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Abstract 

Predictive linear regression (LR) modelling indicates that total Pb is the only highly 

significant independent variable for estimating Pb bioaccessibility in “mineralisation 

domains” located in limestone (high pH) and partly peat covered (low pH) shale-

sandstone terrains in England. Manganese is a significant minor predictor in the 

limestone terrain, whilst organic matter and sulphur explain 0.5% and 2% of the 

variance of bioaccessible Pb in the peat-shale-sandstone terrain, compared with 93% 

explained by total Pb. Bootstrap resampling shows that LR confidence limits overlap for 

the two mineralised terrains but the limestone terrain has a significantly lower 

bioaccessible Pb to total Pb slope than the urban domain. A comparison of the absolute 

values of stomach and combined stomach-intestine bioaccessibility provides some 

insight into the geochemical controls on bioaccessibility in the contrasting soil types. 

 

Capsule Abstract 

Total Pb is the major predictor for bioaccessible Pb in topsoils from two lead 

mineralised areas in England.  
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1. Introduction 

 

A significant proportion of the rural landscape in Great Britain has elevated topsoil 

concentrations of lead (Pb).  In a study of the background concentrations of potentially 

harmful elements (PHEs) in soils in England, Ander et al. (2011) and Cave et al. (2012) 

demonstrated that 2% of the land area could be classified as being impacted by Pb 

mineralisation and that systematically surveyed soil samples in this domain (Figure 1) 

had median and 95
th

 percentile lead concentrations of 330 mg kg
-1

 and 1900 mg kg
-1

 

compared with 170 mg kg
-1

 and 790 mg kg
-1

 respectively for urban areas (DEFRA, 

2012; Figure 1). The Pb content of soil is important since this PHE is toxic to humans 

and particularly because children absorb up to 40% to 50% into the bloodstream when 

ingested or inhaled (Fischbein and Hu, 2007; Grant, 2009). A number of studies have 

shown that relatively low concentrations of Pb in blood can lead to significant decrease 

in IQ of children (Bierkens et al., 2012; Isaac et al., 2012, Jakubowski, 2011; Kim et al., 

2010).     

The main exposure pathway for Pb in soil is via the soil ingestion pathway 

(Paustenbach, 2000), so it is the fraction of Pb that is absorbed into the body following 

soil ingestion, i.e. the bioavailable fraction, which is important for assessing human 

health risk.  In vitro bioaccessibility testing has been developed and validated to be used 

as a conservative estimate of bioavailability.  In general bioaccessibility tests fall into 

two categories: (i) those which try to closely mimic the physiological conditions in the 

stomach and upper intestine  (Oomen et al., 2002; Wragg et al., 2011) and (ii) methods 

which use a simplified extraction media (Drexler and Brattin, 2007; Zia et al., 2011). 
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The method adopted by this study is the Unified BARGE method (UBM), which has 

undergone inter-laboratory trials to assess for suitability as a standard methodology 

(Wragg et al., 2011) and been correlated against a swine model for Pb (Caboche, 2009; 

Denys et al., 2012). The UBM method measures the fraction of Pb which is released 

from the soil into solution in the gastro-intestinal (GI) tract in a form that can potentially 

be absorbed into the blood stream (Wragg and Cave, 2003; Intawongse and Dean, 

2006).  The UBM in vitro test is a partial extraction methodology and the amount of Pb 

solubilised during the extraction is dependent on the how soluble the different chemical 

forms of Pb in the soil are in the UBM solutions. Guidelines for the use of data 

produced by in vitro bioaccessibility testing methods in human health risk assessment 

have recently been produced (Nathanail, 2009).  

 

The bioaccessibility and hence bioavailability of Pb bound to the soil depends to a 

certain extent upon the properties of the soil and the source of the contaminant.  Cave et 

al. (2011) described how soil pH, organic matter content, mineral constituents, and solid 

phase partitioning of PHEs and soil ageing may influence bioaccessibility of 

contaminants.  Pb bioaccessibility studies have generally focussed on the relationships 

between total and bioaccessible Pb concentrations (Farmer et al., 2011; Cave et al., 

2011; Appleton et al., 2012), sometimes with due consideration given to the different 

sources of Pb contamination (Smith et al. 2011a), mineralogy and soil chemistry (Denys 

et al., 2007).  There are a number of studies which illustrate that the bioaccessible 

fraction can come from different physico-chemical components in the soil. Denys et al 

(2007) demonstrates that in some soil the Pb can come from cerussite (PbCO3) and 

sulphur containing phases, whereas Beak et al. (2008) found that the mineral Birnessite, 

a commonly found manganese oxide mineral in soil, had a high affinity to absorb Pb. 
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Smith et al. (2011b) used XANES analysis of Pb speciation to demonstrate that Pb 

associated with Fe minerals and the organic fraction was predominantly solubilised in 

the gastric phase. However, during the intestinal phase of the in vitro procedure, Pb was 

strongly associated with formation of ferrihydrite which precipitated due to the pH (6.5) 

of the intestinal phase.  If a linear regression model is robust, it can be used to predict 

bioaccessibility from soil properties so that the in vitro bioaccessibility test does not 

have to be carried out on every soil from a given soil region. However, this is only 

useful if the soil chemistry properties are already known or more economically 

measured than the in vitro bioaccessibility. In addition, the relative size of the 

coefficients of significant predictor variables can provide an insight into processes 

governing bioaccessibility. Multiple LR models may be very specific to a particular soil 

type and geochemical domain so may not be universally applicable, although this was 

not the case in a recent study in which no significant differences could be detected 

between four UK urban domains (Appleton et al., 2012).   

