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ABSTRACT 

 Methicillin-resistant Staphylococcus aureus (MRSA) is a global public health 

problem and is a major cause of morbidity and mortality worldwide, imposing serious 

economic costs on patients and hospitals. Prior to the mid-1990s, MRSA was largely 

a healthcare-associated pathogen, causing infection predominantly in people with 

frequent or recent contact with healthcare facilities (HA-MRSA). Since then, 

community-associated MRSA (CA-MRSA), which often causes infection among 

healthy children and young adults with no exposure to the healthcare setting, has 

become increasingly prevalent. Worryingly, there is evidence that CA-MRSA is 

penetrating the healthcare MRSA reservoir, and even replacing traditional HA-MRSA 

strains. This highlights the need to keep abreast of the changing epidemiology of 

MRSA in order to implement effective infection control strategies. To investigate the 

composition of the healthcare MRSA reservoir and ascertain the extent to which CA-

MRSA has penetrated this reservoir, a countywide, population-based cohort study of 

MRSA in hospital inpatients and nursing home residents was conducted in Orange 

County (OC), California, covering a total of 46 facilities. CA-MRSA was found to be 

fully mixed with HA-MRSA in the hospital setting. The predominant CA-MRSA 

clone in the US, USA300, was the most commonly isolated MRSA clone in OC 

hospitals. In OC nursing homes, HA-MRSA (specifically a variant of USA100 that is 

also very common in OC hospitals but has not been reported elsewhere) 

predominates, but USA300 made up just over a quarter of the isolates and was the 

second most frequently isolated clone. Both OC hospitals and nursing homes were 

dominated by the same three strains: USA300, USA100 and a variant of USA100. 

Not only are community-based infection control strategies needed to stem the influx 

of community associated strains, in particular USA300, into the hospital setting, but 

also strategies tailored to the complex problem of MRSA transmission and infection 
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in nursing homes, to minimise the impact of the unique nursing home MRSA 

reservoir on overall regional MRSA burden. A key component of effective infection 

control strategies is prompt isolation of MRSA carriers, facilitated by rapid 

diagnostics. PCR-based methods of MRSA detection offer a much faster alternative to 

traditional culture techniques, but are expensive and often complex to operate. A 

novel nucleic acid amplification technique developed by my industrial sponsor, 

TwistDx Ltd, called recombinase polymerase amplification (RPA), has been 

incorporated into a probe based detection system called TwistAmp MRSA, and offers 

a simple and cheap alternative to current commercial PCR-based assays, amplifying 

MRSA to detectable levels within 20 minutes. I tested the assay with diverse 

collections of MRSA and discovered that 4% of isolates from a UK MRSA collection 

could not be detected by the assay. I subsequently developed RPA primers for their 

detection. Nonetheless, TwistAmp MRSA was able to detect most MRSA strains, and 

was comparable to current commercial assays in this respect. Despite a very high 

analytical sensitivity of approximately 20 CFU/swab, the clinical sensitivity of 

TwistAmp MRSA was lower than expected with respect to the current market leader, 

Xpert MRSA. I investigated lysis and filtration methods to improve the assay's 

clinical sensitivity, but found that such methods did not currently warrant inclusion in 

the TwistAmp MRSA protocol. While TwistAmp MRSA performance is in line with 

current assays, and is a faster, cheaper and simpler assay, a problem faced by all 

molecular methods of MRSA detection is the constant emergence of undetectable 

MRSA strains, necessitating continual assay evaluation and improvement where 

possible.  
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CHAPTER 1: INTRODUCTION 

1.1 STAPHYLOCOCCUS AUREUS CARRIAGE AND DISEASE 

 Staphylococcus aureus is the most important pathogenic species of the 

Staphylococcus genus, which contains more than 30 species. In contrast to most other 

Staphylococci, S. aureus has pathogenic potential even in the absence of clear host 

conditions that predispose them to infection, such as immunodeficiency. S. aureus is 

a non-motile, non-spore-forming, gram-positive, catalase-positive and primarily 

coagulase-positive facultative anaerobe. Occuring as cluster-forming cocci, and 

forming white-grey to golden-yellow colonies, S. aureus bacteria are often 

haemolytic on blood agar and most ferment mannitol.  

 S. aureus is one of the most important human pathogens, occurring 

worldwide, and responsible for healthcare-, community- and livestock-associated 

colonisation and infection. It is an opportunistic pathogen that colonises the human 

skin and mucosa, the primary reservoir being the anterior nares, and is present in 30% 

to 50% of healthy adults, about 20% of which are persistently colonised [Lowy 1998, 

Wertheim et al. 2005]. Extra-nasal sites include the groin, pharynx, axillae, skin, 

perineum and vagina [Wertheim et al. 2005]. Those colonised with S. aureus are at 

increased risk of subsequent infection and disease, ranging from mild skin and soft 

tissue infections (SSTIs) such as folliculitis and furunculosis to life-threatening, 

invasive infections such as pneumonia, deep abscesses and sepsis [Lowy 1998, 

Wertheim et al. 2005]. S. aureus also colonises several different animal species, 

where it can cause disease such as bovine mastitis [Annemuller, Lammler and 

Zschock 1999].  

 The diverse range of S. aureus disease has been attributed to its ability to 
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produce an array of virulence factors [Begun et al. 2005] (Figure 1.1) which include 

MSCRAMMs (microbial surface components recognising adhesive matrix 

molecules) such as protein A, clumping factor A and fibronectin binding protein A, 

and exoproteins such as pyrogenic toxin superantigens, exfoliative toxins, and 

leukocidin [Dinges, Orwin and Schlievert 2000]. Infections are initiated when a 

breach of the skin or mucosal barrier allows S. aureus to infiltrate adjoining tissues or 

the bloodstream. Whether the infection spreads or not depends on a complex 

interplay between S. aureus virulence determinants and host defence mechanisms 

[Lowy 1998]. Risk factors for infection therefore include: colonisation, 

immunodeficiency (e.g. AIDS), underlying medical conditions (e.g. type 1 diabetes), 

surgical wounds, intravenous drug use, and invasive medical devices (e.g. catheters). 

S. aureus is usually transmitted by direct skin-to-skin contact or by sharing 

contaminated items or using contaminated surfaces [Boyce et al. 1997, Shiomori et 

al. 2002, Miller and Diep 2008, Snyder et al. 2008, Caron and Mousa 2010, 

Uhlemann et al. 2011]. 
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Figure 1.1 Staphylococcus aureus structure: surface and secreted 

proteins/virulence factors. A: surface protein synthesis is usually dependent on 

the growth phase and secreted protein synthesis on the stationary phase. B: 

cross section of the cell envelope. C: many of the surface proteins have a 

structural organization similar to that of clumping factor, including repeated 

segments of amino acids. TSST-1=toxic shock syndrome toxin 1 (a pyrogenic 

toxin superantigen). Figure taken from [Lowy 1998]. 

 

 

1.2 ANTIBIOTIC RESISTANCE: EMERGENCE AND MECHANISMS 

 The first clinical isolate of methicillin-resistant S. aureus (MRSA) was 

reported in 1961 in the UK. Now often called the 'archaic' clone, it carries 

staphylococcal cassette chromosome mec type I (SCCmec I). SCCmec is a mobile 

genetic element that carries mecA, the gene conferring methicillin resistance in S. 

aureus (see section 1.2.1). The archaic MRSA clone was reported just 1 year after the 

introduction of methicillin, a β-lactam antibiotic developed to counter the increasing 

prevalence of penicillin resistance in gram-positive bacteria [Jevons 1961]. Since 

then, S. aureus has developed or acquired resistance mechanisms to almost all 
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antibiotics that have been introduced over the past decades, including β-lactams, 

aminoglycosides, quinolones and glycopepetides [Lowy 2003]. After the first reports 

of MRSA in the 1960s, it gradually disseminated around Europe [Crisostomo et al. 

2001], and began causing serious hospital infections worldwide in the 1970s 

[Hiramatsu et al. 2001]. By the 1980s, the archaic clone had largely disappeared from 

European hospitals, and descendents of this clone (e.g. the Iberian clone) as well as 

new lineages of MRSA had emerged (Table 1.1), causing significant clinical and 

epidemiological problems in hospitals [Oliveira, Tomasz and de Lencastre 2002]. In 

1982, the New York/Japan Clone (SCCmec II) was discovered and also spread 

worldwide, followed by the discovery in 1985 of the 85/2082 MRSA strain in New 

Zealand (SCCmec III). These and new MRSA strains disseminated around the world 

during the 1990s, contributing to the worldwide healthcare-associated MRSA (HA-

MRSA) pandemic in hospitals and other healthcare facilities such as nursing homes, 

that continues today (Table 1.1). From the 1990s, MRSA harbouring a new SCCmec 

element, type IV, had emerged, and the WIS MRSA strain (SCCmec V) was 

described in Australia [Udo, Pearman and Grubb 1993, Ma et al. 2002, Vandenesch 

et al. 2003, Ito et al. 2004].  
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Table 1.1 Common healthcare-associated MRSA strains. Taken from Chambers and 

Deleo [2009]. 

 

 

 The emergence of new strains harbouring SCCmec types IV and V coincided 

with the emergence of community-associated MRSA (CA-MRSA), which were 

susceptible to most antibiotics other than β-lactams, and caused infection in 

otherwise healthy children and young adults with no risk factors for MRSA [Udo, 

Pearman and Grubb 1993, Herold et al. 1998, CDC 1999, Coombs et al. 2004, 

O'Brien et al. 2004]. Although CA-MRSA tend to be associated with skin and soft 

tissue infections (SSTIs), they are also highly virulent, causing severe, invasive 

infection, often leading to death. CA-MRSA have since been reported in virtually 

every geographic region of the world and in various populations, such as indigenous 
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peoples, competitive athletes, prison inmates, men who have sex with men, military 

recruits and personnel, children in day care centres, contacts of patients with CA-

MRSA infection, and adult emergency room patients [Adcock et al. 1998, Shahin et 

al. 1999, Groom et al. 2001, CDC 2003c, CDC 2003b, CDC 2003a, Baggett et al. 

2004, CDC 2004b, Zinderman et al. 2004, Aiello et al. 2006, Johansson, Gustafsson 

and Ringberg 2007, Tristan et al. 2007a, Diep et al. 2008a, Wallin, Hern and Frazee 

2008]. CA-MRSA strains are also being increasingly reported as a cause of hospital-

onset and healthcare-associated infections [O'Brien et al. 1999, Saiman et al. 2003, 

Bratu et al. 2005, Klevens et al. 2006, Seybold et al. 2006, Liu et al. 2008, Patel et al. 

2008, Park et al. 2009b]. 

 In the last decade, MRSA strains harbouring three new SCCmec elements 

were reported, in Portugal (a healthcare-associated paediatric clone; SCCmec VI) 

[Oliveira, Milheirico and de Lencastre 2006], Sweden (a community-associated 

strain; SCCmec VII) [Berglund et al. 2008] and Canada (a healthcare-associated 

strain; SCCmec VIII). Most recently, a further three SCCmec elements have been 

described, SCCmec types IX, X and XI, which are associated with livestock-

associated MRSA (LA-MRSA) [Garcia-Alvarez et al. 2011, Li et al. 2011]. Livestock 

are an increasingly recognised reservoir for MRSA, with LA-MRSA carriage and 

infection reported in both farm animals and human beings [de Neeling et al. 2007, 

van Loo et al. 2007, Mulders et al. 2010, Van Cleef et al. 2010, van Cleef et al. 2010, 

Garcia-Alvarez et al. 2011]. 

The continual discovery of novel SCCmec elements represents an ongoing 

evolution of antibiotic resistance in S. aureus (although novel SCCmec acquisition is 

not necessarily driven by antibiotic resistance). Since β-lactams (such as methicillin) 

have been the first-line antibiotics for treatment of S. aureus infections, such 
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evolution may likely impact on therapeutic options [Monecke et al. 2011]. S. aureus 

has quickly acquired resistance to all antibiotics introduced for clinical use, and many 

MRSA isolates are multiply antibiotic-resistant. Alternative antibiotics to β-lactams 

for treatment of MRSA infections include daptomycin, linezolid, vancomycin and 

rifampicin, but they are expensive or have problems with tissue penetration and 

toxicity [Monecke et al. 2011]. Until recently, all MRSA were considered susceptible 

to glycopeptide antibiotics such as vancomycin - considered the antibiotic of last 

resort for MRSA infections - and investigational drugs [Enright et al. 2002, Lowy 

2003]. However, due to intensive selective pressure as a result of increased 

glycopeptide use, MRSA isolates increasingly resistant to vancomycin have been 

reported worldwide (vancomycin intermediate/resistant S. aureus; VISA/VRSA) 

[Hiramatsu et al. 1997a, Hiramatsu et al. 1997b, Howe et al. 1998, Ploy et al. 1998, 

Sieradzki et al. 1999, Smith et al. 1999, Ferraz et al. 2000, Kim et al. 2000, Wong et 

al. 2000, Boyle-Vavra, Carey and Daum 2001, Hageman et al. 2001, Oliveira et al. 

2001, CDC 2002a, CDC 2002b, Weigel et al. 2003, CDC 2004a, Howe et al. 2004], 

leading to treatment failures and poor outcomes [Fridkin et al. 2003, Moore, 

Perdreau-Remington and Chambers 2003, Charles et al. 2004, Howden et al. 2004]. 

MRSA resistant to linezolid, daptomycin and rifampicin have also been reported 

[Schmitz et al. 2000, Mangili et al. 2005, Long et al. 2006, Marty et al. 2006, Skiest 

2006, Murthy et al. 2008, Kehrenberg et al. 2009, Shore et al. 2010, Tan et al. 2011], 

posing a great problem for antimicrobial therapy.  

 

1.2.1 Mechanism of methicillin resistance 

 MRSA produces a modified penicillin-binding protein, PBP2A, which has a 

low affinity for β-lactam antibiotics [Hartman and Tomasz 1984, Reynolds and 
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Brown 1985, Utsui and Yokota 1985], conferring resistance to all β-lactams 

(including penicillins, cephalosporins (except ceftobiprole [Stein, Goetz and Ganea 

2009]), carbapenems, and monobactams), the most commonly used antibiotics to 

treat S. aureus infections. β-lactams bind to PBPs in the cell wall, inhibiting 

peptidoglycan synthesis in susceptible microbes, but PBP2A retains effective 

transpeptidase activity in the presence of β-lactams, unlike the PBPs native to S. 

aureus, allowing cell wall synthesis to continue. The transpeptidase domain of 

PBP2A functions cooperatively with the transglycosylase domain of the native 

staphylococcal PBP2 to achieve cell wall synthesis in the presence of β-lactams 

[Pinho, de Lencastre and Tomasz 2001]. PBP2A is encoded by the mecA gene, 

carried on the mobile genetic element SCCmec. MRSA arises when methicillin-

susceptible S. aureus (MSSA) acquires SCCmec. Evidence suggests this acquisition 

comes from coagulase negative staphylococci (CNS) [Archer et al. 1996, Kobayashi 

et al. 1999, Wielders et al. 2001, Robinson and Enright 2003, Wisplinghoff et al. 

2003, Qi et al. 2005, Grundmann et al. 2006], and has occurred several times into 

different S. aureus lineages [Musser and Kapur 1992, Crisostomo et al. 2001, 

Fitzgerald et al. 2001, Oliveira, Tomasz and de Lencastre 2001, Enright et al. 2002, 

Gomes, Westh and de Lencastre 2006] i.e. the multi-clone theory.  

 The SCCmec element contains the mec gene complex (the mecA gene and its 

regulators, mecI, encoding a repressor protein, and mecR1, encoding a signal 

transducer protein, both of which are sometimes truncated) and the ccr (cassette 

chromosome recombinase) gene complex, which encodes site-specific recombinases 

(ccrA, ccrB and ccrC) responsible for the mobility of SCCmec [Ito et al. 2004]. There 

are curently 11 different SCCmec elements (21-53kb in size) formed by different 

combinations of the mec and ccr gene complexes (Tables 1.2 and 1.3, Figure 1.2). 
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The recombinases catalyse the insertion/excision of SCCmec into/from the S. aureus 

genome at a specific site (the bacterial chromosome attachment site for SCCmec 

DNA, attBscc) at the 3′ end of an open reading frame (ORF) of unknown function, 

orfX, located near the origin of replication of S. aureus. The various SCCmec types 

can be further classified into subtypes based upon variations in the so-called J regions 

(or 'joining regions'), J1 (the region between ccr and the chromosomal region 

flanking SCCmec), J2 (the region between mec and ccr), and J3 (the region between 

orfX and mec), which constitute nonessential components of the cassette [IWG-SCC 

2009]. The presence of specific DNA sequences in these J regions are used to define 

SCCmec subtypes, including mobile genetic elements such as insertion sequences 

(ISs), plasmids or transposons, most of which encode antibiotic resistance (e.g. to 

aminoglycosides or macrolides), resistance to heavy metals (e.g. Cd and Hg), or other 

determinants, and characteristic genes, pseudogenes or non-coding regions in the J 

regions [Oliveira, Wu and de Lencastre 2000, Ito et al. 2001, IWG-SCC 2009]. 

Mobile genetic elements encoding antibiotic resistance are mainly integrated into the 

J2 or J3 regions, while subtype-specific ORFs are used to distinguish the several 

different J1 regions in SCCmec types II and IV [Chongtrakool et al. 2006]. 

Horizontal transfer of DNA from other strains or species plays an important part in 

antibiotic resistance in S. aureus, despite S. aureus evolution being regarded as 

predominantly clonal [Enright et al. 2000, Grundmann et al. 2002, Feil et al. 2003, 

Murchan et al. 2003, Melles et al. 2004]. For example, the recent emergence of 

VRSA is due to the acquisition by conjugative transposition of vanA-containing 

elements from vancomycin-resistant enterococci [CDC 2002b, CDC 2002a, Chang et 

al. 2003].  
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Table 1.2 Currently identified ccr and mec gene complexes 

in S. aureus. Adapted from IWG-SCC [2009]. 

ccr complex ccr genes 

1 ccrA1 and ccrB1 

2 ccrA2 and ccrB2 

3 ccrA3 and ccrB3 

4 ccrA4 and ccrB4 

5 ccrC 

6 ccrA5 and ccrB3 

7 ccrA1 and ccrB6 

8 ccrA1 and ccrB3 

mec complex  

A IS431-mecA-mecR1-mecIa 

B IS431-mecA-ΔmecR1-IS1272 

C1 IS431-mecA-ΔmecR1-IS431  

C2 IS431-mecA-ΔmecR1-IS431b 

D IS431-mecA-ΔmecR1 

E blaZ-mecALGA251-mecR1LGA251-mecILGA251 

a IS = insertion sequence. 
b In the C2 mec gene complex the orientation of IS431  

upstream of mecA is reversed. 
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Table 1.3 SCCmec types defined by the combination of mec and ccr 

gene complexes. Adapted from IWG-SCC [2009]. 

SCCmec 
type 

ccr/mec gene 
complex 

combination 

Size 
(kb) 

Representative strain(s) 

I 1B 34 NCTC10442, COL 
II 2A 53 N315, Mu50, Mu3, 

MRSA252, JH1, JH9 
III 3A 35 85/2082, ANS46 

IV 2B 21-24 CA05, MW2m 8/6-3P, 
81/108, 2314, cm11, 
JCSC4469, M03-68, 
EMRSA-15, 
JCSC6668, JCSC6670 

V 5C2 28 WIS, TSGH17, PM1 

VI 4B 21 HDE288 
VII 5C1 33 JCSC6082 

VIII 4A 32 C10682, BK20781 
IX 1C2 44 JCSC6943 

X 7C1 51 JCSC6945 
XI 8E 29 LGA251 
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Figure 1.2 Structural comparison of SCCmec types I-VIII. Figure 

taken from IWG-SCC [2009]. Structures of recently described types 

IX-XI not shown (see Garcia-Alvarez et al. 2011 and Li et al. 2011). 

 

1.3 MOLECULAR EPIDEMIOLOGY OF S. AUREUS 

Clones of S. aureus are relatively stable, and the acquisition of SCCmec 

elements through horizontal DNA transfer is a relatively rare event. As a result of 

studies using molecular typing methods such as multi-locus sequence typing (MLST, 
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see section 1.3.2), it is thought that a limited number of genetically distinct epidemic 

clones circulate and disseminate worldwide (Table 1.1), with SCCmec and other 

mobile genetic elements conferring enhanced virulence and antibiotic resistance, 

maintained in the predominantly clonal genomic background [Oliveira, Tomasz and 

de Lencastre 2002, Enright 2003, Robinson and Enright 2003]. However, a more 

recent study, using a highly discriminatory single nucleotide polymorphism (SNP)-

discovery method, provided evidence that the population of MRSA comprising the so-

called EMRSA-3, New York/Japan and Paediatric clones (multi-locus sequence type 

ST5) is geographically structured, and that MRSA could have emerged very 

frequently in different parts of the world through independent imports of the 

methicillin resistance determinant into their genomes [Deurenberg and Stobberingh 

2008, Nubel et al. 2008]. Studies on the population structure of a different lineage, 

ST239, have suggested dissemination rather than repeated emergence is the cause of 

its global prevalence, although phylogeographic structure was also found as in the 

ST5 group [Harris et al. 2010, Smyth et al. 2010, Gray et al. 2011]. A study of the 

emerging ST225 clone also suggests long-distance dissemination as opposed to 

repeated importation of SCCmec [Nubel et al. 2010]. More studies employing SNP-

discovery and genomic comparison methods are required to elucidate the relative 

contributions of dissemination and local emergence to global MRSA population 

structure. 

 In the absence of frequent inter-strain recombination, S. aureus clones mainly 

diversify through the accumulation of single nucleotide polymorphisms (SNPs), thus 

making it possible to distinguish clones and clonal lineages using genetic markers 

[Feil et al. 2003, Grundmann et al. 2010]. Molecular typing methods use these genetic 

markers to not only track the transmission and spread of clones, but answer questions 
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regarding their evolution and epidemiology, in order to develop effective strategies 

for controlling the spread of MRSA. The most commonly used molecular typing 

methods are pulsed field gel electrophoresis (PFGE), MLST, spa typing and SCCmec 

typing. All allow the typing of unrelated strains but do so with different accuracy, 

discriminatory power, and reproducibility [Melles et al. 2007]. Recent advances in 

whole genome sequencing have shown that almost all isolates of a single strain differ 

to some extent in nucleotide sequence, allowing the detailed spread and 

microevolution of S. aureus strains to be studied. 

 
1.3.1 Pulsed field gel electrophoresis (PFGE) 

 PFGE is the most commonly used and one of the most discriminatory typing 

methods for studying local MRSA epidemiology such as outbreaks and nosocomial 

transmission [Cookson et al. 2007]. PFGE is based on digestion of chromosomal 

DNA with restriction enzyme SmaI followed by agarose gel electrophoresis. The 

resulting banding patterns are analysed using software such as Bionumerics (Applied 

Maths), compared to banding patterns of reference strains, and PFGE types defined 

based on a similarity coefficient. Due to the nature of the method, efforts to 

standardize PFGE at an international level have not been successful in terms of 

reproducibility, speed and analysis costs. A common nomenclature is needed, which 

has been achieved only at a national level [Deurenberg and Stobberingh 2008]. 

 
1.3.2 Multi locus sequence typing (MLST) 

 MLST has become established as an important tool for unambiguously defining 

strains and for studying MRSA clonal evolution, although whole genome sequencing 

will inevitably supersede it. MLST is based on the sequence analysis of seven S. 
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aureus housekeeping genes (arcC, aroE, glpF, gmk, pta, tpi and yqiL) [Enright et al. 

2000]. For each locus, different sequences are assigned as different alleles, and each 

isolate is assigned a sequence type (ST) based on its allelic profile (the set of alleles 

at all seven loci) (www.mlst.net). S. aureus STs are grouped within clonal complexes 

(CCs), which are groups of STs where every member of the group has a 6/7 allelic 

match to at least one other ST in the group. The putative ancestor or founder of each 

CC is the ST with the largest number of single-locus variants (SLVs), and sub-

founders are SLVs or double locus variants (DLVs) of a predicted founder that has 

become prevalent in a population and diversified to produce its own SLVs and DLVs 

[Enright and Spratt 1999, Enright et al. 2000, Enright et al. 2002, Spratt et al. 2004]. 

CCs are defined using the based upon related sequence types (BURST) algorithm 

(www.eburst.mlst.net) and are named by the ST number of the predicted founder 

[Spratt et al. 2004]. 

 Although highly discriminatory, MLST may lack the necessary power to 

discriminate between epidemiologically unrelated strains [Cooper and Feil 2004], and 

is laborious and time-consuming. Nonetheless, MLST offers a major advantage over 

pulsed field gel electrophoresis (PFGE) as a reference method due to the 

unambiguous nature of the procedure allowing excellent reproducibility. 

 A common nomenclature for MRSA is the combination of ST and SCCmec 

type. For example the New York/Japan clone is ST5-MRSA-II and EMRSA-15 is 

ST22-MRSA-IV. 

 
1.3.3 spa typing 

The spa locus of S. aureus encodes staphylococcal protein A, a species-

specific protein known for its immunoglobulin G (IgG) binding capacity. spa typing 
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targets the highly polymorphic region X of the spa gene. This region consists of a 

variable number of mainly 24-bp repeats, the variation being largely due to deletions 

and duplications of the different repeats [Shopsin et al. 1999]. spa typing is simple 

compared to MLST as it requires the sequencing of just one locus, and its 

discriminatory power lies between that of PFGE and MLST [Malachowa et al. 2005]. 

Unlike MLST, both molecular evolution and hospital outbreaks can be studied with 

spa typing, and comparability and a common nomenclature is possible thanks to 

dedicated software [Harmsen et al. 2003, Deurenberg et al. 2007]. Because it is a 

single-locus typing method, it is less expensive, less laborious and less time 

consuming than MLST. The spa typing database, spaserver.ridom.de (Ridom GmbH 

and SeqNet), synchronises public spa typing data and currently comprises over 

10,000 spa types that consist of different combinations of over 500 spa repeats from 

over 200,000 S. aureus isolates typed in 90 countries worldwide. 

Cluster analysis of spa typing data groups spa types into spa-clonal 

complexes (spa-CCs) using the based upon repeat pattern (BURP) algorithm in the 

StaphType software (Ridom GmbH). spa typing has a higher discriminatory power 

than MLST and so a single MLST ST can be resolved into several spa types, 

typically within the same spa-CC. Good concordance has been reported between 

MLST and spa typing but anomalies can occur with spa typing/BURP [Cookson et 

al. 2007, Mellmann et al. 2008, Strommenger et al. 2008]. For example, the same or 

related spa types or spa repeat patterns can occur in different clonal lineages, maybe 

due to recombination events involving the spa gene, or recombination within the spa 

locus [Robinson and Enright 2004, Strommenger et al. 2008]. It has been suggested 

that the discriminatory power of spa typing/BURP can be improved by combining it 
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with an additional genetic marker, e.g. SCCmec for MRSA [Strommenger et al. 

2008]. 

 
1.3.4 SCCmec typing 

 SCCmec typing exploits differences in the various SCCmec elements of 

MRSA. SCCmec typing methods are able to detect various ranges of SCCmec types 

and subtypes, including I-IV [Okuma et al. 2002, Oliveira and de Lencastre 2002, 

Francois et al. 2004, Motoshima et al. 2010], subtypes of IV [Milheirico, Oliveira and 

de Lencastre 2007b], I-V [Ito et al. 2001, Zhang et al. 2005, Boye et al. 2007, Kondo 

et al. 2007, Valvatne et al. 2009, Ghaznavi-Rad et al. 2010b], I-VI [Milheirico, 

Oliveira and de Lencastre 2007a, Cai et al. 2009] and even I-VI and VIII [Chen et al. 

2009]. These methods are based on the mec complex and ccr genes, or the mecA gene 

and other loci on SCCmec, mainly using multiplex PCR. However, each method 

determines different structural properties of SCCmec, with some methods giving 

different results for the same MRSA isolate [Shore et al. 2005, Kim et al. 2007]. 

There is no single universal method available for the classification of this mobile 

element, but the most commonly used methods are those developed by Milheirico, 

Oliveira and de Lencastre [2007a] and Ito et al. [Ito et al. 2001, Okuma et al. 2002] 

that target several loci. Simpler methods have been developed by Boye et al. [2007] 

and Zhang et al. [2005] but they only target a single locus for most SCCmec types, 

and thus have less discriminatory power. 

 
1.3.5 Advances in S. aureus molecular epidemiology  

 The field of S. aureus molecular epidemiology has really advanced in the last 

few years, with the advent of new technologies such as whole genome sequencing and 
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microarrays, which also have great utility in the field of S. aureus diagnsotics [van 

Belkum et al. 2009, Lindsay 2010]. The increasing availability of whole genome data 

has aided the development of multi-strain DNA microarrays for whole genome 

comparisons [van Belkum et al. 2009, Lindsay 2010], and next generation sequencing 

(NGS) technologies such as the Illumina Genome Analyzer make it feasible to rapidly 

generate whole genome data for large population samples of bacteria [Harris et al. 

2010]. NGS technologies bridge the gap between sequence-based approaches such as 

MLST, which lack the ability to distinguish between closely related isolates, and full-

genome sequencing, which is impractical for large population samples [Harris et al. 

2010]. NGS technologies can provide the sequence of the core genome and, using 

sequence read assemblies, the non-core gene content of each isolate, providing the 

ability to show the fine-scale evolutionary changes that have occurred among isolates 

of a single ST or strain. A recent study highlighted the value of NGS technologies in 

elucidating the epidemiology and microevolution of ST239-MRSA-III, and 

demonstrated their potential to track transmission within healthcare facilities, 

improving contact tracing in endemic and outbreak settings [Harris et al. 2010]. The 

consistency between high-resolution SNP data and spa typing was high in the ST239 

study, but another study noted inconsistencies for the ST5 lineage [Nubel et al. 2008]. 

Microarray and whole genome sequencing technologies are currently too expensive to 

be adopted as routine laboratory methods for studying epidemiology and evolution of 

S. aureus, and thus sequenced-based typing methods such as MLST and spa typing 

remain common practice. Undoubtedly, NGS will become routine for molecular 

epidemiology once new platforms allow genome sequences to be obtained simply, 

cheaply and rapidly. Spatial and temporal dynamics of the ST22 lineage have recently 

been determined using NGS methods to elucidate its pandemic spread [Holden et al., 
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submitted for publication], and high-resolution SNP data from over 1,000 isolates of 

the USA300 clone (ST8-MRSA-IV) are currently being generated to investigate its 

transmission and spread across healthcare facilities in a US county (see Part 2 final 

discussion). 

 
 
1.4 THE CHANGING EPIDEMIOLOGY OF MRSA 

As highlighted in section 1.2, the emergence of novel SCCmec elements has 

generally coincided with the emergence of epidemiologically novel MRSA strains. 

Over the last few decades, MRSA has largely been a nosocomial pathogen, causing 

infection in people with frequent or recent contact with healthcare facilities. The 

epidemic MRSA clones that currently pose a major public health problem in 

healthcare facilities worldwide, termed HA-MRSA, are listed in Table 1.1. However, 

MRSA isolated from young, otherwise healthy patients with no identifiable risk 

factors (including recent hospitalisation, surgery, residency in a long-term care 

facility, dialysis or invasive medical devices), termed CA-MRSA, have become 

increasingly prevalent since the 1990s and are now seen worldwide. The major CA-

MRSA clones currently circulating are listed in Table 1.4. 

SCCmec types I, II and III are typically associated with HA-MRSA and are 

not frequent among the healthy, younger population, while the smaller SCCmec types 

IV and V are commonly associated with CA-MRSA that not only infect hospitalised 

patients but also healthy contact persons, and spread easily in the community 

[Kazakova et al. 2005, Hota et al. 2007, Larsen et al. 2007, Huang et al. 2008, Tong et 

al. 2008]. These latter SCCmec allotypes are more readily transmissible between 

staphylococci than the larger elements and may provide a lower fitness cost to the 

pathogen [Grundmann et al. 2006]. This could lead to competitive exclusion of HA-
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MRSA by CA-MRSA if a reservoir of the latter was established in hospitals [D'Agata 

et al. 2009], for which there is increasing evidence [Moran et al. 2006, Seybold et al. 

2006, Huang et al. 2007b, Patel et al. 2008, Popovich, Weinstein and Hota 2008, Song 

et al. 2011]. The larger HA-MRSA SCCmec allotypes correlate with a slower growth 

rate, and strains with these elements may be at a selective disadvantage in the absence 

of antibiotics, i.e. in community settings [Ender et al. 2004, Lee et al. 2007]. 

Successful HA-MRSA clones harbour the SCCmec IV element however. For 

example, one of the most common healthcare-associated clones in the UK is ST22-

MRSA-IV, and the Paediatric clone (ST5) harbours SCCmec IV [Holmes et al. 2005]. 

Furthermore, SCCmec types I, II and III have been observed in CA-MRSA isolates 

[Chung et al. 2004, Wannet et al. 2005]. 

CA-MRSA are considered more virulent than HA-MRSA due to the presence 

of various virulence factors [Chambers 2001, Davis et al. 2007, Otto 2010], which has 

clear implications in terms of morbidity and mortality in the healthcare setting. While 

frequently associated with chronic or recurrent SSTIs, CA-MRSA can also cause 

septic arthritis, bacteraemia, toxic shock syndrome, necrotising fasciitis and 

necrotising pneumonia [Mongkolrattanothai et al. 2003, Francis et al. 2005, Gonzalez 

et al. 2005a, Gonzalez et al. 2005b, Miller et al. 2005, Bocchini et al. 2006, King et al. 

2006, Moran et al. 2006, Davis et al. 2007, Tristan et al. 2007b, Lo and Wang 2011, 

Shilo and Quach 2011]. Panton-Valentine leukocidin (PVL) is a virulence factor that 

can cause tissue necrosis and destruction of leukocytes by forming pores in the 

cellular membrane [Bassetti, Nicco and Mikulska 2009], and is directly associated 

with staphylococcal necrotising pneumonia [Gillet et al. 2002, Labandeira-Rey et al. 

2007], but its association with other CA-MRSA invasive disease is debatable [Lina et 

al. 1999, Voyich et al. 2006, Ellington et al. 2007]. Despite the predominant CA-
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MRSA clone in the US being PVL-positive (USA300) [Okuma et al. 2002, 

Vandenesch et al. 2003] several CA-MRSA lineages are PVL-negative, so PVL 

cannot be considered a marker for CA-MRSA [Nimmo et al. 2006, Rossney et al. 

2007b, Otter and French 2008, Zhang et al. 2008]. Another factor that may contribute 

to the virulence of CA-MRSA is the argenine catabolic mobile element (ACME), 

which has also been shown to contribute to the growth and survival of USA300, the 

clone in which it seems to be exclusively observed [Diep et al. 2006b, Goering et al. 

2007, Diep et al. 2008b, Ellington et al. 2008]. The pore-forming toxin α-haemolysin 

has also been shown essential for USA300 and USA400 to cause lethal pneumonia in 

a mouse model of the disease, and increasing severity of the disease has been shown 

in vitro to correlate with increasing amounts of the toxin produced by these strains 

[Bubeck Wardenburg et al. 2007, Burlak et al. 2007, Montgomery et al. 2008]. 

CA-MRSA is particularly well established in the US, with USA300 the 

predominant cause of MRSA infection in North America [Gonzalez et al. 2006, 

Moran et al. 2006, Klevens et al. 2007]. In contrast, USA300 is uncommon in Europe 

despite being reported in most countries. However, USA300 appears to be increasing 

in prevalence there [Larsen et al. 2007, Witte et al. 2007a], and CA-MRSA is partly 

responsible for the increase in MRSA prevalence in northern European countries that 

have a traditionally low prevalence of HA-MRSA [Bartels et al. 2007, Stam-Bolink et 

al. 2007, Fang et al. 2008, Larsen et al. 2008]. European CA-MRSA are more clonally 

diverse and vary geographically, but the European clone (ST80-MRSA-IV) is 

widespread on this continent (Table 1.4) [Otter and French 2010]. In stark contrast to 

the US that is dominated by a single clone, there is considerable CA-MRSA diversity 

in Australia, with over 100 clones described there [Chua et al. 2011]. Nonetheless, 

CA-MRSA prevalence in other parts of the world still remains much lower than in the 
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US [Otter and French 2010, Otto 2010, Johnson 2011]. The USA300 clone, so 

predominant in North America, is already disseminating globally, which could lead to 

a rapid worldwide increase in CA-MRSA. Other than Europe, it is also present in 

Latin America and the Caribbean, the Middle East and the Western Pacific [Nimmo 

2012]. 

It has been shown that CA-MRSA lineages are distinct from those of HA-

MRSA, and CA-MRSA are associated with several specific S. aureus lineages 

[Groom et al. 2001, Naimi et al. 2001, Tristan et al. 2007a, David and Daum 2010]. In 

addition, the larger clonal diversity of CA-MRSA compared to HA-MRSA suggests 

that more MSSA lineages have the ability to become CA-MRSA [Enright et al. 2002, 

Okuma et al. 2002, Feng et al. 2008, Francois et al. 2008]. It is unclear whether CA-

MRSA was originally MSSA that acquired SCCmec, or CA-MRSA originated from 

HA-MRSA, but more evidence suggests that it descended from virulent strains of 

MSSA via horizontal phage transfer and integration of SCCmec from CNS [Okuma et 

al. 2002, Aires de Sousa and de Lencastre 2003, Bradley 2005, Robinson et al. 2005, 

Ma et al. 2006, Boyle-Vavra and Daum 2007, Monecke et al. 2007c, Wallin, Hern and 

Frazee 2008]. 

In contrast to HA-MRSA, CA-MRSA are susceptible to most non β-lactam 

antibiotics, have a faster growth rate and express methicillin resistance at lower levels 

and heterogeneously [Laurent et al. 2001, Okuma et al. 2002], but multidrug-resistant 

CA-MRSA have started to emerge [Boyle-Vavra et al. 2005, Ramdani-Bouguessa et 

al. 2006, Diep et al. 2008a], posing a serious public health concern because of their 

associated virulence and their ability to cause outbreaks in otherwise healthy 

individuals, as well as their rapid spread in countries worldwide [Monecke et al. 

2011]. Moreover, the lack of clear definitions for HA-MRSA and CA-MRSA due to 
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increasingly blurred molecular and epidemiological distinctions between the two 

groups, make it difficult to develop effective infection control strategies in healthcare 

and community settings. One study in the US highlighted this blurred line by 

obtaining MRSA isolates from patients and classifying them as either HA-MRSA or 

CA-MRSA based on both epidemiological and molecular definitions, which were 

performed separately by blinded investigators. Sixty percent of strains classified as 

HA-MRSA based on epidemiological definitions were identified as CA-MRSA based 

on molecular definitions, and CA-MRSA was found to cause healthcare-associated 

bloodstream infection just as likely as it causes community-associated infection 

[Gonzalez et al. 2006].  

The common epidemiological definition for CA-MRSA is that used by the 

Active Bacterial Core surveillance (ABCs) program of the US Centers for Disease 

Control and Prevention (CDC): any MRSA infection diagnosed in an outpatient or 

within 48 hours of hospitalisation if the patient lacks healthcare-associated MRSA 

risk factors (haemodialysis, surgery, residence in a long-term care facility, recent 

hospitalisation, or invasive medical devices) [Morrison, Hageman and Klevens 2006, 

Klevens et al. 2007]. All other MRSA are considered HA-MRSA. A simpler temporal 

definition of CA-MRSA is often used, without considering the presence of MRSA 

risk factors [David and Daum 2010], while the use of a strictly molecular definition is 

becoming increasingly problematic, for example because HA-MRSA also possess the 

traditionally community-associated SCCmec IV element [Miller and Kaplan 2009]. 

One such strain, ST22-MRSA-IV has been reported in the community in Ireland 

[Mollaghan et al. 2010]. In East Asia, CA-MRSA with SCCmec IV (ST59, ST30 and 

ST72) have spread from the community into the hospital, while healthcare-associated 

strains ST239-MRSA-III and ST5-MRSA-II have been found in the community [Song 
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et al. 2011]. Nevertheless, in this thesis, HA-MRSA and CA-MRSA are defined on 

the basis of their clone types, as determined by molecular typing methods (MLST, 

SCCmec typing and spa typing). 

 
 

Table 1.4 Common community-associated MRSA strains. Adapted from Deurenberg 

and Stobberingh [2008] and Chambers and Deleo [2009]. 

Clonal 

complex 

Sequence 

type 

Common name(s) Comment and SCCmec allotype 

CC80 ST80 European The predominant CA-MRSA in Europe, 

SCCmec IV 

CC30 ST30 Southwest Pacific 

(SWP), USA1100 

Most frequent clone in Eastern Australia, 

SCCmec IV 

CC1 ST1 USA400, WA 

MRSA-1 

Earliest CA-MRSA clone in US, important 

PVL-negative CA-MRSA clone in Australia, 

SCCmec IV 

CC8 ST8 USA300 The predominant CA-MRSA in the US 

having supplanted USA400, isolated 

infrequently in Europe, can also cause 

healthcare-associated infections, SCCmec IV 

CC59 ST59 USA1000 Main CA-MRSA in Taiwan, SCCmec IV/V 

 

 

The first isolation of MRSA from animals was in mastitic cows in the 1970s 

[Devriese, Van Damme and Fameree 1972, Devriese and Hommez 1975], and MRSA 

has since been reported in several domestic species including dogs, cats, horses, 

sheep, chickens and pigs [Leonard and Markey 2008]. The MRSA strains associated 

with companion animals typically belonged to human nosocomial lineages, leading to 

the assumption that transmission was occurring from humans to animals - a 
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'humanosis' [Morgan 2008]. Since 2003, MRSA strains carrying SCCmec types IV 

and V have been reported among livestock, termed LA-MRSA [Nemati et al. 2008], 

predominantly belonging to the clonal lineage CC398. CC398 first emerged as a 

coloniser among farmed pigs, and later in other livestock such as calves and poultry. 

It also colonises humans in contact with these livestock, where it infrequently causes 

infection, ranging from SSTIs to severe, invasive infections such as endocarditis, 

necrotising fasciitis and pneumonia [Ekkelenkamp et al. 2006, van Rijen, Van Keulen 

and Kluytmans 2008, Pan et al. 2009, Catry et al. 2010, Hartmeyer et al. 2010, 

Mammina et al. 2010, Schijffelen et al. 2010, Soavi et al. 2010], demonstrating the 

zoonotic potential and virulence of this lineage [Voss et al. 2005, van Loo et al. 2007, 

Witte et al. 2007b, Khanna et al. 2008, Smith et al. 2008, van Belkum et al. 2008, 

Cuny et al. 2009, Mulders et al. 2010, van Cleef et al. 2010]. CC398 is now reported 

in different countries around the world, with livestock representing another reservoir 

for MRSA colonisation and infection in humans [Armand-Lefevre, Ruimy and 

Andremont 2005, Witte et al. 2007b, Lewis et al. 2008, Smith et al. 2008, Bhat et al. 

2009, Denis et al. 2009b, Krziwanek, Metz-Gercek and Mittermayer 2009, Loeffler et 

al. 2009, Pan et al. 2009, Mulders et al. 2010, Potel et al. 2010, Soavi et al. 2010, van 

Cleef et al. 2010, Vanderhaeghen et al. 2010, Haenni et al. 2011]. It has been shown 

however that CC398 MRSA are poor persistent human colonisers in the absence of 

animal contact [Graveland et al. 2011].  

Studies of S. aureus population genetics have demonstrated the existence of 

host-specific clonal lineages, with the majority of LA-MRSA belonging to a small 

number of animal-associated clones (Table 1.5) [Sung, Lloyd and Lindsay 2008, 

McCarthy et al. 2011, Fitzgerald 2012]. Most ruminant lineages are host-specific, for 

example ST97, ST705, ST126, ST151 and ST133 [Cuny et al. 2011, Fitzgerald 2012]. 
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However, ST398 and human lineages such as ST5, ST239 and ST1 have been 

associated with bovine mastitis [Cuny et al. 2011], and CC130, which was recently 

found to harbour the novel divergent mecALGA251 gene carried by SCCmec XI, appears 

to have no host restrictions, infecting both bovine and human populations [Cuny et al. 

2011, Garcia-Alvarez et al. 2011, Shore et al. 2011]. Clones such as ST398 appear to 

have the ability to colonise and infect multiple host species. The novel mecALGA251 

found in CC130 clones was also identified in CC705 and ST425, from bovine and 

human populations in the UK, Denmark, Ireland and Germany, highlighting the 

possibility of additional circulating novel mecA alleles that could be acquired by S. 

aureus to create new MRSA strains [Cuny et al. 2011, Garcia-Alvarez et al. 2011, 

Shore et al. 2011, Fitzgerald 2012]. In addition, mecALGA251 cannot be detected by 

molecular diagnostic tests for MRSA, leading to false negative results, and the 

ramifications of this should be considered by diagnostic protocols [Garcia-Alvarez et 

al. 2011].  

Not only do livestock serve as a potential source of zoonotic S. aureus 

infection, but also humans represent an important source of new pathogenic strains 

affecting economically important livestock [Lowder et al. 2009, Guinane et al. 2010, 

Sakwinska et al. 2011, Fitzgerald 2012], with a recent study providing strong 

evidence that LA-MRSA CC398 originated in humans as MSSA [Price et al. 2012]. 

While the potential impact of the community MRSA reservoir on current infection 

control strategies is clear, the impact of the livestock MRSA reservoir on public 

health is less so. Current evidence suggests LA-MRSA have not spread significantly 

into healthcare settings in Europe, but CC398 spread seems to be dependent on the 

region and the intensity of pig farming [Stefani et al. 2012]. A better understanding of 

the origin, evolution and epidemiology of both CA-MRSA and LA-MRSA is required 
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to ensure that future MRSA control strategies are effective in the face of these 

increasingly important MRSA reservoirs.  

 

Table 1.5 Common livestock-associated MRSA strains. 

Adapted from Fitzgerald [2012]. 

Clonal complex/ 

Sequence type 

Host species 

ST1 Human, cow, horse, chicken 

CC5 Human, chicken, turkey 

ST8 Human, horse, cow 

ST9 Pig, chicken 

CC97 Cow, human 

ST121 Human, rabbit 

CC126 Cow 

CC130 Cow, sheep, human 

CC133 Sheep, goat, cow 

CC705 Cow 

CC385 Chicken, wild birds 

ST398 Pig, human, cow, chicken, horse 

ST425 Cow, human 

ST1464 Sheep 

 

 

1.5 MRSA PREVALENCE AND BURDEN 

 MRSA is the most important cause of antibiotic-resistant healthcare-associated 

infections worldwide, and the most commonly identified antibiotic-resistant pathogen 

in many parts of the world, including Europe, the Americas, North Africa, the Middle 

East, and East Asia [Grundmann et al. 2006]. MRSA carriage based on Dutch and US 
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prevalence figures is conservatively estimated at 0.1-2.65% of the expected 2 billion 

S. aureus carriers globally [Grundmann et al. 2006]. MRSA prevalence varies greatly 

between countries, as well as within (Figures 1.3 and 1.4). It is hard to make 

international comparisons of MRSA prevalence however, due to the differences in the 

way prevalence rates are obtained between studies, and the scarcity of routine 

surveillance systems for MRSA. In general, the US, South America and East Asia 

(including South Korea, Japan and Taiwan) appear to have the highest MRSA rates, 

(>50%), with intermediate rates in Canada, Latin America, Australia, southern and 

central Europe, and parts of Africa and the Middle East (mostly between 25 and 50%) 

[Bouchillon et al. 2004, Grundmann et al. 2006, Perovic et al. 2006, Laxminarayan 

and Malani 2007, Reinert et al. 2007, Mejia, Zurita and Guzman-Blanco 2010, Song 

et al. 2011]. Scandinavia and the Netherlands have the lowest MRSA rates, at <5%, 

while rates in resource-poor countries, including most of Asia and Africa, are largely 

unknown, due to a dearth of prevalence studies in these regions [Nickerson et al. 

2009], although MRSA rates appear to be intermediate [Kesah et al. 2003, Ramdani-

Bouguessa et al. 2006, Song et al. 2011]. High MRSA rates tend to be seen in 

countries with high rates of antibiotic use (current or historical) and poor infection 

control strategies, whereas the low MRSA rates seen for example in the Netherlands 

are attributable to national 'search and destroy' policies to limit MRSA spread. Such 

policies are expensive to implement, but in countries with low endemic MRSA 

incidence, the benefits outweigh the costs [Laxminarayan and Malani 2007, Simoens, 

Ophals and Schuermans 2009, van Rijen and Kluytmans 2009]. 
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Figure 1.3 Global prevalence of healthcare-acquired MRSA. HK = Hong Kong. 

Taken from Stefani et al. [2012].  

 

 

Figure 1.4 Frequency of MRSA among S. aureus isolates (collected from blood, 

respiratory tract, urine, skin, wound, body fluids and other defined sources between 

January 2004 and August 2006), by country. Only countries submitting at least 10 

isolates are shown (with 95% confidence intervals). *Indicates data not shown as 

country submitted <10 S. aureus isolates. Taken from Reinert et al. [2007]. 
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 The European Antimicrobial Resistance Surveillance Network (EARSnet) was 

set up in 1999 using sentinel hospital laboratories across the continent to survey cases 

of bacteraemia caused by several bacterial species including S. aureus. Although 

bacteraemia is less common than other types of infection such as SSTIs, surveillance 

systems tend to focus on bloodstream infections as they are clinically significant and 

are likely to be investigated microbiologically [Johnson 2011]. Through EARSnet, in 

2009, nine European countries reported less than 10% invasive MRSA isolates, nine 

countries reported 10-25%, another nine reported 25-50%, and one country reported 

over 50% invasive MRSA isolates (Figure 1.3) [ECDC 2011]. Eight countries 

reported a decreasing trend for MRSA while just one country reported an increase 

[ECDC 2011]. In the UK, the percentage of invasive MRSA isolates was between 25 

and 50% in 2009, but a significantly sustained decrease in this percentage was 

observed between 2006 and 2009 [ECDC 2011]. This decrease likely reflects the 

government action in England to make reporting of MRSA bacteraemia mandatory 

for all hospitals, and setting hospitals the target of halving their MRSA rates 

[Liebowitz 2009, Pearson, Chronias and Murray 2009]. Although proportions of 

MRSA seem to be stabilising, and even decreasing in some European countries, the 

percentage of MRSA is still more than 25% in 10 of 28 reporting countries, and thus 

MRSA control remains a public health priority in Europe [ECDC 2011]. 

 In the US, the ABCs population-based sentinel surveillance program was used 

to evaluate the incidence of healthcare-associated MRSA infections between 2005 and 

2008 [Kallen et al. 2010]. Over the four-year period, rates of hospital onset and 

healthcare-associated, community onset invasive MRSA infections decreased among 

US hospital inpatients [Kallen et al. 2010], supporting a previous study on 

bloodstream infections in intensive care units (ICUs) [Burton et al. 2009], and 
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mirroring the pattern observed in some European countries like the UK. Despite this 

decrease, MRSA prevalence remains high in the US [Grundmann et al. 2006], likely 

due to the rapid increase in rates of CA-MRSA infection in the last decade and its 

emergence as a major cause of healthcare-associated infection [Carleton et al. 2004, 

King et al. 2006, Moran et al. 2006, Patel et al. 2008].  

 MRSA is a large and increasing global burden on healthcare resources, and is 

associated with increased morbidity and a higher risk of mortality [Abramson and 

Sexton 1999, Cosgrove et al. 2003, Engemann et al. 2003, Chu et al. 2005, Cosgrove 

et al. 2005, Gould 2005, Klein, Smith and Laxminarayan 2007, Shurland et al. 2007]. 

The poorer therapeutic outcome of MRSA infections compared to MSSA infections 

can be attributed to the underlying medical problems of the often sicker, older patients 

that are infected with MRSA, plus the use of more toxic or ineffective antibiotics 

[Cosgrove et al. 2003, Lowy 2003, Simoens, Ophals and Schuermans 2009]. The 

additional burden imposed by resistance not only aggravates the clinical outcome but 

also adds to the overall caseload of patients with invasive S. aureus infections [de 

Kraker et al. 2011]. Increased risk of treatment failure, implementation of isolation 

measures, antimicrobial treatment and extended hospital stay all add to the financial 

burden on healthcare facilities [Shorr 2007]. Additional financial costs can be accrued 

through the containment of outbreaks and changes in antibiotic prescribing habits 

[Grundmann et al. 2006]. The average excess costs per MRSA-positive patient have 

been estimated to range from €5,700 to €10,000 [Monecke et al. 2011]. MRSA 

infections also impact on sufferers psychologically (e.g. due to isolation) and 

financially, through loss of productivity and long-term disability, in turn impacting on 

societal costs [Tarzi et al. 2001, Grundmann et al. 2006].  
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1.6 PREVENTATIVE MEASURES  

 Although HA-MRSA prevalence is stabilising and even decreasing in some 

regions, notably Europe, the need for effective MRSA control strategies remains, as 

HA-MRSA prevalence is still high and increasing in many countries around the 

world. Several hurdles to effective control exist however, including the increasing 

prevalence of CA-MRSA, which appears to be emerging as a potent combination of 

transmissibility, virulence and resistance, the ever-increasing healthcare MRSA 

reservoir, to which CA-MRSA is increasingly contributing, the likely impossibility of 

eradicating endemic MRSA, and the significant costs and disruption to patient care 

associated with active surveillance and control [Marshall et al. 2004]. 

 There are four main approaches to MRSA control: reduction in antibiotic use 

through education and restriction, transmission prevention through hand hygiene, 

identification of carriers through screening and isolation, and elimination of reservoirs 

through decontamination [Harbarth 2006]. There is much debate regarding the most 

cost-effective strategy for MRSA control, but it is clear that strategies developed with 

HA-MRSA pathogenesis in mind may not work for prevention of CA-MRSA 

infection, attenuating our ability to control overall MRSA burden [Miller and Diep 

2008]. The increasing non-β-lactam resistance in CA-MRSA clones, particularly 

USA300, highlights the need for accurate therapeutic decisions, guided by active 

screening and surveillance [Chua et al. 2011].   

 The limited choice of therapeutic options available, and the declining 

investment by pharmaceutical companies in antimicrobial research and development 

[Talbot et al. 2006] (Figure 1.5), has shifted the spotlight onto infection prevention 

and control measures such as hand hygiene, protective clothing and equipment, and 

accommodating patients in isolation rooms or wards [Monecke et al. 2011]. As well 



 51 

as a better understanding of S. aureus pathogenesis and improved non-antimicrobial 

approaches, an important aspect of effective MRSA control is the rapid screening for 

early identification of MRSA carriers, using accurate and rapid MRSA diagnostics.  

 The stringent search and destroy policies employed in Scandinavian countries 

and the Netherlands, where MRSA prevalence is low, involve a combination of 

measures, such as isolation of identified MRSA carriers, patient decolonisation, 

admission screening of high-risk patients with pre-emptive isolation, screening of all 

contact patients, healthcare workers and index cases, temporarily sending healthcare 

workers home, and closing wards to prevent outbreaks. A study investigating the 

individual contribution of each of these measures found that admission screening 

combined with pre-emptive isolation could be the most beneficial, even in high 

MRSA prevalence settings [Bootsma, Diekmann and Bonten 2006b]. Rapid MRSA 

detection is crucial in such a strategy, to limit transmission risk and isolation costs, as 

well as the impact on patient care [Wassenberg et al. 2010]. Conventional 

microbiological cultures have a turnaround time (TAT) of at least 48 hours, and 

longer if a broth enrichment technique is used. Novel and faster diagnostic tests for 

MRSA screening have been introduced in recent years that reduce the TAT to a 

diagnostic result, and these are discussed in section 1.7. 
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Figure 1.5 Number of HA-MRSA infections reported annually in the US between 

1999 and 2005. The new antibiotics approved for each of these years are also shown. 

Taken from Stein, Goetz and Ganea [2009]. 

 

1.7 MRSA DIAGNOSIS 

 Several organisations have recommended that patients be screened upon 

admission to hospitals where the prevalence of infection is high, and that persons 

identified as being colonised be placed on contact isolation [Muto et al. 2003, 

Gastmeier et al. 2004, Carroll 2008]. This has focused attention on rapid and accurate 

detection methods for S. aureus, particularly MRSA. 

 Approaches to rapid detection of MRSA include culture methods and 

molecular tests, but many of the available tests differ markedly in their specificity, 

sensitivity, ease of use and cost. The advantages and disadvantages of culture and 

molecular methods are shown in Table 1.6. Despite commercialisation of some 

molecular methods, the most common method for MRSA detection in routine 

laboratories is culturing on selective and chromogenic agar from nasal swab 

specimens, or nasal specimens combined with those from the throat, groin or rectum 
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to improve bacterial recovery [Eveillard et al. 2006]. These rapid culture methods 

differ from traditional culture methods in that they are selective and differential for 

MRSA. Such media inhibits the growth of other organisms through the use of 

antibiotics in the agar, and the presence of chromogenic substrate, which is 

hydrolysed by an MRSA-specific enzyme, creates colonies of a distinct colour. Using 

this type of agar allows identification of MRSA from primary isolation plates within 

24 to 48 hours, obviating the need for further subcultures and additional biochemical 

confirmatory tests [Malhotra-Kumar et al. 2008]. 

 

Table 1.6 Advantages and disadvantages of culture and molecular methods. Taken 

from Marlowe and Bankowski [2011]. 

Method Sensitivity Specificity 

(%) 

Time to 

results 

(hours) 

Costs User skill level 

required 

Culture Low, but improved 

with chromogenic agar 

and broth enrichment 

100 18-48 Low Moderate 

Molecular High <100 <24 High Moderate to 

high 

 

 
 Selective media containing oxacillin have been found to produce 

unsatisfactory clinical sensitivity and specificity, and are sensitive to incubation 

temperature and inoculum density [Cherkaoui et al. 2007]. Thus, cefoxitin- or 

cephamycin-containing media is now recommended [CLSI 2005]. Several 

chromogenic media exist on the market, but CHROMagar MRSA (Beckton 

Dickinson and CHROMagar Microbiology) is currently the most popular for MRSA 

detection [Lindsay 2008]. When grown on CHROMagar MRSA agar plates, MRSA 
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will grow in the presence of cefoxitin (6mg/L) and produce mauve colonies as a 

result of hydrolysis of the chromogenic substrate. Additional selective agents are 

incorporated for the suppression of gram negative organisms, yeast and some other 

gram positive cocci, but other bacteria may grow and produce differently coloured 

colonies, e.g. bacteria that utilise chromogenic substrates in the medium produce blue 

or blue/green colonies and those that don't utilise chromogenic substrates will 

produce white or colourless colonies [BD Diagnostics 2010]. Other cefoxitin- or 

cephomycin-containing media include chromID MRSA (bioMérieux), MRSA Select 

(Bio-Rad) and Chromogenic MRSA/Denim Blue agar (Oxoid). All produce 

uniformly high specificities after 24 hours, but sensitivities tend to vary both between 

media and studies [Cherkaoui et al. 2007, Malhotra-Kumar et al. 2008, Luteijn et al. 

2011], although they are higher than non-chromogenic media (93-99%) [Malhotra-

Kumar et al. 2010a]. Sensitivities can be improved by 48 hour incubation, but then 

specificities are affected, requiring confirmatory MRSA tests [Malhotra-Kumar et al. 

2008].  The variable performances highlight the need for a gold standard media for 

MRSA screening [Cherkaoui et al. 2007]. 

 Molecular techniques for direct detection of MRSA have become increasingly 

commonplace [Marlowe and Bankowski 2011]. MRSA may be hetero-resistant to β-

lactam antibiotics due to repression of mecA by mecI and consequently the gold 

standard method for molecular detection of MRSA is PCR detection of mecA in S. 

aureus. However, coagulase-negative staphylococci (CNS), such as S. epidermidis 

and S. haemolyticus, can be positive for mecA and are frequently carried in the human 

population. Commercial PCR kits for detection of mecA have been available for 

several years but these are not widely used due to the problem of false-positives 

caused by mecA-carrying CNS isolates. In CNS, SCCmec elements can be identical 
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to those in S. aureus, but the location of the integration site (attBscc) differs. In the S. 

aureus chromosome, attBscc is located near the S. aureus origin of replication, in an 

open reading frame of unknown function, orfX, which is highly conserved among 

clinical strains of S. aureus. Multiplex PCR approaches have been developed in 

recent years to take advantage of this fact, in an attempt to overcome the problem of 

false positives. Specifically, the approach involves detection of a single amplicon, 

which includes the right junction of the SCCmec element and a part of the adjacent S. 

aureus-specific orfX gene. This amplified region is termed the mec right extremity 

junction (MREJ) (section 3.1.1). 

 Commercial assays like GenoType MRSA Direct (Hain Lifescience), BD 

GeneOhm MRSA (BD Diagnostics) and Xpert MRSA (Cepheid Diagnostics) have 

successfully utilised the approach, with the latter two being US Food and Drug 

Administration (FDA)-approved for detection of MRSA from nasal surveillance 

samples. Colonisation of the nose has been shown to be a risk factor for subsequent 

infection [Carroll 2008]. 

 GenoType MRSA Direct targets SCCmec types I to V in a multiplex PCR 

using biotinylated primers followed by a reverse hybridisation step [Malhotra-Kumar 

et al. 2008]. Direct detection of MRSA from diverse body sties (nose, throat, groin, 

axilla, wound, and other sites) gives a sensitivity and specificity ranging from 68% to 

95% and 96% to 99%, respectively [Harbarth et al. 2011]. There is a newer version of 

this assay, the GenoQuick MRSA dipstick assay, which excludes the reverse 

hybridisation step, reducing the total assay time from 4 hours to 2 hours 20 minutes 

[Carroll 2008, Malhotra-Kumar et al. 2008]. This assay has been shown to have very 

high sensitivity, specificity, positive predictive value (PPV) and negative predictive 

value (NPV) (100%, 99.4%, 96% and 100% respectively) [Eigner et al. 2007].  
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 BD GeneOhm MRSA is a multiplex qualitative real-time PCR assay that can 

be semi-automated using Cepheid’s SmartCycler instrument and has been extensively 

evaluated [Huletsky et al. 2004, Warren et al. 2004, Bishop et al. 2006, Desjardins et 

al. 2006, Drews et al. 2006, Oberdorfer et al. 2006, Francois et al. 2007, Paule et al. 

2007, Rossney et al. 2007a, van Hal et al. 2007, Zhang et al. 2007, Bartels et al. 2009, 

Kelley et al. 2009, Kimura et al. 2009, Park et al. 2009a, Hombach et al. 2010, Lucke 

et al. 2010, Peterson et al. 2010, Snyder, Munier and Johnson 2010, Hassan and 

Shorman 2011, Patel et al. 2011]. The assay contains primers targeting the right 

junction sequences of SCCmec types I to VI and VIII [Boyle-Vavra and Daum 2010], 

combined with a consensus primer and three molecular beacons specific for orfX 

[Malhotra-Kumar et al. 2008]. Since the assay is able to simultaneously link 

identification with resistance detection, it can differentiate MRSA from MSSA and 

mecA-positive CNS in clinical samples. Clinical performance characteristics are 

compared with those of the Xpert MRSA assay in Table 1.7. In general, the 

sensitivity and NPVs are equivalent or slightly better than culture, so the assay can be 

used to decide which patients should be put into or removed from isolation 

[Malhotra-Kumar et al. 2008]. However, the PPV appears poor (Table 1.7) so the 

impact of isolating non-colonised patients should be assessed before using this assay 

[Carroll 2008]. Studies show that BD GeneOhm MRSA, Genotype MRSA Direct and 

Xpert MRSA assays fail to detect nontypeable SCCmec elements or certain variants 

of known SCCmec types [Francois et al. 2007, Rossney et al. 2007a, Bartels et al. 

2009, Boyle-Vavra and Daum 2010, Laurent et al. 2010], suggesting that these assays 

should be evaluated against the local MRSA diversity, and in areas where 

problematic SCCmec elements are prevalent, perhaps an alternative assay or culture-

based method should be employed.  
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 A new version of the BD GeneOhm MRSA assay, BD GeneOhm ACP 

MRSA, incorporates a novel lysis method for specimen preparation, reducing the 

preparation steps and time needed to perform them, thus facilitating a high-

throughput, automated procedure for MRSA detection. Performance characteristics of 

the ACP version were comparable to the original assay, providing good sensitivity 

[Patel et al. 2011]. 
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Table 1.7 Performance characteristics of the two FDA-approved molecular assays that target SCCmec sequences for the direct detection 

of nasal colonisation by MRSA. Adapted from Malhotra-Kumar et al. [2008] and Carroll [2008]. 

Assay Internal 

Control 

Clinical characteristics 

(ranges)* 

Analytical 

sensitivity 

(CFU/swab) 

Assay 

time 

Comments References 

BD 

GeneOhm 

MRSA 

Yes Sensitivity 81-100% 

Specificity 78-99% 

PPV 56-99% 

NPV 94-100% 

25-325 2-4 hrs Amplifies some mecA negative 

S. aureus; doesn’t amplify some 

SCCmec variants; false positive 

rate as high as 5%. 

 

[Huletsky et al. 2004, 
Warren et al. 2004, Bishop 
et al. 2006, Desjardins et 
al. 2006, Drews et al. 
2006, Oberdorfer et al. 
2006, Francois et al. 2007, 
Paule et al. 2007, Rossney 
et al. 2007a, van Hal et al. 
2007, Zhang et al. 2007, 
Kelley et al. 2009, Kimura 
et al. 2009, Park et al. 
2009a, Hombach et al. 
2010, Lucke et al. 2010, 
Malhotra-Kumar et al. 
2010b, Peterson et al. 
2010, Snyder, Munier and 
Johnson 2010, Hassan and 
Shorman 2011, Luteijn et 
al. 2011, Patel et al. 2011, 
BD Diagnostics 2012] 

Xpert 

MRSA 

Yes Sensitivity 69-100% 

Specificity 90-99% 

PPV 78-90% 

NPV 96-100% 

58-80 75 

mins 

Has similar issues to BD 

GeneOhm MRSA. 

[Mehta et al. 2007, 
Rossney et al. 2008, 
Kelley et al. 2009, Wolk 
et al. 2009, Brenwald, 
Baker and Oppenheim 
2010, Creamer et al. 2010, 
Hombach et al. 2010, 
Laurent et al. 2010, 
Malhotra-Kumar et al. 
2010b] 

*Note that performance characteristics are influenced by study design, site MRSA prevalence, gold standards used, sample sites (e.g. 

nares, groin, axilla) and enrichment protocols, and should be borne in mind when comparing study results. PPV = positive predictive 

value, NPV = negative predictive value. 
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 Xpert MRSA is a real-time PCR assay that works on a fully automated 

platform, and is the most sophisticated system available for MRSA detection. It is 

fully automated with minimal front-end processing, the level of expertise required to 

operate it are minimal, and it is a random access instrument allowing flexible testing 

of samples [Carroll 2008, Malhotra-Kumar et al. 2008, Rossney et al. 2008]. Xpert 

MRSA is able to detect SCCmec types I, II, III, IVa, V and VI. A comparison of 

Xpert MRSA and BD GeneOhm MRSA showed similar sensitivities and specificities 

(98.5% and 97.1%, and 90.4% and 89.2%, respectively) for MRSA detection from 

nasal samples [Mehta et al. 2007] (Table 1.7), and Wolk et al. found no statistical 

difference in performance between the two assays [Wolk et al. 2009]. The Xpert 

MRSA assay is able to detect both MSSA and MRSA and is thought to reliably detect 

MRSA in mixed cultures as the relative quantities of gene products is measured, thus 

making it a semi-quantitative assay.  

 These molecular assays show consistently high NPVs, making them ideal 

tools for the rapid isolation of MRSA carriers, and in turn dramatically reducing 

isolation time [Hassan and Shorman 2011]. The potential value of using such assays 

in point of care settings such as hospital wards has also been demonstrated by a major 

reduction in TAT (by more than ten hours) compared to their use in laboratories 

[Brenwald, Baker and Oppenheim 2010]. 

A study evaluating the savings made if Xpert MRSA, at a cost of €50 per test, 

was used for MRSA detection in patients and healthcare workers, found that at least 

€925 per exposed healthcare worker and €550 per exposed patient that were MRSA 

negative, would be saved [Andersen et al. 2010]. Another study found that decision-

making based on molecular tests added between €154 (BD GeneOhm MRSA) and 

€194 (Xpert MRSA) per patient to overall costs, while chromogenic tests saved €31, 
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leading the authors to conclude that rapid diagnostic tests safely reduce the number of 

unnecessary isolation days, but only screening based on chromogenic testing, can be 

considered cost saving [Wassenberg et al. 2010]. This is in contrast to a Swiss study 

in a single healthcare facility that found replacement of culture-based testing with 

PCR-based methods more than halved the number of pre-emptive isolation days and 

was thus considered cost-effective [Uckay et al. 2008]. 

It is clear that molecular tests allow for prompt MRSA detection, but they are 

expensive, and so the effectiveness of their use must be carefully evaluated for each 

setting. In populations with low MRSA endemicity, broad use of molecular tests may 

not be cost-effective [Harbarth et al. 2011, Wassenberg et al. 2011], but in settings of 

low MRSA prevalence, rapid isolation of MRSA is crucial for effective MRSA 

control [Diederen 2010]. Rapid screening with chromogenic media is preferred due to 

the expense of molecular tests, but the latter could be cost-effective for high-risk 

healthcare units and critically ill patients [Harbarth et al. 2011]. While it is suggested 

in some populations that transmission rates do not differ between patients screened 

with culture-based methods and those screened with molecular-based methods, the 

real value of the latter lies in their ability to free up bed space more readily in the 

hospital [Marlowe and Bankowski 2011]. 

 

1.6 THESIS OBJECTIVES 

 My thesis draws on two themes identified in the introduction: the need for a 

simpler, cheaper and quicker MRSA diagnostic test that enables widespread use of a 

molecular test for MRSA screening (addressed in Part 1); and the need for a better 

understanding of healthcare MRSA reservoirs due to the ever-changing epidemiology 

of MRSA, specifically investigating the extent to which HA-MRSA and CA-MRSA 
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strains have merged in these reservoirs (Part 2 of the thesis). These themes are 

introduced more fully in their respective parts. 
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CHAPTER 2: METHODS 

Note: This chapter outlines methods used throughout my thesis. Methods specific to a 

chapter are described in that chapter. 

