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Stochastic Volatility and Seasonality in Commodity

Futures and Options: The Case of Soybeans

Abstract

This paper sets up and estimates a continuous-time stochastic volatility model using

panel data of soybean futures and options in an integrated time-series study. The

model of commodity price dynamics is within the class of affine asset pricing models,

and option prices are determined using a standard inversion of characteristic func-

tions approach. Our modeling acknowledges that commodities exhibit seasonality

patterns in both spot price level and volatility. The estimation method is based on a

state space formulation of the model and a quasi maximum likelihood approach. Es-

timation results are obtained based on weekly observations of soybean futures prices

and options prices from the Chicago Board of Trade in the period October 1984 to

March 1999. The empirical results support the conceptual ideas in the theory of

storage, but not the view that convenience yields behave like timing options.

JEL Classification: G13, C00



1 Introduction

Seasonality is known to be one of the empirical characteristics that make commodities strik-

ingly different from stocks, bonds, and other conventional financial assets (see e.g. the discus-

sion in Routledge, Seppi and Spatt (2000)), and is especially important for agricultural com-

modities with a seasonal harvesting pattern. This paper sets up a continuous-time stochastic

volatility model of commodity prices with a seasonality feature in both the commodity spot

price and the spot price volatility, and parameters of the model are estimated using panel

data of soybean futures prices and soybean option prices from the Chicago Board of Trade

(CBOT) over the period 1984-1999. The estimation approach is analogous to the approach

in Schwartz (1997), who sets up and estimates models of commodity futures prices using

the Kalman-filter and a state-space approach in a context without seasonality and stochastic

volatility.1 The analysis in this paper is thus based on a state space formulation of the prob-

lem which results in an integrated time series study where it is consistently taken into account

how model parameters affect both the cross sectional characteristics of derivatives prices and

the time series characteristics of commodity prices. Moreover, as another innovative feature

compared to e.g. Schwartz (1997), the integrated time series study is based on the simulta-

neously use of both futures prices as well as option prices across different exercise prices and

maturities.

The commodity price behavior is modeled in continuous-time as part of a system of stochas-

tic differential equations within the class of asset pricing models where the drift and diffusion

coefficients are affine functions of the relevant basic state-variables. In our framework there are

three basic state-variables: the commodity spot price, the convenience yield, and the volatility

of the spot price. Affine models are tractable for asset pricing purposes and, in our case,

for the valuation of commodity futures contracts and options written on commodity futures.

Due to the tractability of affine models, they are widely used for modeling of term structures

of interest rates and pricing options on equity and foreign exchange rates.2 In particular, it

1See also Schwartz and Smith (2000) and Sørensen (2002) for empirical analyzes of commodity price models

following this approach.

2See e.g. Duffie and Kan (1996) for a general specification of affine term structure models, Heston (1993)

and Bakshi, Cao and Chen (1997) for affine models of equity returns, and Backus, Foresi and Telmer (1996) and

Bates (1996) for affine models of foreign exchange rates. Duffie, Pan and Singleton (2000) provide a discussion

of other applications as well as a general treatment of the affine class of models, with the possibility of jumps

included.
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is in general possible to determine relevant conditional characteristic functions within affine

models which in turn facilitates the evaluation of option prices through an inversion approach,

building on the ideas suggested by Heston (1993) for a specific stochastic volatility model of

currency and equity returns.

The modeling of commodity spot price behavior in this paper differs from models of interest

rates, equity returns, and foreign exchange by the fact that the involved stochastic differential

equations are inhomogeneous in time since the drift and diffusion coefficients are functions

of calendar time, due to the seasonality feature, and by the inclusion of a convenience yield.

On the other hand, we build on the same traditional no-arbitrage approach to the pricing of

commodity derivatives as used in analyzing the term structure of interest, equity derivatives,

and foreign exchange derivative, and also used widely for analyzing commodity contracts and

commodity hedging in related papers.3 It may be noted that the evaluation of futures and

option pricing expressions within affine models can in principle be reduced to the problem

of solving ordinary differential equations (as in e.g. Heston (1993)). However, due to the

seasonality feature the relevant ordinary differential equations in this paper do not have known

analytical solutions, and the specific implementation of futures and option pricing expressions

used in our estimation procedure relies heavily on numerically methods.

The estimation approach is based on quasi maximum likelihood and the panel data esti-

mation approach suggested originally by Chen and Scott (1993) in the context of models of

the term structure of interest rates. In particular, at each sample date we observe a panel

of futures prices and option prices which are related to the basic state-variables through a

non-linear measurement equation. The measurement equation is based on the pricing results

that we establish for the specific affine model of commodity price behavior with respect to

relevant futures and option prices. Following the ideas in Chen and Scott (1993), we assume

that all but three contracts are observed with measurement error. The latent value of the

basic state-variables can be exactly filtered out at each sample date by inversion based on the

three contract prices which are observed without error, and the likelihood of the full sample

can then be described based on the likelihood of the filtered paths of the state-variables. In the

3See e.g. Black (1976), Brennan and Schwartz (1985), McDonald and Siegel (1986), Gibson and

Schwartz (1990,1991), Jamshidian and Fein (1990), Bjerksund (1991), Brennan (1991), Cortazar and

Schwartz (1994), Dixit and Pindyck (1994), Schwartz (1997), Hilliard and Reis (1998,1999), Miltersen and

Schwartz (1998), and Schwartz and Smith (2000) for advances on no-arbitrage models with a focus on the

valuation of commodity contingent claims, such as real options, and hedging.
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evaluation of the likelihood of the filtered state-variables we apply a quasi maximum likelihood

approach where the relevant densities are substituted by Gaussian densities with appropriate

first and second order moments.

The estimation approach is similar to the estimation approach used in related papers on

interest rates and equity returns in affine asset pricing models, and the specific estimation ap-

proach could potentially be modified and extended in various ways.4 For example, one could

in principle relax the assumption that three specific contract prices are observed without

measurement error by using an extended Kalman filter approach, or more advanced filtering

algorithms, and it is possible to approximate the relevant transition densities using for example

refinements as in Singleton (2000). Furthermore, it is possible to extend the model and ap-

proach to models including jumps in the commodity price dynamics (daily price limits imposed

at CBOT, though, complicate this issue). However, it may be noted that the choice of model

and estimation approach is motivated and restricted in part by numerical considerations, since

the model already in its current form has several parameters to be estimated and the estima-

tion is computationally demanding with respect to both the evaluation of involved derivative

prices and numerical evaluation and optimization of the log-likelihood criteria function.

The estimated commodity price model describes the simultaneous dynamics of the com-

modity spot price, the convenience yield, and the volatility of the commodity spot price. When

discussing our specific estimation results, based on soybean futures and option contracts from

CBOT, we are especially interested in how the results relate to the basic ideas of the theory

of storage by Kaldor (1939), Working (1948, 1949), Brennan (1958), and Telser (1958). The

theory of storage explains the differences between the spot and futures prices with different

contract horizons in terms of advantages of physical inventory compared to advantages of

ownership of a futures contract for future delivery of the commodity. Physical inventory is

associated with cost of carry such as storage costs and the interest forgone by investing in

storage. On the other hand, physical inventory gives rise to a convenience yield from being

able to profit from temporary price increases due to temporary shortages of the particular

commodity or from being able to maintain a production process despite abrupt shortages of

4See, e.g. Pearson and Sun (1994) and Dai and Singleton (2000) for estimation of models of the term

structure of interest rates, Duffie and Singleton (1997) for estimation of a model of swap yields, Duffie and Sin-

gleton (1999) and Duffee (1999) for models of credit risky bonds, and Bates (2000), Chernov and Ghyssel (2000)

and Pan (2002) for estimation of equity models using options data. This list of related papers concerned with

estimation of affine asset pricing models is very partial, and this is a fast growing research area.
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the commodity used as input.5 The theory of storage predicts a negative relationship between

supply/inventories and convenience yields. Thus, when inventories are full and supply is plenty

the convenience yield from marginal storage is low, and vice versa when inventories are close

to being empty.6 Furthermore, since holding inventory allows for flexibility in the timing of

the use of a given commodity, the convenience yield may be viewed as a timing option. Re-

cently, Routledge, Seppi and Spatt (2000) has thus provided a formal model supporting this

idea building on the apparatus of Wright and Williams (1989), Williams and Wright (1991),

Deaton and Laroque (1992, 1996), Chambers and Bailey (1996), among others, who formalize

the theory of storage in competitive rational expectations models.