Concentrations of Pb in topsoils from UK lead mineralisation domains are in almost all 

cases strongly influenced by mining and mineral processing activities. This Pb 

accumulation in the topsoils is mainly a result of the dispersion of (i) mineral processing 

waste products, and (ii) Pb in fumes from smelting in the major historical mining areas 

of Derbyshire, N. Pennines and Somerset (Figures 1 - 2). 
206

Pb/
207

Pb ratios of bulk soil 

and peat in the Rookhope (N. Pennines) area (1.18) are higher than for grass shoots 

(1.16) and new growth heather (1.14) (Chenery et al., 2012). The ratio in the top few cm 

of peat (1.16) suggests that grass accessed Pb consisting of both Pennine ore Pb (1.16 – 

1.207) and long-range Pb deposition from petrol Pb (1.06 – 1.09). Outside the Pb 

mineralisation areas, anthropogenic contamination in urban areas produces high Pb 

concentrations in topsoils, the most notable of which is the London area (Figures 1 - 2).   
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The aim of this study is to get an overview of the bioaccessibility of lead in areas with 

Pb mineralization in the UK using soils collected during geochemical sampling 

programs and to relate this to the unspeciated total concentrations of major and trace 

elements in these soils.  It is appreciated that total element concentrations will not pick 

out all the relationships between mineral phases and the bioaccessible Pb; however, they 

may help to predict how Pb bioaccessibility can vary in Pb mineralization and urban 

domains and in different  soil types within the UK. Predictive regression modelling 

between bioaccessible Pb and a range of total elemental compositions and soil 

properties was executed for the Derbyshire and Rookhope Pb mineralisation areas in 

order to assess the potential for developing a national mineralisation domain 

bioaccessible Pb dataset derived from the British Geological Survey (BGS) Estimated 

Ambient Background Soil Chemistry dataset (Appleton, 2012). Comparisons are made 

with linear regression models for UK urban areas (Appleton et al., 2012). 

 

2. Materials and methods 

2.1 Sample selection  

Forty nine samples were selected from the Geochemical Baseline Survey of the 

Environment (G-BASE) (Johnson et al., 2005) regional topsoil geochemical data set (<2 

mm fraction) for the Derbyshire Pb mineralisation domain, where the principal bedrock 

is Carboniferous limestone. The samples selected for further preparation and 

bioaccessibility testing are representative of the wide range of total Pb found in this area 

(Figure 3).  Forty eight <2 mm topsoil samples were selected from the Rookhope 

(Northern Pennines) Pb mineralisation domain where the principle bedrocks are 

Carboniferous (Namurian) shales with subsidiary siltstones and sandstones (Chenery et 

al., 2012). About a third of the Rookhope study area is covered with peat deposits 

(Figure 4). The Rookhope samples are representative of the wide range of total Pb (48 – 



page 7 of 38 

27586 mg kg
-1

; Chenery et al., 2012) and soil types found in this area. Background 

information on mineralisation and mineral processing in the Rookhope area is available 

in Chenery et al. (2012).  

 

2.2 Sample collection, preparation and determination of total concentrations  

Topsoil samples in the Derbyshire area were collected from open ground at an average 

density of one per 2 km
2
 (Johnson et al., 2005) whilst in the Rookhope area, samples 

were collected along a series of transects at a nominal spacing of 500 m (Chenery et al., 

2012). Composite samples, based on 5 subsamples taken at the centre and four corners 

of a 20-m square, were collected from 5–20 cm depth. Approximately 40 chemical 

elements were determined in the <2 mm size fractions of the Derbyshire topsoils. 

Sample preparation, X-ray fluorescence analytical methods, and quality control 

procedures are described in Allen et al. (2011) and Johnson (2011). The Rookhope data 

set includes total element data for 29 major and trace elements (ICP-AES), organic 

matter (OM, based on loss on ignition at 450°C). Soil pH was measured by suspending 

soil in 0.01 M CaCl2 solution in the ratio 1:2.5 (Chenery et al., 2012). 

 

2.3 Bioaccessible lead  

Samples selected for bioaccessibility testing were further sieved to <250 µm as this 

particle size fraction is considered to be the optimum size to adhere to children’s hands 

(Duggan et al., 1985). The <250 µm fraction of the samples was assessed for 

bioaccessible Pb contents using the UBM  which is a two stage in vitro physiological GI 

simulation, carried out according to the methodology of Caboche (2009), recently 

described by Denys et al. (2012).  The UBM was designed to ensure adequate 

conservatism and robustness whilst still being applicable to a range of soil types.  In 
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particular, this included a stomach pH of 1.2, which was based on preliminary studies 

where calcareous soils were found to cause difficulties in maintaining a low pH in the 

stomach phase (Wragg et al 2011).   