 
2.1 BACTERIAL CULTURE 

 All bacterial isolates were stored in 15% glycerol (TSB-glycerol) at −80°C. 

Cells were harvested on Oxoid blood agar base No.2 and incubated at 37°C 

overnight. Single colonies from the overnight growth were picked and subcultured, 

from which DNA extractions were performed. 

 
2.2 DNA EXTRACTION 

 DNA was extracted from subcultured growth using a DNeasy Blood & Tissue 

Kit (Qiagen), according to guidelines for the purification of total DNA from gram-

positive bacteria. Briefly, this involved the standard purification procedure but with a 

pretreatment step of incubation with enzymatic lysis buffer to lyse cell walls (20mM 

Tris-Cl pH 8.0, 2mM sodium EDTA, 1.2% Triton X-100, lysostaphin to 2mg/ml and 

immediately before use, lysozyme to 20mg/ml). DNA samples were eluted in 200µl 

of AE buffer (10 mM Tris-Cl and 0.5 mM EDTA, pH 9.0) and stored at −20°C. 

 
2.3 PCR AMPLIFICATION 

Unless otherwise stated, all PCR amplification was performed in a total 

volume of 29µl, containing 25µl of 1.1x ReddyMix PCR Master Mix (Thermo 

Scientific; 1.25u Thermoprime Plus DNA Polymerase, 75mM Tris-HCl (pH8.8 at 

25°C), 20mM (NH4)2SO4, 1.5mM MgCl2, 0.01% (v/v) Tween 20, 0.2mM each of 

dATP, dCTP, dGTP and dTTP, plus precipitant and red dye for electrophoresis), 1µl 
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each of 100µM forward and reverse primer, and 2µl of cleaned DNA template. 5µl of 

each PCR product was checked by electrophoresis on a 1% agarose gel containing 

5µl of SafeView nucleic acid stain (NBS Biologicals) at 15V/cm for 40 min in 1x 

TBE buffer. The remaining volume of each PCR product was then purified by 

polyethylene glycol (PEG) precipitation plus an ethanol wash and suspended in 12µl 

of sterile distilled water (SDW). 

 
2.4 SEQUENCING OF PCR PRODUCTS 

All purified PCR products were diluted to 2.5-5ng/µl using SDW prior to 

sequencing reactions. Products were sequenced using the BigDye Terminator v1.1 

Cycle Sequencing Kit (Applied Biosystems). A total reaction volume of 10µl 

contained 2µl of purified PCR product, 4µl of 1µM forward or reverse primer, 0.5µl 

of BigDye Terminator, 1.75µl of BigDye Terminator 5x Sequencing Buffer, and 

1.75µl of SDW). Thermal cycling conditions for sequencing reactions included 25 

cycles of denaturing, annealing and extension (10s at 96°C, 5s at 50°C and 2 min at 

60°C) and a ramp of 0.1°C/s to 4°C. Reaction cleanup was performed by ethanol 

precipitation. When ready to sequence, cleaned reaction products were re-suspended 

in 10µl of Hi-Di Formamide (Applied Biosystems) and sequences determined using 

the ABI 3730xl DNA Analyser. All sequence data were assembled, trimmed, edited 

and aligned using Molecular Evolutionary Genetics Analysis (MEGA) version 4.1 

[Tamura et al. 2007], except data for the spa repeat region, which were analysed 

using software described in section 2.6. 
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2.5 MLST 

 Primer sequences used for PCR amplification of the seven housekeeping genes 

are listed in Table 2.1. Thermal cycling conditions consisted of an initial denaturation 

of 3 min at 95°C, 35 cycles of denaturation, annealing and extension (30s at 95°C, 

30s at 60°C and 1 min at 72°C), and a final extension of 10 min at 72°C. Following 

sequencing of the seven loci and building of consensus sequences using MEGA 

version 4.1 [Tamura et al. 2007], consensus sequences were queried using the MLST 

S. aureus database (http://saureus.mlst.net/) to determine sequence types (STs). 

Relationships between STs were visualised using the eBURST (Based Upon Related 

Sequence Types) algorithm [Feil et al. 2004, Spratt et al. 2004] 

(http://saureus.mlst.net/eburst/). 

 
2.6 spa TYPING 

 Primer sequences used for PCR amplification of the spa repeat region are 

listed in Table 2.1. Thermal cycling conditions consisted of an initial denaturation of 

5 min at 80°C, 35 cycles of denaturation, annealing and extension (45s at 94°C, 45s 

at 60°C and 90s at 72°C), and a final extension of 10 min at 72°C. Following 

sequencing of the spa repeat region, spa types were determined using Ridom 

StaphType v1.5-2.2 (Ridom GmbH, Würzburg, Germany) [Harmsen et al. 2003]. To 

assess spa type diversity and relatedness, cluster analysis of spa types was performed 

using the Based Upon Repeat Pattern (BURP) algorithm, a built-in feature of the 

StaphType software [Mellmann et al. 2007]. The BURP algorithm is a heuristic 

variant of the Excision, Duplication, Substitution and Indels (EDSI) algorithm 

[Sammeth and Stoye 2006], and is the first automated and objective tool to infer 

clonal relatedeness from spa repeat regions [Mellmann et al. 2007].  



 65 

Table 2.1 PCR Primers used for spa typing and MLST. 

Primer 5′-3′ sequence Amplicon 
Size (bp) Reference 

 
spa_1113F 
spa_1514R 
 

 
TAAAGACGATCCTTCGGTGAGC 
CAGCAGTAGTGCCGTTTGCTT 
 

Variable 
[Ridom 
GmbH 
2006] 

arC_fwd 
arcC_rev 
 

TTGATTCACCAGCGCGTATTGTC 
AGGTATCTGCTTCAATCAGCG 
 

456 
[Enright 
et al. 
2000] 

aroE_fwd 
aroE_rev 
 

ATCGGAAATCCTATTTCACATTC 
GGTGTTGTATTAATAACGATATC 
 

456 
[Enright 
et al. 
2000] 

glpF_fwd 
glpF_rev 
 

CTAGGAACTGCAATCTTAATCC 
TGGTAAAATCGCATGTCCAATTC 
 

465 
[Enright 
et al. 
2000] 

gmk_fwd 
gmk_rev 
 

ATCGTTTTATCGGGACCATC 
TCATTAACTACAACGTAATCGTA 
 

429 
[Enright 
et al. 
2000] 

pta_fwd 
pta_rev 
 

GTTAAAATCGTATTACCTGAAGG 
GACCCTTTTGTTGAAAAGCTTAA 
 

474 
[Enright 
et al. 
2000] 

tpi_fwd 
tpi_rev 
 
yqiL_fwd 
yqiL_rev 

TCGTTCATTCTGAACGTCGTGAA 
TTTGCACCTTCTAACAATTGTAC 
 
CAGCATACAGGACACCTATTGGC 
CGTTGAGGAATCGATACTGGAAC 
 

402 
 
 

516 

[Enright 
et al. 
2000] 
 
[Enright 
et al. 
2000] 

 

2.7 SCCmec TYPING 

 SCCmec typing was carried out according to either the method of Boye et al. 

[2007] or Milheirico, Oliveira and de Lencastre [2007a] using the primers listed in 

Tables 2.2 and 2.3. Multiplex PCR products were viewed on agarose gels 

(percentages method-specific) containing 5µl of SafeView nucleic acid stain (NBS 

Biologicals), run in 1x TBE buffer and at the rate recommended by each method. 

SCCmec types were determined on the basis of the amplification pattern obtained 

(Figure 2.1). Isolates with no visible bands, or with an amplification pattern not in 

agreement with one of the predicted patterns, were classified as non-typeable (NT).  
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Table 2.2 Primers used in the multiplex SCCmec PCR assay of Boye et al. [2007] for SCCmec types I-V. 

Name Primer sequence (5′3′) Amplicon 

size (bp) 

Target Primer specificity (SCCmec 

type)      

 
β 
α 

 
ATTGCCTTCATAATAGCCYTCTa 

TAAAGGCATCAATGCACAAACACTa 

 

 
937 

 
ccrA2-B 

 
II and IV 

ccrCF 
ccrCR 

CGTCTATTACAAGATGTTAAGGATAATb 

CCTTTATAGACTGGATTATTCAAAATATb 

 

518 ccrC III and V 

1272F1 
1272R1 

GCCACTCATAACATATGGAAc 

CATCCGAGTGAAACCCAAAc 

 

415 IS1272 I and IV 

5RmecA 
5R431 

TATACCAAACCCGACAACTACc 

CGGCTACAGTGATAACATCCc 

 

359 mecA–
IS431 

V 

 a[Ito et al. 2001]; b[Ito et al. 2004]; c[Boye et al. 2007]. 
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Table 2.3 Primers used in the multiplex SCCmec PCR assay of Milheirico, Oliveira and de Lencastre [2007a] for SCCmec types I-VI. 

Name Primer sequence (5′3′) Amplicon 

size (bp) 

Target Primer specificity (SCCmec 

type)      

 
CIF2 F2 
CIF2 R2 

 
TTCGAGTTGCTGATGAAGAAGGa 
ATTTACCACAAGGACTACCAGCa 
 

 
495 

 
downstream of 
pls, J1 region 

 
I 

ccrC F2 
ccrC R2 

GTACTCGTTACAATGTTTGGb 
ATAATGGCTTCATGCTTACCb 
 

449 ccrC V 

RIF5 F10 
RIF5 R13 

TTCTTAAGTACACGCTGAATCGa 
ATGGAGATGAATTACAAGGGa 
 

414 J3 region III 

SCCmec V J1 F 
SCCmec V J1 R 

TTCTCCATTCTTGTTCATCCb 
AGAGACTACTGACTTAAGTGGb 
 

377 J1 region V 

dcs F2 
dcs R1 
 

CATCCTATGATAGCTTGGTCa 

CTAAATCATAGCCATGACCGa 

 

342 dcs region I, II, IV and VI 
 

ccrB2 F2 
ccrB2 R2 
 

AGTTTCTCAGAATTCGAACGb 

CCGATATAGAAWGGGTTAGCb 

 

311 ccrB2 II and IV 

kdp F1 
kdp R1 
 

AATCATCTGCCATTGGTGATGCa 

CGAATGAAGTGAAAGAAAGTGa 

 

284 kdp operon II 

SCCmec III J1 F 
SCCmec III J1 R 
 

CATTTGTGAAACACAGTACGb 

GTTATTGAGACTCCTAAAGCb 

 

243 J1 region III 

mecI P2 
mecI P3 
 

ATCAAGACTTGCATTCAGGCa 

GCGGTTTCAATTCACTTGTCa 

 

209 mecI II and III 

mecA P4 
mecA P7 

TCCAGATTACAACTTCACCAGGa 

CCACTTCATATCTTGTAACGa 

 

162 mecA Internal positive control 

aOliveira and de Lencastre [2002]; bMilheirico, Oliveira and de Lencastre [2007a].  
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Figure 2.1 Amplification patterns obtained with the SCCmec multiplex PCR strategies of A Boye et 

al. [2007] (examples of SCCmec types I-V with 100bp DNA ladders) and B Milheirico, Oliveira and 

de Lencastre [2007a] (SCCmec types (prototype strains) as follows: lane 1, I (COL); lane 2, II 

(N315); lane 3, III (ANS46), lane 4, IVa (MW2); lane 5, IVb (8/6-3P); lane 6, IVc (Q2314); lane 7, 

IVd (JCSC4469); lane 8, IVE (AR43/3330.1); lane 9, IVg (M03-68); lane 10, IVh (HAR22); lane 11, 

V (WIS); lane 12, VI (HDE288); and M, 1kb DNA ladder). Gel images taken directly from Boye et 

al. [2007] and Milheirico, Oliveira and de Lencastre [2007a]. 
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PART 1 INTRODUCTION: RPA-BASED DETECTION OF MRSA 

 The major advantage of rapid MRSA detection is the time saved over 

traditional culture methods. Although advances have been made with culture-based 

detection methods, particularly those based on chromogenic media, which have 

decreased the time to detection, molecular tests can provide results in a few hours; BD 

GeneOhm MRSA takes 2-4 hours, and Xpert MRSA under 70 minutes. However, 

both systems require expensive specialist platforms, the costs per test are high (BD 

GeneOhm MRSA excluding/including platform, personnel and additional costs 

(swabs, gloves and consumables), around €30/€56; Xpert MRSA around €43/€70) and 

the operator skill requirement for the assays is also relatively high, preventing their 

widespread routine use [Malhotra-Kumar et al. 2008, Wassenberg et al. 2010]. The 

training required and the size and expense of these platforms means they are typically 

employed only in central laboratories, significantly increasing the TAT for a 

diagnostic MRSA result. Nonetheless, PCR-based molecular detection methods allow 

a clinically relevant turnaround time for a diagnostic result, with comparable clinical 

sensitivity and specificity to culture-based methods [Luteijn et al. 2011]. There is still 

a need for a standalone rapid assay that can detect all MRSA strains, and a faster and 

cheaper diagnostic test that can be deployed at the point of care. This chapter 

describes and evaluates one such assay that is based on a novel method of nucleic acid 

amplification. 

 Recombinase polymerase amplification (RPA), developed by my industrial 

sponsor TwistDx, is a novel alternative to PCR for the amplification and detection of 

nucleic acids. It couples isothermal recombinase-driven primer targeting of template 

material with strand-displacement DNA synthesis (Figure I.1) [Piepenburg et al. 

2006]. The key to RPA is the dynamic reaction environment that balances 
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recombinase-primer complex formation with disassembly (Figure I.2). UvsX 

recombinase of bacteriophage T4 binds cooperatively to primers in the presence of 

ATP. The resulting ATP-bound nucleoprotein complex (Figure I.2A) actively 

hydrolyses ATP and the consequent depletion of ATP substrate and accumulation of 

ADP/AMP products leads to replacement of UvsX with gp32 (Figure I.2B), the single 

stranded DNA binding protein (SSB) of T4 necessary for RPA. gp32 protects single-

stranded DNA from nuclease digestion, removes secondary structure and promotes 

assembly of recombinase-primer complexes [Liu, Qian and Morrical 2006]. However, 

at high gp32 and salt concentrations, recombinase-primer complex formation is 

inhibited by the high affinity of gp32-primer interactions [Ando and Morrical 1998]. 

gp32 thus competes with UvsX for binding sites on the primer. Assembly of UvsX-

primer complexes relies on the mediator function of the T4 UvsY protein, a 

recombinase loading factor that weakens gp32-primer interactions and strengthens 

UvsX-primer interactions, thus helping UvsX to displace gp32 and shift the 

equilibrium in favour of recombinase loading (Figure I.2C) [Jiang, Salinas and 

Kodadek 1997, Sweezy and Morrical 1999, Bleuit et al. 2004, Liu, Bond and Morrical 

2006]. The presence of a crowding agent such as polyethylene glycol (PEG) further 

establishes reaction conditions that support RPA, by strengthening the interactions 

between the proteins and DNA. As well as a role in presynaptic filament formation, 

gp32 facilitates DNA strand exchange by binding to the displaced strand generated 

during UvsX-catalysed D-loop formation, as shown in Figure I.1 [Liu, Qian and 

Morrical 2006]. 
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Figure I.1 Schematic of recombinase polymerase amplification (RPA). A Recombinase-

oligonucleotide primer complexes form and target homologous DNA; B D-loops form due 

to strand displacement. The displaced strand is bound by SSB (gp32), which prevent 

reannealing of the double-stranded DNA; C Recombinase disassembly enables primer 

extension by the polymerase, initiating DNA synthesis; D Parental strands separate and 

synthesis continues; E Two duplexes form; F The process is cyclic, achieving exponential 

DNA amplification. 
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Figure I.2 The dynamic reaction environment of RPA. A ATP-binding results in a 

UvsX-primer complex; B replacement of UvsX with gp32 due to ATP hydrolysis; 

C UvsY and crowding agent support UvsX loading by weakening gp32-primer 

interactions. 

 

 In addition to primers, proteins (UvsX, UvsY and gp32) and a crowding agent, 

RPA reactions require salts, mainly acetate ions, to provide the appropriate ionic 

environment for RPA, dNTPs, Tris as a buffering component, and the cofactor 

magnesium to stabilise and support the reaction. For the polymerase, a Pol I large 

fragment from a mesophile is used, which has better characteristics for RPA than 

Klenow and other commercial relatives. 

 RPA has been shown to be sensitive to fewer than ten target copies of genomic 

DNA [Piepenburg et al. 2006] and exponentially amplifies the target to detectable 
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levels within 15 minutes, providing diagnostic results within 20 minutes. This is 

owing to a) the isothermal nature of the technology, which operates at an optimum of 

37-42°C, obviating the need for denaturation and re-annealing steps as used in PCR, 

or for a specialist platform; and b) the robustness of RPA to crude complex samples 

with no pre-treatment required, allowing simple and rapid sample preparation.  

 An assay utilising the RPA technology has the potential to make a significant 

contribution to microbiological testing and molecular diagnostics by providing a 

portable, rapid and widely accessible nucleic acid-based test that can be used in point 

of care and field settings, from which current nucleic acid-based tests are almost 

entirely absent. As such, RPA has been incorporated into a probe-based detection 

system with the probe containing an abasic site mimic (a tetrahydrofuran residue or 

dSpacer) flanked by nucleotides modified with a fluorophore and quencher (Figure 

I.3). A 3′ block (e.g. a C3-spacer) prevents the probe from acting as an amplification 

primer, which could lead to non-specific amplification and signal generation from 

primer-dimers. On binding of the probe to complementary DNA, the double-strand-

specific nuclease, Exonuclease III, cuts the probe at the abasic site, separating the 

fluorophore from the quencher. The probe remnant is then elongated by the 

polymerase, thus acting as an amplification primer. Since the probe’s target sequence 

is located within the amplicon, cutting of the probe is indicative of the amplification 

event itself and can be used to monitor the progress of the reaction.  

 TaqMan probes are incompatible with RPA due to the use of a strand-

displacing polymerase, which would displace the probe from the target but not cut the 

probe, thus generating no fluorescence. Likewise, molecular beacon probes are 

incompatible with RPA as the presence of SSB and recombinase would linearise the 

probe's hairpin structure, causing it to constantly fluoresce.  
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Figure I.3 RPA as a probe-based detection system. 
 

 Part 1 of my thesis focuses on the RPA-based detection system developed by 

TwistDx for the identification of MRSA in clinical samples, called TwistAmp MRSA. 

The first chapter evaluates its performance and characterises MRSA isolates that fail 

to be detected by the assay, in order to ascertain why they were not detected and how 

they can be detected in future. The second chapter explores potential reasons for its 

lower clinical sensitivity in comparison to the market leader in molecular diagnostics 

for MRSA, Cepheid's Xpert MRSA assay, and investigates possible methods for 

improving this sensitivity. Clinical sensitivity is the ability of a test to correctly 

identify MRSA, given as the percentage of persons with MRSA that are identified as 

having MRSA by the test. Analytical sensitivity is the smallest amount of MRSA (in 

CFU) that can be reliably detected by the test. 
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CHAPTER 3: TWISTAMP MRSA 

3.1 INTRODUCTION 

 Having recognised the public health implications of MRSA worldwide and 

thus the need for a faster, simpler and cheaper diagnostic test compared to current 

commercial assays, TwistDx have developed an RPA-based diagnostic assay for 

MRSA, called TwistAmp MRSA. Proprietary primers amplify the different sequences 

between the SCCmec element and orfX (the mec right extremity junction; MREJ) 

found in MRSA strains, an approach similar to that used in the BD GeneOhm MRSA 

and Xpert MRSA assays. Proprietary FAM- and TAMRA-labelled TwistAmp exo 

probes then bind to the MREJ amplicons and internal control respectively and 

generate a fluorescence signal as a real-time readout.  

 

3.1.1 The mec Right Extremity Junction (MREJ) 

The MREJ is approximately 1kb in length and comprises the right extremity of 

SCCmec, the SCCmec integration site attBscc and the 3′ end of the orfX gene of the S. 

aureus chromosome (Figure 3.1) [Huletsky et al. 2004, Cuny and Witte 2005]. The 

first assay that utilised the MREJ as a MRSA-specific target was developed in 2000, 

using PCR primers that targeted the MREJs of SCCmec types I-III [Hiramatsu et al. 

2000]. This led to the development of mec right extremity polymorphism (MREP) 

typing for SCCmec DNA, on the basis that SCCmec types I-III each have a different 

MREJ (MREJ types i-iii) [Hiramatsu, Kondo and Ito 1996, Ito et al. 2001]. After the 

discovery of SCCmec IV [Ma et al. 2002], it was found that the MREP typing method 

could not discriminate it from SCCmec II and therefore both were associated with 

MREJ ii [Huletsky and Rossbach 2002].  
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Whole-genome sequencing of MRSA strains N315 and Mu50 revealed that 

SCCmec elements are in fact located downstream of orfX, and thus the mec right 

extremity should actually be called the mec left extremity [Chongtrakool et al. 2006]. 

Consequently, MREP typing was renamed MLEP (mec left extremity polymorphism) 

typing due to the position of the SCCmec element in relation to orfX [Chongtrakool et 

al. 2006]. However, I shall use the original terminology (MREJ) for clarity as the 

literature largely refers to the mec right extremity. 

 

 

Figure 3.1 The mec right extremity junction (MREJ). Relative positions of the ccr 

and mec complexes of SCCmec are also shown. attBscc is the SCCmec integration 

site.  

 

In 2002 the MREP typing method was used to test a variety of MRSA, MSSA 

and CNS strains. Approximately 50% (20/39) of the MRSA strains tested were not 

amplified [Huletsky and Rossbach 2002]. With the aim of developing more universal 

primers and probes for global MRSA detection, a new set of MRSA-specific primers 

was developed using the MREJ sequences of SCCmec types I-III plus type IV 

subtypes IVa, IVb and IVc [Huletsky and Rossbach 2002, Huletsky et al. 2004]. 

These sequences comprised MREJ types i-iii plus the newly discovered types iv, v 

and vii [Huletsky and Rossbach 2002], and their corresponding primers and probes 

were combined to create a multiplex PCR assay for MRSA [Huletsky et al. 2004]. 

MREJ sequences for types vi, viii, ix and x were also described but were not included 
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in this multiplex assay as they were infrequent among the strains characterised 

[Huletsky and Rossbach 2002].  

In 2007 a further 10 MREJ types (xi-xx) were described, bringing the total 

number of known MREJ types to 20 [Huletsky and Rossbach 2002, Huletsky and 

Giroux 2007]. As a result, detection of more MRSA strains was now possible, 

allowing improvement of current assays for MRSA detection. However, due to the 

nature of multiplexing, where assay performance decreases as the extent of 

multiplexing increases, and taking into account the rarity of certain MREJ types and 

the predominance of others, it is not practical to detect all of these 20 MREJ types 

with a multiplex assay - there must be a compromise between the coverage of as 

many SCCmec variants as possible and as little loss of analytical sensitivity as 

possible.  

The TwistAmp MRSA assay developed by my industrial sponsor, like current 

commercial assays, covers MREJ types i-v and vii (Figure 3.2) as the optimal set of 

MREJ types for the RPA-based system. These six MREJ types account for >98% of 

worldwide strains as tested by BD Diagnostics [2012]. 

In order for TwistDx to design primers and probes for the various MREJ 

types, sequences were obtained from either public databases or patents [Hiramatsu et 

al. 2000, Huletsky and Rossbach 2002, Huletsky and Giroux 2007]. Sequences are not 

publicly available for MREJ types vi and viii-x. Sequence data for MREJ xii and 

isolates possessing this MREJ type are available but corresponding RPA primers were 

not included in the multiplex assay since they proved counterproductive to 

incorporate (reactions failed, likely due to unfavourable changes in the kinetics of the 

reaction or primer interactions that have an inhibitory effect on the reaction) [Forrest 

2009]. Isolates with the remaining MREJ types (xi and xiii-xx) have yet to be 

discovered by TwistDx, except for an isolate with MREJ type xiii, which I discovered 
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during my research. Primers for these types therefore cannot be, or haven’t yet been, 

tested for possible incorporation into the multiplex assay. Nonetheless, an RPA-based 

assay targeting only MREJ types i-v and vii currently provides the optimal 

combination of primers, probes and reagents for rapid and sufficiently ubiquitous 

MRSA detection. 

 

 

Figure 3.2 Schematic showing the relative positions of proprietary primers and 

probe for the different MREJ types covered by TwistAmp MRSA. The same orfX 

primer covers all MREJ types; the SCCmec right extremity primer varies for each 

MREJ type. A 102-bp insertion (orange region) differentiates MREJ ii from MREJ 

i. MREJ ii isolates will test positive for both MREJ i and ii due to the targets of the 

primers, but type ii primers are still included in the multiplex assay because of slow 

amplification of type ii template by type i primers alone. Figure adapted from 

Huletsky et al. [2004]. 
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3.1.2 Chapter Objectives 

3.1.2.1 TwistAmp MRSA performance 
  

 The aim of TwistAmp MRSA is to not only provide a more accurate and rapid 

alternative to traditional culturing methods for MRSA detection, but also to rival the 

current commercial PCR-based MRSA assays. A collection of Staphylococci from 

our laboratory, including MRSA, MSSA and CNS, was used to interrogate the assay 

in order to assess its performance (sensitivity, specificity, PPV and NPV). Two 

collections of MRSA isolates obtained from standard screening procedures at 

hospitals in the UK and US (hereafter called the UK and KC collections respectively; 

see section 3.2) were used to further determine the performance of the assay. 

3.1.2.2 MREJ typing of MRSA isolates 
 

 TwistAmp MRSA uses a multiplex format with proprietary primers and 

probes to detect MRSA with MREJ types i-v and vii. Any MRSA with one of these 

MREJ types will produce a fluorescence signal, which provides the user with a 

positive identification of MRSA. Unlike MREP typing however, the MREJ type of 

the isolate is not provided by the method. MREJ types can, however, be obtained 

using a series of singleplex RPA-based assays with the primers and probes for the 

individual MREJ types, an approach called MREJ typing.   

The MREJ has not been studied a great deal in an epidemiological sense. 

Since the prevalence of SCCmec types at the local and global level are well 

documented, MREJ typing was performed on the UK and KC MRSA collections in 

order to assess the diversity and distribution of MREJ types among local populations 

of MRSA. Similarly, MREJ typing of our laboratory collection of MRSA was 
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performed to provide a snapshot of the diversity and distribution of MREJ types 

among geographically diverse strains of HA- and CA-MRSA.  

The commercial assays BD GeneOhm MRSA, Xpert MRSA and Genotype 

MRSA Direct all target the MREJ, but like TwistAmp MRSA only produce a yes/no 

output; they do not report the specific MREJ type. In their product literature, these 

three commercial assays state the different SCCmec types that they are able to detect, 

and the associated limit of detection (LOD) for each type. The LODs are based on 

testing of an MRSA strain of each SCCmec type, but the product literature does not 

clearly specify how SCCmec type correlates with MREJ type. The BD GeneOhm 

MRSA package insert lists the LOD for each of six strains tested, representing MREJ 

types i-v and vii and SCCmec types I-IV, but also states the ability to detect SCCmec 

types V and VI without specifying the associated MREJ type [BD Diagnostics 2012]. 

The Xpert MRSA and Genotype MRSA Direct assays can detect SCCmec types I-V 

but the associated MREJ types are not stated [Cepheid Diagnostics 2009, Hain 

Lifescience GmbH 2012].  

To my knowledge only two comparisons of MREJ typing and SCCmec typing 

have been made. Huletsky et al. [2004] made three key findings: 1) no correlation was 

found between MREJ and SCCmec type for the MRSA strains described in the study; 

2) exceptions were found to the typical association between SCCmec types I-III and 

MREJ types i-iii; and 3) strains with new MREJ types did not carry a new SCCmec 

element but rather have structural variations at the SCCmec right extremity, since 

known SCCmec types were assigned for most of the MRSA strains with the MREJ 

types described in the study [Huletsky et al. 2004]. The other study found a strong 

correlation between SCCmec type and MREJ type, but there were discrepancies and 

non-typeable isolates [Chongtrakool et al. 2006]. For example, of 370 SCCmec III 
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isolates, 86.4% were MREJ iii but 10.6% were MREJ ii and 3% could not be assigned 

a MREJ type [Chongtrakool et al. 2006]. Since TwistAmp MRSA also targets the 

MREJ, the correlation between SCCmec type and MREJ type was explored further 

using our laboratory and the KC collections of MRSA, as well as prototypic strains 

for SCCmec types I-XI.  

3.1.2.3 Characterisation of false negative isolates  
 

 The evaluation of the performance of TwistAmp MRSA in identifying MRSA 

isolates in the UK and KC collections, followed by MREJ typing of these collections, 

resulted in MRSA that were not detected by this assay (false negatives) and an MSSA 

that was identified as MRSA (false positive). In order to contribute to the 

development and improvement of TwistAmp MRSA, these false positive and false 

negative isolates were characterised using MLST, spa typing and SCCmec typing. In 

this way it was hoped that STs, spa types or SCCmec types could then be identified 

that might pose a problem in terms of MRSA detection using TwistAmp MRSA. In 

the case of false negative isolates, sequencing of the MREJ region was performed to 

try and determine why these isolates were not detected, and if their MREJ sequences 

could be incorporated into the assay through modification of the primers and/or 

probes for currently covered MREJ types, or whether new primers and probes needed 

to be developed for novel MREJ types.  

 In the latter case, primers and/or probes were designed for any novel MREJ 

types and full primer screens conducted for potential incorporation into and therefore 

improvement of the multiplex assay. If RPA primers are already developed for all 

MREJ types encountered, whether known or novel, then incorporating them into the 

diagnostic assay prospectively, where required, will prove more efficient than 
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discovering the assay does not detect a percentage of MRSA strains in a certain region 

and designing them retrospectively.   

3.1.2.4 Scope of TwistAmp MRSA 
 

TwistDx aim to develop TwistAmp MRSA such that it can be marketed 

widely, as opposed to an assay that after marketing in a certain region, requires 

development of primers and probes for false negative variants discovered there. To 

assess whether the current set of primers and probes in TwistAmp MRSA is sufficient 

to detect most MRSA strain types, the assay was tested with strains possessing 

different SCCmec elements. All isolates from the collections described above that 

were characterised by SCCmec typing were tested, as well as prototypic strains for 

SCCmec types I-XI.  

Recent literature and personal communications suggest some MRSA strains 

can be problematic with current commercial diagnostic assays such as BD GeneOhm 

MRSA and Xpert MRSA [Thomas et al. 2008, Bartels et al. 2009, Snyder et al. 2009, 

Voss 2009, Malhotra-Kumar et al. 2010b]. Bartels et al. [2009] hypothesised that the 

same SCCmec type might have minor variations in different MRSA lineages and that 

this variation could be in the primer regions. While studies of BD GeneOhm MRSA 

performance suggest misidentifications are uncommon [Stamper et al. 2007, Grobner 

et al. 2009], other studies observe low assay sensitivities due to the prevailing 

SCCmec types [Thomas et al. 2008, Bartels et al. 2009]. TwistAmp MRSA was 

therefore tested with identical strains or ones similar to those that have been reported 

to be problematic, to see if it too was unable to detect them. Similarly, MRSA isolates 

of clonal lineage ST398, a major livestock-associated MRSA able to cause infections 

in humans, have been reported to be missed by current diagnostic MRSA assays 
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[Reischl et al. 2009, Voss 2009, Malhotra-Kumar et al. 2010b]. ST398 has been 

isolated mainly from livestock but also other animals including horses, chickens and 

pets [Voss et al. 2005, de Neeling et al. 2007, Monecke et al. 2007b, Cuny et al. 2008, 

Nemati et al. 2008, Loeffler et al. 2009, Nienhoff et al. 2009, Walther et al. 2009, 

Mulders et al. 2010]. It has also been isolated from humans with or without a history 

of contact with livestock [Aubry-Damon et al. 2004, Sergio et al. 2007, van Loo et al. 

2007, Witte et al. 2007b, Khanna et al. 2008, Smith et al. 2008, Wulf et al. 2008, Yu 

et al. 2008, Cuny et al. 2009, Krziwanek, Metz-Gercek and Mittermayer 2009]. 

ST398 has been reported in both community and healthcare settings in several 

European countries [Nemati et al. 2008, Krziwanek, Metz-Gercek and Mittermayer 

2009, Loeffler et al. 2009, Lozano et al. 2009, Pan et al. 2009, Battisti et al. 2010, 

Potel et al. 2010, Vanderhaeghen et al. 2010], the Americas [Khanna et al. 2008, 

Smith et al. 2008, Bhat et al. 2009], Australia [Monecke et al. 2011], Singapore 

[Sergio et al. 2007] and China [Yu et al. 2008]. Most worryingly, ST398 has shown 

the ability to cause severe infection in humans, such as bacteraemia and pneumonia, 

including necrotising pneumonia [Witte et al. 2007b, Nulens et al. 2008, van Belkum 

et al. 2008, van Rijen, Van Keulen and Kluytmans 2008, Hartmeyer et al. 2010, 

Mammina et al. 2010, Rasigade et al. 2010, Soavi et al. 2010]. TwistAmp MRSA was 

therefore tested with a reference ST398 isolate (SO385, provided by Angela Kearns, 

Staphylococcal Reference Unit, HPA, UK) to assess its ability to detect a strain from 

this important lineage. 
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3.2 METHODS 

Note: I performed all methods unless otherwise stated. 
 
 
3.2.1 The UK MRSA collection 

 MRSA isolates were obtained from the Central Manchester University 

Hospitals NHS Foundation Trust (CMFT) and Addenbrooke’s Hospital (Cambridge 

University Hospitals NHS Foundation Trust) as part of collaborations with TwistDx. 

MRSA isolates were obtained from clinical samples collected via standard hospital 

screening procedures (nasal and groin swabs were combined and processed according 

to a gold standard broth enrichment culture technique). CMFT isolates were collected 

between December 2008 and June 2009 (n=580); Addenbrooke’s isolates included a 

random selection of MRSA collected throughout 2008, plus all MRSA samples 

collected in December 2008 (n=550). The 1,130 MRSA isolates were sub-cultured by 

TwistDx and collaborators, and one colony from each sub-culture resuspended in 

sterile distilled water (SDW) in a 1.5ml cryovial or eppendorf tube and boiled in 

water for 20 minutes to kill the bacteria. Boiled bacteria were then diluted 1:1000 in 

SDW in new 1.5ml tubes. A separate collaboration between TwistDx and CMFT (July 

2009 to November 2009) obtained a further 146 culture-positive MRSA isolates from 

nasal and groin screening swabs that were cultured via standard methods employed at 

CMFT and stored as glycerol stocks. A total of 1,276 MRSA isolates - 1,130 boiled 

isolates in SDW and 146 viable isolates in glycerol - were provided to me for MREJ 

typing. 
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3.2.2 Kansas City paediatric hospital MRSA collection  

 Fifty-two hospital screening samples (nasal swabs) positive for MRSA by 

culture were collected from a paediatric hospital in Kansas City, US, between May 

2011 and August 2011, as part of a further collaboration with TwistDx. Samples were 

determined as MRSA using CHROMagar plates as part of the standard screening 

protocol employed at the hospital. Collaborators collected 35 isolates positive for 

MRSA by culture from outpatients visiting a dermatology clinic and 17 from hospital 

inpatients. These 52 MRSA isolates were provided to me as glycerol stocks. One MR-

CNS and four MSSA isolates from clinic outpatients were also provided to me as 

negative controls. All 57 isolates were tested with TwistAmp MRSA and the MRSA 

isolates were also MREJ typed. 

 

3.2.3 Laboratory collection of Staphylococci 

 Our laboratory collection of Staphylococci comprises 57 MRSA isolates, 59 

MSSA isolates and three CNS isolates (one MR-CNS and two MS-CNS), totalling 

119. This collection contains members of previously described EMRSA clones - 

including glycopeptide-intermediate S. aureus (GISA) isolates - and MSSA isolates 

from disease and carriage [Enright et al. 2002, Feil et al. 2003]. The isolates represent 

lineages of geographically diverse HA- and CA- MRSA (Appendix 1). The MSSA 

isolates represent 52 different STs and are mainly from the UK, but also include one 

isolate from the Netherlands (ST281), one from Canada (ST289), a putative ancestor 

to the Berlin clone from Germany (ST46), two isolates from Cuba (ST30 and ST94) 

and two MSSA isolates recovered in the early 1960s from Denmark (ST30 and 

ST250) [Crisostomo et al. 2001, Robinson and Enright 2003]. The CNS isolates 
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include one positive for the type III SCCmec element. These 119 isolates were used as 

a screening collection for TwistAmp MRSA, to assess the sensitivity, specificity, PPV 

and NPV of the assay. The 57 MRSA isolates were also used to further investigate 

MREJ types. 

 

In summary I had available for study 1,276 MRSA isolates from the UK, 52 MRSA 

isolates from KC, US, and 57 MRSA isolates from our own laboratory collection.  

 

3.2.4 TwistAmp MRSA protocol 

  TwistAmp MRSA reactions come freeze-dried in strips of 8x0.2ml tubes, so 

up to 7 samples plus a control reaction can be run at once. The freeze-dried reactions 

contain all the proteins needed for RPA and the proprietary primer/probe set used for 

MRSA detection. RPA resuspension buffer containing salts, crowding agent and Mg, 

as well as the test DNA, is added to the freeze-dried reactions to start RPA. The same 

standard protocol was used throughout my thesis for testing clinical isolates, culture 

or DNA, and is as follows: 

 

1. One colony taken using a sterile inoculating loop from an agar plate OR one 

loop scrape of frozen isolate stock OR 1µl of DNA (at a concentration of 

approximately 50ng/µl unless otherwise stated), was added to 50µl of RPA 

resuspension buffer in a 1.5ml eppendorf tube. For a no template control 

(NTC), 1µl of SDW was added. The resuspension buffer containing template 

DNA was briefly spun down, vortexed and spun down again. 
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2. The 50µl of the resuspension buffer containing template DNA was added to a 

0.2ml TwistAmp MRSA reaction tube, sealed firmly with a lid, and briefly 

vortexed and spun down.  

3. The TwistAmp MRSA reaction tube was placed in a Twista machine (Figure 

3.3A), a fluorometer that detects the TwistAmp exo FAM- and TAMRA-

labelled probes. Reaction conditions were set up and monitored in real-time 

using Twista Studio software (Figure 3.3B) via a Twista-connected computer. 

The standard conditions for RPA reactions are 38 or 39°C for 20 minutes, with 

a 4 min reminder to shake (see below).  

4. Because RPA is so rapid, operates at a constant temperature, and the reactions 

are so viscous (due to the RPA resuspension buffer), diffusion and convection 

do not adequately mix the amplicons throughout the reaction mixture. At 4 

min, the reaction tube was therefore removed from the machine, briefly 

agitated by vortexing, and spun down before replacing in the machine, to 

disperse the amplicons throughout the reaction mixture so the reagents were 

not locally limiting. 

5. The Twista machine was left to run for the remaining 16 minutes to generate 

the reaction curves (Figure 3.3B). 
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Figure 3.3 A Twista portable real-time fluorometer (photograph courtesy of TwistDx). 

B Typical Twista Studio output allowing fluorescence to be monitored in real-time. 

Tubes 1, 2, 4 and 5 are MRSA positive; tubes 3, 6 and 7 are MRSA negative. Tube 8 

=NTC. Positive/negative results are declared on the left.  
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The TwistAmp MRSA protocol was used for screening all 119 isolates from 

our laboratory collection of Staphylococci. I also performed TwistAmp MRSA testing 

of the MRSA culture positive KC isolates direct from TSB-glycerol stocks diluted 

1:1000 in SDW. Prototypic strains for SCCmec types I-XI were tested with 

TwistAmp MRSA from DNA samples. 

 

3.2.5 MREJ typing protocol 

The MREJ typing protocol was used to type all MRSA isolates from the UK, 

KC and laboratory collections. Prototypic strains for SCCmec types I-XI were also 

MREJ typed. The protocol used was as in 3.2.4, but using singleplex RPA reactions 

for the individual MREJ types. MREJ typing was performed in the following order to 

first distinguish type i isolates from type ii isolates and to process the isolates further 

in the most efficient manner (reactions for more common MREJ types performed 

first): ii, i, iii, vii, v, xii, iv. Isolates negative for these MREJ types were then tested 

with PCR reactions for types xi and xiii-xx (as RPA assays for these types had not 

been developed). Statistical analyses were performed using STATA (release 11, 

StataCorp). Fisher’s exact test was used a) to compare the distributions of MREJ 

types among CMFT and Addenbrooke’s isolates from the UK MRSA collection; and 

b) to investigate the correlation between SCCmec type and MREJ type among the 57 

laboratory MRSA isolates.  

 

3.2.6 Characterisation of isolates 

 I characterised the false negative isolates from the UK collection using MLST, 

SCCmec typing (Boye et al. [2007] method then Milheirico, Oliveira and de Lencastre 
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[2007a] method to retest unexpected banding patterns) and spa typing, all as 

described in Chapter 2, in order to ascertain their diversity and define clones based on 

the currently used nomenclature. All 57 isolates from the KC collection were 

characterised by Alere Technologies GmbH using their StaphyType DNA microarray, 

as previously described [Monecke and Ehricht 2005, Monecke et al. 2006, Monecke 

et al. 2007a, Monecke et al. 2008, Monecke, Slickers and Ehricht 2008, Monecke et 

al. 2011]. The array allows comprehensive genotyping of S. aureus isolates by 

simultaneous detection of a large number of genes and alleles thereof, including 

species markers, regulatory genes, and genes related to antibiotic resistance, virulence 

and pathogenicity. Markers for typing SCCmec were also included in the array, 

covering mecA and its regulatory genes as well as the different recombinase and 

accessory genes that make up the various SCCmec elements [Monecke et al. 2007a]. 

Alere Technlogies determined affiliation of isolates to clonal complexes or STs, as 

defined by MLST, by comparison of hybridisation profiles to a collection of reference 

strains previously characterised by MLST [Monecke and Ehricht 2005, Monecke et 

al. 2007a, Monecke et al. 2011]. Results of the microarray testing were sent to me for 

analysis and epidemiological interpretation. 

 

3.2.7 Primer design and primer screening for novel MREJ types 

 False negative isolates from the Addenbrooke's MRSA collection were 

unavailable for whole genome sequencing as permission for their use could not be 

obtained. Collaborators at King Abdullah University of Science and Technology, 

Saudi Arabia, obtained the genome sequences of the false negative MRSA isolates 

from the CMFT collection, by assembly of 110-nucleotide reads from an Illumina 

Genome Analyzer IIx (Illumina, Inc.). The assemblies obtained from the 110-
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nucleotide sequence reads were then sent to me by these collaborators, and for each 

sequenced isolate, the contig containing the MREJ was identified by BLAST using a 

segment of orfX (position 33692-34111 of GenBank entry BA000018). This contig 

was compared to all known MREJ sequences by ClustalW2 alignment. Positive 

control isolates of known MREJ types were also sequenced and assembled to confirm 

the ability of the procedure to correctly assemble MREJ sequences.  

 For novel MREJ sequences (18 successfully sequenced in total), I grouped 

together identical sequences and for each group (i.e. each novel MREJ sequence) 

chose 35bp-primers from within the SCCmec element a sufficient distance 

downstream from the TwistAmp MRSA orfX primer (~100bp), to amplify the 

SCCmec-orfX junction region. I then selected a further 14 primers, each time 5bp 

further downstream of orfX than the previous one. Thus, 15 candidate RPA primers 

for each novel MREJ were generated and tested.  

I prepared template DNA for each novel MREJ using PCR primers flanking 

the RPA MREJ primers (primer sequences are commercially sensitive and cannot be 

shown), to generate amplicons of at least 500bp that span the TwistAmp MRSA target 

region within each novel MREJ. The orfX PCR primer was positioned approximately 

200bp upstream of the orfX RPA primer. PCR reactions were performed using 

genomic DNA preparations of isolates with novel MREJ types, in a total volume of 

50µl using DreamTaq DNA polymerase (Fermentas), according to the manufacturer’s 

protocol. PCR products were viewed on a 1% agarose gel and extracted and purified 

using a QIAquick Gel Extraction Kit (Qiagen). DNA quantification of the purified 

products was performed using a TwistDx protocol (Appendix 2) and each product was 

serially diluted in Eppendorf LoBind tubes to ~50 copies/µl in T0.1E buffer (10 mM 

Tris–HCl, pH 8 and 0.1 mM EDTA, pH 8) supplemented with 1ng/µl of human DNA 
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(Promega). The use of LoBind tubes and inclusion of human DNA ensured minimal 

adsorption of target amplicons onto tube surfaces.  

To conduct the primer screen, I used freeze-dried RPA reactions (50µl total 

volume) containing all the enzymes necessary for RPA but no primers or probe. These 

are called TwistAmp exo reactions, referring to the Exonuclease III used for probe 

cutting [TwistDx Ltd 2009a]. I then added the orfX and novel MREJ primers 

separately. The primer screening protocol was as follows: 

 

1. For each novel MREJ, a mastermix for the required number of reactions was 

created: 

         1x 

• orfX primer (6µM)     4µl 

• orfX probe (6µM)     1µl 

• RPA resuspension buffer with no MgAc  29.5µl 

• SDW       8µl 

• novel MREJ template (~50 copies/µl)  1µl 

Total: 43.5µl 

 

2. For each reaction, 43.5µl of the mastermix and 4µl of the appropriate 

candidate primer (6µM) were added to a 1.5ml eppendorf tube, vortexed and 

spun down. 

3. 47.5µl of this solution was added to each freeze-dried TwistAmp exo reaction. 

TwistAmp exo reactions come in strips of eight reactions, so each candidate 

primer was tested in duplicate. Four candidate primers were therefore tested in 

one run. 
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4. 2.5µl of 280mM MgAc was added to the inside of the lid of each reaction 

tube, the lids on the reaction tubes secured, and the reaction tubes briefly spun, 

vortexed and spun again (50µl total reaction volume). 

5. The TwistAmp protocol was then followed from step 3, as in section 3.2.4.  

 

 The best candidate primer from the first stage of the primer screen was 

selected and tested alongside a further eight primers, staggered by 1bp downstream 

(four primers) and 1bp upstream (four primers) from the initial best candidate primer. 

The best 35bp-candidate from this second stage was tested in duplicate with no 

template and 106 copies of MSSA to ensure specificity for MRSA detection, then 

modified in length to create another 8 primers 30-38bp long. The length was modified 

at the 3′ end of the primer sequence i.e. towards orfX. This final stage of the primer 

screen determined the optimal MREJ-specific RPA primer to use with the universal 

orfX RPA primer for detection of each novel MREJ type.  

 
3.2.8 Detection of SCCmec variants and problematic strains   

 To determine the range of SCCmec types that TwistAmp MRSA was able to 

detect, prototype strains for SCCmec types I-XI (Table 3.1) were tested with the 

assay. A number of strains that have been reported not to be detected by other MREJ-

based diagnostic assays were also examined, as follows. Bartels et al. [2009] found a 

common variant of SCCmec type IVa (ST8-MRSA-IVa/t024) in Copenhagen, 

Denmark, that is not detected by the BD GeneOhm MRSA assay. This variant is the 

most abundant MRSA clone in Copenhagen, affecting mainly people in nursing 

homes and causing small outbreaks in local hospitals [Bartels et al. 2009]. One isolate 

with a similar SCCmec and spa type (IVh and t024 respectively) to the Copenhagen 
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clone reported in the Bartels study was tested with TwistAmp MRSA, MREJ typed 

and its MREJ sequenced. Another study of Australian MRSA isolates revealed only 

half (12/24) were correctly identified by BD GeneOhm MRSA with 11 of the 12 false 

negatives corresponding to the predominant Australian nosocomial clone (ST239-

MRSA-III) and one to the Southwest Pacific clone (ST30-MRSA-IV) [Thomas et al. 

2008]. Isolates of these clones are included in the laboratory collection of 

Staphylococci and were thus tested with TwistAmp MRSA as part of the screening 

performed in this chapter. The reference strain SO385 (ST398-MRSA-V) was also 

tested and further characterised by spa and MREJ typing, and its MREJ sequenced.   

 

Table 3.1 SCCmec prototype strains. 

SCCmec type Strain name(s)a 

I NCTC10442, COL 

II N315, BK2464 

III 85/2082, ANS46 

IVa JCSC4744, MW2 

V WIS 

VI HDE288 

VII JCSC6082 

VIII C10682 

IX JCSC6943 

X JCSC6945 

XI LGA251 

a Strains were kindly provided by T. Ito, H. de 

Lencastre, B. Soderquist, K. Zhang, A. Larsen/R. 

Skov and M. Holmes.  
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3.3 RESULTS 

3.3.1 TwistAmp MRSA performance 

3.3.1.1 UK MRSA collection 
 

 Of the 1,276 MRSA isolates from the UK collection, 1,232 were MREJ typed 

as i-v or vii (the types covered by TwistAmp MRSA) (Table 3.3), giving TwistAmp 

MRSA a sensitivity of 96.6%.  

3.3.1.2 KC MRSA collection 
 

 Of the 52 isolates that were culture positive for MRSA from the KC 

collection, 50 gave a positive result when tested with TwistAmp MRSA. Despite a 

culture positive result for MRSA, the two remaining isolates were found to be MSSA 

and MR-CNS (S. succinus) when characterised by Alere Technologies using their 

StaphyType DNA microarray (see section 3.3.3.2). The five isolates included in the 

KC collection as negative controls (four MSSA isolates and one MR-CNS (S. 

haemolyticus) isolate) correctly gave a negative result with TwistAmp MRSA. Thus, 

TwistAmp MRSA correctly identified all 50 MRSA isolates, giving the assay a 

sensitivity of 100%. 

 Two KC isolates that were culture positive for MRSA produced weak 

TwistAmp MRSA reaction curves compared to all other isolates (Figure 3.4). One of 

these was an isolate that was later found to be MSSA by microarray analysis 

(performed by Alere Technologies; see section 3.3.3.2) and therefore gave a false 

positive result with TwistAmp MRSA, perhaps due to an SCC remnant or mec-less 

cassette. I sequenced the MREJ of these two isolates, both of which were MREJ i, 

using PCR primers flanking the RPA orfX and RPA MREJ i-specific primers. 
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Sequencing revealed no single nucleotide polymorphisms (SNPs) in the primer/probe 

binding regions, except one SNP in the orfX primer binding region of the MSSA 

isolate (the same SNP found in most 'odd-performing' MREJ ii isolates of the CMFT 

collection; see Figure 3.7 in section 3.3.2.1). This C/T SNP however was deemed to 

have little effect on reaction performance due to its central position within the primer, 

which was confirmed by testing PCR product (1000 copies/µl) of a MREJ with the 

same orfX SNP, and directly comparing it to wild type PCR product with no SNPs in 

the orfX primer binding region (Figure 3.5). See section 3.3.3.2 for the results of 

further characterisation of these two isolates. 

 

 
Figure 3.4 TwistAmp MRSA output showing weak reaction curves produced by two 

isolates from the KC MRSA collection (isolates 7 and 100; 7 was later found to be 

MSSA by microarray analysis). Legend numbers represent isolate numbers. NTC= no 

template control. 
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Figure 3.5 TwistAmp MRSA output showing the effect of the C/T SNP in the orfX 

primer binding region. wt = wild-type MREJ template; mt = mutant MREJ template.  

 

3.3.1.3 Laboratory collection of Staphylococci 
 

 
 The results of screening our laboratory collection of Staphylococci (57 

MRSA, 59 MSSA, 2 MS-CNS and 1 MR-CNS) with TwistAmp MRSA, directly from 

glycerol stocks, are shown in Table 3.2. The assay produced six false positives and 

one false negative and these isolates were retested, leading to slightly improved test 

results: one MRSA isolate that produced a negative result initially, was correctly 

identified upon retesting, and vice versa for one MSSA isolate, leaving five false 

positives but no false negatives. All false positive isolates were MSSA from the UK, 

representing five different STs (previously characterised as STs 1, 3, 8, 69 and 266 

[Enright et al. 2002, Feil et al. 2003]). 
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Table 3.2 Test characteristics of TwistAmp MRSA for the laboratory Staphylococci 

collection (N=119). The first numbers/percentages in each box represent results of the 

initial screen, and the second numbers/percentages represent results of the repeat 

screen. 

  Isolate  

  MRSA MSSA or CNS  

TwistAmp 

MRSA positive 

True positive 

56 

57 

False positive 

6 

5 

PPV 

90.3% 

91.9% Test 

outcome 
TwistAmp 

MRSA negative 

False negative 

1 

0 

True negative 

56 

57 

NPV 

98.2% 

100% 

  Sensitivity 

98.2% 

100% 

Specificity 

90.3% 

91.9% 

 

 

 
3.3.2 MREJ typing 

3.3.2.1 UK MRSA collection 
 

1,232 of the 1,276 MRSA isolates were typed as MREJ i-v or vii (Tables 3.3 

and 3.4) using singleplex RPA reactions. A further two isolates were MREJ typed 

using PCR reactions for types xiii and xvi, but the latter was later found by whole 

genome sequencing to be incorrectly assigned and was re-assigned as a MREJ non-

typeable (NT) isolate (see section 3.3.3.1). Forty-two isolates (3.3%; 28 from CMFT 

and 14 from Addenbrooke's) were negative for all MREJ types tested (i-v, vii and xi-

xx). The predominant MREJ type was ii, making up 90.8% of all isolates. The 

distribution of MREJ types, including NT MREJs, was not significantly different 

between CMFT and Addenbrooke’s isolates (Table 3.4, p = 0.485).  
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25 CMFT isolates were assigned MREJ types (23 MREJ ii, one MREJ i and 

one MREJ iii) but produced weakly positive or lagging reaction curves (Figure 3.6). 

SNPs in the orfX primer binding region were observed among 19 of the 25 isolates, 

with one SNP in the MREJ i/ii isolates and a different SNP in the MREJ iii isolate. A 

further two SNPs were identified in the MREJ iii-specific primer binding region of 

the single odd-performing MREJ iii isolate (for orfX SNPs see Figure 3.7). Upon 

retesting the 25 isolates all produced strong reaction curves.  

 

Table 3.3 MREJ typing results of the UK 

MRSA collection. 

MREJ 

type 
Frequency %  

i 21 1.6 

ii 1159 90.8 

iii 19 1.5 

iv 2 0.2 

v 3 0.2 

vii 28 2.2 

xiii 1 0.1 

xvi/NTa 1 0.1 

NT 42 3.3 

Total 1,276 100 

a NT = MREJ non-typeable. MREJ xvi 

isolate incorrectly assigned and later 

found to be NT (see section 3.3.3.1). 
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Table 3.4 MREJ typing results of the UK MRSA 

collection, by hospital. 

MREJ 

type 

Addenbrooke’s 

Frequency (%) 

CMFT 

Frequency (%) 

i 8 (1.5) 13 (1.8) 

ii 506 (92) 653 (89.9) 

iii 6 (1.1) 13 (1.8) 

iv 0 2 (0.3) 

v 2 (0.4) 1 (0.1) 

vii 14 (2.5) 14 (1.9) 

xiii 0 1 (0.1) 

xvi/NTa 0 1 (0.1) 

NT 14 (2.5) 28 (3.9) 

Total 550 726 

 a NT = MREJ non-typeable. MREJ xvi isolate 

incorrectly assigned and later found to be NT (see 

section 3.3.3.1). 

 

 

Figure 3.6 Twista Studio output for MREJ typing results showing a weakly positive 

reaction curve (Tube 6 - olive green line). Tube 8 (dark green line) = NTC. 
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Figure 3.7 SNPs found in the orfX primer binding region of the 

25 odd-performing CMFT isolates. 

 

3.3.2.2 KC MRSA collection 
 
 
 Of the 50 isolates positive by TwistAmp MRSA, 49 were MRSA and one was 

MSSA (according to microarray analysis performed by Alere Technologies; section 

3.3.3.2). 98% (48/49) of MRSA isolates were typed as MREJ ii with one isolate typed 

as MREJ i.  The MSSA isolate was also typed as MREJ i. 
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3.3.2.3 Laboratory MRSA collection  
 

 MREJ typing of the 57 MRSA isolates in our laboratory collection of 

Staphylococci revealed the most common MREJ type was ii (80.7%;), with all 

isolates typed as either i, ii or iii (Table 3.5). 

 

Table 3.5 MREJ typing results of the 

laboratory MRSA collection. 

MREJ  

type 
Frequency % 

i 7 12.3 

ii 46 80.7 
iii 4 7.0 

Total 57 100 

 

3.3.2.4 Correlation of MREJ type with SCCmec type 
 

 I compared the MREJ types determined for the 57 MRSA isolates from our 

laboratory collection of Staphylococci with the SCCmec types already established for 

these strains and confirmed the SCCmec types by multiplex PCR (Table 3.6). Only 

MREJ types i, ii and iii were detected among the isolates tested, using singleplex RPA 

reactions. A significant correlation was found between MREJ and SCCmec type 

(p<0.001), with 78.3% of MREJ ii isolates either SCCmec II or IV (91.7%). Most 

MREJ iii isolates (75%) were SCCmec III and most MREJ i isolates (71.4%) were 

SCCmec I. The single SCCmec V isolate was MREJ iii.  

 When confirming SCCmec types by multiplex PCR [Boye et al. 2007], one 

isolate gave an unusual amplification pattern (ST254-MRSA-IV/t009), producing 
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bands for both ccrA2-B and ccrC. Another isolate produced no bands (ST5-MRSA-

III/t045). Retesting with the alternative multiplex PCR (Milheirico, Oliveira and de 

Lencastre 2007a) gave the expected amplification pattern for ST254-MRSA-IV but an 

unusual amplification pattern for ST5-MRSA-III (Figure 3.8). The ST254-MRSA-IV 

isolate likely carries SCCmec subtype IVk (type IV and ccrC (2B&5)), explaining the 

presence of ccrA2-B and ccrC bands using the Boye et al. [2007] method. ST254-

MRSA-IV, otherwise known as EMRSA-10 or the Hannover clone, has already been 

reported to carry this SCCmec element [Chongtrakool et al. 2006, Monecke et al. 

2011]. The lack of amplification pattern for the ST5-MRSA-III isolate using the Boye 

et al. [2007] method indicated the absence of ccrC in its SCCmec element. The 

Milheirico, Oliveira and de Lencastre [2007a] method produced an amplification 

pattern for this isolate consisting of bands for mecA, mecI, the SCCmec III-specific JI 

region and dcs (Figure 3.8). The dcs (downstream common sequence) is shared by 

SCCmec types I, II and IV, but previous studies have identified SCCmec III MRSA 

and MR-CNS isolates positive for dcs [Aires de Sousa and de Lencastre 2003, Qi et 

al. 2005, Budimir et al. 2006, Chongtrakool et al. 2006, Mombach Pinheiro Machado 

et al. 2007]. 
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Table 3.6 Comparison of MREJ type and SCCmec type for 

the 57 MRSA strains from our laboratory collection. 

MREJ type (frequency) SCCmec type Frequency 

i ii iii 

I 12 5 7 0 

II 14 0 14 0 

III 6 0 3 3 

IV 24 2 22 0 

V  1 0 0 1 

Total 57 7 46 4 

 

 

 

Figure 3.8 Amplification patterns for ST254-MRSA-IV (lane 2) 

and ST5-MRSA-III (lane 3) using the Milheirico, Oliveira and de 

Lencastre [2007a] multiplex PCR method. Lane 1, 100bp ladder. 
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 Only two SCCmec types were found among the 49 KC MRSA isolates - II and 

IV. All SCCmec II isolates and most SCCmec IV isolates (97.4%) were MREJ ii 

(Table 3.7).  

 

 Table 3.7 Comparison of MREJ type and SCCmec type 

for 49 MRSA strains from the KC collection. 

MREJ type (frequency) SCCmec type Frequency 

i ii 

II 11 0 11 

IV 38 1 37 

Total 49 1 48 

 

 

 Among the 15 prototypic MRSA strains for the 11 currently known SCCmec 

types, MREJ types i, ii, iii and xii were identified (Table 3.8). Strains with SCCmec 

types II, IV and VI were MREJ ii, SCCmec types I, VII and VIII were MREJ i, and 

the SCCmec type III strains were MREJ iii. The prototypic SCCmec type V strain, 

WIS, was typed as MREJ xii. The recently described SCCmec types IX, X and XI 

were MREJ non-typeable for types i-v, vii and xi-xx, but SCCmec types IX and X 

were found to be novel MREJ types c and g, respectively, after BLAST alignment of 

their GenBank entries against sequences for novel MREJ types discovered in section 

3.3.3.1. 
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Table 3.8 MREJ types of the 15 prototypic 

SCCmec strains. 

SCCmec type 

(prototype(s)) 

MREJ type 

I (NCTC10442, COL) i  

II (N315, BK2464) ii  

III (85/2082, ANS46) iii  

IVa (JCSC4744, MW2) ii  

V (WIS) xii 

VI (HDE288) ii 

VII (JCSC6082) i 

VIII (C10682) i 

IX (JCSC6943) novel MREJ ca 

X (JCSC6945) novel MREJ g 

XI (LGA251) NTb 

a see section 3.3.3.1 regarding novel MREJ types 

b NT = MREJ non-typeable. 

 

3.3.3 Characterisation of isolates 

3.3.3.1 False negative MRSA isolates from TwistAmp MRSA screen of UK collection 
 
 

Screening of the UK MRSA collection identified 42 isolates that were not 

recognised as MRSA by the TwistAmp MRSA assay, nor could they be MREJ-typed 

using singleplex RPA reactions for types i-v, vii and xii, and PCR reactions for types 

xi and xiii-xx. These false negative isolates were characterised by MLST, SCCmec 

and spa typing (Table 3.9). Eight STs in total were found, none of which were closely 

related according to eBURST, except for ST30, which is a SLV of ST36. Cluster 

analysis of the twenty spa types found revealed 4 spa-CCs, representing the four most 
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prevalent STs, ST22 (50% of isolates), ST36 (23.8%), ST149 (11.9%) and ST130 

(4.8%) (Figure 3.9). Four isolates possessing novel spa types were found and 

submitted to the SpaServer database (http://spaserver2.ridom.de/index.shtml) via the 

StaphType software. These were designated types t5626 and t6419-21. t6419 also 

contains a novel repeat, designated r377.  

Isolates with spa types t084, t657, t6419 and t1258 were classified as 

singletons because their repeat patterns differed by more than five repeats from those 

of all other spa types. The first three singleton spa types correspond to the single 

ST15, ST772 and ST59 isolates found among the false negative isolates. t1258 

matched the first five repeats of t032 and would belong to spa-CC906 (ST22) if the 

BURP algorithm criteria were relaxed. spa type t5829 was excluded from BURP 

analysis because it was only 4 repeats in length and no reliable evolutionary history 

can be inferred from ‘short’ spa types [Mellmann et al. 2007]. SCCmec typing by the 

Boye et al. [2007] method described 45.2% of the false negative isolates as type IV, 

23.8% as type II and one isolate each as type I and V. Eleven isolates (26.2%) were 

non-typeable (NT) for SCCmec.  

 ST22-MRSA-IV and ST36-MRSA-II, also known as EMRSA-15 and 

EMRSA-16 respectively, the two predominant nosocomial clones in the UK, were the 

two most common clones among the 42 false negative isolates (Table 3.9). The five 

ST149-MRSA-IV isolates, belonging to the major MLST clonal complex CC5 

(ST149 is a SLV of ST5), have previously been reported only in Malta as an epidemic 

strain [Scicluna et al. 2010], and in a Libyan patient in Switzerland [Francois et al. 

2008]. The single ST772-MRSA-V/t657 isolate is known as the Bengal Bay clone or 

WA MRSA-60, a multiply-resistant PVL-positive CA-MRSA that is becoming 

increasingly prevalent in India, where it has spread into hospitals [D'Souza, Rodrigues 
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and Mehta 2010]. It has also been identified in Malaysia, the UK, Italy, Australia, 

Germany, Hong Kong and Abu Dhabi [Neela et al. 2009, D'Souza, Rodrigues and 

Mehta 2010, Ellington et al. 2010, Monecke et al. 2011, Sanchini et al. 2011], and 

most recently in Ireland, where several ST772-MRSA-V/t657 isolates were reported 

[Brennan et al. 2012]. Many patients infected with ST772-MRSA-V outside of India 

had familial or travel links to India [Ellington et al. 2010, Brennan et al. 2012]. A 

single ST15-MRSA-I isolate was also found among the false negative isolates. MRSA 

from the CC15 lineage are extremely rare, with just one study reporting CC15-MRSA 

isolated in Italy in 1980 [Campanile et al. 2009, Monecke et al. 2011]. 

 The two ST130-MRSA-NT isolates (spa types t843 and t1736) belong to the 

clonal lineage CC130 that has previously been reported in livestock (predominantly 

from bovine sources) and more recently in humans, in the UK, Denmark, Ireland and 

Germany [Cuny et al. 2011, Garcia-Alvarez et al. 2011, Shore et al. 2011]. These 

isolates were non-typeable using the SCCmec typing method of Boye et al. [2007], 

which was confirmed using the method of Milheirico, Oliveira and de Lencastre 

[2007a]. However, the most recently described SCCmec element - type XI - has been 

associated with ST130/t843 and ST130/t1736 strains [Cuny et al. 2011, Garcia-

Alvarez et al. 2011, Shore et al. 2011]. 

Seven ST22-MRSA isolates (spa types t032 and t492) exhibited a novel 

amplification pattern with the Boye et al. [2007] typing method that combined the 

expected bands for SCCmec types III (ccrC) and IV (ccrA2-B and IS1272) (Figure 

3.10). Re-typing using the Milheirico, Oliveira and de Lencastre [2007a] method 

showed they were SCCmec type IV (data not shown). A further two isolates, 

ST30/t017 and ST59/t6419 generated the single band expected for SCCmec type III 

(ccrC) plus one of the bands expected for SCCmec type IV (ccrA2-B) (Figure 3.10). 
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These 9 SCCmec NT isolates by the Boye et al. [2007] method could contain the most 

recently described SCCmec subtype, IVk (type IV and ccrC (2B&5)). This composite 

element, represented by MRSA strain ZH47, comprises a class B2 mec gene complex 

and a type 2 ccr gene complex, plus an SCC carrying ccrC located in the J3 region 

(between the right chromosomal junction and mec complex) [Heusser et al. 2007, 

IWG-SCC 2009]. If so, these isolates would be variants of ST22-MRSA-IV, ST30-

MRSA-IV and ST59-MRSA-IV, respectively.  

ST30-MRSA-IV is a CA-MRSA strain known as the Southwest Pacific clone 

or USA1100, and belongs to the major clonal complex CC30 of HA- and CA-MRSA, 

which includes ST36. The variant of ST59-MRSA-IV could be WA MRSA-15, the 

second most common CC59-MRSA strain in Australia [Coombs et al. 2010] that has a 

composite (SCCmec IV and V) or novel (SCCmec IV plus ccrC) SCCmec element 

(type IV (2B&5)) [Monecke et al. 2011]. Its spa type is t976, which differs from 

t6419 by two repeats. However, performing a BLAST alignment of the mobile 

element of MRSA strain ZH47 (accession number AM292304) against the MREJ 

amplicons of TwistAmp MRSA revealed this strain possesses MREJ iii and this strain 

would therefore be detected by the assay.  
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Table 3.9 Strain types of the 42 false negative isolates from the UK MRSA collection, according to 

MLST, SCCmec typing (using the method of Boye et al. [2007]), and spa typing. 

Strain (ST and SCCmec type) Frequency spa types (frequency) 

CMFT   

ST36-MRSA-II 10 t018 (10) 

ST22-MRSA-IV 8 t906 (4), t032 (2), t6420 (1), t6421 (1) 

ST149-MRSA-IV 5 t002 (1), t5181 (1), t5626 (1), t1062 (1), t5829 (1) 

ST30-MRSA-NTa 1 t017  

ST772-MRSA-V 1 t657  

ST15-MRSA-I 1 t084  

ST59-MRSA-NT 1 t6419  

ST130-MRSA-NT 1 t843  

Addenbrooke's   

ST22-MRSA-IV 6 t032 (2), t020 (2), t022 (1), t1258 (1) 

ST22-MRSA-NT(IV)b 7 t032 (6), t492 (1) 

ST130-MRSA-NT 1 t1736  

a NT = non-typeable SCCmec element. 

b NT by the method of Boye et al. [2007] but SCCmec type IV after re-typing by the method of 

Milheirico, Oliveira and de Lencastre [2007a]. 
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Figure 3.9 Relatedness of spa types among the 42 false negative isolates from the UK 

MRSA collection according to the BURP algorithm. Clusters of linked spa types 

correspond to spa clonal complexes (spa-CC). spa types are clustered into a spa-CC 

when their repeat patterns differ by no more than 5 repeats. BURP sums up ‘costs’ (a 

measure of relatedness based on the repeat pattern) to define a founder-score for each 

spa type in a spa-CC. The founder (blue node) is the spa type with the highest 

founder-score in its spa-CC. For example, spa-CC906 has founder t906. Each node 

represents a spa type. Node size represents the number of clustered strains that belong 

to that spa type. The shading of the branches represents the ‘costs’ (similarities in 

repeat patterns) between two spa types; the darker the branch, the lower the cost 

(more similar repeat patterns). The ST associated with each spa-CC is also shown. 

Singletons and excluded spa type not shown. 
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Figure 3.10 SCCmec typing using the Boye et al. [2007] method - PCR 

amplification patterns for 14 of the 42 false negative isolates from the UK 

MRSA collection. Lanes 1 and 18, 1kb DNA ladder (bottom four bands from top 

1kb, 750bp, 500bp and 250bp); lane 16, positive control (MRSA-IV); lane 17, 

negative control; lanes 6, 8 and 13, SCCmec II; lanes 10, 12, 14 and 15, SCCmec 

IV; all other lanes, non-typeable. 

 
 Sequence analysis of the MREJs of 18 of the 28 false negative isolates from 

CMFT revealed six novel MREJ types, designated MREJ a, b, c, d, e and g. For the 

remaining 10 isolates, sequence data for seven are not yet available, two produced 

strange sequence assemblies and require further work, and one requires re-

sequencing. I developed optimal RPA primers for the novel MREJ types a-d using the 

primer screening method outlined in section 3.2.7; these are listed in Table 3.10 but 

the sequences themselves are not available as they are commercially sensitive. Primer 

screens for MREJ types e and g have yet to be conducted. Example output from the 

primer screen is shown in Figure 3.11.  