Our empirical results are to some degree in accordance with the theory of storage and

are qualitatively consistent across different time periods. The seasonal components in both

the soybean convenience yields and volatilities are thus at the highest just before harvesting

when inventories are low and supply scarce. The spot price is estimated to be positively

correlated with the convenience yield, so this is also a period where spot prices are relatively

high. While this supports the ideas in the theory of storage, our results on the other hand do

not support the view that the convenience yield behaves like a timing option. In particular,

our estimation results suggest that convenience yields and volatilities are slightly negatively

correlated contrary to how options depend on volatility.

Furthermore, our empirical results demonstrate that the soybean commodity spot price is

positively correlated with volatility. This is opposed to the so-called leverage effect in equity

markets where the correlation between stocks and volatility is usually estimated negative. This

estimation result is, however, consistent with the observation that the implied volatility “smile”

or “smirk” in soybean options has opposite slope of the post-1987 crash “smirk” observed for

equity options.

The paper is organized as follows. In section 2, the model and estimation approach as well

as the numerical implementation is described in detail. In section 3 the data and estimation

results are presented and discussed. A final section concludes.

5When we refer to the convenience yield in the following and in the formal continuous-time model, we are

in fact referring to the net convenience yield, i.e. the convenience yield net of storage costs, unless otherwise

specified.

6Since inventories/supply of agricultural commodities vary with the season, a seasonality pattern in conve-

nience yields is, therefore, well in accordance with the prediction of the theory of storage, as discussed by, e.g.

Fama and French (1987).
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2 The model and estimation approach

Let W = (W1,W2,W3) be a three-dimensional Brownian motion defined on a probability space

(Ω,F ,P). F = {Ft : t ≥ 0} denotes the standard filtration of W and, formally, (Ω,F , F,P)

is the basic model for uncertainty and information arrival in the following. We will assume

that W has a constant “instantaneous” correlation matrix Σ with entries ρij and ones in the

diagonal.

2.1 Commodity price dynamics

The model of commodity price behavior incorporates important realistic features such as

stochastic convenience yields and stochastic volatility as well as a seasonal feature. That these

features are important and realistic in the specific context is documented and discussed more

extensively in the subsequent data description. Also, the modeling captures well-known phe-

nomena of commodity prices such as the mean-reverting feature of convenience yields which has

been pointed out by, e.g. Gibson and Schwartz (1990) and Bessembinder, Coughenour, Seguin

and Smoller (1995). In fact, in the special case without stochastic volatility and seasonality,

the model suggested below coincides with the model proposed by Gibson and Schwartz (1990).

Let Pt denote the spot commodity price at time t. The convenience yield and the seasonal

adjusted spot price volatility state-variable at time t are denoted δt and vt, respectively. The

dynamics of the three-dimensional process (P, δ, v) are described by the following stochastic

differential equation system,

dPt = Pt

[

(r − δt + λP e
ν(t)vt) dt+ eν(t)√vt dW1,t

]

(1)

dδt = (α(t) − βδt + λδσδe
ν(t)vt) dt+ σδe

ν(t)√vt dW2,t (2)

dvt = (θ − κvt + λvσvvt) dt+ σv

√
vt dW3,t (3)

where β, κ, θ, λP , λδ, λv , σδ, and σv, as well as the correlation parameters of W , are constant

parameters that we will estimate in the subsequent sections. α(t) and ν(t) are deterministic

functions that aim at describing seasonal patterns in convenience yields and volatilities; the

functional forms of α(t) and ν(t) are described and discussed below.

The parameters λP , λδ, and λv describe the risk premia on commodity price uncertainty,

convenience yield uncertainty, and volatility uncertainty. We will assume markets are complete

and the existence of an equivalent martingale measure, Q, so that prices on contingent claims
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can be uniquely derived by evaluating the relevant expectations of the discounted payoff under

Q. Using a standard terminology, we will also refer to Q as the risk-neutral probability

measure in the following. Under the risk-neutral probability measure, risk premia are zero and

the dynamics of (P, δ, v) are described by,

dPt = Pt

[

(r − δt) dt+ eν(t)√vt dW
Q
1,t

]

(4)

dδt = (α(t) − βδt) dt+ eν(t)σδ

√
vt dW

Q
2,t (5)

dvt = (θ − κvt) dt+ σv

√
vt dW

Q
3,t. (6)

From equations (1) and (4) it follows that the convenience yield, δt, can be interpreted as

the return shortfall on an inventory position of the specific commodity.7 Basically, in order

to break-even on the marginal inventory position, there must be a gain, or convenience yield,

from holding inventory to exactly offset the return shortfall.

The parameters β and κ determine the degree of reversion to the deterministic seasonal

pattern in the convenience yield and the long-run volatility level θ, respectively. Likewise,

σδ and σv are parameters that, together with the level of vt, determine the volatility of the

convenience yield and the volatility of the stochastic volatility of the commodity price. The

parameter r is the short default-free interest rate which is assumed constant (but we allow to

vary over time in our empirical analysis).8

The deterministic seasonal functions α(t) and ν(t) are defined as,

α(t) = α0 +
Kα
∑

k=1

(αk cos (2πkt) + α∗

k sin (2πkt)) (7)

and

ν(t) =

Kν
∑

k=1

(νk cos (2πkt) + ν∗k sin (2πkt)) (8)

where Kα and Kν determine the number of terms in the sums and α0, αk, α
∗

k, k = 1, . . . ,Kα,

and νk, ν
∗

k , k = 1, . . . ,Kν are constant parameters to be estimated. The specific functional

form of the deterministic seasonal components were originally suggested by Hannan, Terrell,

7In fact, the convenience yield may be defined as the return shortfall on holding the commodity; see, e.g.

MacDonald and Siegel (1984).

8Our pricing results will carry through if interest rates are stochastic but distributed independently of the

soybean dynamics. In this case, discounting is done by using the appropriate zero coupon bonds, as in our

empirical approach.
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and Tuckwell (1970) as an alternative to standard dummy variable methods in econometric

modeling of seasonality. Due to the continuous time feature of our analysis this is a flexible

and natural choice of modeling the seasonal aspects of commodity price behavior which is also

applied in Sørensen (2002).

It may be noted that the specific modeling of commodity behavior that incorporates

stochastic volatility and seasonality, as in the above stochastic differential equation systems, is

chosen mainly in order to keep the model within the so-called affine asset pricing class where

drift terms and squared diffusion terms are affine functions of the state-variables. However, the

specific choice is also driven in part by the desire to keep the model sufficiently parsimonious

to allow for numerical estimation; for example, the seasonality pattern in the volatility of the

spot price and the volatility of the convenience yield is chosen to be identical for this reason.

2.2 Futures prices

Following Cox, Ingersoll and Ross (1981), the futures price at time t on a futures contract

for delivery at time T ≥ t can be obtained by taking the relevant expectations of the future

spot price, Ft(T ) = EQ
t [PT ]. Equivalently, by using the Feynman-Kac formula, Ft(T ) =

F (Pt, δt, vt, t;T ) where F (·) can be found as the solution to a partial differential equation on

the form

1
2e

2ν(t)vP 2 ∂2F
∂P 2 + 1

2σ
2
δe

2ν(t)v ∂2F
∂δ2 + 1

2σ
2
vv

∂2F
∂v2 + ρ12σδe

2ν(t)vP ∂2F
∂P∂δ

+ ρ13σve
ν(t)vP ∂2F

∂P∂v

+ ρ23σδσve
ν(t)v ∂2F

∂δ∂v
+ (r − δ)P ∂F

∂P
+ (α(t) − βδ)∂F

∂δ
+ (θ − κv)∂F

∂v
+ ∂F

∂t
= 0

(9)

with terminal condition F (P, δ, v, T ;T ) = P .