The UBM validation used a juvenile swine model for Pb and other PHEs in a study of 

16 different soils contaminated by mining and smelting practices, including the 

reference material NIST 2710 (Caboche, 2009; Denys et al., 2012). Correlation between 

the relative bioavailability and bioaccessibility of Pb, as part of the validation study, 

was highly significant, both for the gastric (stomach) and the gastro-intestinal phases.  

Absorption of available Pb occurs in the small intestine of the GI tract and the UBM 

methodology provides samples for analysis from both the ‘stomach’ (BS-Pb) and 

‘stomach and intestine’ (BSI-Pb) phases. The BS-Pb is then the amount of Pb extracted 

during the gastric phase extraction only and the BSI-Pb is the Pb extracted from the 

sequential extraction of the gastric phase followed by the intestine phase; this is not the 

sum of the BS-Pb and the BSI-Pb. Whilst both the ‘stomach’ and ‘stomach and 

intestine’ phases have been shown to be correlated with animal bioavailability (Denys et 

al., 2012), the ‘stomach’ phase gives a more conservative (higher) bioaccessible fraction 

than the stomach and intestine due, primarily, to the low pH conditions. In addition to 

this, the higher pH of the ‘stomach and intestine’ leads to poorer reproducibility of the 

results (Wragg et al., 2011). The ‘stomach’ phase samples have been chosen as being 

most suitable for this study, although the relationship between BS-Pb and BSI-Pb in 

mineralisation and urban domains is also examined.   

Chemical analysis of bioaccessibility extracts was carried out as described by Wragg et 

al. (2011) using a Thermo Elemental ExCell quadrupole ICP-MS instrument in 

combination with a Cetac ASX-510 autosampler, according to the operating conditions 

previously described by Watts et al. (2008). The quality control (QC) of the 
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bioaccessibility extractions was monitored by carrying out replicate analyses of a BGS 

guidance soil BGS 102 (Wragg, 2009).  At present there are no certified reference 

materials for bioaccessible Pb, however, BGS 102 used for QC checks in this study has 

been the subject of an international inter-laboratory trial (Wragg et al., 2009; 2011), 

which has generated the reference value used in this study. Within every batch, of a 

maximum of 10 unknown samples, one duplicate, one quality control soil and one blank 

were extracted.   

Replicate bioaccessibility values for BGS 102 of 14.3 ± 1.32 mg kg
-1 

(n = 7) and 14.3 ± 

1.55 mg kg
-1

 (n = 9) for Rookhope and Derbyshire, respectively, were obtained for the 

‘stomach’ phase of the UBM, which are in good agreement with consensus values of 

12.8 ± 6.0 mg kg
-1

(Wragg et al., 2011).  The detection limits for the ‘stomach’ phase 

calculated as five times the average blank measurement equated to 3 mg kg
-1

. All blank 

UBM extractions returned values below the method detection limits. 

 

2.4 Statistical analysis 

LR and MLR analysis in MINITAB® was used to model the relationship between 

bioaccessible Pb (BS-Pb <250 µm fraction) with total Pb, Al, Ca, Fe, K, Mg, Mn, P, Si, 

Ti, pH and organic matter (OM wt. % ) in the <2 mm fraction of topsoil samples from 

the Rookhope area and total Pb, Al, Ca, Fe, Mg, Mn, P and Ti in the Derbyshire area 

(no K, Si, pH and OM data being available for the G-BASE soil samples used in this 

study). Soil chemistry summary statistics for Derbyshire and Rookhope are presented in 

Table 1. 

Regression analysis, Analysis of Covariance and bootstrap resampling was carried out 

following the methodology described in Appleton et al. (2012). In the Rookhope area, a 
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subset with <10,000 mg kg
-1

 total Pb was used for MLR, after removing a sample with a 

large leverage (27,203 mg kg
-1

 Pb).  

 

3.  Results and discussion 

3.1 Summary statistics  

The mean, median and ranges of total Pb, BS-Pb, BSI-Pb and the proportion of 

bioaccessible Pb (the stomach bioaccessible fraction, % Pb-BSAF; stomach + intestinal 

% Pb-BSIAF) are listed in Table 1 together with summary statistics for the other soil 

chemistry variables used for MLR and LR.  The spatial variation in BS-Pb in the 

Derbyshire samples is related to total Pb concentrations in the <2 mm fraction of 

surface soils (Figure 3). The soils from the Derbyshire area, underlain by Carboniferous 

limestones, are less acid (median pH 5.7) and with lower organic matter (median 5.1%) 

than the acidic (median pH 3.7) and organic matter rich (median 26% OM) soils of the 

Rookhope area that are underlain mainly by peat, Namurian shales and sandstones 

(Figure 4). Relatively high BS-Pb together with OM and S characterise the peat soils 

located to the east of the mouth of the Rookhope Chimney, which took poisonous Pb 

and S fumes from the historic Pb smelter located in Lintzgarth out of the valley bottom 

up onto the moor at Redburn Common (Figure 4).  

