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Abstract

Whenever multiple robots have to solve a common task, they need to coordieate th
actions to carry out the taskfeiently and to avoid interferences between individual robots.
This is especially the case when considering the problem of exploringkarowm environ-
ment with a team of mobile robots. To achiev@i@ent terrain coverage with the sensors
of the robots, one first needs to identify unknown areas in the enviranngstond, one
has to assign target locations to the individual robots so that they gativesintkrelevant
information about the environment with their sensors. This assignmenidsiead to a dis-
tribution of the robots over the environment in a way that they avoid redundark and do
not interfere with each other by, for example, blocking their paths. In #yep we address
the problem of #iciently coordinating a large team of mobile robots. To better distribute the
robots over the environment and to avoid redundant work, we take iotuatthe type of
place a potential target is located in (e.g., a corridor or a room). This kdgelallows us
to improve the distribution of robots over the environment compared to apipeedacking
this capability. To autonomously determine the type of a place, we apply a datsdined
using the AdaBoost algorithm. The resulting classifier takes laser rangeaganput and
is able to classify the current location with high accuracy. We additionallyaulsiiden
Markov model to consider the spatial dependencies between neartiptscaur approach
to incorporate the information about the type of places in the assignmergsrbas been
implemented and tested inférent environments. The experiments illustrate that our system
effectively distributes the robots over the environment and allows them to atisbrtipeir
mission faster compared to approaches that ignore the place labels.
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1 Introduction

The use of multiple robots is often suggested to have adgastaver single robot systems [5, 10].
For example, cooperating robots have the potential to aptisima task faster than a single
robot [19]. A further advantage of robot teams arises fromging overlapping sensor informa-
tion, which can help to compensate for sensor uncertairgya #esult, the map can be expected to
be more accurate. Multiple robots have also been shown &bizecthemselves mordieiently,
especially when they havefterent sensor capabilities [12, 35].

However, when robots operate in teams there is the risk@ffgrence between them [38, 16].
For example, if the robots have the same type of active serssmh as ultrasound sensors, the
overall performance can be reduced due to cross-talk. Thie mobots that are used, the more
time each robot may spend on detours in order to avoid camtisswith other members of the
team. Hficient exploration techniques that seek to minimize theal/eéme to complete the task
should consider strategies to distribute the robots oweetivironment and to reduce the number
of redundantly explored areas. An illustrating exampleictem two real robots exploring an
indoor environment with our coordination method is showfigure 1.

Several exploration techniques dealing with the problenapgdropriate collaboration be-
tween robots were presented in the past [4, 21, 34, 44, 47]st llpproaches to multi-robot
exploration proceed in the following way. First, a set ofgydtal target locations or target areas
is determined. Such target locations are often locatee ¢tanknown areas in the environment
to allow the robot to observe the unknown space. Seconditaiget locations are assigned to
the individual members of the team. The robots then apprthacde target locations and include
their observations obtained along the paths into a map. Aroisess is repeated until the envi-
ronment has completely been explored. In the context ofimalliot exploration, it is important
to achieve a collaboration behavior so that the robots avaieling unnecessary long distances,
avoid doing redundant work, and avoid interference witreoteam-mates.

Indoor environments constructed by humans often contaitaicestructures like corridors
with adjacent rooms orftices. However, it is mainly unexplored how robots can utisaeh
background information to mordteeiently solve the exploration task. One of our observations
is that the more unexplored target locations are known wissigaing targets to robots, the
faster the team can explore the environment. This is dueetdeitt that the robots can be better
distributed over the environment. In this way, the amounteafundant work is reduced and
interferences occur less likely. It therefore makes semégcus on areas first which are likely to
provide a large number of new target locations in order t@iobd better assignment of targets
to robots.

The contribution of this paper is a technique for coordimgith group of robots that enables
them to dficiently explore their environment. The goal is to compléeetask as fast as possible.
Our technique assigns a utility to each target location alidvs a decision-theoretic approach
to explicitly coordinate the robots. We estimate and wikemantic information during the col-
laborative multi-robot exploration. In our approach, tbbats get a higher reward for exploring
corridors since they typically provide more branchings nexplored areas like adjacent rooms
compared to rooms. This is especially useful in case of lealyet teams, because if more target
locations are available the robots can be better distriboter the environment. As a result, the

2



Figure 1: Left: Exploration task with two real robots. Thajéctories of the individual robots
are plotted in red and blue. Right: Photograph of the two dating exploration.

exploration mission can be carried out faster. Our teclefips been implemented on teams of
robots and has been proven to workeetively in diferent environments. As the experiments
demonstrate, our technique significantly reduces the teqgeired to completely cover an un-
known environment with a team of robots compared to an agprednich lacks the possibility
to estimate and integrate semantic information about placte environment.

The paper is organized as follows. We first explain our tegimito estimate semantic labels
of places in the environment using the laser range sensoralat. In Section 3, we present
a hidden Markov model (HMM)-based extension to the labedipgroach which improves the
classification in the context of exploration. We then praposir coordination technique and
describe how to utilize the place information in Section 4e Wen present in Section 5 our
experimental results and finally discuss related work.

