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Abstract— Legged locomotion is one of the most versatile
forms of mobility. However, despite the importance of legged
locomotion and the large number of legged robotics studies,
no biped or quadruped matches the agility and versatility of
their biological counterparts to date. Approaches to designing
controllers for legged locomotion systems are often based on
either the assumption of perfectly known dynamics or mechan-
ical designs that substantially reduce the dimensionality of the
problem. The few existing approaches for learning controllers
for legged systems either require exhaustive real-world data
or they improve controllers only conservatively, leading to
slow learning. We present a data-efficient approach to learning
feedback controllers for legged locomotive systems, based on
learned probabilistic forward models for generating walking
policies. On a compass walker, we show that our approach
allows for learning gait policies from very little data. Moreover,
we analyze learned locomotion models of a biomechanically
inspired biped. Our approach has the potential to scale to high-
dimensional humanoid robots with little loss in efficiency.

I. INTRODUCTION

Legged locomotion is one of the most versatile forms of
mobility for robots with prospective applications, e.g., rescue
robotics, disaster site exploration, prosthetics [8]. Despite the
importance of legged locomotion and the large number of
corresponding studies, no biped or quadruped reproduces the
agility and versatility of their biological counterparts to date.

Two key challenges have been particularly problematic
for developing more dexterous bipedal robot locomotion.
First, the dimensionality of fully actuated dynamic walkers
is too high to manually design controllers. Second, current
robots are frequently not built to allow for versatile forms
of locomotion, based on compliant joints with muscle-like
action generation for energy storage or inter-joint mechanical
coupling. Instead, robots are built to be straightforward
to control. They are usually either optimized for accurate
trajectory tracking, such as Honda’s Asimo, or having passive
dynamics with only a limited access for actuation [18]. Re-
ducing the complexity resulting from the high dimensionality
of the state-action space has been at the core of most legged
locomotion systems and is accomplished by smart design of
either the control system [10], [25] or the mechanics [13].

Neuromuscular legged systems [7] are clearly capable of
using biomechanics that simplify the control problem such
that a neural control system with its long delays (a signal
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Fig. 1: The biomechanically inspired JenaWalker II [23] is
controlled by adjusting muscle stiffness.

from the brain-stem to the foot takes about 120 ms [12]) is
still capable of versatile and agile movements. While muscle-
based biomechanical systems have favorable properties [28]
and shield the control system from a variety of problems
inherent to technical systems [27], the reduction of dimen-
sionality is not amongst them. There is evidence that the
human motor control system uses internal models [26] to
deal with this complexity, possibly aided by dimensionality
reduction in the spinal cord [21].

In this paper, we show that we can reproduce several
features of the neuromuscular design: (i) Dimensionality
reduction can deal with the complexity of a biomechanically-
inspired design and (ii) bipedal walking can be learned
efficiently using forward models acquired from data.

There have been a series of applications of machine
learning approaches in legged locomotion such as Imitation
Learning [20] and Reinforcement Learning (RL) [24], [22].
However, model-free policy gradient approaches, as in [24],
require a well-structured policy parametrization with few
parameters to be feasible and cannot re-use data. Similarly,
model-free Q-learning [22] is data inefficient due to the
continuous state-action spaces. In [15], it was shown that
model-based RL with deterministic models does not suffice
for learning locomotion as it cannot cope with the variability
in the movement and the optimization bias.

In this paper, we show that learning probabilistic forward
models for generating walking policies in conjunction with
dimensionality reduction is tractable and data efficient. The
presented approach is based on [4] and can efficiently learn
feedback controllers from scratch while dealing with model
uncertainties in a principled way. Hence, our approach has
the potential to scale to high-dimensional humanoid robots
with little loss in efficiency. We demonstrate the speed of
learning gait policies for a compass walker [3]. Moreover,
we detail modeling aspects for simulation data from the
biomechanically inspired biped shown in Fig. 1.



II. POLICY SEARCH FOR LEARNING LOCOMOTION

Finding good locomotion policies is a generically chal-
lenging problem. For idealized models, a large number of
planning and optimization methods can yield a solution.
However, the dynamics of such muscle-based bipeds are very
hard to model. Based on an inexact uncertain model, con-
troller design for the real locomotive system is challenging,
especially in high-dimensional state spaces. In this case, data-
driven approaches, such as RL, may be better suited.

