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Abstract 

 The paper presents an approach to shape optimization of stability-sensitive elastic shell 

structures with conservative proportional loading. To reduce the stability-related problems, a 

special technique is utilized, by which the response analysis is always terminated before the 

first critical point is reached. In that way, the optimization is always related to a pre-critical 

structural state. The necessary load-carrying capability of the optimal structure is assured by 

extending the usual formulation of the optimization problem by a constraint on an estimated 

critical load factor. Since limit points are easier to handle, the possible presence of bifurcation 

points is avoided by introducing imperfection parameters. They are related to an asymmetric 

shape perturbation of the structure. During the optimization, the imperfection parameters are 

updated to get automatically the ‘worst-case’ pattern and amplitude of the imperfection. Both, 

the imperfection parameters and the design variables are related to the structural shape via the 

design element technique. A gradient-based optimizer is employed to solve the optimization 

problem. Three examples illustrate the proposed approach. 
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1. Introduction 

Optimization of statically loaded elastic structures has become an integral part of many 

modern design procedures. Optimization of linear structures is now well established, 

however, this still can not be said for optimization of structures with geometrically nonlinear 

behaviour. Namely, by introducing geometrical nonlinearity into optimization, one is 

confronted with the following difficult tasks: (i) The instability phenomena has to be dealt 

with due to possible presence of critical points on the equilibrium path. Early works 

addressing this problem go back to 1980s, References [1,2], and since then a considerable 

effort has been invested into addressing the related issues, see e.g. References [3-9]. (ii) The 

sensitivity analysis of critical point quantities has to be performed, see e.g. References [10-

15]. The computation of sensitivities can be rather difficult, if the first critical point is a 

bifurcation point. (iii) Initial geometric imperfections have to be considered to calculate a 

reliable critical load of a real structure and to include imperfections into the optimization 

process. This is especially important for shell structures, for which the critical load factors 

may be extremely reduced by imperfections, see e.g. Reference [16]. 

A typical approach in optimization of stability-sensitive structure is to introduce the 

critical load factor of a geometrically perfect (or imperfect) structure into the definition of the 

optimization problem; the term stability-sensitive structure is used here for a perfect or an 

imperfect structure, with at least one critical point on its equilibrium path. Obviously, this is 

the most natural choice since it enables optimization with objectives or constraints, explicitly 

defined in terms of the critical state quantities. Its drawback is a substantial increase of 

complexity of the structural response and sensitivity analysis (see e.g. Reference [15] for a 

brief review on those issues). Namely, if constraints on displacements or stresses are also part 

of the optimization problem, two types of structural analyses are typically needed: (i) The 

complete nonlinear incremental analysis to compute the displacements, stresses, etc. at the 

full load level, usually corresponding to a regular (but possibly post-critical) structural state. 

This analysis (here termed the displacement analysis) is typically based on the arc-length 

method. The corresponding sensitivity analysis is relatively straightforward. (ii) The critical 

point analysis to obtain the critical state quantities (usually the first critical point on the 

equilibrium path is of interest). An incremental approach may be used, but direct computation 

is also possible, see e.g. Reference [17] or [18]. The corresponding sensitivity analysis might 

be quite sophisticated, Reference [19]. 
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In this work an alternative approach to optimization of stability-sensitive structures with 

geometric imperfections is proposed. Its basic ingredients can be outlined as:  

(i) Only the displacements analysis is utilized. The optimal design procedure is 

always related to a regular equilibrium point, preceding the first critical point. 

(ii) The critical load factor constraint is introduced in an approximate way, since 

the critical load factor and its sensitivity are obtained by an estimate. 

(iii) The approach is computationally efficient, since the only extra computational 

cost, with respect to the optimal design of stability-insensitive structures, see 

e.g. Reference [20], is due to the estimation of the critical load factor. One 

eigenvalue and the corresponding eigenvector are computed at each structural 

equilibrium state. 

(iv) An asymmetric shape imperfection is introduced via the design element 

technique (also called the parametric curve/surface/body approach). Since the 

critical points of limit type usually occur in the analysis of imperfect 

structures, the critical points of bifurcation type are avoided. Surprisingly, this 

greatly simplifies the optimal design procedure. 

(v) The computation of the ‘worst-case’ imperfection is integrated into the 

iterative optimization procedure. In the first stage of optimization the 

imperfection pattern is found by a simple update procedure; then its norm (or 

amplitude) is determined. 

In this paper, shell structures are addressed only. However, the proposed procedure is 

not limited to this type of structures. 

 The outline of the paper is as follows. Section 2 briefly describes the problems arising 

in optimization of geometrically nonlinear stability-sensitive structures. Section 3 describes 

the basic setup of the proposed approach, a procedure to avoid the bifurcation nature of the 

first critical point, and a procedure to obtain adequate pattern and amplitude of imperfection. 

In Section 4 three numerical examples are presented and discussed. 