2 Semantic Place Labeling

This section explains how semantic place labels can berdutavith mobile robots based on
laser range observations. The goal is to learn a classifiérglable to distinguish corridors from
other kinds of indoor structures. To obtain such a classifierapply the AdaBoost algorithm
introduced by Freund and Schapire [14].

Our classification approach for semantic labeling of plaedies on a large set of single-
valued features that are calculated for each laser range sB&alaser range scan is a high-
dimensional vector containing typically between 180 an@ B®&lividual proximity measure-
ments. Each measurement results from a laser beam thatdraeinéted from the same location
in different orientations.

Working on such vectors directly would result in a high-dimei@nal classification problem.
We therefore extract simple single-valued features froechdaser range scan and apply the
classification approach based on these features. In genesalifficult to knowa priori which
features are more discriminative or even if some of them michinative at all. One approach
to solve this problem is to apply an algorithm that selectagropriate subset of features which
is then used in the classification task. In our work, we useAtti@Boost algorithm to learn a
strong classifier. AdaBoost is a boosting algorithm which also be interpreted as a heuristic
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Figure 2: This figure illustrates how the optimal valuedpis found. In the left image, the-

value of each data point represents the feature value oihantgeexample and thg-value its true
class. By iterating through this list of data points, one cetednine the optimal valug for the
given training examples. The right image depicts the weakstfierh;.

method for selecting the most discriminative features lierfinal classifier. In this section, we
explain the key ideas of AdaBoost and how it is combined witiglg-valued features.

The key idea of AdaBoost is to form a strong binary classifieegia set of weak classifiers.
The weak classifiers; only need to be better than random guessing. Similar to thik @fdviola
and Jones [43], we construct our weak classifier based orlesisipgle-value feature§ € R

w1 ifp-fi() < pj-6;
() = {0 otherwise 1)

This weak classifier returns 1 if the training examplis supposed to be a positive example
and 0 otherwisey; is a threshold value angl is either—1 or+1 and thus represents the direction
of the inequality. The AdaBoost algorithm determines duthegtraining process for each weak
classifierh; the optimal parameter tupl@;( p;), such that the number of misclassified training
examples is minimized. To achieve this, it considers allsfsde combinations op; and¥;,
whose number is limited since only an finite numbkof training examples is given. A training
example is defined by the tuple,(y,) wherex, is the example ang, € {0, 1} the classx,
belongs to. Using the training examples;, 0;) is determined by

N
65.p) = argmin}_ () = yal. @
@.p) =1
Figure 2 illustrates the process to compute the optimalevali®;. First, one computes
for each training examplex(, y») the feature valudj(x,) and adds it to a list which is sorted
according to that value. Second, one iterates through istihd computes the error of the
weak classifier using a value féy that is between the feature value of the current and the next
element. The value which provides the highest classifinatte is the optimal value far given
the training set.
We compute two sets of simple features for each observatfidre first set is calculated
using the raw beamg;, i = 1,..., M in the full range scaz;. The second set of features is
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Figure 3: Examples for features generated from laser datagly the average distance between
two consecutive beams, the perimeter of the area coveredtgm and the length of the major
axis of the ellipse that approximates the polygon descriyeithe scan.

calculated from a polygonal approximati@t{z) of the area covered bg. The vertices of the
closed polygor(z) correspond to the coordinates of the end-points of eacm bekative to the
robot.

P(z) = {(zx-COSpy,zk-sing) [k=1,...,M}, (3)

wheregy is the angle of thé&-th beamz, k of the observatiorz,.

Examples for features extracted from laser range data gietdd in Figure 3. Such features
are, for example, the average distance between consebatras, the area covered by a range
scan, or the perimeter of that area. All our features ardiootally invariant to make the classifi-
cation of a position dependent only on they)-position of the robot and not on its orientation.
Most of the features are standard geometrical featuresinstpe analysis [17]. Table 1 and 2
provide a full list of features used by our system to learssifeer for place recognition.

The input to the AdaBoost algorithm is a set of labeled, pasiand negative training ex-
amples{X,, yn}. In our case, this is a set of laser range observations redonda corridor and a
second set taken outside corridors. In a serieb mdunds, the algorithm repeatedly selects the
weak classifieh; with the lowest error for the training dataset. To do so, Adaftases impor-
tance weights that are associated to each example. Thetamperweightv, for each example
n is updated in each round. The algorithm modifies the impogameights by increasing the
weights of the training examples that are incorrectly c¢feessso far.

The optimal parameterg)( p;) for each weak classifieh; are also computed using the
weighed examples. As a result, a single feature can gersra¢eal weak classifiers withftir-
ent parameters in the individual rounds of the AdaBoost élgor

The final strong classifieH is a weighted majority vote of the beBtweak classifiers

I DY TC T D
HX) = { 0 otherwise ’ )
where the value of, is computed according to the weighted error rates of theviddal weak
classifiers. A precise description is given in Algorithm h dur system, the resulting strong
classifier takes as input a single 360 degree laser rangeascarded by a robot and is able to
determine whether the position from which the scan was taledongs to the classorridor or
not.