We present a model-based RL approach to learning state-
feedback controllers for locomotive systems, without strong
prior assumptions on the dynamics. Instead, we learn purely
data-driven forward models that explicitly express their un-
certainty about the true underlying locomotive dynamics.
By taking this uncertainty into account during long-term
planning and controller learning, our feedback controller is
robust to model errors.

A. Problem Setup and Notation

Throughout this paper, we assume the locomotive dy-
namics follow the discrete-time Markov chain xt =
f(xt−1,ut−1) + w with continuous-valued states x ∈ RD
and controls u ∈ RF and unknown transition dynamics f .
The measurement noise term w is assumed zero-mean i.i.d.
Gaussian with unknown (diagonal) covariance matrix Σw.
The objective is to find a parametrized policy π : x 7→
π(x,θ) = u that minimizes the expected cost-to-go

Jπ(θ) =
∑T

t=0
Ext

[c(xt)] , x0 ∼ N
(
µ0,Σ0

)
, (1)

of following π for T steps from an initial state distribution
p(x0) = N

(
µ0,Σ0

)
, where c(xt) is the cost of being in

state x at time t. The policy parameters are denoted by θ.
Policy search RL methods have been receiving much

attention in the last decade [1], [16], [4]. They scale relatively
well to high-dimensional states and controls. For continuous
controls u ∈ RF , indirect policy search methods estimate the
gradient ∂J(θ)/∂θ of the expected long-term cost defined
in Eq. (1) w.r.t. the policy parameters θ. Then, the policy
parameters are updated using this gradient information.

The policy gradients can be estimated using finite differ-
ence methods of the long-term cost J(θ) based on trajectory
sampling, which is exact in the limit [16]. Alternatively, J(θ)
can be approximated, but the corresponding policy gradients
can be computed analytically [4]. The latter approach often
allows for a large number of policy parameters θ, and,
therefore, more flexible controllers.

In this paper, we use the PILCO (probabilistic inference
for learning control) framework [4], [5] for learning to
control biologically inspired walkers. PILCO is a model-
based policy search method for learning optimal state-
feedback controllers. PILCO is data efficient and can learn
from scratch. Hence, expert knowledge, e.g., in the form of
demonstrations, is not necessary. Fig. 2 sketches the main
steps of the algorithm. The policy parameters are initialized
randomly, and the initial small data set for learning the
dynamics model is generated by applying random actions.

record data
policy evaluation J(θ)

policy gradient dJ/dθ

policy search

θ∗
apply policy π(θ∗)

GP dynamics

init. θ (random)

apply random actions

update θ
(BFGS)

Fig. 2: The main steps of the PILCO policy search framework.
Initially, the policy parameters θ and a small data set are
created randomly. After each policy search, the learned
policy with parameters θ∗ is applied to the robot and the
resulting trajectory is used to update the GP dynamics model.

Since PILCO can learn from little data, it is a promising RL
approach to learn controllers in robotics. Typically, RL is
not directly applicable in a robotics context if no informative
prior knowledge is available: Expensive exploration with the
robot can seriously damage the robot hardware.

PILCO’s learning speed is largely due to its robustness
to model errors during long-term planning and policy eval-
uation. This robustness stems from the use of a proba-
bilistic forward dynamics model that explicitly describes
model uncertainties. Since PILCO explicitly averages over
these uncertainties, its performance is not usually degraded
seriously by model errors.

B. Learning a Locomotion Dynamics Model

PILCO’s probabilistic dynamics model is implemented as
a non-parametric Gaussian process (GP) [19]. In the context
of regression, a GP is a prior over an unknown function
f , where for given inputs x ∈ RD, function values yi =
f(xi) + ε, i = 1, . . . , n, ε ∼ N

(
0, σ2

ε

)
, are observed. A GP

is fully specified by a mean function m and a covariance
function k, also called a kernel. We consider a GP prior mean
function of m(·) ≡ 0 and the sum of a Gaussian kernel with
automatic relevance determination and a noise kernel, i.e.,

k(x̃p, x̃q) = σ2
f exp

(
− 1

2‖x̃p − x̃q‖2Λ−1

)
+ σ2

wδpq (2)

where x̃ := [x>u>]> is the control-augmented state. In
Eq. (2), we define σ2

f as the variance of the latent function
f and Λ := diag([`21, . . . , `

2
D]), which depends on the

characteristic length-scales `i. There are n training inputs
X̃ = [x̃1, . . . , x̃n] and corresponding training targets y =
[∆1, . . . ,∆n]> with ∆i = xi+1 − xi.

