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Abstract  

Eye tracking has been used successfully as a technique for measuring cognitive load in reading, 
psycholinguistics, writing, language acquisition etc for some time now. Its application as a technique for 
automatically measuring the reading ease of MT output has not yet, to our knowledge, been tested. We report 
here on a preliminary study testing the use and validity of an eye tracking methodology as a means of semi- 
and/or automatically evaluating machine translation output. 50 French machine translated sentences, 25 rated 
as excellent and 25 rated as poor in an earlier human evaluation, were selected. 10 native speakers of French 
were instructed to read the MT sentences for comprehensibility. Their eye gaze data were recorded non-
invasively using a Tobii 1750 eye tracker. The average gaze time and fixation count were found to be higher 
for the “bad” sentences, while average fixation duration and pupil dilations were not found to be 
substantially different between output rated as good or bad. Comparisons between BLEU scores and eye 
gaze data were also made and found to correlate well with gaze time and fixation count, and to a lesser 
extent with pupil dilation and fixation duration. We conclude that the eye tracking data, in particular gaze 
time and fixation count, correlate reasonably well with human evaluation of MT output but fixation duration 
and pupil dilation may be less reliable indicators of reading difficulty for MT output. We also conclude that 
eye tracking has promise as an automatic MT Evaluation technique.  

Key words: MT evaluation, eye tracking, gaze time, fixation count, fixation duration, 
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Introduction  

In this paper we report on a preliminary study of the suitability of eye tracking methodologies 
for semi and/or automatically measuring the ease with which machine translation output can be 
read by humans. Eye tracking is a method which records a person’s eye movements across a 
screen as s/he is interacting with images or text on that screen. It has been used for many years 
to investigate different aspects of cognitive processing (e.g. reading, comprehension, bi-
lingualism, cf. Rayner, 1998), of cognitive load (e.g. in route planning and document editing 
tasks, cf. Iqbal et al 2005), and for usability (e.g. in investigating the readability of online news 
as in the Stanford Poynter project). More recently, it has been used as a supplementary method 
along with keyboard logging and think-aloud protocols to investigate human translation 
processes in general, and, more specifically, cognitive processing load when working with 
Translation Memory tools  
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or interacting with sub-titled media (cf. O’Brien 2006, 2009, Caffrey 2009, Göpferich et al 
2009). To the best of our knowledge, it has not yet been used in the evaluation of Machine 
Translation output.   

The main assumption behind eye tracking is the so-called “eye-mind hypothesis” (Ball et al 
2006), which assumes that when the eye focuses on an object, for example a sentence, the brain is 
engaged in some kind of cognitive processing of that sentence   

In his extensive review of eye tracking research, Rayner (1998) summarises research findings 
that convincingly demonstrate that in complex information processing tasks, such as reading, there 
is a tight link between gaze and attention.  

In eye tracking investigations of reading (e.g. Kaakinen & Hyönä, 2005, Hyönä and Nurminen,
2006) researchers typically measure the reading time, the number of “fixations” and the duration of
these fixations to gauge how difficult the reading process is. “Fixations” are defined as “eye
movements which stabilize the retina over a stationary object of interest” (Duchowski, 2003: 43).
Fixations are usually measured in milliseconds and the more there are and the longer they are, the
more difficulty the reader is assumed to be experiencing.  

In addition to fixation measurements, cognitive load research typically also uses pupillometrics,
i.e. measuring changes in the pupil diameter during task processing. Many studies have
demonstrated reliable links between cognitive processing and changes in pupil dilation (e.g. Hess
and Polt 1964, Nakayama et al 2002, Iqbal et al 2005). However, it is also the case that many other 
factors can influence pupil dilation (e.g. lighting, sounds, caffeine, colour of eyes etc.) and pupil
dilation has sometimes been found not to correlate well with other eye tracking measurements of
cognitive processing (Schultheis and Jameson 2004, O’Brien 2009, Caffrey 2009).  