Table 1: Simple features based on the individual beams cfea lange observatian
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The average fterence between the length of consecutive beams.

The standard deviation of thefidirence between the length of consecutive beams.
Same as 1), but consideringtdrent max-range values.

The average beam length.

The standard deviation of the length of the beams.

Number of gaps in the scan. Two consecutive beams build a gap if tifeiredlice is greater than
given threshold. Oferent features are used foffdrent threshold values.

Number of beams lying on lines that are extracted from the range s¢an [3
Euclidean distance between the two points corresponding to the two srwdishinima.
The angular distance between the beams corresponding to the local mireatuie 8).

Table 2: Features computed based on the poly@@h
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. Normalized feature of compactnessRgr).
. Normalized feature of eccentricity £{2).
. Form factor ofP(2).

Area ofP(2).

Perimeter of(2).

Area of(2) divided by Perimeter aP(2).

Mean distance between the centroid to the shape boundary.

Standard deviation of the distances between the centroid to the shamabou

200 similarity invariant descriptors based on the Fourier transformation.

Major axis of the ellipse that approximate&) using the first two Fourier céicients.
Minor axis of the ellipse that approximaf€z) using the first two Fourier céicients.
The ratio of the major and minor.

Seven invariants calculated from the central momeri#zf
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Figure 4: Classification error for a given numbers of weaksifeess ().

A free parameter is the numb@r of features used in the classifier. The valueTothat
allows for accurate classification results can be detemniyeplotting the number of versus
the classification error on a validation dataset. An exarfgglsuch a plot is shown in Figure 4.
In our current system, we s&t= 100 since with 100 weak classifiers we are able to accurately
determine the semantic class given real sensor obsersation

Note that also the angular resolution of the used sensora@andn influence on the perfor-
mance of the classifier. Forftirent angular resolutions, fiBrent feature values can be obtained,
compare Eq. (3). For resolutions below 1 deg, we obtainecroptess identical results. Be-
tween 1deg and 3deg, a slight performance loss between 1%92%nchn be observed. For
larger angular resolutions, however, the performancekisrdawn significantly. Thus, a typical
laser range finder such as SICK LMPRS sensor with a resolution between 0.25deg and 1 deg
is well-suited for obtaining strong classification reswith our a method.

3 Estimating the Label of a Goal Location

The idea described in the previous section is well-suitedktermine the semantic class for the
current position of the robot given a laser range scan. Bvibie iplace to classify is not the cur-
rent pose of the robot, one can simulate a laser range oltiseriathe map of the environment
and apply the classifier to the simulated scan. This worksfemeposes for which surroundings
are completely known.

In the context of exploration, however, we are interesterassifying potential targets of the
robot. Typically, target locations are located at the fienstbetween known and unknown areas.
This means that large neighboring areas have not been @olssmfar which makes itimpossible
to generate an appropriate observation taken from thatitmcaAs we will demonstrate in the
experiments, classifying a place at a frontier with the apph presented in the previous section
leads to high false classification rates of around 20%. Iridhewing, we therefore introduce a
HMM-based technique that takes into account spacial degraniels between nearby locations to
obtain a lower error rate for places located at frontiers.



Algorithm 1 The AdaBoost algorithm

Require: Input: set of example(, 1), ..., (Xx, YN)-
1: k = number of negatives examples
2: | = number of positive examples.
3:forn=1,...,Ndo
if y, = 1then

4
5
6
7 Win = ¢
8
9

10: fort=1,...,T do

11: Normalize the weights , SO thatzr'}'zlwt,n = 1.

12:  for all featuresf; do

13: Train a weak classifier; for the featuref;.

14: Compute the errog; of a classifieh;according to

N
€ = ) Mo
n=1

0 (%:) = Y|

15:  end for
16: Determine the weak classifier with the lowest error:

—_ H /
(h, &) = argmine;
(.€)

17 Bi=1=
18: forn=1,...,Ndo

—lh —Vn
19: Wer1n = Win ‘ﬁtl [he (%n)=Ynl
20: end for
21 ¢ = Iog[%t
22: end for
23: The final strong classifier is given by

e L i) -a > 3T @
0 otherwise

24: return H




In our approach, we generate a potential target locatioedoh group of frontier cells lying
on the same frontier. This process is repeated for eachidroms an example, the left image
of Figure 5 depicts a potential target location extractedtfe right-most frontier (the targets for
the other two frontiers are not shown in that image).