2. Problem description 

 A typical optimization problem of a statically loaded structure with nonlinear response 

(further called a nonlinear structure) may be stated as 
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min 0

K=≤
 (1) 

where ( )ub,00 ff =  and ( )ub,ii ff =  are objective and constraint functions, respectively. The 

constraint functions are typically related to displacements, stresses, etc. The symbol b  

denotes the vector of design variables and u  is the vector of response variables, usually 

displacements and rotations of the structural model, discretized by finite elements. Implicit 

dependence of u  on b  is given through the structural equilibrium equation, which can be 

written as 

 0RF =− λ  (2) 

For elastic and conservative structures, Equation (2) is obtained from the stationary condition 

of the potential energy, discretized by finite elements. Here ( )λubFF ,=  and ( )bRR λλ = , 

where ( )λλ uu = , are the vectors of internal and external (load) forces of the discretized 

structural model. Proportional loading is assumed in Equation (2) with λ  representing the 

load factor, 10 ≤≤ λ . The response vector u  is related to full load level 1=λ , i.e. 1== λuu . 

 The optimization problem (1) is often solved by utilizing gradient-based optimization 

methods. The solution procedure is iterative. Each iteration requires at least one response 

analysis (i.e. solution of Equation (2) for u  at some fixed b ) along with the corresponding 

sensitivity analysis, and one call of a gradient-based optimization algorithm, which calculates 

the improved design variables b . The displacement analysis is performed by an incremental 

process, where λ  is gradually increased until the final load factor 1=λ  is reached. The 

obtained curve in the λλ u−  space is called the equilibrium path. While incrementing λ , the 

equilibrium path of a nonlinear structure may reach a critical point, located at some critical 

load factor cλ . In that case, the structure buckles before it is completely loaded. 

If a critical point is encountered on the equilibrium path, the optimization process will 

most probably not be able to deliver the solution of the optimization problem (1). The 

response analysis may break due to convergence problems, if the path-following methods like 

the arc-length method, see e.g. Reference [21], are not used in conjunction with Equation (2). 

But even if an adequate response analysis technique is utilized, the optimization process will 

probably produce an alternating sequence of stable, 1>cλ , and unstable, 1<cλ , design 

solutions. The chances to get an acceptable solution are rather minor. 

 To suppress the stability-related problems, the most natural choice seems to be an 



 5

introduction of a constraint on the critical load factor cλ , i.e. by adding 

 1≥cλ  (3) 

to Equations (1). Indeed, doing so proves to be helpful, as shown e.g. in Reference [15], but 

one might have serious concerns about the effectiveness of such an approach. The first 

important drawback is related to the fact that now one has to perform two types of structural 

response analysis: the displacement analysis to get u , and the critical point analysis to get cλ . 

Of course, adequate sensitivity analyses are also needed. The sensitivity analysis of a critical 

load factor cλ , which corresponds to a limit point, is rather straightforward, e.g. 

Reference [22]. In contrast, the sensitivity analysis of a critical load factor cλ , related to a 

bifurcation point, is far more complicated, see e.g. Reference [19]. Therefore, one can 

conclude that by adding the critical load factor constraint (3) to Equations (1), the complexity 

of the structural response and sensitivity analysis will increase enormously. The same holds 

for the computational cost of the optimization process. The second major drawback is related 

to the path-following displacement analysis. An equilibrium path of a shell structure may 

contain numerous critical points, possibly many of them being bifurcation points. A 

conventional arc-length procedure may, after passing a bifurcation point, follow either the 

primary or the secondary equilibrium branch. It is thus possible that the final load factor, 

1=λ , is reached only after an immense computational effort, as illustrated in Figure 1 for a 

case of a snow-loaded shell with hinged corners. The load factor diagram clearly shows that 

1=λ  is reached only after computing more than 200 equilibrium states. In such situations, 

the computational effort for the displacement analysis may increase beyond all acceptable 

limits. 

 
Figure 1. A snow-loaded shell and the corresponding load factor history. 

One can see from the above that adding the critical load factor constraint (3) to Equations (1) 

Load
factor 

Arc-length step number 
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may not help to solve the optimization problem in a satisfactory manner. Even more, such an 

approach seems to be an inefficient and rather complicated option. For this reason, alternative 

formulations have been proposed in the past. For example, Wu and Arora [22] suggested to 

perform a usual optimization step, if the current design corresponded to a stable structure. In 

the opposite case, the critical load factor constraint was added to the optimization problem 

and the actual response u  was assumed by approximating the final part of the equilibrium 

path as illustrated in Figure 2a. Such u  was obviously not correct, but hopefully good enough 

to proceed successfully with the optimization process. The drawback of this approach is that it 

often leads to oscillations in the optimization process. Furthermore, the sensitivity analysis in 

Reference [22] is valid only for limit points; bifurcation points are not addressed. 

 
Figure 2. Alleviating stability problems: (a) equilibrium path modification and (b) response 

analysis termination before the critical load factor. 