Our primary research questions were: To what extent does eye tracking data reflect the quality
of MT output as rated by human evaluators? And, related to this question, could eye tracking
potentially be used as an automatic measure of MT quality? While this research cannot be said to
involve fully automatic evaluation of MT, it paves the way for the automatic and unobtrusive
recording of MT reading effort, which could supplement or confirm other automatic evaluation 
metrics. Section 2 explains our methodology and Section 3 presents and discusses the results.
Section 4 summarises our conclusions and outlines further possible research.  

Methodology  

A human evaluation was conducted on rule-based MT output from English to French for a 
previous study on Controlled Language and the acceptability of MT output (Roturier, 2006). In this
evaluation, four human evaluators were asked to rate output on a scale of 1-4 where 4 signified 
“Excellent MT Output”, 3 signified “Good”, 2 “Medium” and 1 “Poor”. A full description of the
evaluation criteria for that study is available in Roturier (2006). 25 of the lowest rated (denoted as
‘bad’ here) and 25 of the best rated sentences (denoted as ‘good’ here), according to four human 
evaluators, were selected from that corpus. 

Since we had access to “gold” standards for the source text sentences, we calculated HTER 
scores with a view to testing correlations between HTER scores and  



the eye tracking measures. It should be pointed out that the “gold” standards were not human 
translated, but post-edited versions of the raw MT output.  

The number of sentences was deliberately small since our main goal was to test eye tracking as
an MT evaluation methodology and not to rate the MT output. We assumed that the highest rated 
sentences would be easier to read than the lowest rated ones. Likewise, we assumed that the ease
with which sentences could be read and understood influenced the scores given previously by the
human evaluators, even though they were not asked to pay attention specifically to “reading ease”. 

10 native speakers of French were recruited to read the machine translated sentences (12 were
recruited and two were dropped out due to poor quality data). The sentences came from the domain 
of documentation describing virus checking software. The participants were not experts in this
domain and this was a deliberate choice on our part since prior knowledge of a domain has been
shown to ease the reading experience (Kaakinen et al 2003). By not having deep prior knowledge of 
the domain, we assumed that participants would have to make an effort to construct an internal
representation of the meaning of each sentence and that the effort to do so would be higher for the
‘bad’ sentences and this would, in turn, be reflected in our measurements.

1

All participants were 
enrolled at the time of the study as full-time or exchange students at Dublin City University, some
on translation programmes and others on business programmes.  

.  
The participants were first given a warm-up task. They were presented with 5 high quality

sentences to read one by one. They were then presented with the test sentences in a random order
(i.e. ‘bad’ and ‘good’ sentences were mixed, but presented in the same order for all participants)
and participants were not aware that sentences had already been rated in a prior human evaluation
task. They were asked to read the sentences for comprehension and, since motivation is an
important factor in reading (Kaakinen et al. 2003), were informed that they would be asked some
questions at the end to see if they had understood the text. The sentences were presented in a tool
called Translog. Translog was originally developed for researching human translation processes
(Jakobsen 1999), but has recently been altered to interface with an eye-tracker and other tools
developed within the EU-funded Eye-to-IT project (http://cogs.nbu.bg/eye-to-it/). The Translog
tool allows text to be displayed in a window in a similar fashion to other text editors. The
participants pressed the “Return” key when they wanted to move to the next sentence and no time
pressure was applied. The sentences were read in isolation to reflect psycholinguist experiments. As
the focus here was on fluency, only the MT output was presented and not the reference translation,
therefore, adequacy is not considered; this could perhaps allow for monolingual evaluation (see
Conclusion). 

We used the Tobii 1750 eye tracker to monitor and record the participants’ eye movements 
while reading. This eye tracker has inbuilt infra-read diodes which bounce light off the eyes. It 
records the position of the right and left eyes according to the X, Y coordinates of the monitor, 
as well as the length and number of fixations, gaze paths, and pupil dilations. During this study 
a fixation was defined as lasting at least 100 milliseconds. The Tobii 1750 is a non-invasive 
eye tracker (i.e. participants do not have to wear head mounted equipment or use head rests or 
bite bars) and it  



compensates for head movement. While the non-invasive nature increases the validity of the 
online reading experience and, presumably, allows participants to behave more normally, the 
lack of control leads to some level of inaccuracy in the data. We attempted to compensate for 
this by using the retrospective think-aloud protocol method, as mentioned above. Experimental 
conditions such as distance from monitor, temperature, noise, lighting, and intake of caffeine 
were kept constant for all participants.  