Due to its non-parametric form, the GP is flexible, i.e., it
is not required to specify a parametric form of f in advance,
which is often based on idealized modeling assumptions.
Moreover, a GP possesses only a few hyper-parameters that
are automatically learned from the data using evidence max-
imization [19]. As a result of evidence maximization, a GP
does not tend to overfit since it automatically obeys Occam’s
razor. Hence, using a non-parametric GP is promising for
modeling the dynamics of a biologically inspired biped, such
as shown in Fig. 1: Compliance due to the presence of
muscles and delays are hard to parametrize.

PILCO’s probabilistic dynamics model is implemented as
a GP, where we use tuples x̃t−1 = (xt−1,ut−1) ∈ RD+F as
training inputs and state differences ∆t = xt − xt−1 + w ∈



RD, w ∼ N
(
0,Σw

)
, Σw = diag([σ2

w1
, . . . , σ2

wD
]), as train-

ing targets. For given x̃t−1 the successor state distribution is
p(xt|x̃t−1) = N

(
xt |µt,Σt

)
, where

µt = µt−1 + Ef [∆t] , Σt = varf [∆t] . (3)

With β = K−1y, the predictive distribution p(∆∗|x̃∗) at a
test input x̃∗ is Gaussian with mean and variance

mf (x̃∗) = Ef [∆∗] = k>∗K−1y = k>∗ β , (4)

σ2
f (∆∗) = varf [∆∗] = k∗∗ − k>∗K−1k∗ , (5)

respectively, where k∗ := k(X̃, x̃∗), k∗∗ := k(x̃∗, x̃∗), and
the entries of K are Kij = k(x̃i, x̃j), see Eq. (2).

Multivariate targets are treated as independent. Thus, a
separate GP is trained for each target dimension. This model
implies that the predictive state dimensions do not covary as
long as the test input is deterministically given.

C. Approximate Inference for Long-Term Planning

Following the description of the locomotion dynamics
model, we now detail how PILCO performs policy search to
learn a state-feedback controller for the locomotive system.

The PILCO policy search framework computes analytic
policy gradients ∂J̃(θ)/∂θ of an approximation J̃(θ) to
the expected long-term cost J(θ) in Eq. (1), requiring
approximate long-term predictions p(x1), . . . , p(xT ). We use
a moment-matching approach that iteratively approximates

p(xt+1) =

∫∫∫
p(xt+1|xt,ut)p(xt,ut) df dxt dut (6)

by a Gaussian with the exact mean µt+1 and the exact
covariance Σt+1. The integration in Eq. (6) is analytically
intractable: The conditional distribution p(xt+1|xt,ut) is
given by the GP predictive distribution in Eq.(3). The use of
the nonlinear Gaussian covariance function in Eq. (2) makes
determining p(xt+1) in Eq. (6) computationally intractable.
As an alternative to moment matching, approximations based
on linearization are conceivable [11]. Although they are
computationally more advantageous, their approximation
performance can suffer from their inappropriate treatment
of model uncertainties. An extreme example of the resulting
underestimation of the predictive variance is given in Fig. 3.
For mathematical details on how to compute the predictive
means and covariance matrices, we refer to [4], [5].

Having determined Gaussian approximations to the predic-
tive state distributions p(x1), . . . , p(xT ), an approximation
J̃(θ) to the expected long-term cost J(θ) in Eq. (1) can
be computed by summing up the expected immediate costs
Ext [c(xt)] =

∫
c(xt)N

(
xt |µt,Σt

)
dxt, where we assume

that these integrals can be computed analytically.
To perform a gradient-based policy search, the gradients

∂J̃(θ)/∂θ of the approximated expected long-term cost with
respect to the policy parameters θ are computed analytically:
Approximate inference to determine p(xt), t = 1, . . . , T in
Eq. (6), is performed analytically, i.e., neither sampling nor
numerical integration is required [4], [5].