The median stomach bioaccessible fraction (%Pb BSAF) ranges from 51% in 

Derbyshire to 67% in Rookhope which is comparable to BSAF levels recorded in urban 

topsoils (Appleton et al., 2012). Pb bioaccessibility data for smelter-contaminated 

agricultural soils in northern France have average stomach phase bioaccessibility of 

58% (Pelfrêne et al., 2012) determined using the UBM, whilst peri-urban 

mining/smelting impacted soils in Australian and New Zealand (Smith et al., 2011a) 

have mean gastric phase bioaccessibility of 55% (range 27 – 95%, n = 13; determined 
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using the Solubility Bioavailability Research Consortium in vitro assay at pH 1.5; mean 

total Pb = 2051 mg kg
-1

).  

 

3.2 Regression analysis 

The regression modelling procedures described above gave a range of statistically and 

geochemically appropriate LR and MLR models for bioaccessible Pb (Table 2). R
2
 

indicates the proportion of the variance in BS-Pb accounted for by each regression 

model. R
2
 (adjusted) is no more than 2% lower than R

2
 for models with fitted intercepts.  

All regression models are statistically significant (p <0.0005).  High intercept values 

may reflect the magnitude of the errors on the input parameters because least squares 

LR makes the assumption that all the uncertainty is associated with the y axis. Positive 

intercept values are theoretically impossible so, in such cases, it may be more 

appropriate to use models without fitted intercepts. However, in the Derbyshire, 

Rookhope (<10,000 mg kg
-1

 subset) and Combined Derbyshire + Rookhope models 

(Table 2) the intercept values are relatively low, so the difference between using models 

with or without fitted intercepts for estimating BS-Pb from total element concentrations 

will be relatively small.  

 

3.2.1 Derbyshire 

Stepwise LR using untransformed data suggests that total Pb and Ca may be significant 

predictors. All variables except Al are positively skewed so the SLR was repeated using 

log-transformed data. This indicated that only LnPb and LnMn are likely to be 

significant predictors of LnBS-Pb. The negative coefficient for Mn implies that Mn 

slightly restricts, rather than amplifies the bioaccessibility of Pb. 96.7% of the variance 

in BS-Pb can be explained by total Pb, whilst Mn accounts for only 0.3% of the total 
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variance in BS-Pb. Only Pb and Ca are significantly correlated with BS-Pb. However, 

LR based on log-transformed data indicates that LnMn (P <0.0005) is a significant 

predictor together with LnPb (P <0.0005), whereas LnCa (P = 0.030) is not. 

Linear regression using Pb as the sole predictor for BS-Pb (Figure 5) indicates that the 

intercept (39 mg kg
-1

) is not significant (P = 0.260) and not significantly different from 

zero (Standard Error = 34 mg kg
-1

). The regression model with the intercept not fitted 

(BS-Pb = 0.508 Pb; Table 2) is the preferred model for the Derbyshire dataset.  

Mn explains such a small percentage of the variance and is not a significant predictor in 

the other Pb mineralisation area studied (Rookhope), so it would not be appropriate to 

include Mn as a predictor for estimating Pb bioaccessibility in Pb mineralisation 

domains in England. SLR and LR of %Pb BSAF against chemical variables excluding 

total Pb, indicates that only Mn is significant (p = 0.003) and this explains 16% of the 

variance. The negative coefficient suggests that Mn restricts the Pb bioaccessibility, 

which is compatible with previous research (Hettiarachchi et al., 2000). 

SLR of BSI-Pb using Pb and major element variables as potential predictors indicates 

that only total Pb and Ca are significant for untransformed data whilst LnPb, LnMn and 

LnCa are significant for Lne transformed data. The linear regression model for LnBSI-

Pb vs. LnPb, LnMn and LnCa (LnBSI Pb = 0.913 + 1.23 LnPb - 0.403 LnMn - 0.216 

LnCa) indicates that Pb explains 86% of the total variance of BSI-Pb, Mn 7% and Ca 

1%. Both LnMn and LnCa have negative coefficients implying that the BSI- Pb is 

slightly constrained by Mn and Ca.   

On average BSI-Pb is only about 0.2 of BS-Pb (Table 1). Previous studies have 

indicated higher factors of 0.45 (Farmer et al., 2011; Glasgow urban area), 0.30 (Barsby 

et al., 2012; Northern Ireland rural soils), 0.5 (Roussel et al., 2010, urban soils), and 

0.36 (Pelfrêne et al., 2012; agricultural soils from N. France). BSI-Pb is generally lower 
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than BS-Pb due to precipitation or readsorption of dissolved Pb species at the higher pH 

of the intestinal phase (Sialelli et al., 2010, 2011; Smith et al., 2011a). 

On average, Pb in the <250 µm fraction is about 90% of total Pb in the <2 mm fraction 

(Pb <250 µm = 131 + 0.88 Pb <2 mm fraction). Size fraction is probably not a very 

important factor for BS-Pb vs. total Pb models. At higher total Pb concentrations, grain 

size distribution may be an important factor in some samples, possibly reflecting the 

types of soils developed on different parent materials and also the influence of different 

types of anthropogenic contamination.  

 

3.2.2 Rookhope 

SLR using untransformed data suggests that total Pb, S, OM and pH may be significant 

predictors. LR confirms that these four predictors are all statistically significant 

explaining 86%, 2%, 5% and 1% of the total variance of BS-Pb, respectively (Table 2). 

