaction (P = 0.0002). For lavender, soil pH for lavender was 

influenced by container (P < 0.0001) and week (P < 0.0001), and the c container x week 

interaction (P = 0.0017). EC varied by container type (P = 0.0315) and week (P < 0.0001); 

however, the interaction between container x week was marginally insignificant (P = 0.0577).  
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For impatiens, average pH generally increased and EC generally decreased after the first 

measurement period (Fig. 2.4). From then on, both measures largely plateaued for the remainder 

of the trial. This pattern was less pronounced in the lavender (Fig. 2.5). For both the long- and 

short-term trials, average leachate pH for the manure pots was elevated throughout the study 

periods (Fig. 4 and Fig. 5). This was noted at other sites where the trials were conducted (Renee 

Conneway and Vicky Anderson, personal communications). While substrate chemistry did not 

have any noticeable impact of plant condition (e.g., chlorosis), it may be one of several 

contributing factors behind the growth differences noted above, and should be further 

investigated.  
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Fig. 2.4. Bi-weekly leachate pH and Electrical Conductivity (EC) over time for 10 container 

types. A 6-week trial length was chosen to reflect the production time required for a short-term 

greenhouse crop (Impatiens xhybrida ‘Sunpatiens Compact’). Error bars depict Fisher's Least 

Significant Difference values (α=0.05). 
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Fig. 2.5. Bi-weekly leachate pH and Electrical Conductivity (EC) over time for 10 container 

types. A 12-week trial length was chosen to reflect the production time required for a long-term 

greenhouse crop (Lavendula angustifolia 'Elegans Ice’). Error bars depict Fisher's Least 

Significant Difference values (α=0.05).  
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CONTAINER PUNCTURE STRENGTH TESTING. Puncture resistance differed by container 

type for both short-term (P < 0.0001) and long-term (P < 0.0001) production. For both short- and 

long-term production, the plastic control offered the greatest resistance to puncturing with mean 

strength values of 19.5 kg and 20.7 kg, respectively. For both trials, coir containers were the 

second strongest with regard puncture strength (Figs. 2.6 and 2.7). However, coir puncture 

strength was 41% of control strength in the short-term trial and 63% of control strength in the 

long-term trial. Differences in mean puncture strength as compared to the control were even 

greater for the remaining biocontainers (Figs. 2.6 and 2.7).  
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Fig. 2.6. Mean puncture strength for 10 container types used in the production of a 6-week 

greenhouse crop (Impatiens xhybrida ‘Sunpatiens Compact’ ). Letters indicate statistical 

groupings. 
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Fig. 2.7. Mean puncture strength for 10 container types used in the production of a 12-week 

greenhouse crop (Lavendula angustifolia 'Elegans Ice’). Letters indicate statistical groupings.  
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ALGAL GROWTH. In the short term trial, algal growth was minimal and limited to the peat and 

wood pulp containers. Average growth in the peat was 5.57 cm
2 
and in wood pulp was 0.97 cm

2
. 

Both means were greatly influenced by a large number of containers that contained no algal 

growth (peat: 11, wood pulp: 17). Algal growth was limited to the manure, peat, and wood pulp 

containers in the long-term study with mean coverage areas of 15.29 cm
2
, 34.97 cm

2
, and 37.51 

cm
2
,
 
respectively. Compared to the short-term trial, algae was much more widespread. Seven 

cow and four wood pulp containers remained clear of growth by the end of the 12-week period. 

Every peat container had some level of measurable algae growth. 

 

If algal growth diminishes consumer interest in a potted container, careful consideration must be 

given before adopting manure, peat, or wood pulp containers – especially for longer-term crops. 

The discoloration associated with algal growth, combined with their low residual strength, may 

limit the use of these containers in greenhouse production, especially when growing long-term 

crops valued for their overall appearance. Those biocontainers not prone to supporting algal 

growth may be preferred if customers prefer cleaner packaging, yet still have interest in plastic 

alternatives. 

 

Conclusions 

 

Using biocontainers as replacements for plastic containers is not a clear-cut proposition. The 

species grown can have a significant impact on how containers perform relative to the 

conventional plastic container they are intended to replace. In general, plant size seemed to be 

the main difference with regard to appearance and overall plant quality. Depending on one's 

tolerance for differences in top growth, container strength and appearance may be more pressing 

concerns. Several of the less processed containers (manure, peat, wood pulp) supported algae 

growth. These same containers are also among the most fragile, especially when used for long-

term production. As such, they may be best suited for short-term production. When interpreting 

the findings of this work, it should be noted that the main marketable characteristic of 

biocontainers is their ability to degrade in soil or compost. The same characteristics that allow 

them to break down readily also contribute to their limited stability during production. This is the 

trade-off, but one that waste-conscious producers and consumers may be willing to overlook. 
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CHAPTER 3: BIOCONTAINER WATER USE IN SHORT-TERM GREENHOUSE 

CROP PRODUCTION 

 

Note: This chapter scheduled to print in the April 2013 issue of HortTechnology.  

 

Summary 

 

In recent years, biocontainers have been marketed as sustainable alternatives to petroleum-based 

containers in the green industry. However, biocontainers constructed with plant materials that are 

highly porous in nature (e.g., peat, wood fiber, straw, etc.) tend to require more frequent 

irrigation than conventional plastic products. As irrigation water sources become less abundant 

and more expensive, growers must consider water consumption in any assessment of their 

economic and environmental viability. This project evaluated plant growth and total water 

consumption for nine different biocontainers (seven organic alternatives, and two recently 

developed bioplastic alternatives) and a plastic control used to produce a short-term greenhouse 

crop, 'Yellow Madness' petunia (Petunia xhybrida 'Yellow Madness'). Dry shoot weight and total 

water consumption differed by container type, with some of the more porous containers (wood 

fiber, manure, and straw) requiring more water and producing smaller plants by the end of the 

trial period. Intuitively, the more impervious plastic, bioplastic, and solid rice hull containers 

required the least irrigation to maintain soil moisture levels, though shoot dry weights varied 

among this group. Shoot dry weight was highest with the bioplastic sleeve and slotted rice hull 

containers. However, the latter of these two containers required a greater volume of water to stay 

above the drying threshold. Findings from this research suggest the new bioplastic sleeve may be 

a promising alternative to conventional plastic containers given the current production process.  

 

Background  

 

While biocontainers (i.e., plant material-based containers) have emerged as a response to 

excessive plastic landfill waste, their adoption in the green industry could significantly increase 

crop watering requirements. Water availability has traditionally been an issue associated with 

arid and semi-arid production sites (Fereres et al., 2003). However, this issue is quickly 
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becoming a major environmental and economic consideration for all horticultural enterprises, 

regardless of climate. With demand, regulation, and cost of water all projected to increase 

(Beeson et al., 2004), growers will be subject to increasing pressure to assess their overall water 

use and identify areas to improve efficiency and reduce waste.  

 

In their review of irrigation management techniques, Fereres et al. (2003) identified deficit 

irrigation (i.e., irrigation at a level below the rate of evapotranspiration), irrigation runoff 

reclamation, and the reduction of evapotranspiration (ET) as the three main strategies for 

conserving water in horticultural production. Deficit irrigation is largely limited to field-grown 

crops and large-container production given the ability of the plants to draw upon relatively large 

soil moisture reserves (Fereres and Soriano, 2007; Fereres et al., 2003). Compared to these 

production systems, the small volumes of pots and trays commonly used to produce floral and 

foliage crops limit their overall water-holding capacity and the rooting space available to the 

plant. Moreover, growers use deficit irrigation in times of limited water supplies to maintain 

survival rather than maximize growth (Fereres and Soriano, 2007). This loss in yield potential 

(i.e., biomass) is largely unacceptable when producing high-value ornamental greenhouse crops 

(Fereres et al., 2003).  

 

While deficit irrigation plays a very limited role in floriculture production, ET reduction and 

irrigation water reclamation may have important implications for greenhouse growers, especially 

those intending to adopt biocontainers in their operations. While not the focus of this work, water 

reclamation in horticulture can be effectively implemented through the adoption of an ebb-and-

flood (subirrigation) system which recirculates water and fertilizer runoff (Dole et al., 1994; 

Dumroese et al., 2006; Morvant et al., 1998). Ebb-and-flood-irrigated 'Florida Sun Jade' coleus 

(Solenostemon scutellarioides) shoot dry weight remained similar among seven different 

biocontainers (i.e., bioplastic, coir, manure, paper, peat, straw, and wood fiber) and a 

conventional petroleum-based plastic control (Koeser et al., 2013). However, the study found 

that the high rate of fertilization and container wetting-drying pattern associated with 

subirrigation can cause a significant loss of puncture strength in wood fiber and paper 

biocontainers over time (Koeser et al., 2013). Despite the reduction in container integrity, the use 
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of ebb-and-flood irrigation may still be a viable option for conserving water in biocontainer 

greenhouse production, especially if containers are supported in plastic shuttle trays.  

 

Though studies on the effects of reclaimed water on biocontainer greenhouse production are 

limited, the effects of container on ET, as well as drainage, have been more widely documented 

(Bilderback, and Fonteno,1987; Evans and Karcher, 2004; Evans et al., 2010; Spomer, 1974). In 

comparing horticulture crops grown in peat, feather, and plastic containers watered uniformly 

across pot type, Evans and Hensley (2004) found that plants grown in plastic containers, which 

were impervious to water loss, had higher aboveground biomass than those grown in the peat- 

and feather-derived containers. However, when all container types were irrigated separately 

based on need, which resulted in more frequent water application to the peat and feather 

containers, growth in biocontainers was comparable and even superior to growth in a 

conventional plastic container depending on species grown (Evans and Hensley, 2004). Evans 

and Karcher (2004) found the volume of water required to grow a variety of crops was 

significantly lower in the plastic control as compared to those in the feather and peat containers. 

Similarly, more frequent watering was required for the peat and feather containers. This 

increased water demand corresponded with higher rates of water loss through the sides of the 

containers tested (Evans and Karcher, 2004). Evans et al. (2010) tested an expanded array of 

biocontainers to assess irrigation frequency and cumulative water demand. In doing so, the 

authors found that, with the exception of a relatively impermeable solid rice hull container, all 

biocontainer alternatives required more frequent irrigation and more overall water to maintain 

the minimum moisture level threshold. 

 

Decreases in ET must coincide with unchanged or even increased plant growth to truly reduce 

water use in horticulture production (Fereres et al., 2003). As such, this project evaluates both 

plant dry shoot weight and cumulative water use at the end of the 5-week trial period. Our study 

expands on past efforts to assess water demand in biocontainers through the inclusion of a pair of 

newly marketed bioplastic alternatives, a bioplastic container and bioplastic sleeve. In adopting 

biodegradable, plant-based plastics, container producers hope to emulate the advantages of 

petroleum-derived products (i.e., durability and imperviousness), while appealing to 

environmentally conscious consumers and growers. The insights gained from this work will 
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better inform growers who need to reduce water use at their facilities and will ultimately 

contribute to future water-use models. 

 

Materials and Methods 

 

CONTAINERS. Ten container types (one plastic control, seven organic alternatives, and two 

bioplastic alternatives) were use in this study (Table 3.1 and Fig. 3.1). A 4-inch (10-cm) standard 

pot was used as the plastic control. For the biocontainer alternatives, pots with comparable 

volumes were selected for inclusion in the trial. Variations in volume shown in Table 1 reflect 

the realities a commercial grower would face when looking for alternatives to standard plastic 

pots.  

 

EXPERIMENTAL DESIGN, GROWING CONDITIONS, AND PLANT CARE. This study was 

conducted in a greenhouse setting at the University of Illinois at Urbana-Champaign (lat. 40º6'N, 

long. 88º13'W, USDA Hardiness Zone 5b). ‘Yellow Madness’ petunia served as a representative 

short-term floricultural crop for this greenhouse trial. The trial began on 26 May 2012 and 

concluded after 5 weeks. The experiment was arranged as a completely randomized design, with 

an individual potted ‘Yellow Madness’ petunia serving as the experimental unit. Each container 

type was replicated 20 times, for a total of 200 containers used in the design.  

 

Each container (replicate) was filled with a commercial soil-less growing mix (LC1 Mix; Sun 

Gro Horticulture Canada Ltd., Vancouver, BC, Canada) and one ‘Yellow Madness’ petunia 

plant. Potted plants were placed on plastic drain trays and spaced widely on greenhouse benches 

to facilitate the watering of individual experimental units. Given this wide spacing, no border 

row was deemed necessary. Also, a unique characteristic of the bioplastic sleeves is that they 

have no bottom. The design relies on the use of a multi-pocket shuttle/carry tray to keep potting 

mix in place until root growth is sufficient to maintain stability. To account for this, individual 

pocket bottoms were cut out from a shuttle/carry tray with a 1-cm lip and placed between the 

containers and the drain tray.  
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Plants were grown under supplemental light conditions (13 h daily in the absence of natural 

light/photon flux levels over 600 µmol·m
-2

·s
-1

) with minimum day- and nighttime temperatures 

set at 24 and 18 ºC, respectively. The median temperature over the course of the water use study 

was 27 ºC, with a maximum of 33 ºC recorded on 28 June 2012 and minimum of 17 ºC recorded 

on 7 June 2012. Relative humidity during the study period ranged from 24.6% to 90.5%, with a 

median value of 64.2%. Median photosynthetic photon flux at 1200 HR was 471 µmol·m
-2

·s
-1

.  

 

  



38 
 

Table 3.1. Container type, product name, approximate volume, and manufacturer information 

for  nine biocontainers and a plastic control used in the trial. 'Yellow Madness' petunias were 

grown in a greenhouse for 5 weeks to assess the effect of container type on dry shoot weight and 

watering demand.  

 

Container type Product name
z
 Volume (cm

3
) Manufacturer 

Plastic  Dillen 04.00 Standard 

Thinwall Green 

480 Myers Industries Lawn & Garden 

Group, Middlefield, OH 

Bioplastic TerraShell
TM 

10cm H Wheat 

Pot 

473 

 

Summit Plastic Company, Akron, OH 

Coir Coir 4.0” Std Fiber Gro Pot 406 Dillen Products, Middlefield, OH 

Manure  #4 Square CowPot 450 CowPots Manufacturing and Sales, 

East Canaan, CT 

Peat 4” Jiffy Pot 379
y
  Jiffy Products of America Inc., Lorain, 

OH 

Bioplastic sleeve 

(Sleeve) 

4.5” Standard Assembled 

SoilWrap
®

 

709
y
  Ball Horticultural Company, West 

Chicago, IL 

Slotted rice hull 4.5” NetPot 591 Summit Plastic Company, Akron, OH 

Solid rice hull Rice Pot 4” 473 Summit Plastic Company, Akron, OH 

Straw n/a 646
y
  Ivy Acres, Baiting Hollow, NY 

Wood fiber 10 X 10 cm Round 

Individual Fertilpot 

430
y
 Fertil SAS, Boulogne Billancourt , 

France  

z
As indicated in manufacturers on-line/print catalog. 

y 
Not included in manufacturer specifications. Volume approximated. 