 In contrast to Reference [22], the approach proposed in Reference [23] resulted in a 

more stable optimization process. The authors suggested to terminate the response analysis at 

some load factor rλ , which is always lower than the critical load factor cλ , Figure 2b. Before 

entering the optimization algorithm, the displacements ru  at rλ  were scaled by rλ1 . A 

special procedure was employed to make sure that the final optimization steps were 

performed at 1=rλ . In place of the actual critical load factor constraint (3), the constraint on 

some estimated critical load factor *λ  was utilized. Again, the proposed sensitivity expression 

for *λ  was valid only for limit points; bifurcation points were not addressed. 

Initial imperfections very often play a crucial role in structural stability capacity. It is 

therefore important to include them into the optimal design process. The simplest way is to 

use a predefined imperfection shape (usually related to a buckling mode) and a predefined 

amplitude, and solve an optimization problem for a geometrically nonlinear structure, see e.g. 
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References [15] and [5]. Another way, which is considerably more demanding, was taken e.g. 

by Mroz and Piekarski [6], Ohsaki [24], Ohsaki et al.[25], who included imperfection 

parameters into the design process in order to get the ‘worst’ possible imperfection mode, i.e. 

the mode, which reduces the most the structural load-carrying capacity. Away from 

optimization, one may also mention the direct approach to evaluation of the ‘worst’ 

imperfections by introducing the imperfection nodal variables into the potential energy 

functional, see e.g. References [26] and [27]. In the present work, initial geometric 

imperfections are included into the optimization process, and a procedure is proposed to 

obtain the ‘worst’ pattern and amplitude of imperfections, along with the optimal design. 

3. The proposed approach 

3.1 Basic setup 

 Let us consider an elastic nonlinear shell structure, subjected to a proportional load and 

let the corresponding optimization problem be given by Equations (1). To alleviate possible 

stability problems, the original optimization problem (1) is modified as 

 

βλ +≥

=≤

1

,,1,0..

min

*

0

Mifts

f
r

i

r

K  (4) 

The superscript r  in Equations (4) indicates that the quantity is computed at the structural 

equilibrium state, which corresponds to the load factor ( )ελλ −≤ cr ,1min . Here ε  is a small 

positive number, which assures that rλ  in not too close to cλ  since this might cause 

numerical problems. The symbol *λ  denotes an estimation of the critical load factor and β  is 

some given constant, which can be seen as a desired safety of the structure against buckling. 

 The load factor rλ  is searched within the usual load-driven incremental displacement 

analysis as follows. At current equilibrium state nu , related to nλ , an approximate critical 

load factor *λ  is computed. It is then checked whether *λ  is close to nλ . If it is, rλ  is set 

equal to nλ  and the response analysis is terminated. Otherwise, the response analysis is 

continued to the next load factor λλλ Δ+=+ nn 1 , where λΔ  is a prescribed load factor 

increment. As a guideline, *λ  can be considered to be close to nλ , if δλλ +≤ n* . Note that 
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the constant δ  has to be smaller than β ; this assures gradual increase of rλ  through the 

optimization process, until 1=rλ  is finally reached. It is our numerical experience that 

2βδ =  works fine. 

To compute *λ , the tangent stiffness matrices nK  and 1−nK  at load factors nλ  and 
1−nλ , respectively, are used. Approximations for the critical load factor and the corresponding 

critical stiffness matrix can be written as (see e.g. Reference [28], section 6.5.8) 

 
( )

( )1*1

1*1*

−−

−−

−+≈

−+=≈
nnnc

nnnc

KKKK α

λλαλλλ
 (5) 

Here *α  is the lowest eigenvalue of the generalized eigenproblem 

 ( ) 0yKKyK =−+ −− 11 nnn α  (6) 

and *y  is the eigenvector that corresponds to *α . Provided that the first critical point along 

the equilibrium path is a simple critical point, one can make the following classification: 

0≠Ry T*  →  limit point, and 0* =Ry T  →  bifurcation point. 

 Assume now that the current response analysis is terminated at ( )ελλ −≤ cr ,1min . The 

corresponding response is ru . The functions rf0  and r
if  in Equations (4) are computed using 

the scaled response 

 r

r

λ
uu =  (7) 

In other words, ru  is utilized to compute rf0  and r
if , which are the estimates of 0f  and if  

at 1=λ . This assures that the actual displacement and stress constraints are approximated 

good enough to get a better design in the next optimization step. 

 The calculation of sensitivities bu dd r  is done by utilizing the usual discrete sensitivity 

equation 

 
b

F
b
R

b
uK

∂
∂

−=
r

r
r

r

d
d

d
d λ  (8) 

In Equation (8) uFK ∂∂=r  at ruu =  and bFbF ∂∂=∂∂ r  at ruu = . According to 

Equation (7), the design derivatives of rf0  and r
if  are obtained by using the scaled 

derivatives 
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The calculation of sensitivities bdd *λ  is based on the formula for sensitivities of the 

critical load factor, see e.g. Reference [22], 
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By utilizing the approximations *λλ ≈c , *yy ≈c , and  
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see Reference [29], one gets the approximate sensitivities for the critical load factor 

 
Ry

b
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d
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−
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=

λ
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Equations (5)-(9) and (12) is all one needs to perform the response and sensitivity 

analysis for the optimization problem, defined by Equations (4). However, note that 

Equation (12) is valid only for a limit point. The way we handle the situation in the case of a 

bifurcation point is explained in the next section. 

