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Abstract—In this paper, a class of algorithms for automatic
classification of individual musical instrument sounds is pre-
sented. Several perceptual features used in general sound clas-
sification applications were measured for 300 sound recordings
consisting of 6 different musical instrument classes (piano, violin,
cello, flute, bassoon and soprano saxophone). In addition, MPEG-
7 basic spectral and spectral basis descriptors were considered,
providing an effective combination for accurately describing
the spectral and timbral audio characteristics. The audio files
were split using 70% of the available data for training and the
remaining 30% for testing. A classifier was developed based
on non-negative matrix factorization (NMF) techniques, thus
introducing a novel application of NMF. The standard NMF
method was examined, as well as its modifications: the local,
the sparse, and the discriminant NMF. Experimental results are
presented to compare MPEG-7 spectral basis representations
with MPEG-7 basic spectral features alongside the various NMF
algorithms. The results indicate that the use of the spectrum
projection coefficients for feature extraction and the standard
NMF classifier yields an accuracy exceeding 95%.

I. INTRODUCTION

The need for analysis of musical content arises in different
contexts. It has many practical applications, mainly for effec-
tively organizing and annotating data in multimedia databases,
automatic music transcription, and music retrieval. Automatic
musical instrument classification is the first step in developing
the aforementioned systems. However, despite the massive
research which has been carried out on a similar field, namely
the automatic speech recognition, limited work has been done
on musical content identification systems.

The experiments carried out so far are separated into two
categories: classification of isolated instrument tones and clas-
sification of sound segments. Using isolated tones, Martin
and Kim [11] developed a k-NN classifier using 31 features
on a database consisting of 15 orchestral instruments. Their
study included a hierarchical procedure classifying instrument
families as well as a non-hierarchical approach, achieving
a 87% classification success rate at the family level and a
61% rate at the instrument level. Eronen [10] recognized
individual instruments with 80% rate using samples of isolated
tones covering 30 orchestral instruments, where 44 spectral
and temporal features were calculated for creating Gaussian
Mixture Models and building k-NN classifiers. However, since
the classifier used only isolated tones, the system would have
a limited use in a practical application.

Using sound segments, Brown reported correct identifica-
tions of 79-84% for four classes of instruments (oboe, sax,
clarinet, and flute), using Bayes decision rules for classification
[9]. Cepstral coefficients, constant-Q coefficients and autocor-
relation coefficients were extracted fron the audio files of the
database used in this paper, namely the MIS Database from
UIOWA [1]. More recently, Synak et al [12] used MPEG-7
temporal descriptors and various spectral features for sound
segments consisting of 18 instrument classes and developed 2
classifiers. The first classifier uses the k-NN algorithm, while
the second one uses decision rules based on rough sets theory,
and achieve at best a recognition rate of 68.4%.

In our work, the problem of automatically classifying mu-
sical instrument segments is addressed. Files derived from the
UIOWA database [1] were used, forming 6 instrument classes.
Two sets of features are proposed. The first set describes the
audio timbral texture and the second one describes the spectral
characteristics as defined by the MPEG-7 audio standard
[2]. For the classification procedure we used non-negative
matrix factorization (NMF) [4], a subspace method for basis
decomposition. NMF has been mainly used in face recognition
and text categorization, and in this work a novel application for
the method is demonstrated. Several proposed modifications
of NMF were applied, providing a comparative study of the
algorithms’ efficiency. Furthermore, a comparison has been
performed regarding the classification accuracy of the MPEG-
7 AudioSpectrumProjection (ASP) coefficients versus MPEG-
7 AudioSpectrum descriptors. The results indicate that using
the ASP descriptor with timbral features in the standard NMF
classification algorithm yields a correct classification rate of
95.06%, which is comparable to the performance of supervised
classifiers for the same experiment [13].

The remainder of this paper is organized as follows. The
audio features used are discussed in detail in Section II.
Section III describes the subspace method of non-negative
matrix factorization and its numerous extensions. Section
IV describes the classification methodology used alongside
the experiments performed for its evaluation, and Section V
presents conclusions and future directions.

II. FEATURE EXTRACTION

In an audio classification system a careful selection of
features that are able to accurately describe the temporal



and spectral sound structures is vital. In our approach, a
combination of features originating from general audio data
classification and the MPEG-7 Audio framework is used.

A. Timbral texture features
The following features are proposed in systems concerning
general audio data (GAD) classification and speech recogni-
tion, and can be considered as a short term description of the
textural shape of the audio segments:
1) Zero-Crossing Rate: It provides a noise measure for the
given signal:
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where the sign function is 1 for positive arguments, -1
for negative arguments, x;[n] is signal for the ¢-th frame
and N the number of samples in an audio frame.
2) Delta Spectrum: 1t is defined as the average variation
value of the spectrum between two adjacent frames and
measures the amount of local spectral flux:
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Where X (t,k) is the k-th frequency sample of the
Discrete Fourier Transform (DFT) of the ¢-th frame, ¢
a very small value and K the resolution of the DFT.
3) Spectral Rolloff: It measures the spectral shape and is
defined as the frequency below which a percentage of
the magnitude distribution is concentrated:
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where T'H is the percentage threshold usually set to

0.85.

