
The DTAG treebank tool. Annotating and querying treebanks and
parallel treebanks

Matthias Buch-Kromann
Center for Research in Translation and Translation Technology

Copenhagen Business School
mbk.isv@cbs.dk

Working paper

Abstract
DTAG is a versatile annotation tool that
supports manual and semi-automatic an-
notation of a wide range of linguistic phe-
nomena, including the annotation of syn-
tax, discourse, coreference, morphology,
and word alignments. It includes com-
mands for editing general labeled graphs
and graph alignments, comparing annota-
tions, managing annotation tasks, and in-
terfacing with a revision control system.
Its visualization component can display
graphs and alignments for entire texts in a
compact format, with a highly flexible and
configurable formatting scheme. It also
provides a powerful search-replace mech-
anism with queries based on full first-order
logic, which can be used to search for
linguistic constructions and automatically
apply graph transformations to collections
of annotated graphs.

1 Introduction

Treebanks and other linguistically annotated cor-
pora have emerged as important resources in lan-
guage technology and linguistic research. Since
their creation involves a large amount of human
effort, it is important to have flexible and effi-
cient annotation tools that provide optimal support
for the specific annotation task. There are many
excellent tools that support the creation and use
of various kinds of linguistic annotations, for ex-
ample the TrEd tool for annotating dependency
tree structures (Pajas and Štěpánek, 2008), the
MMAX2 tool targeted primarily towards coref-
erence annotation (Müller and Strube, 2006), the
NITE XML toolkit for text and video markup
(Carletta et al., 2005), the WordFreak tool for
annotating syntax trees, named entities, and dis-
course (Morton and LaCivita, 2003), the Anno-
tate tool for annotating syntax trees (Plaehn and

Brants, 2000), and the Yawat word alignment tool
(Germann, 2008).

In this paper, we will present the most re-
cent version of DTAG (Buch-Kromann, 2010),1

an open-source Linux-based treebank annotation
tool written in Perl. DTAG is used in the anno-
tation of the Copenhagen Dependency Treebanks
(Buch-Kromann et al., 2009), a parallel treebank
based on a Danish 80,000 word corpus translated
into English, German, Italian and Spanish. In
these treebanks, a text is analyzed as a primary tree
structure which encodes discourse structure, syn-
tax and morphology, augmented with secondary
edges; word alignments are used to link the source
text to its translations. This kind of annotation
is not well-supported by existing annotation tools.
DTAG complements existing annotation tools by
providing particular support for the annotation of
large, complex graphs with alignments.

The paper is organized as follows. In section
2, we describe the data structures supported by
DTAG and provide examples of the visualizations
used in DTAG. In section 3, we describe some of
the tasks for which DTAG can be used. In sec-
tion 4, we describe the file formats used by DTAG.
Section 5 presents our conclusions.

2 Annotation structures

We will now describe the two kinds of annotation
supported by DTAG: graphs and alignments.

2.1 Graphs

DTAG graphs consist of a set of linearly ordered
nodes with an arbitrary number of attribute-value
pairs, linked by an arbitrary set of directed edges
with atomic string labels.2 As an illustration, Fig-

1(Kromann, 2003) presents an early version of DTAG.
2The graph may contain comment nodes whose main

function is to retain information losslessly from richer XML-
based annotation formats, such as CES/XCES (Ide et al.,
2000). This is an issue we ignore in this paper.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OpenArchive@CBS

https://core.ac.uk/display/17278636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Excerpt from a larger dependency graph
for a text annotated for part-of-speech, syntax, dis-
course structure, and coreference.

ure 1 shows a partial analysis of a text from the
Copenhagen Dependency Treebanks. The analysis
consists of a primary tree structure (shown above
the words) which encodes the primary dependency
relations between the words in the text, augmented
by secondary relations (shown below the words)
that encode coreference relations and secondary
dependencies in filler-gap constructions. The ar-
rows go from head to dependent, with the rela-
tion name shown at the arrow tip or the middle
of the arrow. Phrase-structure analyses can be rep-
resented as DTAG graphs by inserting the phrasal
nodes at an arbitrary point in the linear order (eg,
right before any node within its subtree), as exem-
plified by Figure 2.

DTAG can display graphs in real time and ex-
port them to PostScript, PDF, and PNG format.3

3DTAG itself uses UTF-8 encoded text, but the visualiza-
tion tools are based on PostScript which does not have built-
in support for Unicode, so characters outside the ISO-8859-1
character set are not displayed properly.

S NP NP
Pierre
NNP

Vinken
NNP

VP
will
MD

VP
join
VB

NP
the
DT

board
NN

NP
Nov.
NNP

29
CD

.

.

SBJ TMP. . . .