1 cm
3
 = 0.0610 inch

3
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Fig. 3.1. Images of container treatments used to grow a short-term crop of ‘Yellow Madness' 

petunias. Plants were grown under greenhouse conditions for 5 weeks in order to gauge the 

effect of container type on irrigation demand. Containers used included (A) plastic control, (B) 

bioplastic, (C) coir, (D) manure, (E) peat, (F) sleeve, (G) slotted rice hull, (H) solid rice hull, (I) 

straw, and (J) wood fiber. 
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Irrigation was supplied by hand using a beaker on an as-needed basis at the treatment (i.e., 

container type) level. This threshold was defined as the point when soil moisture levels at or 

below 40% were detected for a given container type. Initially, soil moisture was assessed using 

an electronic soil moisture sensor (ThetaProbe Soil Moisture Sensor – ML2x, Delta-T Devices 

Ltd, Cambridge, United Kingdom). However, repeated measurements within the same soil space 

can lead to questionable measurements as air spaces/channels form in the media. As such, this 

work followed methods described in past research, relying on visual indicators of drying (e.g., 

the graying of the soil-less mix surface) to determine water need after the first week (Evans and 

Hensley, 2004; Evans et al., 2010; Kuehny et al., 2011). Water was applied as needed to saturate 

the growing mix and container wall and allow for some measurable drainage (approximately 250 

mL to 400 mL depending on container volume). Water use was calculated as the difference 

between the volume of water applied and the volume of water lost through drainage.  

Plants were fertigated weekly with a 150 ppm 10N-6.5P-8.3K fertilizer solution (Schultz 10-15-

10 All Purpose Fertilizer; Schultz Co, Bridgeton, MO). The fertilizer solution was applied to 

each plant weekly when watering was required.  

 

MEASUREMENTS AND DATA ANALYSIS. Cumulative water use and irrigation frequency 

were recorded as measures of water demand. Final plant growth was measured as shoot dry 

weight. Water content and dry shoot weight were each analyzed as univariate, one-way analysis 

of variance (ANOVA) in R [version 2.14.2 (R Core Team, 2012)]. Prior to analysis with 

ANOVA, correlation between the two response variables was calculated using the COR.TEST 

function. Correlation was deemed not significant (P = 0.47) with Pearson's correlation 

coefficient calculated as 0.05. To control experimental-wise error rate, a Bonferroni adjusted 

α=0.025 was adopted for each of the two ANOVAs. Diagnostic plots confirmed that the 

residuals for both analyses met the assumptions of normality and equal variances. Mean 

separation for significant factors was conducted using a protected Fisher's least significant 

difference test (α=0.05). These comparisons were made using the LSD.TEST function provided 

in the agricolae package [version 1.1-2. 11 (de Mendiburu, 2012) ] 
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Results and Discussion 

 

Results indicated that both total water use (P < 0.0001) and dry weight (P < 0.0001) varied with 

container type. As expected, containers made from more porous materials used greater volumes 

of water than the largely impervious plastic, bioplastic, and solid rice hull containers (Fig. 3.2). 

Among these three containers, differences in water use were not significant.  

 

Fig. 3.2. Average cumulative water used for 'Yellow Madness' petunia plants grown in nine 

biocontainers and a plastic control. Plants were grown under greenhouse conditions for 5 weeks 

in order to gauge the effect of container type on irrigation demand. Water was applied when soil 

moisture levels below a watering threshold of 40% were detected for a given container 

treatment. Error bars depict Fisher's least significant difference. 1 mL =0.0338 fl oz.  

  



42 
 

Of the three containers which required the least water (i.e., plastic, bioplastic, and solid rice hull 

containers), plants grown in the plastic control had the highest dry shoot weight. Within this 

group, mean shoot dry weight was similarly diminished for the bioplastic and solid rice hull 

containers (Fig. 3). Mean shoot dry weight in the bioplastic container fell midway between the 

other two containers, performing slightly, though not significantly, greater than plants in the 

solid rice hull containers, but significantly less than those in the control. 

 

Fig. 3.3. Average final dry weight for 'Yellow Madness' petunia plants grown in nine 

biocontainers and a plastic control. Plants were grown under greenhouse conditions for 5 weeks 

in order to gauge the effect of container type on irrigation demand. Water was applied when soil 

moisture levels below a watering threshold of 40% were detected for a given container 

treatment. Error bars depict Fisher's least significant difference. 1 g =0.0353 oz.  
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The wood fiber pot treatment required the highest amount of water to stay above the drying 

threshold, yet was among the group of containers with plants having the lowest shoot dry 

weights. As soil moisture was measured manually each morning, there were some days when 

readings dipped below the 40% threshold. Containers like the coir, peat, manure, and wood fiber 

pot, which dried quickly and required more frequent watering, had more opportunities to drop 

below this ideal lower limit (Table 3.2). In contrast, containers with longer irrigation intervals 

(lower irrigation frequencies) were spared from more frequent periods of saturated or water-

limiting conditions.  

 

Table 3.2. Average irrigation frequency (per wk) by container type. 'Yellow Madness' petunias 

were grown in a greenhouse for 5 weeks to assess the effect of container type on dry shoot 

weight and watering demand. 

 Avg Irrigation Frequency (per wk) 

Container type Avg SD 

Plastic  2.8 0.49 

Bioplastic 2.6 0.80 

Coir 3.6 0.49 

Manure  3.0 0.63 

Peat 3.4 0.49 

Sleeve 2.2 0.40 

Slotted rice hull 2.4 0.49 

Solid rice hull 2.6 0.49 

Straw 2.8 0.40 

Wood fiber 3.0 0.00 

 

 

Our work highlights a major advantage of the bioplastic and rice hull containers and marks the 

first investigation into the performance of a new biocontainer design, the bioplastic sleeve. With 

performance comparable to conventional plastic, the bioplastic and rice hull products offer an 

alternative to petroleum-derived pots with an additional benefit of appealing to environmentally 
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conscious consumers (Hall et al., 2010). Specifically, the bioplastic sleeve appeared to balance 

water demand and growth in our trial. With the highest shoot dry weight and moderate water use, 

this container should be tested further using a wider variety of floral and foliage crops.  

 

Any environmental benefits intrinsic to the containers and their production must not be negated 

by additional environmental impacts in greenhouse production. A true assessment of a 

container's overall impact on sustainable greenhouse production must account for both water use 

and yield. This work suggests that more frequent irrigation may be needed for peat, manure, and 

wood pulp containers to match the levels of growth seen in some of the more impervious 

alternatives. Future work should address this concern. 

 

Additionally, containers of this size are often arranged in plastic shuttle trays during production, 

as trays make handling and spacing of small potted plants more manageable. These trays 

typically surround the majority of a container in impervious plastic. When watered, small 

amounts of irrigation drainage generally accumulate in the base of the tray. This water may be 

reabsorbed over time if in contact with roots, growing mix, or porous container surfaces. In 

addition, this water likely contributes to the production of a boundary layer of humid air trapped 

between the container and tray. Noting these potential benefits, it is likely that some of the 

differences in water consumption and irrigation frequency documented in past research can be at 

least partially mitigated with shuttle trays. Research should quantify what benefits, if any, shuttle 

trays offer with respect to water use and plant growth.  

 

We and others (Evans and Hensley, 2004; Evans and Karcher; 2004; Evans et al., 2010) used 

standard soilless growing mixes optimized for plastic container usage. However, porous 

biocontainers likely perform more like unglazed clay pots, which were traditionally filled using 

potting mixes with a slower-draining topsoil and/or sand component. Future testing should 

investigate biocontainer performance using alternative growing mixes, including mixes with 

wetting agents and hydrogels designed specifically for use in terra cotta containers (Terracotta 

Pot & Planter Mix, Osmocote
®
, Bella Vista,  NSW, Australia).  
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Conclusion  

 

In summary, both water use and plant growth differed by container type. The more impervious 

containers (i.e., control, bioplastic, and solid rice hull) were among the best performing 

containers with regard to total water consumption. These three container types, while not linked 

to the largest mean dry shoot weights, did not under-perform with regard to plant growth either. 

In contrast, reduced shoot dry weight was associated with some of the fastest drying containers 

like wood fiber, straw, and manure. Though these results may be a source of concern for growers 

looking to adopt biocontainers, growing system and potting mix optimization may negate some 

of the differences observed here. Until such innovation occurs, the relatively new bioplastic 

sleeve may be a promising option for growers looking to maximize growth and limit water 

consumption. 
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CHAPTER 4: PLANTABLE BIOCONTAINERS IN THE LANDSCAPE: RATE OF 

DEGRADATION AND IMPACT ON PLANT ESTABLISHMENT 

 

Note: This work was completed as part of a multi-institutional research initiative with additional 

trials  conducted at research facilities associated with the University of Kentucky, Mississippi 

State University, Texas A&M University, and West Virginia University. Only work conducted at 

the University of Illinois research plots is reported in this chapter. The final publication to be 

submitted for peer review will include analysis from all five locations.  

 

Summary 

 

Manufacturers and retailers of containers designed for direct-planting market them as reducing 

transplant stress, labor, and landfill waste. However, some professionals worry that any 

container, even one designed to break down and allow roots to penetrate into the surrounding 

soil, may hinder timely plant establishment in the landscape. This study investigated above-

ground growth for three floral bedding plants [cleome (Cleome hybrid 'Inncleosr'), impatiens 

(Impatiens xhybrida 'SAKimp016'), and lantana (Lantana camara '2003301')] produced and 

outplanted in one of eight containers (i.e., one plastic control removed at transplanting, six 

plantable organic alternatives, and one plantable bioplastic sleeve) over two sequential growing 

seasons. Above ground dry shoot weight differed by container type for cleome (P = 0.02109) and 

lantana (P = 0.0093), but not for impatiens (P = 0.3254). In contrast, two other plant responses, 

above ground volume and a visual condition rating, varied significantly by container type only in 

the impatiens trial plots (P = 0.0030 and P = 0.0242 for volume and condition, respectively). 

Plantable containers were extracted at the end of the growing season to measure residual dry 

weight as a means of assessing degradation. Residual dry weight (pooled across species and 

compared against new container weight) differed significantly by container type for both trial 

years (both P < 0.0001) with the proportions intact ranging from 0.86 (slotted rice hull in 2011) 

to 0.00 (manure in 2012). 
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Background 

 

Plants are exposed to many stresses as they transition from the site of production to the 

landscape. These stresses are often sufficient to temporarily halt growth, a condition known as 

transplant shock (Dufault and Schultheis, 1994; Koeser et al., 2009; McKay, 1996; Nicola and 

Cantliffe, 1996; Nitzsche et al., 1991). Temperature extremes, mechanical injury, desiccation of 

plant materials, and changes in growing environment can all contribute to this developmental 

stagnation. A significant body of research has amassed that identifies causes of transplant shock 

and corrective measures to help negate its impact on plant growth and survival (McKay, 1996). 

 

In order to prevent one notable source of transplant stress, direct injury to roots, bedding plants 

are usually left in the soilless potting mix used for their production and transport (Spomer, 1980). 

While reducing mechanical stress, this practice ultimately increases the potential for root 

desiccation and death. Soilless mixes are designed to provide drainage in the shallow soil 

conditions artificially created by container production. Once the impervious barrier of the 

container is removed, the coarse, soilless media surrounding a plant's rootball becomes part of a 

much deeper, highly textured soil system. As a result, once-optimal drainage conditions quickly 

become excessive in the absence of frequent irrigation or rain.  

 

Directly plantable biocontainers are purported to limit root system disruption and reduce 

transplant shock when used as an alternative to conventional plastic containers, which must be 

removed prior to planting (Evans and Hensley, 2004; Evans and Karcher, 2004). However, it is 

also believed that some biocontainers (e.g., peat) may wick water up out of the root zone if not 

sufficiently buried (Kuehny et al., 2011). Most plantable containers are made from highly porous 

materials (e.g., peat, wood fiber, or manure). These containers have been linked to both 

decreased growth and increased watering in greenhouse production (Evans and Karcher, 2004; 

Koeser et al. findings accepted for publication). In the landscape, they may provide little 

resistance to water loss from the rootzone to the surrounding soil, and in some cases even 

increase dessication.  
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Unlike the plantable pots mentioned above, two newer plantable containers use more impervious 

materials (i.e., pressed rice hulls and bioplastic) for their construction. These containers are 

designed with slits or openings to allow roots to penetrate into the surrounding soils and facilitate 

decomposition. Despite having gaps that expose soilless mix to air, a past greenhouse trial has 

shown that the dry weights of petunia plants grown in slotted rice hull and bioplastic sleeve 

containers match or exceed those of a conventional plastic control (Koeser et al. unpublished 

data). More importantly, this growth did not come with the added burden of increased water 

demand. This suggests that soil moisture conditions in plantable slotted rice hull and bioplastic 

sleeve containers are similar to the conditions associated with plastic containers. Unlike plastic 

containers, which are discarded at installation, the two former pots remain intact around a plant's 

roots in the landscape, which may moderate some of the drastic changes to drainage seen in 

conventional planting practices. 

 

Any benefit offered by direct-plant containers at transplanting will ultimately be undone if root 

growth into the surrounding soil is hindered. The volumes of containers are limited, and reliance 

on this soil space alone can cause increased moisture stress when combined with the accelerated 

drainage conditions noted above (Spomer 1980). Also, though not an issue with annual bedding 

plants, roots that that circle due to restrictive growth caused by container walls may lead to long-

term health and stability issues, especially when combined with excessive, deep planting 

(Mathers et al., 2007). Plantable biocontainers are designed to degrade in field soil. This rate of 

degradation must be slow enough to meet the needs of growers, yet not at such a rate as to 

impede plant establishment and root growth. Few works address the rate at which plantable pots 

degrade after outplanting (Evans et al., 2010). To date, no studies assess decomposition of the 

more recently developed slotted rice hull and bioplastic sleeve in field soils.  