3.2 Avoidance of bifurcation points 

 Ohsaki [19] explains thoroughly and systematically the computation of bifurcation point 

sensitivities; in particular he focuses on all possible difficulties, associated with this task. He 

also clearly states that a bifurcation point usually appears, if the structure possesses some kind 

of geometrical symmetry. This fact is exploited in the present work. Namely, to avoid the 

bifurcation nature of a critical point, the shape of the shell is perturbed by an asymmetric 

shape imperfection. This is motivated by the expectation that avoiding the bifurcation point is 

much more efficient then coping with the difficulties associated with it. It should be noted that 

an asymmetric shape imperfection does not guarantee the avoidance of a bifurcation point in 

all cases. However, numerical experiments show that a broad range of nonlinear structural 

optimization problems can be successfully solved by combining the procedure described in 

section 3.1 and the shape perturbation approach described below. 
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 Let us consider, as an example, a symmetric bifurcation point. If the load factor 

decreases along the bifurcation path, see the solid line in Figure 3a, the bifurcation point is 

called a symmetric unstable bifurcation point. Otherwise, see the solid line in Figure 3b, it is 

called a symmetric stable bifurcation point. Note that for an unstable point, an asymmetric 

shape imperfection of the structure turns the bifurcation point into a limit point, see the 

dashed line in Figure 3a. An asymmetric shape imperfection also reduces the critical load 

factor. On the other hand, the symmetric stable bifurcation point vanishes when an 

asymmetric imperfection is induced, see the dashed line in Figure 3b. Thus, with an adequate 

asymmetric shape imperfection, most optimization problems, defined by Equations (4), can be 

solved quite efficiently. 

 
Figure 3. Equilibrium paths of a symmetric (solid) and asymmetrically perturbed (dashed) 

structure: (a) symmetric unstable bifurcation point and (b) symmetric stable bifurcation point. 

 Adequate asymmetric shape imperfection of the structure can be very efficiently 

achieved by utilizing the design element technique. For shell structures, the implementation of 

this technique is thoroughly discussed, e.g., in Reference [20]. The shape of the shell is 

controlled by the position of the control points, which in turn depend on the design variables. 

An example of a symmetric shallow shell, defined by a Bezier patch design element with 

24×  control points, is shown in Figure 4a. To optimize the shape of the shell, two design 

variables, 1b  and 2b , may be introduced as follows: 121 bq x −= , 221 bq y = , 131 bq x = , and 

231 bq y = , where xq21  through yq31  are the control point positions, e.g. [ ]Tyx qq 212121 ,=q . 

Such an arrangement assures symmetric shape variation of the shell during the design process. 
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Figure 4. Shell (side view) with two variable control points: (a) symmetric design and (b) 

shape perturbations induced by 1p  and 2p , respectively. 

 To obtain an asymmetric shape perturbation, two imperfection parameters, 1p  and 2p , 

may be introduced by redefining the control point positions as follows: 1121 pbq x +−= , 

2221 pbq y += , 1131 pbq x += , and 2231 pbq y −= . Non-zero values of 1p  and 2p  induce 

asymmetry to the shell, see Figure 4b. Thus, by utilizing the design element technique (or a 

similar approach), the imperfection parameters may be introduced into the model in the same 

manner as the design variables. Their introduction does not increase the complexity of the 

optimization process. 

 By implementing the above procedure, one can expect that for a broad range of 

problems the first critical point (if it exists) will be a limit point, when adequate values of the 

imperfection parameters are given. The next section discusses how to determine these values. 

3.3 ‘Worst-case’ asymmetric imperfection 

 Let all the imperfection parameters be assembled in the vector p . When defining the 

values of its components, one has to find the ones which minimize the approximate critical 

load factor *λ . This can be achieved by taking advantage of the iterative nature of the 

optimization process and by the fact that imperfection parameters are - from the technical 

point of view - of the same type as the design variables. Thus, p  can be systematically 

improved during the optimization process by using the derivatives pdd *λ . These derivatives 

can be readily obtained by the same part of the code that computes bdd *λ , i.e. the expression 

for pdd *λ  has the same structure as Equation  (12). 
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 The improvement procedure is based on the assumption that the norm p  of the vector 

p  is a given data. By utilizing the derivatives pdd *λ , the direction of p  is gradually 

modified in order to get the lowest possible critical load factor, i.e., to get the ‘worst-case’ 

imperfection pattern. For this purpose, a simple gradient-projection method is used by which 

the imperfection parameters are updated as follows 

 ( )
k

kkkkk

dd
ddp

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−=ΔΔ+=+

p
ppppp

*

*
1 ,

λ
λψξ  (14) 

where the superscript k  denotes the current optimization iteration, 10 <<ψ  is a parameter 

influencing the convergence, and kξ  is a scaling parameter, assuring that pk =+1p . In our 

work, the convergence parameter was set to 21=ψ . The initial values 0=kp  of imperfection 

parameters may be simply taken as NiNppi ,,1,0 K== , where N  denotes their total 

number. 