B. MPEG-7 features

The MPEG-7 standard, formally known as “Multimedia
Content Description Interface”, standardizes the description of
multimedia content. The standard is divided into 8 parts, where
part 4 focuses on audio description tools [2]. The Low Level
Descriptors (LLD) interface, as defined in the MPEG-7 audio
description framework, includes 17 descriptors, divided into
6 categories. The MPEG-7 LLDs that were used for feature
extraction are:

1) AudioSpectrumCentroid: It describes the center of grav-
ity of the log-frequency power spectrum, indicating
whether the signal spectrum is dominated by high or
low frequencies:
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where P(t,k) are the modified power spectrum coef-
ficients (coefficients below 62.5 Hz are replaced by a
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single coefficient with power equal to their sum) and
f(t, k) are their corresponding frequencies.

2) AudioSpectrumSpread: It describes the second moment
of the log-frequency power spectrum, indicating whether
it is concentrated in the vicinity of the centroid or is
spread over the spectrum:
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3) AudioSpectrumFlatness: It describes the flatness prop-
erties of the short-term spectrum for a number of fre-
quency bands, indicating the presence or absence of

tonal components:
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where il(b) and ih(b) are the power spectrum coeffi-
cient indices of the lower and higher edge of band b,
respectively.

4) AudioSpectrumProjection: It is the compliment to the
AudioSpectrumBasis descriptor and represents low-
dimensional features of a spectrum after projection onto
a reduced rank basis. The coefficients of both descriptors
are extracted from the normalized AudioSpectrumEn-
velope coefficients, using singular value decomposition
(SVD). Optionally, it is possible to produce statistically
independent basis by using independent component anal-
ysis (ICA) after the SVD [3].

III. NON-NEGATIVE MATRIX FACTORIZATION

Subspace analysis is one of the popular multivariate data
analysis methods, where low dimensional structures of patterns
are revealed in high dimensional spaces. Non-negative matrix
factorization (NMF) has been proposed as a novel subspace
method in order to obtain a parts-based representation of
objects by imposing non-negative constraints [4]. The problem
addressed by NMF is as follows: Given a non-negative n X m
matrix V (data matrix, consisting of m vectors of dimension
n), it is possible to find non-negative matrix factors W and H
in order to approximate the original matrix:

V ~ WH (7

where the n x r matrix W contains the basis vectors and
the » x m matrix H contains the weights needed to properly
approximate the corresponding column of matrix V, as a linear
combination of the columns of W. Usually, 7 is chosen so that
(n + m)r < nm, thus resulting in a compressed version of
the original data matrix.

To find an approximate factorization in (7), a suitable
objective function has to be defined. The generalized Kullback-
Leibler (KL) divergence between V and WH is the most
frequently used. Various NMF algorithms, differing mainly
in the constraints included in their objective function are
presented below.



A. Standard NMF

The standard NMF enforces the non-negativity constraints
on matrices W and H, thus a data vector can be approximated
by an additive combination of the basis vectors. The proposed
cost function is the generalized KL divergence:
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where WH =Y = [y;;]. D(V||WH) reduces to KL divergence

when >0, 3 vig = >0 D00 yi; = 1. The standard
NMF optimization problem is defined as:
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where W,H > 0 means that all elements of matrices W and H
are non-negative. The optimization problem (9) can be solved

by using iterative multiplicative rules [4].

B. Local NMF (LNMF)

Aiming to impose constraints concerning spatial locality and
consequently revealing local features in the data matrix V,
LNMF incorporates 3 additional constraints into the standard
NMF problem:

1) Minimize the number of basis components representing

V.
2) Different bases should be as orthogonal as possible.
3) Only retain components giving most important informa-
tion.
The above constraints are expressed in the following con-
strained divergence as the LNMF cost function:
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where «, 3 are constants, W'W = U = [u;;] and HH' =
Q = [gi;]. The minimization is similar to (9) and a local

solution can be found by using 3 update rules [5].

C. Sparse NMF (SNMF)

Inspired by NMF and sparse coding, the aim of SNMF is
to impose constraints that can reveal local sparse features in
the data matrix V. The following cost function is optimized
for SNMF:
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where A is a positive constant and ||h;||; the [-norm of the j-
th column of H. The SNMF factorization is defined as in (9),
including also that Vi||w;||; = 1. In SNMF, the sparseness
is measured by a linear activation penalty, the minimum (-
norm of the column of H. A local solution to the minimization
problem (11) can be found by the update rules in [6].

D(V||WH) =

D. Discriminant NMF (DNMF)

DNMF keeps the original constraints of the NMF algo-
rithm, enhances the locality of basis vectors imposed in the
LNMF algorithm and attempts to improve the classification
accuracy by incorporating into the aforementioned constraints
information about class discrimination. Two more constraints
are introduced:

1) Minimize the within-class scatter matrix S,,.