For a given and fixed expiration date T , the solution to the partial differential equation in

(9) is given by

F (P, δ, v, t;T ) = PeA(t;T )+B(t;T )v+D(t;T )δ (10)

where

D(t;T ) = − 1

β

(

1 − e−β(T−t)
)

(11)

and A(t;T ) and B(t;T ) are the solutions to the ordinary differential equations

1
2σ

2
δe

2ν(t) (D(t;T ))2 + ρ12σδe
2ν(t)D(t;T ) + 1

2σ
2
v (B(t;T ))2

+ (ρ13σve
ν(t) + ρ23σδσve

ν(t)D(t;T ) − κ)B(t;T ) +B′(t;T ) = 0 , B(T ;T ) = 0

(12)
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and

r + α(t)D(t;T ) + θB(t;T ) +A′(t;T ) = 0 , A(T ;T ) = 0. (13)

Solutions to the ordinary differential equations in (11) and (13) are not available in closed form.

Solutions are, however, easily obtained numerically with very high precision and speed using

for example Runge-Kutta methods; this is the approach followed in our empirical analysis as

described in the subsequent section on the numerical implementation.

2.3 Option prices

We will consider options written on commodity futures. By using Ito’s lemma on the futures

price, as described in equation (10), it can be seen that the dynamics of the futures price under

the equivalent martingale measure, Q, are given by

dFt(T ) = Ft
√
vt

[

eν(t) dWQ
1,t + σvB(t;T ) dWQ

3,t + σδe
ν(t)D(t;T ) dWQ

2,t

]

. (14)

Let Ct be the price of a European call option written on the futures price of a futures contract

expiring at time T . The option has strike price K and matures at time τ ; t ≤ τ ≤ T . The call

price can be determined by taking the relevant expectations,

Ct = EQ
t

[

e−r(τ−t) max[0, Fτ (T ) −K]
]

. (15)

From the Feynman-Kac’s formula, and the dynamics of Ft and vt in equations (14) and (6), it

follows that the option price can be represented as Ct = C(Ft, vt, t) where the function C(·)
is the solution to the partial differential equation9

1
2σ

2
F (t;T )vF 2 ∂2C

∂F 2 + 1
2σ

2
vv

∂2C
∂v2 + σFv(t;T )vF ∂2C

∂F∂v
+ (θ − κv)∂C

∂v
+ ∂C

∂t
− rC = 0 (16)

where

σ2
F (t;T ) = e2ν(t) + σ2

v (B(t;T ))2 + σ2
δe

2ν(t) (D(t;T ))2 + 2ρ13σve
ν(t)B(t;T )

+ 2ρ12σδe
2ν(t)D(t;T ) + 2ρ23σvσδe

ν(t)B(t;T )D(t;T )

and

σFv(t;T ) = ρ13σve
ν(t) + σ2

vB(t;T ) + ρ23σvσδe
ν(t)D(t;T )

9Note that the observations about futures price dynamics and option pricing in equations (14) and (15) serve

to show that for the option pricing in this paper, the underlying futures price F is a “sufficient statistic” for

the state-variables P and δ. The option prices will also satisfy a partial differential equation which is analog to

(9), as all other contingent claims will.
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and with terminal condition C(F, v, τ) = max[0, F −K]. σF (t;T ) describes the volatility on

the underlying futures price whereas σFv(t;T ) describes the “instantaneous” rate of covariance

between the futures price and the stochastic volatility process.

This is basically the Heston (1993) model but with σ2
F (t;T ) and σFv(t;T ) being functions

of time instead of constants (and the underlying being a futures price instead of a spot price).

Hence, using the arguments and approach in Heston (1993), pp. 330-331 and his Appendix,

one obtains the following option pricing formula on the form of Black (1976),

C(F, v, t) = e−r(τ−t) [FP1 −KP2] (17)

where (see equation (18) in Heston (1993))

Pj =
1

2
+

1

π

∫

∞

0
Re

[

e−iφ ln[K]fj(x, v, t;φ)

iφ

]

dφ , j = 1, 2 (18)

and where x = lnF and fj(·;φ), j = 1, 2, denote characteristic functions that are obtained as

solutions to partial differential equations with terminal condition eiφx. Since coefficients in the

particular partial differential equations are affine and the terminal conditions are exponential-

affine, the solutions for fj , j = 1, 2, are exponential-affine and on the form

fj(x, v, t;φ) = eaj(t)+bj(t)v+iφx , j = 1, 2 (19)

where aj(t) and bj(t) are solutions to the ordinary differential equations

b′j(t) =
(

1
2φ

2 − ujiφ
)

σ2
F (t;T ) + (kj(t) − iφσFv(t;T )) bj(t) − 1

2σ
2
v (bj(t))

2 , bj(τ) = 0 (20)

and

a′j(t) = −θbj(t) , aj(τ) = 0 (21)

with u1 = 1
2 , u2 = −1

2 , k1(t) = κ− σFv(t;T ), and k2(t) = κ.

Again, the numerical implementation of the above option pricing formula in (17) requires

several numerical considerations which are provided in a subsequent section on the numerical

implementation of the estimation approach.

2.4 The estimation approach

The estimation approach is based on formulating the model in state space form so that the

model is represented by a measurement equation, and a transition equation. In our case

the state space model is non-linear and the specific approach relies on a general state space

9



estimation approach suggested originally by Chen and Scott (1993) for estimation of models

of the term structure of interest rates.

The data are in the following observed at equidistant time points, tn, n = 0, . . . , N , and

∆ = tn+1 − tn. The transition equation describes the dynamics of the basic unobserved

state-variables. In our case, there are three state-variables which can be summarized by the

three-dimensional state-vector Xn = (ptn , δtn , vtn) where pt = logPt. The transition equation

is given by the discrete-time solution to the stochastic differential system in (1), (2), and (3)

between the observation time points.

The measurement equation relates the state-variables to the observed (log-) futures prices

and option prices.10 Following the approach in Chen and Scott (1993), we will assume that

three prices on soybean contingent claims are observed without measurement error. In particu-

lar, this allows one to filter out the three unobserved state-variables by solving three equations

with three unknowns at all observation time points. Let the vector Yn denote the panel data

observation of (log-) futures prices and options prices at time tn, n = 0, . . . , N . We have

Y ′

n = (Y ′

(1),n, Y
′

(2),n) where Y(1),n is the three-dimensional vector of contract prices observed

without measurement error while Y(2),n is the m-dimensional vector of contract prices that are

observed with measurement error. Formally, the measurement equation is given by





Y(1),n

Y(2),n



 =





f(1),n(Xn)

f(2),n(Xn)



 +





0

εn



 (22)

where 0 is a three-dimensional vector of zeros and εn, n = 0, 1, . . . , N , are serially uncorrelated

measurement error terms that are assumed identical m-dimensional normally distributed with

mean zero and variance-covariance matrix Γ; f(1),n and f(2),n are a three-dimensional valued

function and an m-dimensional valued function, respectively, that return the relevant theore-

tical value of the logarithm to the futures prices and options prices, as implied by the futures

and options pricing expressions in (10) and (17).

In our implementation, we assume that a short maturity at-the-money call option, the

corresponding futures price, and the futures price on a long maturity futures contract are

10In the concrete estimations, we have chosen to impose measurement noise on the logarithm to the futures

price which facilitates comparison with, e.g. Schwartz (1997), Schwartz and Smith (2000), and Sørensen (2002).

