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Abstract

Obesity  is  becoming  one  the  leading  causes  of  mortality  in  the  western  world.  Although 

environment is a factor in its development, it is highly heritable and despite a number of genes 

that have been found to be associated to the disease its genetics are still poorly understood.  

Discovery of genetic pathways that influence obesity risk can provide a better understanding of 

the  pathophysiology  of  the  disease  and  identify  possible  pharmacological  targets  for  its 

treatment.

This project was designed to investigate possible genetic associations between five candidate 

genes and severe obesity in both adult and child French Caucasians (n=2,822). Tag SNPs were 

chosen along with a selection of common SNPs not in the HapMap database and genotyped 

using  Sequenom iPLEX assays.  Putative  associations  were  discovered  to  obesity  in  three 

genes,  SIRT1  (corrected p-values: 0.034, 0.019),  APLN (corrected p-value:  0.017)  and  IL11 

(corrected p-value:  0.016),  although associations  do not  withstand genome-wide  correction. 

SIRT1 and  IL11 SNPs  were  subsequently  genotyped  within  a  family  cohort  for  which 

transcription  data  in  adipose  tissue  was  available.  In  this  cohort,  SIRT1 genotypes  were 

nominally  associated  with  BMI  (corrected  p-values:  0.014,  0.019,  0.014) and  a  significant 

difference in expression levels of the gene was observed between lean and obese individuals 

(p=1.6x10-35) providing suggestive evidence of a role of this gene in the development of obesity.  

Expression  and  genotypes  of  another  gene,  IRS1 were  also  analysed  and  although  no 

significant associations to obesity were found, an association between SNP variation and gene 

expression was discovered (corrected p-value: 1.0x10-5).
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Another aim of this project was to investigate the possibility that DNA methylation influences 

obesity risk. Firstly, a method for the measurement of the quantitative trait of DNA methylation 

status at individual CpG sites was developed using direct sequencing. Next, methylation in the  

leptin gene CpG island was measured in a subset of 184 case-control samples and a nominal  

association was discovered between the quantitative measurement of methylation at a single 

CpG site and obesity (p=0.013).

In summary, putative associations to obesity have been discovered with genetic variants as well 

as transcription levels and CpG methylation. Replication in other populations is required in order  

to confirm these associations.
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1.1 Obesity overview

According to the World Health Organization (WHO), global obesity rates have doubled since 

1980 and in 2008 there were 1.4 billion adults (age > 20 years) classed as overweight and at  

least 500 million classed as obese1. This means that more than one in ten of the world's adult  

population is obese. Body weight is classified using body mass index (BMI), which is calculated 

as a persons weight in kilograms divided by their height in metres squared (kg/m 2). Overweight 

individuals are those whose BMI is between 25 kg/m2 and 30 kg/m2. Obese are those whose 

BMI is greater than 30 kg/m2. Those whose BMI is between 35 and 40 kg/m2 are classified as 

severely  obese  and  anyone  with  a  BMI  greater  than  40  kg/m2 is  morbidly  obese.  These 

classifications are based on the likelihood of  a person developing one of  the many serious  

conditions associated with increased body fat. Of all associated diseases, type 2 diabetes (T2D) 

has the strongest correlation to obesity2 and according to the WHO, obesity is the cause of 44% 

of  all  cases  of  T2D1. Other  comorbidities  include  cardiovascular  disease,  hypertension, 

dyslipidemia (abnormal blood lipid or cholesterol levels) and coronary heart disease along with a 

number of cancers that affect the oesophagus, pancreas, colon, rectum, breast, endometrium 

and kidney2. Additionally, obesity is associated with respiratory disorders (reviewed by Murugan 

and  Sharma3)  chronic  kidney  disease  (reviewed by  Ting  et  al.4), musculoskeletal  disorders 

(reviewed by Wearing et al.5) and liver disease (reviewed by Batty et al.6).

Because of these associated diseases, obesity is one of the leading preventable causes of  

death worldwide1 and the related health care costs make it one of the most serious public health 

problems in the modern world. Currently these costs are estimated to be as high as 1.2% of  

gross domestic product (GDP) in the USA7 and between 0.09% to 0.61% of GDP in European 

countries8.

20



1.2 Energy regulation in mammals

Obesity is caused by excessive fat mass resulting from an increased storage of surplus energy 

in the form of lipids in adipose tissue. It develops as a result of a disruption of the homeostatic  

system that regulates energy intake and energy expenditure. In humans, body weight is a highly 

regulated trait. When normal-weight individuals eat a caloric surplus, they are found to increase 

their energy expenditure such that they maintain adiposity levels9. Conversely when subjects 

are fed a semistarvation diet  they are found to reduce their  energy expenditure as well  as  

experience extreme hunger10. To achieve this regulation a series of signals are produced in the 

adipose tissue and digestive system that relay nutritional status to the central nervous system 

(CNS)  which  then  adjusts  food  intake  and  energy  expenditure  according  to  requirements.  

Dysregulation of this system can lead to obesity and the study of obesity genetics has led to an  

increased  understanding  of  the  way  energy  is  regulated  in  mammals  which  is  not  only 

physiologically important but also has pharmacological implications as the basis for the design 

of therapeutics for treatment of obesity.

1.2.1 Rodent models of obesity

Many of  the  advancements  in  understanding  energy  regulation  began with  mouse  and  rat 

models of the disease. Many of the mutations that cause obese phenotypes in rodents have 

turned out to be in genes involved in the leptin-melanocortin pathway that regulates appetite 

and energy expenditure in both rodents and humans.
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The first rodent model to be reported was the agouti mutation in mice. Originally discovered in 

1902, the gene was cloned 90 years later11. The mutation that causes obesity is known as lethal 

yellow mutant mouse (Av) and these mice exhibit obesity, T2D and yellow coat colour11. The 

yellow  coat  colour  results  from  agouti overexpression  in  the  skin  which  blocks  alpha 

melanocyte-stimulating  hormone  (α-MSH)  signalling  at  melanocortin-1  receptors  in  the  hair 

follicle. Studies of this mouse strain led to the discovery of the melanocortin pathway, which is 

central in the CNS control of energy balance in mammals.

The autosomal recessive obese (ob) mutation was discovered in 195012 which causes affected 

animals to reach a body weight three times that of control mice. The gene responsible,  leptin, 

was identified using methods of  linkage mapping followed by positional cloning in 199413,14. 

Leptin is a hormone that is secreted from adipose tissue and is important in signalling the level  

of stored energy to the CNS (see section 1.2.4).  The  db/db (diabetes) mouse, discovered in 

196615, has a similar phenotype to ob/ob mice but also develops hyperglycaemia by 8 weeks of 

age which has resulted in their use as a model for the study of T2D. The mutation responsible  

was found to be in the leptin receptor gene (LEPR)16,17. 

The Zucker fatty rat was discovered in 1961 and is caused by an autosomal recessive variant in 

the gene denoted fatty (fa)18. These rats have early-onset obesity, which appears at 5 weeks of 

age. The  fa gene was subsequently cloned and shown to be  LEPR19.  Another rat model of 

obesity  is  the  Otsuka  Long-Evans  Tokushima  Fatty  (OLETF),  discovered  in  1984  and 

characterised  by  obesity,  adult-onset  hyperglycaemia  and  chronic  non-insulin  dependent 

diabetes20. This was found to be caused by a mutation in the gene that encodes the receptor of 

cholecystokinin (CCK), a gut hormone that is released after feeding and suppresses appetite21.
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A high-fat diet  (HFD) has also been used to induce obesity in otherwise lean animals. The 

C57BL/6J strain of mouse is often used for this purpose because they exhibit symptoms similar 

to human metabolic syndrome when fed the HFD (review by Collins et al.22).

1.2.2 Central nervous system control of energy regulation

Early lesion experiments in animals revealed the importance of the CNS in controlling body 

weight. These studies identified the hypothalamus as the area of the brain responsible and in 

particular the ventromedial hypothalamic nucleus (VMH)23 and the paraventricular hypothalamic 

nucleus (PVN)24.  Lesions in these regions result  in  animals which become hyperphagic (an 

abnormally increased appetite) and obese. Lesions in the lateral  hypothalamus (LH) on the 

other hand, produce aphagia (the inability or refusal to swallow) and weight loss25. 

The specific types of neurons within the hypothalamus that are responsible for energy regulation 

have  since  been  characterised  (see  Figure  1.1).  Neurotransmitters  in  the  CNS  that  effect 

changes in energy balance can be divided into two groups: Those that promote feeding and 

inhibit energy expenditure, which are known as orexigenic and those that inhibit feeding and 

promote energy expenditure, which are known as anorexigenic.

1.2.2.1 Orexigenic signals in the CNS

The most  well  studied orexigenic  neurons are the neuropeptide tyrosine (NPY) and agouti-

related peptide (AgRP) expressing cells of the arcuate nucleus (ARC) of the hypothalamus. The 

ARC is positioned in the brain adjacent to the median eminence, an area of the brain that is  

devoid of  the blood-brain barrier26.  Thus the ARC is able to receive signals from circulating 

hormones that have been released from the periphery27.
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NPY belongs to a family of structurally related proteins that include the peripheral hormones 

pancreatic  polypeptide  (PP)  and  peptide  tyrosine-tyrosine  (PYY)28,29.  NPY  is  expressed 

throughout the CNS but is highly concentrated in the ARC30. Its orexigenic effects have been 

demonstrated by infusing the peptide into  the brains of rodents which results in significantly 

increased feeding followed by weight gain31. In diet induced obese mice, NPY expression levels 

in the ARC are observed to increase when animals are placed on a low-calorie diet and lose  

their excess fat, which is congruent with a role for NPY in stimulating feeding32. 

Another important orexigenic signal is AgRP, a protein that shares sequence homology to the 

agouti protein responsible for the Av obese mouse described above33. It is primarily expressed in 

the ARC and co-localises with NPY33. As with NPY, the orexigenic effects of AgRP have been 

demonstrated by infusing the protein into the brains of rodents which potently stimulates feeding 

and results in weight gain34. Interestingly, administration of the N-terminal domain of AgRP also 

results  in  increased  body  weight  but  without  the  associated  hyperphagia35.  Additionally, 

reduction of AgRP expression using RNA interference results in increased energy expenditure 

and  loss  of  weight  without  changes  in  appetite36 suggesting  that  regulation  of  energy 

expenditure is important in AgRPs orexigenic action. AgRP is the endogenous antagonist of the 

melanocortin  3  and  4 receptors  (MC3R and MC4R) which,  along  with  proopiomelanocortin 

(POMC),  comprise  the  melanocortin  system  (detailed  in  section  1.2.2.2)37.  Furthermore, 

synthetic MC3R/MC4R antagonists produce a similar effect to AgRP when injected into rodent 

brains38.
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At times of negative energy balance, expression of AgRP and NPY are upregulated. This has 

been demonstrated during periods of fasting where both AgRP and NPY levels rise and this is 

primarily due to a reduction in levels of the peripheral hormones insulin and leptin along with a  

rise in ghrelin, all of which are important regulators of adiposity (see sections 1.2.3, 1.2.4 and 

1.2.6)39,40. At times of positive energy balance, expression is downregulated: Both AgRP and 

NPY gene expression is lower in rats on a high-calorie diet compared to a low-calorie diet41.

Deletion of  AgRP and/or  NPY genes in mice does not lead to the expected changes in body-

weight42.  It  has  been  hypothesised  that  animals  with  knockouts  in  AgRP  or  NPY  induce 

compensation mechanisms during embryonic development. To test this, experiments have been 

conducted which involve ablation of AgRP and NPY genes in adult mice. These studies resulted 

in significant decreases in food intake and body weight demonstrating that AgRP and NPY are 

important for proper energy control in the normally developed mouse43.

NPY and AgRP neurons project into the PVN as well as other hypothalamic areas and areas of 

the brain outside of the hypothalamus44.  Neurons expressing NPY and AgRP in the ARC are 

found  to  express  high  concentrations  of  leptin  receptor45 and  leptin  is  a  hormone  that  is 

important in signalling current adiposity levels (see section 1.2.3). NPY and AgRP neurons in  

the ARC also express the inhibitory neurotransmitter,  gamma-Aminobutyric acid (GABA) and 

projections that release GABA have been found to project onto POMC neurons in the ARC to 

inhibit POMC neuron action, the anorexigenic peptide of the melanocortin system (see section 

1.2.2.2)46. There is also evidence that GABA action from these neurons is necessary for the 

proper maintenance of feeding47.

NPY and AgRP are the most extensively studied orexigenic neurotransmitters but there are a 

number of others that have been characterised.
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Melanin-concentrating hormone (MCH) was originally discovered in rodents where it was found 

to be overexpressed in response to fasting and also in genetically obese (ob/ob) mice48,49. MCH 

is expressed exclusively in the lateral hypothalamus and zona incerta50. The role of MCH as an 

orexigenic  molecule  has  been  demonstrated  using  mouse  knockouts  which  are  lean  and 

hypophagic51. Additionally, centrally administered MCH has been shown to stimulate feeding48.

Orexin  A and orexin  B are two peptides derived from the same gene,  orexin  neuropeptide 

precursor (HCRT), which also act as orexigenic neurotransmitters52. Orexin expressing neurons 

are found in the dorsal, lateral and posterior hypothalamic areas52,53.  As with NPY, AgRP and 

MCH, centrally administered orexin peptides result in increased food consumption in rodents52 

and their expression is upregulated during fasting54.

Galanin is another neurotransmitter known to stimulate feeding and reduce energy expenditure. 

It is expressed in the gut as well as in the hypothalamus, particularly the PVN, ARC and LH55. 

As with other orexigenic peptides, when galanin is infused into the brain it leads to increased 

feeding56. Both insulin57 and leptin58 reduce galanin expression, and both these hormones are 

known to induce anorexigenic responses (see Sections 1.2.3 and 1.2.4).  Galanin has been 

implicated in regulating preference for high fat foods and GAL-null mice consume less food than 

wild type when given a high fat diet59.  Galanin-like peptide (GALP) is  structurally related to 

galanin. It is expressed in the ARC60 and injections of GALP into the brains of rats stimulates 

feeding which suggests a role  as an orexigenic  peptide61.  Its  role  in  feeding may be more 

complex, however, since in mice it has been reported to have the opposite effect62. 
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1.2.2.2 Anorexigenic signals in the CNS

POMC is the gene that codes for the anorexigenic proteins of the melanocortin system, which 

also includes AgRP and the melanocortin receptors. POMC is expressed in the ARC63 where it 

is translated into multiple peptides including alpha melanocyte stimulating hormone (α-MSH), β-

MSH, γ-MSH, adrenocorticotropic hormone1-24 (ACTH(1-24)), and ACTH(1-13)NH2 (desacetyl-

α-MSH)64.  α-MSH  is  the  endogenous  agonist  of  melanocortin  receptors  and  when  a 

melanocortin agonist is applied to rodent brains the result is inhibition of feeding and a reduction 

in body-weight. Melanocortin antagonists are found to produce the opposite result65. Deletion of 

the POMC gene in mice causes obesity and hyperphagia, which demonstrates that functional 

POMC peptides are crucial for proper energy regulation66.  POMC-null mice are not diabetic, 

however they do have reduced glucagon secretion in response to experimental hypoglycaemia, 

indicating  a  role  of  POMC  peptides  in  regulating  blood  glucose67.  POMC  expression  is 

downregulated  after  fasting  and  is  significantly  reduced  in  genetically  obese  (ob/ob)  mice 

compared to wild type68.

There are a number of different melanocortin receptors, of which MC3R and MC4R are the most 

important  for  the  regulation  of  energy  homeostasis.  Studies  in  mice  indicate  that  MC4R is 

involved in the control of  both feeding and energy expenditure69,70.  It  is also involved in the 

control of glucose and lipid metabolism, independent from it's role in controlling food intake and 

energy  expenditure71.  MC4R  is  widely  expressed  throughout  the  brain  and  spinal  cord72 

whereas MC3R is localised to the ARC and other regions of the hypothalamus73. MC3R then 

appears to function in negative feedback control between AgRP/NPY and POMC/CART neurons 

which have projections between one-another in the ARC 46,73. MC3R knockout mice are normal-

weight but display other symptoms of metabolic syndrome: they have increased levels of fat 

mass and decreased levels of lean mass, they are hyperleptinaemic and have decreased levels 

of energy expenditure74,75. The MC4R gene knockout on the other hand results in mice that are 
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hyperphagic and obese69. The various actions of MC4R have been located to different parts of 

the brain using knockout studies in specific neuron populations in mice. For example, MC4R 

expressed  by  SIM1  neurons  in  PVH  and  amygdala  control  food  intake  but  not  energy 

expenditure or glucose metabolism76 and MC4R expressed outside of the hypothalamus are 

implicated in the control of energy expenditure, hyperinsulinemia and hyperglycaemia77. 

AgRP/NPY neurons  seem to  primarily  sense  energy  deficits  since  NPY is  upregulated  by 

starvation but not affected by overfeeding78. On the other hand hypothalamic POMC mRNA in 

rodents  is  downregulated  by  starvation79 and  upregulated  by  overfeeding80 suggesting  that 

POMC neurons respond to both stimuli. These findings may suggest a reason why it is easier 

for individuals to gain weight than to lose weight.

Another  important  anorexigenic  signal  is  cocaine  and  amphetamine-regulated  transcript 

(CART), which highly expressed in the hypothalamic neurons and co-localises with POMC81,82. 

CART  has  been  implicated  in  feeding,  drug  reward  behaviour,  stress,  and  development 

(reviewed  by  Kuhar  et  al.83). Its  role  in  regulating  feeding  was  demonstrated  using 

intracerebrovasular injections in rodents which result in significantly reduced food intake84. Mice 

engineered  without  functional  CART gene  are  obese,  indicating  that  functional  CART  is 

necessary for regulation of energy balance85. When rodents are deprived of food, CART mRNA 

in the ARC, decreases86. As with NPY/AgRP neurons, leptin receptor has been found to co-

localise with POMC and CART in the ARC87. The mouse model of obesity,  ob/ob, which lacks 

functional versions of leptin have significantly reduced CART expression in the ARC and other 

hypothalamic regions. Injections of leptin into these animals results in normal levels of  CART 

mRNA  thus  providing  evidence  that  leptin's  anorexigenic  effects  act,  in  part,  via  CART 

neurons86.
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Figure  1.1  Energy  regulation in  the hypothalamus.  Circulating insulin  and leptin,  which are 

released in proportion to adiposity levels, stimulate and suppress activity of the arcuate nucleus 

neurons POMC/CART and NPY/AgRP respectively. These neurons respond by increasing or 

decreasing the expression of their neuropeptides which then act on downstream neurons in the  

paraventricular  nucleus  to  decrease  or  increase  feeding  and  increase  or  decrease  energy 

expenditure respectively.
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1.2.3 Insulin as an adiposity signal

There are a number of signal peptides whose serum concentrations are altered by adiposity 

levels, thus acting to relay the level of energy storage to the CNS. Insulin was the first such  

molecule  to  be  implicated.  Whilst  its  primary  role  is  in  controlling  serum concentrations  of  

nutrients, insulin levels in the blood are found to be proportional to the total adipose mass of an  

organism88,89. This  has  been  shown  to  be  true  after  fasting,  after  feeding  and  after  an 

intravenous  glucose  infusion90.  Thus  insulin  is  secreted  in  response  to  blood  glucose  in 

proportion to body fat such that a person with greater fat mass secretes proportionally more 

insulin  to  a  given  glucose  concentration90.  Additionally,  endogenous  insulin  is  found  in  the 

cerebrospinal fluid of mammals91 and it has been shown to be able to cross the blood brain 

barrier which demonstrates the possibility of it having a signalling role in the brain92.

Injection  of  insulin  into  the  brain  decreases  food  intake  and  body  weight  in  rodents  and 

primates93,94,95. Furthermore in humans, intranasal insulin has been shown to reduce body fat96. 

Conversely  administration  of  insulin  antibodies  results  in  hyperphagia  and  weight  gain97,98. 

Transgenic  mice  with  a  neuron  and  glial  cell  specific  knockout  of  insulin  receptor  are 

hyperphagic  and  obese99 and  selective  decrease  in  hypothalamic  insulin  receptor  protein 

following  administration  of  insulin  receptor  antisense  oligonucleotides  produces  the  same 

result100. Histological studies have shown that this insulin-mediated control of feeding and body 

weight is located in the ARC, PVN, dorsomedial and VMH of the hypothalamus98 and insulin 

receptor is highly expressed in the ARC101.
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1.2.4 Leptin as an adiposity signal

Leptin  is  a  protein  expressed  and  secreted  by  adipocytes  that  has  a  serum concentration 

directly proportional to the fat mass of the individual102,103. Intraperitoneal injections of leptin into 

mice decreases feeding and result in weight loss and reduced fat mass which is evidence that 

leptin is an anorexigenic hormone104. These experiments produce the same result in rats and 

leptin  is  found  to  work  additively  together  with  insulin105.  As  noted  previously,  mice  lacking 

functional leptin genes (ob/ob) are obese and so are mice that lack a functional leptin receptor 

gene (db/db). This is also true in humans who are have congenital leptin deficiency and it has 

been shown that  leptin injections significantly reduce fat  mass and  reverse obesity in such 

patients106. Its use as a therapeutic in common obesity, however is limited due to obesity being 

associated with leptin resistance107. Mice with brain-specific leptin receptor knockouts are obese 

whereas peripheral-specific knockouts are not suggesting that leptin's effects are controlled in 

the brain108. Thus leptin acts as a hormone to signal adiposity levels to the CNS in order that 

appetite and energy expenditure can be adjusted such that energy stores are kept in balance.

Leptin's action in the CNS has been well characterised. It inhibits hypothalamic expression of  

NPY and AgRP109 and upregulates POMC and CART82. Leptin receptor is found to be expressed 

in the majority of NPY/AgRP and POMC/CART neurons in the ARC110,87.  POMC neurons are 

depolarized by leptin treatment thus producing an anorexigenic effect46. Knockdown of leptin 

receptor in POMC as well  as AGRP/NPY neurons lead to increased body weight  in mouse 

models which demonstrates that leptin's action in the ARC is necessary for the proper control of 

fat storage111,112.
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Thus leptin is a crucial hormone that  works to create a feedback loop that ensures adiposity 

levels  are  kept  within  the  correct  range.  Any  increase  in  fat  mass  causes  an  increase  in 

circulating leptin which starts a signal cascade which then reduces fat mass. Thus stored fat 

levels are kept within a narrow range.

1.2.5 Other adiposity signals

Amylin is a hormone that is cosecreted with insulin by the beta cells of the pancreas. As such it  

is a hormone that is secreted in proportion to adiposity levels113. Administration of amylin into 

rats  reduces feeding and results  in  lower body weight  indicating a role  as an anorexigenic 

signal114. Its effects are thought to be mediated mainly by decreasing meal size 115. Conversely, 

administration of the amylin receptor antagonist AC187 stimulates eating by increasing meal 

size116.

Adiponectin is a peptide that is expressed and secreted by adipocytes. It has been found to  

stimulate  food intake and  deletion  of  the adiponectin  gene in  mice  leads  to  a  decrease in 

feeding117.  Additionally, adiponectin receptors colocalize with POMC and NPY/AgRP neurons in 

the ARC which supports a role in regulating energy homeostasis118. 
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1.2.6 Gastrointestinal signals

In addition to hormones that signal current levels of stored fat and thereby act to regulate long 

term energy needs there are also a number of molecules that regulate food intake in the short  

term. For the most part they comprise hormones secreted by the gastrointestinal tract to signal 

the  presence  of  nutrients  as  they  enter  various  parts  of  digestive  system.  The  stomach 

produces signals in response mainly to mechanical distention, whereas the intestine releases 

signals in response to chemical content of the food (reviewed by Powley et al.119).

CCK is produced in the mucosa cells of the intestine120 and has been shown to decrease food 

intake in rats and humans121 and rats without CCK receptor are obese21. CCK is rapidly released 

after protein or fat-rich food enters the duodenum122. It inhibits gastric emptying and gastric acid 

secretion and mediates digestion in the duodenum which in turn stimulates meal termination123. 

The inhibitory effect on feeding is short-lived, lasting less than 30 minutes and so CCK works to 

reduce meal size and duration but does not effect the onset of the next meal124,125. 

Peptide tyrosine tyrosine (PYY) is secreted from intestinal L-cells immediately after feeding and 

remain elevated for up to six hours126.  Administration of PYY inhibits feeding in rodents and 

humans127,128,129 and  as  such  PYY has  been  trialled  as  a  potential  therapeutic  for  treating 

obesity130.  PYY knockout  mice  have  a  reduced  food  intake  and  body  weight  compared  to 

controls131. PYY seems to respond more to protein intake than other nutrients: PYY levels are 

higher after consumption of a high-protein meal compared to a high-fat or high-carbohydrate 

meal  with  the  same  calorie  content131.  Fasting  PYY levels  correlated  negatively  with  BMI 

indicating a role in long-term regulation of feeding127,131.
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Ghrelin is a hormone that is unique amongst gut signals in that it is a stimulator of food intake 

rather than an inhibitor132.  It is secreted from the stomach and its levels are correlated with 

hunger133, rising shortly before feeding and falling sharply during food intake134. Carbohydrates 

are the most potent macronutrient suppressors of ghrelin, while fat suppresses ghrelin levels to  

a lesser extent135. Administration of ghrelin into normal weight subjects results in a stimulation of 

appetite132 and mice with ghrelin or  ghrelin  receptor  knockouts are resistant  to diet-induced 

obesity136,137. In addition, ghrelin is thought to be involved in long-term energy regulation as its 

circulating levels are negatively correlated with BMI138, are increased following weight loss139 

and its receptors are found in ARC NPY/AGRP neurons140.

There are a number of other hormones secreted from areas of the digestive system, the major  

ones are listed in Table 1.1 along with their site of production and known effect on appetite. 
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Hormone Main site of 

production

Primary actions

Cholecystokinin (CCK) Duodenum141 Inhibits gastric emptying142, and reduces 

meal size and duration143

Ghrelin Stomach144 Stimulates  food  intake132,  is  released 

just before a meal134

Glucagon-like peptide-1 (GLP-1) Ileum and colon145 Reduces  food  intake146,  induces 

glucose-dependent insulin secretion and 

inhibits glucagon secretion147

Obestatin Stomach148 Encoded by the same gene as ghrelin. 

Acts  in  opposition to  ghrelin  to  reduce 

appetite149

Oxyntomodulin Ileum and colon150 Suppresses  appetite  and  increases 

energy expenditure151

Pancreatic polypeptide (PP) Pancreas152 Decreases food intake153.

Peptide tyrosine tyrosine (PYY) Ileum and colon126 Induces  satiety  by  inhibition  of 

NPY/AGRP neurons127

Table  1.1.  Hormones  released  from  the  gastrointestinal  tract  and  their  effects  on  energy 

regulation.

1.2.7 Lipid metabolism

Since obesity is caused by increased quantity of stored energy in adipose tissue, the study of  

lipid metabolism is a crucial part of understanding the disease.

Most of the energy reserves in the human body are stored in the form of triacylglycerols (TAG) 

within  lipid  droplets  in  adipocytes.  There  are  two  important  processes  relating  to  lipid 

metabolism within  the  adipocyte:  TAG storage  and  TAG hydrolysis.  When energy intake is 

higher than expenditure, storage occurs. Within the adipocyte, free fatty acids are esterified into 

TAG and partitioned into lipid droplets. When energy demands increase, adipose tissue acts to 
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provide nutrients to other tissues via lipolysis which breaks down TAG into free fatty acids and 

glycerol. Lipid droplets are composed of a core of TAG and cholesterol esters, surrounded by a 

phospholipid monolayer, which contains lipid droplet associated proteins154,155. These proteins 

are thought to control the accessibility of lipases to their lipid substrates.

The perilipin  family of  proteins represent  the most  abundant  of  the lipid  droplet  associated 

proteins156.  They localise specifically to lipid droplets and have not been found in any other 

subcellular  compartment157.  Under  fed  conditions,  perilipin  inhibits  lipolysis  which  in  turn 

increases  TAG  storage158.  Conversely,  during  fasting,  phosphorylated  perilipin  results  in 

increased lipolysis159. Perilipin knockout mice are lean and resistant to diet induced obesity160.

Desnutrin  is  considered  to  be  the  major  TAG  lipase  in  white  adipose  tissue  (WAT).  It  is 

expressed  in  adipocytes  and  is  found  to  be  downregulated  in  ob/ob mice161. Furthermore, 

transgenic mice that overexpress desnutrin in adipose have increased lipolysis and fatty acid 

oxidation  in  WAT,  resulting  in  higher  energy  expenditure  and  resistance  to  diet-induced 

obesity162.  Adipose-specific  phospholipase  A2  (AdPLA)  is  a  membrane-associated  lipase 

expressed exclusively in adipocytes163 and AdPLA knockout mice exhibit unrestrained adipocyte 

lipolysis and are extremely lean164. These mouse models do not have elevated serum fatty acid 

levels  but  instead have increased fatty acid oxidation in  adipocytes.  AdPLA null  mice have 

significantly increased expression of uncoupling protein 1 (UCP-1) in WAT and brown adipose 

tissue (BAT)164 and this is thought to result in an increased metabolic rate and consequently 

protects against obesity. UCP-1 overexpression in mouse adipocytes increases mitochondrial 

respiratory uncoupling, (the generation of heat energy instead of ATP) and subsequently, results 
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in a significantly leaner mouse165. In mice, inhibiting lipolysis results in promotion of diet-induced 

obesity166. These results demonstrate the possibility that impaired lipolysis in adipose tissue may 

be a factor  in  the  development  of  obesity  and thus increased lipolysis  may be a potential  

therapeutic target for the treatment of obesity.

1.3 Heritability of obesity

The recent obesity epidemic is assumed to be due to changing environments such that calorie  

content  of  meals  has  increased  while  at  the  same  time  physical  activity  has  decreased 

(reviewed by French et al.167), although recent evidence suggests that total energy expenditure 

has  not  changed  between hunter-gatherer  and  Western  societies168.  However  there  is  also 

strong evidence of a heritable influence to obesity. 

Heritability (h2) is the proportion of phenotypic variation between individuals in a population that  

can be attributed to genetic rather than environmental factors. It is measured by estimating the 

contributions of genetic and non-genetic differences to the total variation of a phenotype in a 

sample from a population. There are three main types of heritability studies that have been 

carried out to try to determine the genetic component of traits such as BMI. These are adoption 

studies, family studies and twin studies. All three types of study have produced estimates for the 

heritability of BMI to be in the range of 40% to 80%. For a review of heritability studies in body  

weight see Andersson and Walley169.

Adoption  studies  work  by  measuring  the  correlation  between adoptees  and  their  biological 

parents. The advantages of this method are that they resolve the effects of genes from the 

effects  of  shared  environment.  This  is  because  adopted  children  share  genetics  with  their  

biological  parents  but  not  their  adoptive parents and share environment  with  their  adoptive 
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parents but not their biological parents. One disadvantage of this method is that the effects of 

age are not accounted for. There is also an assumption that adoptees are not selectively placed 

into families based on any shared characteristics and an assumption that there is no significant 

effect of the prenatal environment. An additional limitation of this study design is the relatively 

low sample sizes for  which data  is  available for  both  adoptive and biological  parents.  One 

notable exception was a study published by Stunkard et al. using the Danish Adoption Register 

which contained BMI data for 3580 adoptees. A strong correlation between adoptees and their 

biological parents was discovered but no correlation to their adoptive parents indicating a strong 

degree of heritability170.

The family study design most commonly uses parent-offspring or sibling-sibling data sets. The 

main advantage is the ease with which cohorts can be recruited. It suffers though, from the fact 

that environmental effects cannot be separated from genetic effects. Correcting the data using 

an environmental index is possible but this will not be able to separate all factors. One large  

study of BMI in Norway reported an average parent-offspring correlation of 0.20 and siblings 

ranged  from 0.21  in  brothers  to  0.26  in  sisters.  Second degree  relatives  did  not  correlate 

significantly171. This study estimated h2 of BMI to be0.39.

Twin studies were the first heritability studies to be performed and have been used extensively  

for  studying the heritability  of  traits  including BMI and other  body-weight  phenotypes.  They 

usually rely on using samples of  identical twins and samples of  fraternal twins. Fraternal or  

dizygotic (DZ) twins share on average half their genetic variants. Identical or monozygotic (MZ) 

twins share effectively 100% so are twice as similar,  genetically,  than DZ twins. If  a trait  is  

heritable  then MZ twins should  be more similar  than DZ twins.  The genetic  contribution to 

variation (h2) can thus can be calculated as twice the difference in correlation between MZ and 

DZ twins. Because twins are matched for age, any effects that age has on variation of a trait are 
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the same for  both twins. Furthermore they are statistically powerful: One thousand twin pairs 

provide 95% power to reject a purely environmental model with a false-negative rate of 0.05 if  

additive genetic effects explain 20% and shared environment effects explain 50%172.  Power 

increases if the actual genetic effects are higher. The main criticism of this method is that twins 

are not a random sample of the population, they differ in developmental environment and so 

may not  be representative.  However,  in the case of  BMI,  twins have not  been found to be 

significantly different  from singletons173.  Another  criticism is  that  twin  studies often use self-

reported zygosity measures which may not always be correct. MZ twins that are discrepant in 

height and weight could be incorrectly viewed as being DZ and this bias would lead to increased  

heritability  estimates174.  Twin  studies  also  assume that  the  shared  environment  is  identical 

between MZ twin pairs and DZ twin pairs and this may not be true175. 

Many twin studies have been performed over the years to investigate the heritability of body-

weight (for a review see169). When analysing BMI in adult twin samples, monozygotic twins are 

consistently more similar in BMI than dizygotic twins (h2=0.64176 h2=0.80177 h2=0.77178). When 

analysing BMI in adolescent twin samples heritability is also very high (h2=0.87 at age 11179). 

When skinfold thickness is analysed in adolescent twins the story is the same (h2=0.98 for trunk 

fat and 0.46 for limb fat180).

Studies that used twins reared apart are the most powerful study design since they can be used 

to easily separate the effects of genotype from post-natal environment. The correlation of MZ 

twin reared apart is s a direct estimate of the heritability. They are limited by the relatively small  

numbers of twins that are raised apart. Additionally they rely on the same assumptions of non-
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selective adoption and no effect of the prenatal environment, which may not be valid. In practise 

such studies have corroborated the results of studies of twins reared together with h2 estimates 

in the same range. One such study reported heritability estimates of 0.70 for men and 0.66 for 

women181.

1.4 The genetics of obesity

Obesity can be classified into three types based on the underlying genetic basis. In the first 

instance there is  monogenic obesity which is characterised by severe obesity without  other 

abnormalities and has a Mendelian pattern of inheritance. Secondly, there is syndromic obesity 

which includes additional phenotypes, often mental retardation and dysmorphic features. Last is 

common polygenic obesity which affects the general population.

1.4.1 Monogenic obesity

Monogenic diseases are caused by variants within a single gene and mutations in many of the 

genes involved in the regulation of appetite detailed above have been discovered to underlie 

monogenic  forms  of  obesity  in  humans.  Most  of  these  were  discovered  following  the 

development of mouse models of the disease which used linkage analysis to locate disease 

loci. These were crucial in the identification of the leptin-melanocortin signalling pathway that 

regulates metabolism in mammals and provided candidate genes for human monogenic forms 

of obesity. Table 1.2 lists the known monogenic forms of obesity.
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The first monogenic form of obesity to be reported was found in two severely obese cousins  

from a Pakistani family. A frameshift mutation in the leptin gene was found to be responsible, 

which when translated produced a truncated form of the leptin protein that is not secreted182. A 

similar mutation has also been discovered in a Turkish family in which subjects are severely 

obese and hyperphagic183. Since their obesity is caused by a lack of leptin in the blood stream it  

was hypothesised that infusions of recombinant leptin could help with reducing body weight.  

Indeed, daily injections of human recombinant leptin for a period of one year was shown to 

produce a vastly reduced food intake and fat mass and a reversal of obesity in such leptin-

deficient  patients106,184.  This  is  currently  the  only  genetic  form  of  obesity  that  successfully 

responds to pharmacological intervention. 

The discovery of the first Mendelian form of obesity caused by leptin mutations was quickly 

followed by the identification of other forms of monogenic obesity caused by variants in genes in  

the leptin-melanocortin pathway. These include a mutation in the leptin receptor gene (LEPR) 

that was found to cause hyperphagia and obesity in individuals homozygous for the variant.  

These subjects do not have functional leptin receptors185. There are also variants in POMC that 

cause hyperphagia and early-onset obesity in homozygotes186,187,188,189. These subjects also have 

pale  skin  and red hair  pigmentation due to lack of  melanocyte  stimulating hormone (MSH) 

action at melanocortin 1 receptors in skin and hair follicles.

A number  of  studies  have  also  found  mutations  in  MC4R which  cause  severe  early-onset 

obesity and hyperphagia190,191. Patients that are heterozygous for this mutation are obese but 

those  that  are  homozygous  are  more  severely  obese,  indicating  a  codominant  model  of  

inheritance and this fits with mouse knockout studies69.  MC4R is the most common form of 

monogenic  obesity known,  present  in  an estimated 1-6% of  all  early  onset  severely  obese 

cases192,193,194.
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A mutation in the gene encoding brain-derived neurotrophic factor (BDNF)  is responsible for 

another form of monogenic obesity195. BDNF is expressed in the VMH and is thought to have a 

role in controlling energy regulation downstream of the melanocortin system196. NTRK2 encodes 

the receptor for BDNF and a mutation in this gene has been reported which causes early-onset  

obesity197.

A compound heterozygous mutation in the prohormone convertase gene  (PSCK1) has been 

found which causes severe early-onset obesity along with hypergonadotropic hypogonadism, 

abnormal  glucose  homeostasis,  and  increased  plasma  concentrations  of  proinsulin  and 

POMC198. Prohormone convertase is expressed in neuroendocrine tissues and cleaves certain 

prohormones to their  intermediate or final forms including some that are involved in energy 

regulation such as POMC and insulin199.

Gene Position Gene function Inheritance References

BDNF 11p14.1

Neuron growth factor expressed in 

hypothalamus R 195

LEP 7q32.2 Adiposity signal R 182,183,200

LEPR 1p31.3 Leptin receptor R 185

MC4R 18q21.32

Key  receptor  of  the  melanocortin 

system C 190,191,192

POMC 2p24.1

Precursor  for  the  anorexigenic 

neurotransmitter α-MSH R 186,188,189

NTRK2 9q22.1 BDNF receptor R 197

PCSK1 5q15

Cleaves POMC and proinsulin into 

active hormones R 198

Table 1.2. Monogenic forms of obesity in humans. R = autosomal recessive, C = autosomal 

codominant.
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1.4.2 Syndromic obesity

There  are  around  30  rare  syndromes  caused  by  genetic  mutations  or  chromosomal 

abnormalities that are currently known to include obesity as a phenotype (reviewed by Farooqi  

et  al.201).  Phenotypes  usually  include  mental  retardation,  dysmorphic  features  and 

developmental  abnormalities.  They  often  include  hyperphagia  indicating  dysfunction  of 

pathways in the hypothalamus.

The  most  common  form  of  syndromic  obesity  is  Prader-Willi  syndrome  with  an  estimated 

prevalence of 1 in every 25,000 births202. It  is characterised by low birth-weight and feeding 

difficulties in infancy, followed by hyperphagia and obesity in childhood along with short stature, 

hypogonadism and mental retardation203. It is normally caused by a deletion or translocation of 

the paternal segment at 15q11-q13204 or by uniparental  disomy of  chromosome 15 where a 

patient inherits two copies of the maternal chromosome 15 and zero copies of  the paternal 

chromosome 15205. Alternatively it can sometimes be caused by defects in the imprinting of the 

paternal chromosome 15206. A smaller deletion (187kb) in the same region has been reported in 

a patient with hyperphagia, severe obesity, mild learning difficulties and hypogonadism but who 

lacked other symptoms of Prader-Willi207. This work has helped identify the genes responsible 

for the Prader-Willi phenotype, which comprise a family of non-coding RNAs.

Bardet-Biedl is another example of syndromic obesity, which along with increased body weight,  

includes  retinal  degeneration,  hypogonadism,  polydactylism,  renal  dysfunction,  and  mental 

retardation208. It is genetically heterogeneous with causative mutations having been located in 

severeal distinct  regions of the genome209,210. Its inheritance is usually autosomal recessive, 

however some cases of digenic and tri-allelic inheritance have also been reported211,212. 
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A translocation between 1p22.1 and 6q16.2 that disrupts the single-minded homolog 1 (SIM1) 

gene has been reported to be the cause of a syndrome of obesity, hypotonia and developmental 

delay213.  SIM1  encodes  a  transcription  factor  that  is  expressed  in  the  PVN  of  the 

hypothalamus214 and overexpression of the gene in  Agouti mice and diet-induced obese mice 

has been shown to eliminate hyperphagia and result in a reduction in fat mass215. Other obesity 

syndromes include Cohen syndrome, an autosomal recessive disorder caused by a mutation at 

8q22216 and Alström syndrome, which is caused by mutations in the ALMS1 gene at 2p13.1217.

1.4.3 Common polygenic obesity

Polygenic traits are those for which inheritance of a phenotype is caused by two or more genes 

in combination with the influence of environment. These phenotypes are often quantitative and 

vary on a continuous scale distributed normally. BMI is an example of such a quantitative trait 

with obesity found at the top end of the scale. If an individual carries many genetic variants that  

increase  BMI  then  obesity  may  result.  Any  such  genetic  variant  will  be  found  in  a  higher  

frequency within obese populations than in normal and lean populations. The search for variants 

that influence susceptibility to common obesity have taken three approaches: Linkage studies, 

candidate gene association studies and genome-wide association studies.