 

This landscape trial assesses plant growth and container degradation in seven plantable 

biocontainers. The work is intended to provide insight into three key research questions: 1) Do 

direct-plant biocontainers benefit or hinder bedding plant establishment and growth?; 2) If 

differences exist, are those differences plant specific or applicable to a broader range of bedding 

plants?; and 3) To what extent do direct-plant biocontainers break down in field soil conditions? 
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Materials and Methods 

 

LOCATION. This landscape trial was conducted at research field plots at the University of 

Illinois at Urbana-Champaign (lat. 40º 6' N, long. 88º 13' W, USDA Hardiness Zone 5b) during 

the 2011 and 2012 summer growing seasons. The soil at the planting site was a Drummer silty 

clay loam with a 0-2% slope (U.S. Dept. Agr. Natural Resource Conservation Serv., 2013). The 

first trial began on 17 May 2011 and ended on 19 October 2011. The second trial began on 15 

June 2012 and ended on 26 October 2012. Mean monthly temperatures and precipitation for the 

two trial periods are shown in Fig. 4.1.  

 

Fig. 4.1. Monthly mean temperature and precipitation at the Urbana, IL study site (lat. 40º 6' N, 

long. 88º 13' W, USDA Hardiness Zone 5b) for the 2011 and 2012 growing seasons.  
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CONTAINERS. Eight container types (i.e., one plastic control, six organic alternatives, and one 

bioplastic sleeve) were used in the study (Table 4.1). A 4-inch (10-cm) standard pot (removed at 

transplanting) served as the control. All biocontainers used in the trial were selected for their 

direct-plant design and commercial availability. While pots were selected with a volume 

approximately equal to that of the control, minor variations in volume (Table 4.1) reflect the 

realities a professional grower would face when looking for alternatives to standard plastic pots. 

Volume is one of many attributes contributing to the overall design of a container. Differences in 

geometry, container material, and the presence or absence of drainage holes also varied among 

the products selected. For this work, the total effect of all these differing attributes is 

encompassed by our container treatment.  
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Table 4.1. Container treatments selected for this experiment, including manufacturer 

information and approximate volume. 

Container Type Product Name
z
 Approximate 

Volume (cm
3
) 

Manufacturer 

Plastic Control 

(Control) 

Dillen 04.00 Standard Thinwall Green 480 Myers Industries Lawn 

& Garden Group, 

Middlefield, OH 

Coir Coir 4.0" Std Fiber Gro Pot 406 Dillen Products, 

Middlefield, OH 

Pressed Manure 

(Manure) 

#4 Square CowPot 450 CowPots Manufacturing 

and Sales, East Canaan, 

CT 

Peat 4” Jiffy Pot 379
y
  Jiffy Products of 

America Inc., Lorain, 

OH 

Bioplastic Sleeve 

(Sleeve) 

4.5” Standard Assembled SoilWrap
®

 709
y
  Ball Horticultural 

Company, West 

Chicago, IL 

Slotted Rice Hull 4.5” NetPot 591 Summit Plastic 

Company, Akron, OH 

Straw n/a 646
y
  Ivy Acres, Baiting 

Hollow, NY 

Wood Fiber 10 X 10 cm Round Individual Fertilpot 430
y
 Fertil SAS, Boulogne 

Billancourt , France  
z
As indicated in manufacturers on-line/print catalog. 

y 
Not included in manufacturer specifications. Approximated as a volume of a frustrum of a cone 

as, 

 

EXPERIMENTAL DESIGN, GROWING CONDITIONS, AND PLANT CARE.  

Three species were selected to represent a range of plant water requirements. Impatiens 

(Impatiens xhybrida 'SAKimp016') was included in this trial due to its relatively high water-use 

requirement. Lantana
 
(Lantana camara '2003301' ) was chosen for its low water-use 

requirement. Cleome (Cleome hybrid 'Inncleosr') served as an example of a plant with more 

moderate watering requirements compared to the first two species.  

 

In the field, plants were grouped by species due to their different watering requirements and in 

order to prevent the taller species (i.e., cleome) from shading the lower-growing species (i.e., 
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lantana and impatiens). Consequently, each species was designed and analyzed as a separate 

trial. Each trial was arranged in a completely randomized design with an individual potted plant 

serving as the experimental unit. Each container type was replicated 10 times per species per 

year (total n=160 per species over the 2 years).  

 

Plants were grown from plug to market size under conventional greenhouse conditions prior to 

the start of the trial. A commercial growing mix consisting of peat, perlite, and vermiculite was 

used for greenhouse production (Fafard 2 Mix, FPM Peat Moss Company, Ltd., Agawam, MA). 

All plants were transplanted into the landscape at 2-foot intervals. Weeds were controlled with 

black landscaping fabric (Weed Barrier Pro, DeWitt Company, Sikeston, MO). Irrigation was 

supplied immediately after installation and as needed via drip tapes in 2011 and by hand in 2012.  

 

MEASUREMENTS. In the 2011 season, bi-weekly measures of plant volume (i.e.,the product of 

plant height and two perpendicular width measures) were taken until the lantana and cleome 

reached an average diameter of 0.5 m. A qualitative, 0-5 aesthetic rating was given to each plant 

in tandem with the plant volume measurements. This rating was conducted throughout the 2011 

growing season, even after plant volume measurements ended.  

 

At the end of both seasons, all above-ground biomass was collected, oven dried, and weighed. In 

addition to dry shoot weight, residual dry pot weight was measured to gauge container 

degradation in the landscape. Post-harvest dry weights were compared to an average initial dry 

weight calculated from ten new containers of the same type to determine the proportion 

remaining.  

 

DATA ANALYSIS. Dry shoot weights for each species were analyzed separately as a series of 

two-way analysis of variance (ANOVA) in R (R Core Team, 2012). Both trial year and container 

type served as fixed effects. Diagnostic plots confirmed that the residuals for both analyses met 

the assumptions of normality and equal variances. In cases where factors and/or interactions 

were found to be non-significant, model simplification was employed using the methodology 

described by Crawley (2005) for ease in interpretation. Mean separation for significant factors 

was conducted using a protected Fisher's Least Significant Difference (LSD) test (α=0.05). These 
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comparisons were made using the Least Significant Difference (LSD).test function provided in 

the agricolae package (de Mendiburu, 2012).  

 

Volume was assessed as repeated measures using the ezAnova function in the ez package 

(Lawrence, 2012).  Analysis assumptions, including Mauchly’s Test for Sphericity, were 

checked prior to final reporting (Kuehl, 1999).  Differences among individual means for the 

between effect of treatment were determined using Fisher’s LSD values calculated using ezStats 

function in the ez package.  

 

Aesthetic ratings for each plant were averaged prior to analysis to create an overall, season-long 

rating. This response was analyzed at the species level as a series of one-way ANOVAs. 

Assumptions were validated as noted above. Mean separation, where appropriate, was conducted 

as a protected LSD. 

 

Container decomposition was expressed as the ratio of post-harvest container weight over new 

container weight. The resulting response was a proportion bound between zero and one. As 

anticipated given this constraint, diagnostic plots indicated that the underlying assumptions 

required for a standard ANOVA were not met. To address this concern, an arcsine square root 

and a logit transformation were applied in turn to the response. The former did little to correct 

issues of residual non-normality or heterogeneity. The logit transformation alleviated the issue of 

heterogeneity, though failed to address the concern of non-normality. As such, the logit 

transformation was used prior to analysis with a Kruskal-Wallis one-way ANOVA test on ranks. 

This approach is similar to the analysis conducted by Hübner et al. (2008) when faced with 

similar concerns. Analysis and multiple comparisons were conducted with the kruskal() function 

in the agricolae package (Mendiburu, 2012). All decisions were made at an α = 0.05 level of 

Type I error.  

 

Results and Discussion 

 

DRY SHOOT WEIGHT. With the cleome, the main effect of trial year was not significant (P = 

0.1267) and the trial yearXcontainer type interaction was marginally significant/insignificant (P 
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= 0.0552). In model fitting, testing with the ANOVA function (R Core Team, 2012) showed that 

removal of the interaction term did not unduly limit the explanatory power of the new reduced 

model (P = 0.0552). This new reduced model was further simplified by removing the trial factor 

with no significant difference between the two iterations (P = 0.1267). In the final, minimally 

adequate model, data from both trial years was pooled together leaving container type as the lone 

significant factor (P = 0.02109).  

 

Mean dry shoot weights of cleome separated out into three overlapping groups with control, 

straw, peat and wood fiber being top performers (in order; Fig. 4.2). The second grouping 

included all but the highest and lowest performing containers (i.e., control and bioplastic sleeve). 

Finally, the lowest performer for cleome, the bioplastic sleeve, was not significantly different 

from the wood pulp, coir, slotted rice hull, and manure containers.  
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Fig. 4.2. Mean dry shoot weight (g) for cleome (Cleome hybrid 'Inncleosr') produced and 

outplanted in one of 8 container types (i.e., one plastic control removed at transplanting, six 

plantable organic biocontainer alternatives, and one plantable bioplastic sleeve). Plants were 

grown at university research plots in Urbana, IL (lat. 40º 6' N, long. 88º 13' W, USDA Hardiness 

Zone 5b) during the 2011 and 2012 growing seasons. Data from the two growing seasons were 

pooled as the trial year factor was not significant. Error bars depict Fisher's Least Significant 

Difference values.  
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For impatiens, trial year was significant (P < 0.0001). However, neither container type (P = 

0.3254) nor the trial year x container type interaction were significant (P = 0.7604). Of the two 

years, growth was greater in 2011 (Fig. 4.3). Precipitation was largely absent in the spring and 

early summer of 2012. This situation, coupled with sustained above-average temperatures 

throughout much of the Midwest (including the study site), under extreme drought conditions 

(Rippey et al., 2012). Approximately 1.5 in (4 cm) of water was applied weekly to all plots in the 

absence of sufficient rain. As drought conditions progressed, this level of irrigation, though 

sufficient to prevent plant death, was not enough to maintain the higher level of growth seen with 

the impatiens in 2011. Impatiens were included in the trial specifically for their high water 

demand, so these results do not come as a surprise. More interesting is that no container offered 

any detectable benefit or hindrance with regard to above-ground biomass of impatiens in either 

year. Given the species' sensitivity to limiting moisture conditions, any pot which wicked away 

water or limited root penetration into surrounding soil moisture stores would likely be linked to 

significant growth reductions, especially in the 2012 growing season. With none detected, it 

appears other factors (i.e.,environment) play a greater role in plant growth. 

 

For the lantana trial, neither trial year (P = 0.1662) nor the trial year x container type interaction 

(P = 0.8730) were significant. These terms were dropped from the final model, effectively 

combining the data for the two growing seasons. No significant difference in explanatory power 

was found in comparing the original and reduced models (P = 0.7512). As with the original 

model, shoot dry weight in this final, reduced model varied significantly by container type (P = 

0.0093). 
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Fig. 4.3. Mean shoot dry weight (g) for impatiens (Impatiens xhybrida 'SAKimp016') produced 

and outplanted in one of 8 container types (i.e., one plastic control removed at transplanting, six 

plantable organic biocontainer alternatives, and one plantable bioplastic sleeve). Plants were 

grown at university research plots in Urbana, IL (lat. 40º 6' N, long. 88º 13' W, USDA Hardiness 

Zone 5b) during the 2011 and 2012 growing seasons. Error bars depict Fisher's Least 

Significant Difference values.  

  



59 
 

 

Fig. 4.4. Mean shoot dry weight (g) for lantana (Lantana camara '2003301') produced and 

outplanted in one of 8 container types (i.e., one plastic control removed at transplanting, six 

plantable organic biocontainer alternatives, and one plantable bioplastic sleeve). Plants were 

grown at university research plots in Urbana, IL (lat. 40º 6' N, long. 88º 13' W, USDA Hardiness 

Zone 5b) during the 2011 and 2012 growing seasons. Data from the two growing seasons were 

pooled as the trial factor was not significant. Error bars depict Fisher's Least Significant 

Difference values.  
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In investigating the effect of container type on lantana dry shoot weight, it appeared that a few 

key differences among the treatments drove the significance of the factor (Fig. 4.4). Notably, 

slotted rice hull containers out-performed both wood fiber and coir containers with regard to dry 

shoot weight. Above-ground growth in wood fiber containers was not significantly different 

from any of the other containers. Finally, dry shoot weight for plants in coir containers was 

significantly lower than any of the other containers tested with the exception of wood fiber.  

 

CROWN VOLUME. As expected, crown volume varied significantly over time for cleome, 

impatiens, and lantana (all P < 0.0001). Additionally, container type (P = 0.0030) and the 

container typeXtime interaction (P = 0.0118) were significant for impatiens. In contrast, 

container type was not significant for either lantana (P = 0.6537) or cleome (P = 0.6262). 

Additionally, neither lantana (P = 0.8333) nor cleome (P = 0.1418) had significant container 

typeXtime interactions.  

 

Despite some variation in mean starting sizes, no significant differences in plant volume were 

found at planting or at two weeks after planting in the impatiens (Table 4.2). At six weeks after 

planting (and perhaps earlier), detectable differences were found among the container types. 

Many of the plants in the containers that would ultimately end up in the top statistical grouping 

did not experience noticeable stunting as captured in the second measurement period (Table 4.2). 

The lack of transplant shock may indicate that pots, such as the wood fiber and straw containers, 

prove no more a barrier to root growth and water than of a plant transplanted from a plastic pot. 

Early gains in volume seen in the second measurement period were only magnified over time, 

explaining, in part, the significance of the interaction effect. 

 

While impatiens volume differed among the treatments, dry weight remained relatively uniform 

across container type. This discrepancy shows the value of multiple growth metrics. As the 

product of three measurements, volume is a relatively coarse measurement. However, when 

differences are detected, they are typically linked to noticeable visual differences. Combined 

with dry weight, we can infer that plant habit was influenced by container type, with the less 
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voluminous plants being more leggy than those in the other treatments. Based on observation, 

this reduced leaf area seemed to be linked to water-stress-induced leaf abscission. 

 

Table 4.2. Mean above ground plant volumes (calculated as the product of two perpendicular 

width and and one height measurement) for over impatiens (Impatiens xhybrida 'SAKimp016') 

over time. Plants were outplanted in eight container types (i.e., one plastic control removed at 

transplanting, six plantable organic biocontainer alternatives, and one plantable bioplastic 

sleeve) at research plots in Urbana, IL (lat. 40º 6' N, long. 88º 13' W, USDA Hardiness Zone 5b). 