 The novel MREJ types grouped as expected considering the strain types 

identified among the isolates, with the most common novel MREJ type being d (Table 

3.11). CMFT isolates with known MREJ types included in the sequencing as controls 

(i-iv, vii, xii, xiii and xvi) gave the expected MREJ types when sequenced, except 

one. The isolate originally thought to be MREJ xvi turned out to be novel MREJ d 
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when sequenced. The positive PCR reactions for xvi could most likely be explained 

by non-specificity of the primers. 

 

Table 3.10 Optimal MREJ-specific primers for novel 

MREJ types a to d. For example, primer d1+1 was located 

1bp downstream from the initial best candidate primer, d1. 

The final stage of the primer screen determined that a 

length of 35bp was optimal for primer d1+1. 

Novel MREJ type Optimal MREJ-specific primer 

(all 35bp) 

a MREJ_a1+3 

b MREJ_b4+4 

c MREJ_c1+1 

d MREJ_d1+1 
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Figure 3.11 Example output for primer screen of novel MREJ type d. Primer 

candidates were tested in duplicate using novel MREJ PCR product (~50 copies/µl) as 

template. The original RPA primer designed for MREJ d (d1) is shown, together with 

three other candidate primers each 5bp further downstream of orfX than the previous 

one (i.e. d2, d3 and d4 were 5bp, 10bp and 15bp further downstream of orfX than d1, 

respectively). From this first stage of the primer screen, primer d1 was selected as the 

best candidate. 
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Table 3.11 Strain types of the 28 false negative CMFT isolates and associated novel 

MREJ types. 

Strain spa types (frequency) Novel MREJ type 

(frequency) 

Group 1   

ST36-MRSA-II t018 (10) d (8) 

ST30-MRSA-NT t017 (1) g (1) 

Group 2   

ST22-MRSA-IV t906 (4), t032 (2), t6420 (1), t6421 (1) c (4) 

Group 3   

ST149-MRSA-IV t002 (1), t5181 (1), t5626 (1), t1062 (1), 

t5829 (1) 

e (3) 

Singletons   

ST772-MRSA-V t657 (1) b (1) 

ST15-MRSA-I t084 (1) sequence not 

available 

ST59-MRSA-NT t6419 (1) a (1) 

ST130-MRSA-NT t843 (1) sequence not 

available 

 

3.3.3.2  Characterisation of the 49 KC MRSA isolates 
 

 ST8-MRSA-IV also known as USA300, the predominant CA-MRSA clone in 

the US, accounted for 65.3% of the 49 MRSA isolates tested with TwistAmp MRSA 

(Table 3.12). This included an ACME-negative variant (two isolates), which seems to 

be rare in the US [Diep, Sensabaugh and Perdreau-Remington 2007, Haenni et al. 

2011], but has been reported in South America [Arias et al. 2008, Sola et al. 2012], 

Spain [Blanco et al. 2011] and most commonly, in Australia [Monecke et al. 2009]. 

One isolate of the ACME-negative variant produced a consistently weak reaction 
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curve with TwistAmp MRSA (see Figure 3.4) but when MREJ typed from DNA was 

strongly positive for MREJ i. The MREJ i false positive isolate mentioned in section 

3.3.1.2, CC1-MSSA [PVL+], was also weakly positive with TwistAmp MRSA but 

strongly positive in singleplex RPA reactions for MREJ i.  CC1 is a major worldwide 

MSSA lineage strongly associated with CA-MRSA, including USA400. All SCCmec-

related microarray targets were negative for this isolate, removing the possibility of a 

mec-less cassette. However, the isolate could contain a remnant of an SCC element 

(mec-containing or otherwise) at the integration site (see section 3.4.1 for related 

discussion).  

 ST5-MRSA-II, including its SLV ST225-MRSA-II, made up 22.4% of the 

MRSA isolates tested. Also known as the NY/Japan clone, or USA100, this strain is 

the predominant HA-MRSA in the US. Four isolates belonging to the CC5-MRSA-

IV, also known as the Paediatric clone, were found. This clone is prevalent in 

Argentina, Colombia and the US [Chambers and Deleo 2009]. 

  Of the seven isolates that produced a negative result with TwistAmp MRSA, 

five were MSSA belonging to CC8, CC30, CC45, CC59 and CC152. CC8, CC30 and 

CC45 are major international MRSA lineages, and CC59 is a common CA-MRSA 

lineage. The CC8-MSSA isolate was PVL+ and is likely a USA300 that lost its 

SCCmec element [Brown et al. 2012]. The CC152-MSSA isolate was also PVL+. 

This clone is prevalent in West Africa [Ruimy et al. 2008, Okon et al. 2009, Breurec 

et al. 2011, Shittu et al. 2011], but the epidemic CC152-MRSA clone prevails 

elsewhere [Perez-Roth et al. 2010]. The two remaining isolates were MR-CNS, one of 

which, Staphylococcus succinus, was classified as MRSA by culture. There is only 

one report of S. succinus being isolated from human clinical material [Novakova et al. 

2006]. 
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Table 3.12 Strain types of the 57 isolates of the KC collection, as determined by Alere 

Technologies (using StaphyType DNA, as previously described [Monecke and Ehricht 

2005, Monecke et al. 2006, Monecke et al. 2007a, Monecke et al. 2008, Monecke, 

Slickers and Ehricht 2008, Monecke et al. 2011]). 

Strain Further strain information Frequency 

True positive  48 

ST8-MRSA-IV  PVL+/ACME+1, USA300 31 

ST5/ST225-MRSA-II  New York/Japan Clone, USA100 11 

CC5-MRSA-IV  Paediatric clone 4 

ST72-MRSA-IV  USA700/NRS386 1 

ST8-MRSA-IV  PVL+/ACME- 1 

Weak true positive  1 

ST8-MRSA-IV  PVL+/ACME-  

False positive  1 

CC1-MSSA  PVL+  

True negative  7 

CC8-MSSA  PVL+ 1 

CC30-MSSA  1 

CC45-MSSA  1 

CC59-MSSA  1 

CC152-MSSA  PVL+ 1 

MR-CNS  2 (one S. haemolyticus, 

one S. succinus) 

Total  57 

1PVL = panton valentine leukocidin; ACME = arginine catabolic mobile element. 
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3.3.4 Scope of TwistAmp MRSA 

3.3.4.1 Testing a variant of a common MRSA clone in Copenhagen, Denmark 
 
  
 The isolate with similar ST, SCCmec and spa type (ST8, SCCmec IVh and 

t024 respectively) to the common variant of the Copenhagen clone (ST8-MRSA-

IVa/t024) that was not detected by BD GeneOhm MRSA, was detected using 

TwistAmp MRSA and when tested with singleplex RPA reactions for MREJ types i-

v, vii and xii it tested positive for MREJ ii (Figure 3.12). Since MREJ i and ii differ 

by a 102-bp insertion, an isolate with MREJ ii will test positive for both types. 

Sequencing of the MREJ amplicon of this isolate (data not shown) revealed three 

SNPs compared to the reference MREJ amplicon for type ii. One of these SNPs was 

in the probe binding region, but is accounted for in the probe design using a wobble 

base, so should not cause any detection problems. The other two SNPs were not 

present in the primer/probe binding regions so should not have any effect on RPA 

reaction performance. The preliminary data show that this variant is not problematic 

for TwistAmp MRSA, although the SCCmec type of the tested isolate was subtype 

IVh, whereas the problem variant was SCCmec subtype IVa. It is therefore likely that 

the tested isolate does not have the MREJ in question in the Bartels paper. Indeed, 23 

MRSA isolates with SCCmec type IVh were tested by Bartels et al. [2009] and all 

were detected by BD GeneOhm MRSA. Two prototypic strains for SCCmec type IVa 

tested positive with TwistAmp MRSA and were MREJ typed as ii (section 3.3.2.4 

above and 3.3.4.4 below) but had different STs and spa types to the variant of the 

Copenhagen clone (ST1/t128 and ST379/t375 versus ST8/t024). The PCR primers 

and/or probes used in BD GeneOhm MRSA may overlap SNPs in the MREJ of the 

Copenhagen clone, causing amplification and/or detection problems for their assay, or 
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the ST8-MRSA-IVa/t024 variant could possess an entirely novel MREJ not covered 

by the assay. Isolates of ST8-MRSA-IVa/t024 from the paper of Bartels et al. [2009] 

require testing with TwistAmp MRSA for proper comparison to BD GeneOhm 

MRSA. 

 

Figure 3.12 MREJ typing results for the SCCmec IVh/t024 isolate. No reverse = no 

MREJ-specific primer in reaction, to act as a negative control. 

 

3.3.4.2 Testing common Australian MRSA clones not detected by BD GeneOhm MRSA 
 
  
 Two clones not detected by BD GeneOhm MRSA in an Australian study 

[Thomas et al. 2008], the predominant Australian nosocomial clone (ST239-MRSA-

III) and the Southwest Pacific clone (ST30-MRSA-IV), were tested with TwistAmp 

MRSA. Four isolates from our laboratory collection of MRSA that corresponded to 

these two clones, were strongly detected by TwistAmp MRSA, with one isolate typed 

as MREJ iii (ST239-MRSA-III) and three isolates as MREJ ii. These clones therefore 

do not seem to cause detection problems with TwistAmp MRSA. Again, the primers 
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and/or probes used in BD GeneOhm MRSA may target more variable regions than 

those in TwistAmp MRSA. 

3.3.4.3 Testing the livestock-associated MRSA clone ST398-MRSA-V 
 
 

ST398 has previously been reported to cause detection problems with current 

commercial diagnostic assays [Reischl et al. 2009, Voss 2009, Malhotra-Kumar et al. 

2010b]. Strain SO385 (ST398-MRSA-V) was therefore tested with TwistAmp 

MRSA, giving a weak positive result (data not shown). MREJ typing of this strain 

with RPA singeplex reactions for MREJ types i-v, vii and xii gave a weak positive 

result for MREJ type iii (Figure 3.13). Sequencing of the type iii amplicon revealed 

two SNPs in the probe binding region, compared to the typical MREJ iii sequence 

(sequences not shown as commercially sensitive). These two SNPs could well explain 

the weak positive result for the SO385 isolate compared to typical MREJ iii isolates, 

as well as the general ST398 detection problems seen with current commercial PCR 

diagnostic assays [Voss 2009]. The SO385 strain has since been whole genome-

sequenced (GenBank accession number AM990992 [Schijffelen et al. 2010]). 

Aligning the SO385 MREJ iii amplicon I sequenced against the complete genome 

sequence of SO385 confirmed the presence of these two SNPs. Aligning the SO385 

MREJ iii amplicon against other available ST398 sequences (all SCCmec V) revealed 

that the same two SNPs were consistent across all ST398-MRSA-V strains (GenBank 

accession numbers AB505629, FJ830606 (both SCCmec V (5C2)) and GQ902038 

(SCCmec V (5C2&5)). It is likely that ST398 harbours more than one MREJ type 

since it is associated with more than one SCCmec type (mostly type V (shown to be 

MREJ iii) but also type IV; type III has also been reported but due to the typing 

method used may actually be type V [van Loo et al. 2007, Nemati et al. 2008, Jansen, 
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Box and Fluit 2009]). Recently, two new SCCmec types (IX and X) were reported in 

ST398 strains [Li et al. 2011], and as shown in section 3.3.2.4, were non-typeable by 

MREJ typing and thus not detected by TwistAmp MRSA. ST398 isolates with 

SCCmec type IV were unavailable for testing and no sequences were deposited in 

GenBank with this composition to allow comparison with the various TwistAmp 

MRSA amplicons.  

 

 
Figure 3.13 MREJ typing results for the ST398 isolate. No reverse = no MREJ-

specific primer in reaction, to act as a negative control. 

 

3.3.4.4 Testing prototype strains for SCCmec types I-XI with TwistAmp MRSA 
 
 

 To determine the range of SCCmec types that TwistAmp MRSA was able to 

detect, 15 prototypic strains for SCCmec types I-XI were tested with the assay. 

TwistAmp MRSA was able to detect 11, representing SCCmec types I-IV and VI-VIII 

(Figure 3.14A). The SCCmec type V prototype strain (WIS) was not detected by 

TwistAmp MRSA and was later MREJ typed by singleplex RPA reactions, as xii 

(Figure 3.14B), an MREJ type not covered by the assay. Performing a BLAST 
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alignment of all SCCmec type V entries in GenBank other than WIS (both types 5C2 

and 5C2&5; accession numbers AB505629, AM990992, GQ902038, FJ830606, 

AB478780, AB512767, AB462393 and CP003166) against the MREJ sequences for 

all known MREJ types, revealed that they were all MREJ iii, rather than xii. As 

mentioned, all ST398-associated SCCmec type V sequences have two SNPs in the 

probe binding region compared to the typical MREJ iii sequence, which are likely to 

produce only weak positive results using TwistAmp MRSA, as shown by the ST398-

MRSA-V reference strain SO385 above (Figure 3.13). The remaining four SCCmec 

type V sequences in GenBank possessed no SNPs in the primer or probe binding 

regions for MREJ iii, suggesting that TwistAmp MRSA would succesfully detect 

strains possessing this variant. Thus, it appears that some SCCmec type V strains will 

be detected by TwistAmp MRSA and others will not (or will give weak positive 

results), although the proportion that will be detected is at present unclear. 

 The recently described prototypic strains for SCCmec types IX-XI were not 

detected by TwistAmp MRSA and were MREJ non-typeable for types i-v, vii and xi-

xx. However, a BLAST alignment of the sequences of SCCmec types IX, X and XI 

(GenBank accession numbers AB505628, AB505630 and FR823292, respectively) 

against the novel MREJ types a-e and g discovered in this chapter, revealed that the 

prototype strains for SCCmec types IX and X were novel MREJ types c and g, 

respectively. While the MREJ of the prototype strain for SCCmec X had no SNPs 

compared to the novel MREJ g sequence, SCCmec IX had one SNP in the orfX primer 

binding region compared to the novel MREJ c sequence (the same C/T SNP found in 

several CMFT MREJ ii isolates in section 3.3.2.1). SCCmec XI was not typeable by 

the novel MREJ types a-e and g. 
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Figure 3.14 A TwistAmp MRSA output showing negative result for prototype strain 

WIS (SCCmec V). NTC = no template control; mrej-ii = MREJ type ii amplicon as a 

positive control (50 copies/µl). B Output from singleplex MREJ xii RPA reaction for 

prototype strain WIS (SCCmec V). NTC = no template control. 
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3.4 DISCUSSION 

3.4.1 TwistAmp MRSA performance and scope 

 TwistAmp MRSA was shown to have a sensitivity, specificity, NPV and PPV 

of 98.2%, 90.3%, 98.2% and 90.3% respectively when tested with our laboratory 

collection of 119 geographically and clonally diverse MRSA and MSSA (and three 

CNS). Although not relevant to the use of the method in a clinical setting, all test 

characteristics were improved upon retesting those that gave false positive and false 

negative results (to 100%, 91.9%, 100% and 91.9% respectively). The one false 

negative isolate was correctly identified as MRSA upon retesting, suggesting a 

problem with the initial detection by TwistAmp MRSA (lack of assay sensitivity or 

perhaps poor protocol implementation). Five false positive isolates (all previously 

well-defined MSSA [Enright et al. 2002, Feil et al. 2003]) remained after retesting, 

indicating a lack of assay specificity, or possible contamination of the samples or 

reactions. The latter could occur as a result of MRSA-containing aerosols, for 

example created by pipetting, although negative controls should have detected this 

problem. Another possibility is MSSA containing mec-less cassettes or non-mecA 

SCC elements, which is discussed in greater detail below.  

 A limitation of using the laboratory collection of Staphylococci to test 

TwistAmp MRSA is that it does not include recently isolated or emerging strains, nor 

is it representative of a distinct region as it included MRSA isolates from 16 countries 

representing strains with an international distribution. Nonetheless, screening of the 

collection that includes diverse MRSA, has provided an initial insight into the 

performance of the assay, which is comparable to that of current commercial assays 

(see Table 1.7). A more up to date collection of MRSA, including diverse examples of 
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MR-CNS and more geographically diverse MSSA strains, will allow more 

comprehensive testing of TwistAmp MRSA. 

 Testing the MRSA collections from hospitals in the US and UK with 

TwistAmp MRSA (singleplex MREJ reactions for the UK collection) gave an assay 

sensitivity of 100% and 96.6% respectively. This showed that the assay delivered 

good coverage of the MRSA strains prevalent at each site. However, 25 isolates from 

the UK collection produced weakly positive or lagging reaction curves, but upon 

retesting were strongly positive, suggesting lack of assay sensitivity, or poor protocol 

implementation when first tested. The lower sensitivity observed for the UK 

collection of MRSA is explained by the presence of MREJ types not covered by 

TwistAmp MRSA, and a number of novel MREJ types. No such MREJ types were 

identified in the KC collection, although this may be an artefact of sample size - only 

49 MRSA isolates in the latter compared to 1,276 from the UK collection. Testing 

more isolates from the site of the KC MRSA, or from a second US site, may reveal 

the presence of more MREJ types, including novel types, but it could in fact be that 

MREJ diversity, possibly as a consequence of the strain diversity or the presence of 

more conserved SCCmec elements among MRSA, is lower in the US compared to the 

UK (see section 3.4.2 for more on MREJ diversity and distribution). Indeed, a recent 

study of BD GeneOhm MRSA tested on a diverse range of MRSA genotypes and 

SCCmec types from the US and Taiwan, gave a very high assay sensitivity (99.7%) 

[Boyle-Vavra and Daum 2010]. The TwistAmp MRSA sensitivities determined for 

both the UK and KC MRSA collections may be overestimated because subculture of 

the isolates was used, not the swabs directly (which would contain mixed flora and 

potential reaction inhibitors).  
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 Furthermore, two hospitals were involved in the UK collection compared to 

the single hospital in the KC collection (although MREJ typing revealed no 

significant difference between the two UK hospitals; see section 3.4.2 below). The 

nature of the hospitals could also play a role in the differing sensitivities seen. The US 

hospital served paediatric patients only. Differences in MRSA strain types have been 

observed between adult and paediatric patients [David et al. 2006b, Park et al. 2007, 

Hudson et al. 2012] (see also Chapter 5); for example, in the US a lower strain 

diversity and significantly more USA300 is associated with the latter group [Hudson 

et al. 2012] (see also discussion of KC isolate characterisation below and Chapter 5). 

An isolate collection from solely paediatric patients may affect the MRSA diversity 

observed and not represent the true diversity in the region. Simultaneously comparing 

TwistAmp MRSA with other diagnostic methods would allow more accurate 

assessment of assay sensitivity in a given region.  

 Although these preliminary test characteristics provide useful information 

about the general ability of TwistAmp MRSA to detect most MRSA, the performance 

of TwistAmp MRSA in a clinically relevant situation has been evaluated in two pre-

clinical (feasibility) studies to obtain more clinically relevant performance data. 

TwistDx has used the assay to test clinical samples obtained as part of routine 

screening procedures at hospitals in the UK and US. Specifically, their aim was to 

assess whether the assay provided adequate coverage of the MRSA strains prevalent 

at a certain hospital/in a certain region and compare its performance to gold standards 

of MRSA detection.  

 In 2009 the UK study collected 5,433 nasal and groin swab samples from 

routine MRSA screening of patients admitted over a 12-week period at Manchester 

Royal Infirmary, CMFT [DoH 2011]. TwistAmp MRSA performed well when 
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compared to the gold standard method of broth enrichment and culture on 

chromogenic media. This was particularly the case for specificity and NPV, with 

clinical sensitivity at almost 75% (exact data confidential). However the PPV was 

only around 50%, which could be attributed to mec-less cassettes or non-mecA SCC 

elements, sampling error, or MRSA positive patients receiving systemic or topical 

MRSA therapy [DoH 2011]. The confidential US study was conducted in 2011 at a 

paediatric medical centre to simultaneously compare the clinical sensitivity and 

specificity of the assay to Xpert MRSA, using chromogenic agar and blood agar plate-

based bacterial culture as the gold standard. TwistAmp MRSA performed similarly to 

Xpert MRSA, but showed a lower clinical sensitivity (data confidential). 

 Despite pre-clinical studies demonstrating the good performance of TwistAmp 

MRSA compared to current gold standard culture techniques and the market leader in 

molecular diagnostic assays, further assay development is required before the assay 

can be used clinically. There is potential to improve the assay further both by 

covering more MREJ types enabling detection of more MRSA strains and SCCmec 

variants, and by improving assay functionality (particularly since 25 isolates from the 

UK collection required retesting in order to produce strong positive results). The 

former was addressed in part in this chapter and is discussed below; the latter is 

addressed in Chapter 4.  

 In a screening situation where the goal is to detect MRSA colonised patients 

and to prevent nosocomial MRSA infections, an MRSA diagnostic assay with a high 

NPV is important [Bartels et al. 2009], especially in countries with a low MRSA 

prevalence (<1%), such as in northern Europe, where few MRSA carriers are 

expected [Tiemersma et al. 2004]. In these countries, hospitalised patients with 

MRSA are always isolated. If a patient is at risk of being colonised by MRSA, they 
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too are kept in isolation until a negative MRSA result is obtained. Thus, a false 

negative result would release patients with MRSA from isolation, which could lead to 

an MRSA outbreak [Bartels et al. 2009]. The proportion of invasive S. aureus isolates 

that are MRSA has been high in the UK (25-50% [ECDC 2011]), where patient 

isolation procedures are less stringent, but rates of MRSA bacteraemia are decreasing 

[HPA 2011]. It is important that for use in this country TwistAmp MRSA be adequate 

for screening the local diversity. Although a high NPV for TwistAmp MRSA has thus 

far been reported, this can be further improved by reducing the number of false 

negative results.  

 Several MRSA strains were identified among the 42 false negative isolates 

from the UK collection, including strains that, while occurring at a frequency of 

<0.5% in the MRSA population tested, harboured non-typeable SCCmec elements. 

The most salient finding however was that the majority of isolates not detected by 

TwistAmp MRSA (73.8%) belonged to the dominant UK clones EMRSA-15 and -16. 

It was therefore important to sequence the MREJs of all available false negative 

isolates (the 28 from CMFT) in order to determine why these strains or variants 

thereof were not detected, for subsequent coverage by the assay where possible. Six 

novel MREJ types were found among 18 of the 28 isolates where genome data were 

available. Genome data for the remaining ten isolates would likely reveal two more 

novel MREJ types based on the association of the current novel MREJ types with the 

strain types identified (Table 3.11). Given that sequence data for MREJ types vi and 

viii-x are not publicly available, up to four of the novel MREJ types discovered here 

could be one of these. It was not possible to modify the current set of primers and 

probe to account for the novel MREJ types due to great sequence variability, and so 

new RPA primers were designed and developed to detect them. Incorporation of these 
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into the current multiplex has not yet been attempted, but the most likely scenario 

would be incorporation of novel MREJ type d since it was the most common. Given 

that the current primer/probe set is optimal for the RPA-based system, and that 

previous attempts by TwistDx to include MREJ xii in the assay were 

counterproductive, the feasibility of adding a new primer pair to the set is 

questionable. Nevertheless, having optimised RPA primers that exist for all novel 

MREJ types identified will allow TwistDx to quickly and easily respond to future 

changes in the prevalences of these MREJ types, by developing as necessary separate 

primer/probe sets for MREJ types other than the 'core set', or by changing the 'core 

set' itself as a result of further research and development that facilitates easy 

incorporation of more MREJ types into TwistAmp MRSA. A recent study slightly 

adapted the PCR-based detection method of Huletsky et al. [2004] (the forerunner of 

BD GeneOhm MRSA) and added additional primers to allow detection of more 

MRSA types based on a literature search of strains and on the authors' discovery of 14 

novel MREJ types that are not detected by commercially available assays, resulting in 

a megaplex PCR [van der Zee et al. 2011]. A total of 21 MREJ-specific primers were 

included in the megaplex, with no adverse effects on PCR reported [van der Zee et al. 

2011]. PCR clearly works with many primers in a single reaction, but RPA is a new 

technology, and more research is needed into its multiplexing capabilities (see Part 1 

summary).   

 In section 3.2.7 I used the whole genome sequence data provided by 

collaborators in Saudi Arabia to characterise the MREJs of 18 of the false negative 

CMFT isolates. My collaborators have subsequently used these genome data to 

assemble their SCCmec elements and compare them with the sequences of known 

SCCmec types using BLAST. Their results corroborate the findings of this chapter, in 
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terms of the non-typeable SCCmec elements I identified by SCCmec typing. Of the 18 

isolates that were sequenced, most carried SCCmec IVk or variants thereof (Table 

3.13). Four non-typeable (NT) SCCmec isolates were identified among the 42 UK 

false negatives, after re-typing the seven ST22 isolates as type IV using a second 

SCCmec typing method [Milheirico, Oliveira and de Lencastre 2007a]. Only three of 

these four were sequenced, with the remaining one from Addenbrooke's Hospital 

unavailable for sequencing (one ST130-MRSA-NT isolate). Of the three that were 

sequenced, the ST130-MRSA-NT isolate produced a novel sequence assembly that 

requires further analysis by collaborators, adding weight to the prediction that the two 

ST130 isolates identified could harbour the most recently described SCCmec element, 

type XI [Garcia-Alvarez et al. 2011, Shore et al. 2011]. ST59-MRSA-NT carried a 

IVk variant as predicted, and ST30-MRSA-NT carried an unusual composite SCCmec 

element primarily consisting of type IV.  

 Interestingly, the eight ST36 isolates and four ST22 isolates sequenced, which 

were SCCmec typed as II and IV respectively, all in fact carried IVk elements, or 

variants thereof, and in one case a composite element with some similarity to type 

IVk, but primarily to type I. This shows that SCCmec IVk, present in dominant UK 

clones, is clearly a problematic variant for TwistAmp MRSA, accounting for at least 

82% of the false negatives identified in the UK collection and associated with four of 

the six novel MREJ types. This also highlights the problem of misidentifications 

experienced by PCR-based SCCmec typing methods, as discussed further in the Part 1 

summary. Based on the SCCmec typing results of the Boye et al. [2007] method, the 

isolate representing the Hannover clone (ST254-MRSA-IV) in our laboratory 

collection of MRSA, and reported to carry SCCmec subtype IVk [Chongtrakool et al. 

2006, Monecke et al. 2011], produced an identical, non-typeable amplification pattern 
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to the ST22-MRSA-NT false negative isolates of the UK collection, that were also 

thought to carry SCCmec subtype IVk. However, TwistAmp MRSA detected the 

isolate representing the Hannover clone. Perhaps, for some unknown reason, the 

ST254-MRSA-IVk clone, or German isolates containing SCCmec subtype IVk (since 

the isolate was obtained from Germany), have a detectable MREJ type (MREJ i) 

unlike the ST22-MRSA-IVk clone, or UK isolates containing this SCCmec subtype. 

  Finally, the MREJ xvi isolate included in the sequencing protocol as a control 

strain actually contained novel MREJ d upon sequencing, and consisted of a 

composite SCCmec element of types IVk and II. More detailed analysis of the 

SCCmec elements of these false negative isolates will be published at a later date.  
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Table 3.13 Strain types of the 28 false negative CMFT isolates, associated novel MREJ types (for 18 isolates) and SCCmec types as 

determined by whole genome sequencing (for 18 isolates).  

Strain spa types (frequency) Novel MREJ type 

(frequency) 

SCCmec type 

(frequency) 

Similar currently described SCCmec 

(composites only)a 

 

Group 1     

ST36-MRSA-II t018 (10) d (8) IVk (5), IVk variant 

(1), composites (2),  

Composite 1:GU122149 (IVk), D86934 (II) 

Composite 2: CP000046 (I), AB435013 (II.5), 

BA000017 (II), GU122149 (IVk). 

ST30-MRSA-NT t017 (1) g (1) Composite HM030720 (IV), AB121219 (V), AP006716 

(S. haemolyticus), AB425427 (III). 

Group 2     

ST22-MRSA-IV t906 (4), t032 (2), t6420 (1), 

t6421 (1) 

c (4) IVk (3), IVk variant (1)  

Group 3     

ST149-MRSA-IV t002 (1), t5181 (1), t5626 (1), 

t1062 (1), t5829 (1) 

e (3) IVk (1), IVk variant (2)  

Singletons     

ST772-MRSA-V t657 (1) b (1) V  

ST15-MRSA-I t084 (1) sequence not available   

ST59-MRSA-NT t6419 (1) a (1) IVk variant  

ST130-MRSA-NT t843 (1) sequence not available   

a GenBank accession number (SCCmec type) for composite elements only. Primary SCCmec type in bold. All IVk isolates including variants similar to 

GenBank accession number GU122149. 
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 All 49 MRSA isolates from the KC collection were detected by TwistAmp 

MRSA. Characterisation of these isolates by StaphyType DNA microarray analysis 

[Monecke and Ehricht 2005, Monecke et al. 2006, Monecke et al. 2007a, Monecke et 

al. 2008, Monecke, Slickers and Ehricht 2008, Monecke et al. 2011] showed 32 

(65.3%) were USA300 and 11 (22.4%) were USA100, representing the predominant 

CA- and HA-MRSA clones in the US, respectively. This suggests that TwistAmp 

MRSA would perform well in the US given its ability to detect the major clones 

circulating there. One false positive isolate was detected however. This isolate was 

culture positive for MRSA, detected by TwistAmp MRSA and typed as MREJ i, yet 

when analysed by microarray was found to be CC1-MSSA and positive for the PVL 

locus. There are several possibilities. First, the isolate could have contained a mix of 

MRSA and MSSA, and when tested by microarray an MSSA colony was picked. 

Second, the isolate could have a novel mecA homologue not detected by mircoarray 

analysis, similar to that recently found in LA-MRSA, but combined with a detectable 

MREJ. Third, the isolate could be MSSA with a mec-less cassette or other SCC 

element. Given the culture positive result for MRSA this could only be possible if the 

first point was also true. Furthermore the negative microarray results for all SCCmec-

related targets mean an intact SCC element is unlikely.  

 The isolate could have lost mecA while retaining PVL for fitness reasons (lack 

of antibiotic use in its environment) and because of evolutionary pressure [Ender et al. 

2004, Lee et al. 2007, Brown et al. 2012], and there is evidence that some clinical 

MRSA isolates have lost all or part of the SCCmec element [Donnio et al. 2005, Wong 

et al. 2010]. Remnants of SCCmec in MSSA have been reported in several studies, but 

many refer to multi-resistant MSSA [Corkill et al. 2004, Huletsky et al. 2004, Donnio 

et al. 2005, Rupp et al. 2006, Donnio et al. 2007, Shore et al. 2008, Wong et al. 2010, 
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Lindqvist et al. 2011]. The false positive isolate was not positive for any antibiotic 

resistance determinants according to microarray analysis (except for penicillinase). 

Rupp et al. [Rupp et al. 2006] described an MSSA isolate containing only small 

fragments of the right extremity of SCCmec that tested positive with the GenoType 

MRSA Direct assay, speculating that the isolate arose from MRSA that experienced 

the deletion of large parts of its SCCmec element.  

 There has also been a report of an MRSA isolate rapidly losing SCCmec upon 

sub-culturing [Ciardo et al. 2010], which could have occurred in the false positive 

isolate found here, between the initial chromogenic culturing to determine MRSA and 

microarray analysis. Freezing-thawing of stored isolates has also been suggested as a 

possible cause of mecA loss [van Griethuysen et al. 2005]. If the false positive CC1-

MSSA isolate did contain a mec-less element, then one would expect it to be 

genetically related to the predominant MRSA clones in the local area. No CC1-MRSA 

were identified among the KC isolates. Further investigation, ideally by whole genome 

sequencing, would reveal whether the isolate harbours remnants of a non-mecA-

containing SCC element or indeed of an SCCmec element that is detected by 

TwistAmp MRSA. Since the isolate is CC1, it could harbour a remnant of SCCmec 

type IV present in USA400 (ST1) or a remnant of the mobile element SCC476 which is 

present in MSSA476 (ST1) [Holden et al. 2004]. One study reported 17 false positive 

isolates resembling USA400 and/or MSSA476 that contained an intact SCC integration 

site and a duplicate dcs. The binding region for one of the MREJ-specific primers in 

BD GeneOhm MRSA was identified in this duplicate dcs, which in the absence of 

SCC would generate a 176bp amplicon and thus a false positive result [Wong et al. 

2010]. Again, further testing of the CC1-MSSA false positive isolate would reveal if it 

too possesses a duplicate dcs. 
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  False positive isolates containing mec-less cassettes, non-mecA-containing SCC 

elements and SCC remnants that all possess a detectable MREJ are clearly a problem 

for current commercial assays [Huletsky et al. 2004, Huletsky et al. 2005, Desjardins et 

al. 2006, Oberdorfer et al. 2006, Rupp et al. 2006, Rossney et al. 2007a, Zhang et al. 

2007, Farley et al. 2008, Shore et al. 2008, Snyder, Munier and Johnson 2010, 

Arbefeville et al. 2011, Blanc et al. 2011, Lindqvist et al. 2011, Stamper et al. 2011], 

and TwistAmp MRSA appears to be no exception. False positive results can lead to 

inappropriate patient care through unnecessary treatment (e.g. vancomycin therapy) 

and additional precautionary measures and costs. Further, current MREJ-based assays 

may not be suitable in regions with a high prevalence of multi-resistant or SCC 

remnant-containing MSSA [Lindqvist et al. 2011, Stamper et al. 2011]. For these 

reasons it is important that current and next generation tests minimise or even eradicate 

the limitation of false positives [Blanc et al. 2011].  

 To assess whether the current set of primers and probes in TwistAmp MRSA is 

sufficient to detect most MRSA strain types, the assay was tested with strains 

possessing different SCCmec elements as well as those possessing SCCmec variants 

that cause problems with current commerical assays. Of the 15 prototypic strains for 

known SCCmec types I-XI, TwistAmp MRSA was able to detect 11 strains, covering 

types I-IV and VI-VIII. WIS, the prototypic strain for SCCmec type V, was MREJ xii 

and therefore not covered by the assay. Rossney et al. [2007a] found BD GeneOhm 

MRSA also gave a false negative result for WIS, but was positive when tested from 

genomic DNA. Another study had to add an additional primer to the assay of Huletsky 

et al. [2004] in order to detect the MREJ of WIS [van der Zee et al. 2011]. A BLAST 

alignment of SCCmec type V sequences against TwistAmp MRSA amplicons showed 

all but the WIS type V element possessed MREJ type iii. A type V-containing isolate 
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from the laboratory collection of MRSA (ST59-MRSA-V) was also successfully 

detected by TwistAmp MRSA. With the exception of the element represented by WIS, 

these findings suggest that TwistAmp MRSA should be able to detect most type V 

elements, though it appears the variant in ST398-MRSA-V strains would produce 

weak results compared to others. Furthermore, the ST772-MRSA-V isolate from the 

CMFT collection could not be detected at all, due to the presence of the novel MREJ b, 

suggesting TwistAmp MRSA is unable to detect this emerging CA-MRSA clone. 

These findings warrant further investigation using more SCCmec type V isolates to 

directly test the assay. 

 SCCmec types IX-XI were not detected by TwistAmp MRSA due to the 

presence of novel MREJ types. Xpert MRSA also failed to detect SCCmec type XI 

(not yet tested with BD GeneOhm MRSA) [Shore et al. 2011]. This is unsurprising as 

SCCmec type XI not only contains a novel mecA homologue, mecALGA251, which is 

undetectable by PCR tests for mecA, but also does not have a J3 joining region 

[Garcia-Alvarez et al. 2011], the region of the SCCmec element that is targeted by 

MREJ-based molecular assays. Diagnostic protocols involving such assays, including 

TwistAmp MRSA, should consider the importance of not being able to detect this 

novel SCCmec type, particularly since LA-MRSA containing this element have been 

isolated from human blood and infected wound sites, demonstrating its lack of host-

specificity and ability to cause clinical disease [Garcia-Alvarez et al. 2011]. Culturing 

and antimicrobial susceptibility testing were able to detect isolates containing this 

novel mecA homologue as MRSA [Garcia-Alvarez et al. 2011], perhaps providing 

further impetus for commercial assays to consider detection of its associated SCCmec 

element, although the potential to incorporate additional primers into current assays is 
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limited [Fluit 2011]. No commercial molecular assays have yet been tested with 

SCCmec types IX and X.  

 Testing TwistAmp MRSA with the laboratory collection of MRSA confirmed 

that it was able to detect a diverse collection of MRSA genotypes covering SCCmec 

types I-V. Similarly, TwistAmp MRSA detected all MRSA of the KC collection, 

which included types II and IV. Thus, TwistAmp MRSA is able to detect SCCmec 

types I-VIII, with the clear exception of WIS (SCCmec V/MREJ xii).   

 Xpert MRSA has been shown to detect SCCmec types I-VI [Rossney et al. 

2008], and BD GeneOhm MRSA types I-VI and VIII [Boyle-Vavra and Daum 2010]. 

The coverage of TwistAmp MRSA is thus comparable to that of current commercial 

assays, however the various SCCmec subtypes, most notably those of type IV, have yet 

to be tested with the assay. While subtyping of SCCmec IV is mainly based on 

differences in the J1 region [IWG-SCC 2009] and MREJ-based assays use primers that 

amplify part of the J3 region, Bartels et al. [2009] showed that at least in type IVa, the 

J3 region exhibits some variability. Moreover, there are several subtype-specific 

targets present in the J3 region that may interfere with MREJ-based assay detection, 

for example the presence of an SCC carrying ccrC in subtype IVk (2B&5), which may 

be the cause of several false negative isolates identified in the UK collection of MRSA 

in this chapter. SCCmec IV subtypes are thus important to test with TwistAmp MRSA.  

 Despite the coverage of most known SCCmec types by current assays, many 

SCCmec variants, frequently of common SCCmec types, have been found that give 

false-negative results, often representing MRSA strains prevalent in the study location 

[Francois et al. 2007, Thomas et al. 2008, Bartels et al. 2009, Reischl et al. 2009, 

Sissonen et al. 2009, Snyder et al. 2009, Voss 2009, Laurent et al. 2010, Malhotra-

Kumar et al. 2010b]. Furthermore, the results of this chapter and other studies suggest 
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composite SCCmec elements are more likely to test negative with MREJ-based 

detection assays [Boyle-Vavra and Daum 2010]. The implications of false negative 

isolates are clear, with the result that the assays cannot be relied upon in certain 

epidemiological situations, and must be combined with more MRSA-specific tests 

[Sissonen et al. 2009]. There are currently 20 known MREJ types (i-xx), the work 

presented in this chapter has identified at least six more (though up to four of these 

could be types vi and viii-x, for which sequence data are publicly unavailable), and the 

recent study of van der Zee et al. [2011] revealed several further MREJ types. These 

points highlight the importance of constantly developing and improving MREJ-based 

detection assays so they may accommodate the ever-changing diversity of SCCmec 

elements and thus maintain a high sensitivity, as well as continuous awareness of 

possible SCCmec variants giving false negative results [Laurent et al. 2010, Malhotra-

Kumar et al. 2010b, van der Zee et al. 2011]. Ongoing evaluations of assays in regions 

where they are used are of great importance so that assays stay up to date with regional 

changes in MRSA epidemiology [Boyle-Vavra and Daum 2010]. Nonetheless, current 

assays including TwistAmp MRSA successfully cover the most common MREJ types 

and therefore SCCmec types, and currently provide the best compromise between 

coverage and multiplexing capacity [Reischl et al. 2009]. 

 Preliminary testing of TwistAmp MRSA with strains or variants that prove 

problematic with current commerical assays, showed the former is potentially robust to 

polymorphisms that render some strains and variants thereof undetectable by other 

assays. However, much more work is required to fully substantiate the findings of 

these initial results. Specifically, testing more examples of ST398 will provide greater 

insight into the detectability of this lineage. Testing isolates representative of HA- and 

CA-MRSA for a specific region, for example, a collection representative of MRSA in 
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a given country, will allow the performance of TwistAmp MRSA to be assessed for 

that country before marketing it there, and perhaps enable the development of region-

specific primer/probe sets. The laboratory collection of MRSA used to test TwistAmp 

only covers SCCmec types I-V, so a collection of MRSA chosen to represent a broad 

range of genetic backgrounds and harbouring variants of as many of the eleven 

currently described SCCmec types as possible, plus reported composite SCCmec 

elements undetectable by other assays, will more thoroughly test the performance of 

TwistAmp MRSA for today’s use. 

 No MR-CNS were discovered that gave a false positive result with TwistAmp 

MRSA, but the sample size was very small (only three MR-CNS isolates were tested, 

all of which were assay-negative). It would therefore be of great interest to test more 

MR-CNS strains, as well as multi-resistant MSSA (MR-MSSA), to investigate 

potential cross-reactivity that would affect assay specificity. Cross-reactivity has been 

well described for MSSA and has also been reported for MR-CNS [Shore et al. 2008, 

Malhotra-Kumar et al. 2010b].  

 

3.4.2 MREJ and SCCmec type 

 Few studies have explored the diversity and distribution of MREJ types and 

compared this to SCCmec type [Huletsky et al. 2004, Chongtrakool et al. 2006].  By 

far the most common MREJ type found among all collections of MRSA tested was 

MREJ ii, accounting for 80.7% to 98% of the isolates in each collection, followed by 

type vii (2.2% of the UK collection) or type i (1.6%, 2% and 12.3% of the UK, KC and 

laboratory collections respectively). In the UK collection, 96.6% of all isolates were 

covered by the MREJ types i-v and vii. Comparing the distribution of MREJ types 

between CMFT and Addenbrooke's hospital showed no significant difference (p = 
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0.485), suggesting that the MREJ diversity and distribution shown in the UK collection 

is representative of the MREJ types present in UK hospitals. Less diversity was seen 

among both the smaller KC (all MREJ ii except one MREJ i isolate) and laboratory 

collections (MREJs i-iii). This suggests that MREJ diversity differs between countries, 

perhaps reflecting the diversity of strain types, and also that examples of the major 

global HA- and CA-MRSA clones do not show great diversity in MREJ type. The 

laboratory collection represents MRSA isolates collected up to 2004; more modern 

examples of MRSA clones may reveal more MREJ types, since with the discovery of 

more SCCmec types and variants of known SCCmec types over time, more variation in 

the MREJ has been observed. 

 A strong correlation between SCCmec type and MREJ type was observed in 

this chapter. While variation exists, most SCCmec I-III strains are correspondingly 

MREJ i-iii. Most SCCmec IV strains are MREJ ii and most SCCmec V strains MREJ 

iii. This correlation was tested statistically and found to be highly significant among 

the UK MRSA collection (p<0.001). Chongtrakool et al. [2006] also found a strong 

correlation that matched the patterns seen here. While Huletsky et al. [2004] claimed 

no such correlation was found, performing a Fisher's exact test on their data reveals a 

significant correlation between SCCmec type and MREJ type (p<0.001), although 

slightly different patterns were found (for example MREJ iv isolates associated with 

SCCmec III and MREJ v isolates associated with SCCmec IV).  

 In conclusion, the work in this chapter is in agreement with two of the three key 

findings of Huletsky et al. [2004]. There is an association between SCCmec type and 

MREJ type, but exceptions to this typical association exist, and strains with new MREJ 

types do not necessarily carry a new SCCmec element but rather have structural 

variations at the SCCmec right extremity. It must therefore be borne in mind that when 
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reading reports of the SCCmec types detected by MREJ-based assays, this does not 

mean that all isolates of these SCCmec types will necessarily be successfully detected, 

or detected in the same way (for example detected strongly) by the same MREJ 

primers. MREJ and SCCmec typing much larger collections of MRSA would provide a 

much more detailed picture of the relationship between SCCmec elements and the 

sequences at their right extremity. 
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CHAPTER 4: IMPROVING ASSAY PERFORMANCE 

4.1 INTRODUCTION 

 The TwistAmp MRSA diagnostic assay, the mechanisms of which are outlined 

in detail in the previous chapter, has been shown to work well when tested with diverse 

and representative collections of MRSA (Chapter 3). However, its clinical sensitivity 

still falls below that of the market leader, Cepheid’s Xpert MRSA (TwistAmp MRSA 

confidential data; see Table 1.7 for Xpert MRSA performance). TwistDx collaborated 

with a hospital in Manchester, UK (Manchester Royal Infirmary, CMFT) to assess the 

performance of TwistAmp MRSA in comparison with microbiological culture, using 

nasal and groin swabs (Copan flocked swabs). A total of 5,433 patients were screened 

between July 2009 and November 2009. A lower than expected clinical sensitivity 

(nearly 75% [DoH 2011]) highlighted four possibilities: poor analytical limit of 

detection, prevalence of novel MREJ types, RPA inhibition and testing only a small 

fraction of the total sample (sub-sampling). 

 After the CMFT collaboration, TwistDx determined that greater sample 

dilution in RPA resuspension buffer, as well as changes to the buffer itself, could 

overcome most of the problems with inhibition (data not shown). These assay 

improvements were incorporated prior to a second collaboration with a paediatric 

hospital in Kansas City, MO. TwistAmp MRSA was compared to culture and Xpert 

MRSA using nasal swabs (custom Copan flocked swabs) collected from 250 

dermatology clinic outpatients and 50 hospital inpatients between May 2011 and 

August 2011. Although specificities, PPVs and NPVs were similar between the two 

assays, sensitivity of TwistAmp MRSA was still lower than that of Xpert MRSA 

(confidential data), highlighting the need for further assay improvement. 
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Despite the discovery of several novel MREJ types (Chapter 3), and known 

MREJ types not covered by TwistAmp MRSA among the 726 CMFT MRSA isolates 

that I examined, the assay should have been able to detect 696 (96%) of CMFT 

MRSA. Among these 696, 25 (4%) isolates produced weak or lagging reaction curves, 

and required retesting to achieve a definitive diagnostic result. However, the sensitivity 

during the performance evaluation carried out by TwistDx in collaboration with CMFT 

was significantly lower than 96% (nearly 75% (p<0.001) [DoH 2011]).  

In my study of KC MRSA, all isolates were successfully MREJ-typed as either 

i-v or vii, the types covered by TwistAmp MRSA, and therefore no novel MREJ types 

were detected among these isolates. Novel MREJ types, or known MREJ types not 

covered by the assay, are therefore unlikely to be a major reason for the observed 

performance gap seen during performance evaluations of TwistAmp MRSA by 

TwistDx and collaborators at CMFT and KC. This chapter investigates other potential 

reasons for the comparatively low TwistAmp MRSA clinical sensitivity observed as a 

result of TwistDx's work with their collaborators: poor analytical limit of detection, 

sub-sampling and RPA inhibition. While the latter was largely overcome by further 

sample dilution and changes to the RPA resuspension buffer by TwistDx (see above), 

some inhibition still remained and thus was investigated further. 

 
4.1.2 Chapter Objectives 

4.1.2.1 Limit of detection 

 
 The lower sensitivity observed for TwistAmp MRSA compared to Xpert 

MRSA could simply be due to a poorer limit of detection (LOD). TwistDx tested a 

sample of strain N315 (MREJ ii) from the Quality Control for Molecular Diagnostics 

(QCMD) 2008 MRSA external quality assessment (EQA) programme panel (Qnostics 
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Ltd; heat-inactivated cultured MRSA). The standard, lysis-free assay protocol was 

used, and TwistAmp MRSA was shown to reliably detect five colony forming units 

(CFU) within 20 minutes (Figure 4.1), demonstrating excellent analytical sensitivity. 

Because the QCMD sample consisted of inactivated MRSA cells, this chapter set out 

to confirm this low LOD using viable cells, which is clinically more realistic. Use of 

viable MRSA also allows accurate measurement of the CFU present in the samples 

that are tested. The reaction environment of RPA creates access to DNA within the 

MRSA cells, but it is not known how this occurs or to what extent, or whether greater 

access to the DNA can be achieved by addition of a lysis procedure. Thus, the aim was 

not only to determine TwistAmp's analytical sensitivity with viable MRSA, but also to 

assess whether a lysis step could increase this sensitivity by improving the LOD. 

 

Figure 4.1 TwistAmp MRSA detection of strain N315 (MREJ ii; inactivated, cultured 

MRSA) at varying CFU per reaction. Troughs represent removal of the reaction tubes 

for vortexing and brief spinning at 4 minutes and 6 minutes. Figure courtesy of 

TwistDx Ltd. 
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4.1.2.2 Inhibition and sub-sampling 

 
 The reduced clinical sensitivity of TwistAmp MRSA is not due to molecular 

reasons such as an inability to detect certain MREJ types, or problems with the RPA 

chemistry. If the analytical LOD as determined in section 4.2.1 using viable MRSA is 

very low, and therefore does not affect clinical sensitivity, then sub-sampling and/or 

RPA inhibition may be the problem.  

 For the CMFT collaboration, duplicate swabs were taken from each patient: 

one for testing using the gold standard broth enrichment culture technique employed at 

the hospital, and one for testing with TwistAmp MRSA. The swabs for testing with 

TwistAmp MRSA were each eluted in 800µl of RPA resuspension buffer and 50µl of 

this solution was added to the reaction tube. For the KC collaboration, duplicate swabs 

were also taken from each patient. One swab was tested with Xpert MRSA and one 

swab was eluted in 1000µl of RPA resuspension buffer and 150µl of this solution 

tested with TwistAmp MRSA. The remaining solution was used to inoculate 

chromogenic and blood agar plates for detection of MRSA and MSSA, respectively.  

 A total reaction volume of 150µl was used in the KC trial after TwistDx found 

that greater sample dilution in RPA resuspension buffer solved most of the inhibition 

problems experienced during the CMFT trial, which used a total reaction volume of 

50µl (see section 4.1). To compensate for the greater sample dilution, a greater 

reaction volume (greater volume of RPA resuspension buffer mixed with sample) was 

used. All TwistAmp MRSA reactions used in this chapter have a total volume of 150µl 

to replicate the reactions used in the KC trial. In Chapter 3, I used reactions with a 

smaller total volume of 50µl, since they require a third of the required RPA 

components, making them cheaper for TwistDx to produce. 
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 The culturing procedure at CMFT involved breaking off the swab in broth, 

incubating for 24 hours at 37°C, and plating an amount of this broth on chromogenic 

media. The initial 24-hour broth culture allows any MRSA on a swab to grow and 

replicate such that when some of the broth is plated out it should contain MRSA (this 

also removes any inconsistencies caused by users, for example only one side of a swab 

being streaked directly onto a plate). With TwistAmp MRSA, the swab is placed in 

buffer and agitated for a few seconds, and the eluate tested. Thus, if the entire swab 

only holds small numbers of MRSA, e.g. 10 CFU, culturing may detect them, but 

TwistAmp MRSA may not, due to insufficient CFU (below the assay's LOD) being 

present in the fraction of eluate tested. The even distribution of cells in solution could 

be further affected by the cluster-forming nature of S. aureus, whose cells do not fully 

separate upon division. Cepheid's Xpert MRSA assay uses a larger swab (Copan 

Venturi Transystem double swab) and tests the entire eluate [Cepheid Diagnostics 

2009] - procedures that are both likely to improve the possibility of detection 

compared to the TwistAmp MRSA protocol. However, in the KC collaboration, 

identical swabs were used for both TwistAmp and Xpert MRSA, and any difference 

would be due only to the fraction of eluate used in the test procedure. 

 Since the TwistAmp MRSA tested does not use any sample preparation, 

inhibitory substances or interfering organisms (e.g. MSSA and MR-CNS) in the 

sample may affect TwistAmp MRSA sensitivity. In contrast, Xpert MRSA includes 

DNA extraction and purification steps and thus tests cleaner samples. In order to 

ascertain the effects of potential inhibition and sub-sampling, experiments were 

performed to answer the following questions: 

• Does the presence of MSSA or MR-CNS in the sample inhibit detection of 

MRSA thereby giving a false negative result? For example, the high sequence 
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similarity of closely related Staphylococcal species to MRSA could lead to the 

depletion of primer reserves required for MRSA-specific amplification. 

• Do high levels of MSSA or CNS in samples with no MRSA present, cause 

false positive results, for example due to snap-back DNA synthesis as a result 

of the homology between orfX moieties in S. aureus and CNS, such as S. 

haemolyticus or S. epidermidis (GenBank accession numbers AY751823 and 

AY751825, respectively) [Francois et al. 2007]? MR-CNS, and MSSA and 

MS-CNS containing mec-less SCC cassettes such as SCCcap1, could also 

produce false-positive results due to the presence of MREJ sequences identical 

to those found in MRSA [Luong et al. 2002, Katayama et al. 2003, 

Mongkolrattanothai et al. 2004, Cuny and Witte 2005, Malhotra-Kumar et al. 

2010b, Arbefeville et al. 2011]. 

• Does isolation of MRSA using filters reduce inhibition and thus improve 

detection? Which filters retain and therefore concentrate MRSA for subsequent 

testing, and which filters release MRSA? 

 

4.2 METHODS AND RESULTS 

Note: The troughs seen in all graphs at four minutes and six minutes represent removal 

of the reaction tubes for vortexing and brief spinning. 

 
4.2.1 Limit of detection 

 To determine the analytical sensitivity of TwistAmp MRSA with viable, 

cultured MRSA, an isolate with the most common MREJ type (type ii), was cultured as 

in section 2.1. A colony from overnight growth on blood agar (Oxoid) was suspended 

in 1ml of RPA resuspension buffer and thoroughly mixed by vortexing, repeated 
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inversion, then orbital shaking for 30 minutes. Serial dilutions were performed, with 

thorough mixing between each dilution, giving final dilutions of 1:100, 1:10,000, 

1:100,000, 1:1 million, 1:10 million and 1:100 million. 150µl of each dilution was 

tested in triplicate in 150µl TwistAmp MRSA reactions, following the standard, lysis-

free protocol. In parallel, 100µl of each dilution was spread on blood agar plates in 

triplicate (Oxoid) and incubated at 37°C overnight. Colonies were counted using a 

Stuart colony counter (Bibby Scientific). 

 TwistAmp MRSA reliably detected viable MRSA in RPA resuspension buffer 

at a dilution of 1:1 million (all three replicates positive; Figure 4.2). This corresponded 

to a LOD of 2 CFU/100µl (Table 4.1). Weak detection of 1 CFU/100µl was also 

observed.  

 

 

Figure 4.2 TwistAmp MRSA results of determining the LOD.  
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Table 4.1 Colony counts for serial dilutions of viable MRSA in RPA resuspension 

buffer. Dilution corresponding to the LOD (1:1 million) is shown, plus the dilution 

prior to this and dilutions down to <1 CFU/100µl.   

 CFU/100µl 

Dilution Replicate 1 Replicate 2 Replicate 3 Average 

1:100,000 23 27 28 26 

1:1 million 2 3 2 2.3 

1:10 million 1 0 1 0.7 

1:100 million 0 0 0 0 

 

 
 To determine whether a lysis step improved the analytical sensitivity of the 

assay, both MRSA from the QCMD 2008 MRSA EQA programme panel (inactivated, 

cultured N315/MREJ ii cells) and dilutions of the viable MRSA above were lysed and 

tested with TwistAmp MRSA. QCMD MRSA at a concentration of 25 CFU/µl was 

lysed and DNA purified in triplicate using Qiagen's DNeasy Blood & Tissue Kit 

(section 2.2). Samples were tested in duplicate. One µl of each sample was added to 

150µl of RPA resuspension buffer, which was then added to a TwistAmp MRSA 

reaction tube (150µl total reaction volume). An unlysed sample of QCMD MRSA was 

diluted to 25 CFU/µl in the same buffer as the lysed samples (Qiagen's buffer AE: 

10mM Tris-Cl; 0.5mM EDTA; pH 9.0) supplemented with 1ng/µl of human genomic 

DNA (Promega). No clear difference in MRSA detection was observed between lysed 

and unlysed QCMD MRSA samples (Figure 4.3). 

 Viable MRSA cells were also lysed and DNA purified using Qiagen's DNeasy 

Blood & Tissue Kit. First, the 1:10,000 and 1:100,000 dilutions of viable MRSA 
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created above were further diluted in enzymatic lysis buffer (see section 2.2 for lysis 

buffer composition) to achieve MRSA starting concentrations of 2 CFU/100µl 

(unlysed LOD; equivalent to 1:1 million dilution) and 1 CFU/100µl (equivalent to the 

1:10 million dilution), respectively. These six samples were then lysed as per the 

protocol in section 2.2 and tested using 150µl TwistAmp MRSA reactions. Lysed 

MRSA samples improved TwistAmp MRSA detection, and thus the analytical 

sensitivity of the assay, or LOD, to 1 CFU/100µl (Figure 4.4). 

 

 

Figure 4.3 TwistAmp MRSA output for lysed and unlysed samples of QCMD MRSA (25 

CFU/reaction). 

 

 

Figure 4.4 TwistAmp MRSA output for lysed samples of previously viable MRSA. 

NTC = no template control. 

0 

500 

1000 

1500 

2000 

2500 

3000 

0 5 10 15 20 

Fl
uo

re
sc

en
ce

 

Time (mins) 

QCMD lysed 1 

QCMD lysed 2 

QCMD lysed 3 

QCMD unlysed 

0 

1000 

2000 

3000 

4000 

5000 

0 5 10 15 20 

Fl
uo

re
sc

en
ce

 

Time (mins) 

1:1 million 
(~2 CFU/
100µl) 

1:10 million 
(~1 CFU/
100µl) 

NTC 



 151 

4.2.2 Inhibition and sub-sampling 

 To determine if TwistAmp MRSA is inhibited by the presence of large 

concentrations of MSSA or MR-CNS, leading to false negative results, MRSA, MSSA 

and MR-CNS samples from the QCMD 2008 MRSA EQA programme panel were 

used as template and tested with TwistAmp MRSA reactions as per the protocol in 

section 3.2.4. All samples were diluted to the necessary concentrations in S. aureus 

negative medium (Mueller-Hinton Broth) from the QCMD panel. MRSA template was 

added to each reaction at 50 CFU/reaction. MSSA and MR-CNS were tested 

separately, in duplicate, and at varying concentrations in combination with MRSA: 

104, 105 and 106 CFU/reaction. To test for the possibility of false positive results in the 

presence of large concentrations of MSSA or MR-CNS but absence of MRSA, the 

same reactions were performed as above, but with no MRSA template (0 

CFU/reaction).  

 Low concentrations of MRSA (50 CFU/reaction) in combination with high 

concentrations of MSSA or MR-CNS (104-106 CFU/reaction) in a sample did not 

inhibit TwistAmp MRSA reactions and cause false negative results (Figure 4.5). 

Shallower reaction curves with increasing concentrations of MR-CNS were observed, 

but did not affect definitive detection of MRSA (Figure 4.5B). High concentrations of 

MSSA or MR-CNS in a sample with no MRSA did not cause false positive results 

(Figure 4.6). 
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Figure 4.5 TwistAmp MRSA output for samples containing a constant concentration 

of MRSA (50 CFU/reaction) and increasing concentrations of A MSSA and B MR-

CNS. Each assay was in duplicate. 
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Figure 4.6 TwistAmp MRSA output for samples containing no MRSA and increasing 

concentrations of A MSSA and B MR-CNS. Positive control included MRSA at 50 

CFU/reaction and no MSSA/MR-CNS. Each assay was in duplicate. 
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 Several different filters manufactured by Millipore (Table 4.2) were tested with 

TwistAmp MRSA to assess whether MRSA detection is improved with filtration. 

These microporous membrane filters can be used for microfiltration of particles, 

including bacteria. S. aureus cocci are approximately 0.5-1µm in diameter, so any 

filters with a pore size larger than this should allow MRSA to pass through into the 

filtrate. Filters with pores smaller than 0.5µm should retain MRSA. Larger pore filters 

were tested for their porosity to MRSA with a view to their suitability as pre-filters that 

could remove larger particulate matter that might inhibit RPA, but not trap MRSA. 

This was tested by checking that filtration through these filters did not impact on 

TwistAmp MRSA assay performance. Smaller pore filters were tested for their ability 

to retain MRSA, evidenced by a negative reaction curve when the filtrate was added to 

TwistAmp MRSA reactions. MRSA from the QCMD 2008 MRSA EQA programme 

panel was used as template and mixed with RPA resuspension buffer at a concentration 

of 25 MRSA CFU/136µl, then filtered (Figure 4.7). The filtrate was then tested with 

150µl TwistAmp MRSA reactions as per the protocol in section 3.2.4. Since MgAc 

immediately starts the RPA reaction, RPA resuspension buffer without MgAc was 

used for the filtering. Fourteen µl of 280mM MgAc was added separately to the 

reaction as a final step before placing reaction tubes in the Twista machine, to ensure 

simultaneous initiation of compared reactions.   

 To further test capture of MRSA, the filters themselves were included in 

TwistAmp MRSA reactions rather than the filtrate (Figure 4.8). Any filters that retain 

MRSA should produce a reaction curve; any filters that do not capture MRSA should 

produce no reaction curve.  

 

 



 155 

Table 4.2 Millipore microporous 13mm membrane filters tested and their characteristics, sorted by decreasing pore size [Millipore Corporation 

2012]. 

Filter code Range Materiala Wettability Pore size 

(µm) 

Protein binding capacity TwistAmp MRSA 

filtrate result (+/-) 

JCWP Omnipore PTFE Hydrophilic 10 low + 

LCWP Mitex PTFE Hydrophobic 10 low + 

TCTP Isopore Polycarbonate Hydrophilic 10 low + 

SVLP Durapore PVDF Hydrophilic 5 lowest Millipore offer (4 µg/cm2) + 

DVPP Durapore PVDF Hydrophilic 0.65 lowest (4 µg/cm2) + 

FHLP Fluoropore PTFE Hydrophobic 0.45 low + 

HPWP Millipore Express Polyethersulfone Hydrophilic 0.45 low  + 

HVHP Durapore PVDF Hydrophobic 0.45 highest (150 µg/cm2) - 

HVLP Durapore PVDF Hydrophilic 0.45 lowest (4 µg/cm2) + 

HTTP Isopore Polycarbonate Hydrophilic 0.4 low + 

FGLP Fluoropore PTFE Hydrophobic 0.22 low + 

GVHP Durapore PVDF Hydrophobic 0.22 highest (150 µg/cm2) - 

GVWP Durapore PVDF Hydrophilic 0.22 lowest (4 µg/cm2) + 

GTTP Isopore Polycarbonate Hydrophilic 0.2 low + 

a PVDF = Polyvinylidene fluoride; PTFE = Polytetrafluoroethylene.
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Figure 4.7 Schematic showing the buffer/template filtration process prior to filtrate 

testing with TwistAmp MRSA. 1ml of MgAc-negative buffer containing MRSA (25 

CFU/136µl) was pushed through a Terumo 2ml syringe (A). The buffer then passed 

directly from the syringe through a Swinnex 13mm filter holder (blue; B) fitted with a 

13mm membrane filter (orange line) and O-ring seal (all Merck Millipore). The 

filtrate was dispensed by the filter holder into a 1.5ml eppendorf tube (C) and 136µl 

of this filtrate plus 14µl of 280mM MgAc added to a TwistAmp MRSA reaction tube. 
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Figure 4.8 Schematic showing the buffer/template filtration process prior to filter testing with TwistAmp MRSA. 150µl of MgAc-negative 

buffer containing 25 CFU of MRSA was pushed through a Terumo 2ml syringe, followed by a further 500µl of MgAc-negative buffer (A). 

The buffer then passed directly from the syringe through a Swinnex 13mm filter holder (blue; B) fitted with a 13mm membrane filter 

(orange line) and O-ring seal (all Merck Millipore). The filtrate was dispensed by the filter holder into a 1.5ml eppendorf tube and disposed 

of (C). The filter was removed and placed in a 0.2ml TwistAmp MRSA reaction tube containing 136µl of MgAc-negative buffer. 14µl 

280mM MgAc was then added to the tube to start the reaction. 
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 Testing the filtrate of 14 different microporous membrane filters for their  

ability to capture MRSA and thus to separate MRSA from potential RPA inhibitors, 

revealed that filtrates from 12 filters gave a positive TwistAmp MRSA signal and 

filtrates from two filters a gave a negative signal (Table 4.2; Figure 4.9). No 

difference in signal strength was observed between the filtrate of each filter and the 

unfiltered control, with the exception of GVWP that produced a slightly stronger 

signal (Figure 4.9C). Reactions testing the filters themselves gave inconsistent results. 

Furthermore, the TAMRA-labelled internal control of these reactions often failed 

(Figure 4.10). For example, the first TwistAmp MRSA test of 0.4µm filters showed a 

positive result for HVHP (indicative of MRSA retention by the filter) and a negative 

result for the remaining four filters (FHLP, HPWP, HTTP and HVLP; Figure 4.10A 

left). However, the corresponding internal controls were weak for some of these filters 

(Figure 4.10A right). Repeating the experiment (Figure 4.10B) gave different results, 

for example HVHP was negative, but the internal controls improved. A final repeat 

experiment (Figure 4.10C) gave a strongly positive result for HTTP including the 

internal control, but the internal controls for the other filters were weak or negative. 
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Figure 4.9 TwistAmp MRSA output for the filtrate of filters with pore sizes A 

>0.5µm; B 0.4µm; and C 0.2µm in diameter.  
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Figure 4.10 Example of TwistAmp MRSA output for reactions containing 0.4µm filters. Panels A to 

C show the output for three repeat experiments with the corresponding internal controls for each 

reaction shown on the right. NTC No filter = buffer containing no MRSA and no filter in reaction 

(negative control). 
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 To investigate these problems further, three experiments were performed. 

First, the effect of filters on reaction performance and/or fluorescence readings was 

tested. Both MRSA from the QCMD 2008 MRSA EQA programme panel and DNA 

of known MREJ type (MREJ ii, and therefore known to give a positive result) were 

used as template in separate reactions (both at 25 CFU/150µl). Reactions were 

performed in duplicate, and each template tested with a filter (as in Figure 4.8) and 

without (as in Figure 4.7 but using no filter). In order to compare the results of 

including a filter in the reaction versus no filter, a filter that retains MRSA was 

needed. Thus, the 0.2µm filter GVHP was used as previous results suggested it 

retained MRSA.  

 Results showed that reactions with no filter performed better than the 

equivalent reactions containing the GVHP filter (Figure 4.11). The unexpectedly low 

duplicate for the MREJ ii DNA/no filter combination was likely due to an error in 

reaction setup. Internal controls were somewhat variable and also performed better 

without a filter in the reaction, with those of the QCMD MRSA template/GVHP filter 

combination producing very weak reaction curves (Figure 4.11).  
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Figure 4.11 TwistAmp MRSA output, including internal controls, showing the effect 

of filters in the reaction tubes. Template (25 CFU/150µl): DNA = MREJ ii DNA; 

QCMD = MRSA from QCMD 2008 MRSA EQA programme panel. NF = no filter; F 

= GVHP filter. 
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 Second, given the evidence of a potential negative effect of filters on reaction 

performance, the volume of RPA resuspension buffer retained by the filter was 

calculated. If a filter retains a large amount of buffer, adding the filter to a reaction 

may cause the optimal reaction volume to be exceeded, thus affecting reaction 

performance. The dry weight of three GVHP filters was measured and averaged 

(10.3µg). 200µl of RPA resuspension buffer containing no MgAc (to replicate the 

buffer used in the above experiments) was filtered by each GVHP filter and the used 

filters were weighed again and averaged (78.4µg). The difference in average weight 

of the GVHP filter before and after use was calculated and divided by the weight of 

1µl of buffer (68.1µg/1.045µg). Results showed that 65.2µl of RPA resuspension 

buffer was retained by GVHP, taking the total reaction volume to over 200µl. 

 Third, to investigate whether the filters were affecting the ability of the Twista 

machine to accurately read fluorescence as a result of their opacity, 100µl of RPA 

resuspension buffer was added to each. In addition, each filter was submerged in 1ml 

buffer to test transparency. In both tests, filters were left for a total of two hours. Only 

the 0.4µm filter HTTP, and to a lesser extent HVLP became transparent, and did so 

within seconds of contact with the buffer (Figure 4.12). Their 0.2µm counterparts 

GTTP and GVWP also became transparent within seconds. All other filters remained 

opaque.   

 

Figure 4.12 Photograph depicting the interaction between 100µl of RPA resuspension 

buffer and each 0.4µm microporous membrane filter.  
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 Since no conclusive results could be obtained from testing the filters 

themselves with TwistAmp MRSA, the focus was turned to the filtrate experiments 

and the reasons why GVHP (0.2µm) and HVHP (0.4µm) showed evidence of MRSA 

retention. Filter retention would be expected since S. aureus cells are larger than 

0.5µm, but given that all other 0.2µm and 0.4µm filters tested appeared to release 

MRSA cells, GVHP and HVHP were investigated. A component of the RPA 

resuspension buffer, polyethylene glycol (PEG), may somehow be retained by these 

filters, thus leading to a reaction failure. Buffer containing MRSA (25 CFU/110µl) 

but no PEG and no MgAc, was filtered through GVHP and HVHP. 20% w/v PEG 

(confidential molecular weight) and 280mM MgAc were then added to the reaction 

tubes prior to filtrate testing (Figure 4.13). The same reactions were performed with 

no filtration. Filters GVHP and HVHP did not appear to retain PEG, as shown by 

negative TwistAmp MRSA output for these filters, regardless of the presence of PEG 

in the buffer prior to filtration (Figure 4.14).  
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Figure 4.13 Schematic showing the filtration process prior to filtrate testing with 

TwistAmp MRSA, with buffer containing no polyethylene glycol (PEG). 1ml of 

buffer containing MRSA (25 CFU/110µl) but no MgAc or PEG was pushed through a 

Terumo 2ml syringe, followed by a further 500µl of buffer containing no MgAc or 

PEG (A). The buffer then passed directly from the syringe through a Swinnex 13mm 

filter holder (blue; B) fitted with a 13mm membrane filter (orange line) and O-ring 

seal (all Merck Millipore). The filtrate was dispensed by the filter holder into a 1.5ml 

eppendorf tube (C) and 110µl of this filtrate plus 14µl of 280mM MgAc and 26µl 

20% w/v PEG (confidential molecular weight) added to a TwistAmp MRSA reaction 

tube. 
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Figure 4.14 TwistAmp MRSA results of testing filter retention of polyethylene glycol 

(PEG). A shows the filtrate results of GVHP (0.2µm) and B those of HVHP (0.4µm). 

NF = unfiltered. PEG+ = buffer containing PEG prior to filtration (positive control; 

Figure 4.4). PEG- = PEG added to buffer after filtration. Template for all reactions 

was QCMD MRSA at 25 CFU/reaction.  
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 The QCMD MRSA sample used as template throughout the filtration 

experiments consisted of heat-inactivated cultured cells. Heat has previously been 

shown to cause leakage and lysis of S. aureus cells [Allwood and Russell 1969], so it 

may be that free DNA was present, leading to RPA detection of MRSA in the filtrate. 