This implies that the measurement noise enters proportionally to the futures price. On the other hand, we

have chosen to simply add measurement noise to the observed option prices without transformation since, e.g.

a logarithmic transformation will inappropriately tend to allow more noise on in-the-money options than on

at-the-money options and out-of-the-money options.
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observed without measurement error; i.e. these are the contract prices that enter Y(1),n at the

different sample dates. (Y(2),n has dimension m = 10 in our implementation since six (log-)

futures prices and four option prices are assumed observed with measurement noise.) Having

observed a total of three futures and option prices without measurement noise, it is possible to

filter out the three-dimensional state-vector Xn by simply inverting the relationship between

Y(1),n and Xn, as given by the pricing expressions in (10) and (17) that are the entries in f(1),n.

Specifically, we have the relationship

Xn = f−1
(1),n(Y(1),n). (23)

Whenever we refer to the value of Xn in the following, it is assumed that Xn is observed

through the filtering equation (23).

Let ψ denote the set of parameters entering the description of state-variable dynamics in

(1), (2), and (3) and in the pricing results in (10) and (17). We are interested in estimating the

parameters in ψ as well as the variance-covariance matrix Γ of the measurement error terms in

the measurement equation (22). Following Chen and Scott (1993), the log-likelihood function

has the following form:

l(Y0, Y1, . . . , YN ;ψ,Γ) =
∑N

n=1

[

log p(Xn|Xn−1) − log
∣

∣

∣

∂f(1),n

∂X

∣

∣

∣

− m
2 log(2π) − 1

2 log |Γ| − 1
2ε

′

nΓ−1εn

]

.

(24)

The first term on the right-hand side of (24) is the log-likelihood value of the implied state-

variables as filtered through the relationship in (23), and p(Xn|Xn−1), n = 1, . . . , N , denote

the relevant conditional densities of the Markovian discrete-time solution to the stochastic

differential equation system (1), (2), and (3) which describes the transition equation.11 The

second term on the right-hand side of (24) is the Jacobian determinant of the transformation

between the observed contract prices in Y(1),n and Xn. The last terms on the right-hand side

of (24) are the likelihood of the normally distributed measurement errors.

The estimation results obtained in the following analysis is obtained by numerical maxi-

mization of the log-likelihood function in (24). However, since the conditional densities

p(Xn|Xn−1), n = 1, . . . , N , are not known in closed-form analytical form, we have chosen

to rely on a quasi maximum likelihood approach where these conditional densities are substi-

tuted by densities from the three-dimensional normal distribution; the appropriate first and

11Note that the involved stochastic differential equation system is inhomogeneous due to the seasonality

feature of the model, though, the time-dependence of the relevant conditional densities is suppressed in (24).
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second order moments follow from Lemma 1, as stated and proved in the appendix. Likewise,

in our calculation of standard errors on parameter estimates, we follow the general quasi maxi-

mum likelihood approach suggested originally by White (1982); see also, e.g. Hamilton (1994),

pp. 126,145.

The concrete implementation and optimization involves many numerical considerations

and, therefore, we have allocated the following subsection to this issue. However, at this

point it can be noted that the variance-covariance matrix of the measurement errors, Γ, can

be concentrated out of the log-likelihood function. From the first order conditions of the

maximization of (24), it is thus seen that the estimator of Γ (for a given set of parameters ψ)

has the form

Γ̂ =
1

N

N
∑

n=1

εnε
′

n =
1

N

N
∑

n=1

(

Y(2),n − f(2),n(Xn)
) (

Y(2),n − f(2),n(Xn)
)

′

(25)

and, N Γ̂ ∼ Wm(N,Γ) where Wm(N,Γ) is the m-dimensional Wishart distribution with N de-

grees of freedom. Substituting the expression for Γ in (25) into the log-likelihood function (24)

simplifies the numerical optimization problem since we only have to determine the maximum

likelihood parameter values of ψ with a numerical optimization routine. The numerical op-

timization is done in GAUSS using the method of Broyden, Fletcher, Goldfarb and Shanno

(BFGS). We use the standard GAUSS options in the numerical BFGS optimization algorithm.

2.5 Numerical implementation

In our implementation of the above estimation approach we observe data at a weekly frequency

and at a total of 753 sample dates. At each sample date we have a panel-observation consist-

ing of eight (log-) futures prices and five option prices. The evaluation of the log-likelihood

function, hence, involves the evaluation of a large number of theoretical futures and options

prices using the formulas stated in (10) and (17). In this section we will briefly describe how

these pricing expressions are implemented and how the log-likelihood function is calculated in

a relatively fast but still accurate way. Using the implementation described in the following,

the evaluation of a single value of the log-likelihood function in GAUSS takes about one minute

on a Pentium III 500 MHz computer while the evaluation of a single option price on average

is done in about one hundredth of a second. A single iteration of the BFGS algorithm takes

about one hour, and the parameter estimates presented in a subsequent section are obtained

by using a total of about three weeks of computer time.
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The evaluation of a futures price as in (10) requires solving the system of ordinary differen-

tial equations in (12) and (13). The numerical solution to (12) and (13) is implemented using

the classical Runge-Kutta method of fourth order accuracy combined with Richardson extra-

polation. The discrete time steps used in the classical Runge-Kutta method are always chosen

in order not to exceed five days or, equivalently, (5/365.25=) 0.01369 years. In the Richardson

extrapolation this solution is combined with the Runge-Kutta solution with half as many time

steps by using the relevant Richardson extrapolation formula for numerical methods of fourth

order accuracy.

The evaluation of an option price as in (17) requires the numerical evaluation of integrals of

the form in (18). The numerical integration is implemented by the Gauss-Laguerre quadrature

formula using twenty points in the evaluation of the integrand function. Each evaluation of

such an integral thus requires solving numerically the system of ordinary differential equations

in (20) and (21) for twenty different values of the running variable φ as well as simultaneously

solving the ordinary differential equation for B(·) in (12) since the coefficients σ2
F (·) and σFv(·)

in (20) are functions of B(·). This system of forty one (= 20 + 20 + 1) first order differential

equations is solved simultaneously using the classical Runge-Kutta method combined with

Richardson extrapolation following exactly the same procedure as described for futures prices

above.12

Evaluation of the log-likelihood function in (24) requires inverting the relationship between

the unobserved state-vector Xn and the observed prices in Y(1),n, as described conceptually by

the filtering equation (23). In our implementation, we assume that a short maturity at-the-

money call option, the corresponding futures price, and the futures price on a long maturity

futures contract are observed without measurement error. The inversion is carried out by

first solving for the implied value of the volatility state-variable, vtn , in the call option price

by solving one equation with one unknown by the Newton-Raphson method (in this step we

use that the underlying futures price is observed without noise). In solving for the implied

12We checked the numerical precision of this procedure for option prices by considering the Heston (1993)

model for a variety of times to maturity, option moneyness, and parameter values. Option prices were compared

to prices obtained by the Heston (1993) closed-form expression (using forty points in the evaluation of the

involved integral). Running through different grids of parameter values, the worst case deviation was of order

10−6 for values of the underlying and option prices compatible with observed prices; as a comparison, the option

prices in the data used in the estimation are quoted with only three decimal points.
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volatility state-variable by the Newton-Raphson method, we use that

∂C

∂v
= e−r(τ−t)

[

F
∂P1

∂v
−K

∂P2

∂v

]

(26)

and
∂Pj

∂v
=

1

π

∫

∞

0
Re

[

bj(t)
e−iφ ln[K]fj(x, v, t;φ)

iφ

]

dφ , j = 1, 2 (27)

which follows by differentiating the call option expression in (17) and (18) for a fixed value

of the underlying futures price. Evaluating the relevant derivatives in this step thus require

evaluation of integrals of the same form as in the evaluation of options prices, and the same

procedure is applied in this case.13 Having solved for the implied value of the volatility state-

variable, we use the exponential affine structure of the futures prices (i.e. the log-futures prices

are affine functions of the state-variables) to solve for the values of the two remaining state-

variables ptn and δtn by simply solving two linear equations with two unknowns. Furthermore,

the Jacobian determinant of the transformation between Y(1),n and Xn is calculated as a by-

product of the numerical calculations in this inversion approach since we have that

∣

∣

∣

∣

∂f(1),n

∂X

∣

∣

∣

∣

=
∂C

∂v
(D(tn;Ts) −D(tn;Tl)) (28)

where Ts and Tl refer to the relevant maturities of the involved short and long futures contract

and D(·) is defined in (11).