By explicitly averaging out the posterior uncertainty about
the latent locomotion dynamics f , our approximate inference
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Fig. 3: Predictive distributions based on moment matching
(blue) and linearization (red). The black markers denote the
training targets, the black solid line is the posterior GP mean
function. The Gaussian distribution in the bottom panel is the
test input distribution, the shaded distribution in the right-
hand side panel is the true predictive distribution. Using
linearization for approximate inference can lead to predictive
distributions that are too tight.

step 0 step 1 step 2 step 3 steps 4:T

Fig. 4: Simulated compass gait walker on an inclining slope.
The left leg is shown in blue, the right leg is shown in red.
When solely penalizing falling, the walker learned to stop
and to stand upright. When additionally penalizing small hip
velocities, the walker learned to climb the slope.

method and, thus, the policy search, is robust to model errors.
PILCO’s increased robustness leads to data efficient RL from
scratch that can be applied to robotic tasks where execut-
ing many trials is infeasible [5]. Hence, our policy search
framework is promising for learning locomotion models and
controllers.

The moment-matching approximation of the predictive
distributions, see Eq. (6), captures the variability in the
gait. Hence, by iteratively computing predictive state dis-
tributions p(xt+1), t = 0, . . . , T , we obtain a distribution
over predicted state trajectories that can be encountered
when applying a control policy. Ideally, the corresponding
trajectories can be controlled with a feedback policy into
a limit cycle behavior. Our approach makes it feasible to
actually learn these feedback controllers. Hence, we can
learn locomotion state-feedback controllers that are robust
to variability in the trajectory, which might occur due to, for
example, noise, model errors, or gait variability.

III. EXPERIMENTAL RESULTS

In the following, we demonstrate that our policy search
approach quickly learns gait policies for a compass gait
walker [3]. Furthermore, we discuss modeling and dimen-
sionality reduction aspects using data from the biomechani-
cally inspired biped shown in Fig. 1.

A. Compass Gait Walker on an Inclining Slope

We considered learning to control the under-actuated com-
pass gait walker presented in [3]. The compass gait walker



is an idealized mathematical model of two rod-like legs
joined by a hinge hip and with masses at the joint and the
center of each leg, respectively, see Fig. 4 for a sketch.
The hip can exert a torque of [−20, 20] Nm. The swing-
leg dynamics of the compass gait model are given as [9]
M(q)q̈ + C(q, q̇)q̇ + G(q) = Bu , where M is the mass
matrix, C subsumes the centripetal and Coriolis forces, and
G is the gravity matrix. The contact point of the stance leg
with the ground is a zero-torque, frictionless joint. As in [3],
ground collisions are assumed instantaneous and perfectly
inelastic. For the legs, we used identical masses of 5 kg and
lengths of 1 m, respectively. The hip mass was set to 10 kg.
Generally, changing these parameters does not substantially
change the learning results as the locomotion forward model
is purely data driven. For details about the dynamics and
contact modeling, we refer to [3].

The objective was to automatically learn a controller that
allowed the walker to walk uphill on an inclining slope
(1◦), as shown in Fig. 4. Unlike [3], we did not assume
that the environment or the dynamics of the walker were
known. Instead, the walking behavior in the environment was
acquired from experimental data only.

The initial state distribution was Gaussian with mean
µ0 = [ql0 , qr0 , q̇l0 , q̇r0 ]> = [−0.36, 0.23, 0,−0.8]>, where
ql, qr are the angles of the left and right legs with respect to
the y-coordinate, respectively. Initially, ql is the stance leg
and qr is the swing leg. The speed q̇r in the mean of p(x0)
corresponds to the swing leg swinging forward toward the
incline. The initial covariance matrix Σ0 was set to 10−4I.

The feedback controller was implemented as a radial-
basis-function network with 50 basis functions, such that
u = π(x,θ) =

∑50
i=1 wiΦi(x), where Φi were axes-aligned

Gaussian-shaped basis functions located at µi and shared
widths W. The policy parameters are the weights wi, the
locations µi of the basis functions, and the diagonal elements
of W, resulting in 305 parameters.
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Fig. 5: Learning curve. Expected trajec-
tory cost per time step with twice the
standard error of the mean. The hori-
zontal axis shows the total amount of
data available to the learner. 0 seconds
of experience correspond to the result
of the random initialization, see Fig. 2.

We chose an
immediate cost
function c that
penalized the
distance of the
y-coordinate of
the hip from fully
upright and small
hip velocities
in x-direction
to encourage
walking ahead.
The learned
controller
successfully
walked the
simulated robot
uphill. Solely
penalizing the hip’s y-coordinate resulted in a learned
controller that took energy out of the system and the walker
stopped in an upright position, illustrated in Fig. 4.