1.4.3.1 Linkage studies

Linkage studies have been used to identify genetic markers that are shared by descent among 

relatives with the same disease or phenotype. It relies on the fact that markers that are located 

close to one-another on a chromosome are more likely to be inherited together than markers 

that are far apart due to crossing over events in meiosis. Thus the more often an allele at a  

particular site is shared in relatives who also share the phenotype in question, the more likely it  
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is that the site is in close proximity to a disease causing locus. As discussed previously, this 

method has been employed successfully to locate the genes responsible for monogenic forms 

of obesity in mice. However, it is less suited to the investigation of complex diseases. This is 

because variants affecting polygenic obesity only cause a small change in risk and so some 

relatives  may  carry  the  risk  allele  being  studied  but  still  be  non-obese.  Conversely,  some 

relatives may not carry the risk allele being studied yet still be obese. This reduces the chances 

of detecting regions harbouring disease loci. 

The first genome-wide linkage study specifically designed for obesity phenotypes was published 

in 1997 and reported  a susceptibility locus on chromosome 2218. This was followed shortly in 

1998 by a study that used nuclear families ascertained specifically for obesity. This too found a 

susceptibility  locus  on  chromosome 2  and  others  on  chromosomes  5  and  10219.  Both  the 

chromosome 2 locus220,221 and the chromosome 10 locus222,223 were replicated in subsequent 

reports. Since then over 250 QTLs from more than 60 linkage scans have been published with 

around 50 of  these regions supported by two or more studies224.The strongest  evidence of 

linkage came from a cohort of Utah pedigrees at chromosome 4 with a logarithm of odds (LOD)  

score of 9.2225. However, despite numerous published studies, no linkage regions have been 

unambiguously replicated, even after meta-analysis of 37 of such studies226. This demonstrates 

the  limitations  of  the  linkage  method  for  investigation  of  polygenic  traits  such  as  common 

obesity.
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1.4.3.2 Candidate gene association studies

In a candidate gene association study, a gene is chosen based on possible functional links to  

the disease being investigated. Genetic markers within the gene are then measured in a set of 

samples after which associations to the disease are analysed. Samples can be either cases and 

controls  or  samples  of  a  population.  Associations  may  be  detected  if  one  of  the  markers 

analysed  is  a  variant  that  directly  effects  disease  risk  or  if  a  marker  is  within  linkage 

disequilibrium (LD) of a variant that effects disease risk.

LD is a measurement of the correlation of alleles at two or more loci. It is the occurrence of sets 

of alleles found together in a population more often than would be expected by chance given 

their respective frequencies. On the other hand, when combinations of alleles can be found in  

their  expected  proportions  they  are  said  to  be  in  linkage  equilibrium.  LD is  usually  higher 

between alleles in close proximity to one another due to linkage; that is, crossing over during 

meiosis makes it less likely that markers that are far apart will be inherited together. LD is also  

higher between alleles that have arisen relatively recently in evolution since there have been 

less opportunities for crossing over events to separate them and between alleles where there is  

a low rate of recombination. LD is measured using D, D' or r2. D is calculated as the difference 

between  the  observed  frequency  (x)  and  the  expected  frequency  (p  multiplied  by  q)  of  a 

combination of markers (A and B): 

DAB=x AB – pAqB

D suffers as a measurement because it depends on the frequencies of the alleles. Thus if an 

allele has a frequency of 1 or 0 then D=0. D' corrects for this problem by dividing D by the  

theoretical maximum of D, Dmax:
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D '=
D

Dmax

Finally r2 is the correlation coefficient between a pair of alleles:

r 2
=

D 2

pApBq AqB

A D' or r2 value of 0 means that the examined loci are independent of one another whereas a D' 

or r2 value of 1 means that they are completely dependent. The measurement of r2 has a more 

strict  interpretation than that of D′ and r2 = 1.0 only when both loci also have identical  allele 

frequencies. Thus the allele at one locus will always be predicted by the allele at the other locus. 

LD is a useful tool in association studies because it allows a researcher to select a subset of  

genetic markers within a region of  interest  that  can predict the genotypes of  other markers  

within the region without having to directly measure them. These are called tagging markers or, 

since the most  commonly used genetic marker  is  single  nucleotide polymorphisms (SNPs), 

tagging SNPs.

A  catalogue  of  SNPs  and  corresponding  LD  data  is  available  to  researchers  from  the 

International HapMap project which has genotyped several million SNPs in 269 individuals from 

four populations227,228,229. Thus tagging SNPs can be selected such that association studies can 

be carried out without having to genotype every SNP within a gene.
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The main advantage of the candidate gene approach is the greater power to detect variants with 

small  effect  sizes that  comes  from  using  case-control  cohorts when  compared  to  linkage 

analysis using trios230. This statistical power is further increased by the fact that it is easier to 

recruit large numbers of the unrelated samples used in case-control analysis than it is to recruit  

families230. When candidate gene association studies were first undertaken, many associations 

to complex diseases, including obesity, were reported (reviewed by Rankinen et al.224). A large 

proportion  of  these,  however,  were  not  replicated  suggesting  that  many  were  not  real 

associations. This is probably because of the fact that on average, one in twenty statistical tests 

will result in a nominal significance of p<0.05 simply by chance, so failure to properly account 

for multiple testing meant that many associations were likely to be false-positives. Publication 

bias aggravated the problem since studies reporting statistical association are much more likely 

to be published than those that do not231.

Another issue with early association studies is the presence of confounding factors such as 

ethnicity, age and sex. If cases and controls are not properly matched then differences in allele 

frequencies between the two groups may arise because of one of these other variables. For  

example if there is a difference in allele frequencies between two ethnic groups and one ethnic  

group is more common in the cases than in the controls then it might appear as if there is a  

genetic association to the disease being examined when in fact what has been detected might  

be a genetic association with ethnicity. This is known as population stratification232.

It  is  also possible that  failure  to replicate associations may be down to genetic  differences 

between study populations. This can happen if, for example, a tested SNP is in high LD with a 

causative SNP in one population but not in another. The tested SNP may show association in  

populations where it tags the causative SNP but not in populations where it doesn't. However it 

should  be  noted  that  this  is  an  unlikely  explanation  since LD  structures  within  European 
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populations have  been found to be very similar when examining common variation such that 

genuine associations, such as those reported by GWAS have replicated well233. Therefore the 

most  likely  explanation for  the lack of  replication is  that  the original  association is a false-

positive234.

Several genes have been reported to be associated to obesity in ten or more studies including 

many genes of the leptin-melanocortin system (reviewed by Rankinen  et al.224), however this 

might reflect the fact that these genes present some of the more likely candidates so have been 

investigated  the  most.  In  fact,  meta-analyses  that  have  been  carried  out  have  found  no 

evidence of association between obesity and leptin235,236 or in leptin receptor236,237. Table 1.3 lists 

genes that are associated to obesity or BMI in meta-analyses. This includes ENPP1, associated 

after one meta-analysis238 but not conclusively supported in a previous meta-analysis239.

Gene Location Gene function References

ADIPOQ 3q27.3 Adipose expressed hormone 236

ADRB3 8p11.23 β3 adrenergic receptor, stimulates lipolysis240 241

ENPP1 6q22-

q23

A transmembrane  glycoprotein  that  is  expressed  in 

adipose

238

MC4R 18q22 Key receptor of the melanocortin system 242

IL1β 2q14 Proinflammatory cytokine 236

IL6 7p15.3 Proinflammatory cytokine 236

TNF-α 6p21.33 Proinflammatory cytokine 236,243

Table 1.3. Candidate genes with associations to obesity reported in meta-analyses.
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1.4.3.3 Genome-wide association studies (GWAS)

At the beginning of this PhD project, GWAS had recently become technologically feasible. This 

was  made  possible  by  array  based  genotyping  platforms  developed  by  Affymatirx244 and 

Ilumina245 that are able to measure hundreds of thousands of genotypes in a single DNA sample 

at  high  accuracy  and  relatively  low  cost  per  genotype.  Using  LD  data  gathered  from the 

HapMap project227,  SNPs can be eliminated from investigation so that a reduced number of 

variants can be used to capture the majority of the common variation (minor allele frequencies 

>5%), within the human genome. 

Typically,  GWAS involve  a  discovery  phase  in  which  hundreds  of  thousands  of  SNPs  are 

genotyped  in  a  subset  of  samples  using  genome-wide  arrays.  This  is  then  followed  by  a 

replication stage in which the most significant markers from the discovery phase are genotyped 

in a second set of samples. The two datasets can then be meta-analysed together in order to 

report more accurate odds ratios.

The advantages of this method are that studies are not based on prior data on the function of 

genes thought to be involved in disease, i.e. they are hypothesis free, yet they can still use the  

large number of unrelated samples used in candidate gene association studies which increases 

the power to detect modest effect sizes.

The first obesity gene to be discovered using a genome-wide association study (GWAS) was 

FTO (fat  mass  and  obesity  associated  gene)  which  was  reported  simultaneously  by  two 

research groups around the same time this project was started in 2007246,247. The function of 

FTO is  still  unclear  but  it  is  widely  expressed  in  the  brain,  particularly  the  hypothalamus, 

suggesting a possible role in appetite regulation248. 

50



This  was  followed  in  2008  by  two  studies  that  reported  associations  between  obesity 

phenotypes and  MC4R variation. One study was designed to look for associations to insulin 

resistance  in  an  Indian  population249, the  other  investigated  BMI  and  obesity  risk  in 

Europeans250. The later of these also replicated the FTO association.

The next obesity GWAS to be published came at the end of 2008 from the Genetic Investigation  

of  ANthropometric Traits (GIANT) consortium, a collaboration of  multiple study groups each 

performing genome wide scans in different cohorts251. Data that included over two million SNPs 

in almost 40,000 subjects was meta-analysed and the most significant results followed up in a 

further set of almost 60,000 individuals. As well as replicating the FTO and MC4R associations, 

six new obesity loci were reported. Published shortly afterwards, in early 2009, a meta-analysis  

which included around 35,000 samples from Iceland, the Netherlands, North America (European 

and African descent) and Scandinavia, with a follow-up of  a further 35,000, reported eleven 

significant associations including seven novel loci252. This was followed by a case-control study 

that used 1,380 Europeans with childhood and morbid adult obesity and 1,416 age-matched 

normal-weight  controls,  followed-up in  around 15,000 subjects  and reported associations to 

three novel loci253.

Many of the associated variants are located within or near genes that are highly expressed in 

the CNS and in particular, the hypothalamus and are thought to be involved in the regulation of 

energy balance. This supports the theory, first put forward by O'Rahilly and Farooqi, that the 

heritable aspects of obesity are largely neurological in origin254.

51



Some time after the practical work from this PhD project was finished, in late 2010, the GIANT 

consortium  published  a  new  meta-analysis  which  included  almost  250,000  subjects  and 

discovered a further  eighteen  novel  associations to BMI233.  Since then there has been one 

meta-analysis published which analysed associations to body-fat percentage and found novel 

associations at  two loci255 and another which analysed associations to childhood obesity and 

discovered another two novel associated loci256. The results of these GWAS are summarised in 

Table 1.4.
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Date 

published

Total  number 

of subjects

Phenotype Genes Ref.

May 2007 28,587 adults BMI FTO 246

10,172 children

July 2007 6,148 relatives BMI FTO 257

June 2008 77,228 adults BMI FTO, MC4R 250

10,583 children

June 2008 11,955 WC MC4R 249

June 2008 1,000 adults BMI CTNNBL1 258

3,812 adults Obesity

December 

2008

91,469 BMI FTO, MC4R, TMEM18, KCTD15, GNPDA2, SH2B1, 

MTCH2, NEGR1

251

January 

2009

69,593 BMI FTO, MC4R, TMEM18, KCTD15, SH2B1, NEGR1, 

SEC16B, ETV5, BDNF, AIF1 /BCDIN3D

252

February 

2009

8,128 adults Obesity FTO, MC4R, NPC1, MAF, PTER 253

8,855 children

April 2009 8,842 BMI, WHR FTO, MC4R, CTNNBL1, PTPN11 259

June 2009 118,691 adults WC, WHR TFAP2B, MSRA 260

47,633 women WHR LYPLAL1

April 2010 36,581 Obesity FTO, MC4R, TMEM18, SDCCAG8, TNKS/MSRA 261

November 

2010
249,796 BMI RBJ/POMC, GPRC5B, MAP2K5, QPCTL/GIPR, 

TNNI3K, SLC39A8, FLJ35779/HMGCR, LRRN6C, 

TMEM160, FANCL, CADM2, PRKD1, LRP1B, 

PTBP2, MTIF3, ZNF608, RPL27A, NUDT3 *

233

November 

2010

190,803 WHR 

(adjusted 

for BMI)

RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, 

DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, 

ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1, 

CPEB4, LYPLAL1 *

262

June 2011 76,202 Body  fat 

percentage

FTO, IRS1, SPRY2 255

May 2012 25,637 Childhood 

obesity

OLFM4 , HOXB2 256

Table 1.4. Genes significantly associated with obesity phenotypes in genome-wide association 

studies. BMI = body mass index, WHR = waist to hip ratio, WC = waist circumference. * These 

studies also found significant associations to variants previously reported by Thorleifsson  et 

al.252 and Willer et al.263
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1.4.4 Missing heritability

Between them, these associations only explain a small proportion of the heritability of obesity. 

Speliotes et al. report that together the 32 SNPs associated with BMI account for 1.45% of the 

inter-indivudual variation in the trait with FTO, the variant with the largest effect size, accounting 

for 0.34%. This suggests that many more genetic associations are yet to be discovered. The 

situation is similar with other complex diseases and there is some debate as to where this 

missing heritability might be found264.

Due  to  the  large  amount  of  statistical  tests  being  performed  in  GWAS,  very  stringent 

requirements to correct for multiple testing are required in order to reduce the false-positive rate. 

As such many associations of small effect could end up being screened out. For example the 

leptin  gene  has  been  reported  to  be  associated  to  obesity  in  at  least  13  candidate  gene 

studies224 yet it has not found to be significant in any genome wide association study to date. In 

the most recent GIANT BMI publication233 a SNP close to LEP resulted in a p-value of 3.1x10-3. 

This is clearly well below the cut-off for a significant finding in a GWAS but it is possible that  

there is a weak association that is mistakenly being rejected.

Furthermore,  since  genome  wide  association  studies initially relied on  using  only  markers 

present in the HapMap, not all variants were being investigated. Phase two of HaMap contains 

3.1 million SNPs,  which is estimated to represent just one quarter to one third of all common 

(>5%) SNPs within the human genome229. More recently, imputation using genotypes from the 

1000 genomes project265 combined with higher density arrays such as the Illumina HumanOmni-

5 (n=4.3million SNPs) has meant that coverage has been expanded to include the vast majority 

of common variation. But  this also means that rare variants (<5%) are not covered by current 

GWA studies.  Genotyping  only  common  variants  is  an  approach  that  is  supported  by  the 
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common disease-common variant hypothesis, which proposes that a small number common 

variants  are  responsible  for  the  genetic  component  of  common  disease  rather  than  large 

numbers of rare variants. However, this hypothesis is now coming under challenge and it is 

thought that rare variants may also contribute to common diseases266. 

Another  issue  with  obesity  studies  is  that  many  GWAS  are  not  designed  primarily  for 

investigating obesity but use BMI in post-hoc analysis. This means that they are only reporting 

variants that control weight variation in the non-obese population and it is not known how much 

overlap there is with these and genes that predispose to the disease state of obesity. Better 

subject selection could improve results. 

For these reasons, the candidate gene approach to investigating genetics of common polygenic 

obesity can still be considered valid. Additionally, other forms of heritable variation, such as copy 

number  variants  (CNVs)  and  epigenetics,  may  also  have  a  significant  influence  on  the 

development of obesity. 

1.4.4.1 Copy number variation (CNV) 

CNVs are defined as deletions, duplications or tandem repeats of 1kb or more in size 267. In the 

last few years their importance in the pathophysiology of heritable diseases, including obesity 

has become increasingly recognised268.

A large deletion at 16p11.2 has been reported in patients with obesity and cognitive deficits.  

Similar deletions at the same location were subsequently found to be significantly associated 

with common polygenic obesity in case-control analysis269 and a duplication in this region has 

also been found to associate with reduced BMI, demonstrating how gene dosage can be linked 
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to opposite body composition phenotypes270. A recent study in patients with early-onset obesity 

found that large (>500kb), rare (<1%) deletions were present in significantly higher frequencies 

in obese compared to controls271. A genome-wide scan in European American childhood obese 

case-control subjects found seventeen rare CNV loci that were present in at least three cases 

but no controls272. Eight of these associations were replicated in an African American cohort.  

Another CNV at  10q11.22 has been reported to be associated with BMI in a Han Chinese  

study273.

1.4.4.2 Epigenetics

There is growing evidence that epigenetics can contribute to the development of obesity as 

well274. Epigenetics is the study of modifications to genes that do not involve changes to the 

DNA sequence and include DNA methylation and histone modifications. They are associated 

with the control of expression of genes (reviewed by Bird275).

Epigenetic variation between individuals can arise in three ways. Firstly, epigenetic changes can 

arise due to errors during cell  programming. Secondly, some epigenetic markers have been 

found to be heritable so variation can be passed on from one generation to the next. Finally,  

epigenetic markers can be altered due to environmental factors.

Epigenetic markers are mitotically heritable, which enables maintenance of tissue-specific gene 

expression.  There  is  also  evidence  that  they  can  be  meiotically  heritable,  which  means 

epigenetic markers can be inherited transgenerationally (review by Chong et al.276). The most 

established case of transgenerational epigenetic inheritance in mammals is imprinting in which 

a gene is expressed preferentially from either the maternal or the paternal allele only (reviewed 

by Reik  et al.277).  Non-imprinting epigenetic inheritance has been observed in  Agouti  (Avy/a) 
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mice278 in the form of a transposable element.  This mouse is also a model of epigenetically 

controlled obesity since mice with reduced methylation at the  Avy  allele develop obesity along 

with  yellow fur  colour.  Obesity  is  amplified  through  multiple  generations  of  Avy/a  mice,  but 

supplementing the diet with methyl donors prevents this amplification279. 

There is evidence from animal studies that prenatal and early postnatal environmental factors 

can  result  in  alterations  of  epigenetic  markers.  These  environmental  factors  include 

nutrition280,281, behavioural cues282,283, chemicals284,285, reproductive factors286,287 and radiation288. 

Furthermore these alterations may be inherited transgenerationally278,289,290.  A recent study in 

rats  found that  overfeeding led to hypermethylation of  CpG sites in the promoter  region of  

POMC  in  the hypothalamus. This resulted in a reduction of  transcription of  the gene which 

normally produces an anorexigenic signal to decrease food intake in response to leptin and 

insulin.  Thus  overfeeding  resulted  in  an  altered  methylation  pattern  which  subsequently 

modified energy regulation systems leading to an increased disposition to obesity291.

DNA methylation is the best-characterized epigenetic mechanism. It is a modification in which a 

methyl group is added to the 5 position of the cytosine nucleotide creating 5-methylctosine. In 

mammalian, adult cells it occurs at CpG dinucleotides, although non-CpG methylation is found 

in embryonic stem cells292.

As DNA is replicated during cell-division, the enzyme DNA methyltransferase 1 (DNMT1) is the 

principal enzyme required to copy DNA methylation patterns into the daughter strands. It does 

this by recognising hemi-methylated CpG sites, CpGs that are methylated on just one of the two 

DNA strands, and catalysing the addition of a methyl group to the unmethylated cytosine. DNA 

methyltransferases 3a and 3b (DNMT3a and DNMT3b) are also thought to be involved in this 

process, particularly in regions dense in methylated CpG sites. DNMT3a and DNMT3b are also 
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known to be important enzymes in the process of  de novo methylation. This requires another 

homologue, DNA methyltransferase 3L (DNMT3L), which is lacking in methyltransferase activity 

and acts  to recruit  DNMT3a and DMNT3b to  the DNA strand.  De novo methylation occurs 

during cell differentiation in order to establish methylation patterns particular to a specific cell 

type (review by Jones et al.293). The DNA methylation pattern is erased in the early embryo and 

then re-established at  approximately the time of  implantation294,295.  Differential methylation is 

established by de novo methylation by DNMT3a and DNMT3b296 and by a means of ensuring 

that CpG islands remain unmethylated. This second step is thought to be mediated by active 

demethylation297, although it may also involve blocking of DNMT3L by the methylated histone, 

H3K4 298,299,300. Once the methylation pattern is established in the embryo it is subject to specific  

alterations  during  development  and  these  can  include  both  de  novo methylation  and 

demethylation299,301.

It  is  estimated  that  over  60%  of  all  CpG  sites  in  the  human  genome  are  methylated 302. 

Methylated  cytosine  residues  are  less  stable  than  non-methylated  residues  and  can 

spontaneously deaminate to form thyamine residues303.  This means that  over the course of 

mammalian  evolution  CpG  dinucleotides  have  become  under-represented  in  the  genome, 

occurring at around only 20% of the frequency expected by chance304. However, there are also 

regions of the genome that contain a much higher frequency of CpGs, probably due to a lack of  

cytosine methylation in these regions throughout evolution. These are called CpG islands and 

the  promoters  of  around  60%  of  all  known  human  genes  contain  such  regions305,306. 

Hypermethylation in gene promoters results in transcriptional silencing of  the gene which is 

inherited  by  daughter  cells  and  is  understood  to  be  an  important  influence  in  cancer 

development (reviewed by Jones et al.307).
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During early years (0-3 years) monozygotic twins have identical DNA methylation and histone 

acetylation profiles, however differences begin to appear later in life308. Furthermore, twin pairs 

who had spent less of their lifetime together were those that had the greatest differences. This 

demonstrates the environmental effect on DNA methylation.

A recent twin study revealed a significant difference in the DNA methylation patterns between 

dizygotic twins compared to monozygotic twins which cannot be explained by underlying genetic 

differences309. Methylation at 12,000 CpG sites within gene promoters were measured in white 

blood cells and buccal epithelial cells of 20 sets of MZ and 20 sets of DZ twins matched for age 

and sex. A significantly higher epigenetic difference was observed in both cell types between DZ 

co-twins compared to MZ co-twins. This demonstrates the heritability of DNA methylation and 

opens the possibility that it may contribute to complex diseases such as obesity.

The most established example of an epigenetic disorder that results in obesity in humans is 

Prader-Willi Syndrome (PWS), which is characterised by obesity as well as learning disabilities 

and hypotonia. Its genetic causes have been isolated to chromosomal region 15q11-13, which 

contains a group of imprinted genes which are expressed either from the paternal or maternal  

chromosome  only  (reviewed  by  Buiting  et  al.310).  As  well  as  deletions,  translocations  and 

uniparental disomy it can be caused by deficiencies in the imprinting of genes in this region of  

the paternal chromosome.

Another  example of  DNA methylation  being associated  with  obesity  comes from studies of  

adults who were exposed to poor nutrition  in utero due to the Dutch famine of 1944 to 1945. 

These  individuals  have  an  increased prevalence  of  glucose  intolerance,  dyslipidemia,  early 

coronary heart disease, and obesity311,312. In a recent study, such subjects were found to have 
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reduced DNA methylation levels in  the imprinted gene IGF2 when compared to  unexposed 

siblings demonstrating that environmental conditions can cause lasting epigenetic changes and 

the that these epigenetic changes might influence obesity risk313. It is thought that this is due to 

a decreased supply of methyl donors such as folate and methionine during development.

Genomic imprinting has also been reported to influence common obesity at three loci in a study 

that used genome-wide parent-of-origin linkage analysis. A maternal effect was discovered for 

obesity at 10p12, a maternal effect for BMI was discovered at 12q24 and a paternal effect for 

BMI at 13q32314. In another study, TNFα promoter CpG methylation in blood mononuclear cell 

DNA has been demonstrated to  predict  response to  a  weight  loss diet  in  humans315.These 

results suggest that DNA methylation and possibly other epigenetic mechanisms can influence 

susceptibility to common polygenic obesity. 

Many studies have chosen to focus on CpG island methylation but recent evidence suggests 

that methylation in gene body regions may be critical to tissue-specific gene expression. DNA 

methylation in gene body regions has been found to correlate with increased expression rather 

than  decreased expression  that  is  associated with  promoter  methylation316,317.  The  active  X 

chromosome  has  been  found  to  be  hypermethylated  in  gene  body  regions  whilst  being 

hypomethylated  in  gene  promoter  regions,  supporting  a  role  of  gene-body  methylation  in  

stimulating expression318. Another study reported differential expression of a nitric oxide inhibitor 

gene due to differential methylation patterns in the gene body319. A more recent meta-analysis 

found that the relationship between gene-body methylation and expression levels follows a bell-

shaped distribution such that mid-level expressed genes have the highest levels of gene-body 

methylation, whereas the lowest and most highly expressed sets of genes both have low levels 

of methylation320.
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These results  support  a  role  of  epigenetic  variation  in  the  control  of  gene  expression  and 

therefore  phenotype  and  disease  risk  that  can  be  inherited  transgenerationally.  As  such 

epigenetic variation could explain some of the missing heritability of common obesity.

1.5 Aims

The  aim  of  this  thesis  was  to  add  to  the  understanding  of  the  genetic  and  epigenetic 

mechanisms that contribute to the development of common polygenic obesity in humans by 

studying candidate genes. When this project was started, GWAS had only just become feasible 

and  so  a  candidate  gene approach  to  studying  the  genetics  of  common disease  was  still  

considered  a  valid  choice.  As  this  project  continued  it  became  clear  that  GWAS had  not 

elucidated all of the genes responsible for the heritable causes of obesity and other common 

diseases and so a candidate gene method could still potentially find associations missed by the 

genome-wide method.

The specific aims were:

1.  Investigation of  common genetic  variation within the following genes for association with 

human polygenic obesity:

a) Sirtuin-1 (SIRT1)(see section 1.5.1.1)

b) Apelin (APLN)(see section 1.5.1.2)

c) Interleukin 11 (IL11)(see section 1.5.1.3)
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d) Adiponutrin (PNPLA3 )(see section 1.5.1.4)

e) Nesfatin (NUCB2)(see section 1.5.1.5)

f) Insulin Receptor Substrate 1 (IRS1)(see section 1.5.1.6)

2. Investigation of epigenetic variation in the Leptin gene for association to human polygenic 

obesity (see section 1.5.2).

1.5.1 Candidate gene association studies

Subjects used were 1533 obese cases and 1237 non-obese controls, all French Caucasians. 

Cases were 896 obese adults and 637 obese children. These were analysed separately but 

used the same control samples and as such are not independent data sets used for replicating 

results. Additional subjects included 732 Swedish Caucasians from 154 families that contained 

siblings discordant  for obesity and for  which genome-wide transcription data  within adipose 

tissue was available (see Materials and Methods for  details). SNPs that covered all common 

variation in each candidate gene were genotyped using Sequenom iPlex assays. It is important  

to note that while rare variants have been highlighted as a potential source of genetic variation 

that  could contribute to obesity risk,  this project  only investigated common variation due to 

statistical power limitations. Each candidate gene was chosen based on having functional links 

to appetite and metabolism. Descriptions of the selected genes are given below.
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1.5.1.1 Sirtuin-1 (SIRT1)

Sirtuin  1  is  a  nicotinamide adenine  dinucleotide  (NAD+)-dependent  protein  deacetylase that 

regulates transcription of a variety of genes including a number that have been implicated in the  

control  of  metabolism  in  humans.  As  SIRT1  activity  is  under  the  control  of  cellular  NAD + 

concentration it acts as an energy sensing molecule that alters transcription of certain genes in 

response to the energy status of the cell321. 

Most notably, SIRT1 inhibits transcription of PPARγ, thereby promoting lipolysis and mobilisation 

of free fatty acids from WAT as well as inhibiting adipogenesis322. Inhibition of SIRT1 in 3T3 L1 

adipocyte cell culture increases differentiation and overexpression of SIRT1 reduces it322. It also 

stimulates mitochondrial activity and thus increases glucose metabolism in the liver through the 

transcriptional regulator PGC-1α323. SIRT1 has also been shown to deacetylate the transcription 

factor forkhead box protein O1 (FoxO1), a key regulator of lipid metabolism 324. In pancreatic β 

cells  SIRT1 enhances insulin  secretion in  response to  glucose via  regulation of  uncoupling 

protein 2325. SIRT1 has also been discovered to alter expression of adiponectin, although the 

two studies reported opposite effects326,327. Another mechanism by which SIRT1 is  linked to 

obesity is an association with lower levels of nuclear factor-κB (NF-κB) activity. NF-κB is a key 

regulator of many genes involved in inflammation and its inhibition in mouse models have been 

shown to protect from diabetes and fatty liver328,329.

Transgenic mice that overexpress SIRT1 weigh less than control mice, have a lower WAT mass 

and  have  lower  plasma  levels  of  free  fatty  acids,  leptin  and  adiponectin330. They  are  also 

protected  from glucose  intolerance  induced by  ageing,  diet-induced obesity  and  genetically 

induced obesity324,328. Conversely, SIRT1 knockout mice have increased body weight, increased 

fatty liver disease, increased insulin resistance, increased glucose intolerance and inflammation 

in WAT and liver331,332.
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Activators of  SIRT1 including resveratrol  protect against obesity and insulin resistance in mice 

fed a high fat diet333,334,335,336. These activators increase levels of metabolism and lipolysis via 

transcriptional activation of PPARγ and PCG1α. Resveratrol has also been reported to increase 

lipolysis in human adipose tissue culture and this is mediated via SIRT1337.

1.5.1.2 Apelin (APLN)

The  APLN gene is expressed in adipocytes  in both mice and humans and its transcription is 

inhibited by fasting338. Expression of APLN in subcutaneous adipose tissue has been reported to 

be significantly elevated in mice and rats fed a high fat diet and has been correlated with serum 

leptin levels338,339,340. Intravenous injection of apelin stimulates glucose utilisation in muscle and 

adipose  tissue  in  mice  and  lowers  blood  glucose  levels341. Genetically  engineered  apelin-

knockout mice have reduced insulin sensitivity and are hyperinsulinemic342. Administration of 

pyroglutamated apelin-13 was found to improve insulin sensitivity in both apelin-deficient mice 

and db/db diabetic mice342.

The apelin receptor,  APJ, is expressed in hypothalamic neurons in rats343,344 and injection of 

apelin-13 and apelin-12 into the brains of rats has been reported to decrease food intake 345,346. 

Treatment with apelin has been reported to lower the mass of WAT in both non-obese and 

obese mice (on average a ~30% reduction in epididymal WAT mass was reported in both non-

obese and obese mice) as well as lowering serum levels of insulin and triglycerides347. Apelin 

treatment has been reported to increase expression of  UCP1 in BAT, a gene involved in fatty 

acid activated uncoupling of respiration347,348. In the same report, apelin treatment also increased 

expression of UCP3 in skeletal muscle347. UCP3 regulates fatty acid export and genetic variants 

in  its  gene  have  been  reported  to  be putatively associated  with  obesity,  although  these 

associations have not been confirmed in any GWAS to-date and so have not been robustly 

validated349,350.
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Plasma  apelin  levels  have  been  reported  to  be  significantly  increased  in  obese  subjects 

compared to non-obese controls and were significantly correlated with BMI351. A similar result 

has  been  observed  between  in  subjects  with  T2D  or  impared  fasting  glucose  and  this 

association is caused by a correlation of apelin levels to BMI339,352. In insulin-resistant high-fat 

fed mice, apelin and APJ expression in adipose tissue was significantly increased compared to 

controls339. Another study reported a correlation of plasma apelin levels with BMI in normal and 

underweight individuals and this correlation was even more pronounced in obese subjects353.

1.5.1.3 Interleukin 11 (IL-11)

IL-11 has also been reported to inhibit adipogenesis and suppress lipoprotein lipase activity in 

mouse 3T3-L1 preadipocyte cell culture354,355,356. Treatment of fully differentiated mouse 3T3-L1 

adipocytes with IL-11 has been found to lower transcription of leptin357. In human bone marrow 

tissue cultures, IL-11 inhibits fat accumulation in the adherent cells via a decrease in the number 

of vacuoles in macrophages and inhibition of preadipocyte differentiation358,359. 

1.5.1.4 Adiponutrin (  PNPLA3  )  

Adiponutrin, also known as Patatin-like phospholipase domain-containing protein 3 (PNPLA3) is 

a cell membrane protein that is expressed in adipose cells360. It is a triacylglycerol lipase that 

has been shown to catalyse the hydrolysis of triglycerides in vitro361,362. In addition to adipocytes, 

it is highly expressed in liver and transcription of the gene appears to be connected to liver fat  

content363,364,365,366.  Expression  of  PNPLA3 is  nutritionally  controlled.  In  mice,  adipose 

transcription  levels  are  reported  to  be  downregulated  during  fasting  and  upregulated when 

fasted mice are fed a high-calorie diet360,361. Furthermore, expression of the gene is fifty-fold 

higher in obese compared to normal rats360. 
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In obese women, a three-week very low calorie diet has been reported to significantly reduce 

expression of the gene in subcutaneous adipose tissue367. A clamp study in non-obese, non-

diabetic humans found that subcutaneous adiponutrin expression was induced by both insulin 

and glucose368. Expression of Adiponutrin in subcutaneous and visceral adipose tissue has also 

been reported to be increased in obese compared to non-obese subjects in a Swedish study369.

1.5.1.5 Nesfatin-1 (NUCB2)

In the brain, nesfatin-1 protein is found in several areas of the hypothalamus including the PVN, 

the supraoptic  nucleus,  the ARC and the LH as well  as the nucleus of  the solitary tract,  a  

brainstem area with known roles in feeding370,371,372,373.  Neurons in which nesfatin-1 is located 

have also been found to express MCH, CART, α-MSH, POMC and NPY supporting a role for  

nesfatin-1 in appetite control  370,374,371,375.  Additionally nesfatin-1 has been shown to inhibit NPY 

neurons376.

Injection of nesfatin-1 into the brains of both rats and mice has been shown to reduce feeding 

consistent  with  a  function  as  an  anorexigenic  regulator  of  food  intake372,377.  Furthermore, 

knockdown of  NUCB2 in the rat hypothalamus using an antisense oligonucleotide increases 

food intake and body weight372. The nesfatin-1 protein can cross the blood-brain barrier in both 

directions378,379 and intraperitoneal injection of nesfatin-1 has been reported to lower food intake 

in mice380. 

NUCB2  transcription in  the rat  hypothalamus is significantly reduced after twenty-four hours 

fasting and this is restored after re-feeding372,373. In humans, a putative association has been 

reported between fasting levels of plasma nesfatin-1 and obesity in male subjects and BMI in 

the non-obese group381. A recent study using female anorexic patients reported a significant 

increase in circulating nesfatin-1 compared to age-matched healthy controls382.

66



1.5.1.6 Insulin Receptor Substrate 1 (IRS-1)

IRS-1 is an intracellular signalling molecule that is expressed in all insulin-sensitive tissues383,384. 

It is a key molecule in the signal cascade, critical to energy regulation, that is triggered when 

insulin binds to its receptor. In addition to its role in insulin signalling, IRS-1 is also a substrate  

for insulin-like growth factor 1 (IGF-1) receptor which is thought to be an important regulator of  

cell  differentiation384.  IRS-1 stimulation in  response  to  insulin  and IGF-1 leads to  uptake of 

glucose by muscle and fat tissue and inhibition of hepatic glucose production. It also stimulates 

cell differentiation and growth, promotes lipogenesis and inhibits lipolysis385.

IRS-1 knockout mice are hyperinsulinemic and show mild insulin resistance but do not have 

altered glucose tolerance384.  Interestingly body weight  in  knockout  mice is  reduced by 50% 

suggesting a role of the gene in somatic growth. Furthermore, adipocyte cell lines from these 

mice were found to have a significant reduction in their differentiation and lipid accumulation 

compared to wild type suggesting a role in controlling adiposity386. 

Variants within the  IRS-1 gene have be reported to influence T2D risk387 including a recent 

GWAS  which  found  associations  between  rs2943641  and  T2D,  insulin  resistance  and 

hyperinsulinemia388.  There have also  been associations  reported between  IRS-1 SNPs and 

obesity and since insulin levels are correlated with BMI, dysregulation of the insulin signalling 

pathways could be a factor in the development of obesity387,389. More recently, a GWAS found a 

significant association between a variant close to IRS-1 and body fat percentage255.
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1.5.2 Epigenetic variation in the Leptin gene (LEP)

Methylation in the LEP CpG island has been shown to reduce activity of the promoter in human 

adipose cell  lines using luciferase assays390. The  LEP CpG island is differentially methylated 

across tissue types, which could indicate a role of methylation in the regulation of this gene391,392. 

Rats that  are  fed a  high fat  diet  and become overweight  have been found have increased 

methylation at one CpG site in the leptin promoter when DNA from adipose was examined. This  

methylation  was  associated  with  lower  blood  levels  of  leptin393.  These  results  indicate  the 

possibility of a role of DNA methylation in the LEP gene in the regulation of BMI.
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Chapter 2

Materials and Methods
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2.1 Subjects

2.1.1 Obese cases

Two groups of case subjects were used. The first set consisted of 896 unrelated morbidly obese 

(BMI  over  40kg/m2)  adults  (mean  BMI  =  47.5kg/m2±7.5kg/m2;  mean  age  =  44.3±11.9;  689 

females and 207 males). The second set consisted of 637 unrelated obese children (BMI over 

97th percentile for age and sex) (mean BMI = 29.6kg/m2±6.5kg/m2; mean zBMI=4.27±1.2; mean 

age =11±3.2; 341 females and 296 males). These were all French Caucasians recruited through 

a multimedia campaign run by the Centre National de la Recherche Scientifique (CNRS), Hotel 

Dieu Hospital, the Pasteur Institute, Lille and the Department of Paediatric Endocrinology of 

Jeanne  de  Flandres  Hospital.  Ethical  approval  for  the  studies  was  given  by  local  ethical  

committees.

2.1.2 Non-obese controls

Two groups of control subjects were used, both unrelated non-obese French Caucasians. The 

first contained 532 individuals from the Haguenau cohort (mean BMI = 21.3 kg/m² ±2.0 kg/m²; 

mean  age  22.7  ±3.5;  243  males,  289  females)394 The  second  was  705  subjects  from the 

Epidemiology Study on Insulin Resistance (D.E.S.I.R)(mean BMI = 23.3 ±1.8 kg/m²; mean age 

53.9  ±5.6;  282  males,  423  females)395.  Control  participants  were  pooled  for  case  control 

analyses, but prior to pooling χ2 tests for each SNP were performed to make sure there was no 

significant difference (p>0.05) in genotype or allele frequencies between the control groups. BMI 

was calculated as the subject’s weight (in kilograms) divided by the square of their height (in 

metres).
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2.1.3 Families

154 nuclear families containing 732 Swedish Caucasians were identified as part of the Swedish 

Obesity  Study cohort  (SOS)396 on the  basis  of  an obese proband with  at  least  one sibling 

discordant for obesity (BMI difference >10kg/m2). Mean BMI in the lean siblings was 23.4±2.8, 

mean BMI in the obese siblings was 37.7±5.3. Siblings included 132 males and 292 females. 

Gene expression data from subcutaneous adipose tissue was available for 359 out of 424 of the 

siblings396.  This  data  was  obtained  from an  eQTL study  which  used  an  Affymetrix  Human 

Genome U133 Plus 2.0 gene expression array to measure genome wide transcript levels and 

had been normalised using the Robust Multiarray Average method396.

2.2 Protocols

2.2.1 SNP identification strategy

In  all  cases  where  a  tag SNP approach  was  used,  tagging  SNPs were  selected  from the 

HapMap  database  (http://www.hapmap.org)  with  r2≥0.8  and  a  minor allele  frequency  ≥0.05 

using  the  pairwise  tagger  algorithm  in  the  Haploview  4.0  software397.  Additional  SNPs  not 

present in the HapMap were selected from NCBI database, each with a reported minor allele 

frequency ≥0.05. Coding SNPs were included regardless of frequencies.
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2.2.2 Genotyping

Genotyping was carried out on the Sequenom MassArray platform (Sequenom Inc., USA)398. 

PCR and extension  primers  were  designed  using  MassARRAY Assay Design  3.1  software 

(Sequenom Inc. USA). For a multiplex PCR, 2µl (2.5ng/µl) of each DNA sample were mixed with 

2.18µl H2O, 0.5µl Hot Star Buffer (Qiagen Ltd.), 0.2µl MgCl2 (25mM), 0.02µl Hot Star Taq (5 

units/µl), 0.1µl of 10mM dNTP mix (Bioline Ltd., UK) and 0.5µl of 1µM primer mix (See appendix 

for primer sequences).  Reaction conditions were as follows:  95°C for 15 minutes,  then five 

cycles of 95°C for 20s, 65°C for 30s and 72°C for 1 min, followed by five cycles of 95°C for 20s,  

58°C for 30s and 72°C for 1 minute, followed by 38 cycles of 95°C for 20s, 53°C for 30s and 

72°C  for  1  minute,  ending  with  72°C  for  3  minutes.  To  dephosphorylate  dNTPs  and  any  

remaining primers, 1.53 µl of dH2O, 0.17µl SAP Buffer (Sequenom) and 0.30µl shrimp alkaline 

phosphatase (SAP) enzyme (Sequenom) was added to each reaction. This was incubated using 

a thermocycler at 37°C for 40 minutes followed by 85°C for 5 minutes. 0.74µl of dH 2O, 0.2µl 

iPLEX Buffer  Plus  (Sequenom),  0.2µl  iPLEX Termination  Mix  (Sequenom),  0.041  µl  iPLEX 

enzyme (Sequenom) were added to each reaction. Extension reactions were cycled as follows: 

94°C for 30 seconds followed by 40 cycles of 94°C for 5 seconds and 5 nested cycles of 52°C 

for 5 seconds and 80°C for 5 seconds, ending with a final incubation of 72°C for 3 minutes.