The analysis software we used to analyse the eye tracking data was ClearView (version 2.6.3).
ClearView also produces an AVI (video file) of the reading session, which displays the eye
movements and fixations for each participant overlayed on the text. This was played back to the 
participants immediately after the session in Camtasia Studio (screen recording software) and they
were asked to comment on their reading behaviour. This commentary was recorded.  

To conclude this section, the measures we were interested in included average gaze time, 
fixation count and duration per sentence and per character for the two sets of sentences, changes in 
pupil dilation for both sentence types and BLEU scores and their correlations with the eye tracking 
data. Our results are presented in Section 3.   

Results  

3.1 Gaze Time:  
Gaze time is the period of time a participant spends gazing within an Area of Interest

(henceforth AOI). For this study, the AOIs were defined around each sentence in order to allow for
all possible data relating to the sentence to be captured (a minimum of 5cm radius around each
letter/word) and to exclude unwanted data,  

e.g. looking at the toolbar or clock. The total gaze time per participant, given in minutes, is
presented in Figure 1; the average total was 5.23 minutes (median = 5.06):  

 
P1 P2 P3 P5 P6 P7 P8 P9 P10 P11  

Figure 1: Total Gaze Time for All Participants (in minutes)  

It is interesting to note the highest values (P1, P10, and P6 respectively) correspond to the three
participants who had a strong language/translation background and who appear to have paid more
attention to the text in terms of grammar, spelling, agreements etc.   



Figure 2 shows the average gaze time per segment across all participants in milliseconds. As 
hypothesised, the ‘bad’ segments had longer gaze times than the ‘good’ segments.   
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Figure 2: Average Gaze Time for Good & Bad Segments for All Participants (in milliseconds)  

The average gaze time for good segments was 5124.7ms while that of the bad segments was higher
at 7426.6ms. In other words, participants spent, on average, 45% more time looking at bad
segments than good segments. Spearman’s rho suggests a medium strength negative correlation
between gaze time and sentence quality (p= -.46, p<0.01). 

Obviously, some segments are longer than others. It therefore makes sense to examine the data
according to the number of characters per segment.  We first look at gaze time per character. As
Figure 3 illustrates, a similar trend is evident in that the bad segments still had higher gaze time per
character than the good segments. Additionally, when the average gaze time per character of all
segments is taken into account (65.89 ms), we see that a majority of segments above this value
were rated as bad (65% or 15 of 23).  
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Figure 3: Average Gaze Time for Good & Bad Segments per Character (in milliseconds across all segments)  

3.2 Fixation Count:  
Fixations occur when the eye focuses on a particular area of the screen. Fixations are defined

according to the pixel radius and the minimum duration in milliseconds and the settings will vary
depending on the object of study. In eye tracking studies of reading, in general, the pixel radius and
minimum duration is lower than, for example, in usability studies. However, there is no general 
agreement on how fixations should be defined. For our study, we used a fixation filter of 40 pixels
x 100 milliseconds, which is the filter used in the Eye-to-IT project.  

The fixation count shows the total number of fixations on a given sentence. Figure 4 shows the
average fixation count per segment; a similar trend to that observed in the above figure of average
gaze time per segment is evident, i.e. bad segments had, on average, more fixations than good
segments. Spearman’s rho suggests a medium strength negative correlation between fixation count
and sentence quality (p= -.47, p<0.01). 
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Figure 4: Average Fixation Count per Segment  

When looking at the median (25.5) of the above average fixation count per segment we see that, 
out of the segments above the median, 8 segments were ‘good’, while 17 were ‘bad’.  