Due to the structure of man-made environments, the sen@asis does not change randomly
between nearby poses. Therefore, it makes sense to coasstheoothing or filtering between
places located close together. To do so, we generate a shodl\trajectory to the desired
goal location. We then simulate a laser range observatitmmihe partially known map along
the virtual trajectory. Whenever the ray-casting operatisaed to simulate a beam reaches an
unknown cell in the grid map, the virtual sensor reports aimarm-range reading. We then
apply a hidden Markov model (HMM) and maintain a posteBei(L) about the typé., of the
placex the virtual sensor is currently at

BeL) = 7 P(Ox| L)+ ) (bl L) - BekLy). (5)

Lxr

In this equationpy is the result of the AdaBoost-based classifier for the observéaken from
placex andn is a normalizing constant ensuring that the left-hand siolessup to one over all
semantic labels.

To implement this HMM, three components need to be knownstFiwe need to specify
the observation moded(oy | Ly) which is the likelihood that the classification outpubjsgiven
the actual class iky. In our current system, the observation model has beendddrased on
5,000 observations, simulated at randomly chosen locatiodifferent environments combined
with the corresponding ground truth labeling. Thus, thelitoods for the individual situations
(corridor and non-corridor) can be directly obtained byrdmng.

Second, we need to specify the transition mquék | Ly) which defines the probability of a
movement from clask, to class.. To determine this model, we evaluated trajectories oft®bo
obtained during exploration in fierent environments. Again, we can directly compptey |
Ly ) by counting the transitions between corridor and nonidorrlocations on that trajectories
given the (manually generated) ground truth labeling fertthining environments.

Furthermore, we need to specify how the beBef(Ly) is initialized. In our current system,
we choose a uniform distribution, which means that all dagberecorridor andnon-corridor)
have the same likelihood.

Finally, we have to describe how the virtual trajectory is\@ated. The endpoint of the
trajectory is the frontier cell to be classified. Since lomag that have fewer unknown grid cells
in their surroundings can typically be classified with a legkuccess rate, the other positions
on that trajectory should be as far away from the unknowntiooa as possible. Therefore, we
apply the Euclidian distance transformation [31] with mso unknown and occupied cells in
the local area of the frontier. We then select the pose inrdreedpace within that local area with
the highest distance to unknown areas. An A* planner is usegtherate the virtual trajectory
to the target location. An illustrating example is depidteéigure 5.
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Figure 5: This figure illustrates the generation of the \altirajectory used for the HMM fil-
tering. The left image depicts the current location of theotothe frontiers (dashed lines), and
a potential target location to be evaluated. To do so, thetrgbnerates a virtual trajectory as
shown in the right image and simulates observations at gkpesitions located on the trajec-
tory. These sequence of observations is used as the inplé MM to obtain a more robust
classification result.

4 Efficient Multi-Robot Exploration

The goal of collaborative multi-robot tasks is to share taglbetween the members of a team in
order to accomplish the task faster. As discussed in theeel@ork section, dierent approaches
exist that assign target locations to robots using job-sab@duling techniques, bidding algo-
rithms, or decision theoretic approaches. In the approasbribed here, we modify our previous
work [4] so that the place information is integrated in thernation process.

To reduce the overall time needed to explore an unknown @mvient, the robots need to
select appropriate target locations. Target locationslsifalfill three constraints so that guiding
a robot to such a locations provides novel and relevantimébion about the environment. First,
the robot should be able to gather information about so fanown areas of the environment.
Second, the robots should avoid redundant work. Sendingjpteutobots to the same target
location, for example, is often a waste of resources sineerobot can solve the task nearly as
efficiently as multiple robots. Third, the time needed by a raboeach a desired target location
should be small. Our approach addresses these three isseers®signing target locations to the
robots. The first aspect in considered when identifying midétarget location for the robots. We
place potential targets locations on the frontiers betvkeernvn and unknown areas in the model
of the environment. Given the grid map representationshtiiecs cells [44] can be extracted
easily by inspecting the neighboring cells in the grid.

Given a set of potential target locations (frontiers), wegeed as follows. For each rolot
in a team, we compute the cogt to each target locationbased on the distance to be traveled
to reach that location. To avoid that several robots focuthersame frontier, we introduce a
utility U, for each target locatiohwhich is discounted after being assigned to one robot. b thi
way, the robots get distributed over the environment andatdatus on the same local area.
Additionally, target locations which can potentially besebved by other robots already assigned
to near by targets are discounted.
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Compute potential > Compute travel costs > Assign initial utility to each
target locations of robots to targets target based on the labeling

\

Find best tuple of robots and Discount utilities of targets
targets based on Eq. (6) I — based on Eq. (7)

Figure 6: Diagram illustrating the procedure to coordirtheteam of robots

The target assignment procedure is an iterative proceaphigally illustrates in Figure 6.
In each iteration, the tuple, (), wherei is a robot and a frontier cell, with the best overall
evaluation given the utilityJ; and the travel cost| is chosen

(i.t) = argma{U, - Vy). (6)
(i".t)
One then recomputes the utilities of all frontier cells bgadiunting all frontier that are likely
to be observed by robotvhen approaching targeas

Ur « Up— Pvis(t’t/), (7)

whereP,is(t, t’) describes the probability that the tar¢ietan be observed by robbinoving tot.
In our approach, this probability density is approximatgahbinear function.