S has a negative coefficient implying that bioaccessibility is restricted when a 

significant proportion of the Pb occurs in sulphides (or sulphates), whilst the positive 

coefficients for OM and pH suggests that Pb bioaccessibility is enhanced at higher 

levels of OM and pH. The data tend to be strongly skewed so the SLR was repeated 

using Lne transformed data which suggested that LnPb, LnFe and LnS may be 

significant predictors, and this is confirmed by LR. After excluding one extreme sample 

(27,203 mg kg
-1

 Pb), SLR of untransformed data suggests that total Pb is the only 

significant predictor, whilst SLR of the Ln-transformed data indicate that total Pb, Fe, S, 

OM and pH may be significant, although the P-values suggest that pH (p = 0.022) and 

perhaps also OM (p = 0.003), S (p = 0.021) and Fe (p = 0.002) may not be strongly 

significant predictors. LR indicates that only Pb, OM and S (p = < 0.0005 – 0.001) are 

significant predictors of BS-Pb, explaining 93%, 0.5% and 2%, respectively, of the total 
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variance. OM has a positive coefficient while S has again a negative coefficient (Table 

2), despite OM and S being positively correlated in the Rookhope samples (R
2
 0.897). 

This can be explained considering the sensitivity of bioaccessibility to Pb-bearing phase 

speciation and suggests that the presence of the primary ore mineral galena (PbS) 

decreases the bioaccessibility in the soil.   Sulphur has a strong affinity for organic 

matter which explains the positive correlation between OM and S. High concentrations 

are present in the peaty soils of the Rookhope area. Part of this S may be due to 

atmospheric deposition related to Pb ore smelting, which was centred in the upland 

peaty sectors of the Rookhope area. SLR and LR of %Pb BSAF against chemical 

variables excluding total Pb, indicates that only P is significant (p = 0.002) and this 

explains 18% of the variance. The negative coefficient suggests that P restricts the %Pb 

BSAF which is compatible with the well known impact of P on Pb bioaccessibility in 

soil (Nriagu, 1974; Hettiarachchi et al., 2000). 

LR of BS-Pb vs total Pb for the complete data set gives a large intercept (Table 2) and a 

relatively low R
2
 (adjusted for number of predictors in the model) of 86%.  The 

coefficient is only 0.39 when the intercept is not fitted. For the <10,000 mg kg
-1

 total Pb 

dataset the intercept is not significantly different to zero and the  R
2
 (adj) is 95%. The 

coefficient of 0.65 for the LR (intercept not fitted) is slightly higher than that for the 

Derbyshire mineralisation domain (0.51, Table 2). 

SLR of BSI-Pb using Pb and major element variables as potential predictors indicates 

that only total Pb and Ca are significant based on untransformed variables, whereas total 

Pb, S and OM are significant for log-transformed data. The linear regression model for 

LnBSI-Pb vs. LnPb, LnS and LnOM (LnBSI-Pb = 2.85 + 1.15 LnPb - 1.04 LnS + 0.680 

LnOM ) indicates that 81% of the variance can be explained by LnPb, 3% by LnS and 
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4% by LnOM, similar to the LR results for BS-Pb. The LR for BSI-Pb vs BS-Pb and 

median values (Table 1) indicate that BSI-Pb is about half BS-Pb.  

 

3.2.3 Comparison of LR models for mineralisation and urban domains  

Analysis of Covariance was used to assess whether the AREA (Glasgow, London, 

Northampton, and Swansea urban areas; Derbyshire and Rookhope Pb-mineralisation 

areas), DOMAIN (URBAN: data for four urban areas combined; separate Derbyshire 

and Rookhope Pb-mineralisation areas), or DOMAIN2 (urban combined and 

mineralisation combined) had a substantial influence on the regression between BS-Pb 

and total Pb. This was achieved using the Generalised Linear Model (GLM) option in 

the ANOVA part of the Stat menu in MINITAB® 15 (Response = BS-Pb or LnBS-Pb;   

Model = AREA, DOMAIN, or DOMAIN2; and Covariate = Pb or LnPb). The 

Rookhope dataset comprised only those samples with <10,000 mg kg
-1

 Pb. 

Results for both untransformed and transformed data revealed that AREA and 

DOMAIN differences are significant (p <0.0005) both for transformed and 

untransformed BS-Pb and Pb data with  R
2
 (adj) values of 94-96%. However, there are 

not significant differences between the Urban domain (combined Glasgow, London, 

Northampton, and Swansea) and the Pb-mineralisation domain (combined Derbyshire 

and Rookhope) (P = 0.024 for untransformed and 0.617 for Ln-transformed BS-Pb and 

Pb data;  R
2
 (adj) 94-96%).  

Whereas AREA is significant (p <0.005) for the analysis of covariance based on Ln-

transformed data, AREA explains only 1.2% of the variance compared with 96% 

explained by total Pb. When the log-transformed data for the urban domain are 

compared with the separate Derbyshire and Rookhope mineralisation datasets (Figure 

6), DOMAIN is significant (p <0.005), but explains only 0.25% of the variance 
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compared with 96% explained by total Pb. For the DOMAIN2 model (i.e. urban vs Pb 

mineralisation), DOMAIN2 explains only 0.0035% of the variance, which is not 

statistically significant (P = 0.617). When the Derbyshire and Rookhope (<10,000 mg 

kg
-1

 Pb subset) are compared using GLM, the BS vs total Pb regression models are 

significantly different both for untransformed and Ln-transformed data. 