 

 Date 

Container 

Type 

19 May 

2011 

Statistical 

Grouping
z
 

3 June 

2011 

Statistical 

Grouping 

1 July 

2011 

Statistical 

Grouping 

13 July 

2011 

Statistical 

Grouping 

Wood 

Fiber 

6815.9 

 

a 7763.9 

 

a 26724.9 

 

a 35235.2 

 

a 

Straw 5931.4 

 

a 7617.0 

 

a 26559.8 

 

a 32003.8 

 

ab 

Control 5393.5 

 

a 7176.0 

 

a 22819.2 

 

ab 29746.5 

 

bc 

Manure 

 

7622.7 a 7047.6 a 21572.2 bc  27301.3 cd 

Sleeve 6514.6 

 

a 5902.4 

 

a 21452.0 

 

bc 26281.2 

 

cd 

Slotted 

Rice Hull 

4137.1 

 

a 5977.5 

 

a 19962.7 

 

bcd 23824.9 

 

de 

Peat 6978.8 

 

a 6151.1 

 

a 17426.6 

 

cd 20820.3 

 

e 

Coir 4817.1 

 

a 3463.1 

 

a 15841.6 

 

d 19609.0 

 

e 
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AESTHETIC RATING. In comparing the aesthetic condition ratings, neither lantana (P = 

0.6165) nor cleome (P = 0.2355) differed visually by container type. However, rating scores did 

vary by container type for the impatiens (P = 0.0242). As with the dry weights, there was 

significant overlap in the mean separations, with plants in the straw, wood pulp, slotted rice hull, 

control, and the bioplastic sleeve all having high visual ratings (Fig. 4.5). Coir, peat, and cow 

were the lowest rated, though this group was not different from the control and bioplastic 

mentioned in the previous grouping.  

Fig. 4.5. Mean aesthetic ratings (0-5 scale) for impatiens (Impatiens xhybrida 'SAKimp016') 

produced and outplanted in one of eight container types (i.e., one plastic control removed at 

transplanting, six plantable organic biocontainer alternatives, and one plantable bioplastic 

sleeve). Rating used is as follows: 0 – Dead; 1 – Poor; 2-Fair; 3-Okay; 4-Good; 5-Excellent. 

Error bars depict Fisher's Least Significant Difference values.  
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POT DEGRADATION. Given the limitations of the Kruskal-Wallis test, each year was analyzed 

separately. Similarly, data from the three species were pooled together. Pot degradation did vary 

significantly by container type in both 2011 (P < 0.0001) and 2012 (P < 0.0001). While not 

formally tested given the methods of analysis used, both trials exhibited nearly identical ranking 

orders (Table 4.3). In both years, the slotted rice hull pot, with over 80% of its original dry 

weight remaining after one growing season, was the most intact container of the products tested. 

In comparison, the manure container was the least intact, with 5% (median) of its original weight 

remaining in at the end of the 2011 trial and only rare bits intact in 2012.  

 

While several similarities are noted above, there were two differences in the rankings for the two 

trials (Table 4.3). First, with regard to proportion of dry mass remaining, the bioplastic sleeve 

was ranked higher in 2012 than in 2011. Secondly, the order of the straw and wood fiber 

containers was flipped between years. 

 

With the bioplastic sleeve, the change in ranking appears to be driven primarily by its own level 

of degradation. In 2011, the median proportion left intact for the bioplastic sleeve was 0.53. In 

contrast, this proportion was 0.74 in 2012. Two factors may have contributed to this disparity. 

First, differences in soil temperature and water availability surely influence degradation rate 

(Donnelly et al., 1990). That noted, for all other containers in the trial, the proportion remaining 

intact either decreased or remained the same in 2012 as compared to 2011, which is opposite the 

trend seen with the bioplastic sleeve (Table 4.3). The second factor was the container itself. In 

2012, the manufacturer adjusted the design of the bioplastic sleeve. One of the marketed benefits 

of this container is the ability to custom print logos and branding information on its exterior. 

However, printing on the earlier iteration of the bioplastic sleeve tested in 2011 would at times 

melt off prematurely during greenhouse production. In combating this problem, it appears the 

manufacturer's newest design may not degrade as readily under field conditions.  
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Table 4.3. Median, Quartile 1, and Quartile 3 container decomposition levels (i.e.,proportion by 

weight left intact) for seven plantable biocontainers at the end of the 2011 and 2012 field trials. 

Values are logit-transformed ratios of post-harvest dry weight over new container dry weight. 

Raw median levels (i.e.,non-transformed) are included for ease in interpretation. Values are for 

all three species [cleome (Cleome hybrid 'Inncleosr'), impatiens (Impatiens xhybrida 

'SAKimp016'), and lantana (Lantana camara '2003301')] combined.  

 

Container  Year Median Proportion Intact 

(Raw Proportion) 

Q1 Q3 Statistical Grouping
z
 

Slotted Rice Hull 2011 1.70 (0.86) 1.59 1.90 a 

Coir 2011 1.20 (0.78) 0.61 1.82 b 

Peat 2011 1.09 (0.76) -0.19 1.65 bc 

Wood Fiber 2011 0.88 (0.63) -0.24 1.35 c 

Sleeve 2011   0.10 (0.53) -0.03 0.37 d 

Straw 2011  -0.05 (0.49) -0.16 0.23 d 

Manure 2011 -2.91 (0.05) -3.66 -2.23 e 

Net 2012 1.41 (0.82) 1.25  1.59 a 

Sleeve 2012 0.98 (0.74) 0.86 1.21 b 

Coir 2012 0.62 (0.66) 0.20 1.07 c 

Peat 2012 0.44 (0.61) 0.04 0.73 cd 

Straw 2012 0.07 (0.52) -0.44 0.59 d 

Wood Fiber 2012 0.02 (0.51) -0.35 0.28 e 

Manure 2012 -3.66 (0.00) -3.66 -3.16 f 

Z
Multiple comparisons are for containers within a given year 
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The differences in degradation that resulted in the ranking differences of the wood fiber and 

straw pots over the two growing seasons are less pronounced. As compared to 2011, the straw 

container was marginally more intact in 2012. There was a slightly more dramatic reduction in 

residual container mass with the wood fiber containers. Without the confounding factor of 

container design seen with the slotted rice hull pots, differences in soil temperature and moisture 

variability were likely the primary causes of this change. 

 

Conclusion 

 

With regard to above-ground growth, plantable containers do not appear to offer any significant 

growth benefit when compared to plastic container-grown bedding plants. Rather, there are 

indications some containers can actually limit growth, though this varies by species and 

conditions. While size is an important consideration, plant appearance is likely the most 

important response from a homeowner or property manager perspective. In this regard, only our 

most sensitive plant, impatiens, was impacted by the use of a plantable pot. As such, plantable 

biocontainers may be most appropriate for waste conscious consumers or landscapers looking for 

labor savings during installation and cleanup. Finally, while some containers readily degrade, 

others may remain for more than one growing season. Rototilling and other bed preparation 

activities in subsequent years will likely hasten degradation and limit buildup of residual 

container materials.  
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CHAPTER 5: BIOCONTAINER USE IN PETUNIA xHYBRIDA GREENHOUSE 

PRODUCTION – A CRADLE-TO-GATE CARBON FOOTPRINT ASSESSMENT OF 

SECONDARY IMPACTS.  

 

Summary 

 

While biocontainers (i.e., biodegradable, plant-based containers) are marketed as being more 

sustainable than conventional plastic pots, little scientific literature exists to substantiate these 

claims. Past research has instead shown that adoption of plant-derived containers under current 

greenhouse production practices often leads to greater use of irrigation water, increased damage 

and waste during filling and shipping, and differences in plant growth. Life cycle assessment 

(LCA) serves as a holistic accounting of all the material/energy inputs and waste/pollution 

outflows associated with a given product. This paper draws on LCA methods to assess how 

secondary production impacts (e.g., irrigation demand) differ as container type changes. The 

basis for these comparisons is cradle-to-gate assessment of all of the inputs and outflows 

associated with production of a common annual ornamental plant (e.g., Petunia xhybrida) in a 

plastic container. This work does not consider the inputs and outputs of manufacturing the 

containers themselves, since that information is propriety in many cases. Container-specific 

secondary impacts derived from controlled studies were then incorporated as model parameters 

to assess differences in overall production global warming potential (GWP). Results show that 

the container itself accounts for approximately 17% of overall CO2e (i.e.,carbon dioxide 

equivalent) emissions during petunia production using a conventional plastic pot. Though 

container was a significant contributor to GWP, electrical consumption for supplemental lighting 

during plug production and irrigation throughout the production process proved to be the leading 

sources of CO2e emissions (over 44%). Differences in GWP were only minor in comparing the 

use of various biocontainers with standard plastic containers for secondary production impacts. 

Results demonstrate that biocontainers compete with plastic pots for secondary impacts, 

suggesting they could potentially be more sustainable than plastic pots once pot manufacturing 

data are considered. Use of more efficient supplemental lighting sources, however, may 

ultimately have the greatest impact on overall GWP. 
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Introduction 

 

Environmentally conscious consumers are generally willing to pay higher prices for sustainably-

produced goods and demonstrate loyalty to the retailers supplying them (Yue et al., 2011; Dennis 

et al., 2010; Krug et al., 2008). In the field of horticulture, however, not all efforts to reduce the 

environmental impacts associated with production have resulted in positive perceptions by the 

plant-buying public. For example, a recent study demonstrated that the adoption of organic 

fertilizers offered no significant marketing advantage for floriculture crops (Yue et al., 2011). In 

this same study, plants labeled as “organic” were actually viewed unfavorably by trial 

participants, though no explanation was given for this finding.  

 

In contrast to organic labeling, the adoption of biocontainers (plant material-based, 

biodegradable pots) as an alternative to conventional plastic containers use can be a significant 

driver of consumer interest. Yue et al. (2011) found that biodegradable, compostable, and 

recycled pots had the greatest impact on consumer preference – outranking other sustainable 

production practices not seen directly at the garden retail center (e.g., efficient use of wholesale 

production space). Similar conclusions were drawn by Hall et al. (2010), who found container 

type contributed most to consumers' interest in sustainably produced plants – outranking other 

highly influential considerations such as price and carbon-footprint.  

 

Despite their perceived environmental benefits and appeal as alternatives to petroleum-based 

plastic pots, biocontainers have not been assessed to determine their overall impact on 

commercial greenhouse sustainability. In this regard, biocontainers have one obvious advantage 

over conventional plastic pots – they are not discarded and transported to a landfill after use. 

Rather, most biocontainers are designed to be planted directly into the landscape or composted in 

a home compost bin. Some bioplastics, however, may require commercial composting conditions 

to fully break down (David Evans, personal communication).  

 

While recycling of plastic pots is an option for some consumers with access to collection 

facilities, containers used for greenhouse and nursery production are less likely to be reclaimed 

given the potential for chemical contamination and photodegradation (Garthe and Kowal, 1994). 
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In the United States, overall, plastic recycling rates are estimated to be only 8% (US EPA, 2011). 

Within this aggregation, not all plastics and plastic products are recycled equally. More 

ubiquitous and desirable products like bottles and jars have recycling rates ranging from 21% to 

28% (US EPA, 2011). Lesser-valued agricultural plastics are generally buried or burned and are 

likely reclaimed at rates much lower than the overall average (Garthe and Kowal, 1994).  

 

Beyond end-of-life considerations, container selection can have a number of impacts on the 

overall sustainability of greenhouse production. Biocontainers vary in their material and overall 

strength, and they can be less resilient to the rigors of mechanization and transport (Koeser et al., 

2013a). As such, overall production efficiency may decline due to losses linked to unacceptable 

container damage. For potted plants that successfully navigate through mechanized transplanting 

and handling processes, plant growth rate and water use in greenhouse growing spaces can vary 

given differences in container design and porosity (Koeser et al. 2013b). Moving beyond issues 

associated with production, purchased plants introduced into the landscape may have different 

establishment and growth rates depending on whether a plantable pot is used or not.  

 

This study offers a first look at the overall sustainability of biocontainers as part of a greenhouse 

production system. Hall et al. (2009) noted in their survey work that greenhouse growers 

believed sustainability in their operations was important. Additionally, the researchers found that 

decisions regarding sustainable practices were largely based on this belief and not an expectation 

of economic reward from environmentally-conscious consumers. As such, our work adopts a 

grower's perspective and focuses on the environmental impacts of container use during the plant 

production phase (cradle-to-gate).  

 

One of the main difficulties in any life cycle assessment is the collection of quality data from 

manufacturers and contractors (Boustead, 1996). While this is true even for in-house 

assessments, the transparency and potential scrutiny that come with publishing one's results in 

the peer-reviewed literature can be an added barrier to full cooperation. In this assessment, only 

the secondary impacts occurring during the greenhouse production of plants (e.g., differences in 

irrigation demand, peat use, etc.) associated with each container are compared. These secondary 

impacts were directly measured through a series of applied research trials, and represent 
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differences in inputs growers would note in their operations. The results of this work can be used 

to guide future research by identifying promising containers that should be assessed more 

thoroughly (i.e., determining their own intrinsic carbon footprints). Furthermore, providing 

container manufacturers with preliminary results may reduce apprehension and encourage 

participation by providing a relevant example of the life cycle assessment process. 

 

Biocontainers as a whole are marketed as a means of making the horticultural industry more 

sustainable. This paper aims to provide one piece of the puzzle in evaluating these claims by 

identifying the extent to which each container impacts the carbon footprint of petunia production. 

The results of this work will help commercial growers identify secondary environmental impacts 

associated with their decision to adopt green packaging in their production systems.  

 

Materials and Methods 

 

GOAL, SCOPE, AND FUNCTIONAL UNIT. This paper assesses the inputs and impacts of a 

short-rotation greenhouse crop, Petunia xhybrida (petunia), from initial propagation to plant and 

container delivery at a retail center. This study is the first to establish a baseline, cradle-to-gate 

life cycle inventory of this annual floral commodity. Additionally, our paper serves as an initial 

screening of nine commercially available biocontainers (Table 5.1, Fig. 5.1), which may be 

selected for a more thorough life cycle assessment that includes manufacturing inputs and 

environmental impacts in future research.  

 

As a model system, our assessment is based on production practices of a large, semi-mechanized 

wholesale greenhouse that supplies retailers throughout the Midwestern United States (Mid-

American Growers, Granville, IL, United States). Global warming potential (GWP) linked to 

carbon emissions was selected as the primary environmental impact estimated to allow for 

comparison with past life cycle assessment works in horticultural production (Aldenton, 2002; 

Ingram, 2012; Ingram, 2013, Kendall and McPherson, 2012). The functional unit is a single 

petunia plant and its container (approximately 450 cm
3 

volume, though volume was somewhat 

variable because of size availability for the containers assessed). 
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Fig. 5.1. Images of container used in life cycle assessment. Containers used included (A) plastic 

control, (B) bioplastic, (C) coir, (D) manure, (E) peat, (F) sleeve, (G) slotted rice hull, (H) solid 

rice hull, (I) straw, and (J) wood fiber. 
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Table 5.1. Container type, product name, approximate volume, and manufacturer information 

for nine biocontainers and a conventional plastic container use for this life cycle assessment. 