These two step process is repeated for the remaining robbtsapproach works in a cen-
tralized fashion but can also deal with limited communmati Typically, one robot calculates
the assignments. In case the whole team splits up into dedearas due to the restricted com-
munication range, one member of each sub-team becomesdfdirator (for example based on
a priority scheme) and executes the target assignmentguoeeSee [4] for aspects on limited
communication.

The knowledge about the semantic labels is integrated h&autility function. All places
which are supposed to provide several branchings to adjataces are initialized with a high
utility. In our current implementation, all corridor logans get ay times higher initial utility
(Uinit) compared to all other potential target locations. In thas/wthe robots prefer targets in
corridors and eventually make slight detours to exploretfiest. To determine the actual value
of v, we performed exploration runs inftBrent environments with varying We figured out
that we obtained the best results using-@alue of around 5. Algorithm 2 depicts the resulting
coordination technique used in our current system.

Our approach distributes the robots in a highflyoeent manner over the environment and re-
duces the amount of redundant work by taking into accouittility constraints between targets
and their semantic labels. The labels are used to focus fhileration on unexplored corridors,
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Algorithm 2 Target Assignment Algorithm Using Semantic Place Labels.
1: Determine the set of frontier cells.
2: Compute for each robatthe cost; for reaching each frontier cetl
3: Estimate for each frontier cdllthe semantic labelint; (according to Section 3).
4: Set the utilityU, of all frontier cellst to U,(L, n) according to their semantic labeling
and the size of the team (see text below).
while there is one robot left without a target podu
Determine a robatand a frontier celt which satisfy:
(i,t) = argmay, (Ut/ —~ Vt',').
7. Reduce the utility of each target poinin the visibility area according to
Uy <« Up — Pyg(t, ).
8. end while

because they typically provide more branchings to adjaaerhs than other places. The high
number of branchings results in a higher number of potetarglet locations that are available
in the assignment process. This typically leads to a mos@loald distribution of robots over the
environment. As we will demonstrate in the experimentsjritegration of such semantic labels
helps to reduce the overall exploration time of multi-robgploration approaches for large robot
teams.

Please note that for very small teams of robots we do not eelaereduction of the ex-
ploration time using our technique. This fact can be exgldihy considering the single-robot
exploration scenario. In this case, it makes no sense tasfoouexploring the corridors first,
since the robot has to cover the overall environment witlsétssor. Moving through the corri-
dors first will in general lead to an increased trajectongtarand in this way will increase the
overall exploration time. We observed thi§eet for robot teams smaller than five robots.

To prevent a loss of performance compared to approacheswlbiciot consider semantic
place information for small robot teams, we trigger the iafice of the semantic place informa-
tion depending on the size of the team. We linearly decrdasenfluencey for teams smaller
than 10 robots. The linear interpolation of the influencehefsemantic labels is encoded in the
utility function Uit (L¢, n), wheren denotes the number of robots, in Algorithm 2.

5 Experiments

This section is designed to evaluate the improvements afnulii-robot coordination technique
which makes use of semantic place information. Due to thk hignber of robots in the team,
we evaluated our collaboration technique only in simutag&periments.

5.1 Performance Improvement using Semantic Place Information

The first experiment has been carried out in the map of the$%amt Huston hospital which is
depicted in the top image of Figure 7. This environment dosta long horizontal corridor,
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Figure 7: Coordination results obtained in the Fort Sam Husiospital map employing the
coordination strategy with and without the use of semanéicelabels.

vertical corridors, and several rooms adjacent to the dorsi

We varied the size of the robot team from 5 to 50 robots andieghfihe coordination tech-
nique with and without taking into account semantic infotimaabout places. The lower plotin
Figure 7 depicts the result of the exploration experimenployting the exploration time versus
the number of robots. The error bars in that plot indicatedi# confidence level. As can be
seen, our technique significantly outperforms the collatbon scheme that does not consider the
place information. This significant reduction of explooattime is due to the fact that the robots
focus on exploring the corridors first. As a result, a big nemdif frontiers emerges due to typ-
ically numerous adjacent rooms. Especially in the contéldrge teams, this results in a better
distribution of robots over the environments and thus spegdthe overall exploration process.
This dfect can be observed in Figure 8. The graphs plot the numberadéhle target locations
over time during an exploration task carried out using thg Bam Houston map. During the
assignment process, most of the time the number of avatialget locations is higher compared
to our previous approach. This leads to a better assignni¢autget locations to robots and as a
result the amount of redundant work is reduced.

Furthermore, we observed a reduction of interferencesdsrtwobots when they plan their
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Figure 8: The number of potential target locations at thfeedent decision steps during explo-
ration.
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Figure 9: Results obtained in the Intel Research Lab.

paths through the environment. The interferences lead twvarl speed of the robots, since
they often block their paths. Therefore, reducing the nunobénterferences allows the robots
to accomplish their task faster. In our experiments, we feska reduction of robot-robot
interferences of up to 20%.