If this were the case, GVHP and HVHP retain DNA as well as S. aureus cells. In 

order to confirm that all other filters released cells and not just free DNA, filtration 

experiments were performed with live MRSA cells. Three filters with different 

characteristics were selected: HPWP (0.4µm), FGLP (0.2µm) and GVWP (0.2µm) 

(Table 4.2). MRSA of an MREJ type known to give a positive TwistAmp MRSA 

signal (MREJ ii) was cultured as in section 2.1. For each filter, a colony from 

overnight growth was suspended in 1.2ml of RPA resuspension buffer and thoroughly 

mixed by vortexing, repeated inversion, then orbital shaking for 30 minutes. Serial 

dilutions were performed from 1:100 up to the approximate TwistAmp MRSA LOD 

(1:1 million), with thorough mixing between each dilution. In parallel, and also for 

each filter, MRSA was suspended in sterile distilled water (SDW) and diluted up to 

1:1 million. Three 100µl replicates of each 1:1 million and also 1:10,000 dilution 

(RPA resuspension buffer and SDW) were plated separately on blood agar plates 

(Oxoid) and incubated overnight at 37°C.  Colonies were counted using a Stuart 

colony counter (Bibby Scientific). Filtration of the 1:1 million and 1:10,000 dilutions 

(buffer and SDW) was performed for each of the three filters. 600µl of each dilution 

was filtered, and 100µl replicates of each filtrate plated separately on blood agar 

plates and incubated overnight at 37°C. Comparing the filtrate of both the buffer and 

SDW dilutions by culture allowed the assessment of the effect of the buffer and/or 

filtration process on cell viability. 100µl of each buffer filtrate was tested with 
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TwistAmp MRSA (100µl reactions) and 100µl of each unfiltered buffer dilution was 

tested for direct comparison.  

 No difference was observed in the colony counts between buffer and SDW 

dilutions prior to filtration (Table 4.3), suggesting that RPA resuspension buffer does 

not lyse cells or cause cell leakage, and thus presumably creates no free DNA that 

may pass through the filters and cause a positive TwistAmp MRSA result. This was 

confirmed by testing the main component of RPA resuspension buffer besides SDW - 

PEG - for an effect during filtration (protocol Figure 4.13). No difference in 

TwistAmp MRSA output was observed between reactions with buffer that contained 

PEG prior to filtration, to reactions where PEG was added after filtration, using 0.2µm 

filters FGLP and GVWP (Figure 4.15). 

 No MRSA growth was observed from plating the filtrates. This was the case 

for both 1:10,000 and 1:1 million MRSA dilutions in SDW and resuspension buffer, 

and for all three filters tested (Table 4.3). TwistAmp MRSA output showed the buffer 

filtrates were MRSA positive at the 1:10,000 dilution but weaker than the unfiltered 

dilutions (Figure 4.16). Filter FGLP demonstrated the smallest difference in output 

before and after filtration, and at the 1:1 million dilution no difference was observed 

for this filter. Filtrates of HPWP and GVWP were negative at the 1:1 million dilution 

(Figure 4.16).  

 

 

 

 

 

 



 169 

Table 4.3 Colony counts for 1:100,000 and 1:1m SDW and buffer 

dilutions of MRSA before and after filtration with microporous 

membrane filters HPWP, FGLP and GVWP. 

CFU/100µl RPA 

resuspension buffer 

CFU/100µl Sterile 

distilled water  

 

Before 

filtration 

Filtrate Before 

filtration 

Filtrate 

1:10,000 dilution     

FGLP 247 0 229 0 

HPWP 155 0 122 0 

GVWP 203 0 362 0 

Average CFU/100µ l 202 0 238 0 
     

1:1 million dilution     

FGLP 3 0 7 0 

HPWP 1 0 2 0 

GVWP 9 0 3 0 

Average CFU/100µ l 4 0 4 0 
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Figure 4.15 TwistAmp MRSA results of testing the effect of polyethylene glycol 

(PEG) in the resuspension buffer prior to filtration. A shows the filtrate results of 

FGLP (0.2µm) and B those of GVWP (0.2µm). NF = unfiltered. PEG+ = buffer 

containing PEG prior to filtration; PEG- = PEG added to buffer after filtration. 

Template for all reactions was QCMD MRSA at 25 CFU/reaction. 
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Figure 4.16 TwistAmp MRSA results of testing filtrates of MRSA diluted to 1:10,000 

and 1:1 million in RPA resuspension buffer. Filters HPWP (0.4µm), FGLP (0.2µm) 

and GVWP (0.2µm) were used.  
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4.3 DISCUSSION 

 TwistAmp MRSA demonstrates a lower clinical sensitivity than the market 

leader in molecular MRSA diagnostics, Cepheid's Xpert MRSA. The purpose of this 

chapter was to investigate possible reasons for this (poor analytical LOD, RPA 

inhibition and sub-sampling) and assess whether methods such as lysis and/or 

filtration could improve the assay's analytical LOD and its ability to detect MRSA in 

clinical samples.  

 
4.3.1 Limit of detection 

 The LOD of TwistAmp MRSA was determined as approximately 2 

CFU/100µl using cultured MRSA. The assay sporadically and weakly detected 1 

CFU/100µl. This clearly demonstrates the assay is very sensitive. Cepheid states an 

overall LOD of 80 CFU/swab for Xpert MRSA, and provides the LODs for individual 

SCCmec types. For Xpert MRSA, the LOD is 10 CFU/swab for SCCmec types I-III 

and V, 50 CFU/swab for type IV, and 100 CFU/swab for type IVa [Cepheid 

Diagnostics 2009]. The LOD of TwistAmp MRSA was determined using an MREJ 

type ii isolate, which accounted for about 90% of all MRSA tested in Chapter 3. 

SCCmec type II was exclusively associated with MREJ type ii in the MRSA strains 

typed in Chapter 3. Thus, results show TwistAmp MRSA has a slightly lower 

analytical sensitivity than Xpert MRSA (2 CFU/100µl, equivalent to 20 CFU/swab, 

versus 10 CFU/swab).  

 Xpert MRSA's LOD of 80 CFU/swab was determined with 95% confidence 

i.e. the lowest number of MRSA CFU per swab that can be reproducibly distinguished 

from negative samples with 95% confidence. A 95% confidence interval for the 

analytical LOD of TwistAmp MRSA is yet to be determined. Further work is also 
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needed to determine the LOD for each of the less prevalent MREJ types covered by 

TwistAmp MRSA, as well as for each of the prototypic strains for the different 

SCCmec elements detected by the assay (types I-IV and VI-VIII). Proprietary primers 

for MREJ types iv, v and vii performed less well than those for MREJs i-iii (data not 

shown), so the LOD is likely to be poorer for the former types. The SCCmec type V 

element represented by strain WIS (MREJ xii) was not detected by TwistAmp MRSA, 

and one other type V strain tested (ST398) produced only weak positive results for 

MREJ iii (Figure 3.16). All GenBank entries of type V elements with the exception of 

WIS are MREJ iii (see Chapter 3 section 3.3.4.4). TwistAmp MRSA would 

successfully detect half of these but the other half, all belonging to the livestock-

associated lineage ST398, would likely produce weak positive results due to SNPs in 

the probe-binding region. Given this fact, it would be interesting to ascertain the 

SCCmec type V strain used in Cepheid's performance testing of Xpert MRSA. 

Because detection of SCCmec type V strains by TwistAmp MRSA is not reliable, 

determining a LOD for this element would only be informative if all variants were 

tested. Despite a correlation between MREJ type and SCCmec type existing, there are 

exceptions, so caution should be taken when interpreting SCCmec type-specific 

LODs.   

 A lysis and purification step was incorporated into the TwistAmp MRSA 

protocol in an attempt to further improve the assay's analytical sensitivity. No 

improvement was observed with inactivated N315/MREJ ii MRSA cells, however the 

limit of detection was improved to approximately 1 CFU/100µl after lysis of viable 

MREJ ii MRSA. This is equivalent to 10 CFU/swab, matching the LOD of Xpert 

MRSA for MREJ ii MRSA. The lack of difference observed between unlysed and 

lysed QCMD MRSA could be a result of free DNA already present in the heat-
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inactivated sample. Heat has previously been shown to cause cell shrinkage and 

leakage of intracellular constituents from Staphylococcal cells [Allwood and Russell 

1969, Berkman and Wyatt 1970]. Despite the improved LOD with lysis and 

purification of viable MRSA, high analytical sensitivity is still achieved with no lysis. 

It was therefore concluded that the addition of a lysis step would not improve the 

analytical sensitivity to an extent that would warrant such an addition, given the 

modifications that would have to be made to the current assay. 

  
4.3.2 Inhibition and sub-sampling 

 Given the high analytical sensitivity of TwistAmp MRSA (2 CFU/100µl), the 

potential effects of RPA inhibition and sub-sampling on the assay's clinical sensitivity 

were investigated. Testing RPA with samples of MRSA mixed with high 

concentrations of MSSA or MR-CNS did not inhibit amplification of MRSA DNA 

and cause false negative results. A similar experiment performed for a rival assay, BD 

GeneOhm MRSA, showed that it too was not inhibited by MSSA or CNS [Huletsky 

et al. 2004]. While increasing concentrations of MR-CNS in MRSA samples did not 

produce false negative results, they did appear to weaken detection although not to an 

extent that would affect a definitive positive MRSA result. This is likely due to the 

depletion of MREJ-specific primer reserves in the reaction as they bind to the 

SCCmec element conferring methicillin resistance in the CNS, leaving less MREJ 

primer for MRSA DNA in the sample. The MR-CNS likely had the same MREJ type 

as the MRSA in the sample (MREJ ii), which explains the weaker reaction curves for 

MRSA as the concentration of MR-CNS increased.   

 Samples containing high concentrations of MSSA or MR-CNS but no MRSA 

did not produce false positive results, demonstrating good analytical specificity. More 
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comprehensive testing of MSSA, MS-CNS and MR-CNS, plus strains representing 

species phylogenetically related to S. aureus and members of the nasal commensal 

flora, is required for accurate determination of the analytical specificity of TwistAmp 

MRSA [Cepheid Diagnostics 2009]. Five MSSA isolates from our laboratory 

collection of Staphylococci, and one MSSA isolate from the KC collection gave false 

positive results with the assay (Chapter 3). The KC MSSA false positive appears to 

contain a remnant of an SCC element because it is MREJ positive (type i) but mecA 

negative. The QCMD 2008 MRSA EQA programme panel was used in this chapter, 

but the 2009 EQA panel contains two samples of MSSA with mec-less cassettes 

(SCCmec I and III). These samples would likely cause a similar effect to MR-CNS on 

MRSA detection, and would cause false positive results in the absence of MRSA.  

 mec-less SCC elements are known to cause false positive results with Xpert 

MRSA and BD GeneOhm MRSA [Francois et al. 2007, Arbefeville et al. 2011]. te 

Witt et al. [2010] found commercial real-time PCR tests incorrectly reported the two 

QCMD 2009 MSSA containing mec-less SCC elements as positive in 89% of datasets 

(40 of 45 datasets, including 13 tested with GeneOhm MRSA and 11 with Xpert 

MRSA). Xpert MRSA, GeneOhm MRSA and TwistAmp MRSA all target the MREJ 

and so false positive results are inevitable with MREJ-positive MSSA. If these assays 

were used in laboratories with high false positive rates or in regions with low MRSA 

prevalence, confirmation by culture or a second molecular test would be necessary 

[Kerremans et al. 2008, te Witt et al. 2010]. The only way to improve specificity with 

such samples would be to incorporate a mecA internal control into the assays. 

However, mecA is not unique to MRSA, so false positives could still arise due to co-

colonisation by MSSA and MR-CNS. Overall, MREJ-negative MSSA and MR-CNS 

do not affect accurate MRSA detection by TwistAmp MRSA. 
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 When directly using swabs, interfering substances such as blood or mucus 

present in clinical samples could cause RPA inhibition, but this has not yet been 

investigated. Cepheid evaluated these potentially interfering substances and concluded 

that they did not significantly inhibit PCR or cause false negative results with Xpert 

MRSA [Cepheid Diagnostics 2009], but this assay filters and lyses the sample, and 

the released DNA is eluted prior to PCR testing, thus separating reaction inhibitors 

such as blood or mucus from the target DNA. TwistAmp MRSA does not include any 

sample preparation.  

 RPA resuspension buffer containing MRSA was filtered using various 

microporous membrane filters to assess whether filtration improved detection of 

MRSA with TwistAmp MRSA. Filters and filtrates were tested with the assay for 

both retention and passage of MRSA. Of 14 filters, only two appeared to retain 

MRSA: GVHP (0.2µm) and HVHP (0.4µm). This was surprising given that S. aureus 

cells are at least 0.5µm in diameter - all 0.4µm and 0.2µm filters should retain MRSA. 

This highlighted the possibility of either free DNA present in the sample, or 

lysis/leakage of cells at some point during the filtration process, causing positive 

results despite the retention of cells by the filters. Since the MRSA used as template 

consisted of heat-inactivated cells, free DNA was likely present, since heat can cause 

cell leakage [Allwood and Russell 1969]. This was confirmed by filtering viable 

MRSA cells through selected 0.2µm and 0.4µm filters. The cultured filtrates grew no 

MRSA, yet TwistAmp MRSA testing of the same filtrates gave MRSA-positive 

results, albeit weak. It is likely therefore that all of the filters with pores less then 

0.5µm in diameter retained MRSA cells. Alternatively, the filtration process could 

have affected cell viability in an unknown way. Millipore states that fluid viscosity 

and chemical interactions between filter membranes and particles in the solution could 
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affect bacterial retention [Millipore Corporation 2012]. However, RPA resuspension 

buffer, which is fairly viscous owing to PEG, was confirmed not to have an effect on 

filtration of MRSA cells. 

 MRSA retention by the 0.2µm and 0.4µm filters could not be confirmed with 

TwistAmp MRSA reactions containing the filters themselves. The idea was that 

adding filters to the reactions could test for the presence of MRSA cells on the filter 

membranes. These experiments could not produce consistent results, and internal 

controls failed. TwistAmp MRSA reaction tubes are 0.2ml in size, and so the 13mm 

filters were not only difficult to insert into these but likely interfered with the RPA 

reactions or measurements thereof due to their size and/or composition. Optical 

properties of the filters, such as autofluorescence or transmittance, could have affected 

fluorescence readings [Millipore Corporation 2012]. Of the filters tested for opacity 

when in contact with RPA resuspension buffer, only HTTP (0.4µm) and GTTP 

(0.2µm) filters were fully transparent. These filters are both part of Millipore's Isopore 

range, recommended for analyses in which the sample is viewed on the surface of the 

membrane, for example using optical or electron microscopy [Millipore Corporation 

2012]. However, the optical compatibility of this filter type with the FAM and 

TAMRA fluorophores used in TwistAmp MRSA is unknown, so it's possible that 

despite their transparency to the naked eye, they still cause optical interference with 

this assay.  

 Filter GVHP was found to retain a significant volume of RPA resuspension 

buffer, which would have caused the optimal reaction volume to be exceeded, 

resulting in reaction failure. This could explain the negative results obtained when 

testing filters GVHP and HVHP (they were thought to retain MRSA so testing the 

filters were expected to give positive results). Indeed, both GVHP and HVHP filters 
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were hydrophobic. Retention of buffer as well as MRSA cells due to hydrophobicity 

renders these filters unsuitable for use with TwistAmp MRSA. The only filter 

characteristic GVHP and HVHP had in common that also differed from all other 

filters tested was their high protein binding capacity. It is not clear why this filter 

property would result in bacterial retention. One possibility is the surface proteins 

present on S. aureus cell walls binding to the filter. 

 Millipore describe a 0.2µm filter (GPWP) that is bacterially retentive and low 

protein-binding, meaning that MRSA would be retained by the filter, but the liquid 

sample in which it is suspended and any potential RPA inhibitors would pass through 

the filter [Millipore Corporation 2003]. This Millipore Express filter is hydrophilic 

and sterilising-grade, the latter feature meaning that it can reproducibly retain viable 

microorganisms. A 0.4µm Millipore Express filter was tested in this chapter - HPWP 

- but could not be accurately tested by the filtration experiments performed. Using 

viable MRSA cells however did provide evidence of its bacterial retention property. 

This was also the case for GVWP (0.22µm), a hydrophilic Durapore membrane with 

the lowest protein-binding capacity offered by Millipore. Thus, these filters would 

likely be the most appropriate for use with TwistAmp MRSA. Confirmation that these 

filters retain MRSA cells could be achieved by visualising the filters through a 

fluorescence microscope, but most bacterial retention studies measure the number of 

viable microorganisms present in the filtrate, rather than the number retained. One 

study used Millipore membrane filters spanning pore sizes of 0.4µm to 12µm to test 

their retention of S. aureus. Only 1µm filters or larger allowed passage of S. aureus, at 

both high (107 cells per ml) and low (102 cells per ml) cell concentrations [Bobbitt and 

Betts 1992]. If more time were available, the remaining 11 filters in this chapter 

would be tested with viable MRSA, and retention tested by measuring the CFU 
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present in solution before and after filtration (FGLP, GVWP and HPWP already 

tested here).  

 Despite evidence that 0.4µm and 0.2µm filters retain MRSA cells, no 

improvement in MRSA detection was observed as a result of filtration, suggesting that 

addition of a filtration step would not improve the clinical sensitivity of TwistAmp 

MRSA. Testing with clinical samples instead of cultured MRSA cells would allow 

more accurate evaluation of a filtration process for removal of potential RPA 

inhibitors, since it is clinical samples that most likely contain inhibitory substances, 

e.g. blood or mucus.  

 MRSA cells successfully retained on a membrane filter would not only be 

purified, but also concentrated. If a method for detecting the entire bacterial retention 

on a filter could be devised, the potential problem of sub-sampling would also be 

removed. Such a method could involve a double-filtration process whereby a swab is 

eluted in RPA resuspension buffer, and the resulting sample processed through a 

>0.5µm filter, allowing the passage of MRSA but retaining large sample constituents, 

followed by a 0.4µm filter that retains MRSA and allows passage of smaller sample 

constituents. The retained MRSA cells could then be eluted in more RPA 

resuspension buffer and the solution added to a TwistAmp MRSA reaction tube for 

testing. A similar process occurs in Cepheid's Xpert MRSA that uses a number of 

filters, ranging from a 5µm filter to a 0.2µm Durapore filter (Millipore) for cell 

capture, combined with glass beads and an ultrasonic horn for cell lysis to release 

DNA [Pourahmadi et al. 2000]. The released DNA is then eluted and the solution 

mixed with dried PCR reagents for testing [FDA 2007]. However, addition of a 

filtration step would complicate the TwistAmp MRSA assay and would have to 

provide a very substantial increase in performance to be considered. 
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4.3.3 Conclusions 

  Possible reasons for lower TwistAmp MRSA clinical sensitivity compared to 

that of Xpert MRSA were tested, but neither a poor analytical sensitivity, nor RPA 

interference due to the presence of MSSA or MR-CNS in the sample, were found to 

be significant causes. It is clear that filters retain MRSA, the main advantage of this 

being the concentration of MRSA cells for improved detection, but without testing 

clinical samples of MRSA that may contain inhibitory substances, it remains unclear 

to what extent clinical sensitivity is affected by reaction inhibition. It is also unclear 

what is causing positive TwistAmp MRSA results despite bacterial retention by 

filters. More comprehensive testing and development of the assay is needed to 

identify and minimise the causes of the lower than expected clinical sensitivity. 

Multiple manual steps are required in the current TwistAmp MRSA prorotcol, 

including pipetting, vortexing and centrifugation, whereas Xpert MRSA is largely 

self-contained and automated. Reducing manual input may go some way towards 

improving sensitivity by minimising errors introduced from the external environment. 

TwistDx have developed a second-generation fluorometer that removes some manual 

steps, including automated mixing through the use of magnetic beads, but the machine 

was not available for use with this thesis work. 
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PART 1 FINAL DISCUSSION: RPA-BASED DETECTION OF MRSA 

 The RPA-based diagnostic assay, TwistAmp MRSA, offers a rapid, simple 

and accurate alternative to PCR-based systems such as BD GeneOhm MRSA and 

Xpert MRSA that currently lead the market in molecular detection of MRSA. The 

work presented in Chapter 3 of this thesis has shown that the performance of 

TwistAmp MRSA is comparable to that of commercial assays. However in the UK, 

false negative MRSA isolates were reported with the assay due to the presence of 

novel MREJ types identified among epidemic MRSA clones. False negative results 

were also obtained for recently described SCCmec types IX-XI, while certain variants 

of existing SCCmec types appeared to cause detection problems for the assay. This 

highlights the problem of ever-increasing SCCmec variation that is faced by all assays 

targeting the MREJ. MREJ-based detection methods must therefore be continually 

evaluated and modified to keep abreast of such variation, particularly in areas where 

problematic MRSA strains are common. Testing of a more genotypically and 

geographically diverse range of MRSA strains is required to fully assess the ability of 

TwistAmp MRSA to detect most MRSA. 

 Despite comparable TwistAmp MRSA performance to current commercial 

assays and its ability to detect a wide range of MRSA strains, its clinical sensitivity 

was lower than expected from initial pre-clinical studies in the US and UK, and so 

Chapter 4 assessed potential reasons for this. Analytical sensitivity was found to be 

extremely high, at approximately 20 CFU/swab, and thus was not considered a cause 

of lower than expected clinical sensitivity. While there was some evidence for the 

benefit of incorporating lysis and filtration steps into the assay protocol, doing so 

would be, at present, unlikely to sufficiently improve assay performance. More 

comprehensive testing using clinical samples is required to fully assess and improve 
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TwistAmp MRSA performance, and thus bring its clinical sensitivity more into line 

with that of the leading commercial assay, Xpert MRSA.   

 An aspect of TwistAmp MRSA that was not explored in this thesis was the 

optimisation of its current primers and the multiplex assay as a whole. Further work 

on the assay would therefore involve investigating the possibility of splitting the 

multiplex into a two-tube system, for example with primers for MREJ types i-iii in 

one tube and primers for MREJ types iv, v and vii in a second tube. A new internal 

control would need to be designed for the second tube, and the addition of more 

MREJ types to each tube could be explored, for example novel MREJ d that was 

found to be the most common MREJ type among false negative isolates of the UK 

MRSA collection. Since primers for MREJ types iv, v and vii performed less well 

than those for types i-iii (data not shown), the former primers could be redesigned or 

an alternative orfX primer designed to improve their performance. A primer screen of 

30-mers for MREJ types iv, v and vii could also be conducted to see if their 

performance is improved compared to the original 35-mers used in the multiplex 

assay.  

 RPA could also be used as the basis of other diagnostic assays for MRSA, for 

example for specific clones such as USA300 (ST8-MRSA-IV), the highly successful 

community-associated strain that predominates in the US. Targets for an RPA-based 

USA300 test could include the enterotoxin genes sek and seq, or the arginine catabolic 

mobile element (ACME), both of which would distinguish USA300 from its epidemic 

progenitor USA500 [Li et al. 2009]. 

 Knowledge regarding the nature of MRSA clones that are disseminating 

globally is crucial for implementation of infection control strategies in both 

nosocomial and community settings [Boucher and Corey 2008, Chen et al. 2009]. 
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Consequently, rapid characterisation of MRSA strains by SCCmec typing is an 

important issue [Boucher and Corey 2008]. With the advent of RPA as a novel 

alternative to PCR, it is possible to apply RPA to any area of MRSA epidemiology 

that uses PCR-based methods. As such, I began work on developing an RPA-based 

multiplex assay for SCCmec typing, as a rapid alternative to PCR-based SCCmec 

typing methods. I designed RPA primers (Eurogentec) and TwistAmp exo probes 

(Biosearch Technologies) for a two-tube assay that detects SCCmec types I-VIII using 

a four-dye system (see Appendix 3 for primer and probe sequences and the proposed 

multiplex format). Primers and probes were designed according to TwistDx 

recommendations [TwistDx Ltd 2009b] and using Primer-BLAST. Primers and 

probes were also tested for secondary structures using AutoDimer [Vallone and Butler 

2004], and tested for specificity using prototypic strains for SCCmec types I-VIII in 

singleplex TwistAmp exo reactions (Table 3.1; see Appendix 3 for figures 

demonstrating specificity). Singleplex TwistAmp exo reactions were analysed in real-

time using the Twista machine for FAM- and TAMRA-labelled probes, as well as the 

second-generation fluorometer developed by TwistDx, capable of detecting FAM-, 

HEX- and ROX-labelled probes.   

 Although these singleplex reactions detected these SCCmec types, due to time 

constraints, it was not possible to combine the primers and probes into an optimal 

multiplex format, or validate the assay using a collection of previously characterised, 

geographically, temporally, and genotypically diverse MRSA. Further work is 

therefore required to fully develop the SCCmec typing method, but it is clear that it 

would provide a rapid alternative to current methods, giving results within 20 

minutes. A machine capable of detecting four dyes and adapted for RPA reaction 

conditions (i.e. constant temperature) would be required, such as the ABI 7500 real-



 184 

time PCR system (Applied Biosystems), which would also allow the method to be 

high-throughput - up to 48 samples (48 two-tube reactions) in one run.   

 The proposed RPA-based SCCmec typing method would detect two loci for 

each of the SCCmec types I-VI and VIII, and one locus for type VII, in addition to the 

mecA locus for all types. Because of the lack of discriminatory power associated with 

targeting just one locus for an SCCmec type, a confirmatory test would be necessary 

for SCCmec type VII, for example targeting ccrC8. The method of Boye et al. [2007] 

used in this thesis for SCCmec typing, as well as that of Zhang et al. [2005], are easy 

to use multiplex PCR assays for SCCmec types I-V, but they detect only a single 

locus for the majority of the SCCmec types, and therefore lack discriminatory power. 

The RPA-based method would offer superior discriminatory power in this respect.  

 A disadvantage of all SCCmec typing methods, including the RPA-based 

method proposed here, is that they determine different structural properties of the 

element. A single universal assay for the determination of SCCmec type therefore 

needs to be developed, that is based on a universally accepted nomenclature. In 2006, 

Chongtrakool et al. [2006] proposed a novel nomenclature based on the ccr genes 

(indicated by a number) and the mec complex (indicated by an uppercase letter). 

Application of this nomenclature results in SCCmec type 1A (type I), type 2A (type 

II), type 3A (type III), type 2B (type IV), type 4B (type VI) and type 5C (type V and 

VII). In addition, the nomenclature designates the differences in the J1 and J2-J3 

regions by numbers such that for example type IVb is type 2B.2.1. The ccr genes and 

J regions are also numbered in chronological order according to their time of 

discovery [Chongtrakool et al. 2006]. Based on this novel nomenclature, Kondo et al. 

[2007] developed a PCR scheme using five multiplex PCR reactions, but the need for 
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multiple multiplex PCR reactions makes the method time consuming and thus not 

ideal for routine applications [Deurenberg and Stobberingh 2008]. 

Recently, Chen et al. [2009] developed a rapid molecular beacon real-time 

PCR (MB-PCR) assay for SCCmec typing, based on the established definition of 

SCCmec types, i.e. the combination of mec and ccr complexes, and by following the 

recommendations of the IWG-SCC [2009]. The assay consists of two multiplex 

panels, the combination of which results in two targets for each SCCmec type. The 

assay can detect types I-VI and the recently described type VIII. Up to 96 isolates can 

be classified within 3-4 hours, including DNA isolation, PCR cycling, and analysis 

[Chen et al. 2009]. This novel assay is faster, more robust and more sensitive than 

previously published typing schemes. The use of molecular beacons in the assay has 

obvious advantages over current typing methods that would also be seen with the 

proposed RPA probe-based method, namely speed and specificity.  

RPA is a rapid and simple nucleic acid amplification technology that can 

easily be applied to any method that traditionally uses PCR. In the field of molecular 

characterisation of MRSA, an RPA-based real-time SCCmec typing method such as 

the one proposed in this thesis, would obviate the need for lengthy thermal cycling 

and electrophoretic analysis of amplicons, providing an attractive, potentially high-

throughput alternative to the popular typing method of Milheirico, Oliveira and de 

Lencastre [2007a], and the most recently described real-time method of Chen et al. 

[2009]. In molecular diagnostics for MRSA, RPA performs comparably to PCR-based 

detection methods, and TwistAmp MRSA has the potential to provide a fast, simple 

and cheap alternative to current commercial assays.  
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PART 2 INTRODUCTION: MRSA IN ORANGE COUNTY, 
CALIFORNIA 

 Orange County (OC), California, provides a unique and diverse population 

from which to draw valuable data regarding MRSA epidemiology. OC is the sixth 

largest US County according to 2011 estimates [US Census Bureau 2011a]. This 

metropolitan county covers 790 square miles of land and has a population of just over 

3 million people [US Census Bureau 2010], isolated on three sides by the ocean to the 

west, forest to the east, and miles of undeveloped land to the south. Traffic is 

considered a major barrier to driving north into Los Angeles County for routine 

healthcare. It is not only an ethnically diverse county, with a population comprising 

the following persons: 44% non-Hispanic White, 34% Hispanic, 18% Asian, 2% 

Black and 2% other race; but is also an economically diverse one, with 10% of the 

population living below the poverty line [US Census Bureau 2010]. OC has 39 

hospitals and 74 nursing homes (Table II.1) [OSHPD 2011]. The hospitals range from 

small, long term, acute care facilities that care for chronically ill patients, to large 

academic medical centres. Nursing homes, which include sub-acute and chronic care 

facilities, range from small facilities with as few as ten licensed beds for long-term 

care, to large facilities with more than 300 beds. 
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Table II.1 Size of healthcare facilities in OC, CA 

[OSHPD 2011]. 

Licensed Beds Acute Hospitals Nursing Homes 

<100 10 48 

100-199 14 21 

200-299 9 5 

300-399 2 0 

400-499 2 0 

500+ 2 0 

Total 39 74 

  

 

 MRSA is a major global cause of morbidity and mortality, imposing serious 

economic costs on patients and healthcare facilities [Abramson and Sexton 1999, 

Cosgrove et al. 2003, Engemann et al. 2003, Cosgrove et al. 2005, Klein, Smith and 

Laxminarayan 2007, Shurland et al. 2007]. A better understanding of the frequency 

and genetic diversity of healthcare-associated and community-associated MRSA 

strains in both hospital and nursing home reservoirs may help to inform infection 

control strategies to prevent MRSA transmission and disease in the US. In 

collaboration with researchers at the University of California, Irvine (UCI), MRSA 

isolates were collected from OC hospitals and nursing homes in the first population-

based countywide study of MRSA strain diversity and distribution in healthcare 

facilities.  

 In the US, MRSA carriage (both asymptomatic and symptomatic) is estimated at 

6-12% in general hospital patient populations and 9-24% in intensive care units 

(ICUs) [Huang et al. 2007a, Robicsek et al. 2008, Lucet et al. 2009]. HA-MRSA has 

long been the primary cause of MRSA infections, but community-associated MRSA 
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(CA-MRSA), which often causes infections among healthy children and young adults 

with no exposure to the healthcare setting, is becoming increasingly prevalent. The 

first reports of MRSA isolated from patients with no identifiable risk factors came 

from Australia and the US in the 1990s [Udo, Pearman and Grubb 1993, Herold et al. 

1998, CDC 1999]. Since then CA-MRSA prevalence has rapidly increased, with 

reports of CA-MRSA infection from virtually every geographic region of the world 

[Tristan et al. 2007a, Wallin, Hern and Frazee 2008]. The incidence of life-threatening 

invasive infections owing to CA-MRSA is increasing, and CA-MRSA appears to be 

particularly virulent among children [Moellering 2006]. Moreover, CA-MRSA has 

caused outbreaks in the hospital setting [O'Brien et al. 1999, Saiman et al. 2003, Bratu 

et al. 2005] with some reports suggesting it may be replacing HA-MRSA [Seybold et 

al. 2006, Patel et al. 2008, Popovich, Weinstein and Hota 2008, D'Agata et al. 2009]. 

 The predominant community-associated MRSA clone in the US is now USA300 

(defined by spa typing and multilocus sequence typing (MLST) as t008 and ST8 

respectively), having rapidly disseminated and replaced USA400 (t128/ST1) since its 

isolation in 2000. USA300 has several characteristics that may offer a selective 

advantage over other MRSA clones, both community-associated (e.g. USA400) and 

healthcare-associated (e.g. USA100 (t002/ST5)). These advantages include (i) a 

smaller SCCmec element (usually type IV) than those of healthcare-associated strains 

(usually SCCmec types I-III), which is more readily transmissible and may be an 

advantage in terms of DNA replication speed; (ii) fewer antibiotic resistance genes 

than healthcare-associated strains, resulting in a fitness benefit due to the carriage of 

smaller or fewer genes; and (iii) a higher growth rate in vitro that may lead to 

successful colonization by outcompeting healthcare-associated strains [Okuma et al. 

2002, D'Agata et al. 2009]. Furthermore, the linkage of ACME with SCCmec type IV 
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in USA300 likely confers increased fitness and/or pathogenicity [Diep et al. 2008b]. 

Finally, greater expression of regulatory genes associated with the virulence factors 

PVL and α-haemolysin has been shown in USA300 versus USA400 isolates, which 

may contribute to the invasiveness of USA300 [Montgomery et al. 2008]. However, 

there is evidence that CA-MRSA do not need PVL to cause nosocomial infections 

[Regev-Yochay et al. 2005, David et al. 2006a, Gould et al. 2009, Otter and French 

2011].  

 In addition, as CA-MRSA strains move into the healthcare setting and are 

exposed to nosocomial antibiotic pressure, they have developed greater antibiotic 

resistance. In one US study, USA300 isolates classified as healthcare-associated were 

significantly more likely to be ciprofloxacin-resistant than CA-MRSA USA300 

isolates [Huang et al. 2006], and another study reported a USA300 isolate with 

intermediate vancomycin susceptibility and reduced daptomycin susceptibility from a 

hospital in San Francisco in 2007 [Graber et al. 2007]. As CA-MRSA strains continue 

to encroach on healthcare MRSA reservoirs, they may come to resemble the antibiotic 

resistance profiles of HA-MRSA, as well as behave more like HA-MRSA clinically 

[Davis et al. 2006, Benoit et al. 2008, Moore et al. 2009, Otter and French 2011]. 

While it is not clear if CA-MRSA cause more severe disease in the healthcare setting 

and whether they are more transmissible than HA-MRSA, their higher fitness and 

growth rate could lead to increasing prevalence in hospitals.  

 Chapters 5 and 6 of Part 2 of my thesis focus on MRSA in OC hospitals, in 

order to determine the frequency of hospital-associated and community-associated 

clones, particularly USA300, among adult and paediatric inpatients, and to gain a 

better understanding of the nature of the hospital MRSA reservoir by assessing the 

diversity and distribution of MRSA across 30 hospitals. This knowledge may better 
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inform infection control strategies employed in hospitals. 

 Very little is known about the diversity and distribution of MRSA in long-term 

care facilities. A recent longitudinal analysis by Tattevin et al. [2009] attributed an 

increasing incidence of MRSA infections in a long-term care facility in San Francisco, 

CA, to two clonal groups - ST5-MRSA-II and ST8-MRSA-IV. The study highlights 

the need for further investigation into the epidemiology of MRSA in long-term care 

facilities in order to minimise further MRSA transmission, particularly since such 

facilities, long thought to be a reservoir for nosocomial MRSA clones, are now 

emerging as an important reservoir for the community associated clone USA300 

(ST8-MRSA-IV), and could play a role in the emergence of multidrug-resistant 

USA300 [Tattevin et al. 2009]. Chapter 7 therefore assesses the diversity and 

distribution of all carriage MRSA collected from residents of 25 nursing homes in 

OC, in order to gain a better understanding of the nature of the MRSA reservoir in 

these unique facilities. 

 
Note: All work presented in Chapter 5 has been published previously, and co-authors 

are listed in Appendix 6 as part of the official citation. Apart from study design and 

isolate collection, I performed all work, including laboratory methods and molecular 

typing, statistical analyses, and manuscript writing. For Chapters 6 and 7, apart from 

study design and isolate collection which were performed by my collaborators at UCI 

and the Orange County Public Health Laboratory, I performed all work, including 

laboratory methods and molecular typing, statistical analyses, and writing. 
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CHAPTER 5: DIFFERENCES IN MRSA STRAINS ISOLATED 
FROM PAEDIATRIC AND ADULT HOSPITAL INPATIENTS  

5.1 INTRODUCTION 

 The phenotypic and genotypic differences between HA- and CA-MRSA strains 

have been well documented [Ma et al. 2002, Okuma et al. 2002, Eady and Cove 2003, 

Diep et al. 2006a, Bassetti, Nicco and Mikulska 2009], yet there are few studies that 

have directly explored the differences in MRSA strains isolated from adults and those 

isolated from children. Park et al. [2007] previously compared a small number of 

adult and paediatric MRSA isolates in a South Korean hospital and found a 

predominance of CA-MRSA isolates among children. A better understanding of the 

frequency of community- versus healthcare-associated MRSA clones among adults 

and children, and in particular the USA300 clone, may inform strategies to prevent 

transmission and disease.  

 Children may have different exposures to MRSA, as they constitute a largely 

healthy population that is most likely to incur MRSA infection through skin and soft 

tissue injuries related to sports and other play activities [Frei et al. 2010]. This is in 

contrast to the chronically and critically ill adult population, which frequents hospitals 

and may encounter healthcare-associated MRSA strains more readily. Furthermore, 

children may experience different antimicrobial drug selection pressure compared to 

that of adults due to differences in common disease syndromes and different guidance 

on antibiotic therapy [David et al. 2006b, Park et al. 2007].  

 Defining the characteristics of MRSA strains in adults and children would 

provide insight into the spread of MRSA strains, particularly since there is growing 

evidence that community and healthcare MRSA reservoirs are mixing [Kourbatova et 

al. 2005, Seybold et al. 2006, Maree et al. 2007, Liu et al. 2008, Popovich, Weinstein 
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and Hota 2008]. Furthermore, few studies of adult or paediatric MRSA strains have 

involved a population-based sample of strains. We conducted a prospective cohort 

study of inpatients in a large metropolitan county to characterise differences in 

paediatric versus adult MRSA strains. 

 
5.2 METHODS 

5.2.1 Study  

 A population-based, prospective collection of clinical isolates of MRSA from 

30 hospitals in OC, California, was conducted. This study was approved by the 

Institutional Review Board of the University of California Regents. 

 
5.2.2 Isolate collection  

 Clinical (non-screening) isolates of MRSA from unique adult patients (>18 

years of age) and unique paediatric patients (<18 years of age) were collected from 

hospital microbiology laboratories. Hospitals were instructed to collect MRSA 

isolates from unique patients up to a total of 100 isolates or for a duration of 12 

months, whichever came first. In order to have a representative sample of Orange 

County MRSA isolates, we limited isolates in this study to those collected for a 

uniform duration of time from adult hospitals. Since the largest adult hospitals 

reached 100 isolates over a 5-month period, we restricted the period of all adult isolate 

collections to 5 months. All paediatric hospitals required a 12-month collection 

period. Nearly all adult isolates were collected between December 2008 and April 

2009. Paediatric isolates were collected between October 2008 and September 2009. 

Isolates from patients not admitted to hospitals were excluded from the study. 

Samples were batched and delivered to the Orange County Public Health Laboratory 
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using soy agar slants. For the repeated confirmation of MRSA, isolates were plated on 

selective media for MRSA (BD CHROMagar). MRSA strains were stored at −65°C in 

15% glycerol Brucella broth. 

 
5.2.3 Specimen data and hospital characteristics  

 Specimen data, including patient age in years, specimen source (wound, blood, 

urine, sputum, or other), specimen location (ICU or non-ICU), and time of specimen 

collection with respect to admission date (hospital onset, ≥3 days after admission; 

community onset, <3 days after admission), were collected. Hospital characteristics 

were obtained from a California hospital dataset [OSHPD 2005], which included 

annual admissions, hospital type (acute care versus long-term acute care (LTAC) 

facility), percentage of Medicaid-insured patients, and percentage of Hispanic 

patients. Population estimates of adults and children in OC were obtained from the 

2010 US Census [US Census Bureau 2011b]. 

 
5.2.4 Laboratory methods and molecular typing  

 All strains were shipped to me for spa typing, and stored at −80°C. Cells were 

harvested on blood agar plates (Oxoid) and incubated at 37°C overnight. DNA was 

extracted using a Qiagen DNeasy Blood & Tissue Kit. DNA samples were eluted in 

200µl of elution buffer (10 mM Tris-Cl, 0.5 mM EDTA (pH 9.0)) and stored at 

−20°C. Following sequencing of the spa region, spa types were determined using 

Ridom StaphType v2.1 (Ridom GmbH) [Harmsen et al. 2003]. To assess spa type 

diversity and relatedness, cluster analysis of spa types was performed separately for 

adult and paediatric isolates using the Based Upon Repeat Pattern (BURP) algorithm, 

a built-in feature of the StaphType software [Mellmann et al. 2007]. MLST and SmaI 
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PFGE were performed on a subset of the isolates (n = 171) to confirm MRSA strain 

types, according to methods described previously [Pfaller 1998, Enright et al. 2000]. 

This subset included one isolate of each spa type and, for the ten most common spa 

types, one isolate from each of the hospitals in which these spa types were present. 

Isolates were selected using a random number generator. I performed MLST, but 

collaborators at the University of Iowa performed PFGE. For PFGE, DNA profiles 

were analyzed using BioNumerics software (version 5.0, 2007; Applied Maths). 

PFGE types were defined using a similarity coefficient of 78%, and USA100 to 

USA800 strains were used as references. 

 
5.2.5 Statistical analyses  

 Annual adult and paediatric population estimates of hospitalised patients with 

clinical MRSA cultures were calculated by spa type, accounting for the duration of 

countywide collection. I further calculated the percentage of MRSA strains from adult 

versus paediatric patients that were due to the most common spa types (t008, t242, 

t002) and compared them using χ2 tests.  Specimen data for t008, t242 and t002 

isolates were compared using χ2 or Fisher’s exact tests and, for patient age, the 

Wilcoxon Mann-Whitney test. Simpson’s index of diversity (1−D) was used to 

compare the genetic diversities of MRSA strains among adults and children. 1−D 

gives an unbiased measure of the probability of drawing two different spa types given 

the distribution of spa types in a sample [Grundmann et al. 2010]. The 95% 

confidence intervals (CIs) were calculated as described previously [Grundmann, Hori 

and Tanner 2001]. I conducted bivariate tests to evaluate the association of spa type 

t008 with individual variables, including age (adult/paediatric), specimen source 

(specifically wound and blood), time of specimen collection (community or hospital 
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onset), and ward type (non-ICU/ICU). I also tested hospital-level variables, including 

annual admissions (greater or less than 10,000), LTAC facility, percentage of 

Hispanic patients, and percentage of Medicaid-insured patients. For multivariate 

analyses, variables with a p value of <0.1 were entered into a generalized linear mixed 

model clustered by hospital and were retained at an α value of ≤0.05 (xtmelogit, 

STATA release 11, StataCorp. 2009).  

 
5.3 RESULTS 

A total of 1,124 adult and 159 paediatric MRSA isolates were collected over 

the 5- and 12-month periods, respectively. A summary of the characteristics of the 

clinical MRSA strains collected is shown in Table 5.1. The median age of adults was 

67 years (interquartile range (IQR), 50 to 81 years) and that of children was 2 years 

(IQR, 1 to 9 years).  

t008, t242 and t002 were the predominant spa types in OC, accounting for 

83% of all isolates (Table 5.2). The distribution of these spa types among adults (t008, 

41%; t242, 23%; t002, 19%) was significantly different from that among children 

(t008, 69%; t242, 9%; t002, 6%) (χ²=52.29, p<0.001). Annual population estimates of 

clinical inpatient MRSA cultures were 119/100,000 adults and 22/100,000 children. 

Annual estimates by spa type were 48/100,000 adults and 15/100,000 children for 

t008, 27/100,000 adults and 2/100,000 children for t242, and 22/100,000 adults and 

1/100,000 children for t002. 
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Table 5.1 Characteristics of clinical MRSA strains isolated from adult and paediatric 

patients. 

 No. (%) of isolates 

Characteristic Adulta Paediatricb Total/Overall 

Number of MRSA isolates 1124 (87.6) 159 (12.4) 1283 (100) 

Specimen sourcec    

       Wound/Abscess 488 (43.4) 81 (55.9) 569 (44.8) 

       Sputum 331 (29.4) 27 (18.6) 358 (28.2) 

       Urine 109 (9.7) 4 (2.8) 113 (8.9) 

       Blood 104 (9.3) 7 (4.8) 111 (8.8) 

       Otherd 92 (8.2) 26 (17.9) 118 (9.3) 

ICU collectione 187 (16.7) 17 (11.8) 204 (16.1) 

Hospital onset 399 (35.5) 40 (25.2) 439 (34.2) 

a Collected for 5 months from hospitals serving adults. 
b Collected for 12 months from hospitals serving children. 
c Fourteen missing paediatric entries. 
d According to brief notes in the dataset, ‘other’ specimen sources included 

the following anatomical locations or types of specimens:  

5 ear; 5 eye; 3 buttock; 2 each of finger, leg, pleural, and skin; and 1 each of 

gastrointestinal, sinus, perineum, spleen, and umbilical for paediatric 

specimen sources and 8 leg; 7 foot, knee, and medical device related; 6 groin; 

5 abdominal, spinal, and stool; 4 gastric; 4 hand; 3 back, pleural, and tissue; 2 

each of ankle, body fluid, buttock, ear, eye, stump, synovial fluid, and 

unknown; and 1 each of drainage, gallbladder, hip, humerus, ileal crest, lung, 

pancreatic fluid, skin, and stoma for adult specimen sources. 
e Nineteen missing entries (4 adult and 15 paediatric).  
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According to MLST, the t008 isolates in this study were the prototypic 

community clone USA300 (t008/ST8), and the t002 isolates were the prototypic 

hospital clone USA100 (t002/ST5), with t242 isolates identified as ST5 (Table 5.2). 

Comparison of t242 and t002 isolates for the following parameters revealed no 

significant difference: the proportion from each specimen source, the proportion of 

hospital and community onset, the proportion collected on ICU and non-ICU wards, 

and the age distribution of patients (all p>0.05). Conversely, t008 isolates were 

significantly different from t242 and t002 isolates in the same tests (p<0.001). t242 

and t002 isolates shared the most common specimen source, sputum (34% and 38%, 

respectively), whereas wounds were the most common specimen source of t008 

isolates (56%). PFGE of a sample of t242 and t002 isolates showed them to be 

predominantly USA100 isolates (data not shown). 

BURP analysis of the spa types clustered the majority of adult isolates (97%) 

into three spa clonal complexes (spa-CC) and most paediatric isolates (96%) into two 

spa-CCs (Figure 5.1). spa types were clustered with either t008 (spa-CC008; 

community-associated strains) or t002 (spa-CC002; healthcare-associated strains), but 

in adults, a further spa-CC with founder t324 was identified (spa-CC324). Isolates in 

this spa-CC were characterised as ST72. For both adult and paediatric MRSA isolates, 

MLST results showed that all isolates in spa-CC008 were ST8 and all isolates in spa-

CC002 were either ST5 or a SLV, ST105 (spa types t045, t088 and t1791 for the 

latter). According to the BURP algorithm, spa types that differ from all other spa 

types in the sample by more than 4 repeats, and thus which cannot be clustered into a 

spa-CC, are termed singletons. For adults, 10 (11.2%) spa types (40 (3.6%) isolates) 

were classified as singletons, and for children 4 (18.2%) spa types (6 (3.8%) isolates) 

were classified as singletons. spa types of less than five repeats in length were 
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excluded from the BURP analysis because no reliable evolutionary history can be 

inferred from ‘short’ spa types [Mellmann et al. 2007]. For adults, two (2.2%) spa 

types (two (0.2%) isolates) were excluded and for children, one (4.5%) spa type (one 

(0.6%) isolate) was excluded. The estimated genetic diversity of MRSA isolates was 

significantly higher among adults than among children (1−D = 75% versus 51%) 

(Table 5.2).  
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Table 5.2 Ten most frequently found spa types among adult and paediatric patients in OC, Californiaa. 

 Adult patients Paediatric patients 

Rank 

spa type MLST No. of 

isolates 

% of 

isolates 

Cumulative 

% 

spa type MLST No. of 

isolates 

% of 

isolates 

Cumulative 

% 

1 t008 8 457 40.7 40.7 t008 8 110 69.2 69.2 

2 t242 5 260 23.1 63.8 t242 5 14 8.8 78 

3 t002 5 211 18.8 82.6 t002 5 9 5.7 83.7 

4 t024 8 19 1.7 84.3 t024 8 3 1.9 85.5 

5 t037 8 15 1.3 85.6 t045 5 2 1.3 86.8 

6 t127 1 14 1.3 86.8 t068 8 2 1.3 88.1 

7 t088 105 12 1.1 87.9 t2689 8 2 1.3 89.3 

8 t1737 5 11 1 88.9 t324 72 2 1.3 90.6 

9 t306 5 6 0.5 89.4 t622 8 2 1.3 91.8 

10 t126 72 5 0.4 89.9 13 others  1 each 0.6 each 100 

a The total numbers of spa types were 89 for adult patients and 22 for paediatric patients. Simpson's index of diversity (1−D) values were 75% 

(95% CI, 73%, 76%) for adult patients and 51% (95% CI, 41%, 60%) for paediatric patients. MLST = multilocus sequence type. 
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Figure 5.1 Relatedness of spa types among adult (A) and paediatric (B) MRSA 

isolates according to the Based Upon Repeat Pattern (BURP) algorithm. Clusters of 

linked spa types correspond to spa clonal complexes (spa-CCs). spa types are 

clustered into a spa-CC when their repeat patterns differ by no more than 4 repeats. 

The BURP algorithm sums up ‘costs’ (a measure of relatedness based on the repeat 

pattern) to define a founder score for each spa type in a spa-CC. The founder (blue 

node) is the spa type with the highest founder score in its spa-CC, and the subfounder 

(yellow node) is the spa type with the second highest founder score. spa-CC008 has 

founder t008. Each node represents a spa type. The node size represents the number 

of clustered strains that belong to that spa type. The shading of the branches 

represents the costs (similarities in repeat patterns) between two spa types; the darker 

the branch, the lower the cost (more similar repeat patterns).  
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 In bivariate analyses, paediatric patients, wound specimens, isolation in a non-

ICU ward, community onset timing of collection, and isolation from a hospital with 

>10,000 annual admissions were associated with t008 (USA300) isolates (Table 5.3). 

In addition, admission to a hospital with a high proportion of Medicaid-insured 

patients or a high proportion of Hispanic patients was linearly associated with the 

recovery of t008 isolates. In multivariate analyses, isolates from paediatric patients, 

wounds, non-ICU wards, and hospitals with a high proportion of Medicaid-insured 

patients remained significantly associated with spa type t008 (Table 5.4). Isolates 

from hospitals with a high proportion of Hispanic patients were significantly more 

likely to be t008 isolates (20% higher odds of being a spa type t008 isolate per 10% 

increase in numbers of Hispanic patients). However, this finding was collinear with 

hospitals with a high proportion of Medicaid-insured patients and thus was removed 

from the multivariate model.   
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Table 5.3 Bivariate analyses of variables associated with spa type t008. 

Variable  % of t008 isolates  χ2 p 

 Those with 

characteristic 

Those without 

characteristic 

  

Individual Variables     

       Paediatric 69.81 40.75 47.67 <0.001 

       Community onset 48.10 37.13 14.09 <0.001 

       Non-ICU 47.17 27.45 27.00 <0.001 

       Blood specimen 40.54 44.30 0.58 0.446 

       Wound specimen 60.04 32.34 96.28 <0.001 

Hospital-level Variables     

       >10,000 annual admissions 38.40 51.52 22.00 <0.001 

       % Medicaid-insured patientsa    1.34 (1.21-1.48) <0.001 

       % Hispanic patients a   1.29 (1.15-1.44) <0.001 

       LTAC facility 35.21 44.88 2.54 0.111 

a Odds ratio per 10% increase. 
 

Table 5.4 Multivariate analysis of variables associated with spa type t008. 

Variable Odds ratio SE 95% CI p 

Patient/isolate characteristic     

       Wound specimen 

       Paediatric 

       Non-ICU 

2.64 

2.07 

1.77 

0.34 

0.52 

0.32 

2.06, 3.39 

1.26, 3.40 

1.24, 2.54 

<0.001 

0.004 

0.002 

Hospital characteristic     

% Medicaid-insured patientsa 1.24 0.06 1.13, 1.35 <0.001 

a Odds ratio per 10% increase. 
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5.4 DISCUSSION 

 A prospective cohort study of inpatients in a large metropolitan county in 

California was conducted, collecting all clinical MRSA isolates from 30 hospitals in 

order to characterise differences in paediatric versus adult MRSA strains. To my 

knowledge, this is the first study to assess adult and paediatric MRSA isolates from a 

population-based sample across a large region.  

Countywide, adult and paediatric clinical MRSA isolates were dominated by 

three spa types, two of which were consistent with the prototypic community- and 

healthcare-associated clones prevalent in the US (t008 (USA300) and t002 

(USA100)). t008 (USA300) was the most common single clone among both adult and 

paediatric isolates. Nevertheless, t008 comprised a large majority of paediatric 

isolates, whereas adult isolates were nearly equally divided among community- and 

healthcare-associated clones. Most other spa types were shown by BURP to be related 

to these two dominant clones. The two spa clonal complexes spa-CC008 and spa-

CC002 can therefore be thought of as two distinct groups of isolates representing the 

major community- and healthcare-associated MRSA strains prevalent in the US.  

Interestingly, t242/ST5 was slightly more common than t002/ST5 among both 

adult and paediatric isolates, despite the predominance of the t002/ST5 hospital clone 

in the US. Given the similarities of t242 and t002 isolates in this study, and the fact 

that t242 differs from t002 by only one nucleotide (resulting in a different spa repeat 

pattern by one spa repeat), t242/ST5 presumably represents a minor variant of 

USA100 that has become prevalent in OC hospitals. t242 has been reported 

infrequently in the literature [Kinnevey et al. 2010, Johnson et al. 2007, Weese, Avery 

and Reid-Smith 2010], with just one study reporting t242 at an endemic level in an 

Italian hospital [Parlato et al. 2009].  
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The additional spa-CC identified among adult isolates included a community- 

onset isolate identified as t324/ST72, an invasive community-associated MRSA clone 

reported in elderly patients in South Korea from 2006 to 2007, just before our isolate 

collection began [Lee et al. 2010]. According to the US Census Bureau, 17.9% of the 

OC population is Asian, approximately 2.9% of which is Korean [US Census Bureau 

2011b].  

There was significantly more genetic diversity among adult MRSA isolates 

than among paediatric isolates. This could simply represent the greater time that 

healthcare-associated clones have had to diversify at the spa locus than community-

associated clones, which have emerged only in the past two decades. The greater 

MRSA diversity among adults could also be due to different degrees of contact; for 

example, adults may have more diverse MRSA encounters (travel, work, social 

venues, and healthcare facilities) than young children (schools and day care centres).  

The population estimates of clinical MRSA isolates in OC show that there was 

a 6-fold-higher frequency of inpatient MRSA clinical cultures among adults than 

among children. This pattern was consistent among the three most common spa types 

t008, t242 and t002, and is likely a combination of more frequent hospitalisations 

among adults (many of whom were elderly, with a median age of 67 years) and more 

frequent MRSA carriage.  

In multivariate analyses, the community-associated MRSA clone t008 

(USA300) was associated with paediatric patients. In contrast to adults, children are 

often healthier and are more likely to encounter MRSA in the community through 

exposure to high-density environments, such as schools, day care centres, camps and 

sporting activities, where close contact may facilitate the spread of community MRSA 

strains. In agreement with data from previous studies, I found that USA300 was 
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associated with wounds, which is the most common presentation for hospitalization 

due to community-acquired MRSA infection [Fridkin et al. 2005, Bassetti, Nicco and 

Mikulska 2009]. USA300 was also associated with hospitals that treat a large fraction 

of Medicaid-insured patients, suggesting that community MRSA infections may be 

more prevalent among patients from economically disadvantaged or high-density 

areas. 

USA300 was also associated with isolation from non-ICU wards, suggesting 

that this community strain is occurring in healthier hosts or is producing infections 

that are less severe than those caused by traditional healthcare-associated strains. 

Nevertheless, there is ample evidence that community strains are capable of 

producing fulminant infections [Frazee et al. 2005, Miller et al. 2005, Seybold et al. 

2006]. An understanding of what component of invasiveness is due to host 

comorbidities versus pathogen virulence factors is an area of active research.  

Interestingly, I did not find that the isolation of t008 was associated with 

community onset clinical isolates (clinical culture isolated less than 3 days after 

admission). This finding is likely due to the fact that the majority of healthcare-

associated carriage or infection is found on readmission to hospitals [Klevens et al. 

2007].  It could also be explained by community-associated strains that have become 

endemic in some hospitals [Seybold et al. 2006, Popovich, Weinstein and Hota 2008].  

Community- and healthcare-associated MRSA strains are becoming 

increasingly difficult to distinguish epidemiologically as community-associated 

strains continue to penetrate hospital MRSA reservoirs. Furthermore, it remains 

unclear whether community clones are adding to or replacing traditional healthcare 

MRSA strains [Bootsma et al. 2006a, Hota et al. 2007, Popovich, Weinstein and Hota 

2008, D'Agata et al. 2009]. The implication of the blurred line between community- 
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and healthcare-associated MRSA strains may be that efforts to control MRSA 

transmission within hospitals will not be effective in controlling community influx 

into hospitals. Simultaneous community strategies to limit MRSA spread are needed. 

However, much is still unknown about the acquisition and transmission of CA-

MRSA, so improved knowledge is needed to better guide infection control strategies. 

Further studies are needed to ascertain whether community strategies to reduce 

transmission in children and young adults would produce benefits across the entire 

age spectrum.  

 One limitation of this study is that few individual-level characteristics were 

available. Also, this study did not account for the different policies in place at each 

hospital with regard to when to obtain clinical cultures. These differences could affect 

MRSA detection at each hospital and, possibly, the type of MRSA strains isolated, if 

clinical cultures were more likely to be obtained for sicker, older patients. Moreover, 

the results could have been affected by the potential seasonality of MRSA infections 

and infection types due to the different collection periods for adult and paediatric 

isolates (largely winter and spring for adult collections, compared to all seasons for 

paediatric collections). Seasonality of S. aureus infections, particularly skin 

infections, has been observed in paediatric and adult patients in temperate and tropical 

environments, with a predominance of infections during summer and autumn [Loffeld 

et al. 2005, Szczesiul et al. 2007, Van De Griend et al. 2009, Mermel, Machan and 

Parenteau 2011]. A recent study in Rhode Island found a two- to three-fold-increased 

incidence of MRSA infections (both CA- and HA-MRSA) in paediatric patients 

during the second two quarters of the year, over the last decade [Mermel, Machan and 

Parenteau 2011]. However, in the same study, adult CA-MRSA infections showed 

less seasonal variation than did paediatric infections, and no variation was observed 
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among adult HA-MRSA infections. Some studies observed no significant seasonality 

of S. aureus infections, but those studies focused on bacteremia [Morin and Hadler 

2001, Perencevich et al. 2008].  The collection of both adult and paediatric MRSA 

isolates for the same time period i.e. twelve months, would have accounted for any 

potential seasonality effects and/or other factors that could affect the type and 

diversity of MRSA strains isolated. 

Mandatory screening of high-risk inpatients was not in place in California 

until 2009; therefore, my population estimates are likely underestimates. In addition, 

my estimates should not be construed as measures of MRSA infection among 

inpatients. Clinical isolates often represent carriage without infection. Finally, my 

estimates of the index of diversity for adult and paediatric MRSA isolates may have 

been influenced by differing sample sizes [Grundmann, Hori and Tanner 2001]. 

In conclusion, this study found that in a large county, MRSA isolates from 

hospitalised children were more likely to be spa type t008 (USA300). This 

community-associated spa type was associated with children, wounds, non-ICU care, 

and admission to a hospital with a high percentage of Medicaid-insured patients. 

Despite the association of t008 isolates with children, t008 was still the most common 

spa type among adult patients, suggesting that community-based interventions are 

needed to stem the influx of t008 isolates into hospitals. The study also found 

evidence for a prevalent variant of the USA100 clone (t242/ST5), which has not been 

reported elsewhere. While community- and hospital-associated MRSA reservoirs 

have begun to merge, significant differences remain in paediatric versus adult patient 

populations, which may provide an impetus for different age-based strategies to 

reduce transmission and disease. 
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CHAPTER 6: DIVERSITY OF MRSA STRAINS ISOLATED 
FROM INPATIENTS OF 30 HOSPITALS  

6.1 INTRODUCTION 

 HA-MRSA has long been the primary cause of MRSA infections, but CA-

MRSA, which often causes infections among healthy children and young adults with 

no exposure to the healthcare setting, has become increasingly prevalent across the 

globe, particularly in the US [Udo, Pearman and Grubb 1993, Herold et al. 1998, 

CDC 1999, Eady and Cove 2003, Mongkolrattanothai et al. 2003, Francis et al. 2005, 

Gonzalez et al. 2005a, Miller et al. 2005, Moran et al. 2005, Moellering 2006, Tristan 

et al. 2007a, Wallin, Hern and Frazee 2008, Otter and French 2010, Otter and French 

2011]. While well documented in the community, there is increasing evidence that 

CA-MRSA is penetrating healthcare MRSA reservoirs [O'Brien et al. 1999, Saiman et 

al. 2003, Bratu et al. 2005, Kourbatova et al. 2005, David et al. 2006a, Gonzalez et al. 

2006, Otter and French 2006, Saunders et al. 2007, Boyce 2008, Otter and French 

2008, Sonnevend et al. 2012]. CA-MRSA has caused outbreaks in the hospital setting 

since 2003, often in paediatrics and obstetrics where HA-MRSA prevalence is low 

and community influx of patients without prior healthcare exposure is common [Otter 

and French 2011]. Furthermore, some reports suggest CA-MRSA may be replacing 

HA-MRSA [Seybold et al. 2006, Maree et al. 2007, Patel et al. 2008, Popovich, 

Weinstein and Hota 2008, D'Agata et al. 2009].  

 Most prior studies of CA-MRSA penetration into hospital reservoirs involve a 

single centre. Regional evaluation of healthcare facilities may provide further 

information about the extent of reservoir mixing of CA-MRSA and HA-MRSA 

strains across community and academic healthcare facilities, as well as paediatric 

hospitals and LTAC facilities. A prospective, population-based study of clinical 
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MRSA isolates across nine medical centers in San Francisco, California, found that 

USA300 was the predominant clone in both the community and hospital setting [Liu 

et al. 2008]. While this city-based study collected almost 4000 MRSA isolates, only a 

fifth of these were selected for molecular analysis, with the primary goal to determine 

clonal groupings based upon the isolate collection date (hospital onset or community 

onset). Further comprehensive evaluations of the diversity of isolates within and 

across clonal complexes will provide valuable information about how exact strain 

types are evolving and being shared across facilities. It is also unclear how much 

hospital onset disease is caused by CA-MRSA. Given the increasing dominance of 

USA300 and the growing evidence that community and healthcare MRSA reservoirs 

are mixing [Kourbatova et al. 2005, Seybold et al. 2006, Maree et al. 2007, Liu et al. 

2008, Popovich, Weinstein and Hota 2008], a better understanding of the frequency 

and diversity of community- and healthcare-associated MRSA clones in hospitals may 

inform strategies to prevent MRSA transmission and disease in the US. We conducted 

a prospective cohort study of inpatients in a large metropolitan county to investigate 

the frequency and genetic diversity of MRSA at a population level.  

 
6.2 METHODS 

6.2.1 Study  

As described in section 5.2.1. 

 
6.2.2 Isolate collection  

 Clinical (non-screening) isolates of MRSA from unique patients were 

collected from hospital microbiology laboratories by my collaborators, between 

October 2008 and April 2010. Hospitals were instructed to collect non-blood MRSA 
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isolates from unique patients up to a total of 100 or for a duration of 12 months, 

whichever came first. In addition, hospitals were instructed to collect all blood 

isolates from unique patients until collection ended. Isolates from patients not 

admitted to hospital were excluded from the study. Samples were then processed and 

stored by the Orange County Public Health Laboratory as described in section 5.2.2.  

 
6.2.3 Specimen data and hospital characteristics  

 Specimen data, hospital characteristics and the OC population estimate were 

obtained as described previously (section 5.2.3) [Hudson et al. 2012].  

 
6.2.4 Laboratory methods and molecular typing  

 All strains were shipped to me for spa typing, and processed as before (section 

5.2.4). To assess spa type diversity and relatedness, cluster analysis of spa types was 

performed using the Based Upon Repeat Pattern (BURP) algorithm, a built-in feature 

of the StaphType software [Mellmann et al. 2007]. MLST was also performed on a 

subset of the isolates (n=284) to confirm MRSA strain types, according to methods 

described previously [Enright et al. 2000]. This subset was selected as described in 

section 5.2.4.  

 

6.2.5 Statistical analyses  

 I calculated the number of hospitalized patients with MRSA clinical cultures 

among both the total population of OC and total annual admissions across all 30 

hospitals, accounting for duration of isolate collection within each hospital. The 

number of community onset MRSA clinical cultures among the total OC population 

was also calculated. χ2 tests were performed to compare isolate characteristics 
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(community onset versus hospital onset, and number of isolates belonging to different 

spa-CCs) between hospitals. One-sample z-tests for equality of proportions were 

conducted, to compare isolate characteristics (community onset versus hospital onset, 

and number of isolates belonging to different spa-CCs) within each hospital.  

  I also used Simpson’s index of diversity (1−D) to estimate inter- and intra-

hospital genetic diversity of the MRSA strains collected, as well as the genetic 

diversity of the two major spa-CCs, and genetic diversity among hospital and 

community onset isolates. 1−D gives an unbiased measure of the probability of 

drawing two different spa types given the distribution of spa types in a sample 

[Grundmann et al. 2010]. 95% confidence intervals (CIs) were calculated as described 

previously [Grundmann, Hori and Tanner 2001]. For comparison of diversity indices, 

a significant difference (p<0.05) was determined by non-overlapping 95% CIs.  

 I computed Pearson's correlation coefficients to determine the relationship 

between hospital-level and isolate variables, and genetic diversity. Due to the small 

sample size (28 hospitals; two were excluded as they collected <10 MRSA isolates 

and thus their diversity estimates were unreliable) and the number of potential 

predictor variables for genetic diversity, variables were considered for entry into a 

bootstrapped multiple linear regression model based on a combination of their 

correlation coefficient and current knowledge regarding their association with MRSA. 

Only variables with p<0.1 in correlation tests were considered for the exploratory 

model. I also tested the correlation between community onset and spa-CC008 isolates. 

All statistical tests were performed using STATA (release 11, StataCorp 2009). 
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6.3 RESULTS 

6.3.1 Overview  

 Between October 2008 and April 2010, 2,246 clinical MRSA isolates were 

collected from 30 OC hospitals. Annual population incidence of clinical inpatient 

MRSA isolates in OC was estimated at 86/100,000 people (88/10,000 admissions). 

Annual population incidence of clinical inpatient MRSA isolates in OC that were 

community onset was estimated at 60/100,000 people (62/10,000 admissions). Most 

clinical MRSA isolates were isolated from wounds or abscesses (47%), in non-

intensive care units (non-ICUs; 84%), and were community onset (72%). Median 

patient age was 64 (IQR, 44-79; 13 missing values). Table 6.1 gives a summary 

overview of the participating hospitals and isolate characteristics. 
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Table 6.1 Summary of the 30 participating hospitals and the clinical MRSA isolates 

from hospital inpatients in OC, CA. 

Characteristic Value 

Hospital characteristics (Median (IQRa))  

Annual admissions  7868 (2819-16157) 

% Hispanic patients  19.2 (11.4-32.9) 

% Medicaid-insured patients  15.1 (5.8-34.6) 

N MRSA isolates per hospital per month  4.7 (2.5-11) 

N spa types per hospital  14 (7-17) 

N LTAC-facilitiesb (No. of isolates (%)) 6 (132 (5.9)) 

Overall isolate characteristics (No. of isolates (%))  

MRSA isolates 2246 (100) 

Specimen sourcec  

Sputum  596 (26.7) 

Wound/Abscess 1047 (47) 

Blood 213 (9.5) 

Urine 189 (8.5) 

Other 184 (8.3) 

Intensive care unit collection 374 (16.7) 

Hospital onset 627 (27.9) 

a IQR = interquartile range. 

b LTAC = long-term acute care. 

c 17 missing values. 
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6.3.2 spa typing and MLST 

Among the 2,246 MRSA isolates collected, 134 spa types were identified, 

including one non-typeable (NT) isolate and 28 spa types (1.6% of all isolates) that 

did not match any known spa sequence. These novel spa sequences were 

automatically submitted to the Ridom SpaServer via the Ridom StaphType software 

and were assigned new spa types. The isolate with the NT spa type was re-tested to 

confirm the result was not due to a processing error, and the sequence quality was 

deemed excellent by the StaphType software. The NT spa type bore closest 

resemblance to t008, with a missing nucleotide in the ninth repeat, making the repeat 

23-bp long. This is surprising since it would put the spa coding region out of frame 

although others have reported spa repeats with an unexpected length [Rothganger 

2010]. The NT spa type was submitted to Ridom for their records. The three most 

common spa types were t008, t242 and t002, representing 83% of all isolates 

collected (Table 6.2).  

BURP analysis of the spa types clustered 96% of isolates into two large spa-

CCs and 1.2% of isolates into six smaller spa-CCs (Figure 6.1). 78% of spa types 

were clustered into either spa-CC242 (founder t242) or spa-CC008 (founder t008), 

including 18 and 8 novel spa types, respectively. Under the BURP algorithm, spa 

types that differ from all other spa types in the sample by more than 4 repeats cannot 

reasonably be clustered into a spa-CC, and are termed singletons. Nine spa types (56 

isolates) were classed as singletons, including two novel spa types. Six isolates 

represented six spa types that were less than five repeats in length and were excluded 

from BURP analysis because no reliable evolutionary history can be inferred from 

‘short’ spa types [Mellmann et al. 2007]. The NT isolate could not be included in the 
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BURP algorithm. Estimated genetic diversity of MRSA in OC hospitals using spa 

typing was high, at 72% (Table 6.2). 