The 95
th

 percentile confidence limits for the intercepts of the BS-Pb vs Pb linear models 

obtained by bootstrap resampling for the Derbyshire, Rookhope, Combined Derbyshire 

and Rookhope and Combined Urban datasets all encompass zero showing that none of 

them have an intercept significantly different from zero (Table 3). The median  R
2
 

values show that all models explain between 94.5 and 98% of the variance in BS-Pb.  

The 95
th

 percentile confidence limits for the slope show that there is no significant 

difference between the Rookhope and Derbyshire models and the Rookhope and Urban 

domain models. However, the Derbyshire and the combined Mineralisation domain 

model have significantly lower slopes than the Urban model (Table 3).  

 

3.3 Comparison of BS-Pb and BSI-Pb relationships  

The relationship between total Pb with BS-Pb and BSI-Pb for Derbyshire and the 

<10,000 mg kg
-1

 subset of the Rookhope data is illustrated in Figures 7 and 8. For the 

purposes of this study, a comparison of the absolute values of the BS-Pb and BSI-Pb 

provides some insight into the geochemical controls on bioaccessibility in the different 

domains. 

BS-Pb and BSI-Pb concentrations for the Glasgow, London and Swansea urban areas 

are compared with data for the Derbyshire and Rookhope mineralisation-mineral 

processing domains in Table 4. Median BSI/BS-Pb ratios are similar for Glasgow, 

Swansea and Rookhope (0.43-0.47), lower for London (0.30) and substantially lower 
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for Derbyshire (0.17). The BSI-Pb:BS-Pb regression coefficients are highest for 

Rookhope (0.52), intermediate for London (0.37) and Swansea (0.42) and lowest for 

Derbyshire (0.20). Pb smelter contaminated urban soils in France have an average 

BSI/BS-Pb ratio of 0.32 (Pelfrêne et al., 2012; median soil pH 7.9) whilst the ratio is 

0.36 for agricultural soils in northern France (Pelfrêne et al., 2011) and 0.36 (median) 

for rural soils in Northern Ireland (Barsby et al., 2012).  

Pelfrêne et al. (2011) observed that “in the near-neutral pH and the carbonate-rich 

environment of the intestinal phase, Pb may be stabilized in solution by processes of 

complexation and/or readsorption on remaining soil particles or other material present 

in chyme.” Marschner et al. (2006) suggested that the concentration of soluble metals in 

the intestinal phase is a function of the availability of (organic) ligands, including soil 

ligands. Marschner et al. (2006) also observed that “the relative bioavailabilities in 

liver, kidney, and total uptake were highly correlated to Pb in the third fraction of the 

sequential extraction that is attributed to easily reducible Mn oxides. These results 

indicate that reductive processes in the intestine may be more relevant for Pb 

absorption than the initial solubilization in the acidic stomach.” 

The reason why bioaccessibility is reduced in the higher pH of the BSI to a greater 

extent for the Derbyshire soils (Pb mineralisation area; high soil pH, low soil OM) than 

in the urban areas and even greater than in the low pH, high OM soils of the Rookhope 

area is possibly related to differences in the chemical makeup of the soils in the two 

regions. Differences in soil pH is unlikely to affect the overall Pb solubility as the 

intestine phase is buffered to pH 6.3 (± 0.5) throughout the extraction. It is well known 

that phosphate can stabilise and reduce the solubility of Pb in soils (Hettiarachchi and 

Pierzynski, 2004).  Table 1 shows that the median P concentration in the Rookhope 

soils is a factor of 2.7 less than in the Derbyshire soils.  A comparison of the solubility 
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of Pb in soils with the addition of phosphate (Stanforth and Qiu, 2001) shows that the 

solubility is markedly reduced at pH 6, which is similar to the pH of the UBM stomach 

and intestine extraction (6.3).  The SLR modelling, does not, however, indicate P as 

being significant in controlling the BSI-Pb.  The model of LnBSI-Pb did identify Mn as 

being a significant factor which reduces the BSI-Pb.  Table 1 shows that the median Mn 

concentration in Rookhope soils is a factor of 29 less than in the Derbyshire soils. In 

addition Mn concentrations are a factor of c.2 less in the BSI phase compared to the BS 

phase indicating the possible precipitation of insoluble Mn compounds.  A study of the 

use of manganese oxide to stabilise Pb in soils (Hettiarachchi et al., 2000) shows 

significant reductions in Pb bioaccessibility due to adsorption of Pb onto the manganese 

oxide.  In the case of the Derbyshire soils it is possible that manganese is precipitated as 

the oxide in the higher pH environment of the stomach and intestine extract which then 

co-precipitates the soluble Pb from solution thereby reducing its absolute 

bioaccessibility. Fe is known to have a role in controlling the bioaccessibility of some 

elements such as  Pb (Smith 2011b, Beak et al., 2008) and in particular As (Palumbo-

Roe et al 2005, Wragg et al., 2007). The apparent lack of control of BS-Pb or BSI-Pb by 

total Fe in the Derbyshire and Rookhope areas does not indicate that no species of Fe is 

a controlling factor. Speciation analysis would be needed to evaluate this fully. Soil 

mineralogy studies might also help to elucidate the chemical and mineralogical controls 

on Pb bioaccessibility in these different soil types. 