Finally, the relevant conditional means and conditional variances that enter the normal

density functions in the quasi maximum likelihood approach are determined by solving nu-

merically the integrals in (30) and (31), as stated in Lemma 1 in the appendix. Since data are

observed at a weekly frequency we have ∆ = 1/52 = 0.01923 years. The numerical integration

is in this case done by using the trapezoidal rule and using the second-order Runge-Kutta

method (Heun’s method) with one time step to solve the differential equation in (32) and

obtain the value of Φ in the right-end-point of the integrals. Many of the entries in (30) and

(31) can be calculated in explicit analytical form, but not all, and the suggested approximation

is very accurate compared to for example a left-end-point approximation of the integrals. The

later approximation corresponds to the case where the relevant normal densities in the quasi

maximum likelihood approach are obtained by an Euler approximation of the continuous-time

13It can be noted that the relevant system of forty one first order differential equations must only be solved

once at each sample date in order to determine the relevant derivatives in the different Newton-Raphson steps

as well as the calculation of all option prices with the same maturity.
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differential equation system in (1), (2), and (3). In our estimations we originally obtained

starting parameter values using such an Euler approximation, but with the specific data the

estimates and the likelihood of observations are not ignorably altered by going to a more

accurate approximation of the relevant moments in the conditional densities.14

3 Empirical results

In this section we will describe the soybean futures and options data and, subsequently, present

the formal estimation results based on the model and estimation approach presented above.

3.1 Data

The data consists of weekly observations of soybean futures prices and options on soybean

futures from CBOT in the period from the beginning of soybean options trading on CBOT in

October 1984 and to March 1999. The futures prices and option prices involved are settlement

prices at CBOT for Wednesdays (or Tuesday if Wednesday is unavailable). In fact, settlement

prices are available on a daily basis but the weekly sampling frequency is chosen mainly to

reduce problems due to microstructure issues such as daily price limits imposed by CBOT.

The soybean futures and options on soybean futures at CBOT are relatively liquid con-

tracts. For example, in 1991 (at the middle of our sampling period) soybean futures contracts

at CBOT are ranked number ten worldwide most heavily traded futures contract based on

daily volume in Ritchken (1996, pp. 22-23) and is one of the few futures contracts on physicals

ranked in top fifteen (only crude oil futures contracts at NYMEX and corn futures contracts

at CBOT are also ranked in top fifteen).15

The Futures data

The CBOT soybean futures have seven expiration months in the sampling period: January,

March, May, July, August, September, and November. At any particular date, more than

seven soybean futures contracts may be traded since for example futures with expiration in

14In particular, the likelihood is significantly affected for values of the volatility state-variable being very close

to zero.

15The industrial use of soybeans is based on “crushing” the soybean into soybean oil (used in cooking oil,

margarine, mayonnaise etc.) and soybean meal (a protein supplement used in livestock and poultry feeds), and

the CBOT also offers futures and options contracts on these principal soybean by-products.
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July this year and next year may be traded simultaneously. The maximum number of futures

contracts that are open at all the dates in our sample is eight. In order to have the same

number of futures observations at each sample date, we have thus chosen only to include the

eight futures contracts with the shortest time to expiration at any sample date.

In the estimation approach we need the times to maturity for the different futures contracts

at the different sample dates. The contractual terms at CBOT specify that physical delivery

(in the form of an inventory receipt) may occur at any business day throughout the expiration

month and, hence, that the last delivery day is the last business day of the month. However,

the last trading day of the futures contract is the seventh business day preceding the last

business day of the delivery month. Since the last trading day is the last day that a contract

can in principle be closed at CBOT without physical delivery, we have chosen this day as the

expiration date when constructing the times to maturity for the involved futures contracts in

the estimations presented in the next section.

Table 1 provides summary statistics with respect to the involved soybean futures contracts.

[ INSERT TABLE 1 ABOUT HERE ]

The table states the average number of days to maturity and mean and standard deviation

of all the soybean futures prices in the dataset. In addition, the tables provide summary

statistics for the futures contracts categorized into expirations months as well as the time to

maturity of the contracts. In the following, the terminology “1. Maturity” is used as notation

for the futures contract that has the shortest time to maturity at a given sample date; the “2.

Maturity” represents the futures contract with the second shortest time to maturity, and so

on.

The table suggests at least three features of the soybean futures prices that are captured by

the model in section 2. (i) Futures prices display a seasonal pattern since the soybean futures

price is on average high in July prior to the US harvesting and low in November after the US

harvesting. (ii) The variability of futures prices also seem to have a seasonal pattern since the

standard deviations for the futures prices, when grouped into expiration months, display the

same time pattern as for the level of futures prices. And, (iii) the variability of long futures

prices seems lower than that of short futures prices. The lower variation of futures prices with

a long time to maturity compared to futures prices with a short time to maturity is suggested

by the different standard deviations for the futures prices grouped into their time to maturity

in Table 1. The tabulated standard deviations are thus monotonically decreasing for increasing
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maturities. This pattern is consistent with the so-called “Samuelson hypothesis” that predicts

that long futures prices are less volatile than futures prices on contracts with short time to

maturity.

The time series aspects of the soybean futures data are illustrated in Figure 1.

[ INSERT FIGURE 1 ABOUT HERE ]

In the figure we have graphed the time-series for the futures contracts with the shortest time to

maturity and the futures contracts with the longest time to maturity over the sample period. A

visual inspection of the figure suggests that the time series of the futures price on the shortest

maturity contract is more volatile than the futures price on the longest maturity contract. In

particular, if one enter a horizontal line at the overall futures price mean at 627.49 cents per

bushel (cf. Table 1) in the figure, the deviations from this overall mean is more significant

for the short maturity futures price over the sample period. Again, this is in line with the

“Samuelson hypothesis” and a feature of the soybean futures prices which is captured in the

formal modeling in section 2 by including a mean-reverting convenience yield; cf. the discussion

in Bessembinder, Coughenour, Seguin and Smoller (1996).

The options data

The involved CBOT soybean option contracts are options written on soybean futures prices.

The relevant futures contracts expire in: January, March, May, July, August, September,

and November. The option contract expires around one month prior to the expiration of the

underlying futures contract. Specifically, according to the CBOT contract specification, the

last trading day is the Friday which precedes by at least five business days the last business

day of the month preceding the option month. The expiration date is the Saturday following

the last trading day.

Both call options and put options are traded. Also, at any particular sample date a variety

of options contracts, which differ with respect to the underlying futures and with respect to

the strike prices, are quoted. However, in our sample we have only included five call option

contracts at each sample date. The specific call option contracts are selected in order to

represent very liquid contracts. The sample thus includes three call option contracts that

have the shortest possible time to maturity (though, we ignore very short contracts so that

all the considered options have at least 15 days to maturity). The three call options with a

short maturity are an at-the-money (ATM) option, an out-of-the-money (OTM) option, and
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an in-the-money (ITM) option. The ATM option is chosen as the call option that has a strike

price as close as possible to the current underlying futures price. The OTM call option is the

quoted call option with a strike price just higher than the ATM call option and, likewise, the

ITM call option is the quoted call option with a strike price just lower than the ATM call

option. Furthermore, our sample includes two longer term ATM options that are written on

the next maturing futures prices.