For each reaction, 15–25nl of sample was dispensed onto a SpectroCHIP using the Samsung 

Nano-dispenser and the chip was then analysed using the Bruker Autoflex MALDI-TOF mass 

spectrometer. Mass Array Typer 3.4 software was then used to call the genotypes based on the 

calculated  mass  of  the  extension  products  and  the  experimental  mass-spectrum  result. 

Automated genotype calls were manually checked.
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Genotyping was considered satisfactory if  the success rate for the SNP was ≥85% and the 

genotype distribution did not depart significantly from Hardy-Weinberg equilibrium (p>0.05 for 

chi-squared  test  between  expected  and  observed  values).  Hardy-Weinberg  p-values  were 

calculated using the online Finetti HWE calculator (http://ihg.gsf.de/cgi-bin/hw/hwa1.pl).

2.2.3 PCR

Primers were designed using Primer3 software (http://frodo.wi.mit.edu/). A standard PCR was 

carried out as follows (see Appendix for individual primer sequences and conditions). 5.2µl H2O, 

1µl  Amplitaq  Gold  Buffer  (Applied  Biosystems,  Life  Technologies  Inc.,  USA),  0.8µl  dNTPs 

(10mM),  0.8µl  MgCl2 (25mM),  1µl  Primer  Mix  (5µM  of  each  primer),  0.2µl  AmpliTaq  Gold 

(Applied Biosystems)(5U/µl) was mixed with 1µl of template DNA. PCR was then carried out at  

94°C for 10 minutes followed by 40 cycles of 94°C for 30 seconds, 50°C for 30 seconds and 

72°C for 30 seconds ending with an incubation at 72°C for 5 minutes. Annealing temperatures 

and  extension  times  were  altered  based  on  requirements  of  the  specific  amplicon  (See 

Appendix for details). GC-rich amplicons often required the addition of 2µl Q Solution (Qiagen) 

in a 10µl PCR (see Appendix for amplicons that required Q Solution).

2.2.4 Agarose gel electrophoresis

To confirm the presence of the correct sized PCR product, 5µl was mixed with 1µl 6X loading 

buffer (Fermentas GmbH, Germany). A 150ml 2.5% (w/v) agarose (Invitrogen) gel was made up 

with 1X Tris Borate EDTA buffer (Sigma-Aldrich Inc.) and 7.5 µl Safeview (NBS Biologicals Ltd.,  

UK). A 100bp ladder (Fermentas GmbH, Germany) was loaded alongside samples as a size 

marker. DNA was viewed using a UV transilluminator and photographed using LabWorks Image 

Acquisition Software (Ultra Violet Products Ltd, UK).
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2.2.5 Sequencing of PCR product

5µl  of  PCR  product  was  purified  by  mixing  with  2µl  ExoSAPit  (USB)  and  placed  in  a 

thermocycler at 37°C for 15 minutes followed by 80°C for 15 minutes. This was then diluted  

fivefold by adding 43µl dH2O. The concentration of the PCR product was measured using a 

NanoDrop ND-100 spectrometer (NanoDrop Technologies, USA). 3.2pmol of sequencing primer 

was mixed with 90ng/kb PCR product and made up to 10µl with dH2O. Samples were processed 

by the Imperial  College Clincial  Sciences Centre Genomics Core Laboratory (Hammersmith 

Campus) using the Big Dye terminator mix v3.1 and capillary gel electrophoresis was carried 

out to separate the sequencing products on a 3730XL DNA Analyzer (Applied Biosystems).

2.2.6 CpG island identification and primer design

Putative CpG islands were identified using Methyl Primer Express version 1.0 software (Applied 

Biosystems) and CpGPlot was used to display C+G composition, CpG frequency and position of  

putative CpG islands (http://www.ebi.ac.uk/Tools/emboss/cpgplot/)305. CpG islands were defined 

as  being  at  least  200bp  in  length  with  C+G composition>50% and  a  ratio  of  observed  to 

expected CpG dinucleotides >0.6399. Primers were designed to PCR within the CpG islands of 

bisulfite treated  DNA using Methyl  Primer  Express.  Sequencing primers  were  designed to 

sequence the PCR product using the online software Primer3 (http://frodo.wi.mit.edu/).

2.2.7   Bisulfite   conversion of DNA  

Bisulfite conversion  was  carried  out  using  the  MethylDetector  kit  (Active  Motif  Inc.,  USA). 

Conversion Buffer was prepared by resuspending Conversion Reagent with 700µl dH2O, and 

then mixing with 350µl Buffer A and 175µl Denaturation Reagent at room temperature for 10 

minutes  with  intermittent  vortexing.  Hydroquinone  was  prepared  by  resuspending  in  100µl 
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dH2O. Desulfonation Buffer was prepared by combining 22µl Buffer B with 88µl dH 2O and 110µl 

100% isopropanol. These three buffers were prepared fresh to be used on the same day. 200ng 

of genomic DNA was mixed with 7µl Hydroquinone and 120µl Conversion Buffer and made up 

to 140µl with dH2O. This was placed in a thermocycler for three minutes at 94°C followed by 

nine hours at 50°C.

500 µl DNA Binding Buffer was mixed with the converted DNA which was then pipetted into a  

DNA purification column. This was spun at 10,000 rpm for 30 seconds in a microcentrifuge 

(Centrifuge 5415 C, Eppendorf Ltd., UK), and the collection tube emptied. 200µl DNA Wash 

Buffer was added to the column which was then span at 10,000 rpm for 30 seconds. 200µl  

Desulfonation  Buffer  was  added to  the  column and  incubated  at  room temperature  for  20 

minutes before spinning at 10,000rpm for 30 seconds. 200µl of DNA Wash Buffer was then 

added and the column spun at 10,000rpm for 30 seconds. The column was then placed in a 

new 1.5ml microcentrifuge tube and 50 µl of DNA Elution buffer was pipetted onto the surface of 

the column filter. This was incubated at room temperature for 3 minutes before spinning down at  

10,000rpm for 30 seconds. The eluted solution was the purified converted DNA ready for PCR.

2.2.8 Bisulfite conversion of DNA using Qiagen EpiTect 96-well format

9 ml of dH2O was added to Bisulfite Mix (Qiagen) and mixed by vortexing until fully dissolved. 2 

µl DNA (5 ng/µl) was added to each well of an EpiTect Conversion Plate (Qiagen). 38 µl dH2O, 

85 µl Bisulfite Mix and 15 µl of DNA Protect Buffer (Qiagen) were added to each well and mixed 

by vortexing. The plate was span in a centrifuge (Sorvall Legend RT, Thermo Scientific) at 650 g 

to collect the liquid at the bottom of the wells. The conversion reaction was placed in a thermal  

cycler using the following programme: 95°C for 5 minutes, 60°C for 25 minutes, 95°C for 5 

minutes, 60°C for 1 hour and 25 minutes, 95°C for 5 minutes and finally 60°C for 2 hours and 55 

minutes.

75



The converted DNA was spun in a centrifuge at 650 g to collect the liquid at the bottom of the 

wells. An EpiTect 96 Plate (Qiagen) was placed onto a QIAvac vacuum manifold (Qiagen) and 

560 µl freshly prepared Buffer BL containing 10 μg/ml carrier RNA (Qiagen) was pipetted into  

each well of the EpiTect 96 Plate. The converted DNA was then added to the EpiTect 96 Plate 

and mixed with the Buffer BL by pipetting 4 times. The vacuum source was switched on and 

once the liquid had passed through the membrane, switched off. 500 µl of Buffer BW (Qiagen)  

was added to each well of the EpiTect 96 Plate. The vacuum source was switched on and once 

the liquid had passed through the membrane, switched off. 250 µl of Buffer BD (Qiagen) was  

added to each well of the EpiTect 96 Plate and incubated at room temperature (15–25°C) for 15 

minutes. The vacuum source was switched on and once the liquid had drained through the 

membrane, switched off. 500 µl of Buffer BW (Qiagen) was added to each well of the EpiTect 96  

Plate.  The  vacuum source  was  switched  on  and  once  the  liquid  had  passed  through  the 

membrane, switched off. 500 µl of Buffer BW (Qiagen) was added to each well of the EpiTect 96  

Plate.  The  vacuum source  was  switched  on  and  once  the  liquid  had  passed  through  the 

membrane, switched off. 250 µl of ethanol (100% v/v, Sigma-Aldrich, Inc.) was added to each 

well  of  the EpiTect  96 Plate.  The vacuum source was switched on and left  running for  10  

minutes  after  the  ethanol  had  passed  through  the  membrane.  The  EpiTect  96  Plate  was 

removed from the vacuum manifold and tapped onto absorbent paper in order to remove any 

remaining ethanol. The waste tray of the vacuum manifold was removed and replaced with an 

EpiTect Elution Plate (Qiagen). 70 µl of Buffer EB (Qiagen) and 10 µl of Top Elute Fluid (Qiagen)  

were dispensed into each well of the EpiTect Plate. The vacuum source was switched on for 1  

minute to elute the DNA.
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2.2.9 Positive control nested PCR

This was performed to confirm that the bisulfite conversion was successful and included two 

reactions: an outer PCR followed by an inner PCR. 4.6 µl H2O, 1 µl Amplitaq Gold Buffer, 1 µl 

dNTPs (10mM), 1.2 µl MgCl2 (25mM), 1 µl p16 Outer Primer Mix (10µM), 0.2 µl AmpliTaq Gold 

(5U/ µl) (Applied Biosystems) was mixed with 1 µl of converted DNA. 10ng of unconverted DNA 

was used as a negative control. PCR was then carried out at 94°C for 10 minutes followed by  

40 cycles of 94°C for 30 seconds, 50°C for 30 seconds and 72°C for 30 seconds and ending  

with 72°C for 5 minutes.

This PCR reaction was then diluted 500-fold and used as a template in the following inner PCR 

reaction. 4.6 µl H2O, 1 µl Amplitaq Gold Buffer, 1 µl dNTPs (10mM), 1.2 µl MgCl2 (25mM), 1 µl 

p16 Inner Primer Mix (10µM), 0.2 µl AmpliTaq Gold (5U/ µl) was mixed with 1 µl of diluted outer  

PCR product. 10ng of unconverted DNA was used as a negative control. PCR was then carried  

out at 94°C for 10 minutes followed by 40 cycles of 94°C for 30 seconds, 50°C for 30 seconds 

and 72°C for 30 seconds and ending with 72°C for 5 minutes. The 10 µl PCR reaction was then  

mixed with 2 µl 6x DNA loading buffer and the sample loaded onto a 2.5%(w/v) agarose gel in  

1x TBE. The gel was run until the dye front was near the end of the gel.

2.3 Statistical Analysis

2.3.1 Qualitative trait analysis

Analysis  was  performed  using  PLINK v1.07  (http://pngu.mgh.harvard.edu/purcell/plink/)400. 

Association to obesity was analysed by comparing allele frequencies using the chi-squared test 

and one million permutations to give accurate empirical p-values that did not need correction for 

multiple testing. Odds ratios are reported with a 95% confidence interval.
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2.3.2 Quantitative trait analysis

Analysis for association to BMI was performed with PLINK v1.07 using the linear model with age 

and sex as covariates. One million permutations were used to correct for false-positives.

2.3.3 Family-based association analysis

Mendelian errors were detected using Pedstats401 while genotypes that resulted in tight double 

recombinants  were  identified  with  Merlin  and  treated  as  missing  data  in  the  analyses402. 

Association to BMI was analysed using the QFAM procedure in PLINK v1.07 using the within-

families model of association and one million permutations to correct for multiple testing.

2.3.4 Linkage disequilibrium (LD)

LD was  calculated  and  displayed  from the  genotype  data  of  the  controls  using  Haploview 

v4.0397.  Linkage  disequilibrium  blocks  were  identified  using  the  confidence  interval  method 

described by Gabriel  et al.403 as implemented in Haploview 4.0. Haplotypes were constructed 

and analysed for association using PLINK v1.07. Individuals who had missing genotypes were 

excluded from this analysis.

2.3.5 Imputation

Genotypes were imputed using the 1000 genomes phase 1 integrated variant set release (NCBI 

build 37)265. IMPUTE2 software was used for imputation404,405 and SNPTEST v1.1.5 for analysing 

the imputed data for association406.
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2.3.6 Analysis of transcription data

To correct for relatedness between siblings, regressions were evaluated with a clustering option 

within families using R v2.8.1  (http://www.r-project.org/;  see Appendix for R commands used). 

Data was analysed for normality using a Q-Q plot in SPSS v17.0. An independent samples t-test 

was used to compare transcript levels between obese and non-obese siblings and data was 

displayed  with  box  plots  using  R  v2.8.1  (see  Appendix  for  R  commands  used).  BMI  and 

transcript  data  were  plotted  using  Excel  2007  (Microsoft  Inc.).  All  r2 calculations  and  their 

corresponding p-values were calculated using R v2.8.1 (see Appendix for R commands used).

2.3.7 Statistical power calculations

Power calculations were carried out using PSv3.0.14407. Assuming an alpha of 0.005, (the p-

value threshold that would be used if testing ten independent SNPS) a MAF of 0.5 and an odds 

ratio  of  1.2  then  the  null  hypothesis  that  the  odds  ratio  equals  1  can  be  rejected  with  a 

probability (i.e. power) of 23% in the French adult case-control subjects (see Figure 2.1) and 

17% in the French child case-control subjects (see Figure 2.2). With a MAF of 0.05 this power is  

reduced to 3.3% in the adults and 2.9% in the children (see Figures 2.1 and 2.2). Statistical  

power will drop substantially if using a significance level of 5x10-8 (genome-wide significance).
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Figure 2.1. Statistical power using adult case-control subjects (896 cases and 1237 controls) 

plotted against odds ratio for three different minor allele frequencies (MAF) assuming an alpha 

of 0.005.

Figure 2.2. Statistical power using child case-control subjects (637 cases and 1237 controls) 

plotted against odds ratio for three different minor allele frequencies (MAF) assuming an alpha 

of 0.005.
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For quantatitive triat analysis in the French controls, assuming a statistical significance of 0.005 

(ten tests), a MAF of 0.5, a difference in mean BMI between alleles of 0.5 and an SD of 2.1 (as 

observed for BMI in all 1237 French controls) power is calculated to be 87%. With a MAF of 0.1 

this drops to 34% and for MAF of 0.05, 15% (see Figure 2.3).

Figure 2.3. Statistical power for analysing BMI in the French controls (n=1237). Difference in  

population means is measured in BMI units. This assumes a SD of 2.1 (as observed for BMI in  

all 1237 French controls) and a statistical significance of 0.005 (ten tests).

Power calculations specific for each gene investigated in this thesis appear in their respective  

results chapters.

2.3.8 Analysis of sequence data

Sequence  data  was  analysed  using  SeqScape  v2.0  (Applied  Biosystems).  Reference 

sequences  were  imported  in  Genbank  format  from  the  NCBI  website 

(http://www.ncbi.nlm.nih.gov/gene). Sequencing  data  was  then  aligned  with  the  reference 

sequence to locate variants within the test sequences.
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2.3.9 Interpretation of bisulfite sequence data

Sequences were viewed and peak heights measured using Sequence Scanner software version 

1.0 (Applied Biosystems). Peak heights of cytosine residues within CpG sites were measured as 

a percentage of cytosine at that site (i.e. the height of the cytosine peak was divided by the sum 

of the height of the cytosine and thymine). This figure gives a conversion rate and indicates the 

amount of methylated DNA copies in a sample at that particular CpG site. When the reverse 

strand was sequenced, percentage of guanine to adenine was measured.

For  quality  control  purposes  two  non-CpG  cytosines  (guanines  in  reverse  strands)  were 

measured and if either site was less than 95% converted the sequence was rejected.

2.3.10 Statistical analysis of CpG methylation data

Percentage  methylation  was  treated  as  a  quantitative  trait  and  analysed  for  association  to 

obesity using an independent samples t-test implemented by SPSS version 17.0 (SPSS Inc.). It 

was also analysed for association with BMI corrected for age and sex using linear regression 

implemented in R v2.8.1 (see Appendix for R commands).
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Chapter 3

Investigation of genetic variants within the Sirtuin-1 

gene for association to common polygenic obesity
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3.1 Introduction

SIRT1 is the mammalian form of the yeast protein, silent information regulator 2 (SIR2)408, a 

protein  known to  be crucial  for  the  lifespan extending  effects  of  caloric  restriction  in  lower 

organisms409. The SIR2 family of enzymes catalyse deacetylation of acetylated lysine residues 

of certain proteins in a reaction that is dependent on the presence of nicotinamide adenine 

dinucleotide (NAD+)410.

SIRT1 is localised to the nucleus and in particular, is associated with euchromatin411. It facilitates 

the formation of heterochromatin, the tightly formed chromatin that is associated with histone 

hypoacetylation and gene repression412. SIRT1 was originally thought to be a histone-specific 

deacetylase as the first targets to be identified were the histones H1, H3 and H4412. However, a 

number of non-histone targets of SIRT1 have since been identified including the transcription 

factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-KB)413, Forkhead box 

1 (FOXO1)414, FOXO3a415 and p53416,417. Many of these transcription factor targets are involved 

in the regulation of energy metabolism.

3.1.1 SIRT1 regulates energy metabolism

SIRT1 stimulates lipid mobilisation and inhibits adipogenesis in WAT by repressing activity of  

the adipogenesis factor PPARg418. In skeletal muscle, SIRT1 stimulates fatty acid oxidation by 

activating PPARa and PPARg co-activator 1 alpha (PGC-1a)419. In the liver, SIRT1 suppresses 

glycolysis and stimulates hepatic glucose output and this also occurs  via stimulation of PGC-

1a420. It also suppresses lipid synthesis and stimulates lipid oxidation421,422. SIRT1 also activates 
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the mitochondrial enzymes acetyl-CoA synthetase 1 and 2423,424 which is thought to result  in 

reduction of the rate of fatty acid synthesis. Therefore SIRT1 acts in multiple tissue types to 

stimulate energy expenditure and promote a reduction in stored triglycerides thus potentially 

influencing the fat mass of the individual.

SIRT1 has been also found to act on insulin receptor substrate-1 (IRS1) and IRS2 indicating a 

possible  role  in  the  insulin  signalling  pathway425.  Furthermore,  in  pancreatic  β-cells,  SIRT1 

suppresses  activity  of  UCP2  which  results  in  reduced  uncoupling  of  mitochondrial  ATP 

production and an increased yield of ATP from glucose oxidation and ultimately stimulation of 

insulin secretion426. This means that SIRT1 can potentially regulate the uptake of glucose and 

lipids from the blood stream as well as appetite and energy expenditure in the hypothalamus. 

3.1.2 SIRT1   activity is regulated by   metabolic factors  

SIRT1 activity is dependent on NAD+ which links it to the metabolic state of the cell409. SIRT1 

converts NAD+ to nicotinamide, and nicotinamide can non-competitively bind with and inhibit 

SIRT1 activity thus providing negative feedback control to this mechanism427. NAD+ levels have 

been shown to  rise  in  muscle,  liver  and white  adipose  tissue  (WAT) during fasting,  caloric 

restriction and exercise428,429. Conversely, a high-fat diet in mice reduces cellular NAD+ levels430. 

This then provides one mechanism by which energy levels can regulate SIRT1 activity.

As well as activity of the SIRT1 enzyme, its expression has also been found to be upregulated  

by fasting in fat, muscle, and brain tissues431,432,433. Additionally, SIRT1 is downregulated in mice 

fed a  high-fat  diet434.  Nutrient  withdrawal  appears  to  stimulate  expression of  SIRT1 via the 

transcription  factors  FOXO3a  and  p53435 suggesting  a  positive  feedback  loop  since  SIRT1 
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regulates activity of  these same transcription factors.  PPARg has been reported to  repress 

SIRT1 expression, which would suggest a negative feedback loop436. SIRT1 expression in the 

liver,  however,  appears  to  be  regulated  differently;  in  mice  SIRT1 is  reduced  by  caloric 

restriction and stimulated by a high-calorie diet433.

3.1.3 SIRT1   mouse models  

Over-expression of  the  SIRT1 gene in  mice results  in  inhibition of  adipogenesis,  enhanced 

lipolysis and release of free fatty acids and this has been shown to occur  via repression of 

PPARg418. Transgenic mice that over-express SIRT1 weigh less than control mice and have a 

lower WAT mass330. Specific over-expression of SIRT1 in pancreatic β-cells, leads to enhanced 

glucose-stimulated insulin secretion and ATP production  via repression of UCP2437. In  SIRT1 

knockouts, the resulting  mice have a higher body weight than controls and exhibit increased 

insulin  resistance,  glucose  intolerance  and  inflammation  in  both  WAT and liver332,421.  These 

mouse models,  therefore suggest  an important  role  for  the  SIRT1 gene in  ensuring proper 

regulation of energy balance and body-weight.

3.1.4 SIRT1 as a pharmacological target for treating metabolic disease

Resveratrol, a naturally occurring chemical found in grapes and red wines, activates SIRT1 and 

its administration to several species of invertebrate results in extended life span438,439.  In mice, 

resveratrol has been reported to improve health and survival in animals fed a high-calorie diet 440 

and in rats it has been shown to reduce the symptoms of diabetes441. In diet-induced obese 
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mice, daily oral dosing of resvertrol has been shown to reduce blood glucose levels and improve 

insulin  sensitivity419.  This  result  has  been  confirmed  in  fa/fa rats  with  both  resveretrol  and 

synthetic SIRT1 activators334. As such SIRT1 activators have been the subject of research in to 

possible therapeutics for the treatment of T2D334.

3.1.5   SIRT1   genetic variation and obesity  

In  2007  when  this  gene  was  selected  for  study,  no  reported  associations  between  SIRT1 

variation and obesity were found in the literature.  Three such studies have been published 

since. Firstly, in a Belgian chort, one SNP, rs7069102 was found to be associated to obesity in a 

case-control analysis of around 1400 subjects (p=0.007)442. Another SNP, rs2273773 was then 

reported to be associated with BMI in a Dutch population (n=3575, p=0.001)443 and in a third 

publication that used two Dutch cohorts (n=6,251 from a population-based study and n=2347 

from a family-based study) two SNPs, rs7895833 and rs1467568 were associated with both BMI 

(p=0.02 and 0.008) and obesity (p=0.007 and 0.0009)444. SIRT1 mRNA expression has also 

been reported to be associated with obesity. In a Danish study, transcription levels in adipose 

were found to be significantly increased in lean compared to obese women (n=24, p<0.02)337. 

This  study also demonstrated an increase in  SIRT1  expression after  six  days  of  fasting in 

humans (n=9).

SIRT1 variants have not been found to be significantly associated with obesity or BMI in any  

GWAS to date. In the French GWAS, which used some of the same sample as this study253, no 

SNPs within the SIRT1 region were found to have a p-value of <0.05. The most recent GIANT 

GWAS233 found a nominally significant p-value of 1.2x10-4 to rs471962, a SNP within the SIRT1 
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region (data acessed online445, see Figure 3.1).   The SIRT1 gene contains a number of SNPs 

validated in the NCBI database but not present in the HapMap, which means that it is possible 

that a portion of variation in the gene has not been investigated for association with obesity or 

BMI.

Figure 3.1. SNPs analysed for association to BMI in SIRT1 region in the GIANT GWAS233.

In  summary,  SIRT1 has  an important  role  in  energy  regulation and as such  is  a  plausible 

candidate  gene  for  polygenic  obesity.  This  study  was  designed  to  investigate  possible 

associations between variants in the SIRT1 gene and common polygenic obesity in French 

obese cases and non-obese controls. A Swedish sib-pair cohort was used for replication and for 

investigating possible associations between SIRT1 expression in adipose tisse and obesity (see 

Materials and Methods for details).
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3.2 Results

3.2.1 SNP Selection and Case-Control Genotyping

Twenty-seven SNPs were genotyped within the SIRT1 gene including three tag SNPs which 

captured all twenty-one SNPs included in the HapMap database (mean r2=0.975)(See Figure 

3.2). Twenty-two SNPs achieved acceptable genotyping rates (>85%) with a mean call rate of  

90.2%. Eleven of these had minor allele frequencies lower than the required minimum of 5% 

and were not  taken forward for  statistical  analysis  (See Table  3.1).  Of  the three tag SNPs 

genotyped, two passed QC, rs12413113 and rs11596401. 

Figure 3.2. Schematic diagram of the SIRT1 gene showing the positions of SNPs successfully 

genotyped in this study. • tagging SNPs, █ SIRT1 exons.
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SNP Position on Chromosome 10 a
Position within SIRT1 

gene
Minor Allele 
Frequency

rs33957861 69646976 Intron 1 0.12
rs737477 69647605 Intron 2 0.06
rs2236318 69648569 Intron 2 0.45
rs34122272 69650069 Intron 3 <0.01
rs10823103 69650969 Intron 3 0.31
rs12413112 69651866 Intron 4 0.12
rs11599176 69653775 Intron 4 0.12
rs10997865 69655315 Intron 4 0.35
rs11596401 69656037 Intron 4 0.34
rs2894057 69656790 Intron 4 <0.01
rs35689145 69659767 Intron 4 0.08
rs33955981 69661358 Intron 4 0.31
rs41274092 69666657 Exon 5 <0.01
rs36067477 69666666 Exon 5 <0.01
rs3818292 69666901 Intron 5 0.04
rs34414573 69667359 Intron 5 0.01
rs11594238 69668495 Intron 6 <0.01
rs7073231 69669607 Intron 7 <0.01
rs10997871 69672935 Intron 8 <0.01
rs35592342 69674262 Intron 8 0.02
rs35224060 69676297 Exon 9 <0.01
rs2234975 69678078 3’ Untranslated Region 0.09

Table 3.1. SNPs genotyped within the SIRT1 gene and minor allele frequencies observed in the 

case-control subjects. aPositions in bp correspond to NCBI build 37.1 measured from the top of 

the p arm of the chromosome. 

One SNP, rs2234975 was found to be nominally associated with obesity in children (p=0.018, 

OR=  0.74  CI=  0.57-0.95)  but  this  does  not  withstand  correction  for  multiple  tests  using 

permutations (p=0.123). No association was observed between this SNP and obesity in the 

adult cohort.  Four SNPs, rs33957861 (p= 0.006, OR= 0.75, CI= 0.61-0.92), rs12413112 (p= 

0.013,  OR=  0.77,  CI=  0.63-0.95),  rs11599176  (p=  0.003,  OR=  0.74,  CI=  0.61-0.90)  and 

rs35689145 (p= 0.015, OR= 0.74, CI= 0.58-0.95) were nominally associated with severe obesity 
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in adults and two of these SNPs survive correction using one million permutations (rs33957861, 

p=0.034  and  rs11599176,  p=0.019).  None  of  these  SNPs  were  associated  with  obesity  in 

children.  All  associated  SNPs  had  a  greater  frequency  of  the  minor  allele  in  the  controls 

compared to the cases, suggesting a protective effect (See Table 3.2). 
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Genotype Counts

Controls Obese Adults Obese Children

SNP 1,1a 1,2 2,2 1,1 1,2 2,2 1,1 1,2 2,2
Odds Ratio Adults 

(95% CI)

P-values Adults

Empirical Corrected
Odds Ratio 

Children (95% CI)

P-values Children

Empirical Corrected

rs33957861 874 254 21 663 133 14 482 121 8 0.75 (0.61-0.91) 0.0057 0.034b 0.85 (0.69-1.1) 0.15 0.66

rs737477 1051 132 6 449 56 1 504 69 5 0.94 (0.69-1.3) 0.72 1.0 1.14 (0.86-1.5) 0.38 0.95

rs2236318 319 568 223 249 388 146 176 282 124 0.91 (0.8-1.0) 0.17 0.68 0.99 (0.86-1.2) 0.94 1.0

rs10823103 503 475 111 378 311 66 286 223 62 0.88 (0.76-1.0) 0.086 0.43 0.93 (0.79-1.1) 0.35 0.92

rs12413112 876 238 22 671 149 7 457 119 7 0.77 (0.63-0.95) 0.013 0.085 0.91 (0.73-1.1) 0.40 0.96

rs11599176 886 261 25 684 156 8 463 122 9 0.74 (0.61-0.9) 0.0025 0.019b 0.87 (0.71-1.1) 0.22 0.77

rs10997865 480 511 129 354 323 81 249 264 71 0.9 (0.78-1.0) 0.14 0.60 1.02 (0.88-1.2) 0.80 1.0

rs11596401 468 520 123 339 329 70 254 255 72 0.89 (0.77-1.0) 0.083 0.44 0.99 (0.86-1.2) 0.94 1.0

rs35689145 948 187 9 693 107 1 526 80 4 0.74 (0.58-0.94) 0.015 0.10 0.79 (0.61-1.0) 0.076 0.39

rs33955981 518 456 115 389 333 76 280 243 60 0.95 (0.83-1.1) 0.47 0.98 0.98 (0.84-1.2) 0.83 1.0

rs2234975 952 220 7 720 132 9 499 75 6 0.87 (0.7-1.1) 0.19 0.73 0.74 (0.57-0.95) 0.018 0.12

Table 3.2. Allelic association analysis of SIRT1 SNPs to obesity in children and adult French case-controls. a 1 denotes the common allele and 2 denotes the rare 

allele, b Statistically significant p-values. Corrected p-values result from one million permutations.
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SIRT1 SNPs were analysed for association to BMI within the control groups using age and sex as 

covariates. No SNPs were found to be associated (see Table 3.3). 

Mean BMI (Standard Deviation)

SNP 1,1a 1,2 2,2
Empirical 
P-value

Corrected 
P-value

rs33957861 21.8 (2.1) 22.6 (2.1) 22.4 (2.2) 0.22 0.91

rs737477 23.4 (1.1) 22.3 (2.2) 22.4(2.1) 0.87 1.0

rs2236318 22.2 (2.1) 22.4 (2.1) 22.4 (2.2) 0.97 1.0

rs10823103 22.2 (2.1) 22.4 (2.2) 22.4 (2.1) 0.64 1.0

rs12413112 22.0 (2.0) 22.5 (2.1) 22.4 (2.1) 0.24 0.92

rs11599176 22.0 (2.2) 22.6 (2.1) 22.4 (2.1) 0.36 0.99

rs10997865 22.2 (2.0) 22.4 (2.2) 22.4 (2.1) 0.79 1.0

rs11596401 22.1 (2.1) 22.4 (2.2) 22.4 (2.1) 0.61 1.0

rs35689145 21.8 (2.1) 22.6 (2.2) 22.4 (2.1) 0.11 0.68

rs33955981 22.4 (2.0) 22.5 (2.2) 22.4 (2.1) 0.46 1.0

rs2234975 22.6 (1.3) 22.2 (2.2) 22.4 (2.1) 0.41 0.99

Table 3.3. Association analysis of SIRT1 SNPs to the quantitative trait of BMI in French controls using 

age and sex as covariates. a 1 denotes the common allele, 2 denotes the minor allele.
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A high degree of linkage disequilibrium (LD) was found throughout the gene especially between the 

four SNPs nominally associated with adult  obesity with r2 values ranging from 0.63 to 0.96 (See 

Figure 3.3). The two SNPs that were significantly associated with obesity after permutation correction 

were in strong LD with one-another with r2=0.96. One LD block was identified using the confidence 

interval method described by Gabriel et al.403 between rs2236318 and rs33955981. 

Figure 3.3. Linkage disequilibrium (r2) plot of SIRT1 SNPs genotyped in the French control samples. 

Black squares indicate 100% LD and white squares indicate zero LD. The percentage LD level (r2) 

within grey squares are displayed.
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Haplotype analysis using the four nominally associated SNPs revealed a significant association to 

obesity  (p=0.028  after  one  million  permutations).  Haplotype  analysis  performed  on  the  two 

significantly associated SNPs, rs33957861 and rs11599176 revealed a more significant association to 

obesity than was found for any individual SNP (p=0.001 after 1 million permutations) (See Table 3.4).

SNP 1 SNP 2 SNP 3 SNP 4
Empirical 
p-value

Corrected 
p-value

rs33957861 rs12413112 rs11599176 rs35689145 0.0083 0.028a

rs33957861 rs12413112 rs11599176 - 0.022 0.067

rs33957861 rs12413112 rs35689145 - 0.027 0.081

rs33957861 rs11599176 rs35689145 - 0.019 0.059

rs12413112 rs11599176 rs35689145 - 0.049 0.14

rs33957861 rs12413112 - - 0.0011 0.0030a

rs33957861 rs11599176 - - 0.00040 0.0010a

rs33957861 rs35689145 - - 0.020 0.062

rs12413112 rs35689145 - - 0.010 0.034a

rs12413112 rs11599176 - - 0.0029 0.0089a

rs11599176 rs35689145 - - 0.0054 0.014a

Table  3.4. Haplotype  association  analysis  to  obesity  in  adults  using the four  SNPs found to  be 

nominally associated with adult obesity.  a  Statistically significant p-values. Corrected p-values result 

from one million permutations. 

3.2.2 Genotyping within the Swedish sib-pair cohort

Genotyping was carried out in the Swedish families using the same set of Sequenom iPlex assays. 

Genotyping success rate averaged 94% for the five SNPs nominally associated within the French 

case control  analysis.  These SNPs were analysed for association with BMI using the  QFAM test 

within PLINK.  Four SNPs,  rs11599176,  rs12413112, rs33957861 and rs35689145 were nominally 

associated with BMI (p=4.5x10-4, 5.7x10-4, 4.5x10-4 and 0.057 respectively, see Table 3.5). These are 

the  same four  SNPs nominally associated with  adult  obesity.  At  each SNP,  the minor  allele  was 

associated with a reduced BMI with a difference of  up to 2.8kg/m2 between the two homozygote 

genotypes.  After  correction  using  one  million  permutations,  three  SNPs  remained  significant, 

rs11599176 (p=0.014), rs12413112 (p=0.019) and rs33957861 (p=0.014)(see Table 3.5). 
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Genotype 
Numbers Mean BMI ± 95% CI (kg/m2)

SNP 1,1a 1,2 2,2 1,1 1,2 2,2
Empirical 
p-value

Corrected 
p-value

rs33957861 487 133 9 29.2 ± 0.55 28.4 ± 1.2 26.4 ± 3.0 0.0045 0.014b

rs12413112 478 129 8 29.3 ± 0.56 28.4 ± 1.2 26.4 ± 3.3 0.0057 0.019b

rs11599176 481 132 9 29.3 ± 0.56 28.4 ± 1.2 26.8 ± 3.0 0.0045 0.014b

rs35689145 534 82 2 29.1± 0.54 28.3 ± 1.5 31.6 ± 8.9 0.057 0.088

rs2234975 522 91 11 29.2 ± 0.57 28.8 ± 1.1 26.8 ± 2.5 0.99 0.99

Table 3.5. Association analysis of SIRT1 SNPs with BMI in the Swedish families using the QFAM test 

and the within-families model of association correcting for age and sex as implemented by PLINK. a 1 

denotes the common allele and 2 denotes the rare allele, b statistically significant p-values. Corrected 

p-values result from one million permutations.

Haplotypes  of  the  four  associated  SNPs  were  imputed  and  tested  for  association  to  BMI.  After 

correction, five haplotypes were significantly associated; however p-values were higher than for the 

individual  SNPs  with  the  most  significant  haplotype  of  the  three significantly  associated  SNPs 

(rs33957861, rs12413112 and rs11599176; p=0.017; see Table 3.6.)
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SNP 1 SNP 2 SNP 3 Empirical P-value Corrected P-value

rs33957861 rs12413112 rs35689145 0.045 0.073

rs33957861 rs12413112 rs11599176 0.0053 0.017a

rs35689145 rs12413112 rs11599176 0.069 0.099

rs33957861 rs12413112 - 0.018 0.048a

rs33957861 rs11599176 - 0.011 0.033a

rs33957861 rs35689145 - 0.14 0.19

rs12413112 rs35689145 - 0.11 0.15

rs11599176 rs35689145 - 0.018 0.050a

rs12413112 rs11599176 - 0.011 0.034a

Table 3.6. Haplotype association analysis of SIRT1 SNPs with BMI in the Swedish families using the 

QFAM  test  and  the  within-families  model  of  association  implemented  by  PLINK.  a  Statistically 

significant p-values. Corrected p-values result from one million permutations.

3.2.3 Analysis of   SIRT1   t  ranscription  

Gene expression data from subcutaneous adipose tissue of the Swedish sib-pairs was available for  

analysis. This data was obtained from an eQTL study which used an Affymetrix Human Genome U133 

Plus 2.0 gene expression array to measure genome wide transcript levels396.

There  was  no  significant  association  between  SIRT1 SNPs  and  SIRT1 transcript  levels  after 

correcting for the effects of age, sex and BMI (see Table 3.7). 
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Genotype 
Numbers

Mean SIRT1 Transcription (95% CI)

SNP 1,1a 1,2 2,2 1,1 1,2 2,2 Empirical P-value Corrected P-value

rs33957861 256 73 6 0.18 (-0.21 – 0.59) -0.44 (-1.2 - 0.28) -3.2 (-5.29 - -1.03) 0.90 0.89

rs12413112 254 71 5 0.19 (-0.20 – 0.60) -0.26 (-1.0 -0.48) -3.7 (-6.01 - -1.31) 0.66 0.66

rs11599176 254 72 6 0.19 (-0.20 – 0.60) -0.17 (-0.91 – 0.57) -3.2 (-5.3 - -1.0) 0.78 0.79

rs35689145 280 48 2 0.010 (-0.36 – 0.38) -1.1 (-2.1 – -0.11) -2.5 (-6.0 – 1.0) 0.060 0.072

rs2234975 285 42 8 0.0073 (-0.37 – 0.39) 0.16 (-0.84 – 1.1) 2.1 (-0.15 – 4.4) 0.63 0.57

Table 3.7. Association analysis of SIRT1 SNPs with SIRT1 expression corrected for age, sex and BMI in the Swedish families using the QFAM test and the within-

families model of association implemented by PLINK. a1 denotes the common allele and 2 denotes the rare allele.
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When  siblings  were  split  into  two  groups  of  non-obese  (BMI<30  kg/m2)  and  obese 

(BMI>30kg/m2)  and the transcription levels  corrected for age,  sex and relatedness,  the two 

groups were normally distributed as assessed using a normal Q-Q plot. Using an independent 

samples t-test, a significant difference in the level of SIRT1 transcription was found between the 

two groups (p=1.56x10-35, see Figure 3.4 and Table 3.8). When corrected  SIRT1 transcription 

was  plotted  against  BMI,  a  negative  correlation  was  observed  in  the  lean  group  (r 2=0.13, 

p=3.37x10-7, see Figure 3.5), however this was not the case in the obese group (r2= 0.012, 

p=0.17, see Figure 3.6).
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Figure 3.4. Box-plot of SIRT1 transcript levels in obese and non-obese subjects from Swedish 

sib-pairs.  SIRT1  transcription  is  the  microarray  signal  value  corrected  for  age,  sex  and 

relatedness. Mean transcription ± standard deviation were 2.26 ± 4.08 in the non-obese and 

-2.93 ± 3.13 in the obese group.

Number of 
Non-obese

Number of 
Obese

Mean Difference in SIRT1 
transcription (95% CI) P-value

190 156 5.2 (4.5-5.9) 1.6x10-35

Table 3.8. T-test of SIRT1 transcription in obese and non-obese subjects from Swedish families. 

SIRT1 transcription is the microarray signal value corrected for age, sex and relatedness.
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Figure 3.5. SIRT1 transcription levels plotted against BMI in non-obese siblings (n=196, r2 = 

0.13, p=3.4x10-7 ). SIRT1 transcription was the DNA microarray signal value corrected for age, 

sex and relatedness.
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 Figure 3.6. SIRT1 transcription levels plotted against BMI in obese siblings (n=156 ,r2= 0.012, 

p=0.17) . SIRT1 transcription was the DNA microarray signal value corrected for age, sex and 

relatedness.

3.2.4 Sequencing of   SIRT1   

Sequencing was carried out in order to find variants in LD with associated SNPs in an attempt to 

locate the causative mutation. Ten subjects were chosen that were homozygous for each of the 

four minor alleles associated with adult obesity.  A further nine subjects were sequenced that 

were  homozygous  for  the  minor  allele  of  rs2234975  (associated  with  obesity  in  children). 

Subjects that had the minor variant for adult associated SNPs were chosen such that they had 

the  common variant  for  the  child  associated  SNP and  vice  versa.   One sample  that was 
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homozygous for each minor allele associated with both adult and childhood obesity was also 

included. Eleven PCRs were carried out covering the nine exons in SIRT1 along with ten PCRs 

covering the 3kbp region upstream of the transcription start site. This was followed by direct  

sequencing.

One SNP was discovered  within  the  promoter  of  the samples that  carried the  minor  allele 

variant associated with obesity in the adult cohort. This was located 1348bp upstream of the 

SIRT1 transcription start site and identified as rs12778366. Four SNPs were discovered within 

the promoter  of  the samples  that  contained  the  minor  allele  of  the  variant  associated with 

obesity in the child smples. These were located 86bp, 210bp, 1085bp and 2473bp upstream of  

the  transcription  start  site  and  were  identified  as  rs2394443,  rs932658,  rs3758391  and 

rs12250285. One SNP was discovered within the promoters of all samples. This was located 

1759bp upstream of the transcription start  site and was identified as rs10740280. No SNPs 

were found within any of the SIRT1 exons (see Figure 3.7).
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Figure 3.7. SNPs discovered within the SIRT1 gene promoter region in samples that carried the 

minor allele variants associated with obesity. Positions are relative to the transcriptional start of  

SIRT1. 