Figure 2: DTAG encoding of a phrase-structure
tree from the Penn Treebank.

af a−3
deres a−2

artikler a−1

hedder a0
fuzzy

det a1

: a2
" a3
I a4

et a5
autoritært a6 !

regime a7
lagdel a8

samfundet a9
og a10

forskellige a11
interesser a12

b−3 their
b−2 articles
b−1 ,
b0 it
b1 is
b2 stated
b3 :
b4 "
b5 In
b6 an
b7 authoritarian
b8 regime
b9 ,
b10 society
b11 is
b12 stratified

Figure 3: Excerpt from a larger word alignment
(as displayed by DTAG’s autoaligner).

The visualization is highly flexible, using cus-
tomizable formatting rules that can be used for
example to format the graph for discourse anno-
tation by letting purely syntactic nodes appear in
tiny font size, or to identify potential errors and
visually highlight them to warn human annotators.
In PDF and PostScript format, graphs can extend
over several pages, allowing an entire text to be
displayed as a single multi-page document.

2.2 Alignments
DTAG alignments link up a set of DTAG graphs
by means of a set of labelled alignment edges, ie,
labeled, directed hyperedges that connect sets of
nodes rather than single nodes. DTAG alignments
do not limit the number of graphs in the align-
ment, nor do they place any particular restrictions
on the alignment edges themselves, except that all
the out-nodes in an alignment edge must belong to
the same graph, and similarly for all the in-nodes.
An example of a DTAG alignment is shown in Fig-
ure 3. Like with graphs, the layout of DTAG align-
ments is highly flexible.

3 Supported annotation tasks

DTAG has a command-line based user interface in
which all annotation commands are typed on the
keyboard or read from script files. Sequences of
commands can be defined as macros, and DTAG

COMMAND EXPLANATION
load 0001-en.tag load graph from file
viewer display graph in viewer
1 namex 2 add “namex” edge to 1 from 2
del 1 namex 2 delete it again
1 namef 2 add “namef” edge to 1 from 2
2 subj 6 add “subj” edge to 2 from 6
2 [subj] 8 add “[subj]” edge to 2 from 8
<return> update viewer
...
oshow 13 display from node 13, changing offset
...
save save graph

Figure 4: Typical usage situation for the annota-
tion of syntax, discourse, and coreference.

provides a simple syntax for calling external pro-
grams via the UNIX shell. Any number of graphs
and alignments can be loaded into memory and
displayed on screen in real-time. We will now
briefly describe some of the annotation tasks sup-
ported by DTAG.

3.1 Annotating graph structure: syntax,
discourse, and coreference

DTAG provides commands for manually adding
and deleting nodes and edges, and for semi-
automatically revising edge labels for all edges
that match a given set of relation names. The typ-
ical usage situation for the annotation of syntax,
discourse, and coreference is exemplified by Fig-
ure 4: the annotator loads an automatically tagged
or parsed text in TAG or CoNLL-X format, starts
a PostScript viewer, and begins adding (and occa-
sionally deleting) edges from the graph. The graph
is updated whenever the annotator hits return on
a blank line. When a chunk of text is completed,
the annotator can ask DTAG to redisplay the graph
from a given node, restarting the node numbering
from that node if desired. When done, the cor-
rected graph is saved to file again.

3.2 Annotating node attributes:
part-of-speech and morphology

DTAG provides commands for manually editing
node attributes, and for semi-automatically revis-
ing the attributes for all nodes that match a partic-
ular search query, reusing previous annotations as
annotation suggestions. This is particularly use-
ful for editing part-of-speech tags and morpholog-
ical features, both when creating the annotations
from scratch and when revising annotations pro-
duced by external automatic annotation tools.

COMMAND EXPLANATION
load 0001-da-en.tag load alignment from file
viewer display alignment in viewer
autoalign *.atag start autoaligner
a0 b1 align node a0 to b1 (no label)
del a0 delete all alignments at a0
a0 fuz b1 align node a0 to b1 with label “fuz”
1+2 2..4+7 align a1,a2 to b2,b3,b4,b7
b0 b0 align b0 to itself (null alignment)
<return> update viewer
ok accept current window and move on
...
save save alignment

Figure 5: Typical usage situation for the annota-
tion of alignments with the autoaligner.

3.3 Annotating graph alignments

Graph alignments can be edited manually, or semi-
automatically using the built-in autoaligner. Dur-
ing the annotation, the autoaligner presents a win-
dow of 20 unaligned tokens to the annotator, as
exemplified in Figure 3. The annotator’s manual
alignments are shown in solid blue, automatic sug-
gestions in dotted red. Whenever the annotator
adds or deletes an alignment, the autoaligner re-
computes its alignment suggestions, always giving
preference to human alignments. When finished,
the annotator accepts the alignments in the cur-
rent window, prompting the autoaligner to move
to the next window of unaligned words (after be-
ing accepted, automatic alignments are shown in
solid black). The autoaligner generates its align-
ment suggestions from a set of heuristic rules and
a large alignment lexicon produced from a corpus
of existing alignments; it can also take advantage
of the automatic alignments produced by an exter-
nal aligner. A typical usage situation for the anno-
tation of alignments is given in Figure 5.