 

Container type Product name
z
 Volume (cm

3
) Manufacturer 

Plastic  Dillen 04.00 Standard 

Thinwall Green 

480 Myers Industries Lawn & Garden 

Group, Middlefield, OH 

Bioplastic TerraShell
TM 

10cm H 

Wheat Pot 

473 

 

Summit Plastic Company, Akron, OH 

Coir Coir 4.0” Std Fiber Gro 

Pot 

406 Dillen Products, Middlefield, OH 

Manure  #4 Square CowPot 450 CowPots Manufacturing and Sales, 

East Canaan, CT 

Peat 4” Jiffy Pot 379
y
  Jiffy Products of America Inc., 

Lorain, OH 

Bioplastic sleeve 

(Sleeve) 

4.5” Standard Assembled 

SoilWrap
®

 

709
y
  Ball Horticultural Company, West 

Chicago, IL 

Slotted rice hull 4.5” NetPot 591 Summit Plastic Company, Akron, OH 

Solid rice hull Rice Pot 4” 473 Summit Plastic Company, Akron, OH 

Straw n/a 646
y
  Ivy Acres, Baiting Hollow, NY 

Wood fiber 10 X 10 cm Round 

Individual Fertilpot 

430
y
 Fertil SAS, Boulogne Billancourt , 

France  
z
As indicated in manufacturers on-line/print catalog. 

y 
Not included in manufacturer specifications. Volume approximated. 

 

SYSTEM BOUNDARIES AND ASSUMPTIONS. The boundary for this cradle-to-gate life 

cycle assessment begins with propagation via seed at the commercial greenhouse (Fig. 5.2). 

Actual seed production and transport were not included within the system boundary given 

limitations of available data and because past work has shown this process contributes very little 

to the overall impacts of production (rounded to 0%; Kendall and McPherson, 2012), After 

germination, seedlings are grown in indoor greenhouse space until they are large enough to be 

transplanted from their initial plug tray cell to a larger, final container for outdoor production. 

Once plants are market ready (i.e., a point at which a plant is in flower and above-ground growth 

is sufficiently filling the container), they are transported to a garden retail center for sale.  
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Following the methods adopted by recent LCA of ornamental nursery crops, the scope of this 

assessment does not consider emissions associated with the production of capital goods (e.g., the 

greenhouses facilities and mechanized equipment) used to produce the functional unit (Ingram, 

2012; Kendall and McPherson, 2012).  
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Fig. 5.2. Life cycle of a greenhouse-produced petunia plant. The system boundary for this 

cradle-to-gate assessment is outlined below. 
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LIFE CYCLE INVENTORY AND DATA COLLECTION. Data for this life cycle assessment 

came from a variety of sources. General production practices for plug and final plant production 

were identified through a series of telephone and email interviews with six growers at Mid-

American Growers. These communications were supported by direct meter readings from the 

greenhouse's boiler system, information from product labels, and interviews with horticultural 

equipment manufacturers. Direct experimentation from a series of independent greenhouse trials 

provided container-specific growing requirements. Basic material data came from past literature, 

the U.S. Life Cycle Inventory Database (National Renewable Energy Laboratory, 2012), and a 

North American-adapted version of the Ecoinvent Database (US-EI version 2.2, Earthshift Inc, 

Huntington, VT, United States). Electricity source information specific to the study area was 

obtained from the United States Environmental Protection Agency's Emissions and Generation 

Resource Integrated Database (eGRID) model (EPA, 2009). All processes and data sources for 

the life cycle inventory were managed through the SimaPro life cycle assessment software tool 

(SimaPro 7.3.3, PRé Consultants bv, Amersfoort, The Netherlands) and are listed in Table 5.2.  

 

INPUTS AND ASSUMPTIONS ASSOCIATED WITH PROPAGATION AND PLUG 

PRODUCTION. The growers interviewed in the study estimated overall waste during plug 

production at 10%, given non-germination or poor seedling quality. All input values for plug 

production have been adjusted to account for this waste. Petunia plants are typically started from 

seed and grown for 4 weeks in a 200-cell polystyrene plug tray. Each cell is filled with 

approximately 2.45 g of a 65:35 peat:perlite growing mix (Fafard 2, Conrad Fafard Inc., 

Agawam, MA, United States). Irrigation occurs every other day for the first 14 days. For the last 

two weeks, watering occurs daily. The total volume of water applied to a given plant is 52.2 mL. 

All water used is pumped from on-site surface water sources. 

 

Plants are fertilized at each watering with a 14-2-20 N-P-K fertilizer mixed at a rate of 100 ppm. 

A fungicide spray/drench (Pageant, BASF, Research Triangle Park, NC, United States) is applied 

as needed, typically once per crop at a rate of 0.45 mL of stock solution per liter of water. About 

2 weeks into the production process, plants are sprayed with 500 ppm solution of the plant 

growth regulator, ethephon (Florel, Lawn and Garden Products, Inc., Fresno, CA, United States), 

to promote secondary branching and create a bushier appearance. Around this same time, a 1-3 
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ppm solution of paclobutrazol (Piccolo, Fine Agrochemicals, Ltd, Walnut Creek, CA , United 

States) is sprayed on the plants to reduce stem elongation and limit legginess.  

 

Plug plants are grown in an enclosed greenhouse space. Supplemental lighting is provided by 

1000 W high-intensity-discharge grow lamps covering an area of 10.5 m
2
 each. Lamps are set to 

run during early mornings and weekends for a total run-time of 73 hours per week. Three wood 

boilers utilizing chipped industrial wood scrap maintain minimum greenhouse temperatures of 

22 to 24 °C. 

 

INPUTS AND ASSUMPTIONS ASSOCIATED WITH FINAL GREENHOUSE 

PRODUCTION (PLASTIC CONTAINER SCENARIO). Plugs are mechanically transplanted 

into larger 10-cm polypropylene pots after the initial 4-week plug production process. During 

transplanting, empty pots are placed in a 10-cell polystyrene filling tray and run through a 

mechanical potting mix filling machine (KV-L Filler, Agronomix, Oberlin, OH, United States). 

Each container is filled with approximately 68.4 g of a 85:15 peat:perlite soil-less mix (mixed on 

site). After filling, plugs are hand-transplanted into the larger containers, and the trays (with pots 

and plants) are moved outside for the final 5 weeks of production.  

 

Once outside, plants are fertigated every 2-3 days with a 100 ppm 14-2-20 fertilizer solution. 

Average water use for plants grown in plastic containers (without trays) was calculated to be 

2162 mL during an independent growth trial intended to mimic this stage in production (Koeser 

et al., 2013). This value was adjusted to reflect water savings (6%) associated with tray use 

(Evans et al., unpublished data).  

 

During the final production stage, petunia plants are typically treated once with a fungicide 

(Banrot, Scotts-Sierra Crop Protection Company, Marysville, OH, United States) at a rate of 0.60 

g of wettable powder per liter of water. They are also sprayed once with the fungal-derived 

insecticide NoFly (Natural Industries, Inc., Spring, TX, United States) at 2.3 kg per hectare to 

prevent thrip damage and again with the insecticide Mallet (Nufarm Americas, Inc., Burr Ridge, 

IL, United States) at a rate of 0.12 g per liter to prevent aphid damage. Finally, the petunia plants 
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are sprayed 1-2 times with a 5-6 ppm paclobutrazol growth regulator solution to maintain a 

compact, full form. Waste due at this production stage was estimated at 2% by the interviewees.  

 

PRODUCTION INPUTS WHICH VARY GIVEN CONTAINER TYPE (SECONDARY 

IMPACTS). Secondary impacts of container type fall into one of two general categories: impacts 

related to container size and impacts related to container-related irrigation demand. Differences 

in container size directly translate into differences in peat and perlite use during the final 

production stage and ultimately, shipping weight. A 10-cm diameter container size was chosen 

as a standard given its wide availability among container types. However, two containers, the 

bioplastic sleeve and the slotted rice pot, were only available in 11.5-cm sizes. Similarly, the 

manure pot was available in a 10-cm square only (not a round like the other nine containers). 

Lastly, the straw pot, though 10-cm in diameter, had a larger volume than most containers given 

its above-average height.  

 

Water use, while tied in part to container volume, is also influenced by container geometry (i.e., 

slender vs. stout), absence or presence of drain holes, and container-wall porosity. Differences in 

water demand influence the amount of electricity required to run irrigation systems. 

Additionally, all fertilization, pesticide, and growth regulator applications were administered in 

conjunction with normal irrigation. As such, the amount of chemical applied would vary slightly 

by container depending on the amount of water dispensed in a given watering.  

 

 

INPUTS AND ASSUMPTIONS FOR TRANSPORTATION. All pesticides, fertilizers, and the 

commercially produced plug growing mix were assumed to have come from the nearest major 

greenhouse supplier (110 km from the study site; BFG Supply Company, Joliet, IL, United 

States). The horticultural peat material data used for the two growing media mixes included an 

estimate for average delivery in North America (Cleary et al., 2005). However, the expanded 

perlite component of this mix did not include a transportation component (US-EI 2.2). As such, 

perlite was assumed to be sourced and delivered from the nearest processing plant (148 km to 

study site; Silbrico Corporation, Hodgkins, IL, United States). Finally, transportation for the 

plastic containers and trays was assumed to be the distance to the manufacturer (740 km to study 
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site; Meyers Industries, Middleton, OH, United States). For all inputs above, transportation via 

diesel truck was assumed.  

 

Plants are transported only minimally during greenhouse production. Throughout the entire 

process, plants are moved approximately 0.75 km by lawn tractor or by person (latter assumed). 

Mid-American Growers provides floral materials to a wide range of major retailers within 480 

km of the production site. The largest market in this distribution area is the Chicago, IL (United 

States) metropolitan area (174 km from Chicago to production site). This was the assumed 

destination for the final product.  
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Table 5.2. Life cycle inventory for both the plug and final plant product stages. Data sources 

included. 

Product 

Stage 

Input Per plant Unit Source(s) 

Plug Electricity 0.083 MJ US-EPA eGRID 

Plug Waste wood heat 0.240 MJ US-EI 2.2 – heat, hardwood chips from 

industry  

Plug Growing mix  

(65:35 peat:perlite) 

0.002 kg Cleary et al., 2005 

US-EI 2.2 – expanded perlite 

Plug Perlite transport 0.124 kg-km NERL USLCI – diesel truck transport 

Plug Plug tray 0.001 kg US-EI 2.2 – polystyrene 

Industry Data 2.0– polystyrene 

thermoforming 

Plug Plug tray transport 0.8050 kg-km NERL USLCI – diesel truck transport 

Plug 14-2-20 fertilizer  9.072x10
-4

 kg US-EI 2.2 – urea, as N 

US-EI 2.2 – ammonium nitrate as N 

US-EI 2.2 – triple superphosphate as P205 

US-EI 2.2 – potassium chloride as K20 

Plug Ethephon (Florel) 1.228x10
-6

 kg US-EI 2.2 – growth regulators 

Plug Paclobutrazol (Piccolo) 4.950x10
-9

 kg US-EI 2.2 – growth regulators 

Plug Pyraclostrobin/boscalid 

(Pageant)  

3.143x10
-7

 kg US-EI 2.2 – fungicides 

Plug  Chemical transport 0.001 kg-km NERL USLCI – diesel truck transport 

Plug Irrigation 0.052 l US-EI 2.2 – agricultural irrigation 

Final 10 cm plastic pot 0.014 kg US-EI 2.2 – polypropylene 

US-EI 2.2 – polypropylene injection molding 

Final Plastic pot transport 10.1 kg-km NERL USLCI – diesel truck transport 

Final Plastic tray 0.013 kg US-EI 2.2 – polystyrene 

Industry Data 2.0 – polystyrene 

thermoforming 

Final Plastic tray transport  9.89 kg-km NERL USLCI – diesel truck transport 

Final Growing Mix (85:15 

peat:perlite) 

0.068 kg Cleary et al., 2005 

US-EI 2.2 – expanded perlite 

Final Perlite transport 1.528 kg-km NERL USLCI – diesel truck transport 

Final Etridiozole/Thiophanate-

methyl (Banrot) 

0.8x10
-5

 kg US-EI 2.2 – fungicides 

Final Paclobutrazol (Piccolo) 8.874x10
-7

 kg US-EI 2.2 – growth regulators 

Final (NoFly) 2.360x10
-6

 kg US-EI 2.2 – insecticides 

Final (Mallet) 1.885x10
-5

 kg US-EI 2.2 – insecticides 

Final Chemical Transport 0.014 kg-km NERL USLCI – diesel truck transport 

Final Final product transport  60.95 kg-km NERL USLCI – diesel truck transport 

Final Irrigation 2.073 l Koeser et al., 2013 

Evans et al., unpublished data 

US-EI 2.2 – agricultural irrigation 
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IMPACT ASSESSMENT AND LIFE CYCLE ASSESSMENT. In addition to the life cycle 

inventory, global warming potentials (as a factor of kg CO2e emitted) were estimated for the 10 

different container production scenarios using the United States Environmental Protection 

Agency's TRACI 2 impact assessment model [version 4.00 (US EPA, 2012)]. Only processes 

contributing 0.5% or more toward the overall environmental impact of a petunia are included in 

the results summaries.  

 

Sensitivity or “what-if” analysis was conducted to see how the overall GWP impact results 

changed with the inclusion of a given container parameter (Björklund, 2002 ; ISO, 2006). 

Differences of 15 to 30% are typically adopted by LCA practitioners when identifying influential 

inputs (Harnoor Dhaliwal, personal communication). 

 

Results and Discussion 

 

BASELINE ASSESSMENT OF PETUNIA PRODUCTION. Global warming potential for all of 

the main contributing inputs are expressed as kilograms of carbon dioxide equivalents (kg CO2e) 

in Table 5.3. For plug production, the overwhelming majority of kg CO2e were linked to 

electrical consumption. The majority of the electricity used to propagate and grow petunia 

seedlings was use for supplemental lighting.  
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Table 5.3. Base level inputs, transportation requirements, and their associated CO2e emissions 

per petunia plant grown in a plastic container. Only inputs contributing 0.5% or more toward 

the emissions for a given production stage are included.  