3.2.5 Case-control genotyping in promoter

Genotyping  of  the  SIRT1 promoter  SNPs was  then  carried  out  in  the  French  case-control 

subjects. Each of the six SNPs discovered above were genotyped along with four additional  

SNPs, which were chosen from the four kilobase promoter region of  the gene in the NCBI 

database. Of these, five passed quality control, which included three of the six discovered SNPs 

including the one SNP that was found to be in LD with SNPs associated with adult obesity, 

rs12778366 (see Table 3.9).
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SNP Position on Chromosome 10 (bp)a Minor Allele Frequency

rs12246428 69640165 <0.01

rs12778366 69643079 0.12

rs3758391 69643342 0.31

rs35706870 69643617 0.13

rs3740051 69643959 0.06

rs932658 69644217 0.32

Table  3.9.  SIRT1  promoter  SNPs successfully  genotyped with  the  minor  allele  frequencies 

observed in the case-control subjects. a Positions in bp correspond to NCBI build 37.1 measured 

from the top of the p arm of the chromosome. 

No SNPs were associated with obesity in either adults or children. Association analysis was 

carried out together with the previous set of SNPs in order to obtain corrected p-values that  

reflect the additional statistical tests being used. These results are presented in Table 3.10. After 

this correction was applied, two SNPs remain significantly associated with obesity in adults, 

rs33957861 (corrected p=0.048) and rs11599176 (corrected p=0.026). LD analysis within the 

control samples revealed some LD between rs12778366 and the adult associated SNPs (r2  = 

0.42 – 0.69), however very little  LD was observed to any other promoter SNP. No LD was 

observed between the child associated SNP, rs2234975 and any promoter SNP (see Figure 

3.8).
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Genotype Counts

Controls Obese Adults
Obese 

Children Obese Adults Obese Children

SNP
Position Within 

SIRT1 Gene 1,1a 1,2 2,2 1,1 1,2 2,2 1,1 1,2 2,2
Odds ratio 

(95% CI)
Empirical 

P-value
Corrected 

P-value
Odds ratio 

(95% CI)
Empirical 

P-value
Corrected 

P-value

rs12778366 Promoter 14 161 697 20 261 912 9 116 468 0.84 (0.69-1.0) 0.080 0.52 0.89 (0.72 - 1.1) 0.32 0.96

rs3758391 Promoter 76 370 420 121 526 555 69 245 285 0.92 (0.8-1.1) 0.22 0.87 1.0 (0.87 - 1.2) 0.90 1.0

rs35706870 Promoter 9 197 662 20 270 908 14 119 466 0.95 (0.79-1.2) 0.60 1.0 0.93 (0.76 - 1.2) 0.54 1.0

rs3740051 Promoter 4 78 644 5 122 1068 4 67 520 1.1 (0.81-1.4) 0.60 1.0 1.19 (0.89 - 1.6) 0.25 0.91

rs932658 Promoter 77 372 418 122 523 541 66 241 280 0.91 (0.8-1.0) 0.17 0.79 0.98 (0.85 - 1.1) 0.82 1.0

rs33957861 Intron 1 874 254 21 663 133 14 482 121 8 0.75 (0.61-0.91) 0.0057 0.048b 0.87 (0.7 - 1.1) 0.21 0.86

rs737477 Intron 2 1051 132 6 449 56 1 504 69 5 0.94 (0.69-1.3) 0.72 1.0 1.14 (0.85 - 1.5) 0.40 0.99

rs2236318 Intron 2 319 568 223 249 388 146 176 282 124 0.91 (0.8-1.0) 0.17 0.79 0.99 (0.86 - 1.2) 0.93 1.0

rs10823103 Intron 3 503 475 111 378 311 66 286 223 62 0.88 (0.76-1.0) 0.086 0.53 0.93 (0.8 - 1.1) 0.39 0.99

rs12413112 Intron 4 876 238 22 671 149 7 457 119 7 0.77 (0.63-0.95) 0.013 0.12 0.92 (0.74 - 1.2) 0.48 1.0

rs11599176 Intron 4 886 261 25 684 156 8 463 122 9 0.74 (0.61-0.90) 0.0025 0.026b 0.89 (0.71 - 1.1) 0.28 0.93

rs10997865 Intron 4 480 511 129 354 323 81 249 264 71 0.90 (0.78-1.0) 0.135 0.71 1.0 (0.88 - 1.2) 0.75 1.0

rs11596401 Intron 4 468 520 123 339 329 70 254 255 72 0.89 (0.77-1.0) 0.083 0.55 1 (0.86 - 1.2) 0.96 1.0

rs35689145 Intron 4 948 187 9 693 107 1 526 80 4 0.74 (0.58-0.94) 0.015 0.14 0.79 (0.61 - 1.0) 0.076 0.51

rs33955981 Intron 4 518 456 115 389 333 76 280 243 60 0.95 (0.83-1.1) 0.47 1.0 0.99 (0.85 - 1.2) 0.94 1.0

rs2234975 3’ Untranslated Region 952 220 7 720 132 9 499 75 6 0.87 (0.7-1.1) 0.19 0.82 0.72 (0.56 - 0.94) 0.018 0.13

Table 3.10. Association analysis of SIRT1 promoter SNPs in French case-controls analysed together with the original genotyped SNPs in order to take into account  

the additional statistical tests being performed. a 1 denotes the common allele and 2 denotes the rare allele,b P-values that are statistically significant after correction 

using one million permutations.
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Figure 3.8. LD (r2) plot within the French control samples containing all SNPs genotyped and 

analysed within  SIRT1 and its promoter region.  Black squares indicate 100% LD and white 

squares indicate zero LD. The percentage LD level (r2) within grey squares are displayed.

3.2.6 Imputation

An alternative method for fine-mapping the association involves imputation of genotypes from a 

reference population. Using the 1000 genomes data265, genotypes were imputed 250kb either 

side of the SIRT1 gene using IMPUTE2 which generated 7786 imputed SNPs404. SNPTEST was 

used to test case-control associations to the imputed SNPs taking into account the genotype 

uncertainty  of  imputed  data.  414 SNPs out  of  7786 tested  were  nominally  associated  with 
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obesity in the adult case-control cohort and 24 had p-values <10-5. with the most significant SNP, 

rs12776134  p=1.9x10-6  (see  Figure  3.9). In  the  child  case-controls  249  were  nominally 

associated but none had p-values <10-5. None of the most significantly associated SNPs (those 

with p-values <10-4) were in SIRT1 exons.

Figure 3.9. LocusZoom445 plot of imputed SIRT1 SNPs tested for association in the French adult 

case-control  cohort.  LD  values  measured  using  r2 are  from  1000  genomes  data  and  are 

displayed relative to rs12776134, the most significantly associated imputed SNP.

3.2.7 Statistical power calculations

Using an odds ratio of  0.74 (as observed for  rs11599176, the most significantly associated 

SNP), a MAF of 0.13 (as observed for rs11599176) and a significance level of 0.0045 (0.05/11 

tests),  the power to detect an association was 25% in the adult  cohort.  In the child cohort,  

assuming  an  odds ratio  of  0.87,  power  was  2.6% (see  Table  3.11).  In  order  to  achieve a 
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statistical power of 95%, assuming an odds ration of 0.74, a MAF of 0.13 and a significance 

level of 0.0045, this study would need a sample size of 4332 cases and 4332 controls. With a  

significance level of 5.0x10-8 (genome-wide significance), this study would require 10842 cases 

and 10842 controls (see Figure 3.10). If the effect size was smaller (odds ratio greater than 

0.74) then the sample size required to reach a statistical power of 95% increases (see Figure 

3.11).

SNP
Significance 

level
MAF 

(controls)
OR 

(children) OR (adults) Power (children) Power (adults)
rs33957861 0.0045 0.13 0.85 0.75 0.036 0.21
rs737477 0.0045 0.061 1.1 0.94 0.017 0.07
rs2236318 0.0045 0.46 0.99 0.91 <0.01 0.038
rs10823103 0.0045 0.32 0.93 0.88 0.015 0.066
rs12413112 0.0045 0.12 0.91 0.77 0.013 0.16
rs11599176 0.0045 0.13 0.87 0.74 0.026 0.25
rs10997865 0.0045 0.34 1.0 0.90 <0.01 0.043
rs11596401 0.0045 0.35 0.99 0.89 <0.01 0.055
rs35689145 0.0045 0.090 0.79 0.74 0.055 0.15
rs33955981 0.0045 0.32 0.98 0.95 <0.01 0.011
rs2234975 0.0045 0.099 0.74 0.87 0.117 0.026

Table 3.11. Power calculations carried out using MAF and OR observed for each SNP in the 

SIRT1 gene investigated.

109



Figure  3.10. Sample  size  plotted  with  statistical  power  for  a  SNP with  MAF=0.13 (as  was 

observed for rs11599176). α is the significance level: 0.0045 for 11 statistical tests and 5x10 -8 for 

genome-wide significance.

Figure 3.11. Sample size (number of cases, with number of controls=number of cases) required 

for varying odds ratios in order to achieve a statistical power of 95% for a SNP with MAF=0.13  

(as was observed for rs11599176). α is the significance level: 0.0045 for 11 statistical tests and 

5x10-8 for genome-wide significance.

110



Statistical power for quantitative trait analysis in the French control samples was 43% to detect  

an association with an effect size of 0.5 BMI units assuming a MAF of 0.13, a SD of 2.1 and a  

significance level of 0.0045. At genome-wide significance level this falls to <1%. Smaller effect 

sizes would result in less power (see Figure 3.12).

Figure 3.12. Statistical power against effect size in French controls assuming a MAF of 0.13 

and SD of 2.1 BMI units and a significance level of 0.0045.

For the sequencing project, the probability of locating a common variant (MAF>5%) in high LD 

(r2>0.8) with the associated SNPs using 10 samples was calculated to be >99%, assuming such 

a variant exists. The probability of locating a variant with MAF = 1% in moderate LD (r2=0.5) was 

calculated to be 98%. The probability of locating a variant with MAF = 0.1% in moderate LD 

(r2=0.5) was calculated to be 70% (see Appendix A7 for calculations).
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3.2.8 Thesis-wide multiple testing correction

When SIRT1 SNPs are analysed together with all other gene SNPs investigated in this thesis, 

no variants remain significantly associated to obesity in either adults or children after correction 

using permutations (see Table 3.12). 

SNP
Empirical P-

value Children
Corrected P-

value Children
Empirical P-
value Adults

Corrected P-value 
Adults

rs12778366 0.081 1.0 0.080 1.0
rs3758391 0.22 1.0 0.22 1.0
rs35706870 0.60 1.0 0.60 1.0
rs3740051 0.60 1.0 0.60 1.0
rs932658 0.17 1.0 0.17 1.0
rs33957861 0.15 1.0 0.0057 0.36
rs737477 0.38 1.0 0.72 1.0
rs2236318 0.94 1.0 0.17 1.0
rs10823103 0.35 1.0 0.086 1.0
rs12413112 0.40 1.0 0.013 0.64
rs11599176 0.22 1.0 0.0025 0.20
rs10997865 0.80 1.0 0.14 1.0
rs11596401 0.94 1.0 0.083 0.99
rs35689145 0.076 0.98 0.015 0.56
rs33955981 0.83 1.0 0.47 1.0
rs2234975 0.018 0.51 0.19 1.0

Table  3.12 P-values after  correcting for  multiple  testing using permutations  and taking into 

account all SNPs investigated in this thesis.
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3.3 Discussion

These results suggest  that  the hypothesis that  SIRT gene variation influences obesity risk  merits 

further investigation in larger sample sizes.  The lack of  genome-wide significance and replication 

means  that  an  association  has  not  been  conclusively  proven.  However,  the  observation  of  

associations between SIRT1 SNPs and obesity in French case-controls and BMI in Swedish families 

provides evidence of a possible association.

The  p-values  reported  here  do  not  withstand  a  genome-wide  correction  for  multiple  testing. 

Furthermore, permutation analysis using all SNPs tested within this thesis results in non-significance 

of all tests, which means that the possibility of a false positive cannot be ruled out.  If this investigation 

is treated as an independent test assessing whether SIRT1 variation is associated with obesity and 

permutation testing used to correct for multiple tests397. then two SNPs are found to be significantly 

associated with obesity in adults supporting the candidacy of SIRT1 as an obesity gene.

At each SNP the minor allele was present at a higher frequency within the controls compared to the  

cases indicating a protective association. In the Swedish siblings the minor allele was associated with  

a  lower  BMI,  again  indicating  a  protective  association.  In  the  most  extreme  case  the  minor 

homozygote had a BMI of 2.8 kg/m2 lower than the common homozygote although the small numbers 

and large 95% confidence interval range means that the measurable effect may not be accurate. The 

same  four  SNPs  that  were  nominally  associated  with  severe  obesity  in  adults  were  nominally 

associated in the families, which is evidence that this is a real genetic association. The failure to find 

an association between SNPs and BMI in the French control groups is likely due to the low level of  

variance in these cohorts (standard deviation = 2.1 kg/m²), which results in a reduced power to detect 

association (43%). Alternatively it is possible that this is an association that effects obesity risk without  

modifying BMI in the non-obese population.
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These results  support and expand on the three previously reported SIRT1 association studies.  The 

first of  these  reported  a  protective  association  between  the  SIRT1 SNP rs7069102  (tagged  by 

rs11596401 in our study with r2=0.956 in HapMap) and obesity (p=0.007)442. In this thesis, rs11596401 

was not significantly associated with obesity in either French adults (p=0.083) or children (p=0.94).  

The second discovered an association between minor genotypes in rs2273773 (genotyped but failed 

QC in this study) and reduced BMI (p=0.001)443. The third reported a protective association of SIRT1 

SNPs rs1467568 (p=0.0009) and rs7895833 (p=0.007) and obesity444. Rs7895833 is located 21kb 

upstream of SIRT1 and was not tagged by any SNP investigated in this project. Rs1467568 is tagged 

by  rs11596401 in  this  study  (r2=1.0  in  HapMap)  but  this  SNP was  not  found  to  be  significantly 

associated with obesity in this study (p=0.073 in adults and p=1.000 in children).

Because  the  same  SNPs  are  not  associated  in  different  studies,  the  association  has  not  been 

replicated and so further work is required in order to exclude the possibility of a false-positive. Since 

each study reported the minor allele being associated with a reduced risk of obesity or a reduced BMI 

this  is  evidence  that  the  same  effect  is  being  detected.  However,  the  fact  that  the  reported  

associations are to different markers means that the association has not been properly replicated. 

This could be due to the likely fact that the causative variant has not been identified and the variability 

between  studies  introduced  by  different  recruitment  criteria.  Phenotype  measurements  and 

genotyping success rates may also add to the variation between studies. Again, the fact that none of  

these tests would be significant in a geneome-wide context  means that the possibility of  a false-

positive cannot be ruled out and thus replication is required in other, larger cohorts. It should also be 

noted that the SIRT1 gene appears to be in a region of low recombination (see Figure 3.1) so it is 

possible that any associated SNPs may be tagging variants in other nearby genes such as HERC4, 

DNAJC12 and CTNNA3.

The absence of a significant association between SIRT1 gene variation and obesity in any genome 

wide association study could be due to the stringent requirements to correct for multiple testing, which 

could result in associations with weak effect sizes being screened out. The most significant  SIRT1 

variant in the most recent GIANT GWAS233 was rs471962 with a p-value of 1.25x10-4..  Whilst this p-
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value  does not  reach  genome-wide  significance,  it  does  reach  nominal  significance  which  might 

indicate an association that requires larger sample sizes in order to be detected. Rs471962 is located 

169 kb downstream of the gene and so was not typed in this study. However it is in high LD (r 2>0.8 in 

the HapMap CEU population) with a number of other variants within the gene including rs10997860 

which is tagged by rs10823103 (r2=1.0) in this study. This SNP was not significantly associated with 

obesity (p=0.083 before correction). This might reflect the lower statistical power in the French case-

controls  compared  to  the  GIANT  study  which  used  ~250,000  samples.  The  GIANT  GWAS 

investigating associations to WHR analysed 17 SNPs within the SIRT1 gene and found no nominal  

associations262.

Of the five nominally associated SNPs only rs12413112 and rs2234975 are present in the HapMap 

database.  This  means  that  other  nominally  associated  SNPs,  rs33957861,  rs11599176  and 

rs35689145 are not tagged by any SNP using HapMap data. However, data presented in this thesis 

indicates that rs12413112 tags both rs33957861 and rs11599176 very well (r2=0.95 and 0.95) and 

rs35689145 reasonably well (r2=0.63). As such it  is likely that coverage of common (>5%) SIRT1 

SNPs in GWAS is sufficient.

The significant increase in SIRT1 transcript in non-obese compared to obese (p=1.56x10-35) and the 

correlation of  SIRT1 (p=3.37x10-7) expression  to BMI in non-obese sib-pairs supports the findings 

reported by a Danish study in which SIRT1 transcription was significantly higher in lean compared to 

obese women337 and provides further evidence for a role of SIRT1 in obesity. The lack of correlation in 

the obese sib-pairs may be due to the lower numbers and the lower variation in transcript levels in 

that group (n=196, SD=4.1 in non-obese; n=156, SD=3.1 in obese). 

No significant association was found between SIRT1 SNPs and expression of the gene. This might be 

due to the fact that the causative SNP was not genotyped. Alternatively,  SIRT1 variants might be 

affecting obesity risk without altering its transcription level. Instead, variants within the gene could be 

altering the activity of the Sirtuin 1 enzyme via a change in amino acid sequence or by modifying a 

splice site. Another possibility is that a mutation within the untranslated region of the mRNA might alter 

the efficiency of translation, perhaps by modifying its secondary structure and such mechanisms have 
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been observed446. This wouldn’t affect levels of mRNA that were measured but would change the level  

of SIRT1 protein produced. SIRT1 protein then might influence susceptibility to obesity via its effects 

on the expression of genes important in lipid and glucose metabolism.  SIRT1 transcription levels 

might then be modified by BMI via other mechanisms. For example, expression of SIRT1 is known to 

be increased by fasting in mice and humans337,447 and more recently levels of SIRT1 protein have 

been demonstrated to be increased after fasting in mice448.

Statistical power calculations indicate that this study was not sufficiently powered to detect statistically 

significant associations with the effect sizes that were observed. In order to achieve p-values that are 

significant in a genome-wide context, larger samples sizes are required, at least 10,000 cases and 

10,000 controls assuming an odds ratio of 0.74 which was observed for rs11599176. If this odds ratio  

is actually lower, as might be expected of a variant with small effect size not detected in any large 

GWAS, then more samples are needed. Power was similarly low when analysing association to BMI 

in the French controls. This means that any attempt to replicate an association should be carried out  

in much larger cohorts. Another method of increasing the statistical power would be to meta-analyse 

these data together with previously published results.

Since only two of the three tag SNPs genotyped in this study passed QC, coverage of the SIRT1 gene 

was not complete. The SNP that failed QC, rs2273773, was previously reported to be associated with 

BMI in a Dutch population443 and as such it  would be useful to know whether this association is 

replicated  in  the  cohorts  investigated  in  this  thesis.  Also,  complete  coverage  was  of  course  not 

achieved in this study because rare variants (<5%) were not investigated.

All associated SNPs are located within introns or in the case of rs2234975, the 3’ untranslated region, 

which means they do not alter the amino acid sequence of the Sirtuin 1 protein. It is therefore unlikely  

that  these SNPs are causative.  That  the haplotype analysis  generated a lower p-value than any 

individual SNP could be evidence that these SNPs are tagging a more significantly associated variant, 

although the high LD between these SNPs (r2=0.96) means that this difference in p-values may not be 

significant. This variant would most likely be located within an exon where it could alter the amino acid  

structure of the protein or within the promoter region where it could affect the expression of the SIRT1 
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messenger RNA. Sequencing was unable to locate any exonic SNPs within the same LD block of the 

obesity associated SNPs and of  the five SNPs genotyped within the promoter region, none were 

found to be associated with obesity in either adults or children. Power to detect variants with MAF 

>1% and in high LD (r2>0.8) with the associated SNPs was sufficiently high (>98%), however as MAF 

and LD values drop (MAF=0.1%, r2=0.5) this power is reduced (70%) and if the causative SNP is even 

rarer (<0.1%) then this will drop further. Thus the possibility of a false-negative cannot be ruled out.  

Furthermore since only 3kb of the promoter region was sequenced, all regulatory regions have not  

been investigated.

An alternative method for searching for the causative mutation is by imputation. Using 1000 genomes 

data265, around 7000 imputed SNPs in the SIRT1 region were generated and tested for association to 

obesity in the French case-controls. 24 SNPs were found to be associated with obesity in the adults  

with p-values of <10-5  with the most significant marker at p=1.9x10-6. Each of these 24 markers had 

MAF in the range of 1-2% and each had a higher frequency in the controls compared to the cases.  

None of these markers are within SIRT1 exons so no clear candidates for functional mutations have 

been found. The fact that the most significant markers were not all in high LD with one-another is  

interesting  since  it  suggests  that  if  these  results  are  genuine  that  there  may  be  two  or  more  

independent associations to obesity within the SIRT1 gene.

It is possible that using 1000 genomes data may not give accurate imputed SNPs since the ancestry 

of the two sample sets will not match. The IMPUTE2 software is designed to choose samples with 

matching haplotypes in order to get  the most accurate imputation.  However the small  number of  

genotyped SNPs in this study might introduce errors into this process compared to using a GWAS 

dataset with many more variants. An alternative method would be to sequence a subset of the French 

case-controls and use this for imputation.  Nevertheless,  the fact  that  imputation resulted in more 

significantly associated SNPs could be evidence of a real genetic association and although these p-

values still do not reach genome-wide significance, they would survive correction for 7000 statistical 

tests (p<7x10-6). In order to validate this result, the most significant hits would need to be genotyped 

to confirm their accuracy.
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Therefore a mechanism by which SNPs could affect phenotype has not been established in this study. 

More sequencing of the  SIRT1 gene, including a substantial portion of the region upstream of the 

transcription start  site should be carried out in a larger number of samples in order to locate the  

causative variant. Any SNPs found to be highly significantly associated with obesity in the promoter 

region can then be assessed for their affect on expression of the  SIRT1 transcript using luciferase 

assays. If a non-synonymous SNP within an exon is found to be significantly associated with obesity 

then activity of the Sirtuin 1 enzyme can be measured and compared to the wild type using assays  

that measure Sirtuin enzyme activity449.

These results may have important clinical implications. An association between SIRT1 variation and 

obesity is concordant with evidence in mice that activators of SIRT1 decrease fat mass and thus may 

provide pharmacological uses as a treatment for obesity or other metabolic diseases. Their use as a 

therapeutic for T2D has been proposed previously334.

In conclusion, these results provide evidence of a possible association between variants of the SIRT1 

gene and the development of common obesity. This will  require replication in other populations in 

order to confirm the association as well as resequencing and functional work to locate the causative 

variant underlying this genetic association.
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Chapter 4

Investigation of genetic variants within the 

apelin gene for association to common 

polygenic obesity
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4.1 Introduction

Apelin  was  discovered  in  1998  as  the  endogenous  ligand  for  APJ450,  a  G protein  coupled 

receptor known to be localised to neurons in the brain451. The apelin gene (APLN) is located on 

the X chromosome at Xq25-26.1452.

APLN encodes a  77 amino  acid  pre-protein  that  is  expressed  in  a  wide  range of  tissues,  

including heart, lung, mammary gland and adipose453. The pre-protein is alternatively cleaved 

into one of four physiologically active signal peptides, apelin-36, apelin-17, apelin-13 and apelin-

12. Apelin-13 may also undergo pyroglutamylation at the N-terminal glutamine residue before 

being secreted into the blood stream453,454,455,456. These peptides are all ligands for APJ, with the 

pyroglutamated 13 amino acid apelin being the most potent457. 

4.1.1 Apelin is upregulated in obesity

Apelin is expressed in adipose tissue and is secreted by adipocytes458. In mice, its expression in 

adipocytes  is  upregulated  in  obese  animals  and  plasma  levels  of  the  apelin  protein  are  

significantly increased in obese compared to control mice458. APJ, the apelin receptor is also 

expressed in adipose tissue and is upregulated in obesity459. In humans, circulating apelin has 

also been shown to be increased in obese subjects showing that these phenomena are not 

isolated to rodents460.

In human adipocyte cell culture, apelin is upregulated in reponse to insulin458 suggesting that 

apelin expression in adipose is controlled by the hormone. In obese patients, plasma apelin and 

insulin levels  have been found to be correlated,  suggesting that  the regulation of  apelin by 

insulin could influence blood concentrations of apelin461.
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Other factors appear to regulate the expression of apelin in adipose. TNFa, an inflammatory 

cytokine that is upregulated in obesity has been shown to stimulate  APLN expression in both 

mouse and human adipocyte culture462. Over-expression of PGC1a, a key regulator of cellular 

energy homeostasis, has been shown to stimulate both expression and secretion of apelin463.

Apelin  expression  has  also  been  reported  to  be  upregulated  during  differentiation  of  pre-

adipocyte into adipocyte cell culture indicating a role in development of adipose tissue464,465.

4.1.2 Effects of apelin on energy regulation

Intracerebroventricular  injections  of  apelin  peptides  result  in  a  reduction  in  food  intake  in 

rats466,467. In mice, intravenous injections of apelin have been found to lower blood glucose and 

improve insulin sensitivity341,342. Daily apelin injection has also been shown to reduce adiposity in 

obese mice without influencing food intake468.  This study also showed a reduction in serum 

levels of triglycerides and an increased expression of UCP1 and UCP3 along with increased 

body temperature and oxygen consumption which suggests that apelin acts to stimulate energy 

expenditure via mitochondrial uncoupling468.

Apelin has also been found to stimulate angiogenesis and as such has been hypothesised to 

contribute to the development of new vasculature in the expanding adipose tissue469.

4.1.3 Apelin mouse models

Apelin-null mice are hyperinsulinemic and insulin resistant342. These mice also exhibit increased 

adiposity  and  increased  serum  concentrations  of  free  fatty  acids470.  Conversely,  mice 

engineered to  over-express  APLN are  resistant  to  diet-induced obesity and have increased 

oxygen consumption and body temperature without any difference in feeding behaviour471.
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These mouse models, therefore suggest a role of apelin in controlling body weight via glucose 

metabolism and regulation of energy expenditure and thus variation in the apelin gene may 

influence obesity risk.

4.1.4 Apelin genetic variation and obesity

No significant associations have been reported between variants in the apelin gene and obesity 

phenotypes to-date. A nominal association to fasting plasma glucose levels was discovered in a 

cohort of unrelated male Han Chinese but this study did not find any association to BMI or  

obesity472.

No associations have been reported in any GWAS to-date, however most of these studies do 

not analyse variants on the X chromosome. This means that it is possible that there are variants 

in the apelin gene that influence obesity risk that haven't been investigated

A Finnish genome-wide linkage study reported a linkage peak with obesity at Xq24, which in 

linkage terms is relatively close to the Apelin gene located around 8Mbp downstream at Xq25-

Xq26.3473.

Given its role in glucose and lipid metabolism and the linkage peak reported to obesity, apelin is 

a plausible candidate gene for genetic association to obesity and so this study was designed to 

investigate possible associations between variants in the  APLN gene and common polygenic 

obesity in French obese cases and non-obese controls (see Materials and Methods for details).
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4.2 Results

4.2.1 SNP Selection and Case-Control Genotyping

All fourteen common SNPs (MAF > 5%) within the Apelin gene that were in the NCBI database  

in July 2007 were genotyped in the French case-control subjects using Sequenom iPlex assays 

(see Figure 4.1). Out of thirteen, eleven SNPs had acceptable genotyping success rates (> 

85%, actual mean success rate = 94.5%) and were within HWE (p > 0.05). HWE was analysed 

in female controls only as APLN is located on the X chromosome and so males only have one 

allele at each SNP. Five SNPs had low minor allele frequencies (< 5%) so were not  taken 

forward for analysis (see Table 4.1).

Figure 4.1. Map of APLN gene with positions of SNPs genotyped in this project. █ APLN exons.
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SNP
Position  on  X 
Chromosomea

Position  within  APLN 
gene Minor Allele Frequency

rs3131264 128777626 Downstream 0.04

rs5975126 128780392 3' UTR <0.01

rs3115759 128781516 3' UTR 0.08

rs3115758 128781864 3' UTR 0.09

rs41334247 128782557 Intron 2 <0.01

rs2235306 128784098 Intron 1 0.02

rs2235307 128784832 Intron 1 0.05

rs2235308 128785212 Intron 1 0.08

rs2235312 128787095 Intron 1 0.08

rs2281068 128787773 Intron 1 0.08

rs3761581 128789721 Upstream 0.02

Table  4.1.  APLN SNPs  successfully  genotyped  with  minor  allele  frequencies  observed. 
aPositions in bp correspond to NCBI build 37.1  measured from the top of  the p arm of  the 

chromosome. 

Of the six remaining SNPs analysed for association to obesity, rs3115759 and rs2281068 were 

nominally associated with obesity in children (p = 0.043 and 0.005). No SNPs were nominally 

associated with adult obesity (See Table 4.2). After correcting the p-values using one million 

permutations, rs2281068 remained significantly associated with obesity in children (p = 0.017, 

OR = 1.53, 95% CI = 1.14-2.05). 
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Allele Counts
Controls Children Adults Odds Ratio Children 

(95% CI)

P-values Children Odds Ratio 

Adults (95% CI)

P-values Adults

1a 2 1 2 1 2 Empirical Corrected Empirical Corrected
rs3115759 1730 136 871 91 1404 133 1.3 (1.0-1.8) 0.043 0.14 1.2 (0.94-1.6) 0.15 0.36
rs3115758 1598 136 848 89 1392 132 1.2 (0.93-1.6) 0.14 0.37 1.1 (0.87-1.4) 0.40 0.77
rs2235307 1564 74 867 56 1421 86 1.4 (0.96-2.0) 0.088 0.24 1.3 (0.93-1.8) 0.14 0.34
rs2235308 1688 131 849 86 1359 132 1.3 (0.98-1.7) 0.065 0.19 1.3 (0.97-1.6) 0.083 0.23
rs2235312 1709 131 847 86 1373 134 1.3 (1.0-1.8) 0.051 0.16 1.3 (0.99-1.6) 0.061 0.17
rs2281068 1600 108 854 88 1388 123 1.5 (1.1-2.1) 0.0046 0.017 1.3 (1.0-1.7) 0.051 0.14

Table 4.2. Allelic association analysis of Apelin SNPs to obesity in children and adult French case-controls. Analysis was performed using PLINK. Empirical p-values 

result from a single chi-squared test, corrected p-values result from one million permutations. Allele numbers are presented instead of genotypes due to  APLNs 

position on the X chromosome. a 1 denotes the common allele, 2 denotes the minor allele.
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A high degree of LD was found throughout the gene with r2 values ranging from 0.61 to 1.0 (see 

Figure  4.2).  Haplotypes  constructed  from  the  two  nominally  associated  SNPs  were  significantly 

associated to obesity in children after correction using permutations (p = 0.016, OR = 1.48)(see Table  

4.3).

Figure 4.2.  Linkage disequilibrium (r2) plot of  APLN SNPs genotyped in the French female control 

samples.  Black squares indicate 100% LD. The percentage LD level  (r2)  within grey squares are 

displayed.
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SNP 1 SNP 2 Odds Ratio Empirical P-value Corrected P-value

rs2281068 rs3115759 1.48 8.0x10-3 0.016a

Table 4.3 Haplotype analysis in the child case-controls using the two SNPs nominally associated with 

obesity. a Statistically significant p-values. Corrected p-values result from one million permutations. 

APLN SNPs  were  analysed  for  association  to  BMI  within  the  controls  using  age  and  sex  as 

covariates, however no significant associations were discovered (see Table 4.4).

Mean BMI (95% CI) (kg/m2) P-Values

SNP 1,1a 1,2 2,2 Empirical Corrected

rs3115759 32.1 (31.6-32.6) 33.7 (32.1-35.3) 31.4 (29.2-33.5) 0.19 0.44

rs3115758 32.5 (31.9-33.0) 33.0 (31.5-34.5) 31.6 (29.3-34.0) 0.40 0.76

rs2235307 32.6 (32.1-33.1) 34.8 (32.8-36.9) 31.6 (28.9-34.3) 0.37 0.72

rs2235308 32.0 (31.5-32.5) 33.8 (32.2-35.4) 31.4 (29.0-33.7) 0.14 0.34

rs2235312 31.9 (31.5-32.4) 33.9 (32.3-35.5) 31.4 (29.0-33.7) 0.11 0.28

rs2281068 32.4 (31.9-32.9) 34.3 (32.6-36.0) 31.7 (29.4-34.0) 0.060 0.17

Table 4.4. Analysis of APLN SNPs for association with the quantitative trait of BMI in French controls 

using linear regression with age and sex as covariates. Corrected p-vales result  from one million 

permutations. a 1 denotes the common allele, 2 denotes the minor allele.
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4.2.2 Sequencing of   APLN     

In order to locate the genetic variant or variants that are responsible for this association, sequencing  

was carried out within the  APLN exons and promoter region. Ten subjects were chosen that  were 

homozygous for both minor alleles associated with obesity, in rs3115759 and rs2281068, and two 

subjects were chosen as controls that were homozygous for the common alleles of rs3115759 and 

rs2281068. Six PCR reactions were designed to cover the 1.5kbp region upstream of the transcription 

start site as well as the two translated APLN exons. The PCR products were then directly sequenced.

One SNP was discovered within the 5' untranslated region of exon 1. This was previously reported as 

rs2281069 (MAF < 0.01 in Sub-Saharan African population, no data for Caucasians). No SNPs were 

discovered within exon 2 or within the promoter region (see Figure 4.3). Because it is untranslated, it 

is unlikely to be causative and so was not taken forward for genotyping.



 

Figure 4.3. Map of APLN gene showing positions of PCR products used to sequence the promoter region and the two translated exons. Positions in bp correspond 

to NCBI build 37.1. █ APLN exons.
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4.2.3 Thesis-wide multiple testing correction

When APLN SNPs were analysed together with all other SNPs investigated in this thesis, no 

significant associations remain after correction using permutations (see Table 4.5).

SNP
Epirical p-value 

children
Corrected p-value 

children
Epirical p-value 

adults
Corrected p-value 

adults
rs3115759 0.04 0.89 0.15 1.0
rs3115758 0.14 1.0 0.40 1.0
rs2235307 0.088 0.99 0.14 1.0
rs2235308 0.065 0.97 0.083 0.98
rs2235312 0.051 0.94 0.061 0.95
rs2281068 0.0046 0.22 0.051 0.90

Table  4.5. P-values  after  correcting  for  multiple  testing  using  permutations  and  taking  into 

account all SNPs investigated in this thesis.

4.2.4 Power calculations

Using an odds ratio of 1.53 (as observed in the most significantly associated SNP, rs2281068),  

a MAF of 0.063 (as observed in rs2281068 in the controls), and a significance level of 0.0083 

(0.05 divided by 6 tests), the power to detect an association was 40% in the child cohort and 

15% in the adult cohort (see Table 4.6).

SNP
Significance 

level
MAF in 

controls
Odds ratio 
in children

Odds ratio 
in adults

Power in 
children

Power in 
adults

rs3115759 0.0083 0.073 1.3 1.2 0.17 0.075

rs3115758 0.0083 0.078 1.2 1.1 0.08 0.025

rs2235307 0.0083 0.045 1.4 1.3 0.13 0.085

rs2235308 0.0083 0.072 1.3 1.3 0.14 0.11

rs2235312 0.0083 0.071 1.3 1.3 0.16 0.13

rs2281068 0.0083 0.063 1.5 1.3 0.40 0.15

Table  4.6. Power  calculations.  carried  out  using  MAF  and  OR  observed  for  each  SNP 

investigated in the APLN gene.
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To  achieve a statistical power of 95%, assuming a  significance level of 0.0083, odds ratio of 

1.53 and a MAF of 0.06, 5,748 samples would be required (2874 cases and 2874 controls).  

Assuming a  significance level of 5x10-8 (genome-wide significance) this rises to  16,532 (see 

Figure 4.4). If the real odds ratio is lower then the samples size requirements will be increased 

(see Figure 4.5).

Figure  4.4. Sample  size  plotted  with  statistical  power  for  a  SNP with  MAF=0.06  (as  was 

observed for rs2281068). α is the significance level: 0.0083 for 6 statistical tests and 5x10 -8  for 

genome-wide significance.
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Figure 4.5. Sample size required for varying odds ratios in order to achieve a statistical power 

of 95% for a SNP with MAF=0.06 (as was observed for rs2281068). α is the significance level: 

0.0083 for 6 statistical tests and 5x10-8  for genome-wide significance.

For the sequencing project, the probability of locating a common variant (MAF>5%) in high LD 

(r2>0.8) with the associated SNP (rs2281068, MAF=6.3%) using 10 samples was calculated to 

be >99%, assuming such a variant exists. The probability of locating a variant with MAF = 0.1% 

in moderate LD (r2=0.5) was calculated to be 84% (see Appendix A7 for calculations).
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4.3 Discussion

These results provide evidence of a possible association between one SNP in the Apelin gene 

and common polygenic obesity in French children. 

The p-values reported here do not withstand genome wide correction. Furthermore, permutation 

analysis using all  SNPs tested within this thesis results in non-significance of all  tests.  This, 

together with the fact that the association has not been replicated means that the possibility of a 

false-positive cannot be ruled out. SNPs were analysed using permutations to compensate for  

the six statistical tests being performed and this resulted in one putative association to obesity in 

children.

As noted in the introduction to this chapter, a nominal association of the Apelin SNP rs2235306 

was reported to be associated with fasting plasma glucose levels in Han Chinese (p = 0.04), 

however this study did not find an association to any obesity related phenotype472. In the results 

presented here,  rs2235306 had a low minor allele frequency (0.02) and since the previously 

reported association was not to obesity it was not analysed. More recently, an association was 

reported between an APLN SNP, rs3115757 and both BMI and WC in Chinese women but not 

men474. Rs3115757 was not genotyped in this study since it was not present in dbSNP at the 

time these assays were designed. It is not present in HapMap so there is no information on 

whether it is tagged by any genotyped SNP.

No associations  between apelin  SNPs and  obesity  phenotypes  have  been reported  in  any 

GWAS to-date.  This is due to the fact that most GWAS exclude X chromosome variants from 

analysis and highlights a current weakness in genome-wide studies.

133



 Both nominally associated SNPs were found to have a higher frequency of the minor genotype  

within obese subjects compared to controls suggesting that the minor allele increases obesity 

risk. The putatively associated SNP, rs2281068 is located within intron 1 of the Apelin gene so is 

unlikely  to  be  causative  unless  it  affects  an  enhancer  element  located  within  the  intron. 

Therefore, if  this is a genuine association, it is probably in linkage disequilibrium with some 

other mutation responsible for modifying obesity risk. 

Sequencing was unable to locate any mutations in LD with the associated SNP that were either 

in the promoter (1.5kbp upstream of the start codon) or translated regions of the gene. One 

SNP, rs2281069 was discovered in the 5' UTR. Since this is untranslated and therefore unlikely 

to be functional it was not genotyped in the case-control subjects. Power to detect variants with 

MAF >5% and in  high  LD (r2>0.8)  with  the  associated SNPs was sufficiently  high  (>99%), 

however as MAF and LD values drop (MAF=0.1%, r2=0.5) this power is reduced (84%) and if 

the causative SNP is even rarer (<0.1%) then this will  drop further. Thus the possibility of a 

false-negative cannot be ruled out.  Furthermore since only 2kb of  the promoter region was 

sequenced, all regulatory regions have not been investigated.

Since no coding SNPs are currently known to exist in the human APLN gene and sequencing 

was not able to locate any variants in LD with the associated SNPs, it is likely that the causative 

variant is within the promoter region, upstream of the region sequenced in this study or within an 

enhancer or inhibitor element where it affects transcription of the gene. Using HapMap data the 

LD block containing APLN extends approximately 20kbp upstream of the gene and this region 

could contain variants that alter expression (see Figure 4.4).  Alternatively, the causative SNP 

could affect splicing of the mRNA and aberrantly spliced transcript may not translate into active 

apelin peptides. As apelin levels are correlated to adiposity353 and apelin injections have been 

shown  to  stumulate  weight  loss343,344,468 an  alteration  in  APLN expression  or  apelin  protein 

synthesis could lead to a malfunction in the control of body-weight thus influencing obesity risk. 
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Further work is required in order to replicate the association in other cohorts and ethnic groups.  