 

4. Conclusions 

1. Linear regression analysis of the topsoil data for the Derbyshire and Rookhope Pb-

mineralisation areas indicate that total Pb is the only highly significant independent 

variable for estimating the bioaccessibility of Pb.  
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2. Total Pb explains >90% of the variability of BS-Pb. It is possible that the low pH 

(1.2) of the gastric solution masks some of the impacts of soil mineralogy on Pb 

bioaccessibility or high Pb concentrations exceed the adsorption capacities of soil 

components (OM and/or oxyhydroxides). 

3. Analysis of covariance indicates that Derbyshire and Rookhope BS-Pb vs total Pb 

relationships are significantly different, whilst bootstrap resampling shows that LR 

confidence limits overlap for Derbyshire and Rookhope and Rookhope and the 

Urban domain but the Derbyshire samples have a significantly lower BS-Pb to Pb 

slope than the Urban soils.  

4. Validation of the relationships reported in this study by comparable studies in other 

Pb-mineralisation areas of the UK should be carried out. 

5. The results of this study draw broad conclusions on the bioaccessibility of Pb in Pb-

mineralisation domains in England. Results of this study can be used for preliminary 

environmental assessment but should not be used to replace bioaccessibility testing 

at individual sites because local conditions may significantly influence Pb-

bioaccessibility. 
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TABLES 

Table 1 Summary statistics for topsoil data  

  Derbyshire Rookhope Rookhope (<10,000 

mg kg-1 subset) 

Total Pb (mg kg-1 in <2 mm 

fraction) 

Range 171 - 10470 151 – 27203 151 – 8513 

Mean 1710 1840 1300 

Median 775 662 656 

BS-Pb (mg kg-1 in < 250 µm 

fraction) 

Range 51 – 5765 75 – 8565 75 – 5937 

Mean 895 1010 849 

Median 386 464 458 

BSI-Pb (mg kg-1 in < 250 µm 

fraction) 

Range 4 – 1416 20 – 6002 20 – 3574 

Mean 172 507 390 

Median 67 182 179 

% Pb-BSAF Range 25 – 79 22 – 91  22 – 91 

Mean 51 65 66 

Median 51 66 67 

% Pb-BSIAF Range 2 – 17 6-55  6-55 

Mean 9 28 28 

Median 9 29 30 

pH Range 4.2 – 7.3** 2.9 – 7.4 2.9 – 7.4 

Mean 5.6** 3.9 3.9 

Median 5.7** 3.7 3.7 

OM (wt. %) Range 3.3 – 8.9** 3.7 – 96.1 3.7 – 96.1 

Mean 5.5** 39.8 40.6 

Median 5.1** 24.1 26.2 

Al (mg kg-1) Range 43907 – 68770 1653 – 111018 1653 – 111018 

Mean 58643 30630 31045 

Median 59248 29631 29634 

Ca (mg kg-1) Range 2073- 118569 215 – 153998 215 – 83350 

Mean 12045 9821 6754 

Median 5861 1510 1414 

K (mg kg-1) Range 2791 – 6925** 375 – 38906 375 – 38906 

Mean 4309** 6973 7033 

Median 4290** 5573 5732 

Fe (mg kg-1) Range 24129 – 73297 1349 – 210300 1349 – 210300 

Mean 39285 23626 22644 

Median 36858 11430 11197 

Mg (mg kg-1) Range 2412- 25933 265 – 4979 265 – 4567 

Mean 6659 1607 1535 

Median 4825 1452 1439 

Mn (mg kg-1) Range 465 – 8520 10 – 13133 10 – 13133 

Mean 2180 919 850 

Median 1704 59 58 

P (mg kg-1) Range 786 – 4189 145 – 1664 284 – 1664 

Mean 1855 702 714 

Median 1658 609 609 

S (mg kg-1) Range 938 – 2882** 367 – 8601 367 – 4363 

Mean 1501** 1756 1611 

Median 1376** 1051 989 

N  49 48 47 
 

 **Summary statistics for 18 NSI soils samples (Rawlins et al., 2012) located on Carboniferous limestone 

in the Derbyshire area – no pH, OM, K or S data available for G-BASE soil samples analysed in this 

study; BS-Pb = bioaccessible Pb (stomach phase); BSI-Pb = bioaccessible Pb (combined stomach and 

intestine phase); %Pb-BSAF = relative bioaccessibility for stomach phase; %Pb-BSIAF = relative 

bioaccessibility for stomach +intestine phase 
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Table 2  Least squares linear regression models for bioavailable lead 

 

 

 
Dataset N Intercept

1
 Model formula (MLR models in italics) R

2
 

Derbyshire (D)     

All samples  49 F BS-Pb = 136 + 0.502 Pb - 0.0455 Mn  98% 

All samples 49 F BS-Pb = 39 + 0.501 Pb 98% 

All samples  49 NF BS-Pb = 0.508 Pb 98% 

Rookhope (R)     