 Numerical experiments show that this simple optimization procedure generates a 

sequence K,2,1,0, =kkp , converging to some final value optp . Obviously, in the space of 

imperfections, constrained by p=p , optp  represents a minimum point (at least a local one) 

of the critical load factor *λ . Thus, assuming that the design variables also converge to some 
optb , the final imperfection vector optp  can be viewed as the ‘worst-case’ asymmetric shape 

imperfection pattern of the final design. 

 One can see that the imperfection parameters p  are also optimized in some sense. 

Actually, the whole optimization procedure can be viewed as running two separate 

optimizations simultaneously, Figure 5. During the analysis phase, all the quantities, needed 

for both optimizations, are computed. If it turns out that the angle Φ  between the vectors *y  

and R  is close to 2π , i.e. 001.0cos ≤Φ , the first critical point is assumed to be a 

bifurcation point. In this case, the imperfection variables are scaled by some predefined factor 

(e.g. pp 2=new  seems to work fine) and the analysis is repeated until the product Ry T*  is far 

enough from zero. The analysis is followed by the optimization phase, which consists of two 

separate steps: (i) improvement of p  by the simple update procedure, Equation (14), and 

(ii) improvement of b  by a gradient-based optimizer. For the convergence check, both b  and 
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p  are taken into consideration, in addition to the objective and constraint functions. 

 
Figure 5. The proposed optimization procedure. 

3.4 Determination of imperfection amplitude 

 By the procedure from Figure 5, the imperfection pattern vector optp  was obtained 

along with the optimal structural design. Assuming that the procedure was started with 

imperfections of a small amplitude and some scaling of kp  was necessary, the amplitude of 

optp  may be roughly viewed as the lower amplitude limit, preventing the appearance of a 

bifurcation critical point. However, as noted e.g. by Mróz and Piekarski [6], the imperfection 

amplitude is also a very important parameter, being also related to structural cost. To account 

for this fact, it might be reasonable to optimize the amplitude of p  as well. By adopting the 

suggestions of Reference [6], the imperfection amplitude parameter η  is introduced, and the 

actual imperfection is now defined to be optpη . To get the optimal optη , the optimization 

problem, Equations (4), is redefined as 
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where Lowη  is the lower limit of η  and ω  is a constant weighting factor, utilized to balance 

the importance of η  with respect to the actual objective function rf0 . This problem can now 

be solved for η,optb  and optη , while the imperfection pattern optp  is kept constant since the 
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design change optopt bb −η,  is expected to be rather small. During this procedure, a bifurcation 

point may be encountered again. Although such a situation was not observed in numerical 

tests, it is still advisable to employ a procedure, proposed in Figure 6. 

 
Figure 6. The procedure to get the imperfection amplitude. 

4. Numerical examples 

To illustrate the proposed approach, three numerical examples are considered. The first 

one presents an optimization of a shallow arch. It is a relatively simple problem, yet it exposes 

nicely all aspects of the considered topics. The second example considers a more complex 

shell structure with double curvature. The third example presents the optimization of truss-

stiffened shell, which exhibits local buckling. 

 For the optimization of design variables b , the gradient-based method, proposed in 

Reference [30], is used. This is a convex approximation method with automatically adjustable 

conservativeness. The automatic adjustments of the convex additive terms are based on the 

sensitivity information, collected during previous optimization steps. 

 For the response analysis, a nonlinear 4-node shell finite element is used, 

Reference [31]. Finite rotations are parametrized by a constrained rotation vector, 

Reference [32], which is consistent with the standard incremental solution schemes for 

nonlinear response analysis. Since it maintains additive rotational updates, it is also very 

suitable for optimization by gradient-based methods. 

4.1 A shallow arch 

 The arch is depicted in Figure 7. Its dimensions are mm 1000=a  and mm 100=b . The 

thickness of the shell is design dependent; it is defined as mm 1020 1bt += . The material is 
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linear elastic: Young’s modulus is MPa 210000=E  and Poisson’s ration is 3.0=ν . The 

structure is loaded by a snow-like load MPa 2=f  in the negative y-direction. The arch is 

clamped at both ends. 

 
Figure 7.The shallow shell structure, defined by eight control points 

To parameterize the shape of the structure, one design element with 824 =×  control 

points is used. The control point (CP) positions are design dependent. Their definitions are 

given in Table I. One can see that three design variables, 1b  through 3b , are introduced. In 

addition, two imperfection parameters, 1p  and 2p , are incorporated into the CP positions, as 

illustrated in Figure 4. 

The objective is to optimize the shape of the structure by minimizing its relative volume 
iniVVv = . The constraints are related to the apex point A. Its vertical position Ay  is 

constrained by 1≤allA yy  and its vertical displacement Ayu  by 1≤allAy uu . The allowable 

values are defined as mm 50=ally  and mm 10=allu . The initial design of the shell is given 

by 0321 === bbb . At this design, the height of the arch is mm 5.37=ini
Ay . 