 

 

Table 6.2 Ten most frequently found spa types among isolates from OC hospital 

inpatientsa. 

Rank spa type MLST Freq % Cumulative % 

1 t008 8 1034 46 46 

2 t242 5 478 21.3 67.3 

3 t002 5 347 15.4 82.8 

4 t024 8 33 1.5 84.2 

5 t037 8 25 1.1 85.4 

6 t045 5 22 1.0 86.3 

7 t088 105 21 0.9 87.3 

8 t127 474b 18 0.8 88.1 

9 t306 5 14 0.6 88.7 

10 t1737 5 12 0.5 89.2 

- Other - 242 10.8 100.0 

a The total number of spa types was 134, including one non-typeable isolate. 

Simpson's index of diversity (1−D) value was 72% (95% CI, 70%, 73%). 

MLST = multilocus sequence type. 

b t127 isolates were also ST1 and ST1900, both SLVs of ST474. 
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Figure 6.1 Relatedness of spa types among hospital MRSA isolates according to the Based Upon Repeat Pattern (BURP) algorithm. Clusters of 

linked spa types correspond to spa clonal complexes (spa-CCs). spa types are clustered into a spa-CC when their repeat patterns differ by no 

more than 4 repeats. The BURP algorithm sums up ‘costs’ (a measure of relatedness based on the repeat pattern) to define a founder score for 

each spa type in a spa-CC. The founder (blue node) is the spa type with the highest founder score in its spa-CC, and the subfounder (yellow 

node) is the spa type with the second highest founder score. spa-CC008 has founder t008, and spa-CCNF refers to a spa-CC with no founder. 

Each node represents a spa type. The node size represents the number of clustered strains that belong to that spa type. The shading of the 

branches represents the ‘costs’ (similarities in repeat patterns) between two spa types; the darker the branch, the lower the cost (more similar 

repeat patterns).  
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To confirm strain types, 284 isolates were selected for MLST. Among the 23 

unique sequence types (STs) identified, ST5 (45%), ST8 (38%) and ST105 (4%) were 

the three most common, with the vast majority of isolates (90%) belonging to one of 

two major MLST CCs: CC5 (50%; four STs) and CC8 (40%; three STs) (Table 6.3). 

The remaining 10% of isolates comprised sporadic incidences of both HA- and CA-

MRSA clones, but mostly the latter (7.4%). According to MLST, t008 isolates were 

the prototypic community clone USA300 (t008/ST8) and t002 isolates were the 

prototypic hospital clone USA100 (t002/ST5), with t242 isolates identified as ST5 

(Tables 6.2 and 6.3). spa type t242 differs from t002 by one spa repeat, as a result of a 

single nucleotide difference. The non-typeable spa isolate was ST8, with 64% of the 

novel spa types being ST5 and 36% ST8.  
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Table 6.3 Relatedness of MLST sequence types (STs) among 284 

hospital MRSA isolates according to the eBURST algorithm. 

CC (no. of isolates)a MLST Associated spa typesb 

CC5 (142) 5 t242, t002, t045 

 105 t088, t045 

 225 t045 

 840 t088 

CC8 (114) 8 t008, t024, t037 

 239 t037 

 576 t1635 

CC474 (9) 474 t127 

 1900 t127 

 1 t127 

CC NF1 (4) 45 t004, t026, t040 

 1811 t1081 

CC NF2 (3) 59 t3424, t976 

 87 t216 

CC NF3 (2) 36 t018 

 30 t019 

Singletons (10)c 72 t126, t148, t324 

 22 t005 

 12 t160 

 88 t5916 

 97 t359 

 188 t189 

 635 t044 

a CC = clonal complex. All members of a CC share identical 

alleles at six of the seven loci with at least one other 

member of the CC.  
b Only the three most common spa types are listed if more 

than three associated with that ST. 
c STs with allelic profiles that share less than six of their 

seven loci with all other STs in the dataset. 
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6.3.3 Inter-hospital differences 

The estimated genetic diversity of MRSA between hospitals ranged from 33% 

to 79% (Figure 6.2). Percentage of blood specimens isolated per hospital and the 

median age of patients that specimens were collected from were positively correlated 

with genetic diversity within hospitals (r = 0.57, p<0.01 and r = 0.78, p<0.001 

respectively; Table 6.4). Significant negative correlations were found between genetic 

diversity of hospital MRSA isolates and the percentage of Medicaid-insured patients 

(r = -0.57, p<0.01), Hispanic patients (r = -0.38, p = 0.04) and wound/abscess 

specimens (r = -0.65, p<0.001) per hospital (Table 6.4). Percentage of Hispanic 

patients and percentage of Medicaid-insured patients were highly correlated (r = 0.85, 

p<0.001), and since both are markers for patients from economically 

disadvantaged/high-density areas, the former was not considered for entry into the 

bootstrapped linear regression model. Only percentage of blood specimens and 

median patient age remained significantly correlated to genetic diversity in the 

exploratory regression model (Table 6.5).  

The three most common spa types, t008, t242 and t002, accounted for 65-95% 

of isolates at each hospital, showing that these spa types are consistently dominant 

across OC hospitals. Since MLST has shown that t008 isolates are the community-

associated clone USA300 and t002 isolates the healthcare-associated clone USA100, I 

can infer that the two major spa-CCs containing these strains each represent 

community-associated (spa-CC008) and healthcare-associated spa types (spa-CC242, 

which also included t002). The proportion of spa-CC008 isolates compared to spa-

CC242 isolates varied significantly between hospitals (χ2 = 250.57, df = 29, p<0.001) 

(Figure 6.2). Five hospitals (16.7%) had significantly more spa-CC242 isolates, 

whereas fifteen hospitals (50%) had significantly more spa-CC008 isolates (p<0.01). 
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Diversity of spa types among spa-CC008 (1−D = 22% (95% CI, 19-26%)) was 

significantly lower than diversity among spa-CC242 (1−D = 63% (95% CI, 61-66%)). 

 
6.3.4 Community onset versus hospital onset MRSA 

 MRSA spa type genetic diversity was significantly higher among hospital 

onset isolates (1−D = 75% (95% CI, 73-77%)) than among community onset isolates 

(1−D = 70% (95% CI, 68-72%)). The proportion of community onset and hospital 

onset isolates was also significantly different between hospitals (χ2 = 127.4, df = 29, 

p<0.001); all but two hospitals isolated significantly more community onset MRSA 

(p<0.001), with seven hospitals only isolating community onset MRSA. The 

remaining two hospitals showed no significant difference in the proportions of 

community onset and hospital onset MRSA (p>0.01). No significant correlation was 

found between the proportions of community onset isolates per hospital and the 

proportions of spa-CC008 isolates per hospital (r = 0.08, p = 0.69). Among hospital 

onset isolates, 42.3% belonged to spa-CC008 (18.2-100% per hospital, ignoring 

community onset only hospitals), while 39.4% of community onset isolates were spa-

CC242 (6.9%-82.9% per hospital). 
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Figure 6.2 Proportion of isolates belonging to spa-CC242 versus spa-CC008, by hospital. *indicates a significant 

difference at the 99% level in the proportion of isolates belonging to spa-CC242 and spa-CC008 at that hospital. The 

black bars show the point estimates and 95% confidence intervals of hospital-specific genetic diversity expressed as 

Simpson's index of diversity (1−D) of spa types (as a percentage). Diversity indices for hospitals 11 and 13 were excluded 

from the figure as these hospitals had spa type data on less than ten isolates. Diversity indices with non-overlapping 95% 

CIs were considered significantly different (p<0.05).   
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Table 6.4 Correlation of hospital and isolate variables with hospital genetic diversity. 

Variable r pa 

Hospital variable   

Annual admissions 0.28 0.15 

% Medicaid-insured patients -0.57 <0.01 

% Hispanic patients -0.38 0.04 

LTAC-facilityb 0.002 0.99 

Isolate/patient variable   

% Non-ICUc isolate collection -0.27 0.16 

% Community onset -0.21 0.29 

% Wound/abscess specimens -0.65 <0.001 

% Blood specimens 0.57 <0.01 

Median age 0.78 <0.001 

a Variables with p<0.1 were considered for exploratory multivariate analyses. 

b LTAC = long-term acute care. 

c Non-Intensive care unit (Non-ICU). 

 

Table 6.5 Multivariate analysis of variables associated with hospital genetic diversity. 

Variable Coefficient Bootstrap 

SE 

Normal-based 

95% CI 

p 

% Blood specimens 0.82 0.24 0.35, 1.29 <0.01 

Median age 0.44 0.08 0.28, 0.60 <0.001 
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6.4 DISCUSSION 

 A prospective cohort study of inpatients in a large metropolitan county was 

conducted, collecting all clinical MRSA isolates from 30 hospitals in order to 

investigate the frequency and genetic diversity of MRSA at a population level. To my 

knowledge, this is the first study to assess MRSA isolates from a population-based 

sample across a large region. While Liu et al. [2008] conducted a large population-

based study of clinical MRSA isolates in both hospital inpatients and outpatients, they 

sampled from a single city and characterized only 20% of all MRSA isolates 

collected. Our countywide study was more comprehensive, encompassing 30 

hospitals and characterizing all inpatient clinical MRSA isolates (over 2000). 

Countywide, three spa types dominated clinical MRSA isolates. USA300 

(t008/ST8), the prototypic community-associated clone prevalent in the US, was the 

most common clone, making up just under half of all clinical MRSA isolates. 

USA100 (t002/ST5), the prototypic healthcare-associated clone, was also common, 

but interestingly, t242/ST5 isolates were slightly more common than t002/ST5 

isolates. Given the clinical similarities of t242 and t002 isolates found in our previous 

study (Chapter 5) [Hudson et al. 2012], and that pulsed field gel electrophoresis 

showed a sample of t242 and t002 isolates to be predominantly USA100, t242/ST5 

likely represents a minor variant of USA100 that has become prevalent in OC 

hospitals (Chapter 5) [Hudson et al. 2012]. t242 has been reported sporadically 

elsewhere, but was endemic in one hospital in Italy [Kinnevey et al. 2010, Parlato et 

al. 2009, Johnson et al. 2007, Weese, Avery and Reid-Smith 2010]. 

Most spa types were closely related to either the USA300 or USA100 clone, 

creating two spa-CCs each representing CA- and HA-MRSA strains. The remaining 

unrelated spa types were clustered into six small spa-CCs representing several 
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community- and healthcare-associated clones, but occurred only sporadically. Four of 

the six smaller spa-CCs were community-associated. The largest represented ST72, 

an invasive community-associated clone that was reported in elderly patients in South 

Korea just before our isolate collection began [Lee et al. 2010]. According to the US 

Census Bureau, 17.9% of the OC population is Asian of which approximately 2.9% 

are Korean [US Census Bureau 2011b]. ST72 strains belong to the USA700 clone and 

have also been reported in Australia and Europe [Monecke et al. 2011]. The other 

three community-associated spa-CCs represented clones including USA1000 (ST59), 

USA1100 (ST30/ Southwest Pacific clone) and a rare CA-MRSA clone (ST97) only 

reported once before in the US [Chung et al. 2004] and recently as a clone transmitted 

among neonates [Udo et al. 2011], although this clone was isolated from two adults in 

this study.  

The remaining two small spa-CCs represented the hospital-associated clones 

USA600 (ST45/Berlin clone) and the pandemic HA-MRSA clone EMRSA-15 

(ST22), however the latter has recently been reported in the community setting 

[Mollaghan et al. 2010]. Among the few isolates not belonging to a spa-CC was the 

HA-MRSA clone USA200 (ST36/EMRSA-16), isolates representing a pandemic HA-

MRSA clone (ST239) and isolates representing strains of MLST CC1, a CA-MRSA 

lineage that includes USA400. Most isolates of this latter group were spa type t127 

and ST474, a SLV of ST1. ST1/t127 is one of the most common CA-MRSA strains in 

the UK [Otter et al. 2009], but to my knowledge has not been reported in the US 

previously. While there is MRSA diversity in the OC population, USA300 and 

USA100 continue to dominate, with most diversity caused by their close spa-type 

relatives. 
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Overall genetic diversity of MRSA in OC was relatively high, but 

heterogeneous between hospitals. This variation in diversity was mostly non-

significant, with all hospitals dominated by the three most common spa types t008, 

t242 and t002. Only one regional study of spa type diversity has been performed 

previously, in Europe. This study found that spa type genetic diversity of MRSA 

causing invasive infections is much higher in Europe (94%), ranging from 62% to 

91% between countries, indicating the presence of less dominant MRSA spa types 

than in OC [Grundmann et al. 2010]. Invasive infections are traditionally caused by 

HA-MRSA, which could explain the higher diversity seen in the European study. 

However, HA-MRSA in OC still exhibited low diversity (63%) in comparison.  

Diversity was significantly lower among spa-CC008 isolates than spa-CC242 

isolates, indicating overall MRSA diversity in OC is driven by HA-MRSA, perhaps 

simply due to the greater time healthcare-associated strains have had to diversify 

compared to community-associated strains. Genetic diversity was significantly 

associated with older patient age and isolation of MRSA from blood specimens. HA-

MRSA are typically associated with older patients, whereas CA-MRSA are associated 

with children and young adults (Chapter 5) [Hudson et al. 2012]. Blood infection is 

more commonly associated with hospital onset MRSA, which are more likely to be 

healthcare-associated strains.  

Genetic diversity was also significantly lower among community onset MRSA 

than hospital onset MRSA, but this difference was marginal. Furthermore, the lack of 

correlation between spa-CC008 isolates (CA-MRSA) and community onset suggests 

that isolation of a community-associated strain does not imply community onset. 

Indeed, among community onset isolates (obtained within the first two days of 

hospitalization), large numbers of HA-MRSA strains were found, and, conversely, 



 227 

among hospital onset isolates, there were large numbers of CA-MRSA strains. In fact, 

nearly half of hospital onset isolates were CA-MRSA strains. This suggests full 

mixing of CA-MRSA and HA-MRSA reservoirs among the majority of hospitals in 

OC. 

The vast majority of MRSA isolates were obtained within the first two days of 

hospitalization, suggesting that MRSA hospital reservoirs are mainly maintained by 

importation. Over a third of all community onset isolates were spa-CC242, which 

could partly be explained by the fact that healthcare-associated carriage or infection is 

often found on readmission to hospitals [Tacconelli et al. 2004, Klevens et al. 2007]. 

A history of healthcare exposure however does not exclude the possibility of MRSA 

acquisition and onset in the community [Klevens et al. 2007]. 

The high penetration of CA-MRSA among hospital-onset isolates highlights 

the needs for community-based strategies to be implemented in an effort to address 

the MRSA epidemic in the community and minimize the ability of community-

associated MRSA strains to become endemic in hospitals. The consequences of CA-

MRSA continuing to infiltrate the healthcare setting include 1) the emergence of 

multidrug resistant CA-MRSA due to nosocomial antibiotic pressure [Kardas-Sloma 

et al. 2011], 2) the potential of increased virulence of healthcare-associated infections 

due to PVL-positive CA-MRSA strains, although studies suggest CA-MRSA are 

clinically similar to HA-MRSA once in the healthcare setting [Moore et al. 2009], and 

3) the risk of hospital outbreaks due to the influx of CA-MRSA from the ever-

expanding community reservoir [D'Agata et al. 2009, Skov and Jensen 2009, Kardas-

Sloma et al. 2011].  

A limitation of this study was that few individual level characteristics were 

available. Also, variation among hospitals in obtaining clinical cultures could not be 
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accounted for. Screening cultures were excluded since mandatory screening of high-

risk inpatients was not in place in California until 2009 and capture would have been 

inconsistent across facilities. Therefore, my population estimate of MRSA isolates 

from hospital inpatients is likely an underestimate. In addition, my estimate should 

not be construed as a measure of MRSA infection among inpatients. Clinical isolates 

often represent carriage without infection. Finally, my estimates of the indices of 

diversity for hospital onset and community onset MRSA isolates may have been 

influenced by differing sample sizes [Grundmann, Hori and Tanner 2001]. 

In conclusion this study found that in a large county, CA-MRSA strains 

accounted for 56% of community onset isolates and 42% of hospital onset isolates. 

No correlation was found between community onset isolates and CA-MRSA, 

providing strong regional evidence that community and healthcare MRSA reservoirs 

have fully mixed. Genetic diversity of MRSA was still driven by HA-MRSA, with a 

highly prevalent, previously unreported USA100 variant found across all OC 

hospitals. Community-based MRSA strategies are needed to stem the influx of 

community-associated strains, particularly USA300, into the healthcare setting.  
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CHAPTER 7: DIVERSITY OF MRSA STRAINS ISOLATED 
FROM RESIDENTS OF 25 NURSING HOMES  

7.1 INTRODUCTION 

 Residence in a nursing home, which typically provides long-term care for 

chronically ill and/or elderly people, is a well-established risk factor for MRSA 

carriage and infection [Hsu et al. 1988, Bradley 1997, O'Sullivan and Keane 2000, 

Eveillard et al. 2008], and MRSA carriage in nursing home residents is associated 

with increased mortality [Suetens et al. 2006]. Nursing homes represent a unique and 

important MRSA reservoir. People colonized with MRSA tend to introduce the 

organism into nursing homes via the hospital setting, and MRSA can also be 

transported back into hospitals and the community from the nursing home. The 

reservoir represented by colonized patients is often large due to the high MRSA 

prevalence in nursing homes, sometimes higher than 30%, which increases the risk of 

MRSA transmission in these facilities [Eveillard et al. 2008, Eveillard and Joly-

Guillou 2009, Li, Arnsberger and Miller 2010]. Furthermore, once colonized, nursing 

home residents seem to carry the same MRSA strain for prolonged periods of time; 

asymptomatic colonization has been reported to last anything from 3 months to 3 

years [Bradley et al. 1991, Sanford et al. 1994]. Studies suggest that multiple strains, 

not a single strain, circulate within nursing homes [Bradley et al. 1991, Fraise et al. 

1997, Eveillard et al. 2008].  

 Not only does the complex operational structure of nursing homes, that act as 

both a healthcare setting and a resident's home, make it difficult for standard MRSA 

control practices to be implemented in these facilities, but a standardized MRSA 

control strategy for nursing homes is yet to be agreed on, largely due to the lack of 

studies aimed at identifying appropriate strategies [Hughes, Smith and Tunney 2008]. 
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There is also a general dearth of studies, particularly regional ones, investigating the 

makeup of the nursing home MRSA reservoir. A study of 60 nursing homes in 

Belgium identified hospital care, co-morbidities and a lack of coordinated MRSA 

surveillance and control activities as risk factors for MRSA carriage in nursing home 

residents [Denis et al. 2009a]. It also found that the predominant MRSA strains 

among nursing home residents were identical to those found in hospital inpatients, 

highlighting the need for synergistic infection control between nursing homes and 

hospitals [Denis et al. 2009a]. A better understanding of the frequency and diversity 

of nursing home MRSA strains and predictors thereof, will help to form strategies for 

minimizing MRSA transmission and infection in nursing homes, and thus reduce the 

impact of the nursing home MRSA reservoir on hospitals.  

 Assessing the extent to which CA-MRSA has penetrated the nursing home 

reservoir is also of interest. CA-MRSA has become increasingly dominant in recent 

years, and USA300 in particular has several characteristics that may offer a selective 

advantage over HA-MRSA, including higher transmissibility and increased 

pathogenicity [Okuma et al. 2002, Diep et al. 2008b]. There is also growing evidence 

that community and healthcare reservoirs are mixing [Kourbatova et al. 2005, 

Seybold et al. 2006, Maree et al. 2007, Liu et al. 2008, Popovich, Weinstein and Hota 

2008] (Chapter 6).   

 We conducted a prospective study of MRSA isolates in nursing home 

residents in a large metropolitan county to investigate the frequency and genetic 

diversity of MRSA in these facilities, and thus gain a better understanding of the 

nature of the nursing home MRSA reservoir. 
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7.2 METHODS 

7.2.1 Study 

 A population-based prospective study of carriage (symptomatic and 

asymptomatic) isolates of MRSA from 26 nursing homes in OC, California, was 

conducted. This study was approved by the Institutional Review Board of the 

University of California Regents. 

 
7.2.2 Isolate collection 

 Carriage isolates of MRSA from unique residents were collected from 

participating nursing homes between January 2009 and April 2011. Each nursing 

home was instructed to swab the nares of 100 consecutive residents upon admission 

(within three days of arrival), and 100 residents on a single day (point prevalence 

screening), using bilateral nares swabs (BD Culture Swabs, Fisher Scientific). For 

nursing homes with a low bed turnover, fewer residents were screened (30-50). For 

nursing homes with an average length of stay in years, admission screening was not 

performed. Swabs were cultured for MRSA using selective media (BD CHROMagar). 

MRSA strains were stored at −65°C in 15% glycerol Brucella broth.  

 
7.2.3 Specimen data and nursing home characteristics  

 Specimen data including swab type (admission or point prevalence), swab day 

since admission, room type (shared or single resident room) and whether the swabbed 

resident had prior MRSA, were collected. Demographic and co-morbidity data for 

participating nursing homes were derived from the Centers for Medicare and 

Medicaid Services (CMS) Long Term Care Minimum Data Set for 2009 [CMS 2009], 
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and included annual admissions, and the percentage of residents with the following 

characteristics: under 65 and over 85 years old, male, non-white, Hispanic, education 

less than high school, admitted from hospital, history of MRSA, diabetes, fecal 

incontinence, skin lesions and medical devices (which included tracheostomy, 

ventilator and dialysis devices). 

 
7.2.4 Laboratory methods and molecular typing  

 I processed all strains in the laboratory according to methods described 

previously, including spa typing of all isolates, assignment to spa clonal complexes 

(spa-CCs), and MLST of a subset (n = 138) of isolates (Chapter 6).  

 
7.2.5 Statistical analyses 

 I conducted one- and two-sample z-tests for equality of proportions to 

compare spa-CCs within each nursing home and overall MRSA carriage at admission 

versus MRSA point prevalence, respectively. I also used Simpson’s index of diversity 

(1−D) to estimate inter- and intra-nursing home genetic diversity of the MRSA strains 

collected, as well as the genetic diversity of the two major spa-CCs and genetic 

diversity among the admission and point prevalence isolates. 1−D gives an unbiased 

measure of the probability of drawing two different spa types given the distribution of 

spa types in a sample [Grundmann et al. 2010]. Confidence intervals (95% CIs) were 

calculated as described previously [Grundmann, Hori and Tanner 2001]. For 

comparison of diversity indices, a significant difference (p<0.05) was determined by 

non-overlapping 95% CIs. χ2 tests compared spa-CCs between nursing homes and 

between MRSA admission and point prevalence isolates. I computed Pearson's 
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correlation coefficients to determine the relationship between nursing home and 

isolate variables, and genetic diversity.  

 Due to the small sample size of nursing homes (21, since one nursing home 

did not isolate any MRSA and four were excluded in this analysis as they collected 

<10 MRSA isolates and thus their diversity estimates were unreliable) and the large 

number of potential predictor variables for genetic diversity, I considered variables for 

entry into a bootstrapped multiple linear regression model based on a combination of 

their correlation coefficient and current knowledge regarding their association with 

MRSA. Only variables with p<0.1 in correlation tests were considered for the 

exploratory model. All statistical tests were performed using STATA (release 11, 

StataCorp 2009). 

 
7.3 RESULTS 

7.3.1 Overview 

 Between January 2009 and April 2011, 3,806 nasal swabs were taken from 

residents of 26 OC nursing homes either on admission or for estimating MRSA point 

prevalence. Of these, 837 swabs (22%) isolated MRSA. One nursing home did not 

isolate any MRSA. Overall admission prevalence was 16%, and point prevalence was 

significantly higher at 27% (p<0.001). The majority of the 837 MRSA isolates were 

from point prevalence testing (68%), from residents with no prior history of MRSA 

(76%), and from residents sharing a room (95%). Median swab day since admission 

was 53 (IQR, 4-265). A third of all admissions swabs were collected at day 4 since 

some nursing homes could not swab earlier. Table 7.1 gives a summary overview of 

the 25 nursing homes and the characteristics of their MRSA isolates. 
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Table 7.1 Summary of the 25 nursing homes and 837 MRSA carriage isolates 

from nursing home residents in OC, CA. 

Characteristic Value 

Nursing home characteristics  Median (IQRa) 

Annual admissions  264 (144-520) 

% Residents under 65 years old 20 (4-39) 

% Male 40.8 (31.6-48.2) 

% Education less than high school 23.8 (7.4-30.3) 

% Hispanic residents  11.9 (3.7-23) 

% Non-white residents 15 (7.8-21.7) 

% Residents admitted from hospital 82.2 (58.5-93.8) 

% Diabetes 27.1 (23.4-42.1) 

% Fecal incontinence 43.8 (29.2-54.8) 

% Skin lesions 72.7 (50.7-86.5) 

% Devices 2.2 (1.4-7.1) 

% Residents with MRSA history 12 (6-19) 

MRSA admission prevalence 16 (10.2-22) 

MRSA point prevalence 26.7 (19-34) 

N spa types per nursing home  5 (4-8) 

Overall MRSA isolate characteristics  No. of isolates (%) 

MRSA isolates 837 (100) 

Admissions swab 269 (32.1) 

Resident had prior MRSA 201 (24.0) 

Resident shared room 795 (95.0) 

a IQR = interquartile range. 
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7.3.2 spa typing and MLST 

 Of the 837 MRSA isolates collected, 835 were spa typed. Two isolates could 

not be spa typed as one did not grow upon culturing and a spa PCR product was not 

obtained from the other. Among the 835 MRSA isolates, 60 spa types were identified, 

including nine novel spa types (1.4% of all isolates) with hitherto unknown spa repeat 

sequences. One isolate that was non-typeable (NT) by spa typing was identical to spa 

type t002, except for two extra nucleotides in the third repeat, making the repeat 26-

bp long and putting the spa coding region out of frame. A clinical MRSA isolate from 

an OC hospital inpatient was similarly NT, and others have reported spa repeats of 

unexpected length (see also Chapter 6) [Rothganger 2010]. The three most common 

spa types were t242, t008 and t002, representing 83% of all isolates collected (Table 

7.2). 

 BURP analysis of the spa types clustered 94% of isolates into two large spa-

CCs and 3% of isolates into two smaller spa-CCs (Figure 7.1). Half of all spa types 

were clustered into spa-CC002 (predicted founder t002) and 20% into spa-CC008 

(founder t008), including six and one novel spa type(s), respectively. Under the 

BURP algorithm, singletons are spa types that differ from all other spa types in the 

sample by more than 4 repeats, and thus cannot reasonably be clustered into a spa-

CC. Ten spa types (17 isolates) were classed as singletons, including one novel spa 

type. Since no reliable evolutionary history can be inferred from short spa types 

[Mellmann et al. 2007], two isolates representing two spa types (t026 and t8606) were 

excluded from BURP analysis. The NT isolate could also not be included in the 

BURP analysis. Estimated genetic diversity of MRSA in OC nursing homes using spa 

typing was high, at 77% (Table 7.2).  
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Table 7.2 Ten most frequently found spa types among 835 MRSA isolates from 

OC nursing home residentsa. 

Rank spa type MLST Freq % Cumulative % 

1 t242 5 273 32.7 32.7 

2 t008 8 222 26.6 59.3 

3 t002 5 195 23.4 82.6 

4 t127 474 12 1.4 84.1 

5 t306 5 11 1.3 85.4 

6 t088 105 10 1.2 86.6 

7 t037 239 7 0.8 87.4 

8 t024 8 6 0.7 88.1 

9 t068 8 6 0.7 88.9 

10 t548 5 6 0.7 89.6 

- Other - 87 10.4 100.0 

a The total number of spa types was 60, including one non-typeable isolate. 

Simpson's index of diversity (1−D) value was 77% (95% CI, 75%, 78%). 

MLST = multilocus sequence type. 
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Figure 7.1 Relatedness of spa types among nursing home MRSA isolates according to the Based Upon Repeat Pattern (BURP) algorithm. 

Clusters of linked spa types correspond to spa clonal complexes (spa-CCs). spa types are clustered into a spa-CC when their repeat patterns 

differ by no more than 4 repeats. The BURP algorithm sums up ‘costs’ (a measure of relatedness based on the repeat pattern) to define a founder 

score for each spa type in a spa-CC. The founder (blue node) is the spa type with the highest founder score in its spa-CC, and the subfounder 

(yellow node) is the spa type with the second highest founder score. spa-CC008 has founder t008, and spa-CCNF refers to a spa-CC with no 

founder. Each node represents a spa type. The node size represents the number of clustered strains that belong to that spa type. The shading of 

the branches represents the ‘costs’ (similarities in repeat patterns) between two spa types; the darker the branch, the lower the cost (more similar 

repeat patterns).  
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 To confirm strain types, 138 isolates were selected for MLST. Among the 15 

unique sequence types (STs) identified, ST5 (54%) and ST8 (28%) were the most 

predominant, with the majority of isolates belonging to one of two major MLST CCs: 

CC5 (60%; five STs) and CC8/239 (29%; two STs) (Table 7.3). The remaining 11% 

of isolates comprised sporadic incidences of both HA-MRSA (4%) and CA-MRSA 

(7%) clones. According to MLST, t008 isolates were the prototypic community clone 

USA300 (ST8/t008) and t002 isolates were the prototypic hospital clone USA100 

(ST5/t002). t242 isolates, which differ from t002 isolates by one spa repeat as a result 

of a single nucleotide difference, were identified as ST5 (Tables 7.2 and 7.3). The NT 

spa isolate and one novel, singleton spa type were ST105, with seven of the other 

novel spa types being ST5 and one ST8. 

 Since the founders of the two large spa-CCs represent a community-associated 

clone (the predominant US clone USA300 for spa-CC008) and a healthcare-

associated clone (the dominant US hospital clone USA100 for spa-CC002), spa-

CC008 effectively represents CA-MRSA and spa-CC002 HA-MRSA. The two 

smaller spa-CCs each represented HA-MRSA and CA-MRSA, and the remaining 

2.4% of isolates that could not be assigned to a spa-CC also included both HA-MRSA 

and CA-MRSA. 
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Table 7.3 Relatedness of MLST sequence types (STs) among 138 

nursing home MRSA isolates according to the eBURST algorithm. 

CC (no. of isolates)a MLST Associated spa typesb 

CC5 (83) 5 t002, t242,  t306, 28 others 

 105 t088, t002, t8444 

 221 t002 

 1011 t895 

 1510 t242 

CC8/239 (40) 8 t008, t024, 12 others 

 239 t037 

CC474/1900 (6) 474 t127, t1186 

 1900 t127 

Singletons (9)c 45 t026, t040, t736 

 36 t018, t1932 

 59 t437 

 88 t5916 

 188 t189 

 217 t032 

a CC = clonal complex. All members of a CC share identical alleles 

at six of the seven loci with at least one other member of the CC.  

b Only the three most common spa types are listed if more than 

three associated with that ST. 

c STs with allelic profiles that share less than six of their seven loci 

with all other STs in the dataset.  
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7.3.3 Differences among nursing homes 

 The estimated genetic diversity of MRSA within nursing homes ranged from 

43% to 84% (Figure 7.2), but due to relatively small numbers these differences were 

mostly non-significant, with the clear exception of hospital 23 that exhibited 

significantly higher diversity (84%) than nine other nursing homes. Four nursing 

homes collected <10 MRSA isolates and so their genetic diversities could not be 

reliably estimated. For the 21 remaining nursing homes, MRSA genetic diversity 

within nursing homes was positively correlated with the percentage of residents 

admitted from hospital (r = 0.52, p = 0.02), percentage of residents with diabetes (r = 

0.57, p <0.01), percentage of residents with skin lesions (r = 0.46, p = 0.03), MRSA 

admission prevalence (r = 0.50, p = 0.03) and MRSA point prevalence (r = 0.47, p = 

0.03), and negatively correlated with the percentage of residents under 65 years old (r 

= -0.57, p<0.01) and the percentage of male residents (r = -0.43, p = 0.05) (Table 7.4). 

The percentage of residents with skin lesions was positively correlated with the 

percentage of residents admitted from hospital (r = 0.84, p<0.001) and negatively 

correlated with the percentage of residents under 65 (r = -0.58, p<0.01). Skin lesions 

are very common among elderly people, and are often caused by disease or trauma 

that requires hospital treatment. The percentage of residents with skin lesions showed 

the weakest correlation with genetic diversity and thus was not considered for entry 

into the bootstrapped linear regression model. Similarly, the percentage of male 

residents and the percentage of residents under 65 were highly correlated (r = 0.88, 

p<0.001). Since age was more strongly correlated with MRSA diversity than gender, 

and differences in MRSA strain types have been observed between age groups in our 

previous study (Chapter 5) [Hudson et al. 2012], the percentage of male residents was 

not considered for entry into the multiple regression model. Finally, point prevalence 
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was highly correlated with admission prevalence (r = 0.74, p<0.001) and diabetic 

residents (r = 0.69, p<0.001), thus only admission prevalence was considered for 

regression model entry. Only the percentage of residents 65 or over and the 

percentage of diabetic residents remained significant predictors of spa type genetic 

diversity in the exploratory regression model (Table 7.5). 

The three most common spa types - t242, t008 and t002 - accounted for 55-

96% of isolates at each of 23 nursing homes. Two further nursing homes only isolated 

t008, although the sample sizes were <10. Twelve nursing homes isolated mostly t242 

(36-63%). The proportion of spa-CC008 isolates, representing community-associated 

spa types, compared to spa-CC002 isolates, representing healthcare-associated spa 

types, varied significantly between nursing homes (χ2 = 69.2, df = 24, p<0.001) 

(Figure 7.2). Two nursing homes (8%) had significantly more spa-CC008 isolates, 

and 16 nursing homes (64%) had significantly more spa-CC002 isolates (p<0.01). 

Diversity of spa types among spa-CC008 isolates (1−D = 23% (95% CI, 12-33%)) 

was significantly lower than diversity among spa-CC002 isolates (1−D = 60% (95% 

CI, 58-63%)).  

 

 

 

 

 

 

 

 

 



 243 

 

Figure 7.2 Proportion of isolates belonging to spa-CC002 versus spa-CC008, by nursing home. *indicates a 

significant difference at the 99% level in the proportion of isolates belonging to spa-CC002 and spa-CC008 at that 

nursing home. The black bars show the point estimates and 95% confidence intervals of nursing home-specific 

genetic diversity expressed as Simpson's index of diversity (1−D) of spa types (as a percentage). Diversity indices for 

nursing homes 15, 18, 22 and 25 were excluded from the figure as these nursing homes had spa type data on less than 

ten isolates. Diversity indices with non-overlapping 95% CIs were considered significantly different (p<0.05). 
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Table 7.4 Correlation of nursing home and isolate variables with nursing home 

genetic diversity. 

Variable r pa 

Nursing home variable   

Annual admissions  0.21 0.36 

% Residents under 65 years old -0.57 <0.01 

% Male -0.43 0.05 

% Education less than high school 0.36 0.11 

% Hispanic residents  -0.04 0.88 

% Non-white residents 0.24 0.29 

% Residents admitted from hospital 0.52 0.02 

% Diabetes 0.57 <0.01 

% Fecal incontinence 0.05 0.82 

% Skin lesions 0.46 0.03 

% Devices -0.29 0.20 

% Residents with MRSA history -0.23 0.31 

MRSA admission prevalence 0.50 0.03 

MRSA point prevalence 0.47 0.03 

Isolate/resident variable   

% Prior MRSA -0.07 0.77 

% Residents shared room -0.13 0.58 

Swab within 3 days of admission  0.20 0.39 

a Variables with p<0.1 were considered for exploratory multivariate analyses. 

 

 
Table 7.5 Multivariate analysis of variables associated with nursing home genetic diversity. 

Variable Coefficient Bootstrap 

SE 

Normal-

based 95% 

CI 

p 

% Diabetic residents 0.41 0.11 0.20, 0.62 <0.001 

% Residents under 65 -0.22 0.07 -0.37, -0.08 <0.01 
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7.3.4 Admissions versus Point Prevalence MRSA 

 MRSA spa type genetic diversity was not significantly different among 

isolates collected at admission (1−D = 76% (95% CI, 74-79%)) versus isolates 

collected during point prevalence testing (1−D = 77% (95% CI, 75-79%)). No 

significant correlation was found between admission prevalence and the proportion of 

spa-CC008 isolates (r = -0.20, p = 0.34), however nursing homes with a higher 

percentage of residents admitted from hospital had significantly lower percentages of 

spa-CC008 isolates (r = -0.58, p<0.01). Proportions of spa-CC008, spa-CC002 and 

other isolates were not significantly different between admissions and point 

prevalence MRSA (26%, 68% and 6% among admissions MRSA versus 32%, 62% 

and 6% among point prevalence MRSA, respectively, χ2 = 3.3, df = 2, p = 0.2).  

 
 
7.4 DISCUSSION 

 A prospective collection of carriage isolates of MRSA from 26 nursing homes 

in OC, CA, was conducted. The study investigated the frequency and genetic diversity 

of MRSA in these little-studied healthcare facilities, to better inform nursing home-

based infection control strategies. This is the first study to assess MRSA isolates in 

nursing homes at a population level and across a large region. 

 Countywide, nursing home carriage MRSA isolates were dominated in 

approximately equal proportions by three strains: the predominant community-

associated clone in the US, USA300 (ST8/t008); the healthcare-associated clone 

USA100 (ST5/t002); and ST5/t242 isolates, likely a minor variant of USA100 that 

has become prevalent in OC healthcare facilities (Chapters 5 and 6) [Hudson et al. 

2012]. ST5/t242 isolates were slightly more common than USA300 and USA100 
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however, representing a third of all carriage MRSA isolates. The same three strains 

dominated in OC hospitals, but in this setting USA300 was the most common clone 

(Chapter 6). 

 As in OC hospitals, most spa types were closely related to either USA300 or 

USA100, creating two large spa-CCs each representing CA-MRSA and HA-MRSA 

strains. The remaining, sporadically occurring spa types were both community-

associated and healthcare-associated, representing several known clones. Of the two 

smaller spa-CCs, one represented strains of the CA-MRSA lineage MLST CC1, with 

most isolates typed as ST474/t127. ST474 is a single-locus variant (SLV) of ST1, and 

ST1/t127 is a common CA-MRSA strain in the UK [Otter et al. 2009]. ST474/t127 

isolates were also found among OC hospital inpatients (Chapter 6), but no ST1/t127 

isolates have yet been identified in the US. The other small spa-CC, spa-CC1932, 

represented HA-MRSA and included the epidemic clone USA200/EMRSA-16 (ST36) 

and the pandemic clone ST239.  

 The isolates that could not be assigned to a spa-CC included both HA-MRSA 

and CA-MRSA. The healthcare-associated strains were USA600/Berlin clone (ST45) 

and ST217/t032, a SLV of ST22, the pandemic HA-MRSA clone EMRSA-15 that has 

also recently been reported in the community [Mollaghan et al. 2010]. The 

community-associated strains were USA1000 (ST59), ST188 (a double-locus variant 

of ST1 and ST474 reported sporadically in Australia and Asia [Nimmo and Coombs 

2008, Peck et al. 2009, Ghaznavi-Rad et al. 2010a]) and ST88, a clone closely related 

to CC1 that has been reported in several countries, particularly Nigeria, but has not 

been previously reported in the US [Ghebremedhin et al. 2009, Monecke et al. 2011]. 

It is clear that USA300 and USA100 dominate healthcare facilities in OC, in line with 

the MRSA picture seen nationwide. However, it would be interesting to investigate 
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whether the USA100 variant seen in this county is also more common than USA100 

elsewhere in the US, particularly since t242 has been reported rarely in the literature 

[Kinnevey et al. 2010, Parlato et al. 2009, Johnson et al. 2007, Weese, Avery and 

Reid-Smith 2010].  

 Overall genetic diversity of MRSA in OC nursing homes was significantly 

higher than that seen in OC hospitals (Chapter 6). The higher proportion of HA-

MRSA strains present in nursing homes likely drives this, which could be a result of 

the high proportion of residents directly admitted to nursing homes from a number of 

different OC hospitals. Diversity was significantly lower among spa-CC008 (CA-

MRSA) isolates than spa-CC002 (HA-MRSA) isolates, probably due to the greater 

time HA-MRSA have had to diversify compared to CA-MRSA. This suggests that 

MRSA diversity in OC is driven by healthcare-associated strains.  

 In exploratory analyses, greater MRSA genetic diversity was significantly 

associated with older resident age and diabetic residents. Diabetic foot ulcers are a 

known risk factor for MRSA, and in particular HA-MRSA, with MRSA found to be 

present in 10-30% of diabetic wounds [Goldstein, Citron and Nesbit 1996, 

Tentolouris et al. 1999, Shankar et al. 2005, Wang et al. 2010]. Diabetic 

complications such as neuropathy, osteomyelitis and peripheral vascular disease may 

result in a prolonged hospital stay, increasing the exposure of diabetic people to HA-

MRSA [Wang et al. 2010]. Older age is a well-established risk factor for HA-MRSA, 

as elderly patients tend to be sicker and require hospital treatment. Older age was a 

significant predictor of genetic diversity in OC hospitals (Chapter 6), and was 

associated with non-t008 strains in a study comparing adult and paediatric OC 

inpatients (Chapter 5) [Hudson et al. 2012]. 
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 Genetic diversity was not significantly different between admissions MRSA 

and MRSA collected during point prevalence, with no correlation found between spa-

CC008 isolates (CA-MRSA) and admissions MRSA. In fact, over two-thirds of 

admissions MRSA belonged to spa-CC002 (HA-MRSA). The vast majority of 

residents in this study were admitted to nursing homes directly from hospital and thus 

were not recently exposed to the community MRSA reservoir, thus reducing the 

likelihood of isolating a community-associated strain at admission. Community-

associated strains are present in nursing homes, although to a lesser extent than in 

hospitals (Chapter 6), with the majority of nursing homes isolating significantly more 

HA-MRSA. This is probably due to the resident demographic - older, sicker people 

generally have a history of healthcare exposure and thus tend to have HA-MRSA, 

which is associated with more invasive infections and serious illness. The long-term 

care provided by nursing homes means that the turnover rate in nursing homes is far 

lower than the patient turnover rate in hospitals. This results in a lower frequency of 

possible introductions of MRSA from outside the healthcare setting.  

 The CA-MRSA seen among residents upon admission to nursing homes and 

during point prevalence sampling likely comes from the hospital MRSA reservoir, in 

which it is clearly becoming dominant (Chapter 6). The slightly higher proportion of 

CA-MRSA from point prevalence sampling compared to admission sampling and 

consequently the lower proportion of HA-MRSA, although non-significant, possibly 

suggests that CA-MRSA could be more easily spread in nursing homes than HA-

MRSA, perhaps due to a more community-like environment that CA-MRSA is well-

adapted to, e.g. communal areas and shared rooms. It could also possibly mean that 

additional exposures to CA-MRSA are occurring via contact with visitors and/or 

healthcare workers. Given the non-significant result however, it could just be due to 
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the different sample of residents that were tested at point prevalence versus at 

admission (some residents would have been tested at both times, while others would 

have been tested only at point prevalence and not at admission, and vice versa).  

 The significantly higher point prevalence of MRSA compared to admissions 

prevalence may be due to the transmission of MRSA imported by residents upon 

admission, evidenced by the lack of significant change in genetic diversity or 

proportions of CA-MRSA and HA-MRSA from admissions to point prevalence.  

Factors influencing transmission in nursing homes and predictors of MRSA carriage 

at point prevalence have been reported previously [Reynolds et al. 2011]. 

  A limitation of this study was that few individual-level characteristics were 

available and so facility-level data were primarily used. Also, only a single site was 

swabbed for MRSA. Although nasal screening is thought to detect the majority of 

MRSA carriers [Manian et al. 2002, Lucet et al. 2003], anatomical sites such as the 

rectum and throat have been shown to be important in the detection of MRSA carriage 

[Eveillard et al. 2006, Batra et al. 2008, Eveillard et al. 2008]. The point prevalence 

study design also limited the accuracy of carriage estimates. In using genetic diversity 

as the outcome, the sample size was reduced considerably, and thus multivariate 

analysis of predictor variables could only be exploratory. Also, the diversity indices 

estimated for admissions MRSA versus point prevalence MRSA, and spa-CC008 

isolates versus spa-CC002 isolates, may have been influenced by differing sample 

sizes [Grundmann, Hori and Tanner 2001].  

 In conclusion this study found that in a large county, the diversity of carriage 

MRSA isolates among nursing home residents, although heterogeneous between 

facilities, was significantly higher than the diversity among clinical MRSA isolates 

from hospital inpatients in the same county. MRSA diversity in both hospitals and 
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nursing homes appears to be driven by HA-MRSA. The proportions of older, diabetic 

residents were significant predictors of nursing home MRSA diversity. Nursing home 

strains were dominated by a healthcare-associated, OC-prevalent variant of USA100 

(ST5/t242). The CA-MRSA strain USA300 was the second most common clone 

isolated from the nares of nursing home residents, suggesting substantial penetration 

of community-associated strains into the nursing home reservoir, however to a lesser 

extent than seen in the hospitals, where USA300 was predominant. Nursing home 

MRSA burden appeared to be largely due to importation of diverse strains from 

hospitals and subsequent transmission of these imported strains, leading to high 

MRSA point prevalence. One of the OC nursing homes in this study was previously 

reported to have an MRSA point prevalence of 52% [Reynolds et al. 2011]. Nursing 

homes therefore represent a significant reservoir for MRSA, and as such a consensual, 

regionally implemented control strategy tailored to this unique setting is required. 

However, due to the complexity of MRSA control in these facilities, further studies 

evaluating the contribution of nursing homes to regional MRSA transmission are 

needed before developing such a strategy.  
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PART 2 FINAL DISCUSSION: MRSA DIVERSITY IN ORANGE 
COUNTY, CALIFORNIA 

 In collaboration with researchers at the University of California, Irvine (UCI), 

MRSA isolates were collected from OC hospitals and nursing homes in the first 

population-based countywide study of MRSA strain diversity and distribution in 

healthcare facilities. The aim of this work was to gain a better understanding of the 

frequency and genetic diversity of HA-MRSA and CA-MRSA in hospital and nursing 

home MRSA reservoirs in the hope that such knowledge would better inform regional 

infection control strategies. 

 While MRSA diversity was observed among OC healthcare facilities, three 

strains dominated both hospital and nursing home MRSA reservoirs in this 

metropolitan county: the increasingly prevalent community-associated clone USA300, 

a surprisingly common variant of the hospital-associated clone USA100, and USA100 

itself. USA300 accounted for almost half of all MRSA isolates collected from OC 

hospitals and over a quarter of isolates from OC nursing homes. Despite significantly 

higher numbers of USA300 in hospitalised children, USA300 was still the most 

common strain among adult inpatients, and the second most common strain among 

nursing home residents. No correlation was found between CA-MRSA and 

community onset among hospital MRSA isolates, with 42% of hospital onset isolates 

CA-MRSA, 39% of community onset isolates HA-MRSA, suggesting that community 

and healthcare MRSA reservoirs are mixing. Other US studies have reported such 

mixing. The Centers for Disease Control and Prevention ABC surveillance system for 

invasive MRSA infections found that the USA300 clone accounted for 22% of 

community onset HA-MRSA infection and 16% of hospital onset HA-MRSA 

infection in 2004-2005 [Klevens et al. 2007]. It also found that 23% of CA-MRSA 
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infections were caused by USA100. Another study involving a single urban hospital 

and its associated outpatient clinics in Atlanta, GA, found that previous 

hospitalization was a risk factor for community onset MRSA infections, 99% of 

which were caused by USA300 [King et al. 2006]. Finally, among cases of hospital 

onset MRSA bacteraemia between 2000 and 2006 in a single hospital in Chicago, IL, 

community-genotype strains caused an increasing proportion of cases from 24% to 

49% while the proportion of hospital-genotype strains decreased [Popovich, 

Weinstein and Hota 2008].  

 Because of their changing epidemiology and increasingly indistinguishable 

clinical characteristics, the definitions of HA- and CA-MRSA need to be revised in 

order to better inform infection control strategies [Popovich and Weinstein 2009, 

David and Daum 2010, McCarthy et al. 2010]. The predominance of community 

onset isolates among hospital inpatients highlights the need for community-based 

interventions to stem the influx of community-associated strains, particularly the 

highly successful USA300 clone, into the healthcare setting. 

 In addition to the spa typing and MLST I performed as part of my thesis, 

PFGE was also performed on the OC MRSA isolates by my collaborators. PFGE 

results suggest that the USA300 strain may be diverging (data not shown). While 

these typing methods for characterising MRSA isolates are useful for identifying 

preliminary differences among strains, they are also limited. For example, MLST 

evaluates housekeeping genes, so while excellent at unambiguously assigning a strain, 

it is unlikely to capture recent or subtle changes in USA300 strains. Whole genome 

sequencing would allow us to characterise this predominant MRSA strain in OC on a 

finer scale, helping us to elucidate the rapidly evolving differences in this strain and 

thus better understand its epidemiology and pathogenicity. In collaboration with the 
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Wellcome Trust Sanger Institute, all USA300 strains from the large prospective study 

of MRSA in OC are currently being whole genome sequenced using NGS technology, 

allowing us to assess the extent to which USA300 has spread across the 30 OC 

hospitals and into the 25 OC nursing homes included in the study, and to possibly 

determine its major transmission pathways. Other collaborators working with the spa 

typing data from this OC MRSA project found that hospitals that share patients share 

strains [Ke et al. 2012]. Integrating genome data into the network models they have 

created will help to quantify USA300 spread between hospitals. 

Work linking this part of my thesis with that involving my industrial sponsor, 

TwistDx, could involve using the various MRSA strains identified in the OC study to 

test the performance of their MRSA diagnostic assay, TwistAmp MRSA. Also, MREJ 

typing all MRSA isolates collected from OC hospitals and nursing homes would 

allow comparison to MREJ typing data from the KC MRSA isolates in Chapter 3, as 

well as MRSA isolates from the UK collection, to form a better picture of the 

frequencies and diversity of MREJ types. 

I am currently involved in the development of OC-Maps, with collaborators 

from the Department of Infectious Disease Epidemiology, Imperial College London. 

OC-Maps will be a web-based interactive mapping tool for the interrogation of the 

geographic distribution of different spa types isolated from hospitals in OC. It will be 

based on the publicly accessible mapping tool SRL-Maps 

(http://www.spatialepidemiology.net/SRL-Maps) [Grundmann et al. 2010]. OC-Maps 

will be countywide, covering 30 hospitals, whereas SRL-Maps spans a continent 

covering 450 hospitals, so it is unlikely that any clear geographical patterns could be 

visualized using the former. However, it will offer an elegant way to summarise the 

spa typing and related clinical data both across and within hospitals in OC, CA and 
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aid the formation of hypotheses regarding the spread of MRSA strains within this 

county.  

 All hospital locations will be represented as placemarks on a Google map. 

Clicking on a placemark will display, below the map, all spa types identified at that 

hospital including frequencies (Figure II.1). The number of isolates found elsewhere 

(if any) for each of these spa types, along with the number of hospitals each spa type 

has been isolated from, would also be displayed. There will also be the option of 

viewing the countywide distribution of any spa type, and placemarks on the map will 

be colour-coded on the basis of the percentage of isolates of that spa type at each 

hospital, with the number of isolates shown inside the placemark (Figure II.1). 

Graphical charts will be displayed showing either spa-type specific, hospital-specific 

or overall age distributions, specimen types, onset and ICU/non-ICU isolate collection 

(Figure II.1). This tool, once developed, would allow the identification and mapping 

of strains with particular public health importance, for example USA300.  
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Figure II.1 Example of what OC-Maps will look like. A Location of hospitals 

isolating spa type t008 viewed using OC-Maps. Each placemark is colour-coded to 

show the percentage of t008 isolates at each hospital, and the total number of MRSA 

isolates isolated from each hospital are shown inside the placemarks. B Information 

specific to the hospital selected (blue) is shown below the map. For the hospital 

selected, the pie charts show the proportion of nosocomial onset MRSA, proportion of 

MRSA isolated from an ICU and the proportions of each specimen type MRSA were 

isolated from. The bar chart displays patient age distribution. 

!"

#"



 256 

REFERENCES 

 
Abramson MA, Sexton DJ. 1999. Nosocomial methicillin-resistant and methicillin-

susceptible Staphylococcus aureus primary bacteremia: at what costs? Infect 
Control Hosp Epidemiol. 20: 408-11. 

Adcock PM, Pastor P, Medley F, Patterson JE, Murphy TV. 1998. Methicillin-
resistant Staphylococcus aureus in two child care centers. J Infect Dis. 178: 
577-80. 

Aiello AE, Lowy FD, Wright LN, Larson EL. 2006. Meticillin-resistant 
Staphylococcus aureus among US prisoners and military personnel: review 
and recommendations for future studies. Lancet Infect Dis. 6: 335-41. 

Aires de Sousa M, de Lencastre H. 2003. Evolution of sporadic isolates of 
methicillin-resistant Staphylococcus aureus (MRSA) in hospitals and their 
similarities to isolates of community-acquired MRSA. J Clin Microbiol. 41: 
3806-15. 

Allwood MC, Russell AD. 1969. Thermally induced changes in the physical 
properties of Staphylococcus aureus. J Appl Bacteriol. 32: 68-78. 

Andersen BM, Tollefsen T, Seljordslia B, Hochlin K, Syversen G, Jonassen TO, 
et al. 2010. Rapid MRSA test in exposed persons: costs and savings in 
hospitals. J Infect. 60: 293-9. 

Ando RA, Morrical SW. 1998. Single-stranded DNA binding properties of the UvsX 
recombinase of bacteriophage T4: binding parameters and effects of 
nucleotides. J Mol Biol. 283: 785-96. 

Annemuller C, Lammler C, Zschock M. 1999. Genotyping of Staphylococcus 
aureus isolated from bovine mastitis. Vet Microbiol. 69: 217-24. 

Arbefeville SS, Zhang K, Kroeger JS, Howard WJ, Diekema DJ, Richter SS. 
2011. Prevalence and genetic relatedness of methicillin-susceptible 
Staphylococcus aureus isolates detected by the Xpert MRSA nasal assay. J 
Clin Microbiol. 49: 2996-9. 

Archer GL, Thanassi JA, Niemeyer DM, Pucci MJ. 1996. Characterization of 
IS1272, an insertion sequence-like element from Staphylococcus 
haemolyticus. Antimicrob Agents Chemother. 40: 924-9. 

Arias CA, Rincon S, Chowdhury S, Martinez E, Coronell W, Reyes J, et al. 2008. 
MRSA USA300 clone and VREF--a U.S.-Colombian connection? N Engl J 
Med. 359: 2177-9. 

Armand-Lefevre L, Ruimy R, Andremont A. 2005. Clonal comparison of 
Staphylococcus aureus isolates from healthy pig farmers, human controls, and 
pigs. Emerg Infect Dis. 11: 711-4. 

Aubry-Damon H, Grenet K, Sall-Ndiaye P, Che D, Cordeiro E, Bougnoux ME, et 
al. 2004. Antimicrobial resistance in commensal flora of pig farmers. Emerg 
Infect Dis. 10: 873-9. 

Baggett HC, Hennessy TW, Rudolph K, Bruden D, Reasonover A, Parkinson A, 
et al. 2004. Community-onset methicillin-resistant Staphylococcus aureus 
associated with antibiotic use and the cytotoxin Panton-Valentine leukocidin 
during a furunculosis outbreak in rural Alaska. J Infect Dis. 189: 1565-73. 

Bartels MD, Boye K, Rhod Larsen A, Skov R, Westh H. 2007. Rapid increase of 
genetically diverse methicillin-resistant Staphylococcus aureus, Copenhagen, 
Denmark. Emerg Infect Dis. 13: 1533-40. 



 257 

Bartels MD, Boye K, Rohde SM, Larsen AR, Torfs H, Bouchy P, et al. 2009. A 
common variant of SCCmec type IVa in Copenhagen, Denmark is not 
detected by BD GeneOhmTM MRSA. J Clin Microbiol. 

Bassetti M, Nicco E, Mikulska M. 2009. Why is community-associated MRSA 
spreading across the world and how will it change clinical practice? Int J 
Antimicrob Agents. 34 Suppl 1: S15-9. 

Batra R, Eziefula AC, Wyncoll D, Edgeworth J. 2008. Throat and rectal swabs may 
have an important role in MRSA screening of critically ill patients. Intensive 
Care Med. 34: 1703-6. 

Battisti A, Franco A, Merialdi G, Hasman H, Iurescia M, Lorenzetti R, et al. 
2010. Heterogeneity among methicillin-resistant Staphylococcus aureus from 
Italian pig finishing holdings. Vet Microbiol. 142: 361-6. 

BD Diagnostics. 2010. BBL CHROMagar MRSA II [package insert]. 
BD Diagnostics. 2012. BD GeneOhm MRSA ACP Assay Amplification Kit [package 

insert]. 
Begun J, Sifri CD, Goldman S, Calderwood SB, Ausubel FM. 2005. 

Staphylococcus aureus virulence factors identified by using a high-throughput 
Caenorhabditis elegans-killing model. Infect Immun. 73: 872-7. 

Benoit SR, Estivariz C, Mogdasy C, Pedreira W, Galiana A, Bagnulo H, et al. 
2008. Community strains of methicillin-resistant Staphylococcus aureus as 
potential cause of healthcare-associated infections, Uruguay, 2002-2004. 
Emerg Infect Dis. 14: 1216-23. 

Berglund C, Ito T, Ikeda M, Ma XX, Soderquist B, Hiramatsu K. 2008. Novel 
type of staphylococcal cassette chromosome mec in a methicillin-resistant 
Staphylococcus aureus strain isolated in Sweden. Antimicrob Agents 
Chemother. 52: 3512-6. 

Berkman RM, Wyatt PJ. 1970. Differential light scattering measurements of heat-
treated bacteria. Appl Microbiol. 20: 510-2. 

Bhat M, Dumortier C, Taylor BS, Miller M, Vasquez G, Yunen J, et al. 2009. 
Staphylococcus aureus ST398, New York City and Dominican Republic. 
Emerg Infect Dis. 15: 285-7. 

Bishop EJ, Grabsch EA, Ballard SA, Mayall B, Xie S, Martin R, et al. 2006. 
Concurrent analysis of nose and groin swab specimens by the IDI-MRSA PCR 
assay is comparable to analysis by individual-specimen PCR and routine 
culture assays for detection of colonization by methicillin-resistant 
Staphylococcus aureus. J Clin Microbiol. 44: 2904-8. 

Blanc DS, Basset P, Nahimana-Tessemo I, Jaton K, Greub G, Zanetti G. 2011. 
High proportion of wrongly identified methicillin-resistant Staphylococcus 
aureus carriers by use of a rapid commercial PCR assay due to presence of 
staphylococcal cassette chromosome element lacking the mecA gene. J Clin 
Microbiol. 49: 722-4. 

Blanco R, Tristan A, Ezpeleta G, Larsen AR, Bes M, Etienne J, et al. 2011. 
Molecular epidemiology of Panton-Valentine leukocidin-positive 
Staphylococcus aureus in Spain: emergence of the USA300 clone in an 
autochthonous population. J Clin Microbiol. 49: 433-6. 

Bleuit JS, Ma Y, Munro J, Morrical SW. 2004. Mutations in a conserved motif 
inhibit single-stranded DNA binding and recombination mediator activities of 
bacteriophage T4 UvsY protein. J Biol Chem. 279: 6077-86. 

Bobbitt JA, Betts RP. 1992. The removal of bacteria from solutions by membrane 
filtration. Journal of Microbiological Methods. 16: 215-20. 



 258 

Bocchini CE, Hulten KG, Mason EO, Jr., Gonzalez BE, Hammerman WA, 
Kaplan SL. 2006. Panton-Valentine leukocidin genes are associated with 
enhanced inflammatory response and local disease in acute hematogenous 
Staphylococcus aureus osteomyelitis in children. Pediatrics. 117: 433-40. 

Bootsma M, Hota B, Diekmann O, Weinstein RA, Bonten M. 2006a. Abstr. 46th 
Intersci. Conf. Antimicrob. Agents Chemother., abstr. K-1680. 

Bootsma MC, Diekmann O, Bonten MJ. 2006b. Controlling methicillin-resistant 
Staphylococcus aureus: quantifying the effects of interventions and rapid 
diagnostic testing. Proc Natl Acad Sci U S A. 103: 5620-5. 

Boucher HW, Corey GR. 2008. Epidemiology of methicillin-resistant 
Staphylococcus aureus. Clin Infect Dis. 46 Suppl 5: S344-9. 

Bouchillon SK, Johnson BM, Hoban DJ, Johnson JL, Dowzicky MJ, Wu DH, et 
al. 2004. Determining incidence of extended spectrum beta-lactamase 
producing Enterobacteriaceae, vancomycin-resistant Enterococcus faecium 
and methicillin-resistant Staphylococcus aureus in 38 centres from 17 
countries: the PEARLS study 2001-2002. Int J Antimicrob Agents. 24: 119-
24. 

Boyce JM, Potter-Bynoe G, Chenevert C, King T. 1997. Environmental 
contamination due to methicillin-resistant Staphylococcus aureus: possible 
infection control implications. Infect Control Hosp Epidemiol. 18: 622-7. 

Boyce JM. 2008. Community-associated methicillin-resistant Staphylococcus aureus 
as a cause of health care-associated infection. Clin Infect Dis. 46: 795-8. 

Boye K, Bartels MD, Andersen IS, Moller JA, Westh H. 2007. A new multiplex 
PCR for easy screening of methicillin-resistant Staphylococcus aureus 
SCCmec types I-V. Clin Microbiol Infect. 13: 725-7. 

Boyle-Vavra S, Carey RB, Daum RS. 2001. Development of vancomycin and 
lysostaphin resistance in a methicillin-resistant Staphylococcus aureus isolate. 
J Antimicrob Chemother. 48: 617-25. 

Boyle-Vavra S, Ereshefsky B, Wang CC, Daum RS. 2005. Successful 
multiresistant community-associated methicillin-resistant Staphylococcus 
aureus lineage from Taipei, Taiwan, that carries either the novel 
Staphylococcal chromosome cassette mec (SCCmec) type VT or SCCmec 
type IV. J Clin Microbiol. 43: 4719-30. 

Boyle-Vavra S, Daum RS. 2007. Community-acquired methicillin-resistant 
Staphylococcus aureus: the role of Panton-Valentine leukocidin. Lab Invest. 
87: 3-9. 

Boyle-Vavra S, Daum RS. 2010. Reliability of the BD GeneOhm methicillin-
resistant Staphylococcus aureus (MRSA) assay in detecting MRSA isolates 
with a variety of genotypes from the United States and Taiwan. J Clin 
Microbiol. 48: 4546-51. 

Bradley SF, Terpenning MS, Ramsey MA, Zarins LT, Jorgensen KA, Sottile 
WS, et al. 1991. Methicillin-resistant Staphylococcus aureus: colonization and 
infection in a long-term care facility. Ann Intern Med. 115: 417-22. 

Bradley SF. 1997. Methicillin-resistant Staphylococcus aureus in nursing homes. 
Epidemiology, prevention and management. Drugs Aging. 10: 185-98. 

Bradley SF. 2005. Staphylococcus aureus pneumonia: emergence of MRSA in the 
community. Semin Respir Crit Care Med. 26: 643-9. 

Bratu S, Eramo A, Kopec R, Coughlin E, Ghitan M, Yost R, et al. 2005. 
Community-associated methicillin-resistant Staphylococcus aureus in hospital 
nursery and maternity units. Emerg Infect Dis. 11: 808-13. 



 259 

Brennan GI, Shore AC, Corcoran S, Tecklenborg S, Coleman DC, O'Connell B. 
2012. Emergence of Hospital- and Community-Associated Panton-Valentine 
Leukocidin-Positive Methicillin-Resistant Staphylococcus aureus Genotype 
ST772-MRSA-V in Ireland and Detailed Investigation of a ST772-MRSA-V 
Cluster in a Neonatal Intensive Care Unit. J Clin Microbiol. 50: 841-7. 

Brenwald NP, Baker N, Oppenheim B. 2010. Feasibility study of a real-time PCR 
test for meticillin-resistant Staphylococcus aureus in a point of care setting. J 
Hosp Infect. 74: 245-9. 

Breurec S, Fall C, Pouillot R, Boisier P, Brisse S, Diene-Sarr F, et al. 2011. 
Epidemiology of methicillin-susceptible Staphylococcus aureus lineages in 
five major African towns: high prevalence of Panton-Valentine leukocidin 
genes. Clin Microbiol Infect. 17: 633-9. 

Brown ML, O'Hara FP, Close NM, Mera RM, Miller LA, Suaya JA, et al. 2012. 
Prevalence and sequence variation of panton-valentine leukocidin in 
methicillin-resistant and methicillin-susceptible staphylococcus aureus strains 
in the United States. J Clin Microbiol. 50: 86-90. 

Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, Schneewind O. 2007. Poring 
over pores: alpha-hemolysin and Panton-Valentine leukocidin in 
Staphylococcus aureus pneumonia. Nat Med. 13: 1405-6. 

Budimir A, Deurenberg RH, Plecko V, Vink C, Kalenic S, Stobberingh EE. 2006. 
Molecular characterization of methicillin-resistant Staphylococcus aureus 
bloodstream isolates from Croatia. J Antimicrob Chemother. 57: 331-4. 

Burlak C, Hammer CH, Robinson MA, Whitney AR, McGavin MJ, Kreiswirth 
BN, et al. 2007. Global analysis of community-associated methicillin-resistant 
Staphylococcus aureus exoproteins reveals molecules produced in vitro and 
during infection. Cell Microbiol. 9: 1172-90. 

Burton DC, Edwards JR, Horan TC, Jernigan JA, Fridkin SK. 2009. Methicillin-
resistant Staphylococcus aureus central line-associated bloodstream infections 
in US intensive care units, 1997-2007. JAMA. 301: 727-36. 

Cai L, Kong F, Wang Q, Wang H, Xiao M, Sintchenko V, et al. 2009. A new 
multiplex PCR-based reverse line-blot hybridization (mPCR/RLB) assay for 
rapid staphylococcal cassette chromosome mec (SCCmec) typing. J Med 
Microbiol. 58: 1045-57. 

Campanile F, Bongiorno D, Borbone S, Stefani S. 2009. Hospital-associated 
methicillin-resistant Staphylococcus aureus (HA-MRSA) in Italy. Ann Clin 
Microbiol Antimicrob. 8: 22. 

Carleton HA, Diep BA, Charlebois ED, Sensabaugh GF, Perdreau-Remington F. 
2004. Community-adapted methicillin-resistant Staphylococcus aureus 
(MRSA): population dynamics of an expanding community reservoir of 
MRSA. J Infect Dis. 190: 1730-8. 

Caron WP, Mousa SA. 2010. Prevention strategies for antimicrobial resistance: a 
systematic review of the literature. Infect Drug Resist. 3: 25-33. 

Carroll KC. 2008. Rapid diagnostics for methicillin-resistant Staphylococcus aureus: 
current status. Mol Diagn Ther. 12: 15-24. 

Catry B, Van Duijkeren E, Pomba MC, Greko C, Moreno MA, Pyorala S, et al. 
2010. Reflection paper on MRSA in food-producing and companion animals: 
epidemiology and control options for human and animal health. Epidemiol 
Infect. 138: 626-44. 



 260 

CDC (Centers for Disease Control and Prevention). 1999. Four Pediatric Deaths 
From Community-Acquired Methicillin-Resistant Staphylococcus aureus—
Minnesota and North Dakota, 1997-1999. JAMA. 282: 1123-5. 

CDC. 2002a. Staphylococcus aureus resistant to vancomycin--United States, 2002. 
MMWR Morb Mortal Wkly Rep. 51: 565-7. 

CDC. 2002b. Vancomycin-resistant Staphylococcus aureus--Pennsylvania, 2002. 
MMWR Morb Mortal Wkly Rep. 51: 902. 

CDC. 2003a. Methicillin-resistant staphylococcus aureus infections among 
competitive sports participants--Colorado, Indiana, Pennsylvania, and Los 
Angeles County, 2000-2003. MMWR Morb Mortal Wkly Rep. 52: 793-5. 

CDC. 2003b. Outbreaks of community-associated methicillin-resistant 
Staphylococcus aureus skin infections--Los Angeles County, California, 2002-
2003. MMWR Morb Mortal Wkly Rep. 52: 88. 

CDC. 2003c. Methicillin-resistant Staphylococcus aureus infections in correctional 
facilities---Georgia, California, and Texas, 2001-2003. MMWR Morb Mortal 
Wkly Rep. 52: 992-6. 

CDC. 2004a. Vancomycin-resistant Staphylococcus aureus--New York, 2004. 
MMWR Morb Mortal Wkly Rep. 53: 322-3. 

CDC. 2004b. Community-associated methicillin-resistant Staphylococcus aureus 
infections in Pacific Islanders--Hawaii, 2001-2003. MMWR Morb Mortal 
Wkly Rep. 53: 767-70. 

Cepheid Diagnostics. 2009. Xpert MRSA [package insert]. 
Chambers HF. 2001. The changing epidemiology of Staphylococcus aureus? Emerg 

Infect Dis. 7: 178-82. 
Chambers HF, Deleo FR. 2009. Waves of resistance: Staphylococcus aureus in the 

antibiotic era. Nat Rev Microbiol. 7: 629-41. 
Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, et al. 

2003. Infection with vancomycin-resistant Staphylococcus aureus containing 
the vanA resistance gene. N Engl J Med. 348: 1342-7. 

Charles PG, Ward PB, Johnson PD, Howden BP, Grayson ML. 2004. Clinical 
features associated with bacteremia due to heterogeneous vancomycin-
intermediate Staphylococcus aureus. Clin Infect Dis. 38: 448-51. 

Chen L, Mediavilla JR, Oliveira DC, Willey BM, de Lencastre H, Kreiswirth BN. 
2009. Multiplex Real-Time PCR for Rapid Staphylococcal Cassette 
Chromosome mec (SCCmec) Typing. J Clin Microbiol. 

Cherkaoui A, Renzi G, Francois P, Schrenzel J. 2007. Comparison of four 
chromogenic media for culture-based screening of meticillin-resistant 
Staphylococcus aureus. J Med Microbiol. 56: 500-3. 