3.4 Comparing annotations

Comparing annotations is an important part of
quality control in human annotation. DTAG pro-
vides commands for finding and visualizing the
differences between two graphs or alignments
with the same underlying text. An example is
shown in Figure 6, where two dependency anno-
tations of the same text have been compared with
each other. The first graph is shown above the
nodes and the second graph below, with differ-
ences highlighted in red. This feature can also be
used to visualize the errors made by a dependency
parser compared to a gold parse.

Mogelijkheden
232

voor
233

de
234

ontwikkeling
235

van
236

een
237

dergelijk
238

systeem
239

worden
240

onderzocht
241

.
242

mod

mod

su obj1

obj1

det

det mod

mod

obj1

obj1det

det

mod

mod body vc

vc

punct

punct

Figure 6: Excerpt from a visualization of the dif-
ference between two graphs.

3.5 Search and replace
DTAG provides a powerful query language that
makes it possible to search for all nodes that match
a qiven query in a given file or set of files. The
query language is based on full first-order logic
with negation and quantification.4 Variables are
recognized by being prefixed with “$” and always
refer to nodes in the graph. DTAG defines a set
of atomic predicates that can be used to place con-
straints on a node with respect to its attributes, its
labelled edges, and its linear order in relation to
other nodes.5 For example, the command find $X
vobj $Y & ! exists($Z, $Z subj $X) will find all tu-
ples (X,Y) where X is a verbal object of Y , and
X does not have any subject.

DTAG also has a powerful search-replace
mechanism which allows the execution of a se-
quence of DTAG commands for each match. This
search-replace mechanism can be used to perform
automatic transformations of the annotation, such
as renaming relation labels or attributes, editing at-
tribute values, or modifying the graph structure.
For example, in order to rename all pred edges to
preds, we can use the command find $X pred $Y
-do(del $X pred $Y; $X preds $Y).

3.6 Tasks, version control, and annotation
status

DTAG can interface with the Subversion version
control system in order to save the entire revision
history of the annotations and make sure that every
annotator has the most recent revision of the anno-
tation files. We have used the macro and scripting

4Queries are treated as a constraint-satisfaction problem
in which free variables must be resolved. The query algo-
rithm transforms the query into disjunctive normal form, and
then processes the atomic predicates in each of the conjunc-
tions in a parallel most-restrictive-first manner.

5This makes DTAG queries as expressive as in the query
system FSQ (Kepser, 2003), and more powerful in some re-
spects than query systems such as Tgrep2 (Rohde, 2001),
TIGERSearch (König et al., 2003), Netgraph (Mı́rovský,
2008), and MonaSearch (Maryns and Kepser, 2009), which
either restrict themselves to tree structures, or do not provide
full support for negation and quantification.

<DTAGalign>
<alignFile key="a" href="0001-da.tag"/>
<alignFile key="b" href="0001-en.tag"/>
...
<align out="a86" type="f" in="b49 b50"/>
<align out="a87" type="" in="b48"/>
<align out="a88" type="" in="b51"/>
...
</DTAGalign>

Figure 8: Excerpt from the ATAG file used to en-
code the alignment shown in Figure 3, which was
generated using offsets a86 and b48.

facilities in DTAG to implement a convenient in-
terface to external scripts that control the revision
control system, records the completion status of
the different dimensions of the annotation, and al-
lows the annotator to maintain a task list with the
texts waiting to be annotated. These scripts also
provide statistics about the completion status of
the annotation project.

4 File formats

DTAG has its own native file formats for storing
graphs and alignments, the TAG graph format and
the ATAG alignment format, respectively. The
TAG graph format, exemplified by the excerpt in
Figure 7, is a simple line-based format in UTF-8
encoding in which non-comment nodes are spec-
ified as <W> elements; all other lines are retained
verbatim as comment nodes. The in and out at-
tributes of <W> are used to encode the node’s in-
and out-edges, all other attributes represent node
attributes. Edges are given as pairings of relation
labels with relative line positions.

The ATAG alignment format is also an XML-
like line-based format in UTF-8 encoding, as ex-
emplified by the excerpt in Figure 8. The ATAG
format contains a sequence of alignFile lines that
identify the graphs that are being aligned and their
associated identifier keys, followed by a sequence
of align lines that encode the alignment edges.

DTAG additionally supports three other graph
formats for import and export: TIGER-XML for-
mat (Mengel and Lezius, 2000), CoNLL format
(Buchholz and Marsi, 2006), and Joakim Nivre’s
MALT-TAB format. Many other formats (includ-
ing Penn Treebank format) can be imported into
DTAG via TIGER-XML using the conversion fil-
ters provided with TIGERSearch (König et al.,
2003). Other formats are supported upon request.