To illustrate the difficulties of geometrically nonlinear structural optimization, three 

different approaches to optimal design were considered. First, we tried to solve the above 

optimization problem by using the conventional load-driven incremental (CLI) analysis. The 

perfect structure was considered, i.e. 021 == pp  was used for the response analysis. Since at 

the initial design the critical load level was 903.0=c
iniλ , the structure buckled before the full 

load was reached. This resulted in failure of the optimization procedure already in the 

response analysis, due to the divergence in the Newton-Raphson procedure. 

In the second attempt we performed the response analysis by the arc-length (AL) 

method, implemented in such a way that the equilibrium path was followed until the final load 

factor 1=λ  was reached. Now, the response analysis was always successfully completed, but 

the sequence of generated designs kb  alternated between stable (pre-critical state) and 
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unstable (post-critical state) designs, Figure 8a. At a stable design (denoted by a circle in 

Figure 8a), the constraints were generously fulfilled. This caused a design change, leading to 

an unstable structure (denoted by a square in Figure 8a) with heavily violated constraints. The 

consequence of excessive constraint violations was a recovery of a stable design. This 

scenario was then repeated sequentially. 

 
Figure 8. Iteration histories for the objective function (OF, left axis) and maximal constraint 
violation (MCV, right axis) of the arch: (a) the conventional approach (AL analysis) and (b) 

the proposed approach. 

 Finally, the constraint 2.1* ≥λ  was added to the original optimization problem, as 

proposed in Section 3.1, and imperfections were introduced, as described in Sections 3.2 and 

3.3. The starting values of the imperfection parameters were selected as 11000
0
2

0
1 === app , so 

that 2=p . The first response analysis was terminated at load factor 8.0=λ  (denoted by a 

square in Figure 8b). After that, full load carrying capability of the structure (denoted by a 

circle in Figure 8b) was recovered and the optimization process proceeded in a stable way, till 

the optimum design was obtained. At the optimal design, the constraints on Ay  and *λ  were 

active. No scaling of the imperfection parameters was needed. Column 3 of Table II 

summarizes the results, where MCV denotes the maximal constraint violation. 

To see the influence of imperfection parameters on buckling load, the critical load factor 

of the optimal structure was analysed with 021 == pp . With this setting, the critical load 

factor was obtained as 1.24 (note that the critical load factor of imperfect structure was 15.1 , 

see Table II).  

 To verify the correctness of the computed imperfection parameters, the following 

optimization problem was solved 

 2s.t.,min *
. === pbbp constoptλ  (16) 

Note that the solution of this problem gives the ‘worst-case’ imperfection of the optimized 
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structure for the chosen imperfect parameters. A gradient-based optimization with respect to 

p  was performed and the starting values were set to 10
2

0
1 == pp . The procedure converged 

very quickly (after a few iterations) to the solution 309.01 =optp  and 380.12 =optp . This is the 

same result as obtained by our update procedure, see Table II. 

 To get the optimal imperfection amplitude optη , the optimization problem was 

reformulated according to Equations (15) and solved for η,optb  and optη  by the procedure, 

given in Figure 6. Since the order of magnitude of v  is unity, the weighting factor was taken 

to be 1.0=ω . The optimization procedure run smoothly and no scaling of Lowk ηη ,  was 

necessary. The imperfection amplitude increased to 973.1=optη  which lead to an increase of 

the structural volume by %5.1 . The design change was rather minor, see columns 3 and 4 of 

Table II. Here it is worth to note that some other value of ω  would yield another result. A 

larger weighting factor would yield larger allowable imperfection amplitudes, but the 

structural volume would also rise. Thus, the actual choice of ω  depends strongly on the 

problem under consideration and can not be theoretically determined for the general case. 

 Finally, it is worth to get some insight into the sensitivity of the optimized structure, 

with respect to the imperfection amplitude. One can see from Figure 9 that the critical load 

factor decreases almost linearly when the imperfection amplitude increases beyond 3. In that 

range the dependency between η  and the critical displacement is also practically linear. Thus, 

one can say that the optimized structure behaves in an expected way. 

 

Figure 9. Critical load factor and the corresponding (normalized) critical displacement with 
respect to the imperfection amplitude. 
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The data of the structure are as follows. The distance mm 20000=a  and the thickness 
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of the shells is mm 50100 1bt += . The material is linear elastic; Young’s modulus is 

MPa 30000=E , Poisson’s ration is 3.0=ν , and its density is -36 mmkg 104 −⋅=ρ . The 

structure is loaded by a snow-like load MPa 01.0=f  and its own weight. Both loads act in 

the negative y-direction. At all four corners the structure is pin-joined with fixed supports. 

To parameterize the shape of the structure, one design element with 2555 =×  CP is 

used, Figure 10a. Their positions depend on 8 design variables 2b  through 9b . In addition, 

four imperfection parameters, 1p  through 4p , are incorporated into the definitions of CP 

positions, as shown in Figure 10b. 