Chongtrakool P, Ito T, Ma XX, Kondo Y, Trakulsomboon S, Tiensasitorn C, et 
al. 2006. Staphylococcal cassette chromosome mec (SCCmec) typing of 
methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian 
countries: a proposal for a new nomenclature for SCCmec elements. 
Antimicrob Agents Chemother. 50: 1001-12. 

Chu VH, Crosslin DR, Friedman JY, Reed SD, Cabell CH, Griffiths RI, et al. 
2005. Staphylococcus aureus bacteremia in patients with prosthetic devices: 
costs and outcomes. Am J Med. 118: 1416. 

Chua K, Laurent F, Coombs G, Grayson ML, Howden BP. 2011. Antimicrobial 
resistance: Not community-associated methicillin-resistant Staphylococcus 
aureus (CA-MRSA)! A clinician's guide to community MRSA - its evolving 



 261 

antimicrobial resistance and implications for therapy. Clin Infect Dis. 52: 99-
114. 

Chung M, Dickinson G, De Lencastre H, Tomasz A. 2004. International clones of 
methicillin-resistant Staphylococcus aureus in two hospitals in Miami, Florida. 
J Clin Microbiol. 42: 542-7. 

Ciardo DE, Burger S, Payer M, Lee C, McCallum N. 2010. GeneXpert captures 
unstable methicillin-resistant Staphylococcus aureus prone to rapidly losing 
the mecA gene. J Clin Microbiol. 48: 3030-2. 

CLSI (Clinical and Laboratory Standards Institute). 2005. Performance Standards 
for Anitmicrobial Susceptibility Testing. 15th informational supplement, 
M100-S15. Clinical and Laboratory Standards Institute. Wayne, PA. 

CMS (Centers for Medicare and Medicaid Services). 2009. Long Term Care 
Minimum Data Set. Available from: 
http://www.resdac.org/MDS/data_available.asp. [Accessed 10th April 2012]. 

Cookson BD, Robinson DA, Monk AB, Murchan S, Deplano A, de Ryck R, et al. 
2007. Evaluation of molecular typing methods in characterizing a European 
collection of epidemic methicillin-resistant Staphylococcus aureus strains: the 
HARMONY collection. J Clin Microbiol. 45: 1830-7. 

Coombs GW, Nimmo GR, Bell JM, Huygens F, O'Brien FG, Malkowski MJ, et 
al. 2004. Genetic diversity among community methicillin-resistant 
Staphylococcus aureus strains causing outpatient infections in Australia. J Clin 
Microbiol. 42: 4735-43. 

Coombs GW, Monecke S, Ehricht R, Slickers P, Pearson JC, Tan HL, et al. 2010. 
Differentiation of clonal complex 59 community-associated methicillin-
resistant Staphylococcus aureus in Western Australia. Antimicrob Agents 
Chemother. 54: 1914-21. 

Cooper JE, Feil EJ. 2004. Multilocus sequence typing--what is resolved? Trends 
Microbiol. 12: 373-7. 

Corkill JE, Anson JJ, Griffiths P, Hart CA. 2004. Detection of elements of the 
staphylococcal cassette chromosome (SCC) in a methicillin-susceptible (mecA 
gene negative) homologue of a fucidin-resistant MRSA. J Antimicrob 
Chemother. 54: 229-31. 

Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, 
Carmeli Y. 2003. Comparison of mortality associated with methicillin-
resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a 
meta-analysis. Clin Infect Dis. 36: 53-9. 

Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. 2005. The 
impact of methicillin resistance in Staphylococcus aureus bacteremia on 
patient outcomes: mortality, length of stay, and hospital charges. Infect 
Control Hosp Epidemiol. 26: 166-74. 

Creamer E, Dolan A, Sherlock O, Thomas T, Walsh J, Moore J, et al. 2010. The 
effect of rapid screening for methicillin-resistant Staphylococcus aureus 
(MRSA) on the identification and earlier isolation of MRSA-positive patients. 
Infect Control Hosp Epidemiol. 31: 374-81. 

Crisostomo MI, Westh H, Tomasz A, Chung M, Oliveira DC, de Lencastre H. 
2001. The evolution of methicillin resistance in Staphylococcus aureus: 
similarity of genetic backgrounds in historically early methicillin-susceptible 
and -resistant isolates and contemporary epidemic clones. Proc Natl Acad Sci 
U S A. 98: 9865-70. 



 262 

Cuny C, Witte W. 2005. PCR for the identification of methicillin-resistant 
Staphylococcus aureus (MRSA) strains using a single primer pair specific for 
SCCmec elements and the neighbouring chromosome-borne orfX. Clin 
Microbiol Infect. 11: 834-7. 

Cuny C, Strommenger B, Witte W, Stanek C. 2008. Clusters of infections in horses 
with MRSA ST1, ST254, and ST398 in a veterinary hospital. Microb Drug 
Resist. 14: 307-10. 

Cuny C, Nathaus R, Layer F, Strommenger B, Altmann D, Witte W. 2009. Nasal 
colonization of humans with methicillin-resistant Staphylococcus aureus 
(MRSA) CC398 with and without exposure to pigs. PLoS One. 4: e6800. 

Cuny C, Layer F, Strommenger B, Witte W. 2011. Rare occurrence of methicillin-
resistant Staphylococcus aureus CC130 with a novel mecA homologue in 
humans in Germany. PLoS One. 6: e24360. 

D'Agata EM, Webb GF, Horn MA, Moellering RC, Jr., Ruan S. 2009. Modeling 
the invasion of community-acquired methicillin-resistant Staphylococcus 
aureus into hospitals. Clin Infect Dis. 48: 274-84. 

D'Souza N, Rodrigues C, Mehta A. 2010. Molecular characterization of methicillin-
resistant Staphylococcus aureus with emergence of epidemic clones of 
sequence type (ST) 22 and ST 772 in Mumbai, India. J Clin Microbiol. 48: 
1806-11. 

David MD, Kearns AM, Gossain S, Ganner M, Holmes A. 2006a. Community-
associated meticillin-resistant Staphylococcus aureus: nosocomial 
transmission in a neonatal unit. J Hosp Infect. 64: 244-50. 

David MZ, Crawford SE, Boyle-Vavra S, Hostetler MA, Kim DC, Daum RS. 
2006b. Contrasting pediatric and adult methicillin-resistant Staphylococcus 
aureus isolates. Emerg Infect Dis. 12: 631-7. 

David MZ, Daum RS. 2010. Community-associated methicillin-resistant 
Staphylococcus aureus: epidemiology and clinical consequences of an 
emerging epidemic. Clin Microbiol Rev. 23: 616-87. 

Davis SL, Rybak MJ, Amjad M, Kaatz GW, McKinnon PS. 2006. Characteristics 
of patients with healthcare-associated infection due to SCCmec type IV 
methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol. 
27: 1025-31. 

Davis SL, Perri MB, Donabedian SM, Manierski C, Singh A, Vager D, et al. 
2007. Epidemiology and outcomes of community-associated methicillin-
resistant Staphylococcus aureus infection. J Clin Microbiol. 45: 1705-11. 

de Kraker ME, Wolkewitz M, Davey PG, Koller W, Berger J, Nagler J, et al. 
2011. Clinical impact of antimicrobial resistance in European hospitals: excess 
mortality and length of hospital stay related to methicillin-resistant 
Staphylococcus aureus bloodstream infections. Antimicrob Agents 
Chemother. 55: 1598-605. 

de Neeling AJ, van den Broek MJ, Spalburg EC, van Santen-Verheuvel MG, 
Dam-Deisz WD, Boshuizen HC, et al. 2007. High prevalence of methicillin 
resistant Staphylococcus aureus in pigs. Vet Microbiol. 122: 366-72. 

Denis O, Jans B, Deplano A, Nonhoff C, De Ryck R, Suetens C, et al. 2009a. 
Epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) among 
residents of nursing homes in Belgium. J Antimicrob Chemother. 64: 1299-
306. 



 263 

Denis O, Suetens C, Hallin M, Catry B, Ramboer I, Dispas M, et al. 2009b. 
Methicillin-resistant Staphylococcus aureus ST398 in swine farm personnel, 
Belgium. Emerg Infect Dis. 15: 1098-101. 

Department of Health (DoH) Smart Solutions for HCAI Programme. 2011. 
TwistDx Evaluation Report. Available from: 
http://hcai.dh.gov.uk/technologieswelcome/evaluation-reports/. [Accessed 5th 
April 2012]. 

Desjardins M, Guibord C, Lalonde B, Toye B, Ramotar K. 2006. Evaluation of 
the IDI-MRSA assay for detection of methicillin-resistant staphylococcus 
aureus from nasal and rectal specimens pooled in a selective broth. J Clin 
Microbiol. 44: 1219-23. 

Deurenberg RH, Vink C, Kalenic S, Friedrich AW, Bruggeman CA, Stobberingh 
EE. 2007. The molecular evolution of methicillin-resistant Staphylococcus 
aureus. Clin Microbiol Infect. 13: 222-35. 

Deurenberg RH, Stobberingh EE. 2008. The evolution of Staphylococcus aureus. 
Infect Genet Evol. 8: 747-63. 

Devriese LA, Van Damme LR, Fameree L. 1972. Methicillin (cloxacillin)-resistant 
Staphylococcus aureus strains isolated from bovine mastitis cases. Zentralbl 
Veterinarmed B. 19: 598-605. 

Devriese LA, Hommez J. 1975. Epidemiology of methicillin-resistant 
Staphylococcus aureus in dairy herds. Res Vet Sci. 19: 23-7. 

Diederen BM. 2010. Comparison of the Cepheid Xpert MRSA assay with culture in a 
low prevalence setting in The Netherlands. J Infect. 61: 509-10. 

Diep BA, Carleton HA, Chang RF, Sensabaugh GF, Perdreau-Remington F. 
2006a. Roles of 34 virulence genes in the evolution of hospital- and 
community-associated strains of methicillin-resistant Staphylococcus aureus. J 
Infect Dis. 193: 1495-503. 

Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, et al. 2006b. 
Complete genome sequence of USA300, an epidemic clone of community-
acquired meticillin-resistant Staphylococcus aureus. Lancet. 367: 731-9. 

Diep BA, Sensabaugh GF, Perdreau-Remington F. 2007. Diversity of community-
associated strains of methicillin-resistant Staphylococcus aureus in Hawaii - 
Reply to Seifried et al. Journal of Infectious Diseases. 195: 305-7. 

Diep BA, Chambers HF, Graber CJ, Szumowski JD, Miller LG, Han LL, et al. 
2008a. Emergence of multidrug-resistant, community-associated, methicillin-
resistant Staphylococcus aureus clone USA300 in men who have sex with 
men. Ann Intern Med. 148: 249-57. 

Diep BA, Stone GG, Basuino L, Graber CJ, Miller A, des Etages SA, et al. 2008b. 
The arginine catabolic mobile element and staphylococcal chromosomal 
cassette mec linkage: convergence of virulence and resistance in the USA300 
clone of methicillin-resistant Staphylococcus aureus. J Infect Dis. 197: 1523-
30. 

Dinges MM, Orwin PM, Schlievert PM. 2000. Exotoxins of Staphylococcus aureus. 
Clin Microbiol Rev. 13: 16-34. 

Donnio PY, Oliveira DC, Faria NA, Wilhelm N, Le Coustumier A, de Lencastre 
H. 2005. Partial excision of the chromosomal cassette containing the 
methicillin resistance determinant results in methicillin-susceptible 
Staphylococcus aureus. J Clin Microbiol. 43: 4191-3. 

Donnio PY, Fevrier F, Bifani P, Dehem M, Kervegant C, Wilhelm N, et al. 2007. 
Molecular and epidemiological evidence for spread of multiresistant 



 264 

methicillin-susceptible Staphylococcus aureus strains in hospitals. Antimicrob 
Agents Chemother. 51: 4342-50. 

Drews SJ, Willey BM, Kreiswirth N, Wang M, Ianes T, Mitchell J, et al. 2006. 
Verification of the IDI-MRSA assay for detecting methicillin-resistant 
Staphylococcus aureus in diverse specimen types in a core clinical laboratory 
setting. J Clin Microbiol. 44: 3794-6. 

Eady EA, Cove JH. 2003. Staphylococcal resistance revisited: community-acquired 
methicillin resistant Staphylococcus aureus--an emerging problem for the 
management of skin and soft tissue infections. Curr Opin Infect Dis. 16: 103-
24. 

European Centre for Disease Prevention and Control (ECDC). 2011. Annual 
epidemiological report: reporting on 2009 surveillance data and 2010 
epidemic intelligence data. Available from: 
http://ecdc.europa.eu/en/publications/Publications/1111_SUR_Annual_Epide
miological_Report_on_Communicable_Diseases_in_Europe.pdf. [Accessed 
18th April 2012]. 

Eigner U, Holfelder M, Wild U, Bender C, Kirstahler M, Turnwald AM, et al. 
2007. Evaluation of a rapid molecular dipstick assay for the direct detection of 
methicillin-resistant Staphylococcus aureus in clinical specimens, abstr. O-21. 
17th Eur Congr Clin microbiol Infect Dis; Munich, Germany. 

Ekkelenkamp MB, Sekkat M, Carpaij N, Troelstra A, Bonten MJ. 2006. 
[Endocarditis due to meticillin-resistant Staphylococcus aureus originating 
from pigs]. Ned Tijdschr Geneeskd. 150: 2442-7. 

Ellington MJ, Hope R, Ganner M, East C, Brick G, Kearns AM. 2007. Is Panton-
Valentine leucocidin associated with the pathogenesis of Staphylococcus 
aureus bacteraemia in the UK? J Antimicrob Chemother. 60: 402-5. 

Ellington MJ, Yearwood L, Ganner M, East C, Kearns AM. 2008. Distribution of 
the ACME-arcA gene among methicillin-resistant Staphylococcus aureus from 
England and Wales. J Antimicrob Chemother. 61: 73-7. 

Ellington MJ, Ganner M, Warner M, Cookson BD, Kearns AM. 2010. Polyclonal 
multiply antibiotic-resistant methicillin-resistant Staphylococcus aureus with 
Panton-Valentine leucocidin in England. J Antimicrob Chemother. 65: 46-50. 

Ender M, McCallum N, Adhikari R, Berger-Bachi B. 2004. Fitness cost of 
SCCmec and methicillin resistance levels in Staphylococcus aureus. 
Antimicrob Agents Chemother. 48: 2295-7. 

Engemann JJ, Carmeli Y, Cosgrove SE, Fowler VG, Bronstein MZ, Trivette SL, 
et al. 2003. Adverse clinical and economic outcomes attributable to 
methicillin resistance among patients with Staphylococcus aureus surgical site 
infection. Clin Infect Dis. 36: 592-8. 

Enright MC, Spratt BG. 1999. Multilocus sequence typing. Trends Microbiol. 7: 
482-7. 

Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. 2000. Multilocus 
sequence typing for characterization of methicillin-resistant and methicillin-
susceptible clones of Staphylococcus aureus. J Clin Microbiol. 38: 1008-15. 

Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. 2002. 
The evolutionary history of methicillin-resistant Staphylococcus aureus 
(MRSA). Proc Natl Acad Sci U S A. 99: 7687-92. 

Enright MC. 2003. The evolution of a resistant pathogen--the case of MRSA. Curr 
Opin Pharmacol. 3: 474-9. 



 265 

Eveillard M, de Lassence A, Lancien E, Barnaud G, Ricard JD, Joly-Guillou 
ML. 2006. Evaluation of a strategy of screening multiple anatomical sites for 
methicillin-resistant Staphylococcus aureus at admission to a teaching 
hospital. Infect Control Hosp Epidemiol. 27: 181-4. 

Eveillard M, Charru P, Rufat P, Hippeaux MC, Lancien E, Benselama F, et al. 
2008. Methicillin-resistant Staphylococcus aureus carriage in a long-term care 
facility: hypothesis about selection and transmission. Age Ageing. 37: 294-9. 

Eveillard M, Joly-Guillou ML. 2009. Methicillin-resistant Staphylococcus aureus 
(MRSA) in the institutionalized older patient. Reviews in Clinical 
Gerontology. 19: 13-23. 

Fang H, Hedin G, Li G, Nord CE. 2008. Genetic diversity of community-associated 
methicillin-resistant Staphylococcus aureus in southern Stockholm, 2000-
2005. Clin Microbiol Infect. 14: 370-6. 

Farley JE, Stamper PD, Ross T, Cai M, Speser S, Carroll KC. 2008. Comparison 
of the BD GeneOhm methicillin-resistant Staphylococcus aureus (MRSA) 
PCR assay to culture by use of BBL CHROMagar MRSA for detection of 
MRSA in nasal surveillance cultures from an at-risk community population. J 
Clin Microbiol. 46: 743-6. 

FDA (US Food and Drug Administration). 2007. Substantial Equivalence 
Determination: Decision Summary. Available from: 
http://www.accessdata.fda.gov/cdrh_docs/reviews/K070462.pdf. [Accessed 
14th April 2012]. 

Feil EJ, Cooper JE, Grundmann H, Robinson DA, Enright MC, Berendt T, et al. 
2003. How clonal is Staphylococcus aureus? J Bacteriol. 185: 3307-16. 

Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. 2004. eBURST: inferring 
patterns of evolutionary descent among clusters of related bacterial genotypes 
from multilocus sequence typing data. J Bacteriol. 186: 1518-30. 

Feng Y, Chen CJ, Su LH, Hu S, Yu J, Chiu CH. 2008. Evolution and pathogenesis 
of Staphylococcus aureus: lessons learned from genotyping and comparative 
genomics. FEMS Microbiol Rev. 32: 23-37. 

Ferraz V, Duse AG, Kassel M, Black AD, Ito T, Hiramatsu K. 2000. Vancomycin-
resistant Staphylococcus aureus occurs in South Africa. S Afr Med J. 90: 
1113. 

Fitzgerald JR, Sturdevant DE, Mackie SM, Gill SR, Musser JM. 2001. 
Evolutionary genomics of Staphylococcus aureus: insights into the origin of 
methicillin-resistant strains and the toxic shock syndrome epidemic. Proc Natl 
Acad Sci U S A. 98: 8821-6. 

Fitzgerald JR. 2012. Livestock-associated Staphylococcus aureus: origin, evolution 
and public health threat. Trends Microbiol. 20: 192-8. 

Fluit AC. 2011. What to do with MRSA with a novel mec gene? The Lancet 
Infectious Diseases. 11: 580-1. 

Forrest M. TwistDx Ltd. Personal communication. 2009. 
Fraise AP, Mitchell K, O'Brien SJ, Oldfield K, Wise R. 1997. Methicillin-resistant 

Staphylococcus aureus (MRSA) in nursing homes in a major UK city: an 
anonymized point prevalence survey. Epidemiol Infect. 118: 1-5. 

Francis JS, Doherty MC, Lopatin U, Johnston CP, Sinha G, Ross T, et al. 2005. 
Severe community-onset pneumonia in healthy adults caused by methicillin-
resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin 
genes. Clin Infect Dis. 40: 100-7. 



 266 

Francois P, Renzi G, Pittet D, Bento M, Lew D, Harbarth S, et al. 2004. A novel 
multiplex real-time PCR assay for rapid typing of major staphylococcal 
cassette chromosome mec elements. J Clin Microbiol. 42: 3309-12. 

Francois P, Bento M, Renzi G, Harbarth S, Pittet D, Schrenzel J. 2007. 
Evaluation of three molecular assays for rapid identification of methicillin-
resistant Staphylococcus aureus. J Clin Microbiol. 45: 2011-3. 

Francois P, Harbarth S, Huyghe A, Renzi G, Bento M, Gervaix A, et al. 2008. 
Methicillin-resistant Staphylococcus aureus, Geneva, Switzerland, 1993-2005. 
Emerg Infect Dis. 14: 304-7. 

Frazee BW, Salz TO, Lambert L, Perdreau-Remington F. 2005. Fatal community-
associated methicillin-resistant Staphylococcus aureus pneumonia in an 
immunocompetent young adult. Ann Emerg Med. 46: 401-4. 

Frei CR, Makos BR, Daniels KR, Oramasionwu CU. 2010. Emergence of 
community-acquired methicillin-resistant Staphylococcus aureus skin and soft 
tissue infections as a common cause of hospitalization in United States 
children. J Pediatr Surg. 45: 1967-74. 

Fridkin SK, Hageman J, McDougal LK, Mohammed J, Jarvis WR, Perl TM, et 
al. 2003. Epidemiological and microbiological characterization of infections 
caused by Staphylococcus aureus with reduced susceptibility to vancomycin, 
United States, 1997-2001. Clin Infect Dis. 36: 429-39. 

Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan 
JA, et al. 2005. Methicillin-resistant Staphylococcus aureus disease in three 
communities. N Engl J Med. 352: 1436-44. 

Garcia-Alvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, et 
al. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA 
homologue in human and bovine populations in the UK and Denmark: a 
descriptive study. Lancet Infect Dis. 11: 595-603. 

Gastmeier P, Schwab F, Geffers C, Ruden H. 2004. To isolate or not to isolate? 
Analysis of data from the German Nosocomial Infection Surveillance System 
regarding the placement of patients with methicillin-resistant Staphylococcus 
aureus in private rooms in intensive care units. Infect Control Hosp Epidemiol. 
25: 109-13. 

Ghaznavi-Rad E, Nor Shamsudin M, Sekawi Z, Khoon LY, Aziz MN, Hamat 
RA, et al. 2010a. Predominance and emergence of clones of hospital-acquired 
methicillin-resistant Staphylococcus aureus in Malaysia. J Clin Microbiol. 48: 
867-72. 

Ghaznavi-Rad E, Nor Shamsudin M, Sekawi Z, van Belkum A, Neela V. 2010b. 
A simplified multiplex PCR assay for fast and easy discrimination of globally 
distributed staphylococcal cassette chromosome mec types in meticillin-
resistant Staphylococcus aureus. J Med Microbiol. 59: 1135-9. 

Ghebremedhin B, Olugbosi MO, Raji AM, Layer F, Bakare RA, Konig B, et al. 
2009. Emergence of a community-associated methicillin-resistant 
Staphylococcus aureus strain with a unique resistance profile in Southwest 
Nigeria. J Clin Microbiol. 47: 2975-80. 

Gillet Y, Issartel B, Vanhems P, Fournet JC, Lina G, Bes M, et al. 2002. 
Association between Staphylococcus aureus strains carrying gene for Panton-
Valentine leukocidin and highly lethal necrotising pneumonia in young 
immunocompetent patients. Lancet. 359: 753-9. 

Goering RV, McDougal LK, Fosheim GE, Bonnstetter KK, Wolter DJ, Tenover 
FC. 2007. Epidemiologic distribution of the arginine catabolic mobile element 



 267 

among selected methicillin-resistant and methicillin-susceptible 
Staphylococcus aureus isolates. J Clin Microbiol. 45: 1981-4. 

Goldstein EJ, Citron DM, Nesbit CA. 1996. Diabetic foot infections. Bacteriology 
and activity of 10 oral antimicrobial agents against bacteria isolated from 
consecutive cases. Diabetes Care. 19: 638-41. 

Gomes AR, Westh H, de Lencastre H. 2006. Origins and evolution of methicillin-
resistant Staphylococcus aureus clonal lineages. Antimicrob Agents 
Chemother. 50: 3237-44. 

Gonzalez BE, Hulten KG, Dishop MK, Lamberth LB, Hammerman WA, Mason 
EO, Jr., et al. 2005a. Pulmonary manifestations in children with invasive 
community-acquired Staphylococcus aureus infection. Clin Infect Dis. 41: 
583-90. 

Gonzalez BE, Martinez-Aguilar G, Hulten KG, Hammerman WA, Coss-Bu J, 
Avalos-Mishaan A, et al. 2005b. Severe Staphylococcal sepsis in adolescents 
in the era of community-acquired methicillin-resistant Staphylococcus aureus. 
Pediatrics. 115: 642-8. 

Gonzalez BE, Rueda AM, Shelburne SA, 3rd, Musher DM, Hamill RJ, Hulten 
KG. 2006. Community-associated strains of methicillin-resistant 
Staphylococccus aureus as the cause of healthcare-associated infection. Infect 
Control Hosp Epidemiol. 27: 1051-6. 

Gould IM. 2005. The clinical significance of methicillin-resistant Staphylococcus 
aureus. J Hosp Infect. 61: 277-82. 

Gould IM, Girvan EK, Browning RA, MacKenzie FM, Edwards GF. 2009. 
Report of a hospital neonatal unit outbreak of community-associated 
methicillin-resistant Staphylococcus aureus. Epidemiol Infect. 137: 1242-8. 

Graber CJ, Wong MK, Carleton HA, Perdreau-Remington F, Haller BL, 
Chambers HF. 2007. Intermediate vancomycin susceptibility in a 
community-associated MRSA clone. Emerg Infect Dis. 13: 491-3. 

Graveland H, Wagenaar JA, Bergs K, Heesterbeek H, Heederik D. 2011. 
Persistence of livestock associated MRSA CC398 in humans is dependent on 
intensity of animal contact. PLoS One. 6: e16830. 

Gray RR, Tatem AJ, Johnson JA, Alekseyenko AV, Pybus OG, Suchard MA, et 
al. 2011. Testing spatiotemporal hypothesis of bacterial evolution using 
methicillin-resistant Staphylococcus aureus ST239 genome-wide data within a 
bayesian framework. Mol Biol Evol. 28: 1593-603. 

Grobner S, Dion M, Plante M, Kempf VA. 2009. Evaluation of the BD GeneOhm 
StaphSR assay for detection of methicillin-resistant and methicillin-
susceptible Staphylococcus aureus isolates from spiked positive blood culture 
bottles. J Clin Microbiol. 47: 1689-94. 

Groom AV, Wolsey DH, Naimi TS, Smith K, Johnson S, Boxrud D, et al. 2001. 
Community-acquired methicillin-resistant Staphylococcus aureus in a rural 
American Indian community. JAMA. 286: 1201-5. 

Grundmann H, Hori S, Tanner G. 2001. Determining confidence intervals when 
measuring genetic diversity and the discriminatory abilities of typing methods 
for microorganisms. J Clin Microbiol. 39: 4190-2. 

Grundmann H, Hori S, Enright MC, Webster C, Tami A, Feil EJ, et al. 2002. 
Determining the genetic structure of the natural population of Staphylococcus 
aureus: a comparison of multilocus sequence typing with pulsed-field gel 
electrophoresis, randomly amplified polymorphic DNA analysis, and phage 
typing. J Clin Microbiol. 40: 4544-6. 



 268 

Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. 2006. Emergence and 
resurgence of meticillin-resistant Staphylococcus aureus as a public-health 
threat. Lancet. 368: 874-85. 

Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D, 
Friedrich AW. 2010. Geographic distribution of Staphylococcus aureus 
causing invasive infections in Europe: a molecular-epidemiological analysis. 
PLoS Med. 7: e1000215. 

Guinane CM, Ben Zakour NL, Tormo-Mas MA, Weinert LA, Lowder BV, 
Cartwright RA, et al. 2010. Evolutionary genomics of Staphylococcus aureus 
reveals insights into the origin and molecular basis of ruminant host 
adaptation. Genome Biol Evol. 2: 454-66. 

Haenni M, Saras E, Chatre P, Medaille C, Bes M, Madec JY, et al. 2011. A 
USA300 variant and other human-related methicillin-resistant Staphylococcus 
aureus strains infecting cats and dogs in France. J Antimicrob Chemother. 67: 
326-9. 

Hageman JC, Pegues DA, Jepson C, Bell RL, Guinan M, Ward KW, et al. 2001. 
Vancomycin-intermediate Staphylococcus aureus in a home health-care 
patient. Emerg Infect Dis. 7: 1023-5. 

Hain Lifescience GmbH. 2012. GenoType MRSA Direct - Rapid diagnosis even for 
mixed infections. Available from: http://www.hain-
lifescience.de/en/products/microbiology/mrsa/genotype-mrsa-direct.html. 
[Accessed 18th April 2012]. 

Harbarth S. 2006. Control of endemic methicillin-resistant Staphylococcus aureus-
recent advances and future challenges. Clin Microbiol Infect. 12: 1154-62. 

Harbarth S, Hawkey PM, Tenover F, Stefani S, Pantosti A, Struelens MJ. 2011. 
Update on screening and clinical diagnosis of meticillin-resistant 
Staphylococcus aureus (MRSA). Int J Antimicrob Agents. 37: 110-7. 

Harmsen D, Claus H, Witte W, Rothganger J, Claus H, Turnwald D, et al. 2003. 
Typing of methicillin-resistant Staphylococcus aureus in a university hospital 
setting by using novel software for spa repeat determination and database 
management. J Clin Microbiol. 41: 5442-8. 

Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, Chantratita N, et al. 
2010. Evolution of MRSA during hospital transmission and intercontinental 
spread. Science. 327: 469-74. 

Hartman BJ, Tomasz A. 1984. Low-affinity penicillin-binding protein associated 
with beta-lactam resistance in Staphylococcus aureus. J Bacteriol. 158: 513-6. 

Hartmeyer GN, Gahrn-Hansen B, Skov RL, Kolmos HJ. 2010. Pig-associated 
methicillin-resistant Staphylococcus aureus: family transmission and severe 
pneumonia in a newborn. Scand J Infect Dis. 42: 318-20. 

Hassan H, Shorman M. 2011. Evaluation of the BD GeneOhm MRSA and VanR 
Assays as a Rapid Screening Tool for Detection of Methicillin-Resistant 
Staphylococcus aureus and Vancomycin-Resistant Enterococci in a Tertiary 
Hospital in Saudi Arabia. Int J Microbiol. 2011: 861514. 

Health Protection Agency (HPA). 2011. Summary Points on Methicillin Resistant 
Staphylococcus aureus (MRSA) Bacteraemia. Available from: 
http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1278944283762. 
[Accessed 18th April 2012]. 

Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-
Vavra S, et al. 1998. Community-acquired methicillin-resistant 



 269 

Staphylococcus aureus in children with no identified predisposing risk. 
JAMA. 279: 593-8. 

Heusser R, Ender M, Berger-Bachi B, McCallum N. 2007. Mosaic staphylococcal 
cassette chromosome mec containing two recombinase loci and a new mec 
complex, B2. Antimicrob Agents Chemother. 51: 390-3. 

Hiramatsu K, Kondo N, Ito T. 1996. Genetic Basis for Molecular Epidemiology of 
MRSA. J Infect Chemother. 2: 117-29. 

Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, et al. 1997a. 
Dissemination in Japanese hospitals of strains of Staphylococcus aureus 
heterogeneously resistant to vancomycin. Lancet. 350: 1670-3. 

Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. 1997b. 
Methicillin-resistant Staphylococcus aureus clinical strain with reduced 
vancomycin susceptibility. J Antimicrob Chemother. 40: 135-6. 

Hiramatsu K, Ito T, Awaya A, Ohno H, Hayashi T. 2000. Method of identifying 
methicillin-resistant Staphylococcus aureus or methicillin-resistant coagulase-
negative staphylococci. Patent US6156507. 

Hiramatsu K, Cui L, Kuroda M, Ito T. 2001. The emergence and evolution of 
methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9: 486-93. 

Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, et al. 
Evolution of antibiotic resistance and the genesis of an MRSA pandemic 
[submitted for publication]. 

Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, et al. 2004. 
Complete genomes of two clinical Staphylococcus aureus strains: evidence for 
the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S 
A. 101: 9786-91. 

Holmes A, Ganner M, McGuane S, Pitt TL, Cookson BD, Kearns AM. 2005. 
Staphylococcus aureus isolates carrying Panton-Valentine leucocidin genes in 
England and Wales: frequency, characterization, and association with clinical 
disease. J Clin Microbiol. 43: 2384-90. 

Hombach M, Pfyffer GE, Roos M, Lucke K. 2010. Detection of methicillin-
resistant Staphylococcus aureus (MRSA) in specimens from various body 
sites: performance characteristics of the BD GeneOhm MRSA assay, the 
Xpert MRSA assay, and broth-enriched culture in an area with a low 
prevalence of MRSA infections. J Clin Microbiol. 48: 3882-7. 

Hota B, Ellenbogen C, Hayden MK, Aroutcheva A, Rice TW, Weinstein RA. 
2007. Community-associated methicillin-resistant Staphylococcus aureus skin 
and soft tissue infections at a public hospital: do public housing and 
incarceration amplify transmission? Arch Intern Med. 167: 1026-33. 

Howden BP, Ward PB, Charles PG, Korman TM, Fuller A, du Cros P, et al. 
2004. Treatment outcomes for serious infections caused by methicillin-
resistant Staphylococcus aureus with reduced vancomycin susceptibility. Clin 
Infect Dis. 38: 521-8. 

Howe RA, Bowker KE, Walsh TR, Feest TG, MacGowan AP. 1998. Vancomycin-
resistant Staphylococcus aureus. The Lancet. 351: 602-. 

Howe RA, Monk A, Wootton M, Walsh TR, Enright MC. 2004. Vancomycin 
susceptibility within methicillin-resistant Staphylococcus aureus lineages. 
Emerg Infect Dis. 10: 855-7. 

Hsu CC, Macaluso CP, Special L, Hubble RH. 1988. High rate of methicillin 
resistance of Staphylococcus aureus isolated from hospitalized nursing home 
patients. Arch Intern Med. 148: 569-70. 



 270 

Huang H, Flynn NM, King JH, Monchaud C, Morita M, Cohen SH. 2006. 
Comparisons of community-associated methicillin-resistant Staphylococcus 
aureus (MRSA) and hospital-associated MSRA infections in Sacramento, 
California. J Clin Microbiol. 44: 2423-7. 

Huang H, Cohen SH, King JH, Monchaud C, Nguyen H, Flynn NM. 2008. 
Injecting drug use and community-associated methicillin-resistant 
Staphylococcus aureus infection. Diagn Microbiol Infect Dis. 60: 347-50. 

Huang SS, Rifas-Shiman SL, Warren DK, Fraser VJ, Climo MW, Wong ES, et 
al. 2007a. Improving methicillin-resistant Staphylococcus aureus surveillance 
and reporting in intensive care units. J Infect Dis. 195: 330-8. 

Huang YH, Tseng SP, Hu JM, Tsai JC, Hsueh PR, Teng LJ. 2007b. Clonal spread 
of SCCmec type IV methicillin-resistant Staphylococcus aureus between 
community and hospital. Clin Microbiol Infect. 13: 717-24. 

Hudson LO, Murphy CR, Spratt BG, Enright MC, Terpstra L, Gombosev A, et 
al. 2012. Differences in Methicillin-Resistant Staphylococcus aureus Strains 
Isolated from Pediatric and Adult Patients from Hospitals in a Large County in 
California. J Clin Microbiol. 50: 573-9. 

Hughes CM, Smith MB, Tunney MM. 2008. Infection control strategies for 
preventing the transmission of meticillin-resistant Staphylococcus aureus 
(MRSA) in nursing homes for older people. Cochrane Database Syst Rev. 
CD006354. 

Huletsky A, Rossbach V. 2002. Sequences for detection and identification of 
methicillin-resistant Staphylococcus aureus (MRSA). Patent WO02099034. 

Huletsky A, Giroux R, Rossbach V, Gagnon M, Vaillancourt M, Bernier M, et al. 
2004. New real-time PCR assay for rapid detection of methicillin-resistant 
Staphylococcus aureus directly from specimens containing a mixture of 
staphylococci. J Clin Microbiol. 42: 1875-84. 

Huletsky A, Lebel P, Picard FJ, Bernier M, Gagnon M, Boucher N, et al. 2005. 
Identification of methicillin-resistant Staphylococcus aureus carriage in less 
than 1 hour during a hospital surveillance program. Clin Infect Dis. 40: 976-
81. 

Huletsky A, Giroux R. 2007. Sequences for detection and identification of 
methicillin-resistant Staphylococcus aureus (MRSA) of MREJ types xi-xx. 
Patent WO2007044873. 

Ito T, Katayama Y, Asada K, Mori N, Tsutsumimoto K, Tiensasitorn C, et al. 
2001. Structural comparison of three types of staphylococcal cassette 
chromosome mec integrated in the chromosome in methicillin-resistant 
Staphylococcus aureus. Antimicrob Agents Chemother. 45: 1323-36. 

Ito T, Ma XX, Takeuchi F, Okuma K, Yuzawa H, Hiramatsu K. 2004. Novel type 
V staphylococcal cassette chromosome mec driven by a novel cassette 
chromosome recombinase, ccrC. Antimicrob Agents Chemother. 48: 2637-51. 

IWG-SCC. 2009. Classification of Staphylococcal Cassette Chromosome mec 
(SCCmec): Guidelines for Reporting Novel SCCmec Elements. Antimicrob 
Agents Chemother. 53: 4961-7. 

Jansen MD, Box AT, Fluit AC. 2009. SCCmec typing in methicillin-resistant 
Staphylococcus aureus strains of animal origin. Emerg Infect Dis. 15: 136-7; 
author reply -7. 

Jevons MP. 1961. "Celbenin" - resistant Staphylococci. BMJ. 1: 124-5. 



 271 

Jiang H, Salinas F, Kodadek T. 1997. The gene 32 single-stranded DNA-binding 
protein is not bound stably to the phage T4 presynaptic filament. Biochem 
Biophys Res Commun. 231: 600-5. 

Johansson PJ, Gustafsson EB, Ringberg H. 2007. High prevalence of MRSA in 
household contacts. Scand J Infect Dis. 39: 764-8. 

Johnson AP. 2011. Methicillin-resistant Staphylococcus aureus: the European 
landscape. J Antimicrob Chemother. 66 Suppl 4: iv43-iv8. 

Johnson JK, Khoie T, Shurland S, Kreisel K, Stine OC, Roghmann MC. 2007. 
Skin and soft tissue infections caused by methicillin-resistant Staphylococcus 
aureus USA300 clone. Emerg Infect Dis. 13: 1195-200. 

Kallen AJ, Mu Y, Bulens S, Reingold A, Petit S, Gershman K, et al. 2010. Health 
care-associated invasive MRSA infections, 2005-2008. JAMA. 304: 641-8. 

Kardas-Sloma L, Boelle PY, Opatowski L, Brun-Buisson C, Guillemot D, 
Temime L. 2011. Impact of antibiotic exposure patterns on selection of 
community-associated methicillin-resistant Staphylococcus aureus in hospital 
settings. Antimicrob Agents Chemother. 55: 4888-95. 

Katayama Y, Takeuchi F, Ito T, Ma XX, Ui-Mizutani Y, Kobayashi I, et al. 2003. 
Identification in methicillin-susceptible Staphylococcus hominis of an active 
primordial mobile genetic element for the staphylococcal cassette 
chromosome mec of methicillin-resistant Staphylococcus aureus. J Bacteriol. 
185: 2711-22. 

Kazakova SV, Hageman JC, Matava M, Srinivasan A, Phelan L, Garfinkel B, et 
al. 2005. A clone of methicillin-resistant Staphylococcus aureus among 
professional football players. N Engl J Med. 352: 468-75. 

Ke W, Huang SS, Hudson LO, Elkins KR, Nguyen CC, Spratt BG, et al. 2012. 
Patient sharing and population genetic structure of methicillin-resistant 
Staphylococcus aureus. Proc Natl Acad Sci U S A. 109: 6763-8. 

Kehrenberg C, Cuny C, Strommenger B, Schwarz S, Witte W. 2009. Methicillin-
resistant and -susceptible Staphylococcus aureus strains of clonal lineages 
ST398 and ST9 from swine carry the multidrug resistance gene cfr. 
Antimicrob Agents Chemother. 53: 779-81. 

Kelley PG, Grabsch EA, Howden BP, Gao W, Grayson ML. 2009. Comparison of 
the Xpert methicillin-resistant Staphylococcus aureus (MRSA) assay, BD 
GeneOhm MRSA assay, and culture for detection of nasal and cutaneous groin 
colonization by MRSA. J Clin Microbiol. 47: 3769-72. 

Kerremans JJ, Maaskant J, Verbrugh HA, van Leeuwen WB, Vos MC. 2008. 
Detection of methicillin-resistant Staphylococcus aureus in a low-prevalence 
setting by polymerase chain reaction with a selective enrichment broth. Diagn 
Microbiol Infect Dis. 61: 396-401. 

Kesah C, Ben Redjeb S, Odugbemi TO, Boye CS, Dosso M, Ndinya Achola JO, 
et al. 2003. Prevalence of methicillin-resistant Staphylococcus aureus in eight 
African hospitals and Malta. Clin Microbiol Infect. 9: 153-6. 

Khanna T, Friendship R, Dewey C, Weese JS. 2008. Methicillin resistant 
Staphylococcus aureus colonization in pigs and pig farmers. Vet Microbiol. 
128: 298-303. 

Kim J, Jeong JH, Cha HY, Jin JS, Lee JC, Lee YC, et al. 2007. Detection of 
diverse SCCmec variants in methicillin-resistant Staphylococcus aureus and 
comparison of SCCmec typing methods. Clin Microbiol Infect. 13: 1128-30. 

Kim MN, Pai CH, Woo JH, Ryu JS, Hiramatsu K. 2000. Vancomycin-
intermediate Staphylococcus aureus in Korea. J Clin Microbiol. 38: 3879-81. 



 272 

Kimura T, Komori T, Hirose Y, Kurahashi S, Yamada Y, Kyotani N, et al. 2009. 
[Evaluation of the MRSA rapid detection assay (BD GeneOhm MRSA 
detection kit) by a real-time PCR]. Rinsho Byori. 57: 425-30. 

King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM. 
2006. Emergence of community-acquired methicillin-resistant Staphylococcus 
aureus USA 300 clone as the predominant cause of skin and soft-tissue 
infections. Ann Intern Med. 144: 309-17. 

Kinnevey P, Shore A, Rossney A, Coleman D. 2010. Abstr. 20th Eur. Cong. Clin. 
Microbiol. Infect. Dis., abstr. P1712. 

Klein E, Smith DL, Laxminarayan R. 2007. Hospitalizations and deaths caused by 
methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerg 
Infect Dis. 13: 1840-6. 

Klevens RM, Morrison MA, Fridkin SK, Reingold A, Petit S, Gershman K, et al. 
2006. Community-associated methicillin-resistant Staphylococcus aureus and 
healthcare risk factors. Emerg Infect Dis. 12: 1991-3. 

Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. 2007. 
Invasive methicillin-resistant Staphylococcus aureus infections in the United 
States. JAMA. 298: 1763-71. 

Kobayashi N, Urasawa S, Uehara N, Watanabe N. 1999. Distribution of insertion 
sequence-like element IS1272 and its position relative to methicillin resistance 
genes in clinically important Staphylococci. Antimicrob Agents Chemother. 
43: 2780-2. 

Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, Etienne J, et al. 2007. 
Combination of multiplex PCRs for staphylococcal cassette chromosome mec 
type assignment: rapid identification system for mec, ccr, and major 
differences in junkyard regions. Antimicrob Agents Chemother. 51: 264-74. 

Kourbatova EV, Halvosa JS, King MD, Ray SM, White N, Blumberg HM. 2005. 
Emergence of community-associated methicillin-resistant Staphylococcus 
aureus USA 300 clone as a cause of health care-associated infections among 
patients with prosthetic joint infections. Am J Infect Control. 33: 385-91. 

Krziwanek K, Metz-Gercek S, Mittermayer H. 2009. Methicillin-Resistant 
Staphylococcus aureus ST398 from human patients, upper Austria. Emerg 
Infect Dis. 15: 766-9. 

Labandeira-Rey M, Couzon F, Boisset S, Brown EL, Bes M, Benito Y, et al. 2007. 
Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing 
pneumonia. Science. 315: 1130-3. 

Larsen A, Stegger M, Goering R, Sorum M, Skov R. 2007. Emergence and 
dissemination of the methicillin resistant Staphylococcus aureus USA300 
clone in Denmark (2000-2005). Euro Surveill. 12. 

Larsen AR, Bocher S, Stegger M, Goering R, Pallesen LV, Skov R. 2008. 
Epidemiology of European community-associated methicillin-resistant 
Staphylococcus aureus clonal complex 80 type IV strains isolated in Denmark 
from 1993 to 2004. J Clin Microbiol. 46: 62-8. 

Laurent C, Bogaerts P, Schoevaerdts D, Denis O, Deplano A, Swine C, et al. 
2010. Evaluation of the Xpert MRSA assay for rapid detection of methicillin-
resistant Staphylococcus aureus from nares swabs of geriatric hospitalized 
patients and failure to detect a specific SCCmec type IV variant. Eur J Clin 
Microbiol Infect Dis. 29: 995-1002. 

Laurent F, Lelievre H, Cornu M, Vandenesch F, Carret G, Etienne J, et al. 2001. 
Fitness and competitive growth advantage of new gentamicin-susceptible 



 273 

MRSA clones spreading in French hospitals. J Antimicrob Chemother. 47: 
277-83. 

Laxminarayan R, Malani A. 2007. Extending the Cure: Policy Responses to the 
Growing Threat of Antibiotic Resistance. Resources for the Future. Available 
from: http://www.extendingthecure.org/sites/default/files/ETC_FULL.pdf. 
[Accessed 26th April 2012]. 

Lee SM, Ender M, Adhikari R, Smith JM, Berger-Bachi B, Cook GM. 2007. 
Fitness cost of staphylococcal cassette chromosome mec in methicillin-
resistant Staphylococcus aureus by way of continuous culture. Antimicrob 
Agents Chemother. 51: 1497-9. 

Lee SS, Kim YJ, Chung DR, Jung KS, Kim JS. 2010. Invasive infection caused by 
a community-associated methicillin-resistant Staphylococcus aureus strain not 
carrying Panton-Valentine leukocidin in South Korea. J Clin Microbiol. 48: 
311-3. 

Leonard FC, Markey BK. 2008. Meticillin-resistant Staphylococcus aureus in 
animals: a review. Vet J. 175: 27-36. 

Lewis HC, Molbak K, Reese C, Aarestrup FM, Selchau M, Sorum M, et al. 2008. 
Pigs as source of methicillin-resistant Staphylococcus aureus CC398 
infections in humans, Denmark. Emerg Infect Dis. 14: 1383-9. 

Li F, Arnsberger P, Miller FD. 2010. Profile of methicillin-resistant Staphylococcus 
aureus among nursing home residents in Hawai'i. Hawaii Med J. 69: 126-9. 

Li M, Diep BA, Villaruz AE, Braughton KR, Jiang X, DeLeo FR, et al. 2009. 
Evolution of virulence in epidemic community-associated methicillin-resistant 
Staphylococcus aureus. Proc Natl Acad Sci U S A. 106: 5883-8. 

Li S, Skov RL, Han X, Larsen AR, Larsen J, Sorum M, et al. 2011. Novel types of 
staphylococcal cassette chromosome mec elements identified in clonal 
complex 398 methicillin-resistant Staphylococcus aureus strains. Antimicrob 
Agents Chemother. 55: 3046-50. 

Liebowitz LD. 2009. MRSA burden and interventions. Int J Antimicrob Agents. 34 
Suppl 3: S11-3. 

Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, et al. 
1999. Involvement of Panton-Valentine leukocidin-producing Staphylococcus 
aureus in primary skin infections and pneumonia. Clin Infect Dis. 29: 1128-32. 

Lindqvist M, Isaksson B, Grub C, Jonassen TO, Hallgren A. 2011. Detection and 
characterisation of SCCmec remnants in multiresistant methicillin-susceptible 
Staphylococcus aureus causing a clonal outbreak in a Swedish county. Eur J 
Clin Microbiol Infect Dis. 31: 141-7. 

Lindsay J. 2008. Staphylococcus: molecular genetics. Caister Academic Press, 
Norfolk. 

Lindsay JA. 2010. Genomic variation and evolution of Staphylococcus aureus. Int J 
Med Microbiol. 300: 98-103. 

Liu C, Graber CJ, Karr M, Diep BA, Basuino L, Schwartz BS, et al. 2008. A 
population-based study of the incidence and molecular epidemiology of 
methicillin-resistant Staphylococcus aureus disease in San Francisco, 2004-
2005. Clin Infect Dis. 46: 1637-46. 

Liu J, Bond JP, Morrical SW. 2006. Mechanism of presynaptic filament 
stabilization by the bacteriophage T4 UvsY recombination mediator protein. 
Biochemistry. 45: 5493-502. 



 274 

Liu J, Qian N, Morrical SW. 2006. Dynamics of bacteriophage T4 presynaptic 
filament assembly from extrinsic fluorescence measurements of Gp32-single-
stranded DNA interactions. J Biol Chem. 281: 26308-19. 

Lo WT, Wang CC. 2011. Panton-Valentine leukocidin in the pathogenesis of 
community-associated methicillin-resistant Staphylococcus aureus infection. 
Pediatr Neonatol. 52: 59-65. 

Loeffler A, Kearns AM, Ellington MJ, Smith LJ, Unt VE, Lindsay JA, et al. 
2009. First isolation of MRSA ST398 from UK animals: a new challenge for 
infection control teams? J Hosp Infect. 72: 269-71. 

Loffeld A, Davies P, Lewis A, Moss C. 2005. Seasonal occurrence of impetigo: a 
retrospective 8-year review (1996-2003). Clin Exp Dermatol. 30: 512-4. 

Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. 2006. The Cfr 
rRNA methyltransferase confers resistance to Phenicols, Lincosamides, 
Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob 
Agents Chemother. 50: 2500-5. 

Lowder BV, Guinane CM, Ben Zakour NL, Weinert LA, Conway-Morris A, 
Cartwright RA, et al. 2009. Recent human-to-poultry host jump, adaptation, 
and pandemic spread of Staphylococcus aureus. Proc Natl Acad Sci U S A. 
106: 19545-50. 

Lowy FD. 1998. Staphylococcus aureus infections. N Engl J Med. 339: 520-32. 
Lowy FD. 2003. Antimicrobial resistance: the example of Staphylococcus aureus. J 

Clin Invest. 111: 1265-73. 
Lozano C, Lopez M, Gomez-Sanz E, Ruiz-Larrea F, Torres C, Zarazaga M. 

2009. Detection of methicillin-resistant Staphylococcus aureus ST398 in food 
samples of animal origin in Spain. J Antimicrob Chemother. 64: 1325-6. 

Lucet JC, Chevret S, Durand-Zaleski I, Chastang C, Regnier B. 2003. Prevalence 
and risk factors for carriage of methicillin-resistant Staphylococcus aureus at 
admission to the intensive care unit: results of a multicenter study. Arch Intern 
Med. 163: 181-8. 

Lucet JC, Paoletti X, Demontpion C, Degrave M, Vanjak D, Vincent C, et al. 
2009. Carriage of methicillin-resistant Staphylococcus aureus in home care 
settings: prevalence, duration, and transmission to household members. Arch 
Intern Med. 169: 1372-8. 

Lucke K, Hombach M, Hug M, Pfyffer GE. 2010. Rapid detection of methicillin-
resistant Staphylococcus aureus (MRSA) in diverse clinical specimens by the 
BD GeneOhm MRSA assay and comparison with culture. J Clin Microbiol. 
48: 981-4. 

Luong TT, Ouyang S, Bush K, Lee CY. 2002. Type 1 capsule genes of 
Staphylococcus aureus are carried in a staphylococcal cassette chromosome 
genetic element. J Bacteriol. 184: 3623-9. 

Luteijn JM, Hubben GA, Pechlivanoglou P, Bonten MJ, Postma MJ. 2011. 
Diagnostic accuracy of culture-based and PCR-based detection tests for 
methicillin-resistant Staphylococcus aureus: a meta-analysis. Clin Microbiol 
Infect. 17: 146-54. 

Ma XX, Ito T, Tiensasitorn C, Jamklang M, Chongtrakool P, Boyle-Vavra S, et 
al. 2002. Novel type of staphylococcal cassette chromosome mec identified in 
community-acquired methicillin-resistant Staphylococcus aureus strains. 
Antimicrob Agents Chemother. 46: 1147-52. 

Ma XX, Ito T, Chongtrakool P, Hiramatsu K. 2006. Predominance of clones 
carrying Panton-Valentine leukocidin genes among methicillin-resistant 



 275 

Staphylococcus aureus strains isolated in Japanese hospitals from 1979 to 
1985. J Clin Microbiol. 44: 4515-27. 

Malachowa N, Sabat A, Gniadkowski M, Krzyszton-Russjan J, Empel J, 
Miedzobrodzki J, et al. 2005. Comparison of multiple-locus variable-number 
tandem-repeat analysis with pulsed-field gel electrophoresis, spa typing, and 
multilocus sequence typing for clonal characterization of Staphylococcus 
aureus isolates. J Clin Microbiol. 43: 3095-100. 

Malhotra-Kumar S, Haccuria K, Michiels M, Ieven M, Poyart C, Hryniewicz W, 
et al. 2008. Current trends in rapid diagnostics for methicillin-resistant 
Staphylococcus aureus and glycopeptide-resistant enterococcus species. J Clin 
Microbiol. 46: 1577-87. 

Malhotra-Kumar S, Abrahantes JC, Sabiiti W, Lammens C, Vercauteren G, 
Ieven M, et al. 2010a. Evaluation of chromogenic media for detection of 
methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 48: 1040-6. 

Malhotra-Kumar S, Van Heirstraeten L, Lee A, Abrahantes JC, Lammens C, 
Vanhommerig E, et al. 2010b. Evaluation of molecular assays for rapid 
detection of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 48: 
4598-601. 

Mammina C, Cala C, Plano MR, Bonura C, Vella A, Monastero R, et al. 2010. 
Ventilator-associated pneumonia and MRSA ST398, Italy. Emerg Infect Dis. 
16: 730-1. 

Mangili A, Bica I, Snydman DR, Hamer DH. 2005. Daptomycin-resistant, 
methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 40: 
1058-60. 

Manian FA, Senkel D, Zack J, Meyer L. 2002. Routine screening for methicillin-
resistant Staphylococcus aureus among patients newly admitted to an acute 
rehabilitation unit. Infect Control Hosp Epidemiol. 23: 516-9. 

Maree CL, Daum RS, Boyle-Vavra S, Matayoshi K, Miller LG. 2007. 
Community-associated methicillin-resistant Staphylococcus aureus isolates 
causing healthcare-associated infections. Emerg Infect Dis. 13: 236-42. 

Marlowe EM, Bankowski MJ. 2011. Conventional and Molecular Methods for the 
Detection of Methicillin-Resistant Staphylococcus aureus. J Clin Microbiol. 
49: S53-S6. 

Marshall C, Wesselingh S, McDonald M, Spelman D. 2004. Control of endemic 
MRSA-what is the evidence? A personal view. J Hosp Infect. 56: 253-68. 

Marty FM, Yeh WW, Wennersten CB, Venkataraman L, Albano E, Alyea EP, et 
al. 2006. Emergence of a clinical daptomycin-resistant Staphylococcus aureus 
isolate during treatment of methicillin-resistant Staphylococcus aureus 
bacteremia and osteomyelitis. J Clin Microbiol. 44: 595-7. 

McCarthy AJ, Witney AA, Gould KA, Moodley A, Guardabassi L, Voss A, et al. 
2011. The distribution of mobile genetic elements (MGEs) in MRSA CC398 is 
associated with both host and country. Genome Biol Evol. 3: 1164-74. 

McCarthy NL, Sullivan PS, Gaynes R, Rimland D. 2010. Health care-associated 
and community-associated methicillin-resistant Staphylococcus aureus 
infections: A comparison of definitions. Am J Infect Control. 38: 600-6. 

Mehta MS, Gonzales T, Hacek DM, Burdsall D, Ng C, Peterson LR. 2007. 
Performance of two FDA-cleared PCR tests for MRSA compared to 
microbiological cultures, abstr. D-880. 47th Intersci Conf Antimicrob Agents 
Chemother; Chicago, IL. 



 276 

Mejia C, Zurita J, Guzman-Blanco M. 2010. Epidemiology and surveillance of 
methicillin-resistant staphylococcus aureus in Latin America. Braz J Infect 
Dis. 14 Suppl 2: S79-86. 

Melles DC, Gorkink RF, Boelens HA, Snijders SV, Peeters JK, Moorhouse MJ, 
et al. 2004. Natural population dynamics and expansion of pathogenic clones 
of Staphylococcus aureus. J Clin Invest. 114: 1732-40. 

Melles DC, van Leeuwen WB, Snijders SV, Horst-Kreft D, Peeters JK, Verbrugh 
HA, et al. 2007. Comparison of multilocus sequence typing (MLST), pulsed-
field gel electrophoresis (PFGE), and amplified fragment length 
polymorphism (AFLP) for genetic typing of Staphylococcus aureus. J 
Microbiol Methods. 69: 371-5. 

Mellmann A, Weniger T, Berssenbrugge C, Rothganger J, Sammeth M, Stoye J, 
et al. 2007. Based Upon Repeat Pattern (BURP): an algorithm to characterize 
the long-term evolution of Staphylococcus aureus populations based on spa 
polymorphisms. BMC Microbiol. 7: 98. 

Mellmann A, Weniger T, Berssenbrugge C, Keckevoet U, Friedrich AW, 
Harmsen D, et al. 2008. Characterization of clonal relatedness among the 
natural population of Staphylococcus aureus strains by using spa sequence 
typing and the BURP (based upon repeat patterns) algorithm. J Clin 
Microbiol. 46: 2805-8. 

Mermel LA, Machan JT, Parenteau S. 2011. Seasonality of MRSA infections. 
PLoS One. 6: e17925. 

Milheirico C, Oliveira DC, de Lencastre H. 2007a. Update to the multiplex PCR 
strategy for assignment of mec element types in Staphylococcus aureus. 
Antimicrob Agents Chemother. 51: 3374-7. 

Milheirico C, Oliveira DC, de Lencastre H. 2007b. Multiplex PCR strategy for 
subtyping the staphylococcal cassette chromosome mec type IV in methicillin-
resistant Staphylococcus aureus: 'SCCmec IV multiplex'. J Antimicrob 
Chemother. 60: 42-8. 

Miller LG, Perdreau-Remington F, Rieg G, Mehdi S, Perlroth J, Bayer AS, et al. 
2005. Necrotizing fasciitis caused by community-associated methicillin-
resistant Staphylococcus aureus in Los Angeles. N Engl J Med. 352: 1445-53. 

Miller LG, Diep BA. 2008. Clinical practice: colonization, fomites, and virulence: 
rethinking the pathogenesis of community-associated methicillin-resistant 
Staphylococcus aureus infection. Clin Infect Dis. 46: 752-60. 

Miller LG, Kaplan SL. 2009. Staphylococcus aureus: a community pathogen. Infect 
Dis Clin North Am. 23: 35-52. 

Millipore Corporation. 2003. Application Note: Using a new, fast flow, low protein 
binding membrane for sterile filtration. Available from: 
http://www.millipore.com/publications.nsf/a73664f9f981af8c852569b9005b4
eee/8447504c5259cf40852568f60067bd04/$FILE/PF2001EN00.pdf. 
[Accessed 14th April 2012]. 

Millipore Corporation. 2012. Membrane Resources for Researchers and Decision 
Makers. Available from: 
http://www.millipore.com/membrane/flx4/millipore_filters_hm. [Accessed 
11th April 2012]. 

Moellering RC, Jr. 2006. The growing menace of community-acquired methicillin-
resistant Staphylococcus aureus. Ann Intern Med. 144: 368-70. 



 277 

Mollaghan AM, Lucey B, Coffey A, Cotter L. 2010. Emergence of MRSA clone 
ST22 in healthy young adults in the community in the absence of risk factors. 
Epidemiol Infect. 138: 673-6. 

Mombach Pinheiro Machado AB, Reiter KC, Paiva RM, Barth AL. 2007. 
Distribution of staphylococcal cassette chromosome mec (SCCmec) types I, 
II, III and IV in coagulase-negative staphylococci from patients attending a 
tertiary hospital in southern Brazil. J Med Microbiol. 56: 1328-33. 

Monecke S, Ehricht R. 2005. Rapid genotyping of methicillin-resistant 
Staphylococcus aureus (MRSA) isolates using miniaturised oligonucleotide 
arrays. Clin Microbiol Infect. 11: 825-33. 

Monecke S, Slickers P, Hotzel H, Richter-Huhn G, Pohle M, Weber S, et al. 2006. 
Microarray-based characterisation of a Panton–Valentine leukocidin-positive 
community-acquired strain of methicillin-resistant Staphylococcus aureus. 
Clinical Microbiology and Infection. 12: 718-28. 

Monecke S, Berger-Bachi B, Coombs G, Holmes A, Kay I, Kearns A, et al. 2007a. 
Comparative genomics and DNA array-based genotyping of pandemic 
Staphylococcus aureus strains encoding Panton-Valentine leukocidin. Clin 
Microbiol Infect. 13: 236-49. 

Monecke S, Kuhnert P, Hotzel H, Slickers P, Ehricht R. 2007b. Microarray based 
study on virulence-associated genes and resistance determinants of 
Staphylococcus aureus isolates from cattle. Vet Microbiol. 125: 128-40. 

Monecke S, Slickers P, Ellington MJ, Kearns AM, Ehricht R. 2007c. High 
diversity of Panton-Valentine leukocidin-positive, methicillin-susceptible 
isolates of Staphylococcus aureus and implications for the evolution of 
community-associated methicillin-resistant S. aureus. Clin Microbiol Infect. 
13: 1157-64. 

Monecke S, Jatzwauk L, Weber S, Slickers P, Ehricht R. 2008. DNA microarray-
based genotyping of methicillin-resistant Staphylococcus aureus strains from 
Eastern Saxony. Clin Microbiol Infect. 14: 534-45. 

Monecke S, Slickers P, Ehricht R. 2008. Assignment of Staphylococcus aureus 
isolates to clonal complexes based on microarray analysis and pattern 
recognition. FEMS Immunol Med Microbiol. 53: 237-51. 

Monecke S, Ehricht R, Slickers P, Tan HL, Coombs G. 2009. The molecular 
epidemiology and evolution of the Panton-Valentine leukocidin-positive, 
methicillin-resistant Staphylococcus aureus strain USA300 in Western 
Australia. Clin Microbiol Infect. 15: 770-6. 

Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. 2011. 
A field guide to pandemic, epidemic and sporadic clones of methicillin-
resistant Staphylococcus aureus. PLoS One. 6: e17936. 

Mongkolrattanothai K, Boyle S, Kahana MD, Daum RS. 2003. Severe 
Staphylococcus aureus infections caused by clonally related community-
acquired methicillin-susceptible and methicillin-resistant isolates. Clin Infect 
Dis. 37: 1050-8. 

Mongkolrattanothai K, Boyle S, Murphy TV, Daum RS. 2004. Novel non-mecA-
containing staphylococcal chromosomal cassette composite island containing 
pbp4 and tagF genes in a commensal staphylococcal species: a possible 
reservoir for antibiotic resistance islands in Staphylococcus aureus. 
Antimicrob Agents Chemother. 48: 1823-36. 

Montgomery CP, Boyle-Vavra S, Adem PV, Lee JC, Husain AN, Clasen J, et al. 
2008. Comparison of virulence in community-associated methicillin-resistant 



 278 

Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of 
pneumonia. J Infect Dis. 198: 561-70. 

Moore CL, Hingwe A, Donabedian SM, Perri MB, Davis SL, Haque NZ, et al. 
2009. Comparative evaluation of epidemiology and outcomes of methicillin-
resistant Staphylococcus aureus (MRSA) USA300 infections causing 
community- and healthcare-associated infections. Int J Antimicrob Agents. 34: 
148-55. 

Moore MR, Perdreau-Remington F, Chambers HF. 2003. Vancomycin treatment 
failure associated with heterogeneous vancomycin-intermediate 
Staphylococcus aureus in a patient with endocarditis and in the rabbit model of 
endocarditis. Antimicrob Agents Chemother. 47: 1262-6. 

Moran GJ, Amii RN, Abrahamian FM, Talan DA. 2005. Methicillin-resistant 
Staphylococcus aureus in community-acquired skin infections. Emerg Infect 
Dis. 11: 928-30. 

Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey 
RB, et al. 2006. Methicillin-resistant S. aureus infections among patients in 
the emergency department. N Engl J Med. 355: 666-74. 

Morgan M. 2008. Methicillin-resistant Staphylococcus aureus and animals: zoonosis 
or humanosis? J Antimicrob Chemother. 62: 1181-7. 

Morin CA, Hadler JL. 2001. Population-based incidence and characteristics of 
community-onset Staphylococcus aureus infections with bacteremia in 4 
metropolitan Connecticut areas, 1998. J Infect Dis. 184: 1029-34. 

Morrison MA, Hageman JC, Klevens RM. 2006. Case definition for community-
associated methicillin-resistant Staphylococcus aureus. J Hosp Infect. 62: 241. 

Motoshima M, Yanagihara K, Morinaga Y, Matsuda J, Sugahara K, Yamada Y, 
et al. 2010. Genetic diagnosis of community-acquired MRSA: a multiplex 
real-time PCR method for Staphylococcal cassette chromosome mec typing 
and detecting toxin genes. Tohoku J Exp Med. 220: 165-70. 

Mulders MN, Haenen AP, Geenen PL, Vesseur PC, Poldervaart ES, Bosch T, et 
al. 2010. Prevalence of livestock-associated MRSA in broiler flocks and risk 
factors for slaughterhouse personnel in The Netherlands. Epidemiol Infect. 
138: 743-55. 

Murchan S, Kaufmann ME, Deplano A, de Ryck R, Struelens M, Zinn CE, et al. 
2003. Harmonization of pulsed-field gel electrophoresis protocols for 
epidemiological typing of strains of methicillin-resistant Staphylococcus 
aureus: a single approach developed by consensus in 10 European laboratories 
and its application for tracing the spread of related strains. J Clin Microbiol. 
41: 1574-85. 

Murthy MH, Olson ME, Wickert RW, Fey PD, Jalali Z. 2008. Daptomycin non-
susceptible meticillin-resistant Staphylococcus aureus USA 300 isolate. J Med 
Microbiol. 57: 1036-8. 

Musser JM, Kapur V. 1992. Clonal analysis of methicillin-resistant Staphylococcus 
aureus strains from intercontinental sources: association of the mec gene with 
divergent phylogenetic lineages implies dissemination by horizontal transfer 
and recombination. J Clin Microbiol. 30: 2058-63. 

Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, et al. 
2003. SHEA guideline for preventing nosocomial transmission of multidrug-
resistant strains of Staphylococcus aureus and enterococcus. Infect Control 
Hosp Epidemiol. 24: 362-86. 



 279 

Naimi TS, LeDell KH, Boxrud DJ, Groom AV, Steward CD, Johnson SK, et al. 
2001. Epidemiology and clonality of community-acquired methicillin-resistant 
Staphylococcus aureus in Minnesota, 1996-1998. Clin Infect Dis. 33: 990-6. 

Neela V, Ehsanollah GR, Zamberi S, Van Belkum A, Mariana NS. 2009. 
Prevalence of Panton-Valentine leukocidin genes among carriage and invasive 
Staphylococcus aureus isolates in Malaysia. Int J Infect Dis. 13: e131-2. 

Nemati M, Hermans K, Lipinska U, Denis O, Deplano A, Struelens M, et al. 
2008. Antimicrobial resistance of old and recent Staphylococcus aureus 
isolates from poultry: first detection of livestock-associated methicillin-
resistant strain ST398. Antimicrob Agents Chemother. 52: 3817-9. 

Nickerson EK, West TE, Day NP, Peacock SJ. 2009. Staphylococcus aureus 
disease and drug resistance in resource-limited countries in south and east 
Asia. Lancet Infect Dis. 9: 130-5. 

Nienhoff U, Kadlec K, Chaberny IF, Verspohl J, Gerlach GF, Schwarz S, et al. 
2009. Transmission of methicillin-resistant Staphylococcus aureus strains 
between humans and dogs: two case reports. J Antimicrob Chemother. 64: 
660-2. 

Nimmo GR, Coombs GW, Pearson JC, O'Brien FG, Christiansen KJ, Turnidge 
JD, et al. 2006. Methicillin-resistant Staphylococcus aureus in the Australian 
community: an evolving epidemic. Med J Aust. 184: 384-8. 

Nimmo GR, Coombs GW. 2008. Community-associated methicillin-resistant 
Staphylococcus aureus (MRSA) in Australia. Int J Antimicrob Agents. 31: 
401-10. 

Nimmo GR. 2012. USA300 abroad: global spread of a virulent strain of community-
associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 

Novakova D, Sedlacek I, Pantucek R, Stetina V, Svec P, Petras P. 2006. 
Staphylococcus equorum and Staphylococcus succinus isolated from human 
clinical specimens. J Med Microbiol. 55: 523-8. 

Nubel U, Roumagnac P, Feldkamp M, Song JH, Ko KS, Huang YC, et al. 2008. 
Frequent emergence and limited geographic dispersal of methicillin-resistant 
Staphylococcus aureus. Proc Natl Acad Sci U S A. 105: 14130-5. 

Nubel U, Dordel J, Kurt K, Strommenger B, Westh H, Shukla SK, et al. 2010. A 
timescale for evolution, population expansion, and spatial spread of an 
emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 
6: e1000855. 

Nulens E, Stobberingh EE, van Dessel H, Sebastian S, van Tiel FH, Beisser PS, et 
al. 2008. Molecular characterization of Staphylococcus aureus bloodstream 
isolates collected in a Dutch University Hospital between 1999 and 2006. J 
Clin Microbiol. 46: 2438-41. 

O'Brien FG, Pearman JW, Gracey M, Riley TV, Grubb WB. 1999. Community 
strain of methicillin-resistant Staphylococcus aureus involved in a hospital 
outbreak. J Clin Microbiol. 37: 2858-62. 

O'Brien FG, Lim TT, Chong FN, Coombs GW, Enright MC, Robinson DA, et al. 
2004. Diversity among community isolates of methicillin-resistant 
Staphylococcus aureus in Australia. J Clin Microbiol. 42: 3185-90. 

O'Sullivan NP, Keane CT. 2000. Risk factors for colonization with methicillin-
resistant Staphylococcus aureus among nursing home residents. J Hosp Infect. 
45: 206-10. 

Oberdorfer K, Pohl S, Frey M, Heeg K, Wendt C. 2006. Evaluation of a single-
locus real-time polymerase chain reaction as a screening test for specific 



 280 

detection of methicillin-resistant Staphylococcus aureus in ICU patients. Eur J 
Clin Microbiol Infect Dis. 25: 657-63. 

Office of Statewide Health Planning and Development (OSHPD). 2005. Patient 
Discharge Data Public Data Set 2005. Available from: 
http://www.oshpd.ca.gov/HID/Products/PatDischargeData/PublicDataSet/inde
x.html. [Accessed 6th June 2011]. 