Moving on to fixation count per character, a similar and logical relationship to gaze time is
observed. We see that, once again, the majority of the segments that had higher-than-average 
values were rated as bad (68% or 17 of 25). These results are shown in Figure 5:  
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Figure 5: Average Fixation Count for Good & Bad Segments per Character (in milliseconds across all segments)  

3.3 Average Fixation Duration:  
Average fixation duration has been used as an indicator of cognitive effort in many 

disciplines. When observing the average fixation duration across all segments and participants, it 
appears that the average fixation duration is quite similar in both good and bad segments, as Figure 
6 illustrates:  
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Figure 6: Average Fixation Duration (milliseconds) for Good/Bad Segments for All Participants  

The presence of several good segments among the bad segments in the highest range of 
values for average fixation duration is surprising. An “acclimatisation effect” has been noted before 
in eye tracking studies (O’Brien 2006), where the initial cognitive effort is higher than for the rest 
of the task. In light of this, we omit the first five segments to see what effect it has on our Fixation 
Duration data. Figure 7 demonstrates the effect:  
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Figure 7: Average Fixation Duration (ms) for All Participants from S6 to S50  

As we can see, the elimination of the first five segments has some effect on differentiating 
the good and bad segments, though the difference overall is still limited. Overall, it appears 
that the above measures correlate, for the most part, with the segment ratings.  While fixation 
duration per segment seems to be a reasonable indicator of good and bad MT output, when this 
measure is viewed per character, the trend is for bad segments to have shorter fixation 
durations than good ones and the differences were found to be non-significant. The suitability 
of this measurement for predicting good and bad MT output therefore requires further 
investigation. This lack of differentiation in fixation duration reflects other studies. For 
example, O’Brien (forthcoming) found no significant difference in fixation duration for texts 
that had been edited using controlled language rules and versions that were uncontrolled. 
Jakobsen and Jensen (2009) also found insignificant differences in fixation duration across 
groups in translation process research. Additionally, Van Gog et al (2009: 328) suggest that 
while fixation duration is a useful measure of cognitive processing, it may reflect “different 
aspects of cognitive load”.



3.4 Pupil Dilations  
A further measure used to establish a relationship between textual difficulties and

cognitive effort is average pupil dilation. On examining the initial results for all segments across all
participants, a slight difference in average dilation between bad and good segments is observed –
see Figure 8. Furthermore, an initial series of raised values is once again apparent, thus supporting
the acclimatisation theory described earlier.  

 

PD_BadPD_Good

4.2

4.0

3.8

3.6

Figure 8: Average Pupil Dilation for Good and Bad Segments  

Given the difficulty in establishing a clear trend in pupil dilation across all participants, we
move to examine pupil dilation on an intra-subject level motivated by the fact that pupil dilation 
can vary considerably from person to person (Table I).   

Participant Bad Segments  Good Segments  

3.61  3.61  P1  

3.91  3.90  P2  

3.70  3.66  P3  

Table I: Average Pupil Dilation for Each Participant for Good and Bad Segments  

Table I illustrates that 4 of the participants had slightly higher dilation values for bad segments than
good (grey shading) while 6 of them either had the same average dilation or had a higher dilation 
value for good segments when compared with bad segments.  

P5  3.32  3.37  

P6  2.93  2.95  

4.02  4.02  P7  

P8  3.58  3.61  

P9  4.80  4.82  

3.75  3.70  P10  

4.87  4.86  P11  



Our first conclusion could be that the pupil dilation measurement does not adequately
reflect the higher level of cognitive processing we anticipate for bad segments. However, there are 
other plausible explanations. Perhaps the sentences were not differentiated enough on a “good/bad”
axis for significant changes in pupil dilation to register for each sentence type? The results could
also be explained by a latency effect in pupil dilation carrying over from bad to good segments for
example. Or, indeed, it could be that the data set is too small to display significant differences
between the two sentence types. However, given that others have repeatedly demonstrated an effect
on pupil dilation by increased cognitive load (Rayner 1998), we suggest that further study of pupil
dilation as a machine translation evaluation metric is required before coming to any concrete
conclusions.  