We performed similar experiments infidirent environments, for example in the Intel Re-
search Lab depicted in the left image of Figure 9. The resuttomparable to the previous
experiment and again the knowledge about the semanticarsegf places allows the robots
to complete the exploration task mon@&ently. The actual evolution of the exploration time in
this experiment is depicted in the right plot of Figure 9. Blaene holds for experiments carried
out using the floor plan of the DLR building shown in Figure 10.

14



24

= standard coordination -
= with semantic labels——
E 217 ]
[0}
£ 18]
c
il
§ 15 ¢
o
g 12
()]
9

5 10 15 20 25 30 35 40 45 50
number of robots

Figure 10: Floor plan of the German Aerospace Center (DLR) baaodrresponding results of
our exploration system.

5.2 Influence of Noise in the Semantic Place Information

In the experiments presented above, we assumed that thts erleaable to correctly classify the
different target location into the semantic categories. ThEgraption, however, is typically not
justified. In this experiment, we evaluate the performari@oapproach for dierent classifica-
tion error rates. We evaluated the exploration time for asitfeer which randomly misclassified
5%, 10%, and 15% of the places. Figure 11 depicts a plot cangptire diterent error rates. As
can be seen, even at a high error of 10%, our approach significautperforms the coordina-
tion technigue that ignores the semantic information. Wheretror of the classification exceeds
15%, the exploration time is still reduced, although thsuteis not significant anymore.

5.3 Applying a Trained Classifier in New Environments

This experiment is designed to illustrate that it is pogstbltrain a classifier in an environment
and transfer it to a new environment with a substantialffedent geometric structure. Obviously,
the performance of the classifier decreases in such sifigatidhe results we obtain, however,
still provide a stficiently accurate classification. Figure 12 shows two lathet@aps. The one
in the first row was labeled manually and used to learn thesifiasusing AdaBoost. For the
environment depicted in the lower image, we simulated aemasion for each grid cell and than
used the trained classifier to label the positions. As careba,ghe spacial structures are quite
different but the classification is good except of a small areashvane wrongly classified. Large
parts of the misclassified areas in this experiment areddcat the ends of the corridors. This
is mainly due to the fact that large parts of the area coveyestans recorded at these locations
actually cover a corridor.

We then used this classification result to perform an exptmvatask. The results of this
experiment are depicted in Figure 13. The figure plots the tiseded to explore the environment
using our approach with the true labels, with the labelsvegted by our classifier, and without
using place information at all. As can be seen, there is osipall time overhead when using the
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Figure 11: Exploration results with wrongly labeled places

estimated labels compared to the true ones. This indidad¢gven transferring such a classifier
to unknown environments provides a speed-up in the conferuti-robot exploration.

5.4 Improvements of the HMM Filtering and Error Analysis of the Clas-
sifier
In this experiment, we want to analyze the actual error ofgace classification system and
illustrate the improvements of the HMM filtering. To do so, labeled an environment, trained
a corridor classifier using AdaBoost, and used a test set taaeghe success rate. Whenever a
single full 360 degree laser range scan was available, wandat highly accurate classification
results in diferent dfice environments. In this case, the error-rate was typitetyween 2% and
4%.

Figure 14 depicts the result of our classifier depending ennitmber of invalid readings
caused by unknown grid cells close to frontiers. krexis shows the size of a continuous block
of maximum range measurements (here with an angular rezoloft the laser of 1 degree). As
can be seen, if only half of the observations are availab&eclassification error rate is between
18% and 19%.

First, we determined the success rate of directly clasgiffriontier cells without using HMM
filtering. In this case, the average classification rate was/erage 81.2%. By considering the
exploration speed-up depending on the classification egtected in Figure 11, such a high error
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Environment used to train the classifier:

Figure 12: The training examples for the classifier werengdiin the map shown in the top
image. In contrast to this, the lower image shows the regpttiassification output. The classifi-
cation for each place was performed based on a laser rangesiscalated at the corresponding
location in the map. As can be seen, even if the structureeetivironment is significantly

different, the classification output is reasonable. Red comelspim corridor locations, blue to
rooms.
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Figure 14: This plot illustrates the classification perfarmoe of the standard classifier depending
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maximum range readings.
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Figure 15: Left: Typical exploration performance in a cdor environment depending on the
assignment strategy. Right: Comparison of the runtime of tfferént approaches (Pentium-4
CPU, 2.8 GHz).

rate is not sfficient to obtain an significant speed-up.

Second, we applied our HMM-based filtering approach thaegsas virtual trajectories
towards frontiers and in this way incorporates the spagakthdencies between the nearby loca-
tions. As aresult, we obtained an average success rate88697 his is a good result considering
that we obtained an average success rate in this scena®o2869f all observations are perfectly
known (see Figure 14). This fact illustrates that the HMMnsugeful tool to improve the place
labeling especially if not the full 360 degree range scarvalable. It allows us to estimate
the semantic labels with a comparably low error rate. Inway, our technique can be used to
significantly speed up multi-robot exploration by considgisemantic information about places
in the environment.