Office of Statewide Health Planning and Development (OSHPD). 2011. Facility 
Listings. Available from: 
http://www.oshpd.ca.gov/HID/Products/Listings.html. [Accessed 23rd April 
2012]. 

Okon KO, Basset P, Uba A, Lin J, Oyawoye B, Shittu AO, et al. 2009. 
Cooccurrence of predominant Panton-Valentine leukocidin-positive sequence 
type (ST) 152 and multidrug-resistant ST 241 Staphylococcus aureus clones in 
Nigerian hospitals. J Clin Microbiol. 47: 3000-3. 

Okuma K, Iwakawa K, Turnidge JD, Grubb WB, Bell JM, O'Brien FG, et al. 
2002. Dissemination of new methicillin-resistant Staphylococcus aureus 
clones in the community. J Clin Microbiol. 40: 4289-94. 

Oliveira DC, Wu SW, de Lencastre H. 2000. Genetic organization of the 
downstream region of the mecA element in methicillin-resistant 
Staphylococcus aureus isolates carrying different polymorphisms of this 
region. Antimicrob Agents Chemother. 44: 1906-10. 

Oliveira DC, Tomasz A, de Lencastre H. 2001. The evolution of pandemic clones 
of methicillin-resistant Staphylococcus aureus: identification of two ancestral 
genetic backgrounds and the associated mec elements. Microb Drug Resist. 7: 
349-61. 

Oliveira DC, de Lencastre H. 2002. Multiplex PCR strategy for rapid identification 
of structural types and variants of the mec element in methicillin-resistant 
Staphylococcus aureus. Antimicrob Agents Chemother. 46: 2155-61. 

Oliveira DC, Tomasz A, de Lencastre H. 2002. Secrets of success of a human 
pathogen: molecular evolution of pandemic clones of meticillin-resistant 
Staphylococcus aureus. Lancet Infect Dis. 2: 180-9. 

Oliveira DC, Milheirico C, de Lencastre H. 2006. Redefining a structural variant of 
staphylococcal cassette chromosome mec, SCCmec type VI. Antimicrob 
Agents Chemother. 50: 3457-9. 

Oliveira GA, Dell'Aquila AM, Masiero RL, Levy CE, Gomes MS, Cui L, et al. 
2001. Isolation in Brazil of nosocomial Staphylococcus aureus with reduced 
susceptibility to vancomycin. Infect Control Hosp Epidemiol. 22: 443-8. 

Otter JA, French GL. 2006. Nosocomial transmission of community-associated 
methicillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect 
Dis. 6: 753-5. 

Otter JA, French GL. 2008. The emergence of community-associated methicillin-
resistant Staphylococcus aureus at a London teaching hospital, 2000-2006. 
Clin Microbiol Infect. 14: 670-6. 

Otter JA, Havill NL, Boyce JM, French GL. 2009. Comparison of community-
associated methicillin-resistant Staphylococcus aureus from teaching hospitals 
in London and the USA, 2004-2006: where is USA300 in the UK? Eur J Clin 
Microbiol Infect Dis. 28: 835-9. 

Otter JA, French GL. 2010. Molecular epidemiology of community-associated 
meticillin-resistant Staphylococcus aureus in Europe. Lancet Infect Dis. 10: 
227-39. 



 281 

Otter JA, French GL. 2011. Community-associated meticillin-resistant 
Staphylococcus aureus strains as a cause of healthcare-associated infection. J 
Hosp Infect. 79: 189-93. 

Otto M. 2010. Basis of virulence in community-associated methicillin-resistant 
Staphylococcus aureus. Annu Rev Microbiol. 64: 143-62. 

Pan A, Battisti A, Zoncada A, Bernieri F, Boldini M, Franco A, et al. 2009. 
Community-acquired methicillin-resistant Staphylococcus aureus ST398 
infection, Italy. Emerg Infect Dis. 15: 845-7. 

Park JY, Jin JS, Kang HY, Jeong EH, Lee JC, Lee YC, et al. 2007. A comparison 
of adult and pediatric methicillin-resistant Staphylococcus aureus isolates 
collected from patients at a university hospital in Korea. J Microbiol. 45: 447-
52. 

Park SH, Jang YH, Sung H, Kim MN, Kim JS, Park YJ. 2009a. [Performance 
evaluation of BD GeneOhm MRSA PCR assay for detection of nasal 
colonization of methicillin-resistant Staphylococcus aureus at endemic 
intensive care units]. Korean J Lab Med. 29: 439-47. 

Park SH, Park C, Yoo JH, Choi SM, Choi JH, Shin HH, et al. 2009b. Emergence 
of community-associated methicillin-resistant Staphylococcus aureus strains 
as a cause of healthcare-associated bloodstream infections in Korea. Infect 
Control Hosp Epidemiol. 30: 146-55. 

Parlato C, Cavallerio P, Fossati L, Allice T, Serra R. 2009. Abstr. 19th Eur. Cong. 
Clin. Microbiol. Infect. Dis., abstr. P1574. 

Patel M, Waites KB, Hoesley CJ, Stamm AM, Canupp KC, Moser SA. 2008. 
Emergence of USA300 MRSA in a tertiary medical centre: implications for 
epidemiological studies. J Hosp Infect. 68: 208-13. 

Patel PA, Ledeboer NA, Ginocchio CC, Condon S, Bouchard S, Qin P, et al. 
2011. Performance of the BD GeneOhm MRSA achromopeptidase assay for 
real-time PCR detection of methicillin-resistant Staphylococcus aureus in 
nasal specimens. J Clin Microbiol. 49: 2266-8. 

Paule SM, Hacek DM, Kufner B, Truchon K, Thomson RB, Jr., Kaul KL, et al. 
2007. Performance of the BD GeneOhm methicillin-resistant Staphylococcus 
aureus test before and during high-volume clinical use. J Clin Microbiol. 45: 
2993-8. 

Pearson A, Chronias A, Murray M. 2009. Voluntary and mandatory surveillance 
for methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-
susceptible S. aureus (MSSA) bacteraemia in England. J Antimicrob 
Chemother. 64 Suppl 1: i11-7. 

Peck KR, Baek JY, Song JH, Ko KS. 2009. Comparison of genotypes and 
enterotoxin genes between Staphylococcus aureus isolates from blood and 
nasal colonizers in a Korean hospital. J Korean Med Sci. 24: 585-91. 

Perencevich EN, McGregor JC, Shardell M, Furuno JP, Harris AD, Morris JG, 
Jr., et al. 2008. Summer Peaks in the Incidences of Gram-Negative Bacterial 
Infection Among Hospitalized Patients. Infect Control Hosp Epidemiol. 29: 
1124-31. 

Perez-Roth E, Alcoba-Florez J, Lopez-Aguilar C, Gutierrez-Gonzalez I, Rivero-
Perez B, Mendez-Alvarez S. 2010. Familial furunculosis associated with 
community-acquired leukocidin-positive methicillin-susceptible 
Staphylococcus aureus ST152. J Clin Microbiol. 48: 329-32. 



 282 

Perovic O, Koornhof H, Black V, Moodley I, Duse A, Galpin J. 2006. 
Staphylococcus aureus bacteraemia at two academic hospitals in 
Johannesburg. S Afr Med J. 96: 714-7. 

Peterson LR, Liesenfeld O, Woods CW, Allen SD, Pombo D, Patel PA, et al. 
2010. Multicenter evaluation of the LightCycler methicillin-resistant 
Staphylococcus aureus (MRSA) advanced test as a rapid method for detection 
of MRSA in nasal surveillance swabs. J Clin Microbiol. 48: 1661-6. 

Pfaller MA. 1998. Chromosomal restriction fragment analysis by pulsed-field gel 
electrophoresis: application to molecular epidemiology, p.651-7. In: Isenberg 
HD (editor), Essential procedures for clinical microbiology. ASM Press, 
Washington, DC. 

Piepenburg O, Williams CH, Stemple DL, Armes NA. 2006. DNA detection using 
recombination proteins. PLoS Biol. 4: e204. 

Pinho MG, de Lencastre H, Tomasz A. 2001. An acquired and a native penicillin-
binding protein cooperate in building the cell wall of drug-resistant 
staphylococci. Proc Natl Acad Sci U S A. 98: 10886-91. 

Ploy MC, Grelaud C, Martin C, de Lumley L, Denis F. 1998. First clinical isolate 
of vancomycin-intermediate Staphylococcus aureus in a French hospital. 
Lancet. 351: 1212. 

Popovich KJ, Weinstein RA, Hota B. 2008. Are community-associated methicillin-
resistant Staphylococcus aureus (MRSA) strains replacing traditional 
nosocomial MRSA strains? Clin Infect Dis. 46: 787-94. 

Popovich KJ, Weinstein RA. 2009. Commentary: The graying of methicillin-
resistant Staphylococcus aureus. Infect Control Hosp Epidemiol. 30: 9-12. 

Potel C, Alvarez-Fernandez M, Constenla L, Alvarez P, Perez S. 2010. First 
human isolates of methicillin-resistant Staphylococcus aureus sequence type 
398 in Spain. Eur J Clin Microbiol Infect Dis. 29: 351-2. 

Pourahmadi F, Taylor M, Kovacs G, Lloyd K, Sakai S, Schafer T, et al. 2000. 
Toward a rapid, integrated, and fully automated DNA diagnostic assay for 
chlamydia trachomatis and neisseria gonorrhoeae. Clin Chem. 46: 1511-3. 

Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, et al. 2012. 
Staphylococcus aureus CC398: host adaptation and emergence of methicillin 
resistance in livestock. MBio. 3. 

Qi W, Ender M, O'Brien F, Imhof A, Ruef C, McCallum N, et al. 2005. Molecular 
epidemiology of methicillin-resistant Staphylococcus aureus in Zurich, 
Switzerland (2003): prevalence of type IV SCCmec and a new SCCmec 
element associated with isolates from intravenous drug users. J Clin 
Microbiol. 43: 5164-70. 

Ramdani-Bouguessa N, Bes M, Meugnier H, Forey F, Reverdy ME, Lina G, et al. 
2006. Detection of methicillin-resistant Staphylococcus aureus strains resistant 
to multiple antibiotics and carrying the Panton-Valentine leukocidin genes in 
an Algiers hospital. Antimicrob Agents Chemother. 50: 1083-5. 

Rasigade JP, Laurent F, Hubert P, Vandenesch F, Etienne J. 2010. Lethal 
necrotizing pneumonia caused by an ST398 Staphylococcus aureus strain. 
Emerg Infect Dis. 16: 1330. 

Regev-Yochay G, Rubinstein E, Barzilai A, Carmeli Y, Kuint J, Etienne J, et al. 
2005. Methicillin-resistant Staphylococcus aureus in neonatal intensive care 
unit. Emerg Infect Dis. 11: 453-6. 

Reinert RR, Low DE, Rossi F, Zhang X, Wattal C, Dowzicky MJ. 2007. 
Antimicrobial susceptibility among organisms from the Asia/Pacific Rim, 



 283 

Europe and Latin and North America collected as part of TEST and the in 
vitro activity of tigecycline. J Antimicrob Chemother. 60: 1018-29. 

Reischl U, Frick J, Hoermansdorfer S, Melzl H, Bollwein M, Linde HJ, et al. 
2009. Single-nucleotide polymorphism in the SCCmec-orfX junction 
distinguishes between livestock-associated MRSA CC398 and human 
epidemic MRSA strains. Euro Surveill. 14. 

Reynolds C, Quan V, Kim D, Peterson E, Dunn J, Whealon M, et al. 2011. 
Methicillin-resistant Staphylococcus aureus (MRSA) carriage in 10 nursing 
homes in Orange County, California. Infect Control Hosp Epidemiol. 32: 91-3. 

Reynolds PE, Brown DF. 1985. Penicillin-binding proteins of beta-lactam-resistant 
strains of Staphylococcus aureus. Effect of growth conditions. FEBS Lett. 
192: 28-32. 

Ridom GmbH. 2006. DNA sequencing of the spa gene. Available from: 
http://www.ridom.de/staphtype/spa_sequencing.shtml. [Accessed 7th February 
2012]. 

Robicsek A, Beaumont JL, Paule SM, Hacek DM, Thomson RB, Jr., Kaul KL, et 
al. 2008. Universal surveillance for methicillin-resistant Staphylococcus 
aureus in 3 affiliated hospitals. Ann Intern Med. 148: 409-18. 

Robinson DA, Enright MC. 2003. Evolutionary models of the emergence of 
methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 
47: 3926-34. 

Robinson DA, Enright MC. 2004. Evolution of Staphylococcus aureus by large 
chromosomal replacements. J Bacteriol. 186: 1060-4. 

Robinson DA, Kearns AM, Holmes A, Morrison D, Grundmann H, Edwards G, 
et al. 2005. Re-emergence of early pandemic Staphylococcus aureus as a 
community-acquired meticillin-resistant clone. Lancet. 365: 1256-8. 

Rossney AS, Herra CM, Fitzgibbon MM, Morgan PM, Lawrence MJ, O'Connell 
B. 2007a. Evaluation of the IDI-MRSA assay on the SmartCycler real-time 
PCR platform for rapid detection of MRSA from screening specimens. Eur J 
Clin Microbiol Infect Dis. 26: 459-66. 

Rossney AS, Shore AC, Morgan PM, Fitzgibbon MM, O'Connell B, Coleman 
DC. 2007b. The emergence and importation of diverse genotypes of 
methicillin-resistant Staphylococcus aureus (MRSA) harboring the Panton-
Valentine leukocidin gene (pvl) reveal that pvl is a poor marker for 
community-acquired MRSA strains in Ireland. J Clin Microbiol. 45: 2554-63. 

Rossney AS, Herra CM, Brennan GI, Morgan PM, O'Connell B. 2008. Evaluation 
of the Xpert methicillin-resistant Staphylococcus aureus (MRSA) assay using 
the GeneXpert real-time PCR platform for rapid detection of MRSA from 
screening specimens. J Clin Microbiol. 46: 3285-90. 

Rothganger J. Ridom GmbH. Personal communication. 2010. 
Ruimy R, Maiga A, Armand-Lefevre L, Maiga I, Diallo A, Koumare AK, et al. 

2008. The carriage population of Staphylococcus aureus from Mali is 
composed of a combination of pandemic clones and the divergent Panton-
Valentine leukocidin-positive genotype ST152. J Bacteriol. 190: 3962-8. 

Rupp J, Fenner I, Solbach W, Gieffers J. 2006. Be aware of the possibility of false-
positive results in single-locus PCR assays for methicillin-resistant 
Staphylococcus aureus. J Clin Microbiol. 44: 2317. 

Saiman L, O'Keefe M, Graham PL, 3rd, Wu F, Said-Salim B, Kreiswirth B, et al. 
2003. Hospital transmission of community-acquired methicillin-resistant 
Staphylococcus aureus among postpartum women. Clin Infect Dis. 37: 1313-9. 



 284 

Sakwinska O, Giddey M, Moreillon M, Morisset D, Waldvogel A, Moreillon P. 
2011. Staphylococcus aureus host range and human-bovine host shift. Appl 
Environ Microbiol. 77: 5908-15. 

Sammeth M, Stoye J. 2006. Comparing tandem repeats with duplications and 
excisions of variable degree. IEEE/ACM Trans Comput Biol Bioinform. 3: 
395-407. 

Sanchini A, Campanile F, Monaco M, Cafiso V, Rasigade JP, Laurent F, et al. 
2011. DNA microarray-based characterisation of Panton-Valentine 
leukocidin-positive community-acquired methicillin-resistant Staphylococcus 
aureus from Italy. Eur J Clin Microbiol Infect Dis. 30: 1399-408. 

Sanford MD, Widmer AF, Bale MJ, Jones RN, Wenzel RP. 1994. Efficient 
detection and long-term persistence of the carriage of methicillin-resistant 
Staphylococcus aureus. Clin Infect Dis. 19: 1123-8. 

Saunders A, Panaro L, McGeer A, Rosenthal A, White D, Willey BM, et al. 2007. 
A nosocomial outbreak of community-associated methicillin-resistant 
Staphylococcus aureus among healthy newborns and postpartum mothers. Can 
J Infect Dis Med Microbiol. 18: 128-32. 

Schijffelen MJ, Boel CH, van Strijp JA, Fluit AC. 2010. Whole genome analysis of 
a livestock-associated methicillin-resistant Staphylococcus aureus ST398 
isolate from a case of human endocarditis. BMC Genomics. 11: 376. 

Schmitz FJ, Fluit AC, Hafner D, Beeck A, Perdikouli M, Boos M, et al. 2000. 
Development of resistance to ciprofloxacin, rifampin, and mupirocin in 
methicillin-susceptible and -resistant Staphylococcus aureus isolates. 
Antimicrob Agents Chemother. 44: 3229-31. 

Scicluna EA, Shore AC, Thurmer A, Ehricht R, Slickers P, Borg MA, et al. 2010. 
Characterisation of MRSA from Malta and the description of a Maltese 
epidemic MRSA strain. Eur J Clin Microbiol Infect Dis. 29: 163-70. 

Sergio DM, Koh TH, Hsu LY, Ogden BE, Goh AL, Chow PK. 2007. Investigation 
of meticillin-resistant Staphylococcus aureus in pigs used for research. J Med 
Microbiol. 56: 1107-9. 

Seybold U, Kourbatova EV, Johnson JG, Halvosa SJ, Wang YF, King MD, et al. 
2006. Emergence of community-associated methicillin-resistant 
Staphylococcus aureus USA300 genotype as a major cause of health care-
associated blood stream infections. Clin Infect Dis. 42: 647-56. 

Shahin R, Johnson IL, Jamieson F, McGeer A, Tolkin J, Ford-Jones EL. 1999. 
Methicillin-resistant Staphylococcus aureus carriage in a child care center 
following a case of disease. Toronto Child Care Center Study Group. Arch 
Pediatr Adolesc Med. 153: 864-8. 

Shankar EM, Mohan V, Premalatha G, Srinivasan RS, Usha AR. 2005. Bacterial 
etiology of diabetic foot infections in South India. Eur J Intern Med. 16: 567-
70. 

Shilo N, Quach C. 2011. Pulmonary infections and community associated methicillin 
resistant Staphylococcus aureus: a dangerous mix? Paediatr Respir Rev. 12: 
182-9. 

Shiomori T, Miyamoto H, Makishima K, Yoshida M, Fujiyoshi T, Udaka T, et al. 
2002. Evaluation of bedmaking-related airborne and surface methicillin-
resistant Staphylococcus aureus contamination. J Hosp Infect. 50: 30-5. 

Shittu AO, Okon K, Adesida S, Oyedara O, Witte W, Strommenger B, et al. 
2011. Antibiotic resistance and molecular epidemiology of Staphylococcus 
aureus in Nigeria. BMC Microbiol. 11: 92. 



 285 

Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE, 
et al. 1999. Evaluation of protein A gene polymorphic region DNA 
sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol. 37: 
3556-63. 

Shore A, Rossney AS, Keane CT, Enright MC, Coleman DC. 2005. Seven novel 
variants of the staphylococcal chromosomal cassette mec in methicillin-
resistant Staphylococcus aureus isolates from Ireland. Antimicrob Agents 
Chemother. 49: 2070-83. 

Shore AC, Rossney AS, O'Connell B, Herra CM, Sullivan DJ, Humphreys H, et 
al. 2008. Detection of staphylococcal cassette chromosome mec-associated 
DNA segments in multiresistant methicillin-susceptible Staphylococcus aureus 
(MSSA) and identification of Staphylococcus epidermidis ccrAB4 in both 
methicillin-resistant S. aureus and MSSA. Antimicrob Agents Chemother. 52: 
4407-19. 

Shore AC, Brennan OM, Ehricht R, Monecke S, Schwarz S, Slickers P, et al. 
2010. Identification and characterization of the multidrug resistance gene cfr 
in a Panton-Valentine leukocidin-positive sequence type 8 methicillin-resistant 
Staphylococcus aureus IVa (USA300) isolate. Antimicrob Agents Chemother. 
54: 4978-84. 

Shore AC, Deasy EC, Slickers P, Brennan G, O'Connell B, Monecke S, et al. 
2011. Detection of staphylococcal cassette chromosome mec type XI carrying 
highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical 
isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. 
Antimicrob Agents Chemother. 55: 3765-73. 

Shorr AF. 2007. Epidemiology and economic impact of meticillin-resistant 
Staphylococcus aureus: review and analysis of the literature. 
Pharmacoeconomics. 25: 751-68. 

Shurland S, Zhan M, Bradham DD, Roghmann MC. 2007. Comparison of 
mortality risk associated with bacteremia due to methicillin-resistant and 
methicillin-susceptible Staphylococcus aureus. Infect Control Hosp 
Epidemiol. 28: 273-9. 

Sieradzki K, Roberts RB, Haber SW, Tomasz A. 1999. The development of 
vancomycin resistance in a patient with methicillin-resistant Staphylococcus 
aureus infection. N Engl J Med. 340: 517-23. 

Simoens S, Ophals E, Schuermans A. 2009. Search and destroy policy for 
methicillin-resistant Staphylococcus aureus: cost-benefit analysis. J Adv Nurs. 
65: 1853-9. 

Sissonen S, Pasanen T, Salmenlinna S, Vuopio-Varkila J, Tarkka E, Vaara M, et 
al. 2009. Evaluation of a commercial MRSA assay when multiple MRSA 
strains are causing epidemics. Eur J Clin Microbiol Infect Dis. 28: 1271-3. 

Skiest DJ. 2006. Treatment failure resulting from resistance of Staphylococcus aureus 
to daptomycin. J Clin Microbiol. 44: 655-6. 

Skov RL, Jensen KS. 2009. Community-associated meticillin-resistant 
Staphylococcus aureus as a cause of hospital-acquired infections. J Hosp 
Infect. 73: 364-70. 

Smith TC, Male MJ, Harper AL, Kroeger JS, Tinkler GP, Moritz ED, et al. 
2008. Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is 
present in midwestern U.S. swine and swine workers. PLoS One. 4: e4258. 

Smith TL, Pearson ML, Wilcox KR, Cruz C, Lancaster MV, Robinson-Dunn B, 
et al. 1999. Emergence of vancomycin resistance in Staphylococcus aureus. 



 286 

Glycopeptide-Intermediate Staphylococcus aureus Working Group. N Engl J 
Med. 340: 493-501. 

Smyth DS, McDougal LK, Gran FW, Manoharan A, Enright MC, Song JH, et al. 
2010. Population structure of a hybrid clonal group of methicillin-resistant 
Staphylococcus aureus, ST239-MRSA-III. PLoS One. 5: e8582. 

Snyder GM, Thom KA, Furuno JP, Perencevich EN, Roghmann MC, Strauss 
SM, et al. 2008. Detection of methicillin-resistant Staphylococcus aureus and 
vancomycin-resistant enterococci on the gowns and gloves of healthcare 
workers. Infect Control Hosp Epidemiol. 29: 583-9. 

Snyder JW, Munier GK, Heckman SA, Camp P, Overman TL. 2009. Failure of 
the BD GeneOhm StaphSR assay for direct detection of methicillin-resistant 
and methicillin-susceptible Staphylococcus aureus isolates in positive blood 
cultures collected in the United States. J Clin Microbiol. 47: 3747-8. 

Snyder JW, Munier GK, Johnson CL. 2010. Comparison of the BD GeneOhm 
methicillin-resistant Staphylococcus aureus (MRSA) PCR assay to culture by 
use of BBL CHROMagar MRSA for detection of MRSA in nasal surveillance 
cultures from intensive care unit patients. J Clin Microbiol. 48: 1305-9. 

Soavi L, Stellini R, Signorini L, Antonini B, Pedroni P, Zanetti L, et al. 2010. 
Methicillin-resistant Staphylococcus aureus ST398, Italy. Emerg Infect Dis. 
16: 346-8. 

Sola C, Paganini H, Egea AL, Moyano AJ, Garnero A, Kevric I, et al. 2012. 
Spread of Epidemic MRSA-ST5-IV Clone Encoding PVL as a Major Cause of 
Community Onset Staphylococcal Infections in Argentinean Children. PLoS 
One. 7: e30487. 

Song JH, Hsueh PR, Chung DR, Ko KS, Kang CI, Peck KR, et al. 2011. Spread of 
methicillin-resistant Staphylococcus aureus between the community and the 
hospitals in Asian countries: an ANSORP study. J Antimicrob Chemother. 66: 
1061-9. 

Sonnevend A, Blair I, Alkaabi M, Jumaa P, Al Haj M, Ghazawi A, et al. 2012. 
Change in meticillin-resistant Staphylococcus aureus clones at a tertiary care 
hospital in the United Arab Emirates over a 5-year period. J Clin Pathol. 65: 
178-82. 

Spratt BG, Hanage WP, Li B, Aanensen DM, Feil EJ. 2004. Displaying the 
relatedness among isolates of bacterial species -- the eBURST approach. 
FEMS Microbiol Lett. 241: 129-34. 

Stam-Bolink EM, Mithoe D, Baas WH, Arends JP, Moller AV. 2007. Spread of a 
methicillin-resistant Staphylococcus aureus ST80 strain in the community of 
the northern Netherlands. Eur J Clin Microbiol Infect Dis. 26: 723-7. 

Stamper PD, Cai M, Howard T, Speser S, Carroll KC. 2007. Clinical validation of 
the molecular BD GeneOhm StaphSR assay for direct detection of 
Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in 
positive blood cultures. J Clin Microbiol. 45: 2191-6. 

Stamper PD, Louie L, Wong H, Simor AE, Farley JE, Carroll KC. 2011. 
Genotypic and phenotypic characterization of methicillin-susceptible 
Staphylococcus aureus isolates misidentified as methicillin-resistant 
Staphylococcus aureus by the BD GeneOhm MRSA assay. J Clin Microbiol. 
49: 1240-4. 

Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, et al. 
2012. Meticillin-resistant Staphylococcus aureus (MRSA): global 



 287 

epidemiology and harmonisation of typing methods. Int J Antimicrob Agents. 
39: 273-82. 

Stein RA, Goetz RM, Ganea GM. 2009. Ceftobiprole: a new beta-lactam antibiotic. 
Int J Clin Pract. 63: 930-43. 

Strommenger B, Braulke C, Heuck D, Schmidt C, Pasemann B, Nubel U, et al. 
2008. spa Typing of Staphylococcus aureus as a frontline tool in 
epidemiological typing. J Clin Microbiol. 46: 574-81. 

Suetens C, Niclaes L, Jans B, Verhaegen J, Schuermans A, Van Eldere J, et al. 
2006. Methicillin-resistant Staphylococcus aureus colonization is associated 
with higher mortality in nursing home residents with impaired cognitive 
status. J Am Geriatr Soc. 54: 1854-60. 

Sung JM, Lloyd DH, Lindsay JA. 2008. Staphylococcus aureus host specificity: 
comparative genomics of human versus animal isolates by multi-strain 
microarray. Microbiology. 154: 1949-59. 

Sweezy MA, Morrical SW. 1999. Biochemical interactions within a ternary complex 
of the bacteriophage T4 recombination proteins uvsY and gp32 bound to 
single-stranded DNA. Biochemistry. 38: 936-44. 

Szczesiul JM, Shermock KM, Murtaza UI, Siberry GK. 2007. No decrease in 
clindamycin susceptibility despite increased use of clindamycin for pediatric 
community-associated methicillin-resistant Staphylococcus aureus skin 
infections. Pediatr Infect Dis J. 26: 852-4. 

Tacconelli E, Venkataraman L, De Girolami PC, EM DA. 2004. Methicillin-
resistant Staphylococcus aureus bacteraemia diagnosed at hospital admission: 
distinguishing between community-acquired versus healthcare-associated 
strains. J Antimicrob Chemother. 53: 474-9. 

Talbot GH, Bradley J, Edwards JE, Jr., Gilbert D, Scheld M, Bartlett JG. 2006. 
Bad bugs need drugs: an update on the development pipeline from the 
Antimicrobial Availability Task Force of the Infectious Diseases Society of 
America. Clin Infect Dis. 42: 657-68. 

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary 
Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 24: 1596-9. 

Tan CK, Lai CC, Liao CH, Lin SH, Huang YT, Hsueh PR. 2011. Increased 
rifampicin resistance in blood isolates of meticillin-resistant Staphylococcus 
aureus (MRSA) amongst patients exposed to rifampicin-containing 
antituberculous treatment. Int J Antimicrob Agents. 37: 550-3. 

Tarzi S, Kennedy P, Stone S, Evans M. 2001. Methicillin-resistant Staphylococcus 
aureus: psychological impact of hospitalization and isolation in an older adult 
population. J Hosp Infect. 49: 250-4. 

Tattevin P, Diep BA, Jula M, Perdreau-Remington F. 2009. Methicillin-resistant 
Staphylococcus aureus USA300 clone in long-term care facility. Emerg Infect 
Dis. 15: 953-5. 

te Witt R, van Belkum A, MacKay WG, Wallace PS, van Leeuwen WB. 2010. 
External quality assessment of the molecular diagnostics and genotyping of 
meticillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 
29: 295-300. 

Tentolouris N, Jude EB, Smirnof I, Knowles EA, Boulton AJ. 1999. Methicillin-
resistant Staphylococcus aureus: an increasing problem in a diabetic foot 
clinic. Diabet Med. 16: 767-71. 

Thomas L, van Hal S, O'Sullivan M, Kyme P, Iredell J. 2008. Failure of the BD 
GeneOhm StaphS/R assay for identification of Australian methicillin-resistant 



 288 

Staphylococcus aureus strains: duplex assays as the "gold standard" in settings 
of unknown SCCmec epidemiology. J Clin Microbiol. 46: 4116-7. 

Tiemersma EW, Bronzwaer SL, Lyytikainen O, Degener JE, Schrijnemakers P, 
Bruinsma N, et al. 2004. Methicillin-resistant Staphylococcus aureus in 
Europe, 1999-2002. Emerg Infect Dis. 10: 1627-34. 

Tong SY, McDonald MI, Holt DC, Currie BJ. 2008. Global implications of the 
emergence of community-associated methicillin-resistant Staphylococcus 
aureus in Indigenous populations. Clin Infect Dis. 46: 1871-8. 

Tristan A, Bes M, Meugnier H, Lina G, Bozdogan B, Courvalin P, et al. 2007a. 
Global distribution of Panton-Valentine leukocidin--positive methicillin-
resistant Staphylococcus aureus, 2006. Emerg Infect Dis. 13: 594-600. 

Tristan A, Ferry T, Durand G, Dauwalder O, Bes M, Lina G, et al. 2007b. 
Virulence determinants in community and hospital meticillin-resistant 
Staphylococcus aureus. J Hosp Infect. 65 Suppl 2: 105-9. 

TwistDx Ltd. 2009a. TwistAmp DNA amplification kit [package insert]. 
TwistDx Ltd. 2009b. Appendix to the TwistAmp reaction kit manuals. 
Uckay I, Sax H, Iten A, Camus V, Renzi G, Schrenzel J, et al. 2008. Effect of 

screening for methicillin-resistant Staphylococcus aureus carriage by 
polymerase chain reaction on the duration of unnecessary preemptive contact 
isolation. Infect Control Hosp Epidemiol. 29: 1077-9. 

Udo EE, Pearman JW, Grubb WB. 1993. Genetic analysis of community isolates of 
methicillin-resistant Staphylococcus aureus in Western Australia. J Hosp 
Infect. 25: 97-108. 

Udo EE, Aly NY, Sarkhoo E, Al-Sawan R, Al-Asar AS. 2011. Detection and 
characterization of an ST97-SCCmec-V community-associated meticillin-
resistant Staphylococcus aureus clone in a neonatal intensive care unit and 
special care baby unit. J Med Microbiol. 60: 600-4. 

Uhlemann AC, Knox J, Miller M, Hafer C, Vasquez G, Ryan M, et al. 2011. The 
environment as an unrecognized reservoir for community-associated 
methicillin resistant Staphylococcus aureus USA300: a case-control study. 
PLoS One. 6: e22407. 

United States Census Bureau. 2010. QuickFacts for Orange County, California. 
Available from: http://quickfacts.census.gov/qfd/states/06/06059.html 
[Accessed 30th August 2011]. 

United States Census Bureau. 2011a. 100 Largest Counties. Available from: 
http://www.census.gov/popest/data/counties/totals/2011/index.html. [Accessed 
23rd April 2012]. 

United States Census Bureau. 2011b. United States Census 2010 Demographic 
Profile Data for Orange County, California. Available from: 
http://factfinder2.census.gov [Accessed 6th June 2011]. 

Utsui Y, Yokota T. 1985. Role of an altered penicillin-binding protein in methicillin- 
and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 
28: 397-403. 

Vallone PM, Butler JM. 2004. AutoDimer: a screening tool for primer-dimer and 
hairpin structures. Biotechniques. 37: 226-31. 

Valvatne H, Rijnders MI, Budimir A, Boumans ML, de Neeling AJ, Beisser PS, 
et al. 2009. A rapid, 2-well, multiplex real-time polymerase chain reaction 
assay for the detection of SCCmec types I to V in methicillin-resistant 
Staphylococcus aureus. Diagn Microbiol Infect Dis. 



 289 

van Belkum A, Melles DC, Peeters JK, van Leeuwen WB, van Duijkeren E, 
Huijsdens XW, et al. 2008. Methicillin-resistant and -susceptible 
Staphylococcus aureus sequence type 398 in pigs and humans. Emerg Infect 
Dis. 14: 479-83. 

van Belkum A, Melles DC, Nouwen J, van Leeuwen WB, van Wamel W, Vos 
MC, et al. 2009. Co-evolutionary aspects of human colonisation and infection 
by Staphylococcus aureus. Infect Genet Evol. 9: 32-47. 

Van Cleef BA, Broens EM, Voss A, Huijsdens XW, Zuchner L, Van Benthem 
BH, et al. 2010. High prevalence of nasal MRSA carriage in slaughterhouse 
workers in contact with live pigs in The Netherlands. Epidemiol Infect. 138: 
756-63. 

van Cleef BA, Verkade EJ, Wulf MW, Buiting AG, Voss A, Huijsdens XW, et al. 
2010. Prevalence of livestock-associated MRSA in communities with high 
pig-densities in The Netherlands. PLoS One. 5: e9385. 

Van De Griend P, Herwaldt LA, Alvis B, DeMartino M, Heilmann K, Doern G, 
et al. 2009. Community-associated methicillin-resistant Staphylococcus 
aureus, Iowa, USA. Emerg Infect Dis. 15: 1582-9. 

van der Zee A, Roorda L, Hendriks WD, Ossewaarde JM, Buitenwerf J. 2011. 
Detection of novel chromosome-SCCmec variants in Methicillin Resistant 
Staphylococcus aureus and their inclusion in PCR based screening. BMC Res 
Notes. 4: 150. 

van Griethuysen A, van Loo I, van Belkum A, Vandenbroucke-Grauls C, 
Wannet W, van Keulen P, et al. 2005. Loss of the mecA gene during storage 
of methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol. 43: 
1361-5. 

van Hal SJ, Stark D, Lockwood B, Marriott D, Harkness J. 2007. Methicillin-
resistant Staphylococcus aureus (MRSA) detection: comparison of two 
molecular methods (IDI-MRSA PCR assay and GenoType MRSA Direct PCR 
assay) with three selective MRSA agars (MRSA ID, MRSASelect, and 
CHROMagar MRSA) for use with infection-control swabs. J Clin Microbiol. 
45: 2486-90. 

van Loo I, Huijsdens X, Tiemersma E, de Neeling A, van de Sande-Bruinsma N, 
Beaujean D, et al. 2007. Emergence of methicillin-resistant Staphylococcus 
aureus of animal origin in humans. Emerg Infect Dis. 13: 1834-9. 

van Rijen MM, Van Keulen PH, Kluytmans JA. 2008. Increase in a Dutch hospital 
of methicillin-resistant Staphylococcus aureus related to animal farming. Clin 
Infect Dis. 46: 261-3. 

van Rijen MM, Kluytmans JA. 2009. Costs and benefits of the MRSA Search and 
Destroy policy in a Dutch hospital. Eur J Clin Microbiol Infect Dis. 28: 1245-
52. 

Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, et al. 
2003. Community-acquired methicillin-resistant Staphylococcus aureus 
carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg 
Infect Dis. 9: 978-84. 

Vanderhaeghen W, Cerpentier T, Adriaensen C, Vicca J, Hermans K, Butaye P. 
2010. Methicillin-resistant Staphylococcus aureus (MRSA) ST398 associated 
with clinical and subclinical mastitis in Belgian cows. Vet Microbiol. 144: 
166-71. 

Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M. 2005. Methicillin-resistant 
Staphylococcus aureus in pig farming. Emerg Infect Dis. 11: 1965-6. 



 290 

Voss A. Infection Control Best Practice from Europe 2009 meeting, London. Personal 
communication. 2009. 

Voyich JM, Otto M, Mathema B, Braughton KR, Whitney AR, Welty D, et al. 
2006. Is Panton-Valentine leukocidin the major virulence determinant in 
community-associated methicillin-resistant Staphylococcus aureus disease? J 
Infect Dis. 194: 1761-70. 

Wallin TR, Hern HG, Frazee BW. 2008. Community-associated methicillin-
resistant Staphylococcus aureus. Emerg Med Clin North Am. 26: 431-55. 

Walther B, Monecke S, Ruscher C, Friedrich AW, Ehricht R, Slickers P, et al. 
2009. Comparative molecular analysis substantiates zoonotic potential of 
equine methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 47: 704-
10. 

Wang SH, Sun ZL, Guo YJ, Yang BQ, Yuan Y, Wei Q, et al. 2010. Meticillin-
resistant Staphylococcus aureus isolated from foot ulcers in diabetic patients in 
a Chinese care hospital: risk factors for infection and prevalence. J Med 
Microbiol. 59: 1219-24. 

Wannet WJ, Spalburg E, Heck ME, Pluister GN, Tiemersma E, Willems RJ, et 
al. 2005. Emergence of virulent methicillin-resistant Staphylococcus aureus 
strains carrying Panton-Valentine leucocidin genes in The Netherlands. J Clin 
Microbiol. 43: 3341-5. 

Warren DK, Liao RS, Merz LR, Eveland M, Dunne WM, Jr. 2004. Detection of 
methicillin-resistant Staphylococcus aureus directly from nasal swab 
specimens by a real-time PCR assay. J Clin Microbiol. 42: 5578-81. 

Wassenberg MW, Kluytmans JA, Box AT, Bosboom RW, Buiting AG, van 
Elzakker EP, et al. 2010. Rapid screening of methicillin-resistant 
Staphylococcus aureus using PCR and chromogenic agar: a prospective study 
to evaluate costs and effects. Clin Microbiol Infect. 16: 1754-61. 

Wassenberg MW, Kluytmans JA, Bosboom RW, Buiting AG, van Elzakker EP, 
Melchers WJ, et al. 2011. Rapid diagnostic testing of methicillin-resistant 
Staphylococcus aureus carriage at different anatomical sites: costs and benefits 
of less extensive screening regimens. Clin Microbiol Infect. 17: 1704-10. 

Weese JS, Avery BP, Reid-Smith RJ. 2010. Detection and quantification of 
methicillin-resistant Staphylococcus aureus (MRSA) clones in retail meat 
products. Lett Appl Microbiol. 51: 338-42. 

Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, et al. 
2003. Genetic analysis of a high-level vancomycin-resistant isolate of 
Staphylococcus aureus. Science. 302: 1569-71. 

Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh 
HA, et al. 2005. The role of nasal carriage in Staphylococcus aureus 
infections. Lancet Infect Dis. 5: 751-62. 

Wielders CL, Vriens MR, Brisse S, de Graaf-Miltenburg LA, Troelstra A, Fleer 
A, et al. 2001. In-vivo transfer of mecA DNA to Staphylococcus aureus 
[corrected]. Lancet. 357: 1674-5. 

Wisplinghoff H, Rosato AE, Enright MC, Noto M, Craig W, Archer GL. 2003. 
Related clones containing SCCmec type IV predominate among clinically 
significant Staphylococcus epidermidis isolates. Antimicrob Agents 
Chemother. 47: 3574-9. 

Witte W, Strommenger B, Cuny C, Heuck D, Nuebel U. 2007a. Methicillin-
resistant Staphylococcus aureus containing the Panton-Valentine leucocidin 
gene in Germany in 2005 and 2006. J Antimicrob Chemother. 60: 1258-63. 



 291 

Witte W, Strommenger B, Stanek C, Cuny C. 2007b. Methicillin-resistant 
Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg 
Infect Dis. 13: 255-8. 

Wolk DM, Picton E, Johnson D, Davis T, Pancholi P, Ginocchio CC, et al. 2009. 
Multicenter evaluation of the Cepheid Xpert methicillin-resistant 
Staphylococcus aureus (MRSA) test as a rapid screening method for detection 
of MRSA in nares. J Clin Microbiol. 47: 758-64. 

Wong H, Louie L, Lo RY, Simor AE. 2010. Characterization of Staphylococcus 
aureus isolates with a partial or complete absence of staphylococcal cassette 
chromosome elements. J Clin Microbiol. 48: 3525-31. 

Wong SS, Ng TK, Yam WC, Tsang DN, Woo PC, Fung SK, et al. 2000. 
Bacteremia due to Staphylococcus aureus with reduced susceptibility to 
vancomycin. Diagn Microbiol Infect Dis. 36: 261-8. 

Wulf MW, Sorum M, van Nes A, Skov R, Melchers WJ, Klaassen CH, et al. 
2008. Prevalence of methicillin-resistant Staphylococcus aureus among 
veterinarians: an international study. Clin Microbiol Infect. 14: 29-34. 

Yu F, Chen Z, Liu C, Zhang X, Lin X, Chi S, et al. 2008. Prevalence of 
Staphylococcus aureus carrying Panton-Valentine leukocidin genes among 
isolates from hospitalised patients in China. Clin Microbiol Infect. 14: 381-4. 

Zhang K, McClure JA, Elsayed S, Louie T, Conly JM. 2005. Novel multiplex PCR 
assay for characterization and concomitant subtyping of staphylococcal 
cassette chromosome mec types I to V in methicillin-resistant Staphylococcus 
aureus. J Clin Microbiol. 43: 5026-33. 

Zhang K, McClure JA, Elsayed S, Tan J, Conly JM. 2008. Coexistence of Panton-
Valentine leukocidin-positive and -negative community-associated 
methicillin-resistant Staphylococcus aureus USA400 sibling strains in a large 
Canadian health-care region. J Infect Dis. 197: 195-204. 

Zhang SX, Drews SJ, Tomassi J, Katz KC. 2007. Comparison of two versions of 
the IDI-MRSA assay using charcoal swabs for prospective nasal and nonnasal 
surveillance samples. J Clin Microbiol. 45: 2278-80. 

Zinderman CE, Conner B, Malakooti MA, LaMar JE, Armstrong A, Bohnker 
BK. 2004. Community-acquired methicillin-resistant Staphylococcus aureus 
among military recruits. Emerg Infect Dis. 10: 941-4. 

 
 

 

 

 



 292 

APPENDICES 

APPENDIX 1: LABORATORY MRSA COLLECTION 

Table Laboratory collection of MRSA isolates. 

Clone No. of  
isolates 

Geographic spread  Clone name(s) 

ST1-MRSA-IV 3 US, Australia WA MRSA-1, USA400 

ST5-MRSA-1 3 UK, Slovenia EMRSA-3 

ST5-MRSA-

II/ST5-GISA-II 

5 Finland, Ireland, UK, 

Japan, US 

New York/Japan clone/GISA, 

USA100 

ST5-MRSA-III 1 Belgium  

ST5-MRSA-IV 2 France, US Paediatric clone, USA800 

ST8-MRSA-I 1 Australia  

ST8-MRSA-II 3 UK, Ireland, US Irish-1 

ST8-MRSA-III 1 UK EMRSA-7 

ST8-MRSA-IV 4 US, France, UK EMRSA-2, -6, USA300, -500 

ST22-MRSA-IV 3 Ireland, UK EMRSA-15, Barnim 

ST30-MRSA-IV 1 Australia Southwest Pacific clone, USA1100 

ST36-MRSA-II 3 Finland, UK EMRSA-16, USA200, Irish AR7.0 

ST-36-MRSA-IV 1 UK  

ST45-MRSA-IV 4 Finland, Germany, 

Sweden 

Berlin clone 

ST59-MRSA-V 1 France Taiwan clone (ST59-MRSA-

V(5C2&5), t437) 

ST80-MRSA-IV 3 France, Sweden, Algeria European CA-MRSA clone 

ST93-MRSA-IV 2 Australia Queensland clone 

ST156-MRSA-IV 1 Finland  

ST157-MRSA-III 1 Poland  

ST225-MRSA-II 1 US  

ST228-MRSA-I 1 Germany Southern Germany Clone 

ST231-MRSA-II 1 US  

ST235-MRSA-I 1 UK Scottish GISA isolate 

ST239-MRSA-III 3 Holland, Portugal, 

Germany 

Portugese/Brazilian, Vienna, 

EMRSA-1, -4, -11 

ST247-MRSA-I 2 Portugal, Belgium EMRSA-5, -17, Iberian 

ST250-MRSA-I 2 UK, Switzerland First MRSA, Archaic clone 

ST254-MRSA-I 1 UK  

ST254-MRSA-IV 1 Germany EMRSA-10, Hannover 

ST280-MRSA-IV 1 UK  

Total 57 16 countries  
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APPENDIX 2: DNA QUANTIFICATION PROTOCOL USING THE TWISTA 
MACHINE 

1. Prepare 2X SYBR Gold solution 
 
 In a 15ml Falcon tube prepare a 2X SYBR Gold working solution: 
 

• Pipette 5ml of TE buffer into the tube 
• Add 1µl SYBR Gold to the TE 
• Vortex and protect from light 

 
2. Prepare 2ng/µl DNA solution 

 
This step may vary depending on the concentration of the genomic DNA. 

  
Example using 200µg/ml (200ng/µl) DNA stock: 
 

€ 

200ng /µl
2ng /µl

=100-fold dilution required 

  
• Add 10µl of stock DNA to 990µl TE buffer. 
• Vortex solution for 1 minute to ensure DNA is properly mixed. 
 
 Must be used on day of preparation. 
 

3. Reaction setup 
 
For each strip of 8 PCR tubes, tubes 1-4 are used for the standard curve and tubes 
5-8 for the samples. Samples should be tested in duplicate.  
 
The range of quantification is between 0.1 and 0.7ng/µl final concentration, 
consequently the sample must be diluted down to that range. For gel purified 
PCR products or miniprep plasmid DNA a 1:100 or 1:50 final dilution can be 
used. If the sample mV value obtained is too low or too high the sample should 
be retested at a different dilution.  
 
 

Contents of tubes for standards: 
 

Tube 1 2 3 4 

TE Buffer (µl) 50 45 25 15 

2ng/µl DNA (µl) 0 5 25 35 

2x SYBR Gold solution (µl) 50 50 50 50 
Final DNA concentration after addition of 2x 
SYBR Gold solution (ng/µl) 0 0.1 0.5 1 
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Contents of tubes for samples: 
 
Tubes 5-8 should be filled according to the required dilutions in the following table.  
 

Tube 5 6 7 8 

Dilution 1:25 1:50 1:100 1:200 

Sample (µl) 4 2 1 0.5 

TE Buffer (µl) 46 48 49 49.5 
2x SYBR Gold solution (µl) 50 50 50 50 

 
4. Starting the reaction  

 
• After 50µl of 2X SYBR Gold solution has been added to all eight tubes, seal 

using caps.  

• Vortex and spin tubes, place in Twista machine and begin data acquisition (8 

mins at 35°C).  

• Analyse the data using the DNA quantification template. Example output: 
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APPENDIX 3: RPA-BASED MULTIPLEX SCCMEC TYPING ASSAY 

Table Primer and probe sequences for the RPA-based SCCmec multiplex assay (continued on next page). 

Target Sequence (5'   3') Amplicon 

size (bp) 

Specificity 

(SCCmec type) 

mecA  Forward TCCAGATTACAACTTCACCAGGTTCAACTCAA 

Reverse TTGTAACGTTGTAACCACCCCAAGATTTATCTT 

Probe    ATAACAAAACATTAGACGATAAAACAAG-T(TAMRA)-dSpacer-T(BHQ-2)-AAAATCGATGGTAAAG 

145 All 

mecI Forward ACAAAGGCGGTTTCAATTCACTTGTCTTAAAC 

Reverse ATTCAACGACTTGATTGTTTCCTCTGTTTTCT 

Probe    TGTAGAAAAAGAAGATCTATCACAAGA-T(ROX)-GA-dSpacer-A-T(BHQ-2)-AGAATAATTGAGAAA 

158 II, III, VIII 

mecC2 Forward ATGCAGTATACGGTTCATATCGATGATCAAATTA 

Reverse CTTGTACCTCTCCTGCATATTCTGGTTGTAAC 

Probe    GAGTGTACCAAAAAGTTTAAAATTTTGCC-T(FAM)-dSpacer-T(BHQ-1)-GGAAGATAAAATTCC 

139 V 

IS1272 Forward GCAAATACATGGAGGTCAATATGGAAACAAAA 

Reverse AGAATCACTTTTAACATCATTTTAGGATGGTACGA 

Probe    TTTTACTGTAAATGATATTGTTGAAACAA-T(HEX)-dSpacer-CC-T(BHQ-1)-GACAATGAATTCGA 

156 I, IV, VI 
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ccrB1 Forward TGAACGTATGGAAGTCAAAAATTCAACAGGCA 

Reverse GGAAGATTGCCTTGATAATAGCCCTCTAAAGC 

Probe    GCAAGTTTTTCCGAATTCGAAAGAAA-T(ROX)-ACA-dSpacer-T(BHQ-2)-TTTAGAGAATATTTAC 

150 I 

ccrB2 Forward ACCACGGTCAGCGTATATATCTTTAACTTCAA 

Reverse TGCAACAACTTAAAACAAAACGTGTCGGTATC 

Probe    TATCAACAGAAATGCAAAGCACAGAAGGT-T(HEX)-dSpacer-T(BHQ-1)-AGTATCGACGGACAAA 

158 II, IV 

ccrB4 Forward TGCAAACGGATGGTTACAGTATTCAWGGTCAAT 

Reverse CTTTTAACATACGTTGTAATTCWGGACGTTG 

Probe    ACGACTTCATAACCTTGAAATTGACAATAC-T(TAMRA)-C-dSpacer-G-T(BHQ-2)-AAGTTGATTYAATTGACC 

150 VI, VIII 

ccrC Forward CATCCAATGCTTCTGGAGAAGTACTCGTTACA 

Reverse TGATAATTTGTAGCCTAAAACACGACCGGTGA 

Probe    TGGAGAAGTACTCGTTACAATGTTTGGGT-T(FAM)-dSpacer-A-T(BHQ-1)-AGGATCTATMGAACG 

155 III, V, VII 
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Table Multiplex format for the RPA-based SCCmec typing assay. + denotes a positive result 

for that SCCmec type. 

 Tube 1 Tube 2 

Target mecA mecI mecC2 IS1272 ccrB1 ccrB2 ccrB4 ccrC 

SCCmec type 

I 
 

+    
+ 

 
+    

II + +    +   
III + +      + 
IV +   +  +   
V +  +     + 
VI +   +   +  
VII +       + 
VIII + +     +  
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Figure Singleplex TwistAmp exo reactions for each primer pair and probe of the SCCmec 

multiplex assay, to test their specificity. 1µl of DNA template (~9k copies/µl) was added to 

50µl TwistAmp exo reactions. Note that the ccrB4 fluorescence is weak, and that the jagged 

lines, particularly in mecI, were thought to be a result of the magnetic mixing in the pre-

production, second-generation fluorometer (the magnetic bead sometimes blocked the 

fluorescence reader).  
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APPENDIX 4: SPA TYPES BY OC HOSPITAL 

Table spa type frequencies by hospital for the 2,246 clinical 

MRSA isolates collected from 30 hospitals in Orange County, 

CA. 

Hospital spa type Frequency % 

1 t008 17 63.0 

 t242 4 14.8 

 t002 2 7.4 

 t024 1 3.7 

 t306 1 3.7 

 t622 1 3.7 

 t955 1 3.7 

 Total 27 100.0 

    

2 t008 60 50.4 

 t242 21 17.6 

 t002 14 11.8 

 t024 4 3.4 

 t045 3 2.5 

 t088 3 2.5 

 t127 3 2.5 

 t306 2 1.7 

 t324 2 1.7 

 t010 1 0.8 

 t1774 1 0.8 

 t1911 1 0.8 

 t211 1 0.8 

 t6069 1 0.8 

 t6071 1 0.8 

 t688 1 0.8 

 Total 119 100.0 
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3 t008 21 47.7 

 t002 12 27.3 

 t242 5 11.4 

 t024 2 4.5 

 t045 1 2.3 

 t1882 1 2.3 

 t6072 1 2.3 

 t723 1 2.3 

 Total 44 100.0 

    

4 t008 66 72.5 

 t242 11 12.1 

 t024 2 2.2 

 t5654 2 2.2 

 t002 1 1.1 

 t005 1 1.1 

 t068 1 1.1 

 t088 1 1.1 

 t105 1 1.1 

 t1220 1 1.1 

 t1578 1 1.1 

 t216 1 1.1 

 t2689 1 1.1 

 t668 1 1.1 

 Total 91 100.0 

    

5 t008 13 81.3 

 t024 1 6.3 

 t068 1 6.3 

 t088 1 6.3 

 Total 16 100.0 

    

6 t008 71 59.2 

 t002 19 15.8 
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 t242 16 13.3 

 t088 3 2.5 

 t2468 2 1.7 

 t723 2 1.7 

 t044 1 0.8 

 t121 1 0.8 

 t2104 1 0.8 

 t211 1 0.8 

 t324 1 0.8 

 t622 1 0.8 

 t852 1 0.8 

 Total 120 100.0 

    

7 t008 23 79.3 

 t002 2 6.9 

 t211 2 6.9 

 t121 1 3.4 

 t1610 1 3.4 

 Total 29 100.0 

    

8 t008 70 50.0 

 t242 27 19.3 

 t002 22 15.7 

 t024 3 2.1 

 t045 3 2.1 

 t088 2 1.4 

 t127 2 1.4 

 t1737 2 1.4 

 t026 1 0.7 

 t037 1 0.7 

 t068 1 0.7 

 t126 1 0.7 

 t1300 1 0.7 

 t4783 1 0.7 
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 t548 1 0.7 

 t6321 1 0.7 

 t6352 1 0.7 

 Total 140 100.0 

    

9 t008 28 52.8 

 t002 9 17.0 

 t242 6 11.3 

 t088 2 3.8 

 t127 2 3.8 

 t306 2 3.8 

 t359 2 3.8 

 t105 1 1.9 

 t723 1 1.9 

 Total 53 100.0 

    

10 t008 17 45.9 

 t242 10 27.0 

 t002 8 21.6 

 t126 1 2.7 

 t127 1 2.7 

 Total 37 100.0 

    

11 t242 2 50.0 

 t008 1 25.0 

 t2689 1 25.0 

 Total 4 100.0 

    

12 t242 40 35.7 

 t008 31 27.7 

 t002 20 17.9 

 t1774 3 2.7 

 t045 2 1.8 

 t088 2 1.8 



 303 

 t1737 2 1.8 

 t010 1 0.9 

 t064 1 0.9 

 t068 1 0.9 

 t1196 1 0.9 

 t121 1 0.9 

 t1683 1 0.9 

 t2032 1 0.9 

 t311 1 0.9 

 t579 1 0.9 

 t6068 1 0.9 

 t622 1 0.9 

 t6591 1 0.9 

 Total 112 100.0 

    

13 t008 2 33.3 

 t002 1 16.7 

 t024 1 16.7 

 t242 1 16.7 

 t570 1 16.7 

 Total 6 100.0 

    

14 t002 5 33.3 

 t008 4 26.7 

 t088 2 13.3 

 t242 2 13.3 

 t024 1 6.7 

 t1737 1 6.7 

 Total 15 100.0 

    

15 t002 20 30.3 

 t242 19 28.8 

 t008 9 13.6 

 t037 6 9.1 
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 t018 3 4.5 

 t010 1 1.5 

 t067 1 1.5 

 t088 1 1.5 

 t1737 1 1.5 

 t304 1 1.5 

 t530 1 1.5 

 t548 1 1.5 

 t6066 1 1.5 

 t6868 1 1.5 

 Total 66 100.0 

    

16 t008 56 48.3 

 t242 27 23.3 

 t002 17 14.7 

 t045 2 1.7 

 t127 2 1.7 

 t018 1 0.9 

 t024 1 0.9 

 t037 1 0.9 

 t064 1 0.9 

 t121 1 0.9 

 t2054 1 0.9 

 t2558 1 0.9 

 t5160 1 0.9 

 t6070 1 0.9 

 t622 1 0.9 

 t6352 1 0.9 

 t842 1 0.9 

 Total 116 100.0 

    

17 t008 37 69.8 

 t002 5 9.4 

 t242 5 9.4 
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 t1081 2 3.8 

 t024 1 1.9 

 t190 1 1.9 

 t622 1 1.9 

 t688 1 1.9 

 Total 53 100.0 

    

18 t008 50 38.8 

 t242 40 31.0 

 t002 19 14.7 

 t127 4 3.1 

 t045 3 2.3 

 t018 1 0.8 

 t024 1 0.8 

 t068 1 0.8 

 t121 1 0.8 

 t160 1 0.8 

 t1791 1 0.8 

 t2229 1 0.8 

 t306 1 0.8 

 t442 1 0.8 

 t548 1 0.8 

 t6066 1 0.8 

 t6073 1 0.8 

 t688 1 0.8 

 Total 129 100.0 

    

19 t008 50 37.0 

 t242 34 25.2 

 t002 22 16.3 

 t064 5 3.7 

 t976 3 2.2 

 t088 2 1.5 

 t127 2 1.5 
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 t6065 2 1.5 

 t6340 2 1.5 

 t010 1 0.7 

 t024 1 0.7 

 t045 1 0.7 

 t1220 1 0.7 

 t126 1 0.7 

 t1300 1 0.7 

 t2302 1 0.7 

 t4695 1 0.7 

 t4919 1 0.7 

 t509 1 0.7 

 t586 1 0.7 

 t622 1 0.7 

 t723 1 0.7 

 Total 135 100.0 

    

20 t008 26 50.0 

 t242 9 17.3 

 t002 6 11.5 

 t024 2 3.8 

 t306 2 3.8 

 t018 1 1.9 

 t037 1 1.9 

 t062 1 1.9 

 t267 1 1.9 

 t3424 1 1.9 

 t570 1 1.9 

 t6337 1 1.9 

 Total 52 100.0 

    

21 t008 19 35.8 

 t242 15 28.3 

 t002 10 18.9 
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 t304 2 3.8 

 t306 2 3.8 

 t018 1 1.9 

 t045 1 1.9 

 t121 1 1.9 

 t1578 1 1.9 

 t6212 1 1.9 

 Total 53 100.0 

    

22 t008 8 40.0 

 t242 4 20.0 

 t2468 2 10.0 

 t002 1 5.0 

 t024 1 5.0 

 t037 1 5.0 

 t6238 1 5.0 

 t967 1 5.0 

 t976 1 5.0 

 Total 20 100.0 

    

23 t008 42 35.0 

 t242 35 29.2 

 t002 20 16.7 

 t037 7 5.8 

 t1860 3 2.5 

 t024 2 1.7 

 t105 2 1.7 

 t126 1 0.8 

 t1627 1 0.8 

 t1737 1 0.8 

 t2173 1 0.8 

 t6072 1 0.8 

 t6338 1 0.8 

 t6339 1 0.8 
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 t6354 1 0.8 

 t895 1 0.8 

 Total 120 100.0 

    

24 t008 58 45.3 

 t242 24 18.8 

 t002 20 15.6 

 t1737 4 3.1 

 t037 3 2.3 

 t062 3 2.3 

 t1341 2 1.6 

 t306 2 1.6 

 t6353 2 1.6 

 t024 1 0.8 

 t1084 1 0.8 

 t121 1 0.8 

 t127 1 0.8 

 t197 1 0.8 

 t2225 1 0.8 

 t4146 1 0.8 

 t6067 1 0.8 

 t6219 1 0.8 

 t6592 1 0.8 

 Total 128 100.0 

    

25 t242 62 52.5 

 t002 21 17.8 

 t008 19 16.1 

 t024 2 1.7 

 t045 2 1.7 

 t1341 2 1.7 

 t1683 2 1.7 

 t040 1 0.8 

 t1737 1 0.8 
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 t1791 1 0.8 

 t189 1 0.8 

 t2032 1 0.8 

 t3746 1 0.8 

 t509 1 0.8 

 t6593 1 0.8 

 Total 118 100.0 

    

26 t002 5 41.7 

 t008 4 33.3 

 t019 1 8.3 

 t045 1 8.3 

 t242 1 8.3 

 Total 12 100.0 

    

27 t008 59 41.3 

 t002 33 23.1 

 t242 21 14.7 

 t105 4 2.8 

 t024 2 1.4 

 t037 2 1.4 

 t045 2 1.4 

 t067 2 1.4 

 t126 2 1.4 

 t6068 2 1.4 

 t004 1 0.7 

 t018 1 0.7 

 t064 1 0.7 

 t088 1 0.7 

 t121 1 0.7 

 t148 1 0.7 

 t211 1 0.7 

 t2164 1 0.7 

 t2293 1 0.7 
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 t306 1 0.7 

 t351 1 0.7 

 t400 1 0.7 

 t6611 1 0.7 

 t895 1 0.7 

 Total 143 100.0 

    

28 t008 37 45.7 

 t242 17 21.0 

 t002 11 13.6 

 t037 3 3.7 

 t024 2 2.5 

 NT 1 1.2 

 t040 1 1.2 

 t045 1 1.2 

 t064 1 1.2 

 t1578 1 1.2 

 t1911 1 1.2 

 t2063 1 1.2 

 t306 1 1.2 

 t447 1 1.2 

 t4919 1 1.2 

 t767 1 1.2 

 Total 81 100.0 

    

29 t008 65 74.7 

 t002 5 5.7 

 t242 4 4.6 

 t1635 2 2.3 

 t211 2 2.3 

 t024 1 1.1 

 t127 1 1.1 

 t1767 1 1.1 

 t1892 1 1.1 

    

 t2104 1 1.1 

 t2115 1 1.1 

 t2206 1 1.1 
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 t6869 1 1.1 

 Total 87 100.0 

    

30 t008 71 59.2 

 t002 17 14.2 

 t242 16 13.3 

 t622 3 2.5 

 t019 1 0.8 

 t024 1 0.8 

 t027 1 0.8 

 t088 1 0.8 

 t121 1 0.8 

 t1391 1 0.8 

 t1567 1 0.8 

 t1677 1 0.8 

 t197 1 0.8 

 t304 1 0.8 

 t450 1 0.8 

 t6336 1 0.8 

 t6341 1 0.8 

 Total 120 100.0 
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APPENDIX 5: SPA TYPES BY OC NURSING HOME 

Table spa type frequencies by nursing home for the 835 carriage 

MRSA isolates collected from 25 nursing homes in Orange County, 

CA. 

Nursing Home spa type Frequency % 

1 t002 30 36.6 

 t008 29 35.4 

 t242 16 19.5 

 t018 2 2.4 

 t037 1 1.2 

 t2031 1 1.2 

 t437 1 1.2 

 t4963 1 1.2 

 t895 1 1.2 

 Total 82 100.0 

    

2 t242 8 44.4 

 t002 5 27.8 

 t008 1 5.6 

 t189 1 5.6 

 t2049 1 5.6 

 t548 1 5.6 

 NT 1 5.6 

 Total 18 100.0 

    

3 t008 14 35.9 

 t002 12 30.8 

 t242 9 23.1 

 t189 2 5.1 

 t067 1 2.6 

 t400 1 2.6 

 Total 39 100.0 
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4 t002 7 70.0 

 t008 1 10.0 

 t1610 1 10.0 

 t242 1 10.0 

 Total 10 100.0 

    

5 t242 10 35.7 

 t008 9 32.1 

 t002 8 28.6 

 t1341 1 3.6 

 Total 28 100.0 

    

6 t002 18 40.0 

 t008 15 33.3 

 t242 10 22.2 

 t1610 1 2.2 

 t8606 1 2.2 

 Total 45 100.0 

    

7 t242 13 38.2 

 t002 8 23.5 

 t008 7 20.6 

 t8750 2 5.9 

 t037 1 2.9 

 t088 1 2.9 

 t1341 1 2.9 

 t211 1 2.9 

 Total 34 100.0 

    

8 t242 6 50.0 

 t008 4 33.3 

 t1341 1 8.3 
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 t736 1 8.3 

 Total 12 100.0 

    

9 t242 19 35.9 

 t306 8 15.1 

 t008 7 13.2 

 t068 6 11.3 

 t002 4 7.6 

 t8748 2 3.8 

 t024 1 1.9 

 t026 1 1.9 

 t127 1 1.9 

 t189 1 1.9 

 t548 1 1.9 

 t6065 1 1.9 

 t723 1 1.9 

 Total 53 100.0 

    

10 t242 17 50.0 

 t008 12 35.3 

 t002 3 8.8 

 t045 1 2.9 

 t2115 1 2.9 

 Total 34 100.0 

    

11 t008 33 45.2 

 t002 13 17.8 

 t242 13 17.8 

 t088 5 6.9 

 t037 2 2.7 

 t306 2 2.7 

 t539 2 2.7 

 t010 1 1.4 
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 t024 1 1.4 

 t105 1 1.4 

 Total 73 100.0 

    

12 t242 19 50.0 

 t002 9 23.7 

 t1774 5 13.2 

 t008 1 2.6 

 t121 1 2.6 

 t306 1 2.6 

 t8747 1 2.6 

 t8865 1 2.6 

 Total 38 100.0 

    

13 t242 20 52.6 

 t002 9 23.7 

 t008 7 18.4 

 t548 1 2.6 

 t8749 1 2.6 

 Total 38 100.0 

    

14 t002 12 54.6 

 t008 5 22.7 

 t010 4 18.2 

 t242 1 4.6 

 Total 22 100.0 

    

15 t002 3 75.0 

 t1932 1 25.0 

 Total 4 100.0 

    

16 t242 19 51.4 

 t008 7 18.9 
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 t002 3 8.1 

 t5916 3 8.1 

 t071 2 5.4 

 t032 1 2.7 

 t509 1 2.7 

 t579 1 2.7 

 Total 37 100.0 

    

17 t242 15 62.5 

 t002 3 12.5 

 t024 3 12.5 

 t8086 2 8.3 

 t127 1 4.2 

 Total 24 100.0 

    

18 t008 1 100.0 

 Total 1 100.0 

    

19 t008 8 72.7 

 t002 2 18.2 

 t242 1 9.1 

 Total 11 100.0 

    

20 t008 24 38.7 

 t002 19 30.7 

 t242 13 21.0 

 t127 2 3.2 

 t037 1 1.6 

 t040 1 1.6 

 t1080 1 1.6 

 t1220 1 1.6 

 Total 62 100.0 
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21 t242 30 46.9 

 t002 12 18.8 

 t008 9 14.1 

 t127 7 10.9 

 t088 2 3.1 

 t045 1 1.6 

 t2879 1 1.6 

 t509 1 1.6 

 t581 1 1.6 

 Total 64 100.0 

    

22 t002 2 25.0 

 t008 2 25.0 

 t242 2 25.0 

 t548 1 12.5 

 t8444 1 12.5 

 Total 8 100.0 

    

23 t008 13 29.6 

 t002 7 15.9 

 t1186 5 11.4 

 t242 4 9.1 

 t4462 4 9.1 

 t037 2 4.6 

 t548 2 4.6 

 t5916 2 4.6 

 t064 1 2.3 

 t088 1 2.3 

 t2229 1 2.3 

 t8443 1 2.3 

 Total 43 100.0 

    

24 t242 27 51.9 
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 t008 9 17.3 

 t002 6 11.5 

 t045 2 3.9 

 t018 1 1.9 

 t024 1 1.9 

 t088 1 1.9 

 t127 1 1.9 

 t1737 1 1.9 

 t400 1 1.9 

 t7275 1 1.9 

 Total 51 100.0 

    

25 t008 4 100.0 

 Total 4 100.0 
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Differences in Methicillin-Resistant Staphylococcus aureus Strains
Isolated from Pediatric and Adult Patients from Hospitals in a Large
County in California

Lyndsey O. Hudson,a Courtney R. Murphy,b Brian G. Spratt,a Mark C. Enright,c Leah Terpstra,d Adrijana Gombosev,d Paul Hannah,e

Lydia Mikhail,e Richard Alexander,e Douglas F. Moore,e and Susan S. Huangd

Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdoma; School of Social Ecology, and Division of Infectious Diseases,
University of California Irvine School of Medicine, Irvine, California, USAb; AmpliPhi Biosciences, Colworth Science Park, Sharnbrook, Bedfordshire, United Kingdomc;
Division of Infectious Diseases and Health Policy Research Institute, University of California Irvine School of Medicine, Irvine, California, USAd; and Orange County Health
Care Agency, Santa Ana, California, USAe

Studies of U.S. epidemics of community- and health care-associated methicillin-resistant Staphylococcus aureus (MRSA) sug-
gested differences in MRSA strains in adults and those in children. Comprehensive population-based studies exploring these
differences are lacking. We conducted a prospective cohort study of inpatients in Orange County, CA, collecting clinical MRSA
isolates from 30 of 31 Orange County hospitals, to characterize differences in MRSA strains isolated from children compared to
those isolated from adults. All isolates were characterized by spa typing. We collected 1,124 MRSA isolates from adults and 159
from children. Annual Orange County population estimates of MRSA inpatient clinical cultures were 119/100,000 adults and
22/100,000 children. spa types t008, t242, and t002 accounted for 83% of all isolates. The distribution of these three spa types
among adults was significantly different from that among children (!2 " 52.29; P < 0.001). Forty-one percent of adult isolates
were of t008 (USA300), compared to 69% of pediatric isolates. In multivariate analyses, specimens from pediatric patients,
wounds, non-intensive care unit (ICU) wards, and hospitals with a high proportion of Medicaid-insured patients were signifi-
cantly associated with the detection of t008 strains. While community- and health care-associated MRSA reservoirs have begun
to merge, significant differences remain in pediatric and adult patient populations. Community-associated MRSA spa type t008
is significantly more common in pediatric patients.