3.5 Correlations with HTER Scores  
Firstly, it should be noted that for some of our sentences BLEU scores do not correlate

well with the original human evaluation scores. Take S48 for example, “Pour désactiver et réactiver
la Corbeille.”, although given a good rating by all human evaluators, was given a score of 0 by 
BLEU due to its variation from the reference “Pour désactiver la Corbeille et la réactiver.” We first
look at gaze time per segment for good and bad segments across all participants and find a trend
where bad segments had, on average, a lower BLEU score and resulted in longer gaze times, 
whereas good segments had higher scores and shorter gaze times (Figure 9). There are some
anomalies, however, where some of the sentences with the highest gaze times also have relatively
high BLEU scores, indicating that there can also be a mismatch between cognitive processing
effort, measured via gaze data, and BLEU scores.  

Figure 9: Average Gaze Time and BLEU Score for Good and Bad Segments  



The trend is echoed in average fixation count and supports our earlier findings of a correlation
between gaze time, fixation count and textual difficulties. Figure 10 shows that bad segments had
higher fixation counts and lower BLEU scores, on average, compared to good segments, which had 
fewer fixations and higher BLEU scores (although anomalies still appear).  

 

On examining the relationship of BLEU scores to average fixation duration and average pupil 
dilation we confirm our earlier findings in that fixation duration does not provide a clear enough 
difference between good and bad segments and that pupil dilation demonstrates a similar trend.  

Conclusions  

One of our initial questions for this study were: Can eye tracking be used in MT evaluation and 
would the eye tracking data reflect the quality of MT output as rated by human evaluators? We 
have shown that the gaze time and fixation count have correlated well with the previous 
evaluators’ judgments for the segments used here. The differences in fixation duration results 
for both sentence types were smaller, although this increases if we assume an acclimatisation 
effect and remove the initial segments in the reading task. When combined across subjects, the 
pupil dilation data do not show significant differences between good and bad segments, 
although this is not altogether surprising given other reports of confounding results using pupil 
dilation, as mentioned above. When viewed as a measure within subjects, average pupil 
dilation increases when reading bad segments for some subjects, stays the same for others, and 
actually decreases when reading bad segments for yet others. We conclude that further testing 
of this particular metric is required. The test for correlations with BLEU scores suggest that 
gaze time and  



fixation count appear to have convincing correlations, in general, but pupil dilation and 
fixation duration do not.  

Our second question in this study was: could eye tracking potentially be used as an automatic 
measure of MT quality? Although the sample is small when number of sentences and participants 
are taken into account, we are reassured that the use of eye tracking for automatically evaluating 
the readability and comprehensibility of MT data is worthy of further investigation. In particular, 
gaze time and fixation count show positive correlations with human evaluation. On the other hand, 
pupil dilation and fixation duration seem not to be good differentiators of good and bad quality.   

Using eye tracking requires human readers of text which, if they are employed in formal 
evaluation studies, is expensive. However, eye tracking could remove much of the subjectivity 
involved in human evaluation of machine translation quality as the processes it measures are 
largely unconscious. Eye tracking also opens up the possibility of involving end users in the 
automatic evaluation of MT output, a development that would be welcomed by many: By recording 
the reading activity of real end users and how they interact with the MT output, MT developers 
could accumulate data automatically on what the actual end user has difficulty with. This would 
expand the activity of MT evaluation into the field of user reception of MT output.  

Although the sample here is small when number of sentences and participants is 
taken into account, we feel reassured that eye tracking methods for evaluating the 
readability and comprehensibility of MT data is worthy of further investigation. It is our 
intention in the future to build on this research by increasing sample sizes, target languages, MT 
engine types and domains. As mentioned in the Introduction, the aim here is on testing 
methodology. While we do not propose this as a replacement for traditional or 
automated human evaluation, nor as a faster, cheaper method, it nonetheless offers a 
new dimension in evaluating translations generated by MT, which gives insight into 
the cognitive effort involved on the part of genuine end users.  
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