In sum, our experiments demonstrate that semantic plasemation can significantly reduce
the exploration time even under classification errors.

5.5 Hficiency of the Coordination Approach

Given the coordination approach depicted in Algorithm 2¢ emght argue that the presented
technique is a greedy method for making assignments andthugptimal. However, for finding
the optimal solution, an exponential number of assignmieassto be evaluated which is infea-
sible in practice. An alternative to evaluating all possiassignments is a randomized approach
that starts with the result of our method and than randomiyarges target locations to seek for
a better assignment (compare [4, 39]).

It is worth noting that such an randomized optimizationtsgg usually yields slightly better
results than our coordination technique although the ivgareent is not significant. This slight
improvement, however, comes with a significantly increasmdputational cost, see Figure 15.
Given these results, we argue that the coordination apprdescribed in this paper is an appro-
priate method in practice since it leads to #iceent coordination behavior requiring comparably
small computational resources.
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6 Related Work

The various aspects of the problem of exploring unknownrenments with mobile robots have
been studied intensively in the past. Many approaches hage proposed for exploring un-
known environments with aingle robot[6, 9, 11, 18, 26, 45, 46]. Most of these approaches
guide the robot to the closest unexplored area. These motmimainly dfer in the way the
environment is represented. Popular representationspotofical [6, 26], metric [11], or grid-
based [45, 46]. Furthermore, there is a serious amount ofetieal work providing a math-
ematical analysis of the complexity of exploration stra&egncluding comparisons for single
robots [1, 7, 8, 24]. Additionally, Lee and Recce [28] provate experimental analysis of the
performance of dierent exploration strategies for one mobile robot.

There are approaches which address the problem of codrdjn&to robots. The work
presented by Bender and Slonim [3] theoretically analyzestmplexity of exploring strongly-
connected directed graphs with two robots. Roy and Dudekf{fis on the problem of explor-
ing unknown environments with two robots and present anaggbr allowing the robots with a
limited communication range to schedule rendezvous. Tderithms are analyzed analytically
as well as empirically using real robots.

Also various aspects of the problem of exploring unknownremnents with multiple mo-
bile robots have been studied intensively in the past. Famgte, Rekleitiet al.[33, 35] focus
on the problem of reducing the odometry error during expiora They separate the environ-
ment into stripes that are explored successively by the telarobots. Whenever one robot
moves, the other robots are kept stationary and observe thngirobot, a strategy similar to
the presented by Kurazume and Shigemi [27]. Whereas thi®apiprcan significantly reduce
the odometry error during the exploration process, it isdesigned to distribute the robots over
the environment. Rather, the robots are forced to stay ctosac¢h other in order to remain in
the visibility range. Thus, using these strategies for rralbot exploration one cannot expect
that the exploration time is significantly reduced.

Koeniget al.[23] analyze diferent terrain coverage methods for ants which are simpl&sob
with limited sensing and computational capabilities. Rartore, there has been research on
how to deal with limited communication in the context of nmutibot exploration [4, 34].

Yamauchi [44] presented a technique to learn maps with a tefamobile robots. In this
approach, the robots exchange information about the mapstbantinuously updated whenever
new sensor input arrives. To acquire knowledge about theamaent, all robots move to the
closest frontier cell. Is has been shown by Burggtral. [4] that coordination methods that assign
robots to targets given the assignments of the team matperémtim the technique of Yamauchi.

The coordination technique presented is this paper is angah of [4]. We also discount
the utility of target locations if they are visible from a ¢dacation already assigned to a robot.
In contrast to [4], the approach presented in this papemeastis and incorporates background
knowledge about environmental structure into the goaltmseignment procedure. As shown in
the experimental section, this knowledge allows a team lodtoto more #iciently coordinate
their actions and thus to finish the exploration mission ih@ter period of time.

Zlot and colleagues [47] proposed an architecture for neotmibot teams in which the ex-
ploration is guided by a market economy. They consider sempseof potential target locations
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for each robot and trade tasks between the robots usingesitegh first-price sealed-bid auc-
tions. Such auction-based techniques have also been a@ppliGerkey and Matati[15] to
efficiently solve the task allocation problem with a group ofatsh These approaches do not
incorporate the information that assign target locatioghihbe observed by other robot as our
approach does. Nevertheless, after training for a signifiaenount of time such methods are
likely to show a similar performance to the so-called ramied’ method presented in Burgard
et al.[4] in which targets locations and robots are reassignedse @ morefécient solution can
be obtained.

Stroupeet al. presented the MVERT-approach [41], which uses a greedyadettat selects
robot-target pairs based on proximity. The goal of the acdelection is to maximize cooperative
progress toward mission goals. Matagind Sukhatme [30] considerfidirent strategies for task
allocation in robot teams and analyze the performance aEédu® in extensive experiments.