The CBOT options on soybean futures are American-style. Since our pricing formulas are

relevant only for European-style options, the option data are adjusted for the early exercise

premium. The early exercise premia is estimated using a standard Black-Scholes framework

and applying a trinomial lattice model combined with Richardson extrapolation, following

Broadie and Detemple (1996).16 The relevant interest rates are obtained by interpolation of

3 months, 6 months, and 1 year to maturity T-bills available from the Federal Reserve H.15

release. The rates are quoted on a banker’s discount basis and converted appropriately; see

Jarrow (1996), chapter 2. The American-style CBOT option prices minus the estimated early

exercise premia are the European-style input data used in the empirical analysis.

Table 2 provides summary statistics on the involved input call option prices.

[ INSERT TABLE 2 ABOUT HERE ]

Instead of exhibiting summary statistics of the raw option prices, we have chosen to represent

the option data by implied volatilities in Table 2. The relevant implied volatilities of the

involved options on soybean futures are backed out by using the Black (1976) formula. Three

features of the option data can be pointed out: (i) The implied volatilities have a clear seasonal

pattern, (ii) the implied volatilities for the ATM options are slightly increasing as a function

of time to maturity, and (iii) the volatilities on the short maturity contract suggest a “smile”

or “smirk” pattern. Note, however, that the “smirk” is downward sloping as a function of the

strike price in contrast to the upward sloping “smirk” in equity index options observed after

the October 1987 market crash; see, e.g. Rubinstein (1994).

In Figure 2 the time series properties of the implied volatilities for the shortest ATM option

are displayed.

[ INSERT FIGURE 2 ABOUT HERE ]

16The results in Broadie and Detemple (1996) suggest that this method is efficient with respect to accuracy,

and we are grateful to Mark Broadie for supplying the relevant program code while one of the authors was

visiting Columbia University.
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As suggested by Figure 2, the implied volatilities are quite variable over time. This, com-

bined with the clear seasonal pattern in implied volatilities displayed in Table 2, is our basic

motivation for the formal modeling of the stochastic volatility in section 2.

3.2 Estimation results

In this section we will present and discuss the estimation results based on the above data set

and the estimation approach described in section 2.4. We start by discussing the full-sample

estimates but, subsequently, we also present estimation results where the data is split into two

sub-samples in order to investigate the parameter stability of the model over time.

The parameter estimates obtained from the state space estimation approach and the full

sample of observations are tabulated in Table 3.

[ INSERT TABLE 3 ABOUT HERE ]

In the following discussion of the full-sample parameter estimates in Table 3, we will start

by focusing on the structural parameters of the soybean spot price volatility process and the

convenience yield process parameters and, subsequently, we discuss the implications of the

estimated measurement noise structure.

Stochastic volatility and seasonality

The volatility of the implied soybean spot price is determined by the process vt and the seasonal

function ν(t). In particular, as inferred from the spot price dynamics in (1), or the risk-neutral

analog in (4), e2ν(t)vt is the rate of variance on the soybean spot price and, hence, eν(t)√vt is

the spot price volatility. Since the seasonal function ν(t) captures any regular and systematic

seasonal pattern in the spot price volatility,
√
vt can be interpreted as the seasonally adjusted

spot price volatility. Under the risk-neutral measure, the long-run level for vt is estimated to be

0.0679 (= θ/κ) which implies a value of the long-run seasonal adjusted volatility of about 26.1%

(=
√

0.0679). Furthermore, the volatility process exhibits a strong degree of mean-reversion

since the parameter estimate of κ is significantly higher than zero.17 The parameter estimate

of κ (= 2.2708) implies that the so-called half-life of shocks to the seasonal adjusted variance

rate vt is 0.305 years (= log 2/κ), under the risk-neutral probability measure. Basically, this

17Throughout the discussion we will refer to an estimate being significantly differently from a given value if

the given value is not within the estimate plus/minus two standard deviations (the usually applied asymptotic

95% confidence interval). The 95% confidence interval for κ is thus [1.7400, 2.8016].
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means that it takes about three to four months before a given shock in volatility (e.g. due to

changes in harvest expectations or temporary changes in demand for soybeans) is expected to

have levelled off to half of its immediate effect. Under the true probability measure, however,

the degree of mean-reversion is even stronger and estimated to be 5.0754 (= κ− λvσv) which

corresponds to a half-life of shocks of 0.137 years, or about one and a half months. Moreover,

under the true probability measure the long-run level of the seasonal adjusted volatility, as

reflected in the estimates in Table 3, is 17.4% (=
√

θ/5.0754). These long-run volatility levels

seem well in accordance with the overall average Black-Scholes implied volatility of 19.99%,

as tabulated in the summary statistics in Table 2.

The seasonal variation in volatilities is captured by the seasonal function ν(t) defined in (8).

This function is a sum of self-repeating trigonometric functional terms. In our estimation we

have on beforehand limited the number of terms to two in order to keep the model sufficiently

parsimonious for numerical optimization to be possible and, hence, in our implementation this

function is described by a total of four parameters: ν1, ν
∗

1 , ν2, and ν∗2 .18 All the seasonal

parameters are estimated to be significantly different from zero. The seasonal pattern in

volatilities that the parameter estimates reflect is illustrated in Figure 3 where the seasonal

function ν(t) is plotted.

[ INSERT FIGURE 3 ABOUT HERE ]

The figure illustrates that the seasonal function has two local maxima and two local minima

(though, this feature is much more clear for the convenience yield seasonal function α(t), as

to be discussed below). The global maximum is achieved in late July about two months prior

to the beginning of the US harvest (which occur from mid to late September and through

October).19 The flowering and pod filling of the plant, which is of crucial importance for

the final seed yield and soybean production occur around this time, and this is thus a period

where adverse weather conditions may significantly affect next year’s US supply of soybeans.

At this time of the year the volatility in soybeans is estimated to be 44% (= e0.365 − 1)

18We have estimated the model including additional terms in the seasonal functions ν(t) and α(t) (the analog

for the convenience yield process) but keeping all other parameters fixed at the estimated values in Table 3. This

did not affect the estimated seasonal patterns substantially. Also, it may be noted that in a similar analysis with

futures price observations and seasonality in convenience yields, Sørensen (2002) limits the relevant number of

terms involved in the seasonal function to two based on a formal criteria, the Akaike Information Criteria.

19The global maximum of the seasonal function ν(t) is reached on July 21 where the function value is 0.365

while the global minimum is reached on March 23 where the function value is -0.249.

20



above “normal,” where normal refers to the case when ν(t) = 0. On the other hand, the

soybean volatility is low in March prior to the US planting (which occur in May and June)

and at its lowest the volatility is 22% (= 1 − e−0.249) below normal. As discussed above,

the seasonal adjusted volatility reverts over time to a long-run level of around 17.4%. The

estimated seasonal pattern, however, suggests that the mean-reverting level is closer to 25.1%

(= 1.44 × 17.4%) in July and 13.6% (= 0.78 × 17.4%) in March. These mean-reverting levels

are slightly lower but of the same magnitude as the average volatilities tabulated in Table 2.

Note in addition that in Table 2 the minimum average implied volatility is obtained for the

options written on the May futures while the maximum average implied volatility is obtained

for the option written on the September futures. But since these option contracts expire one

month prior in April and August, respectively, and since the average times to maturity are

78.49 days and 59.04 days, these option contracts are precisely the contracts that cover the

relevant periods through late March and late July, respectively.