 

 

Product 

Stage 

Input kg CO2e
z
 % Contribution to Total GWP

z
 

Plug Electricity (lighting and irrigation) 0.233 94.71 

Plug Waste wood heat 0.002 0.81 

Plug Growing mix 0.002 0.81 

Plug Plug Tray 0.009 3.67 

 Plug total 0.246 100.00 
Final Finished plug 0.246 47.67 

Final Transportation - truck 0.017 3.29 

Final Horticultural peat 0.042 8.14 

Final Expanded perlite 0.012 2.32 

Final Fertilizer solution 0.009 1.74 

Final Plastic container 0.087 16.86 

Final Plastic shuttle tray 0.103 19.96 

 Plant total (including plug) 0.516 100.00 
z
Values may not sum to total given rounding 

 

Wood heating was a minimal contribution to GWP. Of the three boilers used, only two were 

needed intermittently to heat an area of 8 ha. When in operation, the boilers heated a large buffer 

tank which helped limit temperature fluctuations as nighttime temperatures dropped. The fuel 

source used by the boilers also served to limit over GWP. All woodchips were sourced locally as 

industrial byproducts from pallet and other manufacturing processes.  

 

The remainder of the inputs had minimal impact given the diminutive size of the plant and plug 

tray. Only horticultural peat harvesting/processing and polystyrene production/thermoforming 

(processes noted for their CO2e admissions) were present in sufficient quantities to register as 

noteworthy contributors to GWP. 

 

Plug production in the controlled greenhouse space accounted for nearly half of the final plant’s 

carbon footprint (Fig. 5.3). Other notable inputs in petunia production included tray (20.0% of 

total GWP), container (16.9% of total GWP), and peat (8.1% of total GWP). Lesser contributors 



83 
 

to the overall impact included transport (3.3% of total GWP), perlite (2.3% of total GWP), and 

the fertilizer mix (1.7% of total GWP).  

 

These results are consistent with those documented in a past cradle-to-gate carbon footprint 

assessment of container woody tree production (Kendall and McPherson, 2012) and tree seedling 

production (Aldentun, 2002). In the first study, a total of 4.6 kg CO2e was emitted during the 

production a typical #5 (13.5 l capacity) container tree. As with petunia production, the 

researchers noted that inputs were more intensive during propagation and seedling production. 

While grown over several seasons, the latter stages of tree production, like petunia production, 

occur outdoors in uncontrolled environments. Kendall and McPherson (2012) also note 

containers, growing media, and fertilizer as significant material inputs during final production. 

Aldentun (2002) calculated CO2e emissions ranging from 0.045 to 0.133 kg per seedling with the 

variation linked to nursery surveyed. Again, lighting, peat, and tray were identified as significant 

contributors to overall GWP.  

 

Fig. 5.3. Total emissions associated with container petunia production. Only inputs contributing 

0.5% or more are included.  
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SECONDARY IMPACTS ASSOCIATED WITH BIOCONTAINER USE. While past research 

has shown biocontainer use can have significant impacts on inputs like irrigation (Koeser et al. 

2013), this variability did not translate into significant differences in GWP. In assessing the 

various container parameters, GWP differed by 14.6% for the lowest and highest ranked 

container types: sleeve and peat (Fig. 5.4). While close to the more conservative 15% 

significance level mention in the methods, one could argue this difference is confounded with 

container size. Petunias grown in six 10-cm diameter biocontainers had nearly identical GWP 

values as a petunia grown in the conventional plastic pot (also 10-cm in diameter).  

 

The three most visible differences in GWP are seen with the sleeve, slotted rice, and straw 

containers (Fig. 5.4). These are also the three most voluminous pots (Table 5.1). All containers 

are filled to capacity by the mechanical filling machine. As such, differences peat use and final 

shipping weight drive the elevated GWP for these three containers. Other inputs such as 

irrigation, fertilization, and pesticides appear to have less influence on GWP, as despite being 

reduced (compared to plastic) in the sleeve and slotted rice containers, overall carbon emission 

were still elevated for these two pots.  

 

In conducting this assessment, we chose each biocontainer manufacturer's closest alternative to 

the common 10-cm plastic pot. If a grower switched from this size to one of the three larger 

biocontainers, the differences noted below could warrant further investigation. However, it 

seems likely that if all container sizes were identical, the differences in GWP would not have 

been noted.  
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Fig 5.4. Comparison of petunia production global warming potential (GWP) when using one of 

nine biocontainers or a conventional plastic container (CO2e for Sleeve set at 100%). 

Differences reflect only secondary impacts and do not include CO2e emissions associated with 

the production of the biocontianers themselves.  

 

 

Conclusions  

 

The results of this work should be encouraging for growers and manufacturers looking to 

increase sustainability through the use and development of biocontainers. While biocontainers 

have been linked to reduced performance in plant growth, filling speed, shipping success, and 

irrigation demand trials, these differences do not have a dramatic effect on production 

sustainability from a GWP perspective.  

 

Furthermore, for some factors like plant size, variability may be tolerated by consumers and 

growers, as long as plant appearance remains unaffected. Other factors will likely become less of 

an issue as biocontainers are fully embraced by the horticultural industry. With widespread use 
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comes innovation and adaptation of conventional greenhouse practices that will overcome past 

documented pitfalls. 

 

While future life cycle assessment research investigating the impacts of the containers and their 

production would lead to a more accurate assessment of petunia production GWP, the overall 

impact may not be very dramatic. In our baseline life cycle inventory, container accounted for 

approximately 17% of total CO2e emissions. If a given container was found to have half the 

GWP of our standard plastic control, the overall reduction in CO2e emissions would be 

approximately 8 to 9%.  

 

Supplemental lighting, which accounts for nearly 45% of total GWP, is the most important factor 

contributing to GWP. The use of more energy efficient light sources such as LED lamps, while 

not as noticeable at the garden retail center, would have the greatest impact on lowering CO2e 

emission. Production systems similar to our model site have the potential to reduce both the real 

and perceived environmental impacts associated with greenhouse grown-petunias by adopting 

more efficient lighting and biocontainers in their operations.  
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APPENDIX A: COMPATIBILITY OF BIOCONTAINERS IN COMMERCIAL 

GREENHOUSE CROP PRODUCTION 

 

Note: This work originally conducted by Dr. Daniel Warnock prior to leaving the department. It 

is the preliminary research which led to the larger funding source supporting this dissertation. 

As such, Dr. Gary Kling and I continued this work – analyzing and reporting the results. This 

paper is slated for publication in the April 2013 issue of HortTechnology. 

 

Summary 

 

Despite consumer interest in biocontainers, their use in commercial greenhouse production 

remains limited. Previous research indicates that a perceived incompatibility of biocontainers 

with current production systems may be a barrier to their widespread adoption. This paper 

investigates two potential areas of concern for growers looking to adopt biocontainers as part of 

their production process: 1.) the ability of biocontainers to withstand the rigors of a semi-

mechanized commercial production process; and 2.) biocontainer performance under three 

different irrigation methods (i.e., hand, ebb-and-flood, and drip irrigation). In the two studies 

presented here, 'Florida Sun Jade' coleus (Solenostemon scutellarioides), was evaluated to match 

measures of container resiliency with plant performance. Results indicate that plants grown in 

biocontainers were of equal size and quality as those grown in conventional plastic containers 

within each of the irrigation types tested. However, some biocontainers were more prone to 

damage during crop production, handling, and shipping.  

 

Background 

 

Market research has shown that environmentally-conscious consumers are willing to pay more 

for products developed by companies that incorporate sustainable business practices (Blend and 

van Ravenswaay, 1999; Thompson and Kidwell, 1998; Yue et al., 2011). Beyond the acceptance 

of premium pricing, green consumers have shown loyalty to businesses that embrace their 

environmental ideals (Yue and Tong, 2009). When one looks at issues of sustainability and 

horticultural sales, container type is consistently listed among the top factors having a positive 
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impact on consumer product perception (Dennis et al., 2010; Hall et al., 2010; Yue et al., 2011). 

As a highly visible symbol of past production processes, container type has generated more 

interest than "behind the scenes" practices such as organic fertilizer or efficient greenhouse space 

usage (Yue et al., 2011). Similar results were found in the work by Hall et al. (2010), who found 

that container type outweighed all other purchasing considerations – including price and carbon 

footprint. These findings have led researchers to state that consumers are more interested in 

making the pots sustainable than the plants themselves (Yue et al., 2011). 

 

Despite this consumer interest, biocontainers as a whole have yet to be widely embraced by the 

greenhouse and nursery industry. Hall et al. (2009) found that over 22% of growers surveyed 

indicated that they had used biocontainers in their operations. Of the remaining 78% that 

participated in the study, only 6% noted that they would like to add biocontainers to their current 

production processes (Hall et al., 2009). Similarly, research by Dennis et al. (2010), reported that 

12% of greenhouse growers acknowledged prior use of peat pots in their operations. Within this 

12%, respondents estimated that peat pots comprised less than 3% of their total container 

consumption (Dennis et al., 2010). These figures support a general consensus that the widespread 

use of biocontainers has been largely limited by their higher cost and perceived limitations 

(Helgeson et al., 2009; Kuehny et al., 2011). 

 

Conventional plastic containers remain popular given their ability to provide consistent 

performance (e.g., comparable wet/dry strength, compatibility with equipment) in production 

systems. This effectively removes one of the many possible variables a grower must contend 

with when attempting to produce a uniform crop of high-quality plants. The price of plastic still 

remains relatively inexpensive and economically accessible to ornamental crop growers (Evans 

and Hensley, 2004; Helgeson et al., 2009). For its cost, plastic is strong, lightweight, and 

versatile. These properties make it fully compatible with mechanized production processes and 

ideal for shipping (Evans and Hensley, 2004; Hall et al., 2010; Helgeson et al., 2009).  

 

Given the reliability of plastic, growers – especially growers with large operations – are hesitant 

to move toward any container that they feel may pose a risk to their crop or be difficult to 

implement in their existing production practices (Dennis et al., 2010, Hall et al., 2009). Despite 
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this aversion to risk, greenhouse growers (in contrast with nursery growers and 

nursery/greenhouse growers) ranked issues of compatibility as a minor barrier, indicating that 

perhaps flexibility in production practices, equipment, and crops may allow for greater adoption 

of biocontainers (Dennis et al., 2010).  

 

Though some published research has quantified biocontainer resistance to puncturing and 

crushing as indicators of container resiliency in production processes (Evans and Karcher, 2004; 

Evans et al., 2010), the current range of biocontainers on the market have yet to be thoroughly 

tested in the mechanized systems required for high throughput production of crops grown in 

greenhouses. As shown in this paper, in situ commercial testing is needed to assess impacts on 

system efficiency beyond container breakage (e.g., time to process).  

 

Furthermore, previous biocontainer growth studies under research greenhouse conditions have 

focused exclusively on hand irrigation as a means of water delivery (Evans and Hensley, 2004; 

Evans and Karcher, 2004). However, commercial greenhouses often rely on a variety of 

irrigation methods beyond overhead watering (e.g., drip irrigation and ebb-and-flood irrigation) – 

each with its own pattern of initial wetting and saturation that could potentially impact 

biocontainer durability during crop production.  

 

This work reports findings from two separate, but complimentary studies. The first is a series of 

interrelated experiments designed to determine whether biocontainers can withstand the rigors of 

high throughput, commercial greenhouse production – namely semi-mechanized filling, 

transplanting, handling, and shipping. Additionally, this study includes two successive growth 

trials (drip irrigation only) intended to determine if container root zone conditions, and ultimately 

plant shoot growth, are affected by container type. The second study expands on the first set of 

growth trials, as well as the existing body of biocontainer research, through the inclusion of an 

irrigation method factor. Measures of plant growth and container strength were conducted to 

determine the impact of drip irrigation, hand watering, and ebb-and-flood irrigation on crop and 

container performance. The combined product of these efforts contributes to the growing body of 

biocontainer research while helping professional growers make more informed decisions on 

whether these plastic pot alternatives can be incorporated in their own operations.  
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Materials and Methods 

 

CONTAINERS. Eight container types (one control and seven biocontainer alternatives) were 

compared in all experiments (Table A.1). 

 

Table A.1 Containers evaluated in all greenhouse and industrial trials in this paper. Greenhouse 

trials investigated the growth of 'Florida Sun Jade' coleus (Solenostemon scutellarioides) in the 

containers below when watered using a variety of irrigation methods (i.e., drip irrigation, ebb-

and-flood table, and hand watering with a wand). Industrial trials assessed container damage as 

a result of mechanical filling, lifting, and shipping. 

Container type
z
 Approximate 

vol (L) 

Product name
y
 Manufacturer 

Plastic (control) 

 

1.3  JanorPot
®

 15cm-L Summit Plastic Company, Akron, OH 

Wheat-based 

bioplastic 

(bioplastic) 

 

1.2  15cm-L TerraShell
TM

/OP47 Summit Plastic Company, Akron, OH 

Coir 

 

1.3  6” Round Coir Pot Dillen Products, Middlefield, OH 

Pressed manure 

(manure) 

 

1.2  6” Round CowPots Manufacturing and Sales, 

East Canaan, CT 

Paper 

 

1.0  5” Kord
®

 Fiber Grow 

Round Pot 

ITML Horticultural Products, 

Middlefield, OH 

Peat 

 

0.7  Jiffy-pots
® 

5 Jiffy Products of America Inc., 

Lorain, OH 

Straw 

 

0.8  5” Straw Pot Ivy Acres, Baiting Hollow, NY 

Wood fiber 3.9  7X7RD Western Products Company, 

Corvallis, OR 

zShortened descriptions appearing in parenthesis will be used throughout this paper. 
yProduct names are as listed in their respective company's catalog.  
1 L = 0.2642 gal  
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LOCATIONS. The mechanical filling and spacing experiments were conducted at a wholesale 

commercial greenhouse facility (Mid-American Growers, Granville, IL). Both greenhouse 

growth trials were conducted at a university research facility (University of Illinois at Urbana-

Champaign Plant Science Laboratory, Urbana, IL). The route for the shipping experiment 

connected these two locations. Container strength testing was conducted at a university materials 

testing facility (Advanced Materials Testing & Evaluation Laboratory at the University of 

Illinois at Urbana-Champaign, Urbana, IL).  