 
Figure 10.The roof shell structure: (a) groundplan with 25 CP and (b) influence of 

imperfection parameters on CP positions. 

The objective is to optimize the shape of the structure by minimizing its relative volume 
iniVVv = . The constraints are related to the apex point A and point B, Figure 10a, as 

follows: 1≤allA yy , 1≤allAy uu , and 1≤allBy uu . The allowable values are defined as 

mm 4000=ally  and mm 10=allu . 

As in the first example, the conventional optimization procedure failed due to 

convergence problems during CLI response analysis of the perfect structure (at the starting 

design the critical load factor is 76.0=c
iniλ ). On the other hand, the employment of AL 

analysis resulted in extremely long computation times. 
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Figure 11. Iteration histories for the objective function (OF, left axis) and maximal constraint 

violation (MCV, right axis) of the roof shell. 

By introducing the constraint 2.1* ≥λ  and employing the procedure proposed in this 

paper, the problem was solved without difficulties. The initial imperfection parameters were 

set to 201000
0 == a
ip , so that 40=p . The first response analysis was terminated at load 

factor 6.0=λ  (denoted by a square in Figure 11). After the first iteration (denoted by a 

triangle in Figure 11), the first critical point became a bifurcation point. Therefore, the 

imperfection parameters were increased by a factor of 2, so that the norm of the imperfection 

vector was reset to 80=p . After that, optimization proceeded normally with no further 

scaling of p . At the optimal design, the constraints on Ay , Ayu , and *λ  were active. The 

results are summarized in Table III and the optimal structure is shown in Figure 12. To see the 

influence of imperfection parameters, the critical load factor of the optimal structure was also 

analysed with 0=ip . With this setting, the critical load factor raises from 21.1  to 27.1 . 

 
Figure 12. Initial and optimal design of the roof shell and the CP positions 

 To verify the correctness of the calculated imperfection parameters, the following 

optimization problem 

 80s.t.,min *
. === pbbp constoptλ  (17) 

was solved by using gradient-based optimization. The starting values were set to 400 =ip . 
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The procedure converged to the solution 801 =optp  and 04,3,2 =optp . This result is somewhat 

different than the one obtained by our update procedure, Table III. Closer analysis has shown 

that this is a consequence of the factor 21=ψ , used in the calculation of kpΔ , Equation (14). 

To get a more accurate result, ψ  should be gradually decreased towards zero when the 

optimization procedure converges towards optb . 

To get the optimal imperfection amplitude optη , the optimization problem given by 

Equations (15) was solved. The weighting factor was taken as 1.0=ω . The optimization 

procedure run smoothly and no scaling of Lowk ηη ,  was necessary. The imperfection 

amplitude increased to 602.1=optη  which lead to an increase of the structural volume by 

%8.0 . From Table III it might seem that the design changes were rather significant. However, 

the design variables are mostly related to control point positions and the final structure, 

corresponding to η,optb , looks practically the same as the optimal one, given in Figure 12.  

 Regarding the sensitivity of cλ  with respect to η , a similar observation can be made as 

in the first example, Figure 13. The critical displacement, however, behaves in a different 

way. At first c
Ayu  raises, but begins to decrease as η  is increased beyond 4. 

 

Figure 13. Critical load factor and the corresponding (normalized) critical displacement with 
respect to the imperfection amplitude. 

4.3 A truss-stiffened shell 

The structure consists of a quadrangular shell, pin-jointed with the upper layers of two 

slender truss-stiffeners, as shown in Figure 14a. Its dimensions are: mm 6000=a , 

mm 750=b , mm 1500=c . The thickness of the shell is mm 10=t . All bar elements are 

pipes with the outer radius equal to 15 mm and wall thickness of 1 mm. The material 
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properties are MPa 210000=E  and 3.0=ν . The structure is loaded by a snow-like load 

MPa 01.0=f  in the negative z-direction. Both ends of the truss stiffeners are pin-joined with 

fixed supports. 

 
Figure 14. Truss-stiffened shell. 

To parameterize the shape of the structure, one design element with 18233 =××  CP is 

used, Figure 14a. Their positions depend on 4 design variables 1b  through 4b . In addition, 

two imperfection parameters, 1p  and 2p , are incorporated into the definitions of CP 

positions, as shown in Figure 14b. 

The objective is to optimize the shape of the structure by minimizing its relative volume 
iniVVv = . The constraints are related to the vertical displacement of point A, Figure 14b, as 

follows: 1≤allAz uu  where mm 50=allu . 

 When running the conventional optimization procedure with CLI response analysis, the 

convergence problems were not encountered although the structure buckled at several 

iterations. The reason was that the truss-stiffeners prevented global buckling of the structure 

and the shell buckled only locally in its middle region. So, there were no problems with the 

response analysis, but the optimization procedure yielded an oscillating sequence of solutions, 

some of them being stable and some of them being unstable, Figure 15a. Unstable structural 

designs are marked with squares in Figure 15a. 