2) Maximize the between-class scatter matrix Sy.

The modified cost function is expressed as:
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where v and § are constants. Information on the form of the
class scatter matrices and the update rules that find a local
solution to the minimization of (12) can be found in [7].

IV. EXPERIMENTAL PROCEDURE AND RESULTS
A. Dataset

We used audio files taken from the MIS database developed
by the university of Iowa [1]. Overall 300 audio files were
used, consisting of 6 different instrument classes: piano, violin,
cello, flute, bassoon and soprano saxophone. In detail, 58 files
contain piano recordings, 101 violin, 52 cello, 31 saxophone,
29 flute and 29 bassoon. The 300 sounds are partitioned into a
training set of 210 sounds and a test set of 90 sounds, which is
a typical partition for classification experiments. All recordings
are discretized at 44.1 kHz sampling rate and have a duration
of about 20 sec.

B. Classification method

Musical instrument classification in the NMF subspace is
performed as follows. Using data from the training set, the
data matrix V is created (each column v; contains a feature
vector computed from an audio file). The training procedure is
performed by applying an NMF algorithm into the data matrix,
yielding the basis matrix W and the encoding matrix H.

In the test phase, for each test audio file (represented by a
feature vector vy.5;) a new test encoding vector is formed as:

htest = W]Lvtest (13)

where W is defined as the Moore-Penrose generalized inverse
matrix of W. Having formed during training 6 classes of
encoding vectors h; (where [ = 1,...,6), a nearest neighbor
classifier is employed to classify the new test sample by using
the Cosine Similarity Measure (CSM). The class label I’ of
the test file is defined as:

hg;sthl }
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thus trying to maximize the cosine of the angle between h;.
and h;.

U = arg, max { (14)



TABLE I
CONFUSION MATRIX FOR STANDARD NMF, FEATURE MATRIX 2

Instr. Piano | Bassoon | Cello | Flute | Sax | Violin
Piano 18 0 0 0 0 0
Bassoon 1 8 0 0 0 0
Cello 0 0 16 0 0 0
Flute 2 1 0 6 0 0
Sax 0 0 0 0 9 0
Violin 0 0 0 0 0 29

C. Performance Evaluation

Two separate experiments on the various NMF algorithms
have been performed by using different extracted features,
in order to compare the efficiency between the MPEG-7
descriptors. The first feature vector contains the MPEG-7
statistical spectrum descriptors (ASC, ASS, and ASF) and the
timbral texture features described in Section II-A. The second
feature vector contains the MPEG-7 ASP descriptor and the
various timbral texture features. Consequently, the efficiency
of the ASP descriptor is compared with the efficiency of
features more commonly used in classification experiments.

The mean classification accuracy and its standard deviation
for the four NMF algorithms for both feature vectors is
presented in Figure 1. The highest accuracy achieved by the
standard NMF algorithm is 95.06% when ASP descriptors
are used. The achieved performance is comparable to the
performance of supervised GMM and HMM classifiers for
the same data set, where the achieved performance was 99%
and 97%, respectively [13]. However, the accuracy of NMF is
deteriorated when the first feature vector is used. The LNMF is
clearly outperformed by all algorithms. This may be attributed
to the locality constraints the LNMF imposes when applied to
holistic descriptors. The SNMF overall displays satisfactory
results, but its efficiency depends on the selection of parameter
A as can be seen in (11). Finally, DNMF outperforms both
LNMF and SNMF when the first feature vector is used, but
its accuracy drops to 80.5% when the ASP descriptor is used,
mainly because the algorithm’s accuracy depends on the values
of v and § as can be seen in (12).

More detailed information about the performance of the
NMF algorithm using the ASP descriptor is shown in Table I in
the form of a confusion matrix, where the columns correspond
to the predicted musical instrument and the rows to the actual
instrument. Most misclassifications occur for the flute, where
flute samples are wrongly classified as piano and bassoon. In
addition, there is a single miss-classification for the bassoon.
It should be noted that the flute samples that were wrongly
classified for piano displayed similar dynamical and spectral
shape with several piano samples.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new method of classifying
musical instrument recordings by using NMF algorithms,
using a variety of features, mainly the MPEG-7 Audio de-
scriptors. The results indicate that the standard NMF algorithm
can perform classification with high accuracy even compared
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Fig. 1. Classification accuracy of NMF algorithms, where 1/2 refers to the
feature vector used.

to its modifications, which are more suitable when used in
conjunction with parts-based descriptors due to their numerous
constraints. In addition, it is shown that the MPEG-7 ASP de-
scriptor yields a more discriminating representation compared
to most of the traditional spectrum descriptors.

In the future, the NMF techniques can be applied to dis-
criminate the whole spectrum of orchestral instruments. A
supervised NMF classification scheme could be developed,
considering information about class discrimination. Finally,
for musical instrument classification, features describing the
timbral shape could be employed, such as the timbral temporal
and spectral descriptors proposed by the MPEG-7 standard.
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