Convenience yields and theory of storage

The parameters estimated for the convenience yield process in (2), (5), and (7) also reveal a

clear seasonal pattern. In particular, the convenience yield process reverts to a level that de-

pends on the season, as reflected in the seasonal function α(t). The degree of tendency towards

this “normal” seasonal level is described by the parameter β. Note that while the convenience

yield drift term has this simple interpretation under the risk neutral measure in (5), the dy-

namics are more complicated under the true probability measure since the convenience yield

risk premium is assumed proportional to the time-varying volatility (including the seasonality

feature of volatility). However, since the convenience yield risk premium parameter λδ is esti-

mated close to (and not significantly different from) zero, we will continue the discussion as if

λδ = 0 or, equivalently, as if the risk-neutral dynamics and the true dynamics coincide. The

estimate of β is 0.8145 which imply a half-life of unexpected shocks to the convenience yield

process of about 0.851 years (= log 2/β). Hence, the mean-reverting tendency is seemingly

less strong than the similar feature in the volatility process, as discussed above. The seasonal

function α(t) is described by a total of five parameters: α0, α1, α
∗

1, α2, and α∗

2. These are all

estimated to be significantly different from zero. The parameter α0 is a constant and without

a seasonality feature the long-run level for the convenience yield process would thus be 0.0751

(= α0/β); we interpret this as the “normal” level of the convenience yield when adjusted for
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seasonality.

The seasonal pattern of the mean-reverting level of the convenience yield is also illustrated

in Figure 3. The seasonal variation in α(t) is very similar to the seasonal variation in ν(t),

though amplitudes are different. However, it is much more clear that α(t) has two local maxima

and two local minima.20 Again, the global maximum is achieved in July about two months

prior to the beginning of the US harvesting while the global minimum is achieved at the end

of the US harvesting. While the US soybean production accounts for 50-60% of world soybean

production other key producers are Argentina and, especially, Brazil which are both located

in the Southern Hemisphere. Together these countries account for 20-30% of world soybean

production. The Brazilian soybean harvesting takes place in March and April and the local

maximum in Figure 3 is reached about two months earlier, while the local minimum is reached

during the ending of the Brazilian soybean harvesting. The seasonal pattern in convenience

yields is thus related to the supply of soybeans. When supplies are low convenience yields are

high, and vice versa. This is consistent with the theory of storage which predicts a negative

relationship between inventories and convenience yields. The basic idea is that the holding of

physical inventory of soybeans gives rise to a convenience yield from being able to profit from

temporary soybean supply shortages or keep a production process running especially when

inventories are low. Furthermore, the parameter estimates suggest that the soybean spot price

and the convenience yield are positively correlated with a correlation coefficient of 0.3979.

Following the above kind of reasoning, this is also consistent with the observation that when

supplies and inventories are scarce the equilibrium soybean spot price and the convenience

yield are simultaneously high; and vice versa when supplies and inventories are plenty.

On the other hand, supporters of the theory of storage often view the convenience yield as

an option to profit from temporary shortages of the particular commodity. This would suggest

a positive correlation between the convenience yield and the volatility; however, this view is

not supported by the parameter estimate of ρ23 which is not significantly different from zero

and even estimated negatively.

20The global maximum of the seasonal function α(t) is reached on July 15 where the function value is 0.746,

while the global minimum is reached on October 30 where the function value is -0.723. A local maximum is

reached on February 7, and a local minimum is reached on April 16.

22



Inverse leverage effects

The correlation coefficient between the soybean spot price and the soybean volatility is esti-

mated to be 0.4078. This reflects that the volatility tends to be high when soybean spot prices

are high and in which case supplies/inventories tend to be scarce and the arrival of new supply

or demand information may have significant effect on prices. While this positive correlation

thus seems natural and an intuitively appealing feature for commodities like soybeans, this is

different from equity markets where spot prices and volatilities are usually estimated to be

negatively correlated; in equity markets this phenomenon is often referred to as the leverage

effect. Moreover, this feature is consistent with the observation that the volatility “smirk” in

soybean option prices has opposite slope of that implied from equity options after October

1987, as described in our data description. Note also that the estimated positive correlation

between the spot price and the volatility seems intuitively to support the observation that

OTM call option should trade at relatively higher implied volatilities. Thus, in order to have

a positive payoff on the call option, the underlying spot price must increase and, since the

volatility in this case also tends to increase, this will strengthen the upward potential of the

particular option (while keeping downside risk limited).

Risk premia and investment returns

As seen from Table 3, in all cases the risk premia parameters are estimated with large standard

errors. Only the risk premium on volatility risk is significantly different from zero, and the

implications with respect to the long-run level for the seasonal adjusted volatility under the

risk-neutral measure, as reflected in market prices, and the true probability measure was

discussed earlier on. While no strong inference can be drawn from the other risk premia

estimates, it seems relevant to consider briefly the implications of the parameter point estimates

for the implied excess returns on e.g. soybean futures positions. We will consider an investor

who exposes himself to soybean price risk by going long in futures contracts and at the same

time places an amount equal to the futures price in a safe bank account. Since the drift

rate of the futures price is zero under the risk-neutral probability measure, the excess return

on this investment policy is described by the drift rate of the futures price under the true

probability measure. Using Ito’s lemma on the futures price expression in equation (10), and

by comparison with the risk-neutral dynamics of the futures price in (14), it is thus seen that
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the expected rate of excess return on this investment position is

Et

[

dFt(T )

Ft(T )

]

/

dt =
(

λP e
ν(t) + λδσδe

ν(t)D(t;T ) + λvσvB(t;T )
)

vt (29)

where D(t;T ) and B(t, T ) are described in (11) and (12). Assume that we are looking at the

futures position at May 17 in a given year; this date is chosen as a point in time t where

the seasonal component in volatility is zero (i.e. ν(t) = 0). Also, assume that the spot price

volatility is
√
vt = 0.20 (i.e. vt = 0.04). If the involved futures contract is very short (i.e. t = T ),

we have that D(t; t) = B(t; t) = 0 and that the position is only exposed to spot commodity

price risk. Inserting the parameter point estimates in Table 3 into (29), the expected excess

return in this case is negative and equal to -2.51%. Longer term futures prices are negatively

related to the convenience yield (see equations (10) and (11)). Hence, since the risk premium

on convenience yield risk is estimated negative, longer term futures contracts will have a higher,

and possibly positive, overall risk premium when using the point estimates in Table 3. Also,

as seen by numerical inspection, futures prices at the point estimates are negatively related to

volatility. Since the risk premium on volatility risk is estimated negative, this also implies that

longer term futures contracts will have a higher, and possibly positive, overall risk premium.

However, when solving (11) and (12) for D(t;T ) and B(t, T ), and by insertion in (29), we find

that the overall expected excess return is -1.95% if the involved futures contract has time to

maturity equal to six months. Likewise, the overall expected excess return is -1.77% if the

involved futures contract has time to maturity equal to one year.21 In all the cases considered

above, the risk premium on the long futures investment position is negative. Furthermore, since

the futures price is expected to drift downwards this is also a case where the futures price is

above the expected future spot price, and thus a situation usually referred to as “contango.”22

On the other hand, the only risk premia parameter which is significantly different from zero

is λv and if we set λP = λδ = 0, normal backwardation would be the situation. It is thus

concluded that no strong inference can be drawn from the risk premia point estimates with

respect to the quantitative implications as well as the qualitative implications for expected

soybean investment returns.

21By solving (11) and (12) numerically, we in the particular cases find that B(t; t+0.50) = -0.03151, D(t; t+

0.50) = −0.41071, B(t; t + 1.00) = -0.03475, and D(t; t + 1.00) = -0.68403.