 
Figure 15. Iteration histories for the objective function (OF, left axis) and maximal constraint 
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violation (MCV, right axis): (a) the conventional approach (CLI analysis) (b) the proposed 
approach. 

By introducing the constraint 2.1* ≥λ  and employing the proposed procedure, the 

problem was solved without difficulties. The initial imperfection parameters were set to 

61000
0 == a
ip . The first response analysis was terminated at load factor 8.0=λ  (denoted by a 

square in Figure (15b)). After that, full load carrying capacity was recovered and kept 

throughout all iterations. No scaling of the imperfection parameters was needed. At the 

optimal design, the constraint on *λ  was active. The results are summarized in Table IV and 

the optimal structure is shown in Figure 16. To see the influence of imperfection parameters, 

the critical load factor of the optimal structure was also analysed with 0=ip . With this 

setting, the critical load factor raises from 17.1  to 19.1 . 

 
Figure 16. Optimal design of the truss-stiffened shell and the CP positions. 

Conclusions 

 The paper presents an approach to optimization of stability-sensitive shell structures, 

subjected to displacement, stress, and similar constraints. Based on numerical experiments, 

the following conclusions can be made. 

 The proposed method offers a computationally inexpensive approach to optimization of 

stability-sensitive structures. Computational efficiency is assured by the following two points. 

Firstly, the critical states of the structure are never exactly computed, since the response 

analysis is always terminated prior reaching the first critical point. Only the conventional 

load-driven incremental response analysis is used. In addition, one eigenvalue/eigenvector 

pair has to be computed at each equilibrium point of the structural response. Secondly, the 

presence of bifurcation points is avoided by the introduction of imperfection parameters. This 

simplifies the sensitivity analysis of the critical load factor enormously and removes all the 
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inconveniences, associated with bifurcation points. 

 The imperfection parameters and the proposed update procedure reduce efficiently the 

imperfection sensitivity of the structure. After the ‘worst-case’ imperfection pattern is 

computed, its amplitude can be obtained within a few optimization cycles, utilizing a slightly 

altered optimization problem. Although the proposed technique works quite well, further 

improvements might be achieved by a more sophisticated update procedure. The introduction 

of another instance of the optimizer (one of them handling the design variables and the other 

one the imperfection parameters) might turn out to be of benefit. Another open question is the 

way how to introduce the imperfection amplitude into the objective function. Various choices 

produce various results and there seems to be no general guideline. Finally, quite important 

and still open questions relate to the choice of imperfection parameters - how many should be 

introduced, and how they should be related to the control point positions. These questions 

surely offer interesting topics of research, still to be done. 
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Table I. Control point positions of the shallow arch 
CP X Y Z 
1 500−  0 50  
2 12 )200200( pb ++− 23)2550( pb −+ 50  
3 12 )200200( pb ++  23 )2550( pb ++ 50  
4 500  0 50  
5 500−  0 50−  
6 12 )200200( pb ++− 23)2550( pb −+ 50−  
7 12 )200200( pb ++  23 )2550( pb ++ 50−  
8 500  0 50−  
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Table II. Summary of results for the shallow arch 
 Initial Optimal Optimal* (ω = 0.1) 

v  1.00 0.8249 0.8376 
MCV 0.40 < 0.001 < 0.001 

1b ; 2b ; 3b  0; 0; 0 -0.354; -0.858; 0.667 -0.329; -0.873; 0.667 

1p ; 2p  1; 1 0.309; 1.380 (0.309; 1.380) 
cλ ; *λ  0.90; 0.99 1.15; 1.20 1.14; 1.20 
η  - - 1.973 

* Solution of Equations (15). 
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Table III Summary of results for the roof shell 
 Initial Optimal Optimal* (ω = 0.1) 

v  1.00 0.8634 0.8701 
MCV 3.87 < 0.001 < 0.001 

1b ; 2b ; 3b  0; 0; 0 -0.307; -0.243; -0.776 -0.295; -0.400; -0.699 

4b ; 5b ; 6b  0; 0; 0 -0.386; 1.458; 2.000 -0.138; 1.775; 2.000 

7b ; 8b ; 9b  0; 0; 0 -0.144; 0.845; 0.516  -0.344; 0.904; 0.376 

1p ; 2p  20; 20 75.494; 3.125 (75.494; 3.125) 

3p ; 4p  20; 20 24.815; 7.491 (24.815; 7.491) 
cλ ; *λ  0.76; 0.68 1.21; 1.20 1.25; 1.20 
η  - - 1.602 

* Solution of Equations (15). 
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Table IV. Summary of results for the truss-stiffened shell 
 Initial Optimal 

v  2.00 1.99 
MCV 0.26 < 0.001 

1b ; 2b ; 3b ; 4b  0; 0; 0; 0 1.0; 0.307; 1.0; -1.0 

1p ; 2p  6; 6 -8.49; 0.00 
cλ ; *λ  0.94; 0.89 1.17; 1.20 

 

 