(a) JenaWalker II. (b) Simulated JenaWalker II.

Fig. 6: (a) The high-dimensional biomechanically inspired
JenaWalker II is controlled by adjusting muscle stiff-
ness [23]. (b) 23-dimensional simulated JenaWalker II.

Learning was initialized by applying random torques to
the hip and sampling the policy parameters from a stan-
dard normal distribution. The learned GP locomotion model
mapped pairs (xt,ut) ∈ R5 to xt+1−xt ∈ R4. Policy search
was performed according to Sec. II-C. After convergence,
the learned controller was applied to the simulated walker.
The additional data from this trial was used to update the
GP locomotion model and to re-learn the policy parameters.
After a few iterations in PILCO (see Fig. 2), using less than
30 s of total data, PILCO successfully learned a feedback
controller walked compass gait walker uphill.

Fig. 5 shows the corresponding learning curves: After
about 15 s of data, the average step cost per trajectory
was close to the optimum for the learned controller, which
corresponds to a relatively fast walk up the inclined slope.

B. Nonparametric Dynamics Model of a Biomechanically
Inspired Biped

Fig. 6a shows the JenaWalker II, a biomechanically in-
spired biped that is used to investigate human walking and
running [23]. The biped’s gaits are controlled by adjusting
the muscle stiffness. Here, the muscles of a human leg are
realized as elastic structures spanning the joints, see Fig. 6b.
A limitation of our biped, compared to human walking, is
that 3D walking is impossible as lateral stability and pitch
stability of the trunk are not provided. The robot would need
to be able to adjust the legs vertically and laterally [17].

In our experiments, we used a realistic simulator of the
JenaWalker II. The state of the simulated 7-segment biped is
23-dimensional and consists of its speed (1D) and the (x, y)-
coordinates of the body (2D) and the six inner joints (hip,
knee, ankle, heel, ball) for each leg (2×10D), see Fig. 6b.
The controls are two torques that can be applied at the hip
to either of the legs.

In the following, we present results on modeling the
dynamics of the biped from the corresponding simulator and
approaches to dimensionality reduction.

1) Learning High-Dimensional Locomotion Models: For
modeling purposes, we collected data from a time series
of 7.5 s, where the simulated robot started in a standing
configuration and then transitioned into a running gait. The
biped’s state was measured at approximately 3.2 kHz.
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For training the GP dynamics models, we (uniformly)
randomly selected n = 450 states xi and torques ui from
the time series. The training targets were the corresponding
state variables 1/60 s later, i.e., we subsampled the data with
a physiologically more realistic frequency of 60 Hz [12]. The
test set was chosen to be equally spaced along the time
axis from 0 s to 7.5 s. Fig. 7 gives an example that the
learned dynamics model can predict the state variables very
accurately, although the learned GP locomotion mapping
f : R25 → R23 was learned using 450 data points only. We
show the most difficult prediction, the speed of the biped, in
Fig. 7. It is easy to see that the robot was initially standing
still, then sped up, until it finally ended up in a running gait.

2) Dimensionality Reduction: Policy search, as de-
scribed in Sec. II-C, can be computationally demanding in
high-dimensional spaces. Hence, for learning a feedback
controller, a lower-dimensional representation of the 23-
dimensional state is advantageous. Lower-dimensional em-
beddings using, e.g., factor analysis (FA) or (kernel) proba-
bilistic component analysis (PCA) [2] are conceivable; unfor-
tunately, the physiological interpretability of either the lower-
dimensional feature space or the data space—both of which
we want to maintain—gets lost. Thus, we propose finding a
generative mapping from the low-dimensional feature space
F into the original 23-dimensional state space that uses as
features a subset of the original state dimensions. Hence, a
vector in F has the same meaning as the corresponding state
variables in R23, e.g., “speed”.

To find low-dimensional features for predicting the high-
dimensional states, we correlated the GP training inputs
and the GP training targets. In the statistics literature, this
approach is known as Sure Independence Screening (SIS) [6].
SIS is very fast and applicable to ultra-high dimensional
spaces. Furthermore, it possesses theoretical properties, such
as oracle properties and accuracy bounds [6]. In our con-
text, SIS computes the correlation matrix between the GP
training inputs and targets. The idea is to select those input
dimensions of the state that are strongly correlated with the
target dimensions. If there is a strong correlation between
input dimension d and target dimension e, the GP transfers
knowledge from the input to the target, see Eqs. (4)–(5).