If  replication is successful  then sequencing will  be  required in order to locate the causative 

variant. This should be carried out by sequencing more of the promoter region (at least 20kb 

upstream of the transcription start site) in a larger number of samples. Novel variants will then  

be typed in the current sample sets and any association will  need to be replicated in other 

populations. After genotyping, any SNPs found to be significantly associated with obesity in the 

promoter region can then be assessed for their  effect on expression of the  APLN transcript 

using luciferase assays. An alternative to genotyping any discovered SNPs in all samples would 

be to impute genotypes from the sub-set of samples that have been sequenced. If this produced 

a significant  result  then genotypes could be validated afterwards which means the costs of 

genoytping are only incurred if a significant result is found. 
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Figure 4.4 LD plot (D') of APLN gene and the surrounding region. Bright red squares indicate D'=1 and LOD>2, shades of pink or red indicate D'<1 and LOD>2, blue 

indicate D'=1 and LOD<2 and white squares indicate D'<1 and LOD<2. 
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Chapter 5

Investigation of genetic variants within the 

Interleukin 11 gene for association to 

common polygenic obesity
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5.1 Introduction

Interleukin 11 (IL-11), also known as adipogenesis inhibitory factor, is a member of the IL-6 

family of anti-inflammatory cytokines and is expressed in a wide range of tissues including the 

CNS, bone, lung,  uterus, testis and adipose475.  IL-11  acts on a number of  tissues including 

central nervous system, testis, bone marrow, intestine and adipose354,475. 

IL-11 is an important regulator of hematopoiesis and in particular megakaryocyte formation475. It 

stimulates the proliferation and differentiation of blood stem cells into mature cells and has been 

demonstrated to promote platelet recovery in patients undergoing chemotherapy475. As well as 

blood cells it has also been reported to regulate development of bone marrow, epithelial cells 

and hippocampal neuronal progenitor cells and is thought to be important in the establishment 

of pregnancy475,476.

5.1.1 IL11 inhibits adipogenesis

IL11  inhibits  the  differentiation  of  pre-adipocytes  into  adipocytes  in  human  bone  marrow 

culture358. It also inhibits expression of lipoprotein lipase477 and in bone marrow culture it has 

been shown to  inhibit  fat  accumulation358.  In  fully  differentiated  adipocyte  cell-culture,  IL-11 

activates a number of signalling pathways355 and treatment of adipocyte cell culture with IL-11 

lowers transcription of  leptin  which is evidence of  an involvement  in  regulation of  adiposity  

levels357. It has also been shown to inhibit TNFa, a pro-inflammatory cytokine that is upregulated 

in obesity478. Given its role in controlling the expression of inflammatory cytokines in adipose 

tissue it  has been hypothesised that  IL-11 could regulate insulin  resistance associated with 

obesity355.
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5.1.2   IL11   variation and obesity  

To-date, no associations have been reported between IL-11 gene variants and obesity-related 

phenotypes. IL-11 does however, lie within the 1-LOD support interval of a linkage peak found to 

obesity, which means it is a candidate gene for this linkage479.

In the French GWAS, which used some of the same sample as this study 253, 16 SNPs within the 

IL11  region  were  found  to  have  a  p-value  <0.05,  with  the  most  significant  hit,  rs8101393 

(p=1.7x10-3)  a SNP 130,000bp downstream of  the gene.  In  the most  recent  GIANT GWAS 

investigating associations to BMI233, a SNP within the IL11 region, rs1042506, was found to be 

nominally associated however with a p-value of 4.16x10−2, however this is very unlikely to be a 

genuine genetic association (accessed online445, see Figure 5.1).
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Figure 5.1. SNPs analysed for association to BMI in IL11 region in the GIANT GWAS233.

Given the evidence that IL-11 is involved in the development of adipocytes and the obesity  

linkage peak reported near to the gene, it is a  plausible candidate for human polygenic obesity  

and  as  such  this  study  was  designed  to  investigate  the  possibility  of  genetic  associations 

between variants in the gene, its expression levels and obesity in French obese cases and non-

obese controls and Swedish sib-pairs (see Materials and Methods for details).
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5.2 Results

5.2.1 SNP selection and case-control genotyping

No tagging SNPs were identified in the IL-11 gene due to a lack of strong linkage disequilibrium 

(r2>0.8) in the HapMap genotype data. Seventeen SNPs were selected from the NCBI database 

(see Figure 5.1). After genotyping, sixteen SNPs survived quality control with a mean call rate of  

89%. Of these, ten had low minor allele frequencies (< 5%), leaving six SNPs that were taken  

forward for analysis (see Table 5.1).

Figure 5.1. Schematic diagram of the IL-11 gene showing the positions of SNPs successfully 

genotyped in this study. █ IL-11 exons.
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SNP
Position on 

Chromosome 19a Position Within IL-11 Gene
Minor Allele 
Frequency

rs4252562 55876162 3' UTR <0.01

rs2298885 55876240 3' UTR 0.32

rs10425163 55876773 3' UTR <0.01

rs10402867 55876945 3' UTR <0.01

rs10402868 55876946 3' UTR <0.01

rs1042506 55877111 3' UTR 0.14

rs4806475 55877168 3' UTR <0.01

rs1042505 55877231 3' UTR 0.32

rs17850928 55877451
Non-synonymous Coding 

Exon 5 <0.01

rs7250912 55877874 Intron 4 <0.01

rs12975067 55878843 Intron 4 <0.01

rs4252576 55879685
Non-synonymous Coding 

Exon 4 <0.01

rs1126757 55879872 Synonymous Coding Exon 3 0.44

rs10407001 55881161 Intron 2 0.11

rs4252546 55882345 Upstream 0.48

rs7246652 55882807 Upstream <0.01

Table  5.1.  IL-11 SNPs  successfully  genotyped  with  minor  allele  frequencies  observed.  a 

Positions in  bp correspond to NCBI build 37.1 measured from the top of  the p arm of  the  

chromosome. 

Four SNPs were found to be nominally associated with obesity in the French adults (see Table 

5.2). These were rs2298885 (p = 0.024, OR = 1.2, CI =1.0-1.4), rs1042506 (p = 0.045, OR = 

0.82, CI = 0.68-1.0), rs1042505 (p = 0.003, OR = 1.2, CI = 1.1-1.4) and rs1126757 (p = 0.042,  

OR = 0.88, CI = 0.77-1.0). Of these, one SNP, rs1042505 was significantly associated with 

obesity after correction using permutations (p=0.016). None of  these SNPs were associated 

with obesity in the French children (see Table 5.2).

No associations were discovered between SNPs in IL-11 and the quantitative trait of BMI in the 

French controls (see Table 5.3).
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Genotype Numbers

Controls Children Adults Odds Ratio 
Children (95% CI)

P-values Children Odds Ratio Adults 
(95% CI)

P-values Adults

SNP 1,1a 1,2 2,2 1,1 1,2 2,2 1,1 1,2 2,2 Empirical Corrected Empirical Corrected

rs2298885 517 464 112 266 245 58 297 333 84 1.0 (0.87-1.2) 0.89 1.0 1.2 (1.0-1.4) 0.024 0.11

rs1042506 838 280 28 461 132 12 620 158 20 0.86 (0.7-1.1) 0.16 0.67 0.82 (0.68-1.0) 0.045 0.20

rs1042505 548 485 101 275 256 58 327 373 88 1.1 (0.91-1.2) 0.43 1.0 1.2 (1.1-1.4) 0.0027 0.016b

rs1126757 337 586 229 189 289 130 268 404 139 0.99 (0.86-1.1) 0.93 1.0 0.88 (0.77-1.0) 0.042 0.19

rs10407001 888 239 15 483 117 8 638 149 15 0.92 (0.74-1.2) 0.46 1.0 0.94 (0.77-1.2) 0.56 0.98

rs4252546 311 576 253 165 281 135 210 373 202 1 (0.87-1.2) 0.99 1.0 1.1 (0.95-1.2) 0.22 0.66

Table 5.2. Allelic association analysis of IL-11 SNPs to obesity in children and adult French case-controls. Analysis was performed using PLINK. Empirical p-values  

result from a single chi-squared test, corrected p-values result from one million permutations. a 1 denotes the common allele, 2 denotes the minor allele. b Statistically 

significant (p < 0.05) associations are shown in bold.
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Genotype Counts Mean BMI (95% CI) P-values

SNP 1,1a 1,2 2,2 1,1 1,2 2,2 Empirical Corrected

rs2298885 505 448 112 22.6 (22.5-22.8) 22.3 (22.1-22.4) 22.4 (22.3-22.5) 0.69 1.0

rs1042506 810 275 27 21.6 (21.5-21.8) 22.4 (22.3-22.5) 22.5 (22.3-22.6) 0.52 1.0

rs1042505 535 468 101 22.8 (22.7-22.9) 22.3 (22.2-22.4) 22.4 (22.3-22.5) 0.71 1.0

rs1126757 330 568 220 22.5 (22.4-22.7) 22.4 (22.3-22.5) 22.4 (22.3-22.5) 0.78 1.0

rs10407001 861 234 14 22.3 (22.2-22.4) 22.4 (22.3-22.6) 22.4 (22.3-22.6) 0.83 1.0

rs4252546 303 556 251 22.5 (22.4-22.6) 22.4 (22.2-22.5) 22.4 (22.2-22.5) 0.32 0.96

Table 5.3. Association analysis of  IL-11 SNPs to the quantitative trait of BMI within the French controls using linear regression and age and sex as covariates.  

Corrected p-values result from one million permutations. a 1 denotes the common allele, 2 denotes the minor allele.
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Two  SNPs  were  found  in  high  LD,  rs2298885  and  rs1042505  (r2=0.95),  though  LD  was 

otherwise very low (see Figure 5.2). Haplotype analysis was carried out using the four SNPs 

nominally  associated  with  obesity  in  adults.  All  haplotypes  were  nominally  associated  with 

obesity in adults, however only one haplotype survived correction (rs1126757 and rs1042505; 

p=0.025; OR=1.23) (see Table 5.4).

Figure  5.2. Linkage disequilibrium (r2)  plot  of  IL-11 SNPs genotyped in  the French control 

samples. Black squares indicate 100% LD and white squares indicate zero LD. The percentage 

LD level (r2) within grey squares are displayed.
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SNPs OR
Empirical 
P-value

Corrected 
P-value

rs2298885 rs1042506 rs1042505 rs1126757 1.2 0.011 0.13

rs2298885 rs1042506 rs1042505 1.2 0.0081 0.11

rs2298885 rs1042506 1.2 0.016 0.18

rs2298885 rs1042505 1.2 0.017 0.18

rs2298885 rs1126757 1.2 0.028 0.13

rs1042506 rs1042505 1.2 0.0057 0.066

rs1042506 rs1126757 0.81 0.033 0.32

rs1042505 rs1126757 1.2 0.0059 0.025a

Table 5.4. Haplotype association analysis with obesity in adults using the four SNPs found to be 

nominally associated with adult obesity.  a  Statistically significant p-values. Corrected p-values 

result from one million permutations. 

5.2.2 Genotyping within Swedish sib-pair cohort

Genotyping  was  carried  out  in  the  Swedish  sib-pair  cohort  using  the  same set  of  assays. 

Genotyping success rate  averaged 93% for  the four  SNPs nominally  associated within  the 

French case-control analysis. These four SNPs were analysed for association to BMI with the 

QFAM test using the within-families model of association. No associations were found with any 

IL-11 SNP (see Table 5.5).
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Genotype Counts Mean BMI (95% CI) P-Values

SNP 1,1a 1,2 2,2 1,1 1,2 2,2 Empirical Corrected

rs2298885 335 235 42 29.2 (28.4-29.9) 29.2 (28.3-30.1) 26.7 (25.2-28.3) 0.74 1.0

rs1042506 436 180 15 28.8 (28.2-29.4) 29.3 (28.3-30.3) 29.5 (25.7-33.2) 0.81 0.86

rs1042505 348 235 42 29.5 (28.8-30.2) 28.9 (28.1-29.8) 26.5 (25.0-28.0) 0.85 0.86

rs1126757 138 312 143 29.0 (27.8-30.3) 29.4 (28.6-30.1) 28.2 (27.1-29.2) 0.75 0.85

Table 5.5. Association analysis of IL-11 SNPs with BMI in the Swedish families using the QFAM test and the within-families model of association  correcting for age 

and sex as implemented by PLINK. Corrected p-values result from one million permutations. a 1 denotes the common allele and 2 denotes the rare allele.
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5.2.3 Analysis of   IL-11   transcription  

Microarray data was available that included measurements of IL-11 transcript levels in subcutaneous 

adipose tissue for each sibling within the Swedish sib-pair cohort. This was analysed for association 

with obesity, BMI and IL-11 genotype.

There was no association between SNPs in the IL-11 gene and its transcript after correcting for age, 

sex and BMI (see Table 5.6). When siblings were split into two groups of non-obese (BMI<30 kg/m2) 

and obese (BMI>30kg/m2) and the transcription levels corrected for age, sex and relatedness, the two 

groups  were  normally  distributed  as  assessed  using  a  normal  Q-Q  plot.  Using  an  independent 

samples t-test, a significant difference in the level of IL-11 transcription was found between the two 

groups (p=2.8x10-9,  see  Figure  5.3  and  Table  5.7).  When corrected,  IL-11 transcript  was  plotted 

against BMI and a weak correlation was observed in the non-obese group (r2=0.034, p=0.005, see 

Figure 5.4). There was no correlation in the obese group (r2= 0.002, p=0.42, see Figure 5.5).
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Genotype Counts Mean Transcript Level (95% CI) P-Values

SNP 1,1a 1,2 2,2 1,1 1,2 2,2 Empirical Corrected

rs2298885 174 128 24 5.8 (5.7-5.9) 5.7 (5.6-5.9) 5.9 (5.5-6.3) 0.64 0.63

rs1042506 235 101 6 5.8 (5.7-5.9) 5.8 (5.6-5.9) 5.7 (4.9-6.5) 0.38 0.29

rs1042505 184 131 24 5.8 (5.7-5.9) 5.8 (5.6-5.9) 5.9 (5.5-6.3) 0.36 0.32

rs1126757 74 170 80 5.8 (5.6-6.0) 5.7 (5.6-5.8) 5.9 (5.7-6.1) 0.63 0.62

Table 5.6. Association analysis of  IL-11 SNPs with  IL-11 transcript expression in subcutaneous adipose tissue, corrected for age, sex and BMI in the Swedish 

families using the QFAM test and the within-families model of association implemented by PLINK. a 1 denotes the common allele and 2 denotes the rare allele.
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Figure 5.3.  Box-plot of  IL-11 transcript levels in subcutaneous adipose tissue with obese and 

non-obese  subjects  from  Swedish  sib-pairs  displayed  separately.  IL-11 transcription  is  the 

microarray signal value corrected for age, sex and relatedness. Mean transcription ± standard 

deviation were 0.17 ± 0.60 in the non-obese and -0.22 ± 0.60 in the obese group.
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Number of 
Non-obese

Number of 
Obese

Mean Difference in IL-11 
transcription (95% CI) P-value

193 138 0.39 (0.27-0.52) 2.8x10-9

Table 5.7. T-test of subcutaneous adipose IL-11 transcription in obese and non-obese subjects 

from Swedish sib-pair families.  IL-11 transcription is the microarray signal value corrected for 

age, sex and relatedness.
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Figure 5.4. IL-11 transcription levels in subcutaneous adipose tissue plotted against BMI in non-

obese siblings (n = 193, r2 = 0.034, p = 0.005).  IL-11 transcription was the DNA microarray 

signal value corrected for age, sex and relatedness. 
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Figure 5.5.  IL-11 transcription levels  in subcutaneous adipose tissue plotted against BMI in 

obese siblings (n = 138 ,r2 = 0.002, p = 0.42) . IL-11 transcription was the DNA microarray signal 

value corrected for age, sex and relatedness. 

5.2.4 Thesis-wide multiple testing correction

When  IL11 SNPs were analysed together with all other SNPs investigated in this thesis, no 

significant associations remain after correction using permutations (see Table 5.8).
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SNP Empirical p-value 
children

Corrected p-
value children

Empirical p-value 
adults

Corrected p-value 
adults

rs2298885 0.89 1.0 0.024 0.76
rs1042506 0.16 1.0 0.045 0.82
rs1042505 0.43 1.0 0.0027 0.18
rs1126757 0.93 1.0 0.042 0.95
rs10407001 0.46 1.0 0.56 1.0
rs4252546 0.97 1.0 0.22 1.0

Table 5.8. Thesis-wide correction of p-values for muliple testing using 1 million permutations 

from association analysis of IL11 SNPs and obesity in French case-controls.

5.2.5 Power calculations

Using an odds ratio of 1.23 (as observed in the most significantly associated SNP, rs1042505),  

a MAF of 0.30 (as observed in rs1042505 in the controls), and a  significance level of 0.0083 

(0.05 divided by 6 tests), the power to detect an association was 68% in the adult cohort and 

13% in the child cohort (see Table 5.9).

SNP
Significance 

level
MAF in 

controls
Odds ratio 
in children

Odds ratio 
in adults

Power in 
children

Power in 
adults

rs2298885 0.0083 0.31 1.0 1.2 0.084 0.52
rs1042506 0.0083 0.15 0.86 0.82 0.25 0.42
rs1042505 0.0083 0.30 1.1 1.2 0.13 0.68
rs1126757 0.0083 0.45 0.99 0.88 0.085 0.39
rs10407001 0.0083 0.12 0.92 0.94 0.13 0.11
rs4252546 0.0083 0.47 1.0 1.1 0.083 0.23

Table  5.9. Power  calculations  carried  out  using  MAF  and  OR  observed  for  each  SNP 

investigated in the IL-11 gene.

To  achieve 95% power assuming a  significance level of 0.0083, an odds ratio of 1.18 and a 

MAF  of  0.31  would  require  12316  samples  (6158  cases  and  6158  controls).  Assuming  a 

significance level of 5x10-8 (genome-wide significance) this rises to 33,386 (see figure 5.6). If 

the real odds ratio is lower then the sample size requirements go up (see Figure 5.7).
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Figure  5.6.  Sample size  plotted  with  statistical  power  for  a  SNP with  MAF=  0.30 (as was 

observed for rs1042505). α is the significance level: 0.0083 for 6 statistical tests and 5x10 -8  for 

genome-wide significance.

Figure 5.7. Sample size required for varying odds ratios in order to achieve a statistical power 

of 95% for a SNP with MAF= 0.30 (as was observed for rs1042505). α is the significance level: 

0.0083 for 6 statistical tests and 5x10-8 for genome-wide significance.
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5.3 Discussion

These results demonstrate a possible association between one SNP in the IL-11 gene and 

common polygenic obesity in French adults. Replication in other cohorts is necessary in order to 

confirm this association. No previous associations of variants in this gene to human obesity or 

obesity-related  phenotypes  have  been  reported  to  date,  which  would  make  this  a  novel 

discovery if it were to become validated.

The association does not withstand genome-wide correction for multiple testing, which means 

that  the  possibility  of  a  false-positive  cannot  be ruled out..  For  the purposes of  this  study, 

genome-wide correction was not considered necessary as IL-11 is a strong biological candidate 

gene with well-established functional links to adipose tissue and hence obesity. Rs1042505 was 

found to be significantly associated to obesity after correction using one million permutations. 

However, future replication will need to reach genome-wide significance in order to confirm the 

association.

LD between SNPs genotyped in IL-11 was low, which confirms the HapMap data in which LD 

was too low to generate tag SNPs. Haplotypes were still  analysed in order to test whether 

associated SNPs formed part of a haplotype group that could contain a more significant SNP 

not typed in this project. All haplotypes constructed from the nominally associated SNPs were  

found  to  be  nominally  associated  with  obesity  in  adults,  however  only  one  haplotype  was 

significantly associated after correction for multiple tests. This haplotype had a less significant p-

value than the single significant SNP. This is not surprising given the low LD found within the 

gene. Therefore no conclusions can be drawn as to whether there is a more significant SNP in  

the region causing the association to obesity reported here.
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The failure to find an association in the child case-control cohort could be because of the low 

statistical power. It is possible, however that this is a genetic variant that influences obesity risk 

in adults but not in children. Alternatively this could be evidence that this is not a real genetic 

association and merely a statistical artefact. The failure to find an association between SNPs 

and BMI in the French control  groups could be  because, if  this is a genuine association, it 

affects disease risk and does not modify BMI in the normal-weight population. The failure to find 

an  association  between  SNPs  and  BMI  in  the  Swedish  families  might  be  due  to  the  low 

statistical power in this dataset due to lower sample numbers (n = 661 individuals with BMI  

data) and the fact that subjects are related which means there is much less genetic variation. 

Alternatively it might be that this result is a false-positive.

The lack of a significant association to IL-11 variants in any GWAS to-date might be evidence 

that this is not a real association. Another explanation is that coverage of IL-11 SNPs is not 

complete in genome-wide studies. In the recent GIANT BMI publication233, three SNPs within IL-

11 were genotyped: rs1042506 (p=0.042), rs4252552 (p=0.37) and rs1126757 (p=0.20). Only 

two  of  these  SNPs  were  genotyped  in  the  GIANT WHR paper262 (rs1042506,  p=0.86  and 

rs4252552, p=0.40). In this thesis, two of these SNPs were nominally associated with obesity in 

adults  (rs1042506,  p=0.0045,  rs1126757  p=0.042).  These  were  not  the  most  significantly 

associated SNPs, however. Given the low LD within the gene, this means that coverage of IL-11 

variation in GWAS is not complete. The most significantly associated SNP in the French adult  

case-controls,  rs1042505  is  poorly  correlated  with  these  two  SNPs  (r2=0.07  and  0.31 

respectively)  which means that  if  this is a genuine association,  it  will  be missed by current 

GWAS, highlighting a weakness of current genome-wide investigations. 
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The significant  difference observed in  IL-11 transcript  levels  between obese and non-obese 

siblings may be further evidence for a role of IL-11 in the development of obesity. However it is  

also possible that IL-11 transcription is being modified in some way by an individual's BMI. Since 

IL-11 has an immunological role its expression could be regulated differently in obesity, which is  

associated  with  chronic  inflammation  and  activation  of  the  immune  system480.  The  lack  of 

association between IL-11 SNPs and its expression could again be due to the low number of 

samples in the Swedish sib-pair cohort (n=359 individuals with IL-11 transcript data). However, 

since  the transcript  data  is  quantitative,  statistical  power  should  be  sufficient  to  detect  any 

association so it is more likely that the IL-11 SNP variation investigated is not associated with 

transcription of the gene. 

The associated SNP, rs1042505 is located within the 3' UTR, therefore it  does not alter the 

amino-acid sequence of the IL-11 protein. If this association is genuine then it is likely that this  

SNP is within LD with another variant that is causative. This could be a non-synonymous coding  

SNP,  a  variant  within  the  promoter  region  or  within  an  enhancer  element  that  influences 

transcription. Alternatively, it could be a mutation that alters a splice site. Given the low level of  

LD found within the region this is less likely, however sequencing of the exons and promoter  

region should be carried out in order to locate any potentially causative mutations.

In summary, these results demonstrate a possible association between an IL-11 gene variant  

and  obesity  in  a  French  Caucasian  cohort.  This  will  require  further  investigation  in  other 

populations in order to confirm the associations and sequencing and functional work to locate 

the causative variant.
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Chapter 6

Investigation of genetic variants within the 

adiponutrin gene for association to common 

polygenic obesity
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6.1 Introduction

Adiponutrin  is  a  cell  membrane protein  encoded by the  patatin-like  phospholipase domain-

containing  protein  3  (PNPLA3)  gene  in  humans,  which  is  located  on  the  long  arm  of 

chromosome  twenty  two  and  is  comprised  of  eight  exons.  It  belongs  to  a  family  of  

phospholipases that include patatin-like phospholipase 1 (PNPLA1), adipose triglyceride lipase 

(ATGL/PNPLA2),  adiponutrin  (ADPN/PNPLA3),  gene  sequence  2  (PNPLA4)  and  GS2-like 

(PNPLA5)481. All of these enzymes are highly expressed in adipose tissue481.

6.1.1 Adiponutrin has a role in lipid metabolism

Adiponutrin is expressed in WAT and BAT and was originally reported to be a triacylglycerol 

lipase360.  Lipase  activity  was  subsequently  confirmed  in  a  study  that  also  demonstrated 

acylglycerol  transacylase  activity  (transfers  fatty  acids  to  mono-  and  di-acylglycerol)482. 

Overexpression  of  adiponutrin  in  vitro does  not  result  in  a  decrease  in  intracellular  tri-

acylglyceride  concentration483.This  suggests  that  adiponutrin  may  have  a  role  in  both  lipid 

hydrolysis and lipogenesis.

6.1.2 Adiponutrin i  s regulated by   metabolic factors  

In  vitro adiponutrin  expression  is  increased  during  differentiation  of  pre-adipocytes  and  is 

induced by glucose and insulin treatment360,484. Expression in WAT of rodents is downregulated 

during fasting360,485 and upregulated after re-feeding484,485. Additionally, expression is decreased 

in  insulin-deficient  mice  and  insulin-receptor  knockout  mice484.  Expression  is  normalised  in 

insulin-deficient mice when administered with insulin. 
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Zucker (fa/fa) rats that do not have a functional leptin receptor and over-express leptin have 

increased adiponutrin expression360. Conversely, expression of adiponutrin in  ob/ob mice, that 

lack  a  functional  leptin  gene,  is  downregulated483.  These  results  suggest  that  adiponutrin 

expression is controlled by leptin.

Similar results have been found in humans. Expression of adiponutrin in WAT is significantly 

increased  during  a  hyperinsulinemic  euglycemic  clamp486.  Expression  of  adiponutrin  is 

increased  in  obese  compared  to  non-obese  subjects  probably  because  of  the  association 

between high circulating insulin levels and obesity369.

6.1.3 Adiponutrin gene variation and non-alcoholic fatty liver disease

A GWAS of  nonsynonymous  coding  SNPs reported  an  association  between rs738409  and 

hepatic fat levels and hepatic inflammation in a multiethnic population (p=5.9×10−10)487.  This 

result was replicated in a Finnish cohort (p = 0.002) which also found an association between 

liver PNPLA3 transcription and BMI (r2=0.62,  p<10-4)364 in a European-American cohort488. The 

same SNP was  also  reported  to  be  associated  with  various  phenotypes  that  relate  to  the 

histological  severity  of  the  disease489.  Another  study  in  children  and  adolescents  with 

nonalcoholic  fatty  liver  disease  reported  an  association  between  rs738409  and  the  same 

histological markers (p<10-4)490.  As nonalcoholic fatty liver disease is associated with obesity 

and metabolic syndrome, this supports a possible link between adiponutrin and obesity491.
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6.1.4 Adipon  utrin gene variation and obesity  

Expression of Adiponutrin in subcutaneous and visceral adipose tissue has been reported to be 

increased in obese compared to non-obese subjects in a Swedish study369.  This study also 

reported an association between two SNPs, rs2072907 and rs1010022, in the Adiponutrin gene 

and obesity (p-values = 0.015 and 0.021), however these associations become non-significant  

after correcting for age.  This association was subsequently replicated in a second Swedish 

cohort which survived the correction for age effects492.

No  significant  associations  between  PNPLA3 variants  and  obesity  phenotypes  have  been 

reported in any GWAS to-date.  In the French GWAS, which used some of the same sample as 

this study253, 44 SNPs within the PNPLA3 region were found to have a p-value <0.05, with the  

most significant SNP, rs5764455 having a p-value of 3.5x10 -4. However, this SNP is located 

55,000 bp downstream of the gene and lies within another gene,  PPARVB.  The most recent 

GIANT publication233 found a nominally significant p-value of 2.19x10-3 with one SNP, rs5764317 

within the  gene region in which  PNPLA3  is located, however at least three other genes are 

located closer to this SNP than  PNPLA3 (data acessed online445, see Figure 6.1). No SNPs 

located in the PNPLA3 gene were nominally associated.
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Figure 6.1. SNPs analysed for association to BMI in the PNPLA3 region in the GIANT GWAS233.

Given its links to lipid metabolism and the genetic association previously reported, adiponutrin is  

a plausible candidate gene for obesity and so this study was designed to investigate possible  

genetic associations between variants in the gene and common polygenic obesity in French 

obese cases and non-obese controls (see Materials and Methods for details).
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6.2 Results

6.2.1   SNP Selection and Case-Control Genotyping  

Twenty-five SNPs were genotyped within the adiponutrin gene including twenty tag SNPs which 

covered all thirty-nine common adiponutrin SNPs (MAF>5%) in the HapMap database with a 

mean r2 of 0.985 (see Figure 6.1). After genotyping, seventeen SNPs passed quality control with 

a mean call rate of 94%. Three of these had low minor allele frequencies (<5%) so were not 

analysed (see Table 6.1). Of the six tag SNPs genotyped, five passed QC. Rs11090617 failed 

due to low genotyping success rate.

Figure 6.1. Map of adiponutrin gene with positions of SNPs genotyped in this project. * Tag 

SNPs. █ Adiponutrin exons.
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SNP
Position on 

Chromosome 22a
Position Within Adiponutrin 

Gene
Minor Allele 
Frequency

rs4823104 44321149 Intron 1 0.21

rs2076212 44322970 Non-Synonymous Coding Exon 2 0.23

rs139047 44323074 Intron 2 0.48

rs734561* 44324104 Intron 2 0.34

rs139051 44324676 Intron 2 0.44

rs738408* 44324730 Synonymous Coding Exon 3 0.35

rs12483959 44325996 Intron 3 0.28

rs9626056 44327075 Intron 3 0.14

rs35764214 44328819 Non-Synonymous Coding Exon 4 <0.01

rs34179073 44328832 Synonymous Coding Exon 4 0.15

rs35726887 44328917 Non-Synonymous Coding Exon 4 <0.01

rs9625964 44337610 Intron 7 0.14

rs2294916* 44340922 Intron 8 0.27

rs2294917 44341986 Intron 8 0.41

rs2294918* 44342116 Non-Synonymous Coding Exon 9 0.48

rs6006460 44342174 Non-Synonymous Coding Exon 9 <0.01

rs2294919* 44342325 3' UTR 0.32

Table 6.1. SNPs successfully genotyped with minor allele frequencies observed.  aPositions in 

bp correspond to NCBI build 37.1 measured from the top of the p arm of the chromosome.

One SNP, rs4823104, was nominally associated with obesity in children (p=0.043, OR=0.80,  

CI=0.64-0.99) but this was not significantly associated after adjusting for false positives using 

permutations  (p=0.391).  Another  SNP,  rs738408,  was  nominally  associated  with  obesity  in 

adults (p=0.045, OR=1.17, CI=1.01-1.36) but this did not survive correction using permutations 

(p=0.386) (see Table 6.2). 
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Genotype Numbers

Controls Children Adults
Odds Ratio 

Children (95% CI)

P-values Children
Odds Ratio 

Adults (95% CI)

P-values Adults

SNP 1,1a 1,2 2,2 1,1 1,2 2,2 1,1 1,2 2,2 Empirical Corrected Empirical Corrected

rs4823104 932 267 21 505 121 4 656 166 8 0.80 (0.64-0.99) 0.043 0.39 0.86 (0.71-1.1) 0.14 0.78

rs2076212 890 298 12 476 137 14 658 195 18 0.98 (0.80-1.2) 0.81 1.0 0.99 (0.82-1.2) 0.87 1.0

rs139047 399 589 217 205 302 103 299 392 160 0.98 (0.85-1.1) 0.74 1.0 0.98 (0.87-1.1) 0.81 1.0

rs734561 731 391 52 380 195 22 487 288 33 0.92 (0.78-1.1) 0.36 0.99 1.0 (0.89-1.2) 0.67 1.0

rs139051 517 492 154 254 280 84 364 380 121 1.1 (0.94-1.3) 0.29 0.96 1.1 (0.94-1.2) 0.33 0.98

rs738408 660 328 65 345 201 28 483 329 47 1.0 (0.87-1.2) 0.72 1.0 1.2 (1.0-1.4) 0.045 0.39

rs12483959 852 333 30 439 174 16 598 245 29 1.0 (0.84-1.2) 0.91 1.0 1.1 (0.92-1.3) 0.34 0.98

rs9626056 1019 184 9 522 82 3 734 108 14 0.86 (0.67-1.1) 0.28 0.96 0.95 (0.76-1.2) 0.70 1.0

rs34179073 1031 186 14 504 99 2 729 129 6 0.98 (0.76-1.3) 0.84 1.0 0.93 (0.74-1.2) 0.54 1.0

rs9625964 934 148 12 517 90 4 736 126 7 1.0 (0.79-1.3) 0.86 1.0 1.0 (0.81-1.3) 0.82 1.0

rs2294916 792 296 51 421 169 25 586 237 29 1.0 (0.85-1.2) 0.85 1.0 0.99 (0.83-1.2) 0.86 1.0

rs2294917 556 491 116 305 248 64 417 343 88 0.97 (0.84-1.1) 0.71 1.0 0.98 (0.85-1.1) 0.75 1.0

rs2294918 414 581 232 205 293 104 298 409 145 0.96 (0.84-1.1) 0.61 1.0 0.94 (0.83-1.2) 0.35 0.98

rs2294919 762 402 58 383 197 30 552 266 40 1.0 (0.84-1.2) 0.97 1.0 0.94 (0.81-1.1) 0.46 1.0

Table 6.2. Allelic association analysis of Adiponutrin SNPs to obesity in children and adult French case-controls. Analysis was performed using PLINK. Empirical p-

values result from a single chi-squared test, corrected p-values result from one million permutations. a 1 denotes the common allele, 2 denotes the minor allele.
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LD analysed within the controls was low throughout the gene; no pair of SNPs had an r2 value 

greater than 0.85 (see Figure 6.2). This reflects the fact  that thirteen out of  fourteen SNPs 

analysed were tag SNPs. 

Figure 6.2. Linkage disequilibrium (r2) plot of Adiponutrin SNPs genotyped in the French control 

samples. Black squares indicate 100% LD and white squares indicate zero LD. The percentage 

LD level (r2) within grey squares are displayed.
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One SNP, rs9626056 was found to be associated with BMI in the French controls (p=0.02), 

however this does not survive correction using permutations (p=0.19) (see Table 6.3).
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Genotype Numbers Mean BMI (95% CI) P-values

SNP 1,1a 1,2 2,2 1,1 1,2 2,2 Empirical Corrected

rs4823104 908 256 20 22.4 (22.2-22.5) 22.5 (22.3-22.8) 22.4 (21.5-23.3) 0.28 0.96

rs2076212 864 289 12 22.4 (22.2-22.5) 22.6 (22.3-22.8) 21.7 (20.7-22.7) 0.40 0.99

rs139047 389 573 207 22.5 (22.3-22.7) 22.3 (22.1-22.4) 22.3 (22.0-22.6) 0.22 0.92

rs734561 705 385 51 22.4 (22.2-22.6) 22.2 (22.0-22.4) 23.0 (22.3-23.6) 1.0 1.0

rs139051 502 478 150 22.4 (22.2-22.6) 22.4 (22.2-22.6) 22.2 (21.9-22.5) 0.36 0.99

rs738408 640 321 63 22.4 (22.2-22.5) 22.5 (22.3-22.8) 22.4 (21.9-22.8) 0.37 0.99

rs12483959 825 325 29 22.4 (22.2-22.6) 22.4 (22.2-22.6) 22.6 (21.8-23.3) 0.96 1.0

rs9626056 989 179 8 22.3 (22.2-22.4) 22.7 (22.4-23.0) 22.7 (21.9-23.6) 0.019 0.19

rs34179073 1000 180 14 22.4 (22.2-22.5) 22.4 (22.1-22.7) 22.6 (21.7-23.5) 0.57 1.0

rs9625964 908 145 11 22.3 (22.2-22.5) 22.6 (22.2-22.9) 23.3 (22.4-24.2) 0.060 0.48

rs2294916 766 289 49 22.4 (22.2-22.5) 22.4 (22.2-22.6) 22.6 (22.1-23.1) 0.60 1.0

rs2294917 541 474 114 22.5 (22.3-22.6) 22.3 (22.1-22.5) 22.4 (22.0-22.8) 0.29 0.97

rs2294918 405 558 227 22.4 (22.2-22.6) 22.3 (22.2-22.5) 22.5 (22.2-22.7) 0.70 1.0

rs2294919 741 389 56 22.5 (22.3-22.6) 22.3 (22.1-22.5) 22.2 (21.7-22.8) 0.16 0.82

Table 6.3. Association analysis of Adiponutrin SNPs to BMI in the French controls using linear regression with age and sex as covariates. Corrected p-values result  

from 1 million permutations. a 1 denotes the common allele, 2 denotes the minor allele.
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6.2.2 Power calculations

Using an odds ratio of 1.17 (as observed in the most significantly associated SNP, rs738408), a 

MAF of 0.22 (as observed in rs738408 in the controls), and a significance level of 0.0036 (0.05 

divided by 14 tests), the power to detect an association was 28% in the adult cohort and 4% 

in the child cohort (see Table 6.5).

SNP
Significance 

level
MAF in 

controls
Odds ratio 
in children

Odds ratio 
in adults

Power in 
children

Power in 
adults

rs4823104 0.0036 0.13 0.80 0.86 0.25 0.16
rs2076212 0.0036 0.13 0.98 0.99 0.037 0.036
rs139047 0.0036 0.42 0.98 0.98 0.040 0.041
rs734561 0.0036 0.21 0.92 1.0 0.080 0.043
rs139051 0.0036 0.34 1.1 1.1 0.093 0.089
rs738408 0.0036 0.22 1.0 1.2 0.042 0.28
rs12483959 0.0036 0.16 1.0 1.1 0.037 0.079
rs9626056 0.0036 0.083 0.86 0.95 0.097 0.045
rs34179073 0.0036 0.087 0.98 0.93 0.037 0.055
rs9625964 0.0036 0.079 1.0 1.0 0.038 0.039
rs2294916 0.0036 0.17 1.0 0.99 0.039 0.037
rs2294917 0.0036 0.31 0.97 0.98 0.043 0.040
rs2294918 0.0036 0.43 0.96 0.94 0.052 0.083
rs2294919 0.0036 0.21 1.0 0.94 0.036 0.067

Table  6.5. Power  calculations  carried  out  using  MAF  and  OR  observed  for  each  SNP 

investigated in the adiponutrin gene.

In order to achieve a statistical power of 95%, assuming a significance level of 0.0036, an odds 

ratio  of  1.2  and a MAF of  0.22,  a sample size of  18,822 samples (9,411 cases and 9,411 

controls) would be required. Assuming a significance level of 5x10-8 (genome-wide significance), 

45,654 samples would be required.
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6.3 Discussion

No  evidence  was  found  for  an  association  between  variants  in  the  adiponutrin  gene  and 

common obesity in either adults or children after correcting for multiple testing. The association  

that  was  reported  by  Johansson  et  al.369 between  three  adiponutrin  SNPs  (rs2072907, 

rs12483959 and rs139051) and obesity in Swedish Caucasians was not replicated. In this study 

rs2072907  is  tagged by  rs2294916  (r2=1.0  using  HapMap  data),  rs12483959  is  tagged by 

rs11090617 (r2=1.0 using HapMap data)  and rs139051 was genotyped directly.  rs11090617 

failed QC and rs139051 was not significanlty associated, either before or after correcting for 

multiple tests.  The reason that  these data do not  agree may be due to the relatively weak 

associations originally reported. P-values were greater than 0.01 and became non-significant 

after correcting for age. It is also possible that there was not sufficient statistical power to detect  

an  association  using  the  French  case-control  cohorts.  Using  the  minor  allele  frequencies 

observed,  statistical  power  is  estimated  at  a  maximum  probability  of  70%  to  detect  an 

association assuming an odds ratio of 0.79 as was reported369. Furthermore, tag-SNP coverage 

of the adiponutrin gene was not complete in this study since rs11090617 did not pass QC. This 

combined with the limited statistical power means that the possibility of a false-negative cannot 

be ruled out.

No associations have  been reported  between  PNPLA3 variants  and obesity  or  BMI  in  any 

GWAS  to-date.  The  most  recent  GIANT  BMI  publication  genotyped  42  SNPs  within  the 

adiponutrin gene and found no SNPs to be even nominally associated. This is therefore more 

evidence that adiponutrin gene variation is not likely to influence obesity risk.

In summary, these results suggest that variants in the adiponutrin gene do not contribute to the 

development of obesity in French Caucasians.
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Chapter 7

Investigation of genetic variants within the 

Nesfatin gene for association to common 

polygenic obesity
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7.1 Introduction

Nesfatin-1 is an 82 amino acid peptide derived from nucleobindin2 (NUCB2), a protein encoded 

by the gene NUCB2372. In rats, NUCB2 is widely expressed in the CNS as well as liver, adipose 

and the ghrelin-producing cells of the stomach, which are known to be involved in regulating 

food  intake372,493. Cleavage  of  the  NUCB2  preprotein  is  catalysed  by  PCSK1  which  also 

produces nesfatin-2 and nesfatin-3 and variants in the PCSK1 gene have been found to cause a 

form of monogenic obesity198. 

7.1.1 Central action of nesfatin-1 to reduce food intake

Injection  of  nesfatin-1  into  the  brains  of  both  rats  and  mice  has  been  shown  to  reduce 

feeding372,377. This effect is not observed for nesfatin-2 or nesfatin-3372. Additional studies in rats 

have consistently demonstrated a suppression of feeding when nesfatin-1 was injected into the 

lateral494,495,  3rd372,377,  or  4th  brain  ventricle494,  cisterna  magna494,  and  the  paraventricular 

nucleus377. Reduction in food intake is also observed in leptin-receptor deficient rats indicating 

that Nesfatin-1's action is independent of leptin372. Furthermore, knockdown of NUCB2 in the rat 

hypothalamus using an antisense oligonucleotide increases food intake372. 