Howard [20] presented an approach to learn grid maps withiphelrobots that explicitely
considers the pose uncertainty of the vehicles — an aspsdsthot considered in our work. He
applies multiple Rao-Blackwellized particle filters to esdiethe joint posterior about the map
of a robot and its trajectory. Whenever two robots meet, hebéishes a corresponding point in
the maps which allows him to build a common model of the emrirent with all robots. Ko
et al. [21] present an approach that uses the Hungarian methodripute the assignments of
frontier cells to robots. In contrast to our work, kb al. mainly focuses on finding a common
frame of reference in case the start locations of the robetaat known. In contrast to this, our
approach assumes that the robots start with a known relatfiset.

The semantic labels used to improve multi-robot coordomatian be seen as background
knowledge about spacial structures. Fabxal. [13] presented a technique which aims to learn
background knowledge in typical indoor environments anerlan use that knowledge for map
building. They apply their approach to decide whether tH®tas seeing a previously built
portion of a map, or is exploring new terrain. This is an impot information for reliably
closing loops. In contrast to Faet al,, our approach improves the coordination between robots
and thus leads to a mordfieient exploration strategy.

This paper is an extention of a previous publication [40]Jolm current paper, we presented
our approach to learn semantic place labels in more detaildit®dnally, we carried out ex-
periments that illustrate that our classifier can be leamexhe environment an than used in a
different one. This is an important prerequisite to use thisigcle in the context of exploring
unknown environments. Furthermore, this paper presentsra detail experimental evaluation
of the overall approach.

Due to the best of our knowledge, there is no work that ingastis how semantic information
about places in the environment can be used to optimize thebooation behavior of a team of
robots. The contribution of this paper is an approach thanases and explicitly uses semantic
information to more fiiciently spread the robots over the environment. This resalan more
balanced target location assignment with less interfeaemetween robots. As a result, the
overall time needed to cover the whole environment with timts’ sensors can be significantly
reduced.

A series of authors addressed the problem of leaning envieortal structures and semantic
information with mobile robots. Such methods, however,ehawt been applied to coordinate
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robots during exploration. For example, Koenig and Simni@8% use a pre-programmed rou-
tine to detect doorways from range data. Althaus and Chaste{2] use line features to detect
corridors and doorways. Some authors also apply learnoimtgques to localize the robot or to
identify distinctive states in the environment. For exae@oreet al.[32] train a neural network
to estimate the location of a mobile robot in its environmesihg the odometry information and
ultrasound data. Kuipers and Beeson [25] appfjedent learning algorithms to learn topologi-
cal maps of the environment. Finally, Torralba and collesgj42] use hidden Markov models
for learning places from image data. In our work, we applychmegue originally proposed by
Martinez Mozost al.[29]. This technique uses simple features extracted fr@erleange scans
to train a set of classifiers and in this way are able to labdheegpgiven a single 2D laser range
observation. The leaning approach applies AdaBoost [14dtstthe simple features, which on
their own are instiicient for a reliable categorization of places.

7 Conclusion

In this paper, we addressed the problemftitently coordinating a team of mobile robots that
has to explore an unknown environment. We assume that tio¢ésrale equipped with laser range
finders to perceive theirs surroundings and that they alwagsv their relative positions. The
capability to coordinate the individual robots is impottéor efficient exploration since in this
way redundant work and the risk of interferences betweeatsotan be reduced. Since indoor
environments are constructed by humans, they typicallgisbof structures like corridors and
rooms. The knowledge about the type of place at a targetitoceffers the potential to improve
the distribution of robots over the environment and thusthuce redundant work as well as the
risk of interference between the robots. The reason forithiat corridors typically provide a
high number of branchings to adjacent rooms and therefait tie a high number of potential
target locations during exploration. The more unexploeedédt locations are available when
assigning the targets to robots, the faster the team caorexiiie environment. This is due to
the fact that the robots can be better distributed over thigamment.

Our proposed technique to coordinate the robots takes cttouat the type of place at po-
tential target locations. It integrates this informatiatoi the assignment procedure of target lo-
cations to robots. We use a decision theoretic procedutatiditionally considers the expected
travel time as well as the utility of a target location basedisibility constraints to other, already
assigned target locations. As a result, the overall exptordime can be reduced compared to
collaboration approaches that ignore semantic placenmdton. To autonomously estimate the
semantic place information, we learn a classifier using tti@Boost algorithm. We furthermore
apply a hidden Markov model to consider spacial dependsi@erveen nearby locations. This
allows us to reduce the error in the process of estimatingygpe of place. Our approach has
been implemented and tested in extensive simulation rutis wp to 50 robots. Experiments
presented in this paper illustrate that a team of robots oaptete their exploration mission in
a significantly shorter period of time using our approachrttiermore, we believe that utilizing
semantic information during exploration is not restrictedhe exploration technique presented
here and that it can be easily integrated into other cootidimapproaches.
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One way of extending this work, would be to learn the placel&in an unsupervised fash-
ion. In this way, the system might be able to determine orvits what kind of spacial structures
are useful for coordinated exploration and does not rely anually defined labels.
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