<s>
<W msd="NC" tag="NP--U==-" in="1:namef" out="">Andronik</W>
<W msd="NC" tag="NP--U==-" in="4:subj" out="-1:namef|3:conj|6:[subj]">Mirganjan</W>
<W msd="CC" tag="CC" in="2:coord" out="">and</W>
<W msd="NC" tag="NP--U==-" in="1:namef" out="">Igor</W>
<W msd="NC" tag="NP--U==-" in="-3:conj" out="-1:namef|-2:coord">Klamkin</W>

Figure 7: The first six lines of the TAG file for Figure 1. The first line is interpreted as a comment node.

5 Conclusion

We have described DTAG, a versatile annotation
tool which can be used to produce human-edited
annotations for a wide range of phenomena, in-
cluding syntax, discourse, coreference, part-of-
speech, morphology, and alignments. DTAG has
a highly configurable visualization component for
both graphs and alignments which provides com-
pact visualizations of large texts. DTAG pro-
vides commands for comparing annotations visu-
ally, and for semi-automatic annotation of align-
ments and node attributes. It is equipped with a
search-replace mechanism where queries are ex-
pressed as formulas within a powerful query lan-
guage based on full first-order logic (with nega-
tion and quantification), and replacement actions
are specified as arbitrary sequences of DTAG com-
mands; the search-replace mechanism makes it
easy to search for specific linguistic constructions,
and to automatically rename labels and attributes
or perform powerful graph operations in large an-
notated corpora.

References
Matthias Buch-Kromann, Iørn Korzen, and Hen-

rik Høeg Müller. 2009. Uncovering the ’lost’ struc-
ture of translations with parallel treebanks. In Fabio
Alves, Susanne Göpferich, and Inger Mees, editors,
Methodology, Technology and Innovation in Trans-
lation Process Research, volume 38 of Special is-
sue of Copenhagen Studies of Language, pages 199–
224.

Matthias Buch-Kromann. 2010. The DTAG tree-
bank tool. http://code.google.com/p/copenhagen-
dependency-treebank/wiki/DTAG.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on Multilingual Dependency Parsing. In
Proc. CoNLL-2006.

J. Carletta, S. Evert, U. Heid, and J. Kilgour.
2005. The NITE XML toolkit: data model and
query. Language Resources and Evaluation Jour-
nal, 39(4):313–334.

Ulrich Germann. 2008. Yawat: Yet Another Word

Alignment Tool. In Proc. ACL-08: HLT Demo Ses-
sion, pages 20–23.

N. Ide, P. Bonhomme, and L. Romary. 2000. XCES:
An XML-based standard for linguistic corpora. In
Proc. LREC 2000, pages 825–30.

Stephan Kepser. 2003. Finite Structure Query – a
tool for querying syntactically annotated corpora. In
Proc. EACL 2003, pages 179–186.

Esther König, Wolfgang Lezius, and Holger Voor-
mann. 2003. TIGERSearch 2.1 user’s manual.
IMS, Univ. of Stuttgart.

Matthias T. Kromann. 2003. The Danish Dependency
Treebank and the DTAG treebank tool. In Proc.
Treebanks and Linguistic Theories 2003.

Hendrik Maryns and Stephan Kepser. 2009.
MonaSearch – a tool for querying linguistic tree-
banks. In Proc. Treebanks and Linguistic Theories
2009, pages 29–40.

Andreas Mengel and Wolfgang Lezius. 2000. An
XML-based encoding format for syntactically anno-
tated corpora. In Proc. LREC 2000, pages 121–126.

Jiřı́ Mı́rovský. 2008. Netgraph – making searching in
treebanks easy. In Proc. IJCNLP 2008, pages 945–
950.

Thomas Morton and Jeremy LaCivita. 2003. Wordf-
reak: an open tool for linguistic annotation. In Proc.
NAACL 2003, pages 17–18.

Christoph Müller and Michael Strube. 2006. Multi-
level annotation of linguistic data with MMAX2.
In Sabine Braun, Kurt Kohn, and Joybrato Mukher-
jee, editors, Corpus Technology and Language Ped-
agogy: New Resources, New Tools, New Methods,
pages 197–214. Peter Lang, Frankfurt a.M., Ger-
many.

Petr Pajas and Jan Štěpánek. 2008. Recent advances
in a feature-rich framework for treebank annotation.
In Proc. Coling 2008.

Oliver Plaehn and Thorsten Brants. 2000. Annotate
— an efficient interactive annotation tool. In Proc.
ANLP 2000.

Douglas L. T. Rohde. 2001. Tgrep2 user manual.