In addition to the effects on feeding, continuous central infusion of nesfatin-1 into rats resulted in 

reduced body weight and administration of a NUCB2 antisense oligonucleotide increased body 

weight372. Acute injection of nesfatin-1 has also been shown to decrease body weight without 

altering food intake in a 24 hour cumulative period suggesting a  role  in  controllling energy 

expenditure494. Nesfatin-1 has been shown to directly inhibit NPY neurons in the ARC496.
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7.1.2   NUCB2   expression is regulated by metabolic factors  

Hypothalamic expression of the nesfatin gene has been found to vary under different metabolic 

conditions, which supports a role as a regulator of energy metabolism. NUCB2 transcription in 

the rat hypothalamus is significantly reduced after twenty-four hours fasting and this is restored 

after  re-feeding372,373.  Re-feeding  after  a  24  hour  fast  was  found  to  activate  nesfatin-1 

immunopositive neurons in the supraoptic nucleus as assessed by double staining for Fos and 

nesfatin-1 immunoreactivity494. In addition, intraperitoneal injections of CCK activated nesfatin-1 

immunopositive cells in the PVN and the nucleus of the solitary tract of rats pointing towards a  

role for central nesfatin-1 in the mediation of gut hormone satiety signalling494,497.

7.1.3 Peripheral nesfatin-1

The nesfatin-1 protein  has been shown to  be able  to  cross the blood-brain  barrier  in  both 

directions498,499.  NUCB2  is expressed in the stomach and using immunoreactive staining, the 

nesfatin-1 protein is co-located with ghrelin500. These results suggest that nesfatin-1 may act as 

a gut-brain hormone to influence food intake. Similar to the results of CNS administration of 

nesfatin-1, intraperitoneal injections have been shown to reduce feeding in mice501.

In humans, fasting levels of plasma nesfatin-1 have been reported to be significantly reduced in 

male obese subjects compared to non-obese male controls and were negatively correlated with 

BMI  in  the  non-obese  group381.  A recent  study  using  female  anorexic  patients  reported  a 

significant increase in circulating nesfatin-1 compared to age-matched healthy controls382.
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7.1.4 Nesfatin-1 as a pharmacological target for the treatment of obesity

Because  leptin  resistance  is  normally  associated  with  obesity  and  peripheral  and  central  

injection of nesfatin-1 exerts an anorexigenic effect independent of leptin action372, targeting the 

nesfatin-1 pathway may provide a viable approach for pharmacological interventions of obesity.

7.1.5   NUCB2   variation and obesity  

In 2007 when this gene was selected for study in this project, no reported associations between 

NUCB2 variation and obesity were found in the literature. In 2011, an association was reported 

between 3  NUCB2 SNPs (rs1330, rs214101 and rs757081) and obesity (p=0.016, 0.015 and 

0.034)  and  three  SNPs (rs214086,  rs214101 and rs757081)  and BMI (p=0.023,  0.002 and 

0.008) in male but not female Belgian Caucasians502.

No significant associations between NUCB2 variation and obesity or BMI have been reported in 

any GWAS to-date. In the French GWAS253,18 SNPs within the region were nominally significant 

with  the  most  significant  result,  rs7129639,  p-value  of  1.8x10-3.  The most  recent  GIANT 

GWAS233 found  a  p-value  of  5.4x10-4 to  rs542274,  a  SNP within  the  NUCB2 region  (data 

acessed online445)(see Figure 7.1).
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Figure 7.1. SNPs analysed for association to BMI in NUCB2 region in the GIANT GWAS233.

Due to its role in regulating appetite, the Nesfatin gene is a plausible candidate for common 

polygenic obesity in humans. Genetic variants within the NUCB2 gene and the surrounding LD 

block were genotyped and investigated for associations to common polygenic obesity using 

French obese cases and non-obese controls (see Materials and Methods for details).
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7.2 Results

7.2.1 SNP Selection and Case-Control Genotyping

Thirty-six SNPs were genotyped within the LD block containing the NUCB2 gene, including 33 

SNPs  tagging  all  HapMap  SNPs  within  the  region  (mean  r2=0.965,  see  Figure  7.2).  This 

included  125kb  upstream  of  the  gene  and  69kb  downstream  and  the  downstream  region 

contains the diabetes gene, KCNJ11. After genotyping quality control, thirty-two SNPs remained 

with a mean success rate of 94%. Of these, twenty-seven had minor allele frequencies above 

the required five percent and were taken forward for analysis (see Table 7.1). Of the twenty-one  

tag SNPs genotyped within the region, seventeen passed QC and were analysed.

Figure 7.2. Map of NUCB2 gene and surrounding region with positions of SNPs genotyped in 

this project. *Tag SNPs. █ NUCB2 exons.
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SNP

Position on 
Chromosome 

11a
Position Relative to 

NUCB2 Gene
Minor Allele 
Frequency

rs2302510* 17168986 Upstream <0.01

rs16933873* 17172737 Upstream 0.38

rs11826763 17191534 Upstream 0.05

rs214935* 17193122 Upstream 0.48

rs17647408* 17229466 Upstream 0.24

rs2354863 17230389 Upstream 0.10

rs2079293 17238051 Upstream 0.02

rs12295879 17244473 Upstream 0.03

rs7108861* 17255001 Upstream 0.08

rs10832749* 17260867 Upstream 0.20

rs10832750* 17260918 Upstream 0.48

rs214083* 17298859 Intron 1 0.46

rs7127347 17300844 Intron 1 0.25

rs214106* 17311811 Intron 2 0.50

rs10832756* 17314345 Intron 2 0.09

rs1330 17316029 Intron 2 0.45

rs34405111 17351721 Downstream <0.01

rs12292418 17351748 Downstream <0.01

rs12365375 17356826 Downstream 0.08

rs10832767 17359017 Downstream 0.08

rs6486364* 17386257 Downstream <0.01

rs7937091* 17392300 Downstream 0.32

rs10832782* 17397273 Downstream 0.48

rs10832783 17401134 Downstream 0.13

rs7110094 17401519 Downstream 0.25

rs3741203* 17403163 Downstream 0.37

rs2285676* 17408025 Downstream 0.45

rs11024273* 17412717 Downstream (KCNJ11) 0.39

rs8192690 17414570 Downstream (KCNJ11) 0.13

rs757110* 17418477 Downstream 0.46

rs1799859 17419279 Downstream 0.40

rs12422139 17422397 Downstream 0.14

Table  7.1.  NUCB2 SNPs  successfully  genotyped  with  observed  minor  allele  frequencies. 
aPositions in bp correspond to NCBI build 37.1 measured from the top of the p arm of the 

chromosome.
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One SNP, rs10832756 was associated with obesity in children (p=0.02, OR=0.6, CI=0.38-0.93), 

however this does not survive correction using permutations (p=0.33, see Table 7.2). Analysis 

was  repeated  excluding  subjects  with  T2D,  impaired  fasting  glucose  or  impaired  glucose 

tolerance  (any  patient  with  fasting  blood  glucose  >5.6  mmol/l)  in  order  to  filter  out  any 

association that may be present between SNPs in LD with KCNJ11 and diabetes, which might 

be masking associations to obesity. After removing these subjects, two SNPs, rs10832756 and 

rs757110 were nominally associated with obesity in children (p-values: 0.042, 0.039; OR: 0.61, 

0.83;  CI:  0.38-0.99,  0.70-0.99),  however  these associations  do not  withstand correction for 

multiple testing using permutations (see Table 7.3). 
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Genotype Numbers

Controls Children Adults
Odds Ratio Children (95% 

CI)

P-values Children
Odds Ratio Adults 

(95% CI)

P-values Adults

SNP 1,1a 1,2 2,2 1,1 1,2 2,2 1,1 1,2 2,2 Empirical Corrected Empirical Corrected

rs16933873 679 461 65 334 227 42 468 322 55 1.1 (0.91-1.3) 0.41 1.0 1.1 (0.92-1.2) 0.44 1.0

rs11826763 1171 61 0 587 27 0 772 44 0 0.89 (0.56-1.4) 0.62 1.0 1.1 (0.74-1.6) 0.66 1.0

rs214935 377 599 248 195 295 119 269 385 165 0.96 (0.84-1.1) 0.58 1.0 0.96 (0.84-1.1) 0.50 1.0

rs17647408 914 296 18 448 139 18 576 201 22 1.1 (0.89-1.3) 0.44 1.0 1.2 (0.97-1.4) 0.11 0.84

rs2354863 1097 116 8 562 58 4 759 84 2 0.98 (0.72-1.3) 0.89 1.0 0.96 (0.73-1.3) 0.78 1.0

rs12295879 1163 39 0 596 17 0 816 26 0 0.85 (0.48-1.5) 0.57 1.0 0.95 (0.58-1.6) 0.87 1.0

rs7108861 1074 90 5 361 28 0 752 67 0 0.84 (0.55-1.3) 0.42 1.0 0.95 (0.70-1.3) 0.78 1.0

rs10832749 965 261 16 477 123 12 657 151 11 1.0 (0.83-1.3) 0.85 1.0 0.88 (0.72-1.1) 0.22 0.98

rs10832750 414 597 213 218 302 107 295 368 137 0.97 (0.85-1.1) 0.71 1.0 0.93 (0.82-1.1) 0.30 1.0

rs214083 414 507 168 200 257 92 335 355 119 1.1 (0.92-1.2) 0.43 1.0 0.92 (0.80-1.1) 0.20 0.97

rs7127347 871 322 35 465 142 13 608 223 18 0.83 (0.68-1.0) 0.053 0.62 0.95 (0.80-1.1) 0.54 1.0

rs214106 329 612 297 170 307 136 225 413 183 0.94 (0.82-1.1) 0.39 1.0 0.95 (0.84-1.1) 0.43 1.0

rs10832756 1067 117 7 335 22 1 737 83 2 0.60 (0.38-0.93) 0.021 0.33 0.96 (0.73-1.3) 0.78 1.0

rs1330 507 543 152 266 273 74 340 381 108 0.96 (0.83-1.1) 0.60 1.0 1.0 (0.91-1.2) 0.62 1.0

rs12365375 1128 104 6 559 57 0 769 59 1 0.99 (0.71-1.4) 0.94 1.0 0.78 (0.57-1.1) 0.13 0.87

rs10832767 1124 107 6 554 58 0 756 59 1 0.98 (0.71-1.4) 0.93 1.0 0.77 (0.56-1.1) 0.11 0.83

rs7937091 810 380 48 388 196 27 513 272 34 1.1 (0.91-1.3) 0.38 1.0 1.1 (0.94-1.3) 0.23 0.98

rs10832782 432 575 234 200 304 104 280 397 134 1 .0(0.87-1.2) 0.96 1.0 0.96 (0.84-1.1) 0.52 1.0

rs10832783 1065 159 6 545 78 3 735 107 4 0.96 (0.73-1.3) 0.78 1.0 0.98 (0.76-1.3) 0.85 1.0

rs7110094 892 308 28 443 156 15 595 206 19 1.0 (0.85-1.2) 0.80 1.0 1.0 (0.84-1.2) 0.96 1.0

rs3741203 665 469 89 324 234 45 467 283 71 1.0 (0.87-1.2) 0.79 1.0 0.97 (0.84-1.1) 0.69 1.0

rs2285676 509 549 163 254 285 85 360 366 119 1.0 (0.89-1.2) 0.71 1.0 1.0 (0.88-1.1) 0.96 1.0

rs11024273 600 479 98 298 245 53 456 304 74 1.0 (0.89-1.2) 0.63 1.0 0.92 (0.80-1.1) 0.28 0.99

rs8192690 1063 172 6 529 81 4 725 94 5 0.98 (0.75-1.3) 0.86 1.0 0.84 (0.66-1.1) 0.17 0.95

rs757110 480 561 177 260 286 78 328 400 118 0.91 (0.79-1.1) 0.20 0.97 1.0 (0.88-1.1) 0.98 1.0

rs1799859 627 477 74 315 250 43 424 328 72 1.1 (0.91-1.2) 0.47 1.0 1.1 (0.97-1.3) 0.14 0.91

rs12422139 1052 170 6 528 87 3 716 120 8 1.0 (0.78-1.3) 0.90 1.0 1.1 (0.87-1.4) 0.44 1.0

Table 7.2. Allelic association analysis of NUCB2 SNPs to obesity in children and adult French case-controls. Analysis was performed using PLINK. Empirical p-values result from a  

single chi-squared test, corrected p-values result from one million permutations. a 1 denotes the common allele, 2 denotes the minor allele.
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Controls Obese Children Obese Adults

1,1a 1,2 2,2 1,1 1,2 2,2 1,1 1,2 2,2 Odds Ratio Children (95% 
CI)

P-values Children

Empirical Corrected Odds Ratio Adults 
(95% CI)

P-values Adults

Empirical Corrected

rs16933873 304 211 30 304 206 40 205 142 28 1.1 (0.88-1.3) 0.54 1.0 1.1 (0.88-1.3) 0.46 1.0

rs11826763 508 33 0 533 27 0 344 19 0 0.79 (0.47-1.3) 0.36 1.0 0.85 (0.48-1.5) 0.59 1.0

rs214935 181 250 103 179 270 106 130 158 78 1.0 (0.87-1.2) 0.73 1.0 1.0 (0.83-1.2) 0.93 1.0

rs17647408 400 130 6 410 125 17 253 92 12 1.1 (0.86-1.4) 0.44 1.0 1.3 (0.97-1.7) 0.077 0.74

rs2354863 496 48 1 516 51 3 331 43 0 1.1 (0.74-1.6) 0.65 1.0 1.3 (0.83-1.9) 0.26 0.99

rs12295879 515 18 0 545 15 0 361 12 0 0.79 (0.40-1.6) 0.50 1.0 0.95 (0.46-2.0) 0.90 1.0

rs7108861 467 34 2 324 24 0 333 31 0 0.91 (0.54-1.5) 0.72 1.0 1.1 (0.70-1.8) 0.61 1.0

rs10832749 411 128 7 432 115 11 292 67 5 0.94 (0.73-1.2) 0.61 1.0 0.79 (0.59-1.1) 0.12 0.88

rs10832750 170 264 108 194 280 100 132 161 62 0.9 (0.76-1.1) 0.24 1.0 0.84 (0.70-1.0) 0.083 0.76

rs214083 194 215 73 182 233 85 152 158 52 1.1 (0.94-1.4) 0.20 0.97 0.95 (0.78-1.2) 0.60 1.0

rs7127347 386 143 15 422 134 12 264 107 5 0.85 (0.68-1.1) 0.19 0.96 0.97 (0.75-1.3) 0.84 1.0

rs214106 142 256 143 152 284 123 106 173 87 0.90 (0.76-1.1) 0.21 0.98 0.90 (0.74-1.1) 0.26 0.99

rs10832756 454 52 5 294 22 1 321 44 1 0.61 (0.38-0.99) 0.042 0.53 1.0 (0.70-1.5) 0.85 1.0

rs1330 228 227 78 242 254 64 153 167 48 0.92 (0.77-1.1) 0.37 1.0 0.99 (0.82-1.2) 0.93 1.0

rs12365375 509 38 2 512 50 0 345 26 0 1.2 (0.77-1.8) 0.46 1.0 0.91 (0.55-1.5) 0.72 1.0

rs10832767 504 41 2 507 51 0 339 26 0 1.1 (0.74-1.7) 0.60 1.0 0.86 (0.53-1.4) 0.55 1.0

rs7937091 363 156 23 353 181 23 226 124 13 1.1 (0.90-1.4) 0.30 1.0 1.1 (0.90-1.4) 0.29 1.0

rs10832782 189 256 100 180 277 98 130 173 61 1.0 (0.87-1.2) 0.71 1.0 0.95 (0.78-1.2) 0.58 1.0

rs10832783 474 69 3 496 73 3 327 47 1 1.0 (0.73-1.4) 0.97 1.0 0.95 (0.65-1.4) 0.78 1.0

rs7110094 386 137 10 403 144 13 261 96 8 1.0 (0.82-1.3) 0.77 1.0 1.1 (0.81-1.4) 0.72 1.0

rs3741203 293 205 35 293 213 44 218 114 34 1.1 (0.90-1.3) 0.41 1.0 0.95 (0.77-1.2) 0.66 1.0

rs2285676 231 242 65 231 260 79 167 157 51 1.1 (0.92-1.3) 0.30 1.0 1.0 (0.82-1.2) 0.99 1.0

rs11024273 267 219 35 270 223 50 221 118 35 1.1 (0.91-1.3) 0.31 1.0 0.87 (0.71-1.1) 0.22 0.98

rs8192690 463 78 3 481 76 3 324 42 1 0.94 (0.69-1.3) 0.72 1.0 0.76 (0.52-1.1) 0.16 0.94

rs757110 204 245 90 236 267 67 145 169 60 0.83 (0.70-0.99) 0.039 0.50 0.97 (0.8-1.2) 0.73 1.0

rs1799859 293 200 33 287 231 37 188 144 36 1.1 (0.92-1.4) 0.25 0.99 1.2 (0.99-1.5) 0.060 0.63

rs12422139 472 69 4 483 80 1 314 57 4 1.0 (0.75-1.4) 0.85 1.0 1.3 (0.88-1.8) 0.21 0.98

Table 7.3. Allelic association analysis of NUCB2 SNPs to obesity in non-diabetic children and adult French case-controls. Analysis was performed using PLINK. Empirical p-values 

result from a single chi-squared test, corrected p-values result from one million permutations. a 1 denotes the common allele, 2 denotes the minor allele.
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Genotype Counts Mean BMI (95% CI) P-values

SNP 1,1a 1,2 2,2 1,1 1,2 2,2 Empirical Corrected

rs16933873 665 445 63 22.4 (22.3-22.6) 22.4 (22.2-22.6) 22.4 (21.9-22.9) 0.96 1.0

rs11826763 1139 59 0 22.4 (22.2-22.5) 22.7 (22.1-23.2) - 0.28 0.99

rs214935 370 583 239 22.4 (22.2-22.6) 22.4 (22.3-22.6) 22.2 (21.9-22.4) 0.21 0.97

rs17647408 892 285 16 22.4 (22.3-22.5) 22.4 (22.1-22.6) 22.3 (21.2-23.4) 0.79 1.0

rs2354863 1067 113 8 22.4 (22.3-22.5) 22.7 (22.3-23.0) 22.3 (21.1-23.5) 0.33 1.0

rs12295879 1130 39 0 22.4 (22.3-22.5) 22.9 (22.2-23.5) - 0.15 0.92

rs7108861 1047 84 5 22.4 (22.3-22.5) 22.3 (21.9-22.8) 21.2 (19.3-23.2) 0.46 1.0

rs10832749 936 255 16 22.4 (22.2-22.5) 22.5 (22.2-22.7) 21.8 (20.7-22.9) 0.82 1.0

rs10832750 400 580 212 22.3 (22.1-22.5) 22.5 (22.3-22.7) 22.4 (22.1-22.7) 0.31 1.0

rs214083 403 492 166 22.4 (22.2-22.6) 22.5 (22.3-22.6) 22.3 (22.0-22.6) 0.63 1.0

rs7127347 846 314 34 22.4 (22.3-22.6) 22.4 (22.2-22.6) 22.0 (21.3-22.8) 0.57 1.0

rs214106 318 592 293 22.2 (22.0-22.4) 22.5 (22.3-22.6) 22.4 (22.2-22.7) 0.18 0.95

rs10832756 1038 114 7 22.4 (22.2-22.5) 22.4 (22.0-22.8) 22.1 (21.4-22.8) 0.89 1.0

rs1330 492 527 149 22.3 (22.1-22.5) 22.5 (22.3-22.7) 22.4 (22.1-22.8) 0.15 0.91

rs12365375 1099 98 6 22.4 (22.3-22.5) 22.3 (21.9-22.8) 21.9 (19.6-24.2) 0.55 1.0

rs10832767 1096 101 6 22.4 (22.3-22.5) 22.3 (21.9-22.7) 21.9 (19.6-24.2) 0.54 1.0

rs7937091 790 366 47 22.4 (22.3-22.6) 22.3 (22.1-22.5) 22.5 (21.9-23.1) 0.56 1.0

rs10832782 418 562 226 22.4 (22.2-22.6) 22.4 (22.2-22.6) 22.4 (22.1-22.7) 0.86 1.0

rs10832783 1035 154 6 22.4 (22.2-22.5) 22.7 (22.4-23.1) 22.7 (20.4-24.9) 0.042 0.53

rs7110094 868 298 27 22.4 (22.2-22.5) 22.4 (22.1-22.6) 22.2 (21.5-23.0) 0.88 1.0

rs3741203 644 459 86 22.4 (22.2-22.5) 22.4 (22.2-22.6) 22.1 (21.7-22.6) 0.63 1.0

rs2285676 491 535 160 22.4 (22.2-22.6) 22.4 (22.3-22.6) 22.2 (21.9-22.6) 0.38 1.0

rs11024273 582 468 96 22.4 (22.3-22.6) 22.5 (22.3-22.6) 21.9 (21.4-22.3) 0.11 0.85

rs8192690 1033 167 6 22.4 (22.3-22.5) 22.4 (22.1-22.7) 22.4 (21.7-23.0) 0.99 1.0

rs757110 467 545 171 22.3 (22.1-22.5) 22.5 (22.3-22.7) 22.6 (22.2-22.9) 0.076 0.73

rs1799859 613 460 73 22.5 (22.3-22.6) 22.4 (22.2-22.6) 22.4 (21.9-22.9) 0.56 1.0

rs12422139 1020 167 6 22.4 (22.3-22.5) 22.4 (22.1-22.7) 21.9 (20.7-23.2) 0.83 1.0

Table  7.4. Association  analysis  of  NUCB2 SNPs  to  BMI  using  linear  regression  with  age  and  sex  as  covariates.  Corrected  p-values  result  from 1  million 

permutations. a1 denotes the common allele, 2 denotes the minor allele.
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One SNP, rs10832783, was nominally associated with BMI in the French controls (p=0.042), 

however this association was not significant after correction using permutations (see Table 7.4).

Linkage disequilibrium within the region was analysed within the controls (see Figure 7.3). No 

LD blocks were identified and LD was low within the region, however, NUCB2 SNP, rs214083 

was in high LD with KCNJ11 SNP, rs11024273 (r2 = 0.71).
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Figure 7.3. Linkage disequilibrium (r2) plot of SNPs genotyped in  NUCB2 and the surrounding region in the French control samples.  ●NUCB2 SNPs, ■ KCNJ11 

SNPs. Back squares indicate 100% LD and white squares indicate zero LD. The percentage LD level (r2) within grey squares are displayed.
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7.2.2 Power calculations

Using an odds ratio of 0.6 (as observed in the most significantly associated SNP, rs10832756),  

a MAF of 0.06 (as observed in rs10832756 in the controls), and a significance level of 0.0019 

(0.05 divided by 27 tests), the power to detect an association was <1% in the adult cohort and 

13% in the child cohort.

SNP
Significance 

level
MAF in 

controls
Odds ratio 
in children

Odds ratio 
in adults

Power in 
children

Power in 
adults

rs16933873 0.0019 0.25 1.1 1.1 <0.01 <0.01
rs11826763 0.0019 0.025 0.89 1.1 <0.01 <0.01
rs214935 0.0019 0.45 0.96 0.96 <0.01 <0.01
rs17647408 0.0019 0.14 1.1 1.2 <0.01 0.029
rs2354863 0.0019 0.054 0.98 0.96 <0.01 <0.01
rs12295879 0.0019 0.016 0.85 0.95 <0.01 <0.01
rs7108861 0.0019 0.043 0.84 0.95 <0.01 <0.01
rs10832749 0.0019 0.12 1.0 0.88 <0.01 0.014
rs10832750 0.0019 0.42 0.97 0.93 <0.01 0.011
rs214083 0.0019 0.39 1.1 0.92 <0.01 0.014
rs7127347 0.0019 0.16 0.83 0.95 0.036 <0.01
rs214106 0.0019 0.49 0.94 0.95 <0.01 <0.01
rs10832756 0.0019 0.055 0.60 0.96 0.13 <0.01
rs1330 0.0019 0.35 0.96 1.0 <0.01 <0.01
rs12365375 0.0019 0.047 0.99 0.78 <0.01 0.022
rs10832767 0.0019 0.048 0.98 0.77 <0.01 0.025
rs7937091 0.0019 0.19 1.1 1.1 <0.01 0.013
rs10832782 0.0019 0.42 1.0 0.96 <0.01 <0.01
rs10832783 0.0019 0.070 0.96 0.98 <0.01 <0.01
rs7110094 0.0019 0.15 1.0 1.0 <0.01 <0.01
rs3741203 0.0019 0.26 1.0 0.97 <0.01 <0.01
rs2285676 0.0019 0.36 1.0 1.0 <0.01 <0.01
rs11024273 0.0019 0.29 1.0 0.92 <0.01 0.012
rs8192690 0.0019 0.074 0.98 0.84 <0.01 0.016
rs757110 0.0019 0.38 0.91 1.0 0.014 <0.01
rs1799859 0.0019 0.27 1.1 1.1 <0.01 0.021
rs12422139 0.0019 0.074 1.0 1.1 <0.01 <0.01

Table  7.6. Power  calculations  carried  out  using  MAF  and  OR  observed  for  each  SNP 

investigated in the NUCB2 gene region.
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To achieve a statistical power of 95%, assuming a significance level of 0.0019, a MAF of 0.06 

and  an odds ratio  of  0.6,  3,891  cases  and  3,891  controls  would  be  required.  Assuming a 

significance level of 5x10-8, this rises to 8,683 cases and 8,683 controls (see Figure 7.4). If the 

real odds ratio is greater than 0.6 then this figure will rise (see Figure 7.5).

Figure  7.4. Sample  size  plotted  with  statistical  power  for  a  SNP with  MAF=0.0.6  (as  was 

observed for rs10832756). α is the significance level: 0.0019 for 26 statistical tests and 5x10 -8 

for genome-wide significance.
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Figure 7.5. Sample size (number of cases, with number of controls=number of cases) required 

for varying odds ratios in order to achieve a statistical power of 95% for a SNP with MAF=0.06  

(as was observed for rs10832756). α is the significance level: 0.0019 for 26 statistical tests and 

5x10-8 for genome-wide significance.
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7.3 Discussion

This  study  was  carried  out  to  test  the  hypothesis  that  variants  in  NUCB2  influenced 

susceptibility to obesity. This was plausible because nesfatin-1, a product of the NUCB2 gene is  

expressed in appetite controlling regions of the brain and injection of recombinant nesfatin-1 into 

the brains of rodents suppresses feeding, suggesting a role of the gene in controlling satiety372. 

During the practical stage of this PhD, no studies had been published which investigate such an 

association.

No significant associations were discovered between SNPs in and near the NUCB2 gene and 

obesity  in  either  adults  or  children.  Rs10832756  was  nominally  associated  with  obesity  in  

children  (p=0.02)  however  this  association  became  non-significant  after  correction  using 

permutations, which suggests that this is a false positive rather than a genuine association. 

When  diabetic  patients  were  removed  from  the  analysis  the  same  SNP  was  nominally 

significant but at a greater p-value (p=0.042). 

No significant associations between NUCB2 gene variation and obesity phenotypes have been 

reported in any GWAS to date. The most recent GIANT BMI233 and WHR262 studies investigated 

25 SNPs within  the  NUCB2 region and found no significant  associations although nominal 

associations  to  BMI  were  found  including  to  rs542274  (p=5.4x10-4).  This  is  tagged  by 

rs10832750 in this study (p=0.30 in adults and 0.71 in children).
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Out of thirty-six SNPs genotyped in this study, twenty-seven were analysed for associations to 

obesity. Nine SNPs failed QC or had low minor allele frequencies. Furthermore, rare variants 

(<5%) were not investigated and so coverage of the gene was not complete.  Statistical power 

calculations indicate that this study was underpowered to detect associations with the effect  

sizes observed. These two points mean that the possibility of a false-negative cannot be ruled 

out.

In summary, these results suggest that variants in the NUCB2 gene are not likely to contribute 

to the development of obesity in a French Caucasian population.

.
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Chapter 8

Investigation of genetic variation within the IRS-

1 gene and transcription levels for 

association to BMI
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8.1 Introduction

Insulin receptor  substrate 1 (IRS-1) is a signalling molecule encoded by the IRS-1 gene in 

humans which is located on the long arm of chromosome 2 and contains two exons. IRS-1 is  

crucial for transmitting signals from insulin and IGF-1 receptors to intracellular pathways that  

control metabolism384.

8.1.1 IRS-1 and glucose metabolism

IRS-1  knockout  mice  have  mild  diabetic  phenotypes  as  well  as  a  50%  reduction  in  body 

weight384,386. A number of variants within the IRS-1 gene have been found to influence T2D risk,  

including  a  non-synonymous  coding  SNP,  rs1801278  which  has  been  reported  by  several 

studies224,387,504. A variant within the IRS-1 gene was recently found to be significantly associated 

with T2D, insulin resistance and hyperinsulinemia in a GWA study carried out by collaborators in 

France388. Genotyping of the associated SNP, rs2943641 in Swedish families was carried out 

during this study but the results were not published.

8.1.2 IRS-1 and obesity

Adipocytes from IRS-1 knockout mice have reduced differentiation and lipid accumulation386. 

Associations to obesity phenotypes have also been reported including BMI and WHR in a Dutch 

study505,  BMI  in  African  Americans506 and  blood-leptin  concentrations  in  obese  subjects507 

although these associations have not been replicated.
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No SNPs within the IRS1 region were found to be nominally significant in the French GWAS253 

or any of the GIANT publications263,233. A more recent GWAS that investigated associations to 

body fat percentage, however reported a significant association to a SNP near the IRS1 gene255. 

This finding was published after the completion of the practical work in this thesis.

Given its important role in the insulin signalling pathway, the IRS-1 gene is a plausible candidate 

gene  for  obesity  and  this  study  was  designed  to  investigate  the  possibility  of  genetic  

associations  between rs2943641,  its  expression  levels  and obesity  in  the  Swedish  sib-pair 

cohort (see Materials and Methods for details). Analysing transcript expression data is also an 

opportunity to explore the possibility that the association to T2D reported by Rung  et al.388 is 

mediated via altering levels of transcription.
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8.2 Results

Genotyping of the  IRS-1 SNP, rs2943641 in the Swedish families cohort was carried out by 

collaborators in France388. No association was found between rs2943641 and BMI (corrected 

p=0.5, see Table 8.1). 

Genotype 
Counts Mean BMI (95% CI) P-Values

1,1a 1,2 2,2 1,1 1,2 2,2 Empirical Corrected

214 259 106 29.0 (28.1-29.9) 28.9 (28.1-29.7) 28.4 (27.0-29.7) 0.49 0.50

Table 8.1. Association analysis of IRS-1 SNP, rs2943641 with BMI corrected for age and sex in 

the Swedish families using the QFAM test  implemented by PLINK.  a1 denotes the common 

allele and 2 denotes the rare allele. Corrected p-values result from one million permutations.

Microarray  data  was  available,  which  included  measurements  of  IRS-1 transcript  levels  in 

subcutaneous adipose tissue for each sibling within the Swedish sib-pair cohort.  A significant 

association  was  found  between rs2943641  and  IRS-1 transcript  (corrected  p=1.0x10-5,  see 

Table 8.2). 
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Genotype 
Counts Mean transcription level (95% CI) P-values

1a,1 1,2 2,2 1,1 1,2 2,2 Empirical Corrected

89 133 42 46.7 (43.2-50.2) 35.9 (34.1-37.7) 33.8 (31.8-35.8) 2.8x10-9 1.0 x 10-5

Table 8.2. Association analysis of IRS-1 SNP, rs2943641 with IRS-1 transcript level corrected for age, 

sex and BMI in the Swedish families using the QFAM test implemented by PLINK.  a1 denotes the 

common allele and 2 denotes the rare allele. Corrected p-values result from one million permutations.

IRS-1 expression was analysed for association with obesity. Between obese and non-obese groups, a 

significant difference was found in IRS-1 transcript levels after correcting for relatedness, age and sex 

(p=1.0x10-15, see Figure 8.1 and Table 8.3). 
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Figure 8.1.  Box-plot of  IRS-1 transcript levels in subcutaneous adipose tissue with obese and non-

obese subjects from Swedish sib-pairs displayed separately.  IRS-1 transcription is  the microarray 

signal value corrected for age, sex and relatedness. 

Number  of  Non-
obese

Number  of 
Obese

Mean  Difference  in  IRS-1 
transcription (95% CI) P-value

190 151 11.1 (8.33-13.9) 1.0x10-15

Table 8.3. T-test of subcutaneous adipose IRS-1 transcription in obese and non-obese subjects from 

Swedish  sib-pairs.  IRS-1 transcription  is  the  microarray  signal  value  corrected  for  age,  sex  and 

relatedness.
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8.3 Discussion

These results demonstrate a significant  association between IRS-1 variant,  rs2943641 and IRS-1 

transcription levels in the subcutaneous adipose tissue of Swedish sib-pairs. The p-value reported 

here does remain significant in a genome-wide context, however replication of this result is needed 

before a genuine association is established. Therefore variation in the  IRS-1 gene is likely to be 

responsible for modifying its expression in adipose tissue and if this is true in other tissues as well  

then  this  may  explain  the  associations  reported  between  the  gene  and  T2D388.  No  significant 

association was observed between IRS-1 variation and BMI. Rs2943641 is located 500kbp upstream 

of the transcription start point of the IRS-1 gene. This means it could lie within an enhancer element 

where it affects binding of a transcription factor. Alternatively it might be in LD with some other variant  

that is responsible for modifying expression of the gene, either in the promoter or some enhancer  

region. Further work is required in order to locate the causative variant. 

A significant reduction in transcription levels was found in obese compared to non-obese siblings. This 

difference might be an indication that IRS-1 expression levels influence BMI or it might be the case  

that the disease state of obesity is responsible for altering expression of the gene. The lack of an 

association between IRS-1 genetic variation and BMI makes it more likely that an individual's body 

weight is causing the observed association.

A recent GWAS discovered a significant association between rs2943650, a SNP near IRS-1 and body 

fat percentage255. Rs2943650 is in high LD with rs2943641 (r2=1.0 in the HapMap CEU population). 

The  failure  to  replicate  this  association  is  likely  due  to  the  reduced  statistical  power  in  this 

investigation. Alternatively it may the case that this SNP modifies body fat percentage but not BMI.  

Since no IRS-1 variants are significantly associated to BMI in any GWAS to-date this is a plausible 

explanation.
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In summary, no evidence was found for an association between IRS-1 gene variation and BMI in a 

Swedish family cohort, however a significant association between gene variation and expression in 

subcutaneous adipose tissue was discovered.
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Chapter 9

Investigation of DNA methylation for 

associations with human polygenic obesity
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9.1 Introduction

DNA methylation is an epigenetic modification of DNA in which the 5 position of  a cytosine 

residue within a CpG dinucleotide is methylated. CpG dinucleotides are under-represented in 

the human genome (observed/expected ratio of 0.2), however certain regions exist that contain 

a high density of CpG sites (observed/expected ratio of 0.6). These are called CpG islands and  

are  found  in  the  promoter  regions  of  approximately  three  quarters  of  all  known  genes 508. 

Elevated methylation in gene promoters is correlated with a reduction in gene expression509.

There is evidence that DNA methylation patterns can be heritable. In mice CpG methylation at 

loci affecting expression of the  agouti gene, which controls fur colour, have been found to be 

resistant to demethylation during reprogramming510. This means that a phenotype of yellow fur, 

obesity,  diabetes  and  increased  susceptibility  to  cancer  can  be  inherited  over  multiple 

generations278,511. In humans, inherited methylation of CpG sites within MLH1 and MSH2 gene 

promoters have been found to cause some cases of familial colorectal cancer512,513.  A recent 

twin study revealed a significant difference in the DNA methylation patterns between dizygotic 

twins  compared  to  monozygotic  twins  which  cannot  be  explained  by  underlying  genetic 

differences309.  This  demonstrates  that  DNA methylation  is  at  least  partially  heritable,  which 

opens the possibility  that  it  may contribute to complex diseases such as obesity.  The most 

established example of altered DNA methylation that results in obesity is Prader-Willi Syndrome 

which can be caused by deficiencies in the imprinting of the paternal copy of  chromosome 

15514,515. Genomic imprinting has also been reported to influence common obesity at three loci 

spread across the genome314. Overfeeding of rats has been demonstrated to lead to changes in 

the methylation pattern of  the  POMC gene291 and methylation of  the  TNFa gene has been 

shown to predict response to weight loss in humans315.
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The satiety signal leptin is a key protein involved in the control of appetite and mutations in the  

gene are responsible  for  a Mendelian form of  obesity.  Additionally,  variants  in  its  gene are 

associated with both obesity and levels of leptin hormone in circulating blood, although these 

associations have not been replicated in any GWAS to date516,517,518. The leptin CpG island is 

differentially methylated across tissues, which points to a possible role of methylation in the 

regulation of this gene391. Methylation of one CpG site in the leptin promoter has been shown to 

be increased in diet-induced obesity in rats393.

Methylation at a single CpG site can vary within a single tissue type in a single individual and so  

a suitable experimental method for quantifying methylation levels was required. At the time a 

method  was chosen,  methods used  for  quantification of  CpG methylation included  cloning-

based  sequencing519,520 and  pyrosequencing521,522. The  cloning  method  is  somewhat  labour 

intensive  and  therefore  time  consuming  when  dealing  with  the  large  numbers  of  samples 

required for association studies. It requires cloning of the PCR product before sequencing and 

typically at least ten clones (and preferably more) need to be sequenced in order to determine 

the  quantitative  level  of  methylation  at  each  CpG  site  from  a  mixture  of  PCR  products. 

Pyrosequencing can be used to quickly and accurately measure quantitative methylation status 

at single CpG sites in large numbers of samples but its short read lengths (typically 30bp) mean 

that it cannot be used to measure more than a few CpG sites at a time.

More  recently  Sequenom  have  offered  a  method  that  uses  their  matrix-assisted  laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry technology to distinguish 

between methylated and unmethylated residues after PCR and primer extensions carried out on 

bisulfite treated DNA. This has the advantage of being both high-throughput and accurate for 

measurements of  quantitative  methylation at  single  residues.  However it  is  limited in  that  it 

cannot be used to analyse every residue within a CpG island in a single assay523. Ilumina have 
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also developed an array based method that can measure methylation at large numbers of CpG 

residues across the genome. Typically though, these arrays only investigate a small number of 

CpG sites per  gene promoter  and as such are not  suitable  for  investigation of  entire  CpG 

islands in candidate genes524.

Therefore  a  method  that  uses  direct  sequencing  was  needed  in  order  to  provide  quick,  

inexpensive and accurate measurements of quantitative DNA methylation at multiple CpG sites 

within a CpG island, suitable for investigation of methylation in candidate genes in large sample 

numbers.
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9.2 Results

9.2.1 Developing a Protocol for Measuring CpG Methylation

Firstly,  bisulfite  sequencing  within  a  stock  sample  of  human genomic  DNA (Promega)  was 

carried out to verify that the protocol was effective at detecting methylation states at CpG sites 

within  the  POMC  promoter  region  CpG  island  in  genomic  DNA derived  from  blood  (see 

Materials and Methods). This gene was chosen as methylation is well established525. Two sets 

of PCR primers were designed to amplify two regions of 418bp and 369bp within the POMC 

promoter (see Appendix for primer sequences). PCR of both primer sets was successful but the 

sequencing reactions were only successfully completed in the first PCR product. This gave a 

clean read for the first 270bp which provided enough information to determine that nine out of 

twenty-one  CpG  sites  within  the  sequenced  region  were  methylated  as  indicated  by 

unconverted C residues. At each of the nine loci where C residues were observed, smaller T 

peaks were also present indicating that the DNA samples contained a mixture of methylated and 

unmethylated DNA. At ten CpG sites that were converted, smaller C peaks were observed,  

again indicating a mixture of methylated and unmethylated DNA. In two cases a CpG site had 

both C and T peaks of similar size and these were counted as being methylated (see Figure 1).  

It  is unlikely that the mixed bases observed could be due to incomplete conversion of non-

methylated C residues because all non-CpG C residues (that would have appeared in the DNA 

sequence not  treated with  bisulfite)  had been completely converted to A residues with  only 

background C peaks observed (90.8% and 100% converted in two residues measured).
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Bisulfite sequencing was then carried out in a further 9 obese subjects and variation in the 

methylation status at three loci was observed (see Figure 2.)

Figure 9.1. Electropherogram showing the sequencing of  the CpG island within  the POMC 

promoter. CpG sites are highlighted. Control 1 and Control 2 are non-CpG C-residues that were 

expected to be fully converted to T residues.
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Figure 9.2. Bisulfite sequencing of POMC CpG island in two samples. CpG sites are highlighted 

and differences in methylation status can be observed at CpG 3.

205



9.2.2 Locating CpG Islands within Obesity-Associated Genes

Using CpGPlot software305, putative CpG islands were found in the promoter regions of obesity 

associated genes: leptin (LEP),  FTO,  and peroxisome proliferator–activated receptor gamma 

(PPARγ) (see Figures 9.3-9.5). Putative CpG islands were also found in the obesity candidate 

gene Adiponutrin (see Figure 9.6). 

Figure 9.3. CpG plots of the region covering the promoter region and start of the leptin gene. 

The top graph displays the ratio of observed to expected CpG dinucleotides. The middle graph 

displays the percentage of C or G nucleotides and the bottom graph displays the position of any 

putative CpG islands. CpG islands are defined as regions greater than 100bp that contain a 

ratio of observed to expected CpGs greater than 0.6 and a GC content of greater than 50%. The 

start of the gene is indicated by an arrow.
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Figure 9.4. CpG plots of the region covering the promoter region and start of the  FTO gene. 

The top graph displays the ratio of observed to expected CpG dinucleotides. The middle graph 

displays the percentage of C or G nucleotides and the bottom graph displays the position of any 

putative CpG islands. CpG islands are defined as regions greater than 100bp that contain a 

ratio of observed to expected CpGs greater than 0.6 and a GC content of greater than 50%. The 

start of the gene is indicated by an arrow.
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Figure 9.5. CpG plots of the region covering the promoter region and start of the PPARγ gene. 