All samples 48 F BS-Pb = -708 + 0.562 Pb – 0.855 S + 32.6 OM + 225 pH 95% 

All samples 48 F BS-Pb = 362 + 0.352 Pb 86% 

Pb <10000 mg kg
-

1
 

47 F BS-Pb = 25.2 + 0.672 Pb – 0.242 S + 8.38 OM 95% 

Pb <10000 mg kg
-

1
 

47 F BS-Pb = 2.2 + 0.651 Pb 95% 

Pb <10000 mg kg
-

1
  

47 NF BS-Pb = 0.652 Pb 95% 

Combined D + R     

All samples 96 F BS-Pb = -12.7 + 0.696 Pb 97% 

All samples 96 NF BS-Pb = 0.694 Pb 97% 

Combined D + R 

+ urban 

    

All samples 

<10000 mg kg
-1

 

240 F BS-Pb = 3.4 + 0.612 Pb 94% 

All samples 

<10000 mg kg
-1

 

240 NF BS-Pb = 0.613 Pb 95% 

     

1
 F = fixed; NF = not fixed; all units mg kg

-1
 except OM (wt.%) and pH 
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Table 3  Bootstrapped regression summaries for Total Pb (x values) and Stomach 

phase Bioaccessible Pb (y axis) 

 

Dataset 
Regression 

statistic 
2.5th %tile median 97.5 %tile 

Derbyshire (D) intercept -34.3 37.6 98.5 

Rookhope (S) intercept -54.4 3.9 90.7 

Mineralisation domain (DS) intercept -24.6 59.1 126.5 

Urban domain (GLNS*) intercept -100.0 -34.8 0.18 

Derbyshire (D) R
2
  0.964 0.980 0.994 

Rookhope  (S) R
2
 0.871 0.945 0.982 

Mineralisation domain (DS) R
2
 0.917 0.950 0.976 

Urban domain (GLNS) R
2
 0.899 0.957 0.987 

Derbyshire (D) slope 0.447 0.502 0.578 

Rookhope (S) slope 0.538 0.648 0.723 

Mineralisation domain (DS) slope 0.474 0.539 0.621 

Urban domain (GLNS) slope 0.630 0.691 0.819 

 

GLNS = urban data for Glasgow, London, Northampton and Swansea (Appleton et al., 

2012) 
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Table 4 Summary of the stomach (BS) and stomach + intestine (BSI) bioaccessible 

Pb data and regression statistics for urban and Pb mineralisation domains 

  Urban domain Pb-mineralisation 

domain 

  Glasgow London Swansea Derbyshire Rookhope 

BSI-

Pb/BS-Pb 

Min 0.03 0.14 0.11 0.04 0.17 

Max 0.60 0.49 0.52 0.27 0.63 

Mean 0.43 0.29 0.40 0.17 0.42 

Median 0.47 0.30 0.43 0.17 0.44 

n  27 50 24 49 47 

Regression 

coefficient 

 na 0.37 0.42 0.20 0.52 

R
2
  na 0.98 0.78 0.93 0.93 

 Source 

of data 

Farmer et 

al., 2011 

BGS BGS BGS BGS 
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Figure 1 Lead domain map for England (Urban domain derived from Ordnance Survey 

Strategi ® data © Crown copyright and database right 2012)) 
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Figure 2. Estimated total Pb in English topsoils (Geometric mean for 500 m grid squares 

derived from nearest five BGS G-BASE and NSI (XRFS) topsoil data; class intervals of 

180, 820 and 2400 mg/kg are Normal Background Concentrations for Principal, Urban 

and Mineralisation Pb Domains; DEFRA, 2012) 
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Figure 3. Bioaccessible (stomach phase) Pb in <250 µm fraction of topsoil samples (this 

study) and mineral veins (BGS DiGMapGB-50 data) in Derbyshire area overlain on 

estimated Total Pb data for Carboniferous (Dinantian) limestone terrain interpolated 

from G-BASE rural topsoil chemistry data 
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Figure 4. Bioaccessible (stomach phase) Pb in <250 µm fraction of topsoil samples 

from Rookhope mineralisation domain (Mineral veins and simplified geology derived 

from BGS DiGMapGB-50 data; extent of peat from BGS Parent Material Map v4; 

interim data). 
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Figure 5. Fitted line plot for relationship between total Pb (<2 mm fraction) and BS-Pb 

(<250 µm fraction): all Derbyshire data (n=49; solid lines = 95% confidence limits) 
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Figure 6. Relationship between Ln total Pb (<2 mm fraction) and Ln BS-Pb (<250 µm 

fraction) in topsoils from urban areas (99% of samples fall within dotted line) compared 

with the Derbyshire (triangles and solid regression  line) and Rookhope (circles and 

dashed regression line; <10,000 mg kg
-1

 Pb subset) Pb-mineralisation domains 
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Figure 7. Relationship between BS-Pb (solid line) and BSI-Pb (dashed line) in <250µm 

fraction with total Pb in <2 mm fraction of soil samples from the Derbyshire Pb 

mineralisation domain 
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Figure 8. Relationship between total Pb (< 2 mm soil fraction) with BS-Pb (solid line) 

and BSI-Pb (dashed line in <250 µm fraction for Rookhope Pb mineralisation domain 

(<10,000 mg-kg
-1

 Pb subset) 