 

MECHANICAL FILLING. This experiment was a randomized complete block design with four 

separate runs serving as blocks. Within each run, the eight pot types were sent through a gravity-

fed pot-filling machine (model PM1100; Agrinomix, Oberlin, OH) in batches of 50 transport 

trays. Though containers sizes were selected to provide similar rooting volume for the later 

greenhouse trial, differences in width and height required the use of both six-cell and eight-cell 

azalea transport trays (Landmark Plastics; Akron, OH) during the filling experiment. As a result, 

each batch of 50 trays consisted of either 300 or 400 total pots. Four workers were involved in 

the filling process: one person to load the transport trays onto the conveyor belt; two to un-stack 

the pots, load them into the transport trays, and ensure that the machinery was running properly; 

and one person to load the trays onto carts after going through the filling machine. The pot filling 

machine and conveyors were adjusted between each run to meet various pot height requirements. 

The calibration time was not included in the total run time. Data gathered during this procedure 

included: proportion of pots damaged by machinery (e.g., crushed, torn, or punctured pots), 

proportion of pots unfilled (defined as more than 33% of pot volume devoid of soil), and total 

elapsed pot filling time (starting with placement of the first tray at the beginning of the line and 

ending with the removal of the last tray at the end of the line). 

 

MECHANICAL SPACING. Lifter bars were used in a simulated spacing trial to assess 

compatibility with the biocontainers tested. As with the filling trial, individual differences in 

container dimensions influenced sample size. To account for differences in pot widths, one of 

three lifter bars was selected for each pot type in this trial: a 4-inch, 15-pot spacer bar; a 6-inch 

(15.2 cm), 10-pot spacer bar spacer; and an 8-inch (20.3 cm), 7-pot spacer bar (FW Systems, 

Bergschenhoek, The Netherlands). In addition to the eight container types, two different levels of 



94 
 

a “shelf life” factor were used during this experiment. The first group in this factor was 

comprised of pots that had been filled with soil and watered just prior to the lifting test. The 

second level was comprised of containers under greenhouse conditions 4 weeks after 

transplanting (WAT). This second set of containers was also watered just prior to lifting.  

 

A simulation of mechanical spacing equipment was used for this trial. The downtime and labor 

associated with changing pot lifter bars and calibrating the mechanical spacer was prohibitive 

given the small volume of pots in each treatment. Thus, lifter bars were raised manually to assess 

whether the biocontainers tested were compatible with mechanical spacing equipment. The 

appropriate number of pots was lined up across the bench. The pots were lifted with a person on 

each end of the spacer bar to a height of approximately 1 ft and then set down and released 

approximately 1 ft away from the original location (similar to the mechanical spacing process). 

This procedure was replicated a total of four times per pot type in a randomized order for both 

treatments. After each lift, data were collected on the number of pots damaged during spacing, 

the number of pots spilled during spacing, and the number of pots that were not picked up by the 

spacer bar.  

 

SHIPPING. Pots filled with soilless media and arranged in shuttle trays were watered just prior 

to this trial, loaded onto rolling greenhouse carts, and loaded onto a box truck for transportation 

to and from the two sites in this trial. At each destination point, pots were unloaded and 

inspected for fraying, tears, gashes, creasing, crushed areas and other signs of damage. Data from 

one-way trips (200 km) were used in this analysis to minimize any confounding factors 

associated with pot handling by mechanized equipment or simulated mechanized handling while 

at each site. For each container type, 12 groups of five similar containers (total n=60) were used 

to assess the proportion of pots damaged during transport. 

 

GROWING CONDITIONS (BOTH GREENHOUSE TRIALS). Each of the two greenhouse 

trials listed below (i.e., drip only and hand, drip, and ebb-and-flood irrigation) were repeated. 

The first and second iterations of the two experiments began on 28 Apr. 2010 and 28 June 2010, 

respectively. All pots were mechanically filled with a peat-based substrate (85:15 by volume 

peat:perlite, Mid-American Growers, Granville, IL) and planted with rooted cuttings of 'Florida 
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Sun Jade' coleus (Solenostemon scutellarioides). These cuttings were grown under ambient light 

with minimum day and nighttime temperatures set at 24 and 18ºC, respectively. Plants were 

fertigated weekly (with one key exception detailed below) with a 250 ppm 20N-8.7P-16.6K 

fertilizer solution (Plantex 20-20-20 All Purpose Fertilizer; Plant Products Co, Brampton, ON, 

Canada). All plants were pinched in week three after planting to promote branching. Trials were 

concluded once the plants reached market-ready size (week 7).  

 

GREENHOUSE TRIAL – DRIP IRRIGATION. This experiment was a completely randomized 

design with groups of five similar containers serving as the experimental unit (n=6 groups for the 

two trials). Plants were placed on metal mesh greenhouse benches with drip tubes (Chapin Tube 

Weights; Jain
®
 Irrigation, Fresno, CA ). Water was applied uniformly across all container 

treatments when ≈25% of the potted plants showed visible drying on the surface of the media. 

Irrigation frequency was recorded, and weekly above-ground plant volume (i.e., the product of 

two perpendicular diameters and the height to the apical meristem), as well as pH and electrical 

conductivity (EC) measurements of pot leachate were taken. Container leachate was analyzed 

with a portable pH and EC meter (HI 98129 pH/Conductivity/TDS Tester; Hannah Instruments, 

Smithfield, RI) using a pour-through measurement technique. Dry shoot weight and total leaf 

area were quantified at the end of each trial.  

 

GREENHOUSE TRIAL – HAND, DRIP, AND EBB-AND-FLOOD IRRIGATION. Plants were 

watered using one of three irrigation methods: ebb-and-flood table (Ebb-Flo Bench, Midwest 

GROmaster, Inc. Maple Park, IL), drip tubing (Chapin Tube Weights), or hand watering with an 

irrigation wand. Ebb-and-flood tables were set for slow fill, fast empty with a 20-min, manually-

triggered watering cycle. Drip irrigation was set to run for 1 min after being manually set to run. 

Water was applied uniformly across all container and irrigation method combinations when 

≈25% of the potted plants showed visible drying on the surface of the media. As fertilizer was 

premixed in the ebb-and-flood reservoir tank, plants given this irrigation level were fertilized at 

every watering, not every week as with the drip and hand irrigated treatments (limitations are 

discussed below).  
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The large footprint of the ebb-and-flood tables limited randomization and necessitated a split-

plot design. Irrigation was considered the whole-plot factor and container type was designated 

the subplot. Each whole-plot was replicated three times per trial and contained 40 individual pots 

arranged by container type in groups of five. Response values for each of the individual pots in 

these groupings were averaged making sub-plot the experimental unit (total n=144). Watering 

frequency for each irrigation level was recorded throughout the study period. In addition, 

substrate pH and EC readings were taken on a weekly basis. Final plant growth was measured as 

dry shoot weight. 

 

CONTAINER STRENGTH TESTING – HAND, DRIP, AND EBB-AND-FLOOD 

IRRIGATION. After plant harvest, pots were emptied and allowed to dry. A random selection of 

used pots representing each container type/irrigation system combination was taken to a 

materials testing lab to evaluate the crush (n=5) and puncture strength (n=5). All used containers 

were emptied and dried prior to testing. Additionally, new containers were strength tested as a 

comparison to pots that had been used in production (n=8). A portion of these new containers 

were tested dry (n=5). The remaining containers were submerged in water for 24 h and tested 

while still saturated to assess wet strength (n=3).  

 

STATISTICAL ANALYSIS. Unless otherwise noted, all conclusions are made at an α=0.05 

level of type I experimental error. Container damage and filling success data from the pot filling 

experiment were analyzed via analysis of deviance within the GLM function of R (version 

2.14.2, R Development Core Team, 2012). Wood fiber containers were not included in the pot 

filling analysis, as they did not fit in the transport trays used for testing. The remaining seven 

container types were fit to a generalized linear model with a quasibinomial distribution specified 

to account for overdispersion (Crawley, 2005). A left-tailed Dunnett’s test (to see if the 

proportion of undamaged/filled containers decreased as compared to plastic control) was 

completed using the MULTCOMP function (Hothorn et al., 2008) in R. 

 

Pot filling speed was standardized as the time (in minutes) required to fill 100 containers. These 

data were analyzed with the analysis of variance within the AOV function of R (version 2.14.2 R 

Development Core Team, 2012). Means separations were completed using a right-tailed Dunnett 
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multiple comparison test (to see if time increased) with the plastic container designated as the 

control.  

 

Pot shipping was also analyzed via analysis of deviance. For this data set, neither the wood fiber 

nor the paper containers experienced any damage. To contend with this lack of variation, these 

two treatments were removed from the analysis. As with the filling data, a quasibinomial 

distribution was specified given the presence of overdispersion. A left-tailed Dunnett multiple 

comparison test was conducted against the plastic control .  

 

The influence of container type on plant volume, potting mix EC, and potting mix pH were 

analyzed using repeated measures with the MIXED procedure of SAS/STAT (version 9.2; SAS 

Institute, Cary, NC).  

 

Final leaf area and final dry shoot weight for the greenhouse trials were assessed using analysis 

of variance (ANOVA) within the MIXED procedure of SAS/STAT. A log10 transformation was 

applied to the observed dry shoot weights in order to meet the assumptions of normality and 

homogeneity of variance required for the analysis assumptions.  

 

Crush strength and puncture strength were assessed using ANOVA as part of the GLM 

procedure for SAS/STAT. Plastic, straw, coir, and bio-plastic containers were not included in the 

puncture analysis. These materials are very flexible and resisted penetration when tested with the 

metal probe. A square root transformation was applied to the response variable, load (in 

kilonewtons), to meet the assumptions (particularly homogeneity of variance) required for the 

analysis of the crush data. A log10 transformation was applied to the load measurements from the 

puncture testing for similar reasons.  

 

When making plant growth and container strength comparisons between irrigation types (i.e., 

hand, drip, and ebb-and-flood), probability values from post hoc contrasts have been included to 

supplement the figures in cases where it may be difficult to make clear separations of means 

using the confidence interval bars.  
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Results and Discussion 

 

MECHANICAL FILLING. The proportion of successfully filled pots did not vary by run/block 

(P=0.1998) or by container type (P=0.5993). However, the proportion of damaged containers 

did vary among the containers tested (P=0.0679) (Table A.2). In addition, blocking/run was 

significant (P=0.0198) with regard to container damage. Compared to the plastic control, coir 

(P=0.0098), pressed manure (P=0.0055), paper (P=0.0181), and peat pots (P=0.0204) were 

more likely to be damaged by the filling machine (Table A.2). Despite these statistical 

differences, none of the containers experienced damage levels greater than 1.5%. As many of the 

biocontainers had not been used at the facility before, it is conceivable that the proportion of 

damaged pots could decrease as workers become more familiar with the products.  

 

The differences seen between runs show the impact of initial machine calibration and setup when 

switching container types. For the potting equipment used in this experiment, the most crucial 

adjustment involved setting the overhead brushes that sweep excess potting mix from tops of the 

containers to the appropriate height (Fig. A.1). Brushes were manually adjusted to minimize 

damage while maintaining effectiveness. Slight inconsistencies in this process or in the 

containers themselves (i.e., some have irregular rims) may account for the differences seen 

between runs. The results of the mechanical filling trial suggest that damage to containers is a 

more pressing concern than filling success given the pots and equipment used. Individual 

container properties contributed to the differences in damage among the products tested. 

Containers made from flexible materials (e.g., plastic, bioplastic, and straw) experienced a lower 

proportion of damage than containers constructed with brittle material (e.g., manure, peat, and 

paper; Table A.2). Coir pots, though relatively flexible in nature, were prone to fraying as the 

tops were brushed to remove excess potting mix. If some tearing or chipping of the container top 

is acceptable, even the level of damage seen among the worst performing containers may be well 

within the tolerances of a grower. 
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Table A.2. Proportion of unfilled or damaged containers for mechanical filling and shipping 

trials. Values are given as the number of unsuccessfully processed pots per 100 pots. Eight 

container types (one control and seven biocontainer alternatives) were used in both trials. For 

the filling trial, containers were run through a gravity-fed filling machine (model PM1100, 

Agrinomix, Oberlin, OH) in trays. For the shipping trial, containers (in trays) were transported 

approximately 200 km (124.3 miles) in a box truck.  

 

Proportion of unfilled or damaged containers (%)  

 

 Container type 

 Control Bioplastic Coir Paper Peat Pressed 

manure 

Wood 

fiber 

Straw 

Filling-

unfilled 

0.29 0.33 0.33 1.25 0.50 0.58 naʸ 0.31 

Filling-

damaged 

0.11 0.33 1.25*
z
 1.08* 0.87 1.42** naʸ 0.50 

Shipping-

damaged 

1.67 8.33 8.33 0.00 35.00** 26.67** 0.00 6.67 

zComparisons are made across rows. Multiple comparisons were not conducted for the filling-unfilled response (first row) as pot 

type was non-significant. Mean separation was conducted as a left-tailed Dunnett’s test with the plastic container designated as 

“Control”. Estimates significant at the 0.05 level are marked with a double asterisk (**). Estimates significant at the 0.1 level are 

denoted with a single asterisk (*). 
yWood fiber containers were not included in the filling analysis as appropriate transport trays were not available for this pot type.  

 

 

 

 

 

 



100 
 

Fig. A.1. As trays of straw pots exit the gravity-fed filling machine (model PM1100, Agrinomix, 

Oberlin, OH) a rotating brush sweeps off excess potting mix. Proper adjustment of this brush 

was critical in the prevention of container damage and tipping.  
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With regard to pot filling speed, both container type (P<0.0001) and run (P=0.0054) were 

significant factors. At our particular study site, conveyor belt speed, and therefore run time, was 

ultimately most affected by the rate at which pots were unstacked and loaded into shuttle trays. 

As containers were placed in the trays, the worker stationed at the filling machine controls 

adjusted the belt speed to match the pace of the process. Any container type which resisted 

separation during unstacking, ultimately increased the time needed to complete a particular run. 

This was reflected in our calculated times for filling 100 containers (Table A.3). Peat, pressed 

manure and straw containers were substantially slower to fill than the control or other pot types.  

 

Table A.3. Time in minutes required to fill 100 containers. Filling time included denesting new 

containers, loading them into shuttle trays, mechanically filling with a potting machine (model 

PM1100, Agrinomix, Oberlin, OH) and removing shuttle trays from the conveyor.  

Filling time (min) 

Container typeᶻ   Avg   SE 

Control    1.25   0.047 

Bioplastic    1.56**ʸ  0.113 

Coir    1.30   0.058 

Paper    1.32  0.039 

Peat     1.81***  0.063 

Pressed manure   2.17***  0.095 

Straw     2.31***  0.119 

 
ᶻWood fiber containers were not included in the filling analysis as appropriate transport trays were not available for this pot type. 