The top graph displays the ratio of observed to expected CpG dinucleotides. The middle graph 

displays the percentage of C or G nucleotides and the bottom graph displays the position of any 

putative CpG islands. CpG islands are defined as regions greater than 100bp that contain a 

ratio of observed to expected CpGs greater than 0.6 and a GC content of greater than 50%. The 

start of the gene is indicated by an arrow.
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Figure 9.6. CpG plots of the region covering the promoter region and start of the Adiponutrin 

gene. The top graph displays the ratio of observed to expected CpG dinucleotides. The middle 

graph displays the percentage of C or G nucleotides and the bottom graph displays the position 

of  any  putative  CpG islands.  CpG islands  are  defined  as  regions  greater  than  100bp that 

contain a ratio of observed to expected CpGs greater than 0.6 and a GC content of greater than  

50%. The start of the gene is indicated by an arrow.
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9.2.3 Investigation of DNA methylation in leptin gene

Methylation levels of CpG sites within the leptin gene promoter were investigated for potential  

associations with human polygenic obesity. Leptin was chosen as its involvement in energy 

regulation and obesity is well  established224 and it has a clear putative CpG island within its 

promoter region (see Figure 9.3 above).

PCR primers were designed to amplify a 294bp region within the Leptin CpG island, which was 

followed by direct sequencing (See Figure 9.7 for PCR product location and Appendix for primer 

sequences).  Using  stock  gDNA,  methylation  was  observed  at  all  6  CpG  sites  within  the 

sequenced region. A small amount of variation between subjects was observed at each CpG 

site with the highest  variation observed at CpG 6 (mean methylation level  of  39.2% with  a 

standard deviation of 18.7%, see Table 9.1 and Figure 9.8).

Figure  9.7 The  region  of  the  leptin  gene  analysed  by  bisulfite sequencing  with  CpG 

dinucleotides numbered and shown in bold. Base-pair positions are relative to the transcription 

start of the Leptin gene. The position of the sequencing primer is also indicated by an arrow. 

CpG 0 was not within the sequencing read.
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Figure 9.8. Electropherograms showing differing levels of methylation at CpG site 6 from the 

bisulfite sequencing of Leptin within three obese individuals. Control 1 and Control 2 are non-

CpG loci that are expected to be fully converted.
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DNA CpG 1 CpG 2 CpG 3 CpG 4 CpG 5 CpG 6

Control 79.1 76.2 66.3 68.9 84.5 44.8

Obese 1 88.5 80.0 84.4 70.3 87.0 39.1

Obese 2 82.3 81.8 73.6 63.5 84.5 46.4

Obese 3 85.3 85.5 82.4 61.7 60.1 36.0

Obese 4 88.3 82.3 82.7 40.2 63.8 63.3

Obese 5 91.2 89.7 82.5 67.8 81.1 36.6

Obese 6 92.3 85.6 70.4 76.7 72.0 2.6

Obese 7 77.3 91.2 93.5 55.5 76.0 68.5

Obese 8 90.6 91.0 87.6 62.2 46.3 27.7

Obese 9 79.2 83.6 80.2 52.1 83.0 26.9

Mean Methylation Level 85.4 84.7 80.4 61.9 73.8 39.2

Standard Deviation 5.6 4.9 8.2 10.5 13.3 18.7

Table 9.1. Variation in levels  of  DNA methylation at  six CpG sites sequenced in the Leptin 

promoter CpG island between different DNA samples. Methylation level is measured as peak 

height of the G residue divided by the sum of the peak heights of the G and C residues at that  

site as read from DNA sequencing data from that sample.

9.2.3.1 Low volume bisulfite sequencing protocol

The method used above was modified in order to test whether it could be used with smaller  

quantities  of  DNA such  that  a  case-control  study  could  be  carried  out.  The  protocol  was 

modified from the method presented in the Materials and Methods chapter as follows: 10ng 

DNA was mixed with 0.7µl Hydroquinone and 12µl Conversion Buffer made up to 14µl with 

dH2O. This was placed in a thermocycler for three minutes at 94°C followed by nine hours at  

50°C. 50 µl DNA Binding Buffer was mixed with the conversion reaction and pipetted into a DNA 

purification column. This was span at 10,000 rpm for 30 seconds in a microcentrifuge and the 

collection tube emptied. 200µl DNA Wash Buffer was added to the column which was then span 

at  10,000  rpm for  30  seconds.  200µl  Desulfonation  Buffer  was  added  to  the  column  and 

incubated at room temperature for 20 minutes before spinning at 10,000 rpm for 30 seconds. 

200µl of DNA Wash Buffer was then added and the column was spun at 10,000rpm for 30  
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seconds. The column was then placed in a new 1.5ml microcentrifuge tube and 50µl of DNA 

Elution buffer was pipetted onto the surface of the column filter. This was incubated at room 

temperature for  3  minutes  before spinning down at  10,000rpm for  30 seconds.  The eluted 

solution was purified, converted DNA ready for PCR.

This protocol was used to measure leptin CpG methylation in four out of ten samples used 

above. Peak height ratios were compared and found to differ by an average of 7.4% ±7.0%.

9.2.4 Investigation of leptin gene DNA methylation levels for possible association to 

human polygenic obesity

DNA methylation in the leptin gene CpG island was measured in 92 morbidly obese French 

adults and 92 non-obese controls from the D.E.S.I.R cohort. (see Materials and Methods for 

details of subjects). Out of 184 samples treated with bisulfite and sequenced, eighty-two cases 

and seventy-five controls  met quality control  standards  (i.e.  two non-CpG cytosine residues 

were >95% converted) and were analysed for association. Because the first three CpG sites  

were  found  to  be  over  90% methylated  in  the majority  (>95%) of  samples,  they were  not 

analysed.  Using  the  quantitative  measure  of  percent  methylation,  CpG 5  was  found  to  be 

nominally associated with both obesity (p=0.013) and age- and sex-corrected BMI (p=0.032) 

(see Table 9.2). No statistically significant result was observed for any phenotype for the other 

two variably methylated CpG dinucleotides.
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CpG Site

Mean Methylation in 
Obese 

(Standard Deviation)

Mean Methylation in 
Controls 

(Standard Deviation)
Obesity 
(P-value)

BMI* 
(P-value)

CpG 4 73.3% (5.7%) 74.0% (5.1%) 0.86 0.77

CpG 5 79.0% (6.0%) 88.0% (3.6%) 0.013 0.032

CpG 6 46.5% (7.6%) 49.0% (7.3%) 0.65 0.54

Table 9.2. Association of obesity and BMI with the percentage methylation at the three variably-

methylated CpG sites in the Leptin gene CpG island. *Age and sex corrected BMI.

Thirty-two SNPs located within a 200kb region containing the Leptin gene were analysed for 

association with BMI in the 92 control subjects. This genotyping data was made available by 

collaborators  in  France526.  Four  SNPs  were  nominally  associated  with  BMI  (rs2167289, 

rs791600, rs10249476, rs4731429), however none survive correction using permutations (see 

Table 9.3). These SNPs were then analysed for association to CpG 5 methylation. One of the 

SNPs  nominally  associated  with  BMI,  rs4731429  was  nominally  associated  with  CpG  5 

methylation (p=0.017, see Table 9.4). This does not survive correction using permutations.
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Genotype Counts Mean BMI (95% CI) P-values

SNP 1a,1 1,2 2,2 1,1 1,2 2,2 Empirical Corrected

rs17151739 24 24 2 22.4 (21.8-22.9) 22.5 (21.9-23.1) 21.8 (18.5-25.00) 0.76 1.0

rs6960004 34 14 2 22.5 (22.0-23.0) 22.2 (21.5-23.0) 22.2 (19.5-24.8) 0.44 1.0

rs6953698 32 17 1 22.6 (22.1-23.1) 22.0 (21.3-22.6) - 0.32 1.0

rs322812 11 31 8 22.6 (21.8-23.3) 22.4 (21.9-23.0) 22.05 (21.24-22.86) 0.56 1.0

rs322760 13 30 7 22.6 (21.9-23.3) 22.3 (21.8-22.9) 22.3 (21.1-23.4) 0.57 1.0

rs4731401 40 10 0 22.4 (21.9-22.8) 22.6 (21.6-23.6) - 0.55 1.0

rs322737 13 28 9 22.6 (21.7-23.4) 22.3 (21.8-22.8) 22.5 (21.7-23.3) 0.91 1.0

rs1421309 35 14 1 22.5 (22.0-23.0) 22.0 (21.2-22.8) - 0.61 1.0

rs10447854 26 22 2 22.3 (21.8-22.8) 22.4 (21.8-23.1) 23.8 (23.4-24.2) 0.25 1.0

rs1017607 16 26 8 22.2 (21.5-22.9) 22.2 (21.6-22.7) 23.5 (22.7-24.4) 0.11 0.92

rs12706827 41 8 1 22.5 (22.0-22.9) 21.8 (20.8-22.9) - 0.41 1.0

rs6976221 29 17 4 22.3 (21.7-22.8) 22.7 (22.1-23.2) 22.4 (20.2-24.5) 0.34 1.0

rs12538332 30 17 3 22.3 (21.8-22.8) 22.5 (21.8-23.2) 23.1 (211-25.2) 0.85 1.0

rs6956123 36 14 0 22.4 (22.0-22.9) 22.3 (21.5-23.1) - 0.50 1.0

rs6467165 40 9 1 22.5 (22.0-22.9) 22.1 (21.1-23.0) - 0.64 1.0

rs4731416 40 10 0 22.3 (21.9-22.7) 22.8 (21.7-23.9) - 0.50 1.0

rs11981584 40 8 2 22.4 (21.9-22.8) 22.4 (21.2-23.6) 23.4 (20.7-26.1) 0.66 1.0

rs2167289 14 25 11 23.2 (22.4-24.0) 22.3 (21.7-22.8) 21.7 (21.0-22.3) 0.0069 0.17

rs791595 35 12 3 22.2 (21.7-22.7) 22.8 (21.9-23.7) 23.1 (22.1-24.0) 0.11 0.93

rs791600 14 25 11 23.2 (22.4-24.0) 22.3 (21.7-22.8) 21.6 (21.0-22.3) 0.0069 0.17

rs2021808 44 6 0 22.3 (21.9-22.8) 22.8 (21.6-24.1) - 0.57 1.0

rs791608 44 6 0 22.5 (22.0-22.9) 22.0 (20.8-23.3) - 0.35 1.0

rs10249476 20 26 4 22.0 (21.4-22.6) 22.6 (22.0-23.1) 23.5 (22.4-24.6) 0.04 0.58

rs10487506 13 29 8 22.8 (22.0-23.6) 22.4 (21.9-23.0) 21.6 (20.8-22.4) 0.13 0.95

rs4731429 17 25 8 21.6 (21.0-22.1) 22.7 (22.1-23.2) 23.3 (22.4-24.2) 0.0055 0.13

rs4731437 35 14 1 22.3 (21.8-22.8) 22.7 (22.0-23.3) - 0.57 1.0

rs1466146 35 14 1 22.4 (21.9-22.9) 22.6 (21.9-23.3) - 0.72 1.0

rs6979784 31 15 4 22.4 (21.9-22.9) 22.4 (21.7-23.2) 22.18 (20.3-24.0) 0.67 1.0

rs7811892 22 22 6 22.6 (21.9-23.2) 22.3 (21.7-22.9) 22.1 (20.9-23.3) 0.23 1.0

rs1545444 15 29 6 22.3 (21.5-23.0) 22.3 (21.7-22.8) 23.4 (22.3-24.5) 0.33 1.0

rs12532999 13 30 7 22.3 (21.5-23.0) 22.2 (21.7-22.7) 23.5 (22.6-24.4) 0.17 0.98

rs6964936 20 27 3 22.4 (21.7-23.0) 22.5 (21.9-23.0) 21.8 (20.2-23.4) 0.90 1.0

Table 9.3. Association analysis of SNPs in the Leptin gene region with BMI in French controls using linear regression and age and sex as covariates. Corrected p-

values result from one million permutations. a 1 denotes the common allele, 2 denotes the minor allele.
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Genotype Counts Mean CpG 5 Methylation (95% CI) P-values

SNP 1a,1 1,2 2,2 1,1 1,2 2,2 Empirical Corrected

rs17151739 24 24 2 0.85 (0.77-0.94) 0.91 (0.86-0.95) 0.98 (0.94-1.02) 0.18 0.99

rs6960004 34 14 2 0.89 (0.85-0.94) 0.86 (0.73-0.99) 0.95 (0.92-0.97) 0.86 1.0

rs6953698 32 17 1 0.91 (0.88-0.95) 0.84 (0.72-0.96) - 0.081 0.84

rs322812 11 31 8 0.85 (0.75-0.95) 0.88 (0.82-0.95) 0.92 (0.88-0.96) 0.40 1.0

rs322760 13 30 7 0.84 (0.76-0.93) 0.89 (0.82-0.96) 0.93 (0.89-0.97) 0.28 1.0

rs4731401 40 10 0 0.9 (0.87-0.93) 0.82 (0.61-1.03) - 0.19 0.99

rs322737 13 28 9 0.87 (0.73-1.02) 0.9 (0.85-0.95) 0.84 (0.77-0.9) 0.70 1.0

rs1421309 35 14 1 0.91 (0.88-0.94) 0.82 (0.67-0.97) - 0.25 1.0

rs10447854 26 22 2 0.85 (0.77-0.93) 0.93 (0.91-0.96) 0.75 (0.26-1.24) 0.43 1.0

rs1017607 16 26 8 0.92 (0.89-0.94) 0.87 (0.78-0.95) 0.88 (0.75-1) 0.48 1.0

rs12706827 41 8 1 0.87 (0.81-0.93) 0.94 (0.9-0.98) - 0.27 1.0

rs6976221 29 17 4 0.86 (0.79-0.93) 0.95 (0.91-0.98) 0.78 (0.57-0.99) 0.78 1.0

rs12538332 30 17 3 0.9 (0.86-0.94) 0.85 (0.73-0.97) 0.94 (0.89-1) 0.80 1.0

rs6956123 36 14 0 0.87 (0.81-0.93) 0.92 (0.84-1) - 0.36 1.0

rs6467165 40 9 1 0.9 (0.84-0.95) 0.82 (0.71-0.93) - 0.52 1.0

rs4731416 40 10 0 0.86 (0.81-0.92) 0.96 (0.93-0.99) - 0.11 0.92

rs11981584 40 8 2 0.87 (0.81-0.92) 0.97 (0.95-0.99) 0.9 (0.79-1) 0.24 1.0

rs2167289 14 25 11 0.85 (0.71-0.99) 0.9 (0.85-0.95) 0.89 (0.84-0.94) 0.57 1.0

rs791595 35 12 3 0.88 (0.82-0.94) 0.92 (0.86-0.97) 0.8 (0.51-1.09) 0.85 1.0

rs791600 14 25 11 0.85 (0.71-0.99) 0.9 (0.85-0.95) 0.89 (0.84-0.94) 0.57 1.0

rs2021808 44 6 0 0.87 (0.82-0.93) 0.95 (0.93-0.97) - 0.31 1.0

rs791608 44 6 0 0.87 (0.82-0.93) 0.96 (0.94-0.99) - 0.23 1.0

rs10249476 20 26 4 0.87 (0.77-0.96) 0.91 (0.86-0.95) 0.84 (0.62-1.05) 0.81 1.0

rs10487506 13 29 8 0.91 (0.84-0.98) 0.91 (0.86-0.95) 0.75 (0.53-0.97) 0.063 0.76

rs4731429 17 25 8 0.8 (0.68-0.92) 0.92 (0.88-0.96) 0.95 (0.94-0.96) 0.017 0.35

rs4731437 35 14 1 0.9 (0.86-0.94) 0.84 (0.7-0.98) - 0.39 1.0

rs1466146 35 14 1 0.9 (0.86-0.94) 0.84 (0.7-0.97) - 0.34 1.0

rs6979784 31 15 4 0.89 (0.85-0.94) 0.91 (0.86-0.95) 0.71 (0.24-1.17) 0.18 0.99

rs7811892 22 22 6 0.87 (0.79-0.96) 0.89 (0.82-0.95) 0.91 (0.85-0.98) 0.64 1.0

rs1545444 15 29 6 0.86 (0.74-0.99) 0.88 (0.83-0.94) 0.94 (0.92-0.97) 0.39 1.0

rs12532999 13 30 7 0.86 (0.78-0.95) 0.88 (0.81-0.95) 0.95 (0.92-0.98) 0.35 1.0

rs6964936 20 27 3 0.85 (0.75-0.95) 0.92 (0.87-0.96) 0.83 (0.67-0.99) 0.40 1.0

Table 9.4. Association analysis of SNPs in the Leptin gene region with CpG 5 methylation in French controls using linear regression and age and sex as covariates. 

Corrected p-values result from one million permutations. a 1 denotes the common allele, 2 denotes the minor allele.
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9.2.5 Analysis of   LEP   transcript levels  

Leptin transcription data from the Swedish sib-pair cohort was analysed in order to ascertain 

whether or not expression of the gene is altered in subcutaneous adipose tissue. When siblings 

were split  into two groups of non-obese (BMI<30 kg/m2)  and obese (BMI>30kg/m2)  and the 

transcription  levels  corrected  for  age,  sex  and  relatedness,  the  two  groups  were  normally  

distributed. Using an independent samples t-test,  a significant difference in the level of  LEP 

transcription was found between the two groups (p=2.2x10-16, see Figure 9.9 and Table 9.5). 
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Figure 9.9. Box-plot of  LEP transcript levels in obese and non-obese subjects from Swedish 

sib-pairs.  SIRT1  transcription  is  the  microarray  signal  value  corrected  for  age,  sex  and 

relatedness. Mean transcription ± standard deviation were -3.57 ± 3.56 in the non-obese and 

6.09 ± 4.19 in the obese group.

Number of 
Non-obese

Number of 
Obese

Mean Difference 
in SIRT1 

transcription 
(95% CI) P-value

190 156 9.66 (8.92-10.41) 2.20x10-16

Table 9.5. T-test of LEP transcription in obese and non-obese subjects from Swedish families. 

LEP transcription is the microarray signal value corrected for age, sex and relatedness.
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9.3 Discussion

These results demonstrate an effective method for measuring quantitative methylation status at  

a single CpG site using direct bisulfite-PCR sequencing and low quantities of genomic DNA 

(~10ng per sample). It should be noted that during the course of this project, the same method 

was independently developed and published by Jiang et al.527. The relative speed and simplicity 

of this method compared to cloning and pyrosequencing techniques make it ideally suited to 

screening larger numbers of samples for use in case-control association studies.

These results demonstrate a nominal association that does not survive correction for multiple 

testing between leptin promoter methylation and obesity in humans. This study provides a good 

example  of  the  utility  of  analysing  DNA methylation  as  a  quantitative  trait,  as  it  is  both  a 

statistically powerful approach and it provides information at the single base level. At the time 

the practical work in this thesis was completed, no associations had been reported between 

DNA methylation measured as a quantitative trait and polygenic human obesity. Since then, a 

study that reported an association between promoter methylation of serotonin transporter gene 

in blood leukocytes and obesity in monozygotic twins has been published528.

Methylation of CpG 5 was found to be decreased in obese subjects compared to non-obese. As 

increased methylation of a CpG island typically leads to a reduction in expression of a gene529, 

this suggests that, in the obese subjects, expression of leptin is upregulated, possibly as part of 

the feedback mechanism to lower food intake through leptin’s action on the brain530.  This is 

supported by the evidence that expression of the gene was found to be significantly increased in 

obese  compared  to  non-obese  siblings  in  the  Swedish  family  cohort,  an  established 

phenomenon that  might  be  expected since  leptin  secretion  is  increased  in  obese  subjects 

531,532.Exploration of leptin CpG methylation levels in this cohort would be a crucial next step in  

order to acquire evidence that methylation levels in this gene are effecting its expression.
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This study examined methylation levels in DNA samples obtained from whole blood and while it  

may be the case that methylation levels in blood are highly correlated with those in adipose 

tissue, this has not been proven and so needs to be investigated in the future. Equally, there 

may be additional environmental signals that are affecting methylation in blood-derived DNA 

that  are  driving  the  changes  in  leptin  methylation  or  it  might  be  that  obesity  is  modifying 

methylation patterns as seen in a recent study in rats393.

The association of rs4731429 with percentage methylation at CpG 5 could indicate a possible 

link between DNA methylation and the primary DNA sequence, if it were statistically significant. 

An association between a SNP and percentage methylation at a single CpG could suggest that 

in this case, epigenetic changes at this site are both heritable and in linkage disequilibrium (LD) 

with variation in the primary sequence. Such an association has been previously reported in the 

cancer predisposition gene MGMT529. It is not clear what the basis of the association is between 

the SNP and methylation at the single CpG as there is no evidence whether it is functional or  

simply  in  LD  with  another  functional  variant.  While  the  significance  of  the  associations  of  

rs4731429 to obesity and BMI do not withstand correction for multiple testing, they underline the  

possibility  that  the two types of  variation are statistically associated because they are both 

associated with the same phenotype, either statistically or functionally.

This result will need to be replicated in larger numbers and in other populations to confirm the 

associations reported here, as it is very clear that this study is underpowered, especially for the 

SNP association work. Confirming high correlation between methylation levels of these CpG 

sites in adipose tissue and blood is also desirable. Comparison of percentage methylation and 

leptin  transcript  expression  levels  would  be  very  useful  in  determining  whether  differential 

methylation of the leptin promoter is associated with BMI because of altered leptin transcription. 

The heritability of the CpG methylation also needs to be investigated in families to confirm the 

possibility that the methylation and SNP association reported here is highlighting a novel inter-

relationship between two types of genomic variation. 
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In conclusion the results reported here highlight the potential importance of DNA methylation in 

either  the development of obesity or in response to the obese state. It also demonstrates the 

utility of single-base resolution measurement of methylation within candidate genes.
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Chapter 10

Discussion
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10.1 Summary of thesis results

The work presented in this thesis used a candidate gene approach to attempt to identify genetic  

variation contributing to the risk of developing common polygenic obesity. These studies were 

conducted over a period of rapid development in the field of complex disease genetics. At the 

start  of  this  project,  genome-wide  association  studies  had  recently  become  feasible  and 

numerous reproducibly associated markers to common obesity have been discovered using 

these methods over the last few years. The first of these were two reports of a novel association  

to FTO246,247 and the most recent brings the total validated genetic associations to BMI or obesity 

to 34233,256.  However, only an estimated 1.5% of the heritability of BMI is currently explained in  

GWAS association. Due to the hypothesis-free strategy and large numbers of variants being 

screened, very stringent corrections are required in order to minimize the chances of a false-

positive, which unfortunately results in an inflation of the false-negative rate. This means that 

some variants with small effect sizes will be screened out. .This project was designed in order to 

investigate the possibility  of  genetic associations between common variants  (MAF>5%) and 

coding  SNPs  in  candidate  genes  and  human  polygenic  obesity. Out  of  67  successfully 

genotyped markers, 12 were not present in HapMap and a further  six are located on the X 

chromosome which makes 18 SNPs not likely to be included in GWAS and demonstrates the 

advantage of this approach.

Chapter 3 described an investigation of the SIRT1 gene, which was chosen on the basis of its 

transcriptional  regulation of  genes involved in lipid  metabolism418 and  SIRT1 knockout mice 

having increased body weight421. Putative associations between variants in the SIRT1 gene and 

common obesity were found in both an adult French case-control cohort and a Swedish family 

cohort.  When  starting  this  project,  no  associations  between  SIRT1 SNPs  and  obesity 

phenotypes  had  been  published,  however  three  studies  have  since  reported  significant 

associations442,443,444. This means that the association between SIRT1 variants and obesity has 

223



been found across a number of populations which is some evidence that it is genuine and not a 

false positive.  All  reported associations found a correlation between the minor  allele  and a 

reduced BMI or obesity risk which is evidence that the same association is being detected and 

therefore more likely that it is genuine. No associations to  SIRT1 have been reported in any 

GWAS, however nominally significant SNP associations have been detected in the region (e.g. 

rs471962  with  a  p-value  of  1.25x10-4)  indicating  the  possibility  of  an  association  that  was 

screened out by multiple testing correction. The association between adipose SIRT1 transcript 

expression and obesity produced more convincing p-values (1.56x10-35) and is further evidence 

of the influence of SIRT1 on obesity risk. The results of this chapter have been published533.

In Chapter 4, the apelin gene was selected due to its plasma concentration correlating with 

BMI460 and studies that reported reduced food intake in rats injected with apelin peptides 466,467. 

One SNP within the gene was found to be nominally associated with obesity in a French child 

case-control cohort. However, this association does not reach genome-wide significance and 

has not been replicated so could be a false-positive. No previous associations between APLN 

variation and obesity were found in the literature which means this is a  potentially interesting 

discovery which will require further investigation in order to confirm it's validity. The lack of X 

chromosome variants reported in GWAS makes this an interesting result.

Chapter 5 detailed the investigation of IL-11, an anti-inflammatory cytokine with inhibitory effects 

on adipogenesis and lipase activity354,355,356. A nominal association between  IL11  variation and 

obesity  was  found  in  the  French  adult  case-control  cohort.  The  lack  of  genome-wide 

significance and replication means that the possibility of a false-positive has not been ruled out.  

No associations between obese phenotypes and IL-11 variation have been reported to-date.  

The limited coverage of  IL-11 variants in HapMap makes this a particularly interesting result 

since it is likely that current GWAS do not include any SNPs that tag the most associated SNP.
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Chapter  6  reported  an  investigation  into  adiponutrin,  a  lipase  that  is  expressed  in 

adipocytes483,360. A study in Swedish subjects reported an association between adiponutrin gene 

SNPs and obesity369. No significant associations were found to any SNP genotyped, including 

those that had previously been reported. This highlights the importance of replication studies to 

establish true associations. However, the limited statistical power means that a false-negative 

cannot be ruled out and this highlights a weakness of using small cohorts in association studies.

The nesfatin gene was chosen in Chapter 7 due to its expression in appetite controlling neurons 

in  the  hypothalamus371,372 and  its  anorexigenic  effect  when  injected  into  rodent  brains372. 

Unfortunately,  there was no evidence of  any associations between SNPs in the region and 

obesity  that  were  statistically  significant  after  permutations.  Again,  limited  statistical  power 

means that the possibility of a false-negative cannot be ruled out.

In Chapter 8, the IRS1 gene was investigated having recently been reported to be associated 

with T2D by collaborators in France. Genotype and transcript data from the Swedish sib-pair  

cohort was analysed and a significant association between  IRS-1 variation and transcription 

levels of the gene was discovered that could explain the mechanism of the association to T2D.  

However,  IRS1 variation was not  found to be associated with BMI.  There was a significant 

association between IRS1 transcript levels and obesity but it might be more likely that obesity is 

altering transcription of the gene rather than the gene causing obesity.

The  putative  associations  described  above  all  survive  correction  for  multiple  testing  using 

permutations  when  each  gene  is  analysed  individually,  which  reduces  the  chance  of  false 

positives. The p-values would not be significant in the context of a genome-wide investigation 

and  do  not  survive  thesis-wide  corrections  which  means  that  the  possibility  that  these 

associations are false-positives cannot be ruled out. This, along with replication are neccessary 

in order to consider a genetic association to be real. 
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Because there is a large gap between the variation in BMI that can be attributed to published 

GWAS and the heritability estimates for common obesity, there remain many more associations 

yet to be discovered. These will most likely come from rare or common variants not investigated 

in  current  GWAS or  common variants  with  small  effect  sizes.  This  highlights  the continued 

relevance of candidate gene studies which can be used to investigate a much greater proportion 

of  the variation within a single gene region. Candidate gene studies can therefore act as a 

complementary approach to GWAS by following up on signals that do not survive the genome-

wide corrections but are at least nominally significant. 

None of the associations reported in this thesis have been found to be significantly associated 

to BMI or obesity in any GWAS to date. This raises the question of whether or not these are  

genuine genetic associations and if so why are they not showing up in the GWAS. One possible 

reason is that they are being screened out by multiple testing corrections. GWAS routinely reject  

p-values >5x10-8 as statistical noise. In order to control the false-positive rate though the false-

negative rate is increased and so many real associations may be missed, particularly if effect  

sizes  are  small.  Another  explanation  is  that  the  associations  are  to  variants  that  are  not  

sufficiently tagged by SNPs in current genotyping arrays due to incomplete coverage in the 

HapMap database or location within the sex chromosomes. Two of the associations reported in 

this thesis are not likely to be covered in GWAS. Firstly, the apelin SNP, rs2281068, which was 

putatively  associated with  obesity in  children has not  been analysed for  association to any 

obese phenotype in GWAS due to its location on the X chromosome. Secondly, the putatively 

associated IL-11 SNP, rs1042505, may not be sufficiently tagged in any GWAS since it is not 

present in HapMap and is not well correlated with any other SNP within the region (maximum 

r2=0.31).
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Another possibility is that some of this missing heritability is caused by epigenetic variation. This  

was  explored  in  Chapter  9  where  DNA methylation  in  the  leptin  gene  was  measured  and 

analysed  for  association  to  common  obesity.  Initially,  a  method  to  measure  quantitative 

methylation in large numbers of samples was developed since CpG methylation can vary within 

a single tissue type. When using DNA extracted from blood, which contains multiple cell types 

this was even more important. Direct bisulfite sequencing was used and DNA methylation at the 

individual base level was analysed by measuring peak height ratios from the electropherogram. 

Methylation levels were measured at six sites in the leptin promoter CpG island in a subset of  

French obesity case-controls. A nominal association was discovered between one CpG site and 

obesity.  This  is  a  potentially  interesting  result  since  no  associations  between  quantitative 

methylation in the leptin gene and obesity have been reported to date. However, the p-values 

obtained are not genome-wide significant and this, together with the fact that the association 

has not been replicated, means that the possibiity of a false-positive cannot be ruled out so no 

definitive  conclusions  can  be  drawn  at  present.  It  is  essential  that  further  samples  are 

investigated and with the high-throughput method that was developed here it should be possible  

to routinely investigate as many as 500 cases and 500 controls.

10.2 Future work

The first objective of any future work will be to replicate the associations discovered here in 

other populations to establish whether or not they are genuine. Larger cohorts should be used in 

order to increase the statistical power such that associations that are significant in a genome-

wide  context  can  be  detected,  ideally  in  line  with  the  numbers  suggested  by  the  power 

calculations.  Using  the  GIANT  approach  it  may  be  possible  to  impute  the  relevant  SNP 

genotypes in sufficient samples to reach the required numbers without further  laboratory work 

being required. 
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The second objective  is  discovering the DNA sequences that  are  directly  implicated  in  the 

pathophysiology  of  obesity.  SNPs  that  have  been  found  to  be  associated  with  common 

polygenic obesity may not be causative but simply inherited together with a causative variant 

that alters the amino acid sequence of the encoded protein or expression levels of a gene. Fine-

mapping of associated genes is required in order to discover these causative variants. The 1000 

Genomes project may provide the necessary fine mapping information but it is notable that this  

project is not sequencing subjects chosen on  the basis of disease status, in the case of this 

project, high BMI or morbid obesity. This means that those functional variants underlying obesity 

may  not  be  being  sequenced.  Identification  of  functional  variants  is  important  since  an 

understanding of how variation in the gene effects phenotype will lead to a better understanding 

of the aetiology of the disease which could aid in the development of therapeutics that target the 

disease. Additionally finding the functional mutations will  lead to better estimations of  effect 

sizes and thus how much the currently known associations explain the total heritability of the  

disease. This is particularly helpful if multiple variants within a gene each affect the phenotype 

independently. In the future, genetic information could be used to predict disease risk and aid 

prognosis and so the accuracy of such information will be improved by mapping the functional 

variants. 

The strategy for locating functional mutations will involve fine-mapping of the associated genes 

by sequencing in a subset of samples followed by association analysis of any SNPs discovered. 

This is a potentially onerous task since LD blocks can span regions that can be hundreds of  

kilobases in length and transcription factors can affect gene expression via enhancer elements 

located similarly long distances away from a gene. This difficulty is illustrated by Chapters 3 and  

4 where sequencing was carried out in the exons and promoter regions of SIRT1 and APLN but 
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no significantly associated SNPs were discovered. Next generation sequencing technologies 

will  aid  in  this  process  by  reducing  costs  and  increasing  speed.  Follow  up  genotyping  in 

populations with  different  LD structures would also be useful  to  help  differentiate  functional 

SNPs from those that are associated due to being in high LD with the functional SNP.

Any  SNPs  found  within  exons  that  are  significantly  associated  with  obesity  are  strong 

candidates for functional mutations and there are a number of strategies to test this hypothesis.  

Firstly,  software  such  as  Polyphen534 can  be  used  to  evaluate  whether  a  non-synonymous 

mutation could be damaging to the protein. Other mutations might affect transcription factor 

binding or splicing and this can be assessed computationally too. However, molecular validation 

will  be  necessary. Levels of  mRNA expression can be measured using reverse-transcriptase 

PCR or RNA sequencing in the tissue of interest, to see if the mutant allele alters transcription 

levels. A mutation may effect phenotype by altering protein expression by altering RNA stability 

or  introducing  splice  defects.  Protein  expression  can  be  assessed  by  Western  blotting, 

assuming that a suitable specific antibody is available. Enzyme activity assays can be used if  

the protein's has an enzymatic activity that  is  well  understood. For  example,  sirtuin  activity 

assays are available449 that could be used to compare mutant versions of SIRT1 with wild type.

Alternatively, if the associated variants are not coding SNPs then the possibility that they affect  

expression levels of the gene in question can be looked at. This was investigated in Chapter 3  

which  examined  SIRT1  expression  in  adipose  tissue,  although  no  association  was  found 

between gene variation and transcript expression levels. In Chapter 8 association was detected 

between IRS1 gene variation and its transcript expression levels in adipose tissue. Whilst these 

methods can suggest a mechanism by which gene variation alters mRNA expression, they do 

not pinpoint the exact mutation that is responsible. Reporter gene assays such as luciferease 

could be used instead to measure which variants effect transcription. 
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The association between CpG methylation in the leptin gene and obesity will need replicating in  

other populations. It is also necessary to confirm the association in DNA extracted from adipose 

tissue where leptin is expressed as there is no clear mechanism by which altered methylation of 

the  gene  in  blood  cells  could  influence  BMI,  assuming  the  association  is  genuine.  The 

presumption is that the methylation status in blood simply reflects the methylation status in the  

adipose tissue.  The next  step will  be to  confirm whether  this  assumption is  true and then, 

ideally, go on to measure transcript levels of the gene to establish whether or not they correlate 

with CpG methylation. Ultimately, these techniques can then be used to explore the possibility 

that  DNA methylation  is  associated  with  obesity  in  other  candidate  genes  using  the  same 

technique or across the genome using techniques such as the Illumina methylation microarrays.

A major challenge in the field of complex genetics is the discovery of the remaining variants that  

contribute towards the heritability of traits and diseases such as BMI and obesity. There are a 

number of possibilities for where this missing heritability will be found. It may be a consequence 

of common variants with small effect sizes that are not currently picked up by GWAS due to the 

stringent multiple testing corrections. Given that the lower the odds ratio, the larger the study 

needed to reach statistical significance, studying these variants will  require larger and larger 

cohorts and using current GWAS approaches they will have to be in the millions of samples as 

the GIANT meta-analysis using approximately 250,000 subjects was unable to account for more 

than a few percent of the genetic variation.

The missing heritability could also be explained by rare variants that are not adequately tagged 

in current  GWAS. A recent paper reported that  rare variants are more likely to be found in  

functional  regions  of  the  genome  than  common  variants  suggesting  that  the  majority  of  

phenotypic variation could come from rare alleles535.  Novel associations to rare variants will 

require much denser genotyping arrays or, alternatively, as sequencing cost continue to fall,  

exome or whole genome sequencing. This can be carried out in a subset of samples with the 
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biggest hits followed up with genotyping in larger sample sets. When sequencing costs drop 

even further, whole genome sequencing can be carried out in large cohorts. Exome sequencing 

may not be the best approach when searching for variants that influence complex traits since it  

is likely that many causative mutations lie outside of exons, however its cost effectiveness will 

make it an attractive first choice compared to whole genome sequencing.

It is obviously possible that common variants associated with obesity in GWAS may be tagging 

functional  variants  that  have  much  lower  minor  allele  frequencies.  These  rare,  functional 

mutations could be expected to have effect sizes that are larger than those currently reported 

since some of the statistical association between genetic variant and disease will be lost by the 

imperfect tagging of the marker variant to the functional variant. Associations to rare variants  

tend to have larger effect sizes than those to common variants536 so this is a possibility. Fine 

mapping  of  GWAS  results  will  help  to  pinpoint  functional  mutations  and  with  the  recent 

technological  developments in DNA sequencing,  this process will  become cheaper and less 

time-consuming. A simple strategy would involve sequencing in a subset of subjects used in the 

original GWAS followed by imputation in the remainder.

It  might  be the  case  that  within  each  gene that  influences disease  risk,  there are  multiple  

independent variants that each exert effects on phenotype. Current methods might miss this 

since GWAS are designed to identify the top hit within an associated region and replicate only 

this single variant. For example, the major histocompatibility complex (MHC) region has been 

shown to have multiple independent effects in autoimmune diseases, such as type 1 diabetes537 

and rheumatoid arthritis538. These effects will be more properly understood after fine-mapping of 

associations is undertaken.
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Another possibility is that the genetic variation that is contributing to the heritability is not related  

to SNPs at all. CNVs are likely to contribute too. Between any two individuals the genetic base-

pair  differences  due  to  CNVs  is  at  least  100  times  higher  than  that  due  to  SNPs 539.  The 

association  between  BMI  and  NEGR1 reported  in  the  first  GIANT  publication  has  been 

hypothesised to be caused by a 45kb deletion upstream of the gene263. Rare deletions have 

been  successfully  demonstrated  to  be  associated  with  obesity271,540 and  subsequently  a 

duplication in the same region was associated with low BMI270. A better understanding of the 

effects of CNVs will come from genome sequencing as they are currently relatively difficult to 

characterise.

One area that has yet to be addressed within the field is epistasis, that is interactions between  

genetic variants. A recent paper suggests that epistasis could be causing an overestimation of 

the  heritability  of  complex  traits  which  means  that  the  proportion  of  heritability  currently 

explained  is  larger  than  is  thought541.  Statistical  power  to  detect  interactions  between  two 

variants are currently very low which means that they are unlikely to be detected in the current 

GWAS  and  will  either  need  larger  cohorts  in  order  to  be  explored  successfully  or  novel 

analytical  techniques  will  need  to  be  developed  to  avoid  the  exponential  increase  in  the 

numbers of statistical tests as gene-gene interactions are examined. The same will be true of 

gene-environment  effects  which  have  the  added  difficulty  of  accurately  assessing  the 

environmental variables.

Lastly, some portion of heritability may come from epigenetic variation such as DNA methylation 

and  histone  modifications.  DNA methylation  is  becoming  amenable  to  examination  using 

genome-wide methylation platforms in the same cohorts used for genetic association studies. 

Whole  methylome  sequencing  by  bisulphite  (Bis-seq)  or  using  methylated  DNA 
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immunoprecipitation (MeDIP-seq) can be used initially to discover candidate variants which can 

then be followed up in larger sample sets using the same method of  bisulphite sequencing 

employed in this thesis. Further technological  developments will  be needed before  the wide 

range of histone modifications can be screened for routinely.

Another point to consider is phenotyping. There are likely to be several different pathways that 

can go wrong that result in obesity and therefore there may be several separate phenotypes 

that are currently grouped together as one disease, with each one having different associated 

genetics. That is, common diseases are currently classified according to a common effect rather 

than a common cause. Furthermore, the use of BMI as a phenotype has its limitations. In the  

non-obese population, from which most GWAS for BMI are sampled (for example the mean BMI 

of samples in the discovery phase of the first GIANT publication was between 25.1 and 27.5 

with less than 20% of subjects >30kg/m2 263), the variation in BMI depends on lean mass as well 

as fat mass542,543. This means that variants affecting fat mass and susceptibility to obesity are 

not directly assessed. Better phenotyping of samples, to obtain more detailed information on 

body size and fat distribution, could therefore improve the accuracy of genetic studies.

The next  challenge in human disease genetics, after the functional variants that control the 

heritable  portion  of  disease  risk  have  been  identified,  will  be  clinical  application  of  this 

knowledge. An increased understanding of the pathways involved in controlling BMI and obesity  

risk has the potential to lead to the development of drugs that target proteins in these pathways. 