Methicillin-resistant Staphylococcus aureus (MRSA) is a major
global cause of morbidity and mortality, imposing serious

economic costs on patients and hospitals (1, 6, 7, 13, 26, 53). Prior
to the mid-1990s, MRSA was largely a health care-associated
pathogen, causing infection predominantly in people with fre-
quent or recent contact with health care facilities (health care-
associated MRSA [HA-MRSA]). In the United States, the rates of
MRSA carriage (both asymptomatic and symptomatic) are esti-
mated to be 6 to 12% in general hospital patient populations and
9 to 24% in intensive care unit populations (ICUs) (23, 32, 50).
Although HA-MRSA has long been the primary cause of MRSA
infections, community-associated MRSA (CA-MRSA), which of-
ten causes infections among healthy children and young adults
with no exposure to the health care setting, is becoming increas-
ingly prevalent. The first reports of MRSA isolated from patients
with no identifiable risk factors came from Australia and the
United States in the 1990s (5, 21, 56). Since then, the prevalence of
CA-MRSA has rapidly increased, with reports of CA-MRSA infec-
tion from virtually every geographic region of the world (55, 59).
The incidence of life-threatening invasive infections owing to CA-
MRSA is increasing, and CA-MRSA appears to be particularly
virulent among children (38). Moreover, CA-MRSA has caused
outbreaks in the hospital setting (4, 41, 51), with some reports
suggesting that it may be replacing HA-MRSA (8, 46, 49, 52).

In the United States, the predominant community-associated
MRSA clone is now USA300 (defined by spa typing and multilocus
sequence typing [MLST] as t008 and ST8, respectively), having
rapidly disseminated and replaced USA400 (t128/ST1) since its
appearance in 2000. USA300 has several characteristics that may

offer a selective advantage over other MRSA clones, both commu-
nity associated (e.g., USA400) and health care associated (e.g.,
USA100 [t002/ST5]). These advantages include (i) a smaller
staphylococcal cassette chromosome mec (SCCmec) element
(usually type IV) than those of health care-associated strains (usu-
ally SCCmec types I to III), which is more readily transmissible and
may be an advantage in terms of the DNA replication speed; (ii)
fewer antibiotic resistance genes than health care-associated
strains, resulting in a fitness benefit due to the carriage of smaller
or fewer genes; and (iii) a higher growth rate, which may lead to
successful colonization by outcompeting health care-associated
strains (8, 43). Furthermore, the linkage of an arginine catabolic
mobile element with SCCmec type IV in USA300 likely confers
increased fitness and/or pathogenicity (11). Finally, high levels of
expression of regulatory genes associated with the virulence fac-
tors Panton-Valentine leukocidin and alpha-toxin have been
shown for USA300 versus USA400 isolates, which may contribute
to the invasiveness of USA300 (39).

The phenotypic and genotypic differences between HA- and
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CA-MRSA strains have been well documented (2, 10, 12, 33, 43),
yet there are few studies that have directly explored the differences
in MRSA strains isolated from adults and those isolated from chil-
dren. Park et al. (44) previously compared a small number of adult
and pediatric MRSA isolates in a South Korean hospital and found
a predominance of CA-MRSA isolates among children. A better
understanding of the frequency of community- versus health
care-associated MRSA clones among adults and children, and in
particular the USA300 clone, may inform strategies to prevent
transmission and disease.

Children may have different exposures to MRSA, as they con-
stitute a largely healthy population that is most likely to incur
MRSA infection through skin and soft tissue injuries related to
sports and other play activities (16). This is in contrast to the
chronically and critically ill adult population, which frequents
hospitals and may encounter health care-associated MRSA strains
more readily. Furthermore, children may experience different an-
timicrobial drug selection pressure compared to that of adults due
to differences in common disease syndromes and different guid-
ance on antibiotic therapy (9, 44).

Defining the characteristics of MRSA strains in adults and chil-
dren would provide insight into the spread of MRSA strains, par-
ticularly since there is growing evidence that community and
health care MRSA reservoirs are mixing (28, 30, 34, 49, 52). Fur-
thermore, few studies of adult or pediatric MRSA strains have
involved a population-based sample of strains. We conducted a
prospective cohort study of inpatients in a large metropolitan
county to characterize differences in pediatric and adult MRSA
strains.

MATERIALS AND METHODS
Study. We conducted a population-based, prospective collection of clin-
ical isolates of MRSA from 30 of 31 hospitals in Orange County, CA. This
study was approved by the Institutional Review Board of the University of
California Regents.

Isolate collection. Clinical (nonscreening) isolates of MRSA from
unique adult patients (!18 years of age) and unique pediatric patients
(!18 years of age) were collected from hospital microbiology laborato-
ries. Hospitals were instructed to collect MRSA isolates from unique pa-
tients up to a total of 100 isolates or for a duration of 12 months, which-
ever came first. In order to have a representative sample of Orange County
MRSA isolates, we limited isolates in this study to those collected for a
uniform duration of time from adult hospitals. Since the largest adult
hospitals reached 100 isolates over a 5-month period, we restricted the
period of all adult isolate collections to 5 months. All pediatric hospitals
required a 12-month collection period. Nearly all adult isolates were col-
lected between December 2008 and April 2009. Pediatric isolates were
collected between October 2008 and September 2009. Isolates from pa-
tients not admitted to hospitals were excluded from the study. Samples
were batched and delivered to the Orange County Public Health Labora-
tory using soy agar slants. For the repeated confirmation of MRSA, iso-
lates were plated onto selective medium for MRSA (BD CHROMagar).
MRSA strains were stored at "65°C in 15% glycerol Brucella broth.

Specimen data and hospital characteristics. Specimen data, includ-
ing patient age in years, specimen source (wound, blood, urine, sputum,
or other), specimen location (ICU or non-ICU), and time of specimen
collection with respect to admission date (hospital onset [HO], !3 days
after admission; community onset [CO], !3 days after admission), were
collected. Hospital characteristics were obtained from a California hospi-
tal data set (42), which included annual admissions, hospital type (acute
care versus long-term acute care [LTAC] facility), percentage of
Medicaid-insured patients, and percentage of Hispanic patients. Popula-

tion estimates of adults and children in Orange County were obtained
from the 2010 U.S. Census (57).

Laboratory methods and molecular typing. All strains were shipped
to Imperial College London in the United Kingdom for spa typing and
stored at "80°C. Cells were harvested on blood agar plates (Oxoid) and
incubated at 37°C overnight. DNA was extracted by using a Qiagen
DNeasy Blood & Tissue kit. DNA samples were eluted in 200 "l of elution
buffer (10 mM Tris-Cl, 0.5 mM EDTA [pH 9.0]) and stored at "20°C.
Following the sequencing of the spa region, spa types were determined by
using Ridom StaphType v2.1 (Ridom GmbH, Würzburg, Germany) (20).
To assess spa type diversity and relatedness, cluster analysis of spa types
was performed separately for adult and pediatric isolates by using the
Based upon Repeat Pattern (BURP) algorithm, a built-in feature of the
StaphType software (35). MLST and SmaI pulsed-field gel electrophoresis
(PFGE) were performed on a subset of the isolates (n # 171), to confirm
MRSA strain types, according to methods described previously (14, 48).
This subset included one isolate of each spa type and, for the 10 most
common spa types, one isolate from each of the hospitals in which these
spa types were present. Isolates were selected by using a random number
generator. For PFGE, DNA profiles were analyzed by using BioNumerics
software (version 5.0, 2007; Applied Maths). PFGE types were defined
using a similarity coefficient of 78%, and USA100 to USA800 strains were
used as references.

Statistical analyses. Annual adult and pediatric population estimates
of hospitalized patients with clinical MRSA cultures were calculated by spa
type, accounting for the duration of countywide collection. We further
calculated the percentage of MRSA strains from adult versus pediatric
patients that were due to the most common spa types (t008, t242, and
t002) and compared them by using #2 tests. Specimen data for t008, t242,
and t002 isolates were compared by using #2 or Fisher’s exact tests and, for
patient age, the Wilcoxon Mann-Whitney test. Simpson’s index of diver-
sity (1 " D) was used to compare the genetic diversities of MRSA strains
among adults and children. 1"D gives an unbiased measure of the prob-
ability of drawing two different spa types given the distribution of spa
types in a sample (19). The 95% confidence intervals (CIs) were calculated
as described previously (18). We conducted bivariate tests to evaluate the
association of spa type t008 with individual variables, including age
(adult/pediatric), specimen source (particularly wound and blood), time
of specimen collection (community or hospital onset), and ward type
(non-ICU/ICU). We also tested hospital-level variables, including annual
admissions (greater or less than 10,000), LTAC facility, percentage of
Hispanic patients, and percentage of Medicaid-insured patients. For mul-
tivariate analyses, variables with a P value of !0.1 were entered into a
generalized linear mixed model clustered by hospital and were retained at
an $ value of %0.05 (xtmelogit, STATA release 11, 2009; Stata Corp.).

RESULTS
A total of 1,124 adult and 159 pediatric MRSA isolates were col-
lected over the 5- and 12-month periods, respectively. A summary
of the characteristics of the clinical MRSA strains collected is
shown in Table 1. The median age of adults was 67 years (inter-
quartile range [IQR], 50 to 81 years), and that of children was 2
years (IQR, 1 to 9 years).

t008, t242, and t002 were the predominant spa types in Orange
County, accounting for 83% of all isolates (Table 2). The distribu-
tion of these spa types among adults (t008, 41%; t242, 23%; t002,
19%) was significantly different from that among children (t008,
69%; t242, 9%; t002, 6%) (#2 # 52.29; P ! 0.001). Annual popu-
lation estimates of clinical inpatient MRSA infections were 119/
100,000 adults and 22/100,000 children. Annual estimates by spa
type were 48/100,000 adults and 15/100,000 children for t008,
27/100,000 adults and 2/100,000 children for t242, and 22/100,000
adults and 1/100,000 children for t002.

According to MLST, the t008 isolates in our study were of the
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prototypic community clone USA300 (t008/ST8), and the t002
isolates were of the prototypic hospital clone USA100 (t002/ST5),
with t242 isolates being identified as ST5 (Table 2). Comparison of
t242 and t002 isolates for the following parameters revealed no
significant difference: the proportion from each specimen source,
the proportion of hospital and community onset, the proportion
collected in ICU and non-ICU wards, and the age distribution of
patients (all P $ 0.05). Conversely, t008 isolates were significantly
different from t242 and t002 isolates in the same tests (P ! 0.001).
t242 and t002 isolates shared the most common specimen source,
sputum (34% and 38%, respectively), whereas wounds were the
most common specimen source of t008 isolates (56%). PFGE of a
sample of t242 and t002 isolates showed them to be predomi-
nantly USA100 isolates (data not shown).

BURP analysis of the spa types clustered the majority of adult
isolates (97%) into three spa clonal complexes (spa-CCs) and

most pediatric isolates (96%) into two spa-CCs (Fig. 1). spa types
were clustered with either t008 (spa-CC008; community-
associated strains) or t002 (spa-CC002; health care-associated
strains), but in adults, a further spa-CC with founder t324 was
identified (spa-CC324). Isolates in this spa-CC were characterized
as ST72 isolates. For both adult and pediatric MRSA isolates,
MLST results showed that all isolates in spa-CC008 were of ST8
and that all isolates in spa-CC002 were of either ST5 or a single-
locus variant, ST105 (spa types t045, t088, and t1791 for the latter).
According to the BURP algorithm, spa types that differ from all
other spa types in the sample by more than 4 repeats, and thus
which cannot be clustered into a spa-CC, are termed singletons.
For adults, 10 (11.2%) spa types (40 [3.6%] isolates) were classi-
fied as singletons, and for children, 4 (18.2%) spa types (6 [3.8%]
isolates) were classified as singletons. spa types of less than 5 re-
peats in length were excluded from the BURP analysis because no
reliable evolutionary history can be inferred from “short” spa
types (35). For adults, 2 (2.2%) spa types (2 [0.2%] isolates) were
excluded, and for children, 1 (4.5%) spa type (1 [0.6%] isolate)
was excluded. The estimated genetic diversity of MRSA isolates
was significantly higher among adults than among children (1-
D # 75% versus 51%) (Table 2).

In bivariate analyses, pediatric patients, wound specimens, iso-
lation in a non-ICU ward, community-onset timing of collection,
and isolation from a hospital with $10,000 annual admissions
were associated with t008 (USA300) isolates (Table 3). In addi-
tion, admission to a hospital with a high proportion of Medicaid-
insured patients or a high proportion of Hispanic patients was
linearly associated with the recovery of t008 isolates. In multivar-
iate analyses, isolates from pediatric patients, wounds, non-ICU
wards, and hospitals with a high proportion of Medicaid-insured
patients remained significantly associated with spa type t008 (Ta-
ble 4). Isolates from hospitals with a high proportion of Hispanic
patients were significantly more likely to be t008 isolates (20%
higher odds of being a spa type t008 isolate per 10% increase in
numbers of Hispanic patients). However, this finding was col-
linear with hospitals with a high proportion of Medicaid-insured
patients and thus was removed from the multivariate model.

DISCUSSION
We conducted a prospective cohort study of inpatients in a large
metropolitan county in Californian, collecting all clinical MRSA

TABLE 1 Characteristics of clinical MRSA strains isolated from adult
and pediatric patients

Characteristic

No. (%) of isolates

Adulta Pediatricb Total/overall

Total MRSA isolates 1,124 (87.6) 159 (12.4) 1,283 (100)

Specimen source ofc:
Wound/abscess 488 (43.4) 81 (55.9) 569 (44.8)
Sputum 331 (29.4) 27 (18.6) 358 (28.2)
Urine 109 (9.7) 4 (2.8) 113 (8.9)
Blood 104 (9.3) 7 (4.8) 111 (8.8)
Otherd 92 (8.2) 26 (17.9) 118 (9.3)

Intensive care unit collectione 187 (16.7) 17 (11.8) 204 (16.1)
Hospital onset 399 (35.5) 40 (25.2) 439 (34.2)
a Collected for 5 months from hospitals serving adults.
b Collected for 12 months from hospitals serving children.
c Fourteen missing pediatric entries.
d According to brief notes in the data set, “other” specimen sources included the
following anatomical locations or types of specimens: 5 ear; 5 eye; 3 buttock; 2 each of
finger, leg, pleural, and skin; and 1 each of gastrointestinal, sinus, perineum, spleen, and
umbilical for pediatric specimen sources and 8 leg; 7 foot, knee, and medical device
related; 6 groin; 5 abdominal, spinal, and stool; 4 gastric; 4 hand; 3 back, pleural, and
tissue; 2 each of ankle, body fluid, buttock, ear, eye, stump, synovial fluid, and
unknown; and 1 each of drainage, gallbladder, hip, humerus, ileal crest, lung, pancreatic
fluid, skin, and stoma.
e Nineteen missing entries (4 adult and 15 pediatric).

TABLE 2 Ten most frequently found spa types among adult and pediatric patients in Orange County, CAa

Rank

Adult patients Pediatric patients

spa type MLST
No. of
isolates

% of
isolates

Cumulative
% spa type MLST

No. of
isolates

% of
isolates

Cumulative
%

1 t008 8 457 40.7 40.7 t008 8 110 69.2 69.2
2 t242 5 260 23.1 63.8 t242 5 14 8.8 78
3 t002 5 211 18.8 82.6 t002 5 9 5.7 83.7
4 t024 8 19 1.7 84.3 t024 8 3 1.9 85.5
5 t037 8 15 1.3 85.6 t045 5 2 1.3 86.8
6 t127 1 14 1.3 86.8 t068 8 2 1.3 88.1
7 t088 105 12 1.1 87.9 t2689 8 2 1.3 89.3
8 t1737 5 11 1 88.9 t324 72 2 1.3 90.6
9 t306 5 6 0.5 89.4 t622 8 2 1.3 91.8
10 t126 72 5 0.4 89.9 13 others 1 each 0.6 each 100
a The total numbers of spa types were 89 for adult patients and 22 for pediatric patients. Simpson’s index of diversity (1-D) values were 75% (95% CI, 73%, 76%) for adult patients
and 51% (95% CI, 41%, 60%) for pediatric patients. MLST, multilocus sequence type.
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isolates from 30 of 31 hospitals in order to characterize differences
in pediatric and adult MRSA strains. To our knowledge, this is the
first study to assess adult and pediatric MRSA isolates from a
population-based sample across a large region.

Countywide, adult and pediatric clinical MRSA isolates were
dominated by three spa types, two of which were consistent with
the prototypic community- and health care-associated clones
prevalent in the United States (t008 [USA300] and t002

[USA100]). t008 (USA300) was the most common single clone
among both adult and pediatric isolates. Nevertheless, t008 com-
prised a large majority of pediatric isolates, whereas adult isolates
were nearly equally divided among community- and health care-
associated clones. Most other spa types were shown by BURP to be
related to these two dominant clones. The two spa clonal com-
plexes spa-CC008 and spa-CC002 can therefore be thought of as
two distinct groups of isolates representing the major

FIG 1 Relatedness of spa types among adult (A) and pediatric (B) MRSA isolates according to the Based upon Repeat Pattern (BURP) algorithm. Clusters of
linked spa types correspond to spa clonal complexes (spa-CCs). spa types are clustered into a spa-CC when their repeat patterns differ by no more than 4 repeats.
The BURP algorithm sums up “costs” (a measure of relatedness based on the repeat pattern) to define a founder score for each spa type in a spa-CC. The founder
(blue node) is the spa type with the highest founder score in its spa-CC, and the subfounder (yellow node) is the spa type with the second highest founder score.
spa-CC008 has founder t008. Each node represents a spa type. The node size represents the number of clustered strains that belong to that spa type. The shading
of the branches represents the costs (similarities in repeat patterns) between two spa types; the darker the branch, the lower the cost (more similar repeat patterns).
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community- and health care-associated MRSA strains prevalent
in the United States.

Interestingly, t242/ST5 was slightly more common than t002/
ST5 among both adult and pediatric isolates, despite the predom-
inance of the t002/ST5 hospital clone in the United States. Given
the similarities of t242 and t002 isolates in this study, and the fact
that t242 differs from t002 by only one nucleotide (resulting in a
different spa repeat pattern by one spa repeat), t242/ST5 presum-
ably represents a minor variant of USA100 that has become prev-
alent in Orange County hospitals. t242 has been reported infre-
quently in the literature (24, 25, 60), with just one study reporting
t242 at an endemic level in an Italian hospital (45).

The additional spa clonal complex identified among adult iso-
lates included a community-onset isolate identified as a t324/ST72
isolate, an invasive community-associated MRSA clone reported
for elderly patients in South Korea from 2006 to 2007, just before
our isolate collection began (29). According to the U.S. Census
Bureau, 17.9% of the Orange County population is Asian, approx-
imately 2.9% of which is Korean (57).

There was significantly more genetic diversity among adult
MRSA isolates than among pediatric isolates. This could simply
represent the greater time that health care-associated clones have
had to diversify at the spa locus than community-associated
clones, which have emerged only in the past 2 decades. The greater
MRSA diversity among adults could also be due to different de-
grees of contact; for example, adults may have more diverse MRSA
encounters (travel, work, social venues, and health care facilities)
than young children (schools and day care centers).

The population estimates of clinical MRSA isolates in Orange
County show that there was a 6-fold-higher frequency of inpatient
MRSA clinical cultures among adults than among children. This
pattern was consistent among the three most common spa types,
t008, t242, and t002, and is likely a combination of more frequent
hospitalizations among adults (many of whom were elderly, with
a median age of 67 years) and more frequent MRSA carriage.

In multivariate analyses, community-associated MRSA clone
t008 (USA300) was associated with pediatric patients. In contrast
to adults, children are often healthier and are more likely to en-
counter MRSA in the community through exposure to high-
density environments, such as schools, day cares, camps, and
sporting activities, where close contact may facilitate the spread of
community MRSA strains. In agreement with data from previous
studies, we found that USA300 was associated with wounds,
which is the most common presentation for hospitalization due to
community-acquired MRSA infection (2, 17). USA300 was also
associated with hospitals that treat a large fraction of Medicaid-
insured patients, suggesting that community MRSA infections
may be more prevalent among patients from economically disad-
vantaged or high-density areas.

USA300 was also associated with isolation from non-ICU
wards, suggesting that this community strain is occurring in
healthier hosts or is producing infections that are less severe than
those caused by traditional health care-associated strains. Never-
theless, there is ample evidence that community strains are capa-
ble of producing fulminant infections (15, 37, 52). An under-
standing of what component of invasiveness is due to host
comorbidities versus pathogen virulence factors is an area of ac-
tive research.

Interestingly, we did not find that the isolation of t008 was
associated with community-onset clinical isolates (clinical culture
isolated less than 3 days after admission). This finding is likely due
to the fact that the majority of health care-associated carriage or
infection is found upon readmission to hospitals (27). It could
also be explained by community-associated strains that have be-
come endemic in some hospitals (49, 52).

Community- and health care-associated MRSA strains are be-
coming increasingly difficult to distinguish epidemiologically as
community-associated strains continue to penetrate hospital
MRSA reservoirs. Furthermore, it remains unclear whether com-

TABLE 3 Bivariate analyses of variables associated with spa type t008

Variable

% of t008 isolates

#2 PThose with characteristic Those without characteristic

Individual
Pediatric 69.81 40.75 47.67 !0.001
Community onset 48.10 37.13 14.09 !0.001
Non-ICU 47.17 27.45 27.00 !0.001
Blood specimen 40.54 44.30 0.58 0.446
Wound specimen 60.04 32.34 96.28 !0.001
LTAC 35.21 44.88 2.54 0.111

Hospital level
$10,000 annual admissions 38.40 51.52 22.00 !0.001
Medicaid-insured patientsa 1.34 (1.21–1.48) !0.001
Hispanic patientsa 1.29 (1.15–1.44) !0.001

a Odds ratio per 10% increase.

TABLE 4 Multivariate analysis of variables associated with spa type t008

Variable Odds ratio SE 95% CI P

Patient/isolate
characteristic

Wound specimen 2.64 0.34 2.06, 3.39 !0.001
Pediatric 2.07 0.52 1.26, 3.40 0.004
Non-ICU 1.77 0.32 1.24, 2.54 0.002

Hospital characteristic
% Medicaid-insured

patientsa

1.24 0.06 1.13, 1.35 !0.001

a Odds ratio per 10% increase.

Differences in Adult and Pediatric MRSA

March 2012 Volume 50 Number 3 jcm.asm.org 577

http://jcm.asm.org


munity clones are adding to or replacing traditional health care-
associated MRSA strains (3, 8, 22, 49). The implication of the
blurred line between community- and health care-associated
MRSA strains may be that efforts to control MRSA transmission
within hospitals will not be effective in controlling community
influx into hospitals. Simultaneous community strategies to limit
MRSA spread are needed. However, much is still unknown about
the acquisition and transmission of CA-MRSA, so improved
knowledge is needed to better guide infection control strategies.
Further studies are needed to ascertain whether community strat-
egies to reduce transmission in children and young adults would
produce benefits across the entire age spectrum.

One limitation of our study is that few individual-level charac-
teristics were available. Also, our study did not account for the
different policies in place at each hospital with regard to when to
obtain clinical cultures. These differences could affect MRSA de-
tection at each hospital and, possibly, the type of MRSA strains
isolated, if clinical cultures were more likely to be obtained for
sicker, older patients. Moreover, our results could have been af-
fected by the potential seasonality of MRSA infections and infec-
tion types due to the different collection periods for adult and
pediatric isolates (largely winter and spring for adult collections,
compared to all seasons for pediatric collections). A seasonality of
S. aureus infections, particularly skin infections, has been ob-
served in pediatric and adult patients in temperate and tropical
environments, with a predominance of infections during summer
and autumn (31, 36, 54, 58). A recent study in Rhode Island found
a 2- to 3-fold-increased incidence of MRSA infections (both CA-
and HA-MRSA) in pediatric patients during the second two quar-
ters of the year over the last decade (36). However, in that same
study, adult CA-MRSA infections showed less seasonal variation
than did pediatric infections, and no variation was observed
among adult HA-MRSA infections. Some studies observed no sig-
nificant seasonality of S. aureus infections, but those studies fo-
cused on bacteremia (40, 47). The collection of both adult and
pediatric MRSA isolates for the same time period, i.e., 12 months,
would have accounted for any potential seasonality effects and/or
other factors that could affect the type and diversity of MRSA
strains isolated.

Mandatory screening of high-risk inpatients was not in place in
California until 2009; therefore, our population estimates are
likely underestimates. In addition, our estimates should not be
construed as measures of MRSA infection among inpatients. Clin-
ical isolates often represent carriage without infection. Finally, our
estimates of the index of diversity for adult and pediatric MRSA
isolates may have been influenced by differing sample sizes (18).

In conclusion, our study found that in a large county, MRSA
isolates from hospitalized children were more likely to be of spa
type t008 (USA300). This community-associated spa type was as-
sociated with children, wounds, non-ICU care, and admission to a
hospital with a high percentage of Medicaid-insured patients. De-
spite the association of t008 isolates with children, t008 was still
the most common spa type among adult patients, suggesting that
community-based interventions are needed to stem the influx of
t008 isolates into hospitals. We also found evidence for a prevalent
variant of the USA100 clone (t242/ST5), which has not been re-
ported elsewhere. While community- and hospital-associated
MRSA reservoirs have begun to merge, significant differences re-
main in pediatric and adult patient populations, which may pro-

vide an impetus for different age-based strategies to reduce trans-
mission and disease.

ACKNOWLEDGMENTS
This work was supported by the University of California Irvine School of
Medicine, the Biotechnology and Biological Sciences Research Council
(grant number BB/D52637X/1), and the Wellcome Trust (grant number
089472/Z/09/Z).

We thank Diane Kim for her contributions to this study. We also
extend special thanks to the participating microbiology laboratories
throughout Orange County.

We do not have an association that might pose a conflict of interest.

REFERENCES
1. Abramson MA, Sexton DJ. 1999. Nosocomial methicillin-resistant and

methicillin-susceptible Staphylococcus aureus primary bacteremia: at
what costs? Infect. Control Hosp. Epidemiol. 20:408 – 411.

2. Bassetti M, Nicco E, Mikulska M. 2009. Why is community-associated
MRSA spreading across the world and how will it change clinical practice?
Int. J. Antimicrob. Agents 34(Suppl 1):S15–S19.

3. Bootsma M, Hota B, Diekmann O, Weinstein RA, Bonten M. 2006.
Abstr. 46th Intersci. Conf. Antimicrob. Agents Chemother., abstr K-1680.

4. Bratu S, et al. 2005. Community-associated methicillin-resistant Staph-
ylococcus aureus in hospital nursery and maternity units. Emerg. Infect.
Dis. 11:808 – 813.

5. Centers for Disease Control and Prevention. 1999. Four pediatric deaths
from community-acquired methicillin-resistant Staphylococcus au-
reus—Minnesota and North Dakota, 1997–1999. JAMA 282:1123–1125.

6. Cosgrove SE, et al. 2003. Comparison of mortality associated with
methicillin-resistant and methicillin-susceptible Staphylococcus aureus
bacteremia: a meta-analysis. Clin. Infect. Dis. 36:53–59.

7. Cosgrove SE, et al. 2005. The impact of methicillin resistance in Staphy-
lococcus aureus bacteremia on patient outcomes: mortality, length of stay,
and hospital charges. Infect. Control Hosp. Epidemiol. 26:166 –174.

8. D’Agata EM, Webb GF, Horn MA, Moellering RC, Jr, Ruan S. 2009.
Modeling the invasion of community-acquired methicillin-resistant
Staphylococcus aureus into hospitals. Clin. Infect. Dis. 48:274 –284.

9. David MZ, et al. 2006. Contrasting pediatric and adult methicillin-
resistant Staphylococcus aureus isolates. Emerg. Infect. Dis. 12:631– 637.

10. Diep BA, Carleton HA, Chang RF, Sensabaugh GF, Perdreau-
Remington F. 2006. Roles of 34 virulence genes in the evolution of
hospital- and community-associated strains of methicillin-resistant
Staphylococcus aureus. J. Infect. Dis. 193:1495–1503.

11. Diep BA, et al. 2008. The arginine catabolic mobile element and staphy-
lococcal chromosomal cassette mec linkage: convergence of virulence and
resistance in the USA300 clone of methicillin-resistant Staphylococcus
aureus. J. Infect. Dis. 197:1523–1530.

12. Eady EA, Cove JH. 2003. Staphylococcal resistance revisited:
community-acquired methicillin resistant Staphylococcus aureus—an
emerging problem for the management of skin and soft tissue infections.
Curr. Opin. Infect. Dis. 16:103–124.

13. Engemann JJ, et al. 2003. Adverse clinical and economic outcomes at-
tributable to methicillin resistance among patients with Staphylococcus
aureus surgical site infection. Clin. Infect. Dis. 36:592–598.

14. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. 2000. Multi-
locus sequence typing for characterization of methicillin-resistant and
methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Micro-
biol. 38:1008 –1015.

15. Frazee BW, Salz TO, Lambert L, Perdreau-Remington F. 2005. Fatal
community-associated methicillin-resistant Staphylococcus aureus pneu-
monia in an immunocompetent young adult. Ann. Emerg. Med. 46:401–
404.

16. Frei CR, Makos BR, Daniels KR, Oramasionwu CU. 2010. Emergence of
community-acquired methicillin-resistant Staphylococcus aureus skin
and soft tissue infections as a common cause of hospitalization in United
States children. J. Pediatr. Surg. 45:1967–1974.

17. Fridkin SK, et al. 2005. Methicillin-resistant Staphylococcus aureus dis-
ease in three communities. N. Engl. J. Med. 352:1436 –1444.

18. Grundmann H, Hori S, Tanner G. 2001. Determining confidence inter-
vals when measuring genetic diversity and the discriminatory abilities of
typing methods for microorganisms. J. Clin. Microbiol. 39:4190 – 4192.

Hudson et al.

578 jcm.asm.org Journal of Clinical Microbiology

http://jcm.asm.org


19. Grundmann H, et al. 2010. Geographic distribution of Staphylococcus
aureus causing invasive infections in Europe: a molecular-epidemiological
analysis. PLoS Med. 7:e1000215.

20. Harmsen D, et al. 2003. Typing of methicillin-resistant Staphylococcus
aureus in a university hospital setting by using novel software for spa
repeat determination and database management. J. Clin. Microbiol. 41:
5442–5448.

21. Herold BC, et al. 1998. Community-acquired methicillin-resistant
Staphylococcus aureus in children with no identified predisposing risk.
JAMA 279:593–598.

22. Hota B, et al. 2007. Community-associated methicillin-resistant Staph-
ylococcus aureus skin and soft tissue infections at a public hospital: do
public housing and incarceration amplify transmission? Arch. Intern.
Med. 167:1026 –1033.

23. Huang SS, et al. 2007. Improving methicillin-resistant Staphylococcus
aureus surveillance and reporting in intensive care units. J. Infect. Dis.
195:330 –338.

24. Johnson JK, et al. 2007. Skin and soft tissue infections caused by
methicillin-resistant Staphylococcus aureus USA300 clone. Emerg. Infect.
Dis. 13:1195–1200.

25. Kinnevey P, Shore A, Rossney A, Coleman D. 2010. Abstr. 20th Eur.
Congr. Clin. Microbiol. Infect. Dis., abstr P1712.

26. Klein E, Smith DL, Laxminarayan R. 2007. Hospitalizations and deaths
caused by methicillin-resistant Staphylococcus aureus, United States,
1999 –2005. Emerg. Infect. Dis. 13:1840 –1846.

27. Klevens RM, et al. 2007. Invasive methicillin-resistant Staphylococcus
aureus infections in the United States. JAMA 298:1763–1771.

28. Kourbatova EV, et al. 2005. Emergence of community-associated
methicillin-resistant Staphylococcus aureus USA300 clone as a cause of
health care-associated infections among patients with prosthetic joint in-
fections. Am. J. Infect. Control 33:385–391.

29. Lee SS, Kim YJ, Chung DR, Jung KS, Kim JS. 2010. Invasive infection
caused by a community-associated methicillin-resistant Staphylococcus
aureus strain not carrying Panton-Valentine leukocidin in South Korea. J.
Clin. Microbiol. 48:311–313.

30. Liu C, et al. 2008. A population-based study of the incidence and molec-
ular epidemiology of methicillin-resistant Staphylococcus aureus disease
in San Francisco, 2004-2005. Clin. Infect. Dis. 46:1637–1646.

31. Loffeld A, Davies P, Lewis A, Moss C. 2005. Seasonal occurrence of
impetigo: a retrospective 8-year review (1996 –2003). Clin. Exp. Dermatol.
30:512–514.

32. Lucet JC, et al. 2009. Carriage of methicillin-resistant Staphylococcus
aureus in home care settings: prevalence, duration, and transmission to
household members. Arch. Intern. Med. 169:1372–1378.

33. Ma XX, et al. 2002. Novel type of staphylococcal cassette chromosome
mec identified in community-acquired methicillin-resistant Staphylococ-
cus aureus strains. Antimicrob. Agents Chemother. 46:1147–1152.

34. Maree CL, Daum RS, Boyle-Vavra S, Matayoshi K, Miller LG. 2007.
Community-associated methicillin-resistant Staphylococcus aureus iso-
lates causing healthcare-associated infections. Emerg. Infect. Dis. 13:236 –
242.

35. Mellmann A, et al. 2007. Based upon Repeat Pattern (BURP): an algo-
rithm to characterize the long-term evolution of Staphylococcus aureus
populations based on spa polymorphisms. BMC Microbiol. 7:98.

36. Mermel LA, Machan JT, Parenteau S. 2011. Seasonality of MRSA infec-
tions. PLoS One 6:e17925.

37. Miller LG, et al. 2005. Necrotizing fasciitis caused by community-
associated methicillin-resistant Staphylococcus aureus in Los Angeles. N.
Engl. J. Med. 352:1445–1453.

38. Moellering RC, Jr. 2006. The growing menace of community-acquired
methicillin-resistant Staphylococcus aureus. Ann. Intern. Med. 144:368 –
370.

39. Montgomery CP, et al. 2008. Comparison of virulence in community-
associated methicillin-resistant Staphylococcus aureus pulsotypes
USA300 and USA400 in a rat model of pneumonia. J. Infect. Dis. 198:561–
570.

40. Morin CA, Hadler JL. 2001. Population-based incidence and character-
istics of community-onset Staphylococcus aureus infections with bactere-

mia in 4 metropolitan Connecticut areas, 1998. J. Infect. Dis. 184:1029 –
1034.

41. O’Brien FG, Pearman JW, Gracey M, Riley TV, Grubb WB. 1999.
Community strain of methicillin-resistant Staphylococcus aureus in-
volved in a hospital outbreak. J. Clin. Microbiol. 37:2858 –2862.

42. Office of Statewide Health Planning and Development. 6 June 2011, acces-
sion date. Patient discharge data public data set 2005. Office of Statewide
Health Planning and Development, Sacramento, CA. http://www.oshpd.ca
.gov/HID/Products/PatDischargeData/PublicDataSet/index.html.

43. Okuma K, et al. 2002. Dissemination of new methicillin-resistant Staph-
ylococcus aureus clones in the community. J. Clin. Microbiol. 40:4289 –
4294.

44. Park JY, et al. 2007. A comparison of adult and pediatric methicillin-
resistant Staphylococcus aureus isolates collected from patients at a uni-
versity hospital in Korea. J. Microbiol. 45:447– 452.

45. Parlato C, Cavallerio P, Fossati L, Allice T, Serra R. 2009. Abstr. 19th
Eur. Congr. Clin. Microbiol. Infect. Dis., abstr P1574.

46. Patel M, et al. 2008. Emergence of USA300 MRSA in a tertiary medical
centre: implications for epidemiological studies. J. Hosp. Infect. 68:208 –
213.

47. Perencevich EN, et al. 2008. Summer peaks in the incidences of Gram-
negative bacterial infection among hospitalized patients. Infect. Control
Hosp. Epidemiol. 29:1124 –1131.

48. Pfaller MA. 1998. Chromosomal restriction fragment analysis by pulsed-
field gel electrophoresis: application to molecular epidemiology, p 651–
657. In Isenberg HD (ed), Essential procedures for clinical microbiology.
ASM Press, Washington, DC.

49. Popovich KJ, Weinstein RA, Hota B. 2008. Are community-associated
methicillin-resistant Staphylococcus aureus (MRSA) strains replacing tra-
ditional nosocomial MRSA strains? Clin. Infect. Dis. 46:787–794.

50. Robicsek A, et al. 2008. Universal surveillance for methicillin-resistant
Staphylococcus aureus in 3 affiliated hospitals. Ann. Intern. Med. 148:
409 – 418.

51. Saiman L, et al. 2003. Hospital transmission of community-acquired
methicillin-resistant Staphylococcus aureus among postpartum women.
Clin. Infect. Dis. 37:1313–1319.

52. Seybold U, et al. 2006. Emergence of community-associated methicillin-
resistant Staphylococcus aureus USA300 genotype as a major cause of
health care-associated blood stream infections. Clin. Infect. Dis. 42:647–
656.

53. Shurland S, Zhan M, Bradham DD, Roghmann MC. 2007. Comparison
of mortality risk associated with bacteremia due to methicillin-resistant
and methicillin-susceptible Staphylococcus aureus. Infect. Control Hosp.
Epidemiol. 28:273–279.

54. Szczesiul JM, Shermock KM, Murtaza UI, Siberry GK. 2007. No de-
crease in clindamycin susceptibility despite increased use of clindamycin
for pediatric community-associated methicillin-resistant Staphylococcus
aureus skin infections. Pediatr. Infect. Dis. J. 26:852– 854.

55. Tristan A, et al. 2007. Global distribution of Panton-Valentine
leukocidin-positive methicillin-resistant Staphylococcus aureus, 2006.
Emerg. Infect. Dis. 13:594 – 600.

56. Udo EE, Pearman JW, Grubb WB. 1993. Genetic analysis of community
isolates of methicillin-resistant Staphylococcus aureus in Western Austra-
lia. J. Hosp. Infect. 25:97–108.

57. U.S. Census Bureau. 6 June 2011, accession date. United States census 2010
demographic profile data for Orange County, California. US Census Bureau,
Washington, DC. http://factfinder2.census.gov/faces/tableservices/jsf/pages
/productview.xhtml?pid#DEC_10_DP_DPDP1&prodType#table.

58. Van De Griend P, et al. 2009. Community-associated methicillin-
resistant Staphylococcus aureus, Iowa, USA. Emerg. Infect. Dis. 15:1582–
1589.

59. Wallin TR, Hern HG, Frazee BW. 2008. Community-associated
methicillin-resistant Staphylococcus aureus. Emerg. Med. Clin. North
Am. 26:431– 455.

60. Weese JS, Avery BP, Reid-Smith RJ. 2010. Detection and quantification
of methicillin-resistant Staphylococcus aureus (MRSA) clones in retail
meat products. Lett. Appl. Microbiol. 51:338 –342.

Differences in Adult and Pediatric MRSA

March 2012 Volume 50 Number 3 jcm.asm.org 579

http://jcm.asm.org


Patient sharing and population genetic structure of
methicillin-resistant Staphylococcus aureus
Weixiong Kea, Susan S. Huangb, Lyndsey O. Hudsonc, Kristen R. Elkinsb, Christopher C. Nguyenb, Brian G. Sprattc,
Courtney R. Murphyb, Taliser R. Averyd, and Marc Lipsitcha,e,1

aDepartment of Epidemiology and eCenter for Communicable Disease Dynamics and Department of Immunology and Infectious Diseases, Harvard School of
Public Health, Boston, MA 02115; bDivision of Infectious Diseases and Health Policy Research Institute, Irvine School of Medicine, University of California,
Irvine, CA 92617; cDepartment of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, United Kingdom; and dDepartment of
Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA 02215

Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved February 16, 2012 (received for review August 26, 2011)

Rates of hospital-acquired infections, specificallymethicillin-resistant
Staphylococcus aureus (MRSA), are increasingly being used as indi-
cators for quality of hospital hygiene. There has beenmuch effort on
understanding the transmission process at the hospital level; how-
ever, interhospital population-based transmission remainspoorly de-
fined. We evaluated whether the proportion of shared patients
between hospitals was correlated with genetic similarity of MRSA
strains from those hospitals. Using data collected from 30 of 32 hos-
pitals in Orange County, California, multivariate linear regression
showed that for each twofold increase in the proportion of patients
shared between 2 hospitals, there was a 7.7% reduction in genetic
heterogeneity between the hospitals’ MRSA populations (permuta-
tion P value = 0.0356). Pairs of hospitals that both served adults had
more similar MRSA populations than pairs including a pediatric hos-
pital. These findings suggest that concerted efforts among hospitals
that share large numbers of patients may be synergistic to prevent
MRSA transmission.

Methicillin-resistant Staphylococcus aureus (MRSA), one of
themost common and virulent nosocomial pathogens, is also

an increasingly important cause of community-acquired disease.
MRSA strains, particularly those associated with hospitals, are
often resistant to multiple antibiotics, limiting treatment options.
S. aureus is carried asymptomatically in∼30% of healthy adults and
is shown to be amajor cause of invasive disease among hospitalized
patients (1); MRSAmakes up a growing proportion of nosocomial
S. aureus infections in many countries. The circulation of a small
number ofMRSA clones that characterizes the current epidemic is
thought to be mainly the result of between-patient transmission
rather than de novo appearance of resistance in patients exposed to
antibiotics (2), because the appearance of a new MRSA strain
requires acquisition of a mec resistance element, a relatively rare
event. The level of genetic variation occurring in S. aureus within
identifiable clonal lineages allows the use of genetic markers to
track transmission of these lineages and sublineages (3, 4).
The prevalence of MRSA varies considerably both within and

between countries (5, 6). About 30% of the S. aureus causing
bloodstream infections is methicillin resistant in the United King-
dom, whereas that proportion is ∼1% in The Netherlands and
Scandinavian countries (7). Among countries with high endemic
MRSA infection rates, the proportion is highest in large teaching
hospitals (6, 8), where the highest frequency of new emerging
MRSA clones has also been reported (9–12). The proposed reasons
include increased antibiotic use and increased prevalence of med-
ical procedures and serious medical conditions associated with
MRSA acquisition and disease (13). BecauseMRSA can be carried
asymptomatically for a long time (14), readmission could introdu-
ce a previously acquired strain into a newhospital (15). Thus, failure
of one hospital’s infection control could in principle affect the
prevalence of MRSA in other hospitals that share patients with it
(16). Previous studies have suggested that patient transfer or patient
referral patterns (17) could affect the prevalence of MRSA in
hospitals (1, 2, 16, 18, 19), on the basis of theoretical arguments and

observations that clones of MRSA appear in neighboring hospitals.
Population genetics can provide a test of the hypothesis that patient
sharing plays an important role inMRSAdynamics: If so, onemight
expect that hospitals that share large numbers of patients would also
tend to share genetically similar populations of MRSA.
In the current study, we sought to investigate whether the pattern

of genetic relatedness among MRSA isolates from hospitals within
Orange County (OC), California, was consistent with a significant
role for patient sharing in determining the population of MRSA
strains within a hospital. OC is well suited for this study because it is
the fifth largest county in theUnited States, and it has relatively low
population flow from three of its four sides. A finding that MRSA
isolates from hospitals that share more patients tend to be related
to one another would provide an independent line of evidence for
the importance of patient transfer in spreading MRSA from hos-
pital to hospital. For S. aureus genotyping, we used the spa locus,
which encodes protein A, a species-specific protein known for its
IgG binding capacity (3). This locus features highly polymorphic
internal regions due to short tandem repeats (STRs) (20) and
therefore serves as a good target for molecular genotyping (spa
typing). This genotyping method has been demonstrated to be
useful in researching transmission, outbreaks, or geographic dis-
tributions (3, 21, 22). Using spa typing, we sought evidence on how
MRSA strains “travel” with patient flow, to infer how patient
transfer might influence MRSA spread among hospitals.

Results
Summary of Overall Approach. We used Wright’s F statistics to
measure genetic heterogeneity between MRSA populations in
hospitals and groups of hospitals and used pairwise regression
analysis supplemented by group-level analysis as our methods, as
described in Materials and Methods.
In the pairwise regression analysis, we calculated the heterozy-

gosity of each pair of hospitals (HR) (for each pair we regard the two
hospitals as a group) and the heterozygosity of each single hospital
within a pair (HS). FSR was calculated for each pair of hospitals
accordingly and was used as our response variable to measure the
genetic dissimilarity between a pair of hospitals. A positive coeffi-
cient for a predictor of FSR indicates that hospitals are more diver-
gent from one another, whereas a negative coefficient indicates that
hospitals are more similar to one another.
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The distribution of FSR is shown in Fig. S1A. We found that
the distribution of this pairwise FSR is significantly skewed, so we
log-transformed this variable in the regression analysis, and the
new distribution is shown in Fig. S1B. This procedure was also
carried out for the main predictor variable, patient flow, as
shown in Fig. S1 C and D.
In group-level analysis, we used the FST statistics calculated from

heterozygosity of all 30 hospitals (HT) and heterozygosity of each
individual hospital (HS) to measure heterogeneity or the reduction
of heterozygosity from the total population level to the individual
hospital level. For this study, FST = 0.0853, and HT and HS from
which it is calculated = 0.719 and 0.658, respectively. As FRT mea-
sures the reduction of heterozygosity when hospitals are grouped
compared with the total 30 hospitals, this result implies that the best
possible grouping (that is, each singlehospital is viewedasonegroup)
could do no better than to achieve an FRT = 0.0853 (FRT = FST).

Predictors of Similarity Between Pairs of Hospitals. Individual categorizing
variables. Table S1 shows the characteristics of all 30 hospitals. For
pairwise analyses described below, dichotomous variables for pri-
vate insurance proportion, Medicaid coverage, hospital size, and
proportion Hispanic were created to reflect above-cut point or
below-cut point values.
Pairwise analysis of similarity. For each of the 435 hospital pairs, we
calculated and log-transformed FSR to get log-FSR, serving as a
measure of population differentiation between them. We per-
formed multivariate regression on the relationship of log-FSR to
log-transformed patient flow and to pairwise geographic distances
between hospitals, average isolates collected, and the dichotomous
variables mentioned above. The P values presented in all of our
regression analyses are multiple Mantel test permutation P values,
used to account for dependency between observations involving
pairs of hospitals. The results are presented in Table 1. Greater
patient flow between a pair of hospitals (log flow) was associated
with reduced pairwise FSR, i.e., greater similarity in MRSA pop-
ulations between hospitals (coefficient = −0.115, P value =
0.0356). Another predictor of similarity in MRSA populations was
for both to be nonpediatric (ped00, coefficient =−0.801, P value=
0.0448). Univariate analyses are shown in Table S2.
In addition, we calculated Pearson correlation coefficients for

each pair of the 13 variables to assess collinearity of predictors. We
found relatively large correlation between the proportion of His-
panic patients and Medicaid coverage (coefficient for ethnicity11
and medicaid11 = 0.581 and for ethnicity00 and medicaid00 =
0.564), and between the average number of isolates collected and
hospital size (coefficient for SSize and size11 = 0.616 and for SSize
and size00=−0.680). This result suggests that these variablesmight
have had small and insignificant effects in our models due to

collinearity. We thus performed multivariate analyses with each
(group) of these variables removed in turn, as shown in Tables S3–
S6. The results of these models were consistent with those in the
primary analysis. In these alternative models, the coefficient of log
flow ranged from −0.110 to −0.134 (vs. −0.115 in the base model)
and remained statistically significant. Exclusion of sample size led to
a statistically significant increase in similarity between pairs of large
hospitals, compared with pairs containing a small and a large hos-
pital (Table S3). Exclusion of hospital size variables led to a statis-
tically significant association between larger sample size and greater
similarity between the hospitals (Table S4). Neither exclusion of the
ethnicity variables (Table S5) nor exclusion of the Medicaid varia-
bles (Table S6) produced a statistically significant association with
the other, but with Medicaid excluded there was a trend toward
greater similarity of hospitals having >20% Hispanic patients.
Although the correlation between patient flow—our main

variable of interest—and geographical distance was not as large
(coefficient for log flow and dist = −0.378), we conducted an-
other multivariate analysis with distance excluded, as shown in
Table S7. The result suggested that by removing the distance
predictor, a slightly greater degree of similarity was associated
with greater patient flow (coefficient = −0.128).
Two of the hospitals have fewer isolates available (hospital 21,

six isolates; hospital 29, four isolates). To verify that our results
were not driven by them, we removed them from the dataset and
ran the full multivariate regression again. The coefficient on
patient flow was almost unchanged (−0.114) although the
Mantel P value increased to 0.053 (Table S8).
As we hypothesized, our results based on the full multivariate

model showed that hospitals sharing more patients have signifi-
cantly more similar MRSA populations, after adjustment for
other possible confounders. For each factor of 2 increase in pa-
tient flow (see Materials and Methods for definition), there is an
associated 1–2−0.115 = 7.7% reduction in pairwise FSR between
the hospitals, whereas the interquartile range of hospital pairs for
log flow was −11.51 to −8.74, which corresponds to a 19.8% re-
duction in pairwise FSR. Another variable was also statistically
associated with increased similarity of MRSA populations: Hos-
pitals that both served adult patients tended to have populations
that were more similar to one another. Visual inspection sug-
gested that none of these results were driven by individual outliers.

Predictors of Similarity at the Group Level. Estimating grouping
efficiency. We used group-level analysis to supplement our results
in pairwise analysis. This method divides hospitals into groups by
a given criterion and calculates FRT for the grouping. FRT here
measures the reduction of heterozygosity caused by grouping
relative to all hospitals without grouping and serves as a mea-

Table 1. Results of pairwise multivariate analysis

Variable no. Variable name Description Coefficient P value*

1 Log_flow Log-transformed pairwise patient flow −0.115 0.0356
2 SSize Average sample size of MRSA isolates provided by a pair of hospitals −0.010 0.2474
3 Medicaid11 Indicator of both hospitals having Medicaid >10% −0.342 0.2476
4 Medicaid00 Indicator of both hospitals having Medicaid no more than 10% −0.191 0.5510
5 Private11 Indicator of both hospitals having private insurance >35% 0.041 0.8742
6 Private00 Indicator of both hospitals having private insurance no more than 35% 0.081 0.7068
7 Size11 Indicator of both hospitals having annual admission >10,000 −0.133 0.7198
8 Size00 Indicator of both hospitals having annual admission no more than 10,000 −0.026 0.9404
9 Ethnicity11 Indicator of both hospitals having >20% Hispanic patients −0.077 0.8102
10 Ethnicity00 Indicator of both hospitals having no more than 20% Hispanic patients −0.166 0.5714
11 Ped00 Indicator of both hospitals being mainly nonpediatric −0.801 0.0448
12 Ped11 Indicator of both hospitals being pediatric 0.368 0.5022
13 Dist Distance between a pair of hospitals in kilometers 0.004 0.7066

*Permutation P values were calculated by multiple Mantel test permutation. P values that reached significance are in boldface type.
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surement of between-group heterogeneity—that is, a meaningful
grouping should give a higher FRT. In group analysis, “T” refers all
30 hospitals (MRSA population), “R” refers to a group of hos-
pitals, and “S” refers to a single hospital.
We first show the evaluation criteria for groupings. In Fig. 1, the

red line gives the theoretical bestFRT any grouping can achieve, and
the “X”s and error bars show how well random groupings can per-
form.Weuseda genetic algorithm to search for groupingswithnearly
the best possible results attainable for a given number of groups,
and we constructed random groups to give the null distribution of
FRT; seeMaterials and Methods for details of these approaches.
Clearly, with more groups it is possible to obtain a higher value

of FRT; in the limiting case of 30 groups each representing one
hospital, we would have had FRT = FST. Thus, we want
a grouping scheme to have high FRT while also having a relatively
low number of groups.
Fig. 1 also gives evaluations of grouping by a few individual

criteria (corresponding to some of the predictors in pairwise
analysis). Roughly, these results agree with that from the pair-
wise analysis. Details can be found in Table S9, and the result of
network grouping is described below.
Grouping by the information theoretic approach (network grouping). This
method creates groups of hospitals such that there is more fre-
quent patient sharing within each group than between groups.
The method used to create groups within the patient-sharing
network uses an information theoretic approach (23) that creates
groups on the basis of minimizing the expected description
length of an idealized random walk on the network; for details
see ref. 23. The four groups are illustrated in Fig. S3.
Given this grouping scheme, the HR, or the heterozygosity on

groups, is found to be 0.705, and we calculated FRT = 0.0204
(Fig. 1), with P value = 0.050. At four groups of hospitals, the
maximum FRT by genetic algorithm is 0.0448, and thus the
grouping is achieving 45.5% of the best achieved by the GA.

Discussion
This study used patient sharing data together with spa genotyping
of MRSA strains to analyze how genetic similarity of MRSA
depends on patient sharing networks in Orange County hospitals.

In the United States, patient sharing is driven by both the pa-
tient and the health provider (24). Patients may choose services at
different locations and are influenced by many factors, including
their insurance policy, which may restrict patients’ choice of
hospitals. Changes in insurance policies, transfers to more ad-
vanced hospitals for better care, and other reasons might cause
patient moves between hospitals. Many theoretical studies have
addressed the association between MRSA prevalence and patient
referral between hospitals (for example, see refs. 2 and 15), and
a positive correlation has been predicted. We address this ques-
tion from a bacterial population genetic perspective (25, 26), using
systematic samples from hospitals within a single county.
We found that the extent of patient sharing between hospitals

predicts the extent of genetic similarity between isolates ofMRSA
obtained from them.Using both pairwise and group-level analysis,
we found that the more patients were shared between hospitals,
the more similar their MRSA appeared at the spa locus. Re-
gression analysis for pairs of hospitals showed significantly more
similarity betweenMRSA frompairs of hospitals that sharedmore
patients, after accounting for other potential predictors including
physical distance. Meanwhile, our group-level analysis found that
the grouping that classified hospitals on the basis of patient
sharing gave an FRT that was significantly better than that of
randomly generated grouping schemes.
Agent-based models using these data have found that out-

breaks in one hospital could translate to increases in MRSA
burden in another hospital (27). The finding that greater patient
sharing is associated with greater genetic similarity of MRSA
strains, after adjusting for possible confounders, supports the
idea that patients track contagious pathogens across hospitals.
This result is important given the perhaps unexpectedly large
volume of patient sharing that occurs during routine medical
care in US hospitals (17).
Patients in Orange County tend to be admitted to hospitals

close to their homes. As a result, it is likely that similarities in
MRSA strains found in patients who reside near one another
could be caused by shared exposure to the same hospitals, as well
as by transmission within the community. The finding that hos-
pitals caring for adult patients had more similar MRSA strains
than pediatric hospitals may be a further indicator (beyond our
findings about patient flow) that MRSA genotypes segregate
with patient sharing patterns, since pediatric and adult medical
care is segregated in the United States. More definitive studies
showing reduction in MRSA burden and strain similarities fol-
lowing regional hospital collaboratives are needed to further
understand the contagious impact of sharing patients and the
magnitude of prevention that is achievable.
To date, despite a number of theoretical studies suggesting the

possible benefits of interventions coordinated among groups of
hospitals sharing patients and the possible “externalities” of high
MRSA rates in one hospital increasing those in neighboring hos-
pitals, policies such as Medicare reimbursement treat MRSA
infections as a problem of the individual hospital, with the effect, as
has been argued, that “current Medicare rules subsidize MRSA
pollution” (ref. 28, p. 163–182). A possible reason for this seeming
disconnect between modeling evidence and policy is the lack of
direct empirical evidence that populations of MRSA in one hos-
pital can be traced to sharing of patients from other hospitals at the
local level. Many prior empirical studies have documented the
spread of clones between hospitals, regions, or countries or have
shown that individuals with MRSA colonization are transferred
between hospitals. Other studies, which showed that referral hos-
pitals had the highest rates of MRSA infection, did not disentangle
whether this association was due to greater numbers of transferred
patients, sicker patients, or other factors. This study provides rig-
orous evidence for the role of patient sharing within a local area in
leading to measurable changes in the MRSA population in in-
dividual hospitals over a sustained period; moreover, the genetic

Fig. 1. FRTs by various grouping methods. The uppermost horizontal line
represents the maximum value FRT can achieve under any condition (which is
FST of the total population of 30 hospitals). FRTs attained by the genetic al-
gorithm (GA) serve as an estimate of the largest FRT attainable in practice by
numerical optimization. The mean and 95% confidence interval (CI) of
random grouping display the distribution of randomly generated FRTs at
a given number of groups, serving as an estimation of “background”. Other
symbols of various colors stand for FRTs of different groupings, the detailed
description of which can be found in the main text.
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evidence provided here is an independent line of evidence that
confirms the importance of patient sharing. This finding implies
that there is hope for synergistic impact to reduce MRSA, with
concerted efforts by hospitals to implement prevention strategies
together. Had we found that MRSA strains were indiscriminately
found throughout all hospitals, this result would have suggested
that a county-wide approach to MRSA containment would be
necessary. Instead, it appears possible that targeted approaches
might well produce substantial impact when applied to a small
group of hospitals that are strongly connected by patient sharing.
There are several limitations to our study. First, our measure of

patient sharing considered transfer of patients between hospitals, in
both directions and regardless of theirMRSA colonization status. A
more directly relevant measure, if it were available, would be the
transfer of patients colonized withMRSA from each hospital to the
other (19). On the other hand, the demonstration here that overall
patient transfer is a predictor ofMRSA similarity between hospitals
suggests that overall patient transfer is an adequate surrogate for the
effect of sharing of MRSA-colonized patients, at least for analyses
of this type. A related limitation is that whereas 92% of adults in the
data set for patient transfer had identifiers (thus only 8% were
untracked), the majority (86%) of children lacked such identifiers.
However, of these, 63% were<6 mo of age, and a large proportion
of these would have been hospitalized at birth and would not have
been readmitted (17). Second, the current study did not assess the
impact of strains categorized as hospital-onset (HO)-MRSA vs.
community-onset (CO)-MRSA (3). We did not assess this distinc-
tion partly because community and healthcare reservoirs are mixing
and because, at a hospital level, there were often too few strains to
make these types of evaluations. Moreover, all strains were treated
equally, assessing only whether they were distinguishable by our
typingmethod. Third, patient sharing data could be used in different
ways that take into account patient sharing directedness, time of
transfer, and length of stay in hospitals, which might provide other
interesting findings but were not implemented due to data limi-
tations. Fourth, unmeasured or residual confounding of the asso-
ciation between patient flow and MRSA population similarity is
a possibility, as in all such studies. A potential confounder of par-
ticular concern is that hospitals that transfer many patients may also
draw from the same patient population, so that similarity of the
catchment populations leads to importation of similar strains, which
could explain MRSA population similarities independent of any
causal effect of patient sharing. To address this problem, we in-
cluded in our model a variable for distance between the two hos-
pitals; compared with a model omitting distance (Table S7), the
baseline model (Table 1) had a similar, but slightly smaller effect of
patient sharing. Moreover, distance between hospitals was not
a significant predictor in the baselinemodel, nor was it significant in
univariate analysis, whereas patient sharing was. In addition, we
included variables for shared demographic characteristics of
patients, to further eliminate spurious associations with patient
sharing that are in fact caused by similar patient populations.
Nonetheless, because none of these variables perfectly captures
similarities in patient populations, it is possible that the association
between patient sharing and genetic similarity of MRSA remains
biased by some of these factors. Specific spa types associated with
pediatric and adult patients in this population have been described
recently (29). Fifth, although the spa genotypingmethod used in the
current study is widely used as a fast and reliable genotyping tech-
nique for S. aureus, we might obtain more meaningful results if we
used higher-resolution typing systems. Finally, we noticed that some
of our hospitals have relatively fewer isolates available. Although
the exclusion of these hospitals did not qualitatively affect the results
of our pairwise analysis, we found that removing hospitals 21 and 29
made our network grouping result insignificant. Themain reason for
this loss of statistical significance is that each hospital has a spa type
that is rare among all hospitals (appearing only in the hospitals that
are in the same networking group), and its removal, combined with

the fact that these hospitals have fewer isolates, made the distri-
bution of random FRTs generated by random grouping higher. Al-
though we preserved these hospitals in group-level analysis as we
believe these rare isolates indicated within-group similarity, more
isolates from these hospitals, if possible, are strongly desired.
In summary, we found that patient sharing patterns across

hospitals are likely to be correlated with MRSA genetic hetero-
geneity, along with several other hospital characteristics. This
study is a unique regional analysis of a relatively enclosed large
metropolitan region of 3 million people. It performs a compre-
hensive analysis of whether hospitals that share patients also share
MRSA strains. It provides evidence of local ecosystems within
a single region that are associated with shared patients and sug-
gests that certain groups of local hospitals could make concerted
and synergistic efforts to reduce the prevalence of important re-
sistant pathogens and reduce healthcare-associated disease.

Materials and Methods
Study. We conducted a population-based, prospective collection of clinical
isolates of MRSA from 30 of 32 hospitals in OC, California as described else-
where (17). The geographical distribution of these hospitals is shown in Fig. S4.
This study was approved by the Institutional Review Board of the University of
California Regents.

Isolate collection, specimen- and hospital-level data, and laboratory
methods are described in SI Text.

Measuring the Genetic Similarity in MRSA Between Pairs or Groups of
Hospitals. We adopted a standard measure of genetic similarity: Wright’s F
statistics (30). F statistics detect population substructure measured by a given
genetic locus of interest. Onefirst calculates the “heterozygosities” of this locus
ondifferent levels; here, heterozygosity corresponds to theprobability that two
randomly chosen isolates will differ at the locus of interest. Three hierarchical
levels of population were used in this study: (i) subpopulations (S) refer to the
bacteria isolated from a single hospital, (ii) “regions” (R) refer to the bacteria
from a subset (group) of hospitals less than the 30 total hospitals in our study,
and (iii) the total population (T) refers to all bacteria included in our study. Note
that in pairwise analysis, we only have R (a pair of hospitals) and S (a single
hospital)—T is not used in the pairwise analysis. If there is any population
substructure, then the heterozygosity calculated for the total populationwill be
higher than the weighted average of that calculated for each group in-
dividually. In this report, we use the term “heterogeneity” to refer to high F
statistics implying genetic differentiation between different populations.

Formally, heterozygosity of a population (in terms of one genetic locus) is
defined as oneminus the sum of squared allele frequencies. Let pi (i = 1, 2, . . .)
represent the frequency of allele i; then the heterozygosity of this locus is
given by

H ¼ 1−
Xk

i¼1

p2
i ;

whereH stands for heterozygosity, and k is the total number of alleles present.
Here, in the total population T (the MRSA population of all hospitals

involved) we calculate the heterozygosity of this total population (HT), using

HT ¼ 1−
Xk

i¼1

p2
Ti

with each allele’s frequency (pTi ) and the number of different alleles (k) in
the total population. HS, the heterozygosity of subpopulations (individual
hospitals) is calculated similarly to HT, except that first, we do the calculation
restricted to each subpopulation and then calculate HS as the average of all
of the computed subpopulation heterozygosities,

HS ¼
1
n

Xn

i¼1

HSi

HSi ¼ 1−
Xki

j¼1

p2
ij ;

where n is the total number of subpopulations, HSi is the heterozygosity of
subpopulation i, ki is the number of different alleles in subpopulation i, and
pij is allele j’s frequency in subpopulation i.
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Between these two levels, another level, the regional heterozygosityHR (in
the current study, a region means a group of hospitals we classified), is also
calculated similarly: We take a group of hospitals and compute the het-
erozygosity of that group. Afterward, HR is just the weighted average of all
these regional heterozygosities, with the number of hospitals in each group
being the weights. It can be shown that HT ≥ HR ≥ HS (equal signs hold when
there is no population substructure). Then, the F statistics we used are
defined as

FSR ¼ HR −HS

HR

FRT ¼ HT −HR

HT

FST ¼ HT −HS

HT
:

Measurement of MRSA Population Similarity—Pairwise Analysis of Hospitals.
Potential individual predictors. To assess patient demographic factors that might
account for genetic similarity of MRSA found in pairs of hospitals, we defined
the following dichotomous variables. For dichotomized proportions, the
subscript zero indicates a proportion less than or equal to the break point.
Hospitals were classified for whether they were or had the following:

Over 35% of patients privately insured
Over 10% of patients on Medicaid
Over 20% of patients Hispanic
Over 10,000 admissions per year
Pediatric hospital (vs. adult).

Pairs of hospitals were classified as 00, 01/10, or 11 on each of these
variables, and genetic similarity was assessed for hospitals that were similar
on these variables (00 or 11) compared with pairs containing hospitals that
were different (01/10).

The predictor of primary interest was patient flow. Using previously
published data (17) on the number of times any patient was transferred
between two hospitals (including possible multiple transfers of the same
patient or discharge from the first before admission to the second, with an
intervening stay at home), the flow of patients from hospital A to hospital B,
TAB, was defined as the proportion of hospital B’s patients in a year who had
a previous stay in hospital A during the year. The average flow between
hospital A and B was then defined as (TAB + TBA)/2 and was used in our
analyses. A more detailed definition can be found in SI Text.
Linear regression analysis. We used multivariate linear regression to assess the
predictors of genetic similarity between the MRSA populations in pairs of
hospitals and used univariate regression for each single variable as a sup-
plement. The response variable that measures heterogeneity was pairwise
FSR—the reduction in heterozygosity when two hospitals are viewed as
a whole. We log-transformed these two variables to obtain normally dis-
tributed data. As some of the hospital pairs have flow = 0, we added 0.00001
(∼50% of the smallest available data) to all flow data to perform the log
transformation. To account for other possible predictors, we adjusted for
the demographic variables described in the previous section by also using
two indicator variables for each demographic variable. Standard regression
P values do not account for the dependence among the observations in-
duced by the fact that the response variables are genetic “distances” be-
tween pairs of hospitals. To adjust for this nonindependence, we performed
multiple Mantel permutation tests (univariate Mantel test for univariate
analyses) to generate permutation P values for all regression analyses and
referred to these P values as permutation P values, as described elsewhere
(31). Briefly, we constructed a genetic distance matrix for our response
variable—pairwise FSR from our data, with each element in the matrix—and
dij corresponds to the log-FSR of hospitals i and j and comes from the row of
data that records the pairwise information of these two hospitals (i.e., pa-
tient flow, distances, etc.). Then we shuffled this matrix by each hospital—in
other words, we shuffled the rows and columns in the same way 5,000 times,
and the resulting matrices were flattened and paired back with predictor
variables to conduct 5,000 regressions. Two-tailed P values were calculated
from the distribution of t statistics of corresponding coefficients generated.

In addition, for each pair of hospitals, we also adjusted for (i) sample size,
by using the average number of spa-typed isolates of the two hospitals, and

(ii) distance between the two hospitals, calculated on the basis of their
longitudinal and latitudinal data, in kilometers.

Univariate plots of the response vs. individual predictors were checked
visually for outliers.

Measurement of MRSA Population Similarity—Analysis of Groups of Hospitals.
As a complementary approach, we considered whether grouping the hos-
pitals into a small number of groups on the basis of the demographic
characteristics used above of their patient populations or, of more direct
interest, on the basis of their patterns of patient sharing, would create groups
that captured some of the population genetic structure of the MRSA in the
hospitals. To assess this possibility, we sought both to assess the extent to
which the best possible grouping could create groups that are genetically
homogeneous (the value of FRT obtained by an optimal grouping) and to
assess how much genetic structure would be captured in randomly con-
structed groupings of all 30 hospitals (the range of FRT values obtained by
random groupings). The first assessment was done by using a genetic al-
gorithm (GA) to give an approximate numerical value because an exhaus-
tive/exact method is computationally infeasible, and the second assessment
was done by creating groupings in which hospitals were randomly assigned
to group membership.
GA—Evaluation of grouping efficiency. To establish a standard for the possible
extent to which any grouping scheme of hospitals could define genetically
similar MRSA populations (“grouping scheme” or “grouping” refers to a spe-
cific group assignment of all hospitals), we attempted tofind the groupings of
hospitals (using no information about the hospitals themselves) that maxi-
mized FRT—the measure of genetic heterogeneity between groups—by using
a GA. We implemented this method by generating random groupings at
a given number of groups and evaluating FRT for each grouping and then
evolving the groupings by enriching and combining groupings with high FRT.
The goal was to approximate the optimal groupings at a given number of
groups to serve as a reference of maximum FRT. This method was repeated for
groupings with two, four, or six groups (we primarily used two and four
groups, and the result of six groupswas used to show the trendof FRTwhen the
number of groups increases). These groupings are referred to asGAgroupings.
Details of this algorithm can be found in SI Text and Fig. S2.
Evaluation of null distribution of FRT. To evaluate whether groupings of hospitals
based on any given measurement contain information about the genetic
structure of the MRSA population (FRT) greater than expected by chance
alone, we created a null distribution of FRT for randomly chosen groupings
that divided hospitals into two, four, and six groups. For each given number
of groups, we randomly generated 15,000 groupings and tabulated the
distribution of FRT from these results (these groupings are referred to as
random groupings of k groups). We obtained the mean and 95% coverage
interval of FRTs for these random groupings. The P value (double sided) of
a given FRT for a particular grouping is defined by the proportion of ran-
domly generated FRTs that are of equal distance or farther away from the
mean than it is.
Grouping of hospitals by prespecified categories. We first grouped all hospitals
using categorizing variables specified in Measurement of MRSA Population
Similarity—Pairwise Analysis of Hospitals , including private insurance pro-
portion, Medicaid coverage, size (annual admission), ethnicity (Hispanic),
and pediatric vs. adult-only hospitals (the groups are named by their
grouping criteria).
Grouping of hospitals by the information theoretic approach (network grouping). For
patient sharing, we used the algorithm of ref. 23 to identify “modules” or
neighborhoods within the network of hospitals on the basis of patient flow.
To do so, we considered each hospital as a “node” in the network and be-
tween each hospital constructed an undirected edge representing patient
sharing with weight determined by the proportion of shared patients, as
given in Measurement of MRSA Population Similarity—Pairwise Analysis of
Hospitals. The algorithm defines neighborhoods—roughly speaking—as sets
of nodes in which an imaginary random walker, traversing edges of the
network with probabilities proportional to the edge weight, would be much
more likely to stay within a set. Thus, sets of nodes that are well connected
with one another will tend to be in the same group; in our case, sets of
hospitals that share many patients with one another will tend to be in the
same group, and sets of hospitals that do not share many patients with one
another will tend to be in different groups. Technical details of this method
are given in SI Text, which summarizes the account given in ref. 23. This
method is referred to as network grouping.
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