Fig. 8 displays the correlations between the GP training
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Fig. 8: Correlation between GP training inputs and training
targets. Light colors indicate strong positive correlation,
dark colors strong negative correlation, respectively. Weak
correlations are shown in gray.

inputs and targets. Clear positive correlations can be seen
amongst all x-coordinates since the biped moves along the
x-axis. In the upper right corner, the y-coordinates of the
biped’s left foot (ankle, heel, ball) are strongly negatively
correlated with their right leg’s counterparts. The biped’s
upper joints’ (hip and knee) y-coordinates are positively
correlated amongst themselves, independent of whether the
left or right leg are considered. This makes sense, since the
upper body’s movements are fairly restricted. The x and y-
coordinates are essentially uncorrelated.

From Fig. 8, we can already guess that only about half
the coordinates are relevant for reasonably accurate predic-
tions. This intuition was confirmed when we conducted the
following experiment, which can be considered a data pre-
processing step: First, we trained a full GP model for the
locomotion dynamics mapping from 25-dimensional inputs
(23D state plus 2D controls) to 23-dimensional targets. In
order to predict all 23 dimensions, we gave the GP models a
budget of a d-dimensional feature space F . For our analysis,
we varied d = 1, . . . , 23. The 2D controls were augmented
for learning the mapping. For each target dimension e =
1, . . . , 23, we greedily selected the d most relevant state
dimensions in the training set according to the maximum
absolute correlation between the input dimensions and the
eth target dimension (SIS). All other input dimensions were
discarded. At test time, we predicted all 23 target dimen-
sions using only the information from the lower-dimensional
feature space. To evaluate the predictive performance, we
computed the negative log-likelihood (NLL) values

− ln p(y∗|m∗,Σ∗)= 1
2 (D ln(2π)+ln |Σ∗|+‖m∗−y∗‖2Σ−1

∗
)

for D = 23, where m∗ and Σ∗ are the mean and covariance
of the GP prediction at the test input x∗ ∈ F , respectively.
The test target is denoted by y∗ ∈ R23. The NLL per-
formance measure penalizes incoherence of the predictive
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Fig. 9: Expected relative predictive NLL w.r.t. the model
using all features (blue) and expected computation time
(green) as functions of the feature space dimensionality. The
left vertical axis shows the average negative log-likelihoods
when predicting the full 23-dimensional stat at 1000 test
inputs. Higher values are better. The right vertical axis shows
the average computation time for the moment-matching
approximation and the policy gradients for a single time step.

distribution: deviations of the predictive mean from the
observed values (weighted by the inverse covariance) and
predictive uncertainty (determinant of the covariance). Lower
NLL values are better. The results shown in Fig. 9 suggest
that, based on SIS, we can accurately model the intrinsic
dynamics of the biped with an 8-dimensional state space
(blue curve): The relative loss of a low-dimensional feature
space with respect to the full model (23D) flattens out
from |F| = 8 onward. Fig. 9 also shows the duration
for computing the moment-matching predictions and policy
gradients (see Sec. II-C) for a single time slice as a function
of the dimensionality of the embedded space, i.e., the number
of features used for predictions (green curve). It might be
possible to embed the high-dimensional state into even lower
dimensions using other dimensionality reduction techniques,
such as FA or PCA. However, with either of these approaches
we lose the interpretability of the data.

IV. CONCLUSION

We have presented a novel and very promising approach to
learning models and state-feedback controllers for legged lo-
comotion. Our controller is learned fully automatically from
very small data sets and can even learn from scratch, with
no initial model information given. Unlike other approaches
to learning locomotion, our successful feedback controller is
based on predictive distributions over limit cycles. Hence,
our approach allows for learning state-feedback controllers
for locomotion that are robust to variations in the trajectory.
Such variability can be a result of real-world considerations,
such as noise, model errors, or gait variability, for instance.

Additionally, we demonstrated that we can learn very good
predictive models for a high-dimensional (23D) biomechani-
cally inspired biped. Based on Sure Independence Screening,
we automatically identified low-dimensional features of the
state that preserve the interpretability of both the low-
dimensional space and the high-dimensional data space.

Setting up a cost function for learning gaits is a non-trivial

task. We saw in Sec. III that a poor cost function can lead to
undesired effects. In the future, we will investigate whether
we can learn a good cost function from human data using
inverse RL techniques.
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