In the future, genome sequencing could be used as a standard tool for diagnosis and prognosis 

of genetic disease so a more complete understanding of all the variants that effect obesity risk  

will be important.
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In conclusion, this thesis reports the possibility of novel associations between two genes, IL-11 

and APLN and common polygenic obesity as well as another gene, SIRT1 for which previous 

associations  have  been  published.  Additionally,  the  possibility  of  a  novel  association  was 

discovered between CpG methylation in the leptin gene and obesity. These findings add to the 

body of knowledge of obesity genetics, which in the future could aid in developing therapeutics 

for this widespread and serious disease. It is also clear that there is much still to be discovered  

in the field of obesity genetics in order to complete our understanding of the heritability of this 

disease.
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A  1. Tagging SNPs genotyped and the corresponding captured SNPs  

Gene
Tagging 
SNP SNPs Captured

SIRT1 rs11596401 rs10997868,  rs1467568,  rs2224573,  rs11596401, 
rs10997866,  rs10997875,  rs7069102,  rs10823111, 
rs10997870,  rs1885472,  rs3758391,  rs7091896, 
rs10997860

SIRT1 rs3818292 rs10823108,  rs10823112,  rs3740051,  rs3818292, 
rs2236319, rs7096385

SIRT1 rs12413112 rs12778366, rs12413112
Nesfatin rs214935 rs4356203,rs618331,rs214910,rs10832733,rs214935,r

s214940,rs7123301,rs7125607,rs214901,rs7478986,rs
620241,rs7342262,rs11024158,rs7107283,rs7946010,r
s603618,rs10766381,rs214921,rs11024204,rs1747288
6,rs12280930,rs11024159,rs7936310,rs11024208,rs12
286505,rs214925,rs214900,rs7925692,rs214914,rs214
939,rs512852

Nesfatin rs3741203 rs11024251,rs9645621,rs10766388,rs3741203,rs1083
2757,rs10832769,rs10832768,rs10766393,rs10766384
,rs10766391,rs9633836,rs10832770,rs10466382,rs108
32779,rs10766383,rs1002227

Nesfatin rs1987694 rs17561348,rs586785,rs17473243,rs12577418,rs2149
33,rs3950680,rs17560341,rs12577525,rs1987694

Nesfatin rs10832750 rs10832752,rs542274,rs7108315,rs214076,rs1488933,
rs214071,rs10832750,rs214101

Nesfatin rs16933873 rs11605718,rs1974527,rs16933827,rs16933873,rs169
24899,rs16933823,rs11603765,rs2040859

Nesfatin rs10832775 rs10832781,rs11024262,rs2354867,rs10832763,rs108
32775,rs11024263,rs10832772

Nesfatin rs7108861 rs7108861,rs10832738,rs10832741,rs12285874,rs110
24165,rs10832742

Nesfatin rs7937091 rs7121987,rs12791318,rs7110037,rs7937091,rs16933
984,rs4451707

Nesfatin rs757110 rs2051772,rs1557765,rs5215,rs757110,rs7928810,rs1
0832778

Nesfatin rs2051773 rs214105,rs2051773,rs214070,rs757081,rs214091,rs2
521999

Nesfatin rs17647408 rs11604470,rs11604561,rs17647408,rs1979602,rs1160
7974

Nesfatin rs16933837 rs16933829,rs11024218,rs16924900,rs16933837
Nesfatin rs214083 rs214083,rs214097,rs214092,rs214093
Nesfatin rs10832749 rs10832749,rs10832753,rs7111505,rs12226898
Nesfatin rs11024273 rs4148638,rs2074312,rs11024273

263



Nesfatin rs10832782 rs7395484,rs7395484,rs11024272
Nesfatin rs6486364 rs2214285,rs8192691,rs6486364
Nesfatin rs10832756 rs10832756,rs16933952,rs12419530
Nesfatin rs214106 rs10741725,rs214106
Nesfatin rs2302510 rs3802962,rs2302510
Nesfatin rs2285676 rs2285676,rs886288
Adiponutrin rs2294916 rs4823179,rs1883349,rs2072905,rs1010023,rs229491

6,rs2073081,rs2072907,rs926633,rs1010022,rs289601
9,rs2281135

Adiponutrin rs2294918 rs4823174,rs2294918,rs2076210,rs5764034
Adiponutrin rs11090617 rs11090617,rs2076211,rs4823173,rs12483959
Adiponutrin rs734561 rs734561,rs2006943
Adiponutrin rs738408 rs738409,rs738408
Adiponutrin rs2294919 rs2076208,rs2294919

264



A2. Primer Sequences Used in Sequenom Genotyping Assays

SNP Gene PCR Primer 1 PCR Primer 2 iPlex Extension Primer
rs34122272 SIRT1 ACGTTGGATGACAATGTATAGCCA

GGCACG
ACGTTGGATGAACTCCTGACCTTG
TGATCC

ATCCTGGCACTTTGG

rs35689145 SIRT1 ACGTTGGATGTAGTCCCAGCTGTT
CGGAAG

ACGTTGGATGGCAGCATATTATTGG
CTCAC

GGAGAATCGCTTGAACTC

rs33957861 SIRT1 ACGTTGGATGCTTTAGGAATTCTG
CTCACTC

ACGTTGGATGGCTCCCGGCTATCT
TTTCTG

TTCTGCTCACTCAGTTTCA

rs10997871 SIRT1 ACGTTGGATGAGGGTAGCTTTATG
TAGTTG

ACGTTGGATGCTTCCTTCTCCATAT
CATGT

CAGTTCGTAATCAGAAAGG

rs41274092 SIRT1 ACGTTGGATGACTACTTCGCAACT
ATACCC

ACGTTGGATGACCATGACACTGAAT
TATCC

CCTCACATAGACACGCTGGA

rs7073231 SIRT1 ACGTTGGATGCTCTGCCTTCTAAA
GTGCTG

ACGTTGGATGACACAACAAGACCT
CATCTC

CTTCTAAAGTGCTGGGATTA

rs33955981 SIRT1 ACGTTGGATGAGGGTCTCTGTCAT
ATGTTC

ACGTTGGATGCCTCTTTATTATGCT
ACAGAC

CGAACAAATTAAAAAACCCAGTC

rs11594238 SIRT1 ACGTTGGATGCCATGCCAGGCTAA
TTTTTG

ACGTTGGATGGGTCGATCATTTGA
GGTCAG

CCAGGCTAATTTTTGTATTTTTA

rs7904945 SIRT1 ACGTTGGATGTAAGTGCCGGGATA
CATGTG

ACGTTGGATGGATAGATGCAGCAA
ACCACC

GGAGTGATACATGTGCAGAATGC

rs10997865 SIRT1 ACGTTGGATGTGAGTCAGTGTACT
AGGCAG

ACGTTGGATGCCAATATTTCCTTTT
CATGGC

TGTCCTAGGCAGAAAGTTCACTAA

rs11596401 SIRT1 ACGTTGGATGGAGAACTTGACTCT
ACAAAG

ACGTTGGATGCTCCTGAGTAGCTG
AGACCA

AACATTTAGCTAGGTATATGGTAC

rs34414573 SIRT1 ACGTTGGATGGCTGTTAATGAAGA
AATGTG

ACGTTGGATGCATTTCTGAATCTCT
GAATCC

GGACTAAAAGAACTGGATAGTTGA

rs2894057 SIRT1 ACGTTGGATGCCAGGTTCAAGTGA
TTCTGC

ACGTTGGATGAAAAATAGCCAGAC
GTGGTG

CCCCCTCCCGAGTAGCTGGAATTA
C

rs2236318 SIRT1 ACGTTGGATGGGGAAAAGGCTTA
AAGTCAAC

ACGTTGGATGCAAAAAACCCTCAC
AGAATGC

TCAAAATCTCATTTATTTTCTGAAGT



rs3818292 SIRT1 ACGTTGGATGAGAAGTATTGGCCT
TGACAG

ACGTTGGATGATGCATGCAACTGC
AGCATC

GAAGTTAATTATAGAAAACCTCAGA
T

rs10823103 SIRT1 ACGTTGGATGCCTTATCTGTGTTA
AAGATGG

ACGTTGGATGCAACCCTACCCTTAT
TTCAG

TGTGTTAAAGATGGAATATGAGGTA
T

rs2394443 SIRT1 ACGTTGGATGTTAAACCCCATCAC
GTGACC

ACGTTGGATGACCCGTAGTGTTGT
GGTCTG

GGCCGCCCCCGCCCTCT

rs11599176 SIRT1 ACGTTGGATGCCGGAGTTCAAGA
GATCTTC

ACGTTGGATGGATTTTTTGGATGCA
GTAGC

CCAAAGCACTGGGATTA

rs35224060 SIRT1 ACGTTGGATGGTTCATGTCTGTTA
CTTCCTG

ACGTTGGATGTGGATTTGGGACTG
ATGGAG

TACTTCCTGTTTCACAGATA

rs2273773 SIRT1 ACGTTGGATGATTCCAGCCATCTC
TCTGTC

ACGTTGGATGTCCAGCGTGTCTAT
GTTCTG

CTCTGTCACAAATTCATAGCC

rs35592342 SIRT1 ACGTTGGATGACTTTCTGACTTCT
GCCACG

ACGTTGGATGAAGAGCAGACGTGT
TCACAG

GGACTGCCACGATTTGCAAAC

rs12413112 SIRT1 ACGTTGGATGATGTGGCTGTTGAG
TACTTG

ACGTTGGATGCCATACTGGATCTCT
AAAATC

AGTACTTGAAATGTATTGATATGT

rs737477 SIRT1 ACGTTGGATGAAAAGGGGACAAG
TGAGGTG

ACGTTGGATGTCTTGAACTCCCGA
CCTCAG

GGGGCACATGCCTGTAA

rs36067477 SIRT1 ACGTTGGATGACCATGACACTGAA
TTATCC

ACGTTGGATGACTACTTCGCAACTA
TACCC

TGAATTATCCTTTGGATTCC

rs2234975 SIRT1 ACGTTGGATGGACTTTAAAACAGT
GTACAAG

ACGTTGGATGGTAGACTGTTTAATG
ACTGG

AGTGTACAAGTAAAAAACACT

rs1126757 IL11 ACGTTGGATGTCCCTTGCCCTTAC
CTGTAG

ACGTTGGATGACCACAACCTGGAT
TCCCTG

AGCTCCCAGTGCCCC

rs10407001 IL11 ACGTTGGATGGGAGGAGAGAGAC
TGGGCG

ACGTTGGATGCCGCCAGCCGTCG
GTCTGT

AGATGCGGCCGACGGA

rs12975067 IL11 ACGTTGGATGCTGGGCAACAAGA
GCAAAAC

ACGTTGGATGGGTCCATGGTTTTC
TTTTCC

GCAAAACTCCCTCTCTC

rs17850928 IL11 ACGTTGGATGCAGTCAAGTGTCA
GGTGCAG

ACGTTGGATGTGGCGCCCCCCTCC
TCAG

GCCCCCCCAGGATGGCG

rs1042506 IL11 ACGTTGGATGTATGTTCCTGCCCA
GGCCTA

ACGTTGGATGTCCCGGATTCTTGG
GTCTC

GAGGGCAGAAGTCTGTGG

rs10425163 IL11 ACGTTGGATGTCGGTCACCCAGA
CAGCTCT

ACGTTGGATGACAAACAAAAGGCC
CTATGC

GGGGACAGCTCTGTGGAGGC



rs2298885 IL11 ACGTTGGATGAAGCAAGCCTCTCT
CCTTAG

ACGTTGGATGAGCAACATGGTGCA
TCTGTG

GGGTACGGGCGGCTGGGTGG

rs8104023 IL11 ACGTTGGATGAGGGACGCAGGGA
CTGGTG

ACGTTGGATGAATCCCAGGGAGTC
TCCCG

CGCGGGAGGTGACCCCCATCG

rs10402868 IL11 ACGTTGGATGAAGGGAAGCCTGG
GTTTTTG

ACGTTGGATGATCGCCCTCAAGTG
GATATG

GGTGAGACAGAGAACAGGGAA

rs10402867 IL11 ACGTTGGATGATCGCCCTCAAGTG
GATATG

ACGTTGGATGAAGGGAAGCCTGG
GTTTTTG

AGTGGATATGTATGACACATTT

rs4252557 IL11 ACGTTGGATGCGGTGAAACCCTG
TGTCTAC

ACGTTGGATGTCCTGAGTAGCTGG
GACTTC

TGTGTCTACTAAAATACAAAAAAATT
AT

rs4252576 IL11 ACGTTGGATGAGCGGACCTACTG
TCCTAC

ACGTTGGATGCAGGGTCTTCAGGG
AAGAG

TCCTACCTGCGGCAC

rs4806475 IL11 ACGTTGGATGTATTTCAGGAGCAG
GGGTGG

ACGTTGGATGCTTGGAGACCCAAG
AATCCG

GGCAGGTGGACTCCT

rs7246652 IL11 ACGTTGGATGTAATCCCAGCTACT
TGGGAG

ACGTTGGATGAATGGCGCGATCAA
TGGCAC

GGAGGTTGCAGTGAG

rs4252546 IL11 ACGTTGGATGTTCTCTGGTGTGTC
TCTCTG

ACGTTGGATGCACACAGAGTGAAG
GACAG

CATCTCTGTGGATCTCC

rs7250912 IL11 ACGTTGGATGCAAAGCGCTGGGA
TAACAGG

ACGTTGGATGATCTCAGAGCTGGG
TTTTTG

AATTGTTCTAACAGCAGC

rs4252553 IL11 ACGTTGGATGAGCCTGGGCAGCA
TAGCAA

ACGTTGGATGTCTAGCCTGGGCAA
CAGAG

GGCAGCATAGCAAGACTCT

rs1042505 IL11 ACGTTGGATGCCACCCCTGCTCC
TGAAATA

ACGTTGGATGCATTATCTCCCCCTA
GTTAG

AGTATAAATAAGGCACAGATG

rs4252562 IL11 ACGTTGGATGGAGGCTTGCTTGG
GATATAG

ACGTTGGATGCCAAAGTGCCAGGA
TTACAG

CTGCTTGGGATATAGAAAGATAT

rs10832783 Nesfatin ACGTTGGATGTCTAATGGTGCTGG
GAGAAG

ACGTTGGATGGAGCAACAAGGATG
TGGTAG

GCCAGCATCTCTCAT

rs12422139 Nesfatin ACGTTGGATGTGTGGCGATTCGTA
CCTATG

ACGTTGGATGACTTACTGTATGCCA
GGCAC

GGCACCGTGCTAAGT

rs757110 Nesfatin ACGTTGGATGTGTCCTGCAGCATT
GGGTTG

ACGTTGGATGGGTGCTGAAGCACG
TCAATG

CGTCAATGCCCTCATC

rs11024273 Nesfatin ACGTTGGATGTTTGCTCCATCCTG
CACTTG

ACGTTGGATGGGAGAAGGGTTTTG
AGCAAG

TTGAGCAAGAAAGCGA



rs2285676 Nesfatin ACGTTGGATGACACCCTCTCTCAT
CAACTG

ACGTTGGATGGCTCTACTTGGTCC
CTGAAA

GTCCCTGAAAAAGCACC

rs2354863 Nesfatin ACGTTGGATGCCCCTTCTCCTACT
GCTTAA

ACGTTGGATGGGGCACAAAGATGT
TAAGGG

AAGGGGAGAGGAACGAT

rs7484027 Nesfatin ACGTTGGATGGCAAATTTTGCCAG
TTATCC

ACGTTGGATGAATGCAATGTGTGAT
CCCAG

GATCTTAGCGCAGAAAAA

rs16933837 Nesfatin ACGTTGGATGGAGTAGCTGGGATT
ACAGGC

ACGTTGGATGCTGTTATCTTCCAGA
GAGTC

AGAGAGTCTAGAAAAGCAA

rs2079293 Nesfatin ACGTTGGATGATGATGAGGGGAT
GGGAAAG

ACGTTGGATGCTGTCTACCTCATTT
GGATG

AGAACTCTCAATTTATCACC

rs10832750 Nesfatin ACGTTGGATGACCCCTTCTCAATG
ACACTG

ACGTTGGATGGGAGACTAAAGGTT
TCCCAG

CACTATGGATTGCATTAAGGT

rs7127347 Nesfatin ACGTTGGATGCAAGGAAAAACTTC
AATCAC

ACGTTGGATGGTACTGGAATCTGG
CCATGA

TAAGTATACTTTTCACCACATC

rs16933873 Nesfatin ACGTTGGATGACAGTGCTACAAG
GCCTTTC

ACGTTGGATGCCTTCACAGGCAGT
TCTTTC

TCAATTCCCTAAGTTTTAGAAA

rs34405111 Nesfatin ACGTTGGATGGTTTCTGAAGCTCA
TCTGCC

ACGTTGGATGGCAACAGTTCTTCA
CAGAGG

CAGAGGAAGAACTAAAAGAATA

rs2051773 Nesfatin ACGTTGGATGTCTGTTCTTGGTGT
GACAAC

ACGTTGGATGAAGGACATAGTAAAT
ATGC

TGCTTTAAAAAGGAAATCATCTA

rs2521998 Nesfatin ACGTTGGATGAAGGCTTAGAATGA
GGGAAC

ACGTTGGATGCCATCTTAAAGATTT
ATTGC

CTTAAACTTTTAAAACATACCTCA

rs1330 Nesfatin ACGTTGGATGTTACAGAGCATTGT
CTTGCC

ACGTTGGATGTGGGTGAATTTTATG
ACGTG

TCAATAAAGATGCTAAAAAATTGG

rs12295879 Nesfatin ACGTTGGATGCCTTCAAGTAATCC
CCAATG

ACGTTGGATGACTTCAAACTTTCTC
TGCAC

TTATCAAAAGCTCAAGTGAAAAAAA

rs1799859 Nesfatin ACGTTGGATGACCATTAGGGCGTA
GGTAAG

ACGTTGGATGGTGACCTCCATCTC
CAACTC

GACCTCCATCTCCAACTCCCTGCA
CAG

rs11024249 Nesfatin ACGTTGGATGGGGTGATTAACTTT
AGGGTG

ACGTTGGATGGATGAAGGAACATG
AAAGGAG

ATGAAGGAACATGAAAGGAGAGAA
TA

rs12796879 Nesfatin ACGTTGGATGGGGCCAAATATTAG
TGTGC

ACGTTGGATGAACTTGTCACTCCT
CTGCAC

CAGAGAAAAGGTACAATCTTTACAA
TG

rs214083 Nesfatin ACGTTGGATGAACCAAAAGGGTT
CATCTCG

ACGTTGGATGCAGCAACCTCTGAC
ACTTAG

GGAGAAAGTTAGTGTAAGTCGTGAT
AT



rs10832775 Nesfatin ACGTTGGATGTGCGACCTCCTGA
AGCAAAC

ACGTTGGATGTTGGGTTCTGAACT
TTGCGG

TTGCGGTTAAATTGATTTAAAAACT
GGT

rs1987694 Nesfatin ACGTTGGATGTGTGAGCCCTTAAA
AGGGAC

ACGTTGGATGATTGGCAAGACTCC
TGTCTC

TGTCTCGAGCCGAGC

rs17647408 Nesfatin ACGTTGGATGTCTACCACAACCTG
AGCCG

ACGTTGGATGTGGAGTCGGCCGAA
GCTTTC

TGAGCCAGCTGAGGG

rs7110094 Nesfatin ACGTTGGATGTACAGATCTCAGGG
ATCTGC

ACGTTGGATGTGCTCAGTCAGTGG
CAGAAG

CTGGCACCAGCTGGAA

rs8192690 Nesfatin ACGTTGGATGCCTTGAGTTCGATA
AGCCAG

ACGTTGGATGACTTGTCTGCACGG
ACGAAG

GCGAAGGAGGCGAAGA

rs11826763 Nesfatin ACGTTGGATGCAGTTGTGTCAGG
AAATGGG

ACGTTGGATGGTGAAGGAACACTT
AACACC

ACCTTATACACTGTTGGG

rs2634462 Nesfatin ACGTTGGATGCTCTTCTCCAATCT
CTAGAC

ACGTTGGATGTGATTGTTTCAGATG
GAAGG

TCAGATGGAAGGAGACTA

rs10832767 Nesfatin ACGTTGGATGAACCTGCTAGAGAA
GTCCAC

ACGTTGGATGCACCTTAGTATCCCA
ATTCC

GGAGTTGAGGCACCAGTGG

rs214106 Nesfatin ACGTTGGATGTTGCATTGTTGGTG
CTTGTC

ACGTTGGATGCAGCTGCTTTGTTT
CTGTGC

ATGCCAAATCATAGCTTAAT

rs10832749 Nesfatin ACGTTGGATGCCCCAACCTGAGA
AAATGAG

ACGTTGGATGGTCAGCATATTACCA
ACCTG

GGGCAACCTGGGAAACCTTT

rs10832782 Nesfatin ACGTTGGATGCTGCTGACTTAGCT
CTTTGG

ACGTTGGATGATTGCAGAGGGCAT
CAGAAG

GAAGCGGGTAGATGAAATAGC

rs12365375 Nesfatin ACGTTGGATGTGATGACTACTATC
TGTGAC

ACGTTGGATGCGATTTAACCACAGT
TTACC

TAACCACAGTTTACCATCTAAA

rs10832756 Nesfatin ACGTTGGATGTTGACTTCACAGAG
TCATTG

ACGTTGGATGGTTTACTATGTACCA
AGCAG

CCAAGCAGTATGCTAAACTTTT

rs214935 Nesfatin ACGTTGGATGTGTAGTCTACCACA
GAAGGG

ACGTTGGATGGGAGGTCATGAAGA
AAGAGG

AAGGTCCTTGGAATGTTCTTAG

rs7108861 Nesfatin ACGTTGGATGGAGGTTACCTTTGG
TTATGAG

ACGTTGGATGACAGGAAAATACAC
AGTAGG

GTTGGAAAAATACATATGGAAAG

rs7937091 Nesfatin ACGTTGGATGTCAGTGTTACCTGA
AGGTCC

ACGTTGGATGAAAGTCTGGAAGTC
CTGGTG

TCAGTCCTGGTGCCAACATTCTGA

rs2302510 Nesfatin ACGTTGGATGCCGAACAGTAAGT
GTGTACC

ACGTTGGATGGTTCATCACCCCATT
CTAAC

TCTAACTATGAAATCATGAAAAATG



rs3741203 Nesfatin ACGTTGGATGTTTGGGTAGTCTTT
CCTCTG

ACGTTGGATGTTGAAGTTACTCCC
CTTCCC

GCAATAATAATGGCATTATGAAAAAA

rs6486364 Nesfatin ACGTTGGATGAGTGATTATCCTGC
CTCAGC

ACGTTGGATGTGGAGAAACCCCAT
TTCTAC

CCCATTTCTACTAAAAATACAAAATT
A

rs12292418 Nesfatin ACGTTGGATGGTTTCTGAAGCTCA
TCTGCC

ACGTTGGATGGCAACAGTTCTTCA
CAGAGG

ATGAAAATATTATTGCTTTACAAGAA
AA

rs3115758 Apelin ACGTTGGATGGTCTCCTTAGGACT
GAAGGG

ACGTTGGATGTCCAGAGAAGCAGA
CCAATC

GAGGAGACATAACCGC

rs3761581 Apelin ACGTTGGATGATCAGCTCCTCCCC
ACTGTT

ACGTTGGATGTAGAATGAGGACAG
CTCCAG

AGGGAACAAGAAAGGG

rs5975126 Apelin ACGTTGGATGCAAGCAAAAGGGG
AGAAAGC

ACGTTGGATGAGCAGGAATAGCAC
CCTCTC

AGTAGGGGCCATCACCAG

rs2281068 Apelin ACGTTGGATGTGGTTCTCTTACAT
CCTGGC

ACGTTGGATGTAGCGGCAGGGAGA
CTAAAG

GAGACTAAAGTGAAGCATG

rs3131264 Apelin ACGTTGGATGCCCAATAGTATCCA
GTTGAC

ACGTTGGATGAAAGGATGATGGGC
AGAGAC

GCCACCAGGGTCTATGGAAC

rs3115759 Apelin ACGTTGGATGTTCATTTGGGCCTT
CCTTCC

ACGTTGGATGGAAAACAAGGGATC
TGCTGG

GGGAGCCCACAGAAGGGAGCA

rs2235307 Apelin ACGTTGGATGACAAGGCTCACCC
TGATCAC

ACGTTGGATGCTTGGTTCACTTCA
CAAGGC

CTTATCAGCATCATTCAGATCC

rs2235310 Apelin ACGTTGGATGAGGAGTGTACGTG
GTGGTAG

ACGTTGGATGGTCTGTCCTGACTT
GAAATG

TGTCCTGACTTGAAATGTCCACCC
CCG

rs909657 Apelin ACGTTGGATGGACATGCTGCTGAA
GGTGAC

ACGTTGGATGTGAGACCAGATTTA
GAGACC

CATGAATATTTGAGAATGAATAAATG
A

rs2235308 Apelin ACGTTGGATGCTAGGTCTGCAGA
GAAGAAC

ACGTTGGATGACGCAATGGGAGGG
ATGCAA

GGGATGCAAGAAGCC

rs2235306 Apelin ACGTTGGATGTTCCTGGGTAGATG
GCAATG

ACGTTGGATGAATAACAGTCTCTCT
CCCCC

CTGCACACCATCTGAT

rs2235312 Apelin ACGTTGGATGTTTGCTCCCTCTGT
TACCTG

ACGTTGGATGAGACCTGAACACGA
AGTGAG

ACCACAGTAAGAAGTGGG

rs41334247 Apelin ACGTTGGATGGTTTGATGGATGTG
TCTGGC

ACGTTGGATGCTCTGTTCAGTGGA
CAGTGC

TGGACAGTGCTAAAGCGGAG

rs3810622 Adiponutrin ACGTTGGATGCTCTGCTCCAGAAA
AACCAG

ACGTTGGATGAGCTACATCCTGCC
ATCTTC

CCCTCCTGGAGCCAC



rs4823104 Adiponutrin ACGTTGGATGCCGTACATTTGAAT
CTTGTCC

ACGTTGGATGAGAAACAAACCCTC
CGTCTG

ACACAGGTACCCACA

rs2076212 Adiponutrin ACGTTGGATGCAGACACCAGAAC
GTTTTCC

ACGTTGGATGAATGTCCACCAGCT
CATCTC

TCATCTCCGGCAAAATA

rs12483959 Adiponutrin ACGTTGGATGGCAATCCTGTATGT
AGCACC

ACGTTGGATGGAGCACGTAGTCTG
TAATGG

ATGGGAGGCTCCTAATG

rs35764214 Adiponutrin ACGTTGGATGTGTCGTACTCCCCA
TAGAAG

ACGTTGGATGATGGAGGAGTGAGT
GACAAC

AATGCCAAAACAACCATCA

rs139051 Adiponutrin ACGTTGGATGTTTGTTGCCCTGCT
CACTTG

ACGTTGGATGCCTGTGAAAGCAAA
GGAGAG

GCAAAGGAGAGAGAAGTTA

rs2294917 Adiponutrin ACGTTGGATGCCTGAAACACATGG
AGGAAG

ACGTTGGATGAATGTGGGTCCACC
GTAGC

CCCGTAGCTCAGACTGCACAC

rs738410 Adiponutrin ACGTTGGATGCTAAACAGCCAGCA
CTTGTC

ACGTTGGATGTGCTACAGAGCAGT
CAGCAG

AGAGCAGTCAGCAGGCACCAC

rs738408 Adiponutrin ACGTTGGATGTCTCCTTTGCTTTC
ACAGGC

ACGTTGGATGCTGAAGGAAGGAGG
GATAAG

TAGGGATAAGGCCACTGTAGAA

rs9625964 Adiponutrin ACGTTGGATGTGTGACCTCAGGC
AAGTTAC

ACGTTGGATGTGAGGTCGGTTTTC
CTATCC

TCGGTTTTCCTATCCATATATTG

rs2294916 Adiponutrin ACGTTGGATGACCTTTCCCTGCTT
ATCTGG

ACGTTGGATGAAGACTTCCCGTTG
GATGAG

CCCGTTGGATGAGTCTCTTTGAG

rs738407 Adiponutrin ACGTTGGATGGGAGCGCTTATGAA
AGCATC

ACGTTGGATGATTTGCCTGTATCCT
CAGGG

GGGTCTAGCAGAGAGAAGATAAT

rs9625961 Adiponutrin ACGTTGGATGCCTAGTAGCTGGG
ACTATGG

ACGTTGGATGTGATGAAACCCAGT
CTCTAC

ACACAGTCTCTACAAAAATTACAGA

rs16991187 Adiponutrin ACGTTGGATGATAGCAAGAGAGG
CCATACC

ACGTTGGATGTTTCCGTGAGCTCC
TGAGAG

GCCGTGAGCTCCTGAGAGCCCGTA
G

rs1977081 Adiponutrin ACGTTGGATGAGAGTCTTGCTCTG
TTGCCC

ACGTTGGATGGCAGGAAAATGGCT
TGAACC

AGGAAAATGGCTTGAACCTCGGAA
G

rs34179073 Adiponutrin ACGTTGGATGTTAGGGCAGATGTC
GTACTC

ACGTTGGATGTGAGTGACAACGTA
CCCTTC

CACCGTGTCCCCCTT

rs16991170 Adiponutrin ACGTTGGATGGCAAACATGAGTCT
GGATTC

ACGTTGGATGAGGTGGTCTAGCAG
CTCATC

CCAAGGCAGCCGACTC

rs35726887 Adiponutrin ACGTTGGATGATCACCAAGCTCAG
TCTACG

ACGTTGGATGACCAACTCACCTTG
AGATCC

AGGTAGAGGTTCCCTG



rs2294918 Adiponutrin ACGTTGGATGCTCTGCTTTGGTCT
CTGCTG

ACGTTGGATGATGCACACCTGAGC
AGGAC

TGGACTCCCTGCTCCCCC

rs2294919 Adiponutrin ACGTTGGATGCACTACACAGCAAT
GCGGAG

ACGTTGGATGTCTGTGAGTCACTT
GAGGAG

AAGTTTCCCATCTTTGTG

rs734561 Adiponutrin ACGTTGGATGATGTGGGAACAGA
CAAGTGC

ACGTTGGATGAACCTGCAGCCAGT
TGCATC

CCTCTGTTTAACCTTGTTTG

rs139047 Adiponutrin ACGTTGGATGCTTTCGGTCCAAAG
ACGAAG

ACGTTGGATGCCATCCCAAAACAG
CTTTTC

AAACAGCTTTTCTAACTTGA

rs1883350 Adiponutrin ACGTTGGATGAGTTTCACAGATGC
AGGCTC

ACGTTGGATGACCACCTTATTGCCC
ATAGC

GGGCAGGCAGCTTTTGCTACA

rs6006460 Adiponutrin ACGTTGGATGCAGCAGGTACTTTA
TTGCCC

ACGTTGGATGAGCAGAGACCAAAG
CAGAGG

CCGCGGTCCATCCTCAGGTCCA

rs9626056 Adiponutrin ACGTTGGATGTGCCACTGGCATCT
GATGTA

ACGTTGGATGGTCAGGAAGATGCC
TATGAG

AACGGGTGATGACACAGCATCTC

rs2394443 SIRT1 
promoter

ACGTTGGATGTTAAACCCCATCAC
GTGACC

ACGTTGGATGACCCGTAGTGTTGT
GGTCTG

CCGCCCCCGCCCTCT

rs932658 SIRT1 
promoter

ACGTTGGATGTGTTGCGTCTACCG
CTCCG

ACGTTGGATGGAATTTGGCTGCAC
TACACG

GCGGCCGGCGGCCCT

rs12778366 SIRT1 
promoter

ACGTTGGATGCTAAGGTCCTATCT
ACATCC

ACGTTGGATGTAAGGCTTCTAGGA
CTGGAG

TCATCTGGTCACCACT

rs3758391 SIRT1 
promoter

ACGTTGGATGGCCATAACAAACAC
TGGCTC

ACGTTGGATGGCACACTGTGACTC
CATATC

CTGGCTCTAGATCTACCA

rs12250285 SIRT1 
promoter

ACGTTGGATGCATCATACTGGTCA
GGCTGG

ACGTTGGATGAAATCCCAGCACTTT
GGGAG

TCCTGACATCAGGTGATC

rs10740280 SIRT1 
promoter

ACGTTGGATGAGCAAGAGCGAAA
CTCCGTC

ACGTTGGATGGGTTTGCTGCACCA
ATCAAC

GAAACTCCGTCTCAAAAAAA



A3. Sequencing PCR primers

Gene Region PCR primer 1 PCR primer 2

Annealing 

temperature (ºC)

Magnesium 

Concentration 

(mM) Q solution

SIRT1 Exon 1a CGGAGAGATGGTCCCGGCCT TAGGAGCCCGGGGAGAGGGA 50 1.5 Yes

SIRT1 Exon 1b AGTGTTGTGGTCTGGCCCGC AGGCCGGGACCATCTCTCCG 50 3 Yes

SIRT1 Exon 2 CCCCATAGGCATGCTTTACA AGTGAGGTGGGGCAAGGT 55 3 No

SIRT1 Exon 3 TACAGCTGAAGGGGGTCTTC TGCACTCAGTTTTTGGCAGT 65 3 No

SIRT1 Exon 4 TTTCTGAAATAAGGGTAGGGTTG CTTACTCCGCCACAGTAGCA 60 3 No

SIRT1 Exon 5 TAGGTGTGTGTCGCATCCAT TGTCAAGGCCAATACTTCTGTTT 60 3 No

SIRT1 Exon 6 TCTGCAGTGTGTTCTGAGGTTT TTTTACCAAAATTCCCAAATGC 60 3 No

SIRT1 Exon 7 TCCATAGCTTTTCTGTTTTGTTTTT GGGCAACAAGAGGGAAACTC 60 3 No

SIRT1 Exon 8 AAGTATTTAGTGCATGGGTCTTTTT GATTTACCTTTCTGATTACGAACTG 60 3 No

SIRT1 Exon 9a CATGCCTCCCAGTTGTTTTT CCGATGGCTTTTTGAAAACT 60 3 No

SIRT1 Exon 9b TTTACTTGTGAACTCGATAGAGCA CCAAAGCATTTATTTGTTTTTCA 60 3 No

SIRT1 Exon 9c GGAGAGCACTCGGTTGTCTT TGGTCCTAGCTGGGTGTTTT 60 3 No

SIRT1 Exon 9d GCCCTAGTATTATGGAGATGAACA GATCAGCACCATCAGGGTTT 60 3 No

SIRT1 Promoter 1 CGAATTTGGCTGCACTACAC CCATCTTCCAACTGCCTCTC 50 1.5 Yes
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SIRT1 Promoter 2 GGTGTGAGGAGAGTGGGAAA CGTGTAGTGCAGCCAAATTC 55 1.5 Yes

SIRT1 Promoter 3 GAAACGGCTAGATAGCTCACG AAATCACTACCGCCGGAAC 60 3 Yes

SIRT1 Promoter 4 CCTTAGCGATATATTTCCAGCTTT CAGCTTGGCTTCAAACGTG 60 3 No

SIRT1 Promoter 5 AGGCTGGTGTGCAATGGT GAGCACAGCGTTTCTATCTGTTT 60 3 No

SIRT1 Promoter 6 TTGGGATACTGACTCTCAACATT GGACAGATCACCTGAAGTCG 60 3 No

SIRT1 Promoter 7 GCCACCACTCTGGGCTAA CACTCCTCCCAATTCCTGAC 60 3 No

SIRT1 Promoter 8 TCCTGGGTTCACGCCATT TGCAGTATGCTTTTCAGGTAGG 60 3 No

SIRT1 Promoter 9 ACAGGAATGTGCCACCACAC ATAAATTGGCCTGCCAAGCA 60 3 No

SIRT1 Promoter 10 CCTTCCACCTCAGCTTCCTA CCCTACTTCACACAATATACGAAA 60 3 No

SIRT1 Promoter 11 ACTACAGGCGCCCACCAC GGATCAAGAAAGAACTTTTTAGCAA 55 3 No

Apelin Exon 1 GGAGCGGTTGTAGGTTGTC GATGCCAAAGGCCGAGTTGA 60 1 Yes

Apelin Exon 2 GTAGGTTCCGTTTGTCCCAG CAGACGAGGAGATCGTCTGT 60 3 No

Apelin Promoter 1 TGCCTCCTGGGGGATGCAGG CCGCGAGCCCACTTGGTCAT 60 3 No

Apelin Promoter 2 GAGGGAAGCAGCCCCATGCC CCTGGTCCTTGCCCTTGCCG 60 3 No

Apelin Promoter 3 TGGCACACACGCACCCTGTC TTGTTCCCTGGAGCTGTCCTCA 60 3 No

Apelin Promoter 4 AGGGGTGCCATGCTTCACATGC TCAGCAAGCCAGGCAGTTTGC 60 3 No
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A4.   Primer Sequences Used in DNA Methylation Study  

Gene PCR primer 1 PCR Primer 2 Sequencing Primer
POMC TTTAAAGTGGAATAGAGAGAATATGA CACAAAAAACAACTCCCC TTATAGTTTTTAAATAATGGGGAAA
POMC GTAGTTGAGTTGGAGGGTTTA CAACCTAACCAACATAAAAAAA TCACCCCTTTACTCTCCAACA
Leptin AAATTTTTGGGAGGTATTTAAG AAAAAAACCAACAAAAAAAAA TTTTTGGGAGGTATTTAAGG
Leptin TTGTTGGTTTTTTTTGGTAGG ATACCCAAAACAATTTCCAATAC ATACCCAAAACAATTTCCAA
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A 6. R scripts

Data was read from a tab-delimited text  file  with  column titles indicating the names of  the 

variables. The phrase “file name” indicates that the full path and file name should be inserted 

e.g “C:/Documents and Settings/sjclark/Desktop/FILENAME.txt"”.

A 6.1. Correction of transcript data for covariate effects using linear regression

Table<-   read.table("file  name",  header=TRUE,  sep="",  na.strings="NA",  dec=".", 

strip.white=TRUE)

linearRegr<- lm(Transcript~age+bmi+sex, data=Table)

residuals<-residuals(linearRegr)

write.table(residuals, file="file name")

A 6.2 Correction of BMI or transcript data for effects of relatedness using clustering

Table<-   read.table("file  name",  header=TRUE,  sep="",  na.strings="NA",  dec=".", 

strip.white=TRUE)

library(Ecdat)
 LSDV <- lm(BMI ~ Family, data=Table)
 gcenter <- function(df1,group) {
variables <- paste(
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 rep("C", ncol(df1)), colnames(df1), sep=".")
 copydf <- df1
 for (i in 1:ncol(df1)) {
 copydf[,i] <- df1[,i] - ave(df1[,i], group,FUN=mean)}
 colnames(copydf) <- variables
 return(cbind(df1,copydf))}
centerTable <- gcenter(Table[,1:65], Table$Family)
fmlm <- lm(C.BMI ~ C.Family, data=centerTable)
library(sandwich)
 M <- length(unique(Table$Family))
 dfcw <- fmlm$df / (fmlm$df - (M -1))
 library(lmtest)
 coeftest(fmlm, dfcw*vcov(fmlm))
clx <-
function(fm, dfcw, cluster){
 library(sandwich)
 library(lmtest)
 M <- length(unique(cluster))
 N <- length(cluster)
 dfc <- (M/(M-1))*((N-1)/(N-fm$rank))
 u <- apply(estfun(fm),2,
 function(x) tapply(x, cluster, sum))
 vcovCL <- dfc*sandwich(fm, meat=crossprod(u)/N)*dfcw
 coeftest(fm, vcovCL) }
 clx(fmlm, dfcw, Table$Family)
residuals<-residuals(clx)

write.table(residuals, file="file name")

A 7. Statistical power calculations for locating SNPs in LD with associated 

variants

The following calculates the probability of finding a SNP (assuming such a SNP exists) with 

certain MAF that is in LD with an associated SNP (with MAF =0.13, as was observed in the 

controls  for  rs11599176,  the  most  significantly  associated  SNP in  the  SIRT1 gene)  when 

sequencing 10 samples that are homozygous for the minor variant of the associated SNP. 
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r 2
=

H q
2

Ap . Aq . B p .Bq

Where r2 is the correlation coefficient of LD between two markers A and B (A being the 

associated SNP and B the marker that is being discovered), Hq is the frequency of the 

haplotype, H containing the minor alleles of markers A and B, Aq and Bq are the minor allele 

frequencies of markers A and B and Ap and Bp are the common allele frequencies of markers A 

and B.

By inputting an r2 value of 0.8, an Aq of 0.13 and a Bq of 0.05, the value of Hq is determined:

0.8=
H q

2

0.87 .0.13 .0.95 .0.05

0.00425=H q
2
−0.0130H q

0.00425=(H q−0.00650)
2
−0.006502

√0.00425+0.00652
=H q−0.00650

0.072=H q

Thus the probability of a sample having the haplotye, H, given that the sample has the minor 

allele of the associated SNP is:

278



0.072
0.13

=0.55

And the probability of at least one in 20 samples (10 diploid samples) containing the haplotype 

given that they each contain the minor allele of the associated SNP:

1−(1−0.55)
20
=0.99999

Thus there is a probability of >99% of the minor allele of marker B being present in at least one 

sample out of ten samples that are homozygous for the minor allele of marker A if the MAF of 

marker A = 0.13, the MAF of marker B =0.05 and LD (r2) between the two SNPs is 0.8..

Calculating the probability using r2 = 0.5 and Bq = 0.01:

 0.5=
H q

2

0.87 .0.13 .0.99 .0.01

0.0224=H q

0.0224
0.13

=0.172

1−(1−0.172)
20
=0.977
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Thus there is a probability of 97% of the minor allele of marker B being present in at least one 

sample out of ten samples that are homozygous for the minor allele of marker A if the MAF of 

marker A = 0.13, the MAF of marker B =0.01 and LD (r2) between the two SNPs is 0.5..

Calculating the probability using r2 = 0.5 and Bq = 0.001:

0.5=
H q

2

0.87 .0.13 .0.999 .0.001

0.0076=H q

0.0076
0.13

=0.0588

1−(1−0.0588)
20
=0.702

Thus there is a probability of 70% of the minor allele of marker B being present in at 

least one sample out of ten samples that are homozygous for the minor allele of marker 

A if the MAF of marker A = 0.13, the MAF of marker B =0.001 and LD (r2) between the 

two SNPs is 0.5.
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