ʸMean separation was conducted as a left-tailed Dunnett’s test with the plastic container designated as “Control”. 

Estimated differences significant at the 0.01 level are denoted with a triple asterisk (***). Estimated differences significant at the 

0.05 level are marked with a double asterisk (**). 
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Fig. A.2.  Comparison of (top) 6-inch (15.2 cm) and (bottom) 8 inch (20.3 cm) spacer bars. 

Incurved tines on the 6” bar made it difficult to achieve clean release of the pressed manure and 

wood fiber biocontainers after lifting.  
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MECHANICAL SPACING. Straw and peat containers were excluded from the spacing trial as 

the proper sized lift bars for these pots were unavailable from the commercial collaborator. This 

highlights the first of several issues associated with switching to alternate pot types in a 

commercial facility. Additional capital may be needed to purchase new or modify existing 

equipment to successfully implement the use of novel pot sizes. Furthermore, the slightly greater 

than one-half circle slots of many of the metal spacer tines combined with flexibility of the 

wetted pressed manure and paper containers caused these containers to wedge into slots in the 

spacer bars, making a clean release after lifting difficult (Fig. A.2). Given some of the 

complications noted above, no formal statistical analysis is included. However, several insights 

were gained from this work. In the lifting tests, damage was only seen in the pressed manure 

containers (2.2%) and occurred as a direct result of the issue with the spacers noted above. 

Lifting success of the coir containers was 28.8%, paper 69.8%, and wood fiber 91.9%. For the 

plastic, bio plastic, and pressed manure containers, 99% to 100% of the containers were lifted 

successfully. For the coir containers, the absence of a lip on the top edge of the pot was a key 

limitation to lifting success. While paper containers did feature a lip, it was not strong enough to 

support the container under wetted conditions.  

 

These results show the importance of matching an appropriate spacer bar to the container used in 

production. Growers are encouraged to work with manufacturers to determine the appropriate 

spacing equipment for the biocontainer being considered for adoption.  

 

SHIPPING. The proportion of pots damaged during shipping differed with container type 

(P=0.0002). The overall significance of this factor was driven largely by differences in pressed 

manure (P=0.0317) and peat pots (P=0.0153) compared to the plastic control. Both of these 

biocontainers experienced significant losses in shipping, with the former experiencing damage in 

27% of the pots measured and the latter recording damage in 35% of the pots measured. Care 

should be taken when handling and transporting well-watered peat and pressed manure 

containers, especially after they have been in production several weeks. As such, these containers 

may be best suited for shorter rotation crops (B. Hayes, personal communication). Damage rates 

across flexible pots, such as coir, bioplastic, and straw, were higher than expected compared to 
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the control pot treatment (Table A.2). The only containers that outperformed the plastic control 

in shipping were the paper and wood fiber pots. 

 

GREENHOUSE TRIAL – DRIP IRRIGATION. Neither final leaf area (P=0.2804) nor final 

shoot dry weight (P=0.1068) varied significantly by container type. Similarly, above-ground 

plant volume, a relatively coarse plant growth metric compared to the other two measures, was 

found to be insignificant (P=0.6708). As expected, plant volume increased each week 

(P=0.0003). However, the interaction between week and pot type was non-significant 

(P=0.9632). 

 

Potting mix pH did differ with container type (P=0.0515; marginally significant), but was 

insignificant given week (P=0.0895). There was no significant interaction between these two 

factors (P=0.1073). With the exception of the straw containers, which generally had a higher 

media pH than the plastic control, no clear trends were present in the weekly pH data. 

Furthermore, while pH was found to be different among containers, the growth data above 

suggests any alterations to the rooting environment were not of biological significance for the 

species tested (coleus). EC did vary with week (P=0.0316), but not among container types 

(P=0.2284).  

 

The findings from this greenhouse experiment contrast somewhat with published work. Evans 

and Hensley (2004), found dry shoot weight in plastic containers was generally greater than 

similar measures for peat- and feather-based pots in a variety of species. Our findings suggest 

that the biocontainers tested had no impact on coleus growth and development compared with 

petroleum-based plastic containers. Thus, these biocontainers are suitable replacements for 

plastic containers from a plant-growth perspective for coleus. 

 

GREENHOUSE TRIAL – HAND, DRIP, AND EBB-AND-FLOOD IRRIGATION. In 

analyzing the container type and irrigation main effects on above-ground dry weight, only the 

latter was found to be significant (P = 0.033; Table A.4). Neither container type (P = 0.268) nor 

the interaction between irrigation method and container type were significant (P = 0.072). Post 

hoc analysis of the dry weight means showed that ebb-and-flood plants were significantly 
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different from drip irrigated plants (P = 0.025) and hand watered plants (P = 0.019). These 

comparisons were made at a Bonferroni-adjusted, α=0.025 level of type I experimental error.  

 

Table A.4. Mean dry shoot weight (g) with (SE) for 'Florida Sun Jade' coleus (Solenostemon 

scutellarioides) plants harvested 7 weeks after planting. Plants in each of eight container types 

(one control and seven biocontainer alternatives) were watered using one of three irrigation 

methods (i.e., ebb-and-flood, drip, and hand).  

 

Avg dry shoot wt [mean ± SE (g)]  

 Irrigation method 

Container  

type 

Ebb-and-flood Drip Hand Avg over 

method 

Control 17.6 ± 6.4 8.0 ± 2.9 8.4 ± 2.6 11.3a
z
 ± 6.1 

Bioplastic 18.7 ± 4.3 10.3 ± 4.0 8.8 ± 3.0 12.5a ± 5.8 

Coir 15.5 ± 5.7 7.8 ± 2.4 8.2 ± 2.4 10.5a ± 5.2 

Pressed manure 19.0 ± 5.2 6.7 ± 2.4 7.3 ± 2.8 10.9a ± 6.7 

Paper 12.6 ± 4.0 6.5 ± 2.9 6.9 ± 2.8 8.7a ± 4.3 

Peat 13.0 ± 3.9 6.2 ± 2.9 3.9 ± 2.7 7.7a ± 5.0 

Straw 12.5 ± 4.1 7.2 ± 2.4 6.3 ± 1.7 8.6a ± 4.0 

Wood fiber 17.2 ± 6.9 10.7 ± 4.2 8.2 ± 3.8 12.1a ± 6.4 

Avg over 

container type 

15.7a
z
 ± 5.7 7.91b ± 3.4 7.3b ± 3.1  

ZNon-significant differences for combined values (at an α=0.05 level of Type I error) are denoted with the same letter.  

1 g = 0.0352 oz 
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While the ebb-and-flood irrigated plants outperformed both their drip- and hand-irrigated 

counterparts, the effect of irrigation level is admittedly confounded with rate of fertilization (see 

methods). Fertilization is likely a significant – if not the most significant – contributing factor 

behind the increased dry shoot weight. As such, it is inappropriate to claim that ebb-and-flood is 

superior to hand watering and drip irrigation. This said, many meaningful insights can be gleaned 

from this experiment with regard to container performance within each of the irrigation type. 

Furthermore, direct comparisons can be made between hand and drip irrigation.  

 

When comparing hand to drip irrigation, neither method offered any significant growth 

advantage for the species tested. Thus, other considerations such as cost, water consumption, and 

grower preference should take precedence over concerns of plant performance when choosing 

either of these two systems for biocontainer-based greenhouse production of coleus. Within any 

given irrigation method, plant growth (i.e., dry weight) in biocontainers was no different than 

growth in the conventional plastic control. These results offer further evidence that, from a plant 

growth perspective, biocontainers can be suitable substitutes for plastic pots. Beyond growth, we 

did not observe any noticeable deviations in plant coloration or fullness. As such, growers can 

put more emphasis on considerations like container price and appeal when working to make an 

informed decision on the costs and benefits of biocontainer adoption.  

 

Potting mix pH was significantly impacted by container type (P=0.0009), irrigation method (P = 

0.0364), and week (P = 0.0160). However, none of the interactions among these fixed effects 

were found to be significant. EC did not vary significantly by irrigation method (P = 0.5158), 

container-type (P = 0.4983), or week (P = 0.5930).  

 

The rise in substrate pH in the ebb-and-flood plants is likely linked to the additional fertilization 

received prior to leachate collection. Furthermore, fertilization likely masked any container 

influence for this irrigation level. In this trial, measures of pH were consistently lower in the 

manure-based containers and higher for straw containers compared with the plastic control. 

Despite the statistical significance of these differences, it appears that the changes in soil 

chemistry did not significantly impact coleus growth as quantified with dry shoot weight.  
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CONTAINER STRENGTH TESTING – HAND, DRIP, AND EBB-AND-FLOOD 

IRRIGATION. For crush load, the main effects of container type, irrigation method, and the 

container type X irrigation method interaction were all significant with probability values 

<0.0001 (Fig. A.3). When looking solely at conventional plastic containers, no significant 

difference in crush load was found in comparing ebb-and-flood to hand irrigation (P = 0.7998) or 

ebb-and-flood to drip irrigation (P = 0.6471). Similarly, post hoc analysis found no significant 

difference in crush load for bioplastic containers when comparing ebb-and-flood to hand 

irrigation (P = 0.1354) or when comparing ebb-and-flood to drip irrigation (P = 0.1048). In 

contrast, the peak crush load for non-plastic biocontainers (assessed as a group that included coir, 

manure, paper, peat, straw, and wood fiber) differed given irrigation method. Both hand 

irrigation (P < 0.0001) and drip irrigation (P < 0.0001) had significantly higher recorded crush 

loads than ebb-and-flood containers. Differences in used dry, new dry, and new wet crush 

strength are noted in Figure A.3. New wet crush strength appears to be significantly diminished 

(compared to new dry crush strength) in coir, manure, paper, peat and wood fiber pots.  

 

Mean peak puncture loads differed significantly given container type (P < 0.0001), irrigation 

method (P < 0.0001), and the container type X irrigation method interaction (P < 0.0001; Figure 

A.4). In post hoc comparisons for peat containers, ebb-and-flood irrigation did not significantly 

impact mean peak puncture load as compared to drip irrigation (P = 0.1830) or hand watering (P 

= 0.1617). In contrast, ebb-and-flood watering did significantly (at a Bonferroni-adjusted, α = 

0.0125) lower puncture resistance in ebb-and-flood manure-based containers when compared to 

drip irrigation (P = 0.0125) and hand watering (P < 0.0001). The reduction in puncture strength 

related to ebb-and-flood irrigation was even more dramatic in paper and wood fiber containers. 
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Fig. A.3. (A) Mean peak crush load in kilonewtons (with 95% confidence interval bars) for new 

dry (n=5), new wet (n=3), and used dry (n=15) containers. The used dry category below 

includes the combined mean and 95% confidence interval for the three different irrigation 

methods assessed (i.e., drip irrigation, ebb-and-flood table, and hand watering with a wand). ( 

B) Mean peak crush load in kilonewtons (with 95% confidence interval bars; n=5) for a 

thermoformed plastic control and biocontainer alternatives used to produce a 7-week 

greenhouse crop under three different irrigation methods (i.e., drip irrigation, ebb-and-flood 

table, and hand watering with a wand). 1 kN = 224.8089 lbf 
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Fig. A.4 (A) Mean peak puncture load in kilonewtons (with 95% confidence interval bars) for 

new dry (n=5), new wet (n=3), and used dry (n=15) containers. The used dry category below 

includes the combined mean and 95% confidence interval for the three different irrigation 

methods assessed (i.e., drip irrigation, ebb-and-flood table, and hand watering with a wand). (B) 

Mean peak puncture load in kilonewtons (with 95% confidence interval bars; n=5) for a 

thermoformed plastic control and biocontainer alternatives used to produce a 7-week 

greenhouse crop under three different irrigation methods (i.e., drip irrigation, ebb-and-flood 

table, and hand watering with a wand). 1 kN = 224.8089 lbf 
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Looking at the strength testing data, it may come as a surprise that the plastic control and bio-

plastic containers were consistently found to be among the weakest pots. Both were made of 

thermoformed plastic (control selected as such for the sake of comparison). If a direct-injected 

plastic container of the same size had been selected as an alternative/second control, it would 

likely be more resistant to crushing and puncturing. While not as strong with regard to vertical 

loading as the manure, paper, peat, or wood fiber containers, the plastic, coir, and straw 

containers were generally more resilient given their flexibility. These properties made them less 

prone to tearing or rupturing – a notable concern with saturated manure, paper, peat, and wood 

fiber containers. Instead, plastic, coir, and straw containers tended to invert or fold under 

pressure. Often, these containers could be re-formed with minimal visible damage.  

 

As mentioned above, plastic, bioplastic, coir, and straw pots were not included in the puncture 

testing given their resistance to puncturing. For the remaining pots, this test (and the low mean 

loads it garnered) appears to at least partially justify concerns raised with use of some 

biocontainers in mechanized production (Fig. A.4). Some production machinery and equipment 

(i.e., lifters and spacers) concentrate pressure on relatively localized portions of the container 

wall. Pots prone to puncturing would be less desirable in these settings without workarounds 

such as the use of shuttle trays during production. 

 

Drip irrigation and hand watering had similar impacts on container structural integrity within the 

time frame of this study. Accelerated degradation was noted in the ebb-and-flood containers. 

This may be linked to both the relative abundance of nitrogen and differences in water 

availability associated with the ebb-and-flood system. As the ebb-and-flood fertilization strategy 

employed in the study closely mirrors current industry norms, this advanced degradation is 

noteworthy. Though not assessed in this study, similar degradation may have occurred in the 

hand-watered and drip-irrigated pots if a constant-feed fertigation strategy had been adopted. 

These results show that in addition to production cycle length, growers should factor in level of 

supplemental fertilization when selecting an appropriate biocontainer for their operation.  
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Conclusion 

 

Despite some statistical differences in the mechanical filling experiment, the biocontainers tested 

were generally compatible with the machinery used at the study site. Mechanical lifting did 

prove problematic for both coir and paper containers compared with the plastic control. 

However, the differences may be at least partially negated though careful selection or 

development of appropriate spacing equipment. Alternatively, the use of transport/shuttle trays in 

production may altogether avoid the issues noted in the lifting trial. Finally, the levels of 

shipping damage seen in some of the containers (e.g., pressed manure and peat) during this study 

would be a major concern for growers if the damaged containers proved unsellable. From a plant 

growth perspective, biocontainers appear to be suitable replacements for plastic pots across a 

variety of irrigation methods. Though not addressed specifically, results suggest that future work 

should identify what factors, such as fertilization, lead to hastened degradation in some of the 

containers.  
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