22see, e.g. Hull (2000, p. 74) for this definition of contango versus normal backwardation.
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Structure of measurement error covariance matrix

The measurement noise term added in the state space specification of the model is estimated

to have a covariance matrix as implied by the stated correlation matrix of measurement errors

in Table 3. Thus, using the one-to-one relationship between the tabulated correlation matrix

(with the relevant estimated standard deviation in the diagonal), it is straightforward to

obtain the relevant covariance matrix, and vice versa. Moreover, applicable standard errors

on the covariance matrix can be obtained by using the result stated in section 2.4 that N Γ̂

is Wishart distributed. In particular, having N=753 observation dates the standard errors on

the standard deviation estimates in the diagonal can be obtained as 0.0364 (= 1/
√

753) times

the true standard deviation parameter (which, as usual, may by approximated by the point

estimate). Since we are only interested in the overall structure of the measurement errors, we

have only tabulated the point estimates on the covariance matrix in Table 3, and, in addition,

we have chosen to represent the covariance matrix in the form of the implied correlation matrix

in order to focus on a normalized measure of how the model errors co-vary which potentially

could give some indications and directions for how to improve the formal underlying futures

and option pricing model.

The measurement noise error vector has dimension ten, as described in the data description.

The first four entries in the vector are related to option prices in the following order: a short

maturity in-the-money call option, a short maturity out-of-the-money call option, a medium

maturity at-the-money call option, and a long maturity at-the-money call option. In general,

the longer the maturity the less precise is the formal model in providing at-the-mark option

prices, as can be inferred from the higher standard deviations on the measurement error terms

for long maturity contracts. Also, it is evident that the measurement errors on the medium

maturity and long maturity call options are positively correlated so that if the medium maturity

call option is underpriced by the theoretical option pricing model then the long maturity call

option contract will also tend to be underpriced; the point estimate of the relevant correlation

coefficient is 0.7310. It is likewise seen that the measurement errors on the short in-the-money

call option and out-of-the-money call option are negatively correlated. This could be consistent

with, and thus indicative of, an even steeper empirical volatility surface than produced by the

formal option pricing model with parameters as in Table 3 since a relatively flat model volatility

curve would tend to produce undervalued in-the-money options whenever out-of-the money

options are overvalued, and vice versa.
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The last six entries in the measurement noise errors correspond to relative errors on fu-

tures prices with different times to maturity. Number five entry relates to the shortest time to

maturity futures contract observed with measurement error, number six relates to the second

shortest time to maturity futures contract observed with measurement error, and so on. In

the estimation approach we have assumed that futures prices on a short maturity contract

and the longest available futures contract are observed without measurement error. Hence, it

is not surprising that short and long contracts are seemingly fitted better by the model than

medium maturity contracts, as reflected in the higher standard deviations on the imposed

measurement errors for medium maturity contracts. Note that the standard deviations on the

individual error terms on futures prices are estimated of the same numerical magnitude as in

Schwartz (1997), Schwartz and Smith (2000), and Sørensen (2002) who use only commodity

futures data and Kalman filtering estimation approaches. For example, Sørensen (2002) pro-

vides results for soybean futures where the measurement errors are assumed uncorrelated and

with identical standard deviation which he estimates to be 0.187. As apparent from the corre-

lation matrix in Table 3, especially measurement errors for contracts that have maturities close

to each other are highly positively correlated while the correlations decrease systematically for

contracts having increasingly dispersed maturities.

Finally, the estimated correlations indicate slight co-variation between option prices and

futures prices measurement errors. In particular, the measurement errors related to short ma-

turity options have higher correlations with the measurement errors related to short maturity

futures while the medium/long maturity option measurement errors are more correlated with

measurement errors on futures prices of similar maturities. The correlations are in general

positive, however, no clear pattern is evident since the measurement error related to short ma-

turity in-the-money call options is negatively correlated with the measurement error on futures

prices of similar maturity while the short maturity out-of-the-money call option measurement

error at the same time is positively correlated with the same futures price measurement error.

Structural changes

In order to provide insights into whether the basic dynamic commodity price and contingent

claims pricing model is robust over time, we have estimated the model for two equally long

non-overlapping sub-periods. The relevant sub-samples thus cover the periods: October 1984

to November 1991 and November 1991 to March 1999. This investigation is especially mo-
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tivated by qualitative considerations such as: Does seasonal patterns change systematically

over time? And, are correlation structures qualitatively robust over time? The following ana-

lysis intentionally focuses on these conceptual issues rather than on quantitative econometric

considerations with respect to diagnostic checking of the estimated model.

Seasonal patterns may vary over time due to especially production and storage innovations

as well as changes in government policies with respect to intervention in grain markets. For

example, Frechette (1997) analyzes the “flattering” of the soybean futures profile up through

the 1970s where the Brazilian soybean production increased rapidly and changed the seasonal

pattern in world soybean production. However, such dramatic changes in world soybean

production patterns have not occurred in the time periods relevant for our investigation. Also,

although US government policies prevailing in the 1970s and 1980s provided a floor under

grain prices, soybeans had a relatively low support level and, thus, also no dramatic changes in

government intervention policies with respect to soybeans seem to have occurred in the relevant

estimation periods. In sum, it is not obvious beforehand what kind of parameter instability

one would expect to find due to changes in soybean markets conditions when splitting the data

into sub-samples.

The sub-period estimation results are tabulated in Table 4 and Table 5, respectively.

[ INSERT TABLE 4 AND TABLE 5 ABOUT HERE ]

We will be brief in our discussion of the differences between the estimates in the two sub-

periods and will mainly point out and focus on differences in the persistence of shocks, seasonal

patterns, and correlations of relevance to the above full-sample discussion of the relation to

the theory of storage and the “inverse leverage effect.”

It may first be noted that volatility shocks and convenience yield shocks seemingly are more

persistent in the first sub-period than the second sub-period, as reflected in the estimates of

the mean-reversion parameters κ and β. Thus, the estimates of κ indicate that, under the

risk-neutral measure, the half-lives of shocks to volatility equal 0.940 years in the first sub-

period and 0.160 years in the second sub-period (while the full-sample analog is 0.305 years,

as discussed earlier). While this is true under the risk-neutral measure, as reflected in options

and futures prices, the relevant mean-reversion parameter under the true probability measure

is given by κ − λvσv. Hence, under the true probability measure the persistence of shocks to

the volatility is much more similar across the two sub-periods, and relevant half-lives are 0.141

years and 0.093 years, respectively, as opposed to 0.137 years for the full-sample estimation
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results.

In order to see more clearly the estimated seasonality patterns in volatilities across the two

sub-periods, we have graphed the relevant seasonal components in Figure 4.

[ INSERT FIGURE 4 ABOUT HERE ]

The figure shows the estimated seasonal function ν(t) for the full-sample as well as the esti-

mated seasonal function for the first sub-period, ν1(t), and the estimated seasonal function

for the second sub-period, ν2(t). The estimated seasonal functions seem very similar with

amplitudes of similar magnitude and with minima and maxima attained at about the same

time of the year. The amplitude is slightly higher in the second sub-period and, if not simply

due to randomness, this could be due to the above-mentioned price floors maintained by the

US government programs up through the 1980s.

I Figure 5 we have similarly illustrated the seasonal patterns of the mean-reverting level of

the convenience yield as estimated in the first sub-period, α1(t), the second sub-period, α2(t),

as well as for the full sample, α(t).

[ INSERT FIGURE 5 ABOUT HERE ]

While the estimated functions attain minima and maxima at the same times of the year,

the amplitudes seem very different. However, though the amplitude for the first sub-period

estimation is much larger, it may be noted that the mean-reversion tendency is at the same

time much lower than for the second sub-period, as reflected in the β estimates. Hence, the

overall seasonal effect on the level of the convenience yield does not differ very substantially

across the two sub-periods.

Finally, it is seen from Table 4 and Table 5 that the estimated correlation coefficients (ρ12,

ρ13, and ρ23) are very similar across the two sub-periods. Thus, for example, the conclusion

that convenience yields do not behave like timing options is robust over time since in both

sub-periods the correlation coefficient, ρ23, between the convenience yield and the volatility

state-variable is close to zero and, in fact, consistently estimated slightly negative. Also, the

“inverse leverage effect” is robust over time since the correlation coefficient, ρ13, between the

spot price and the volatility state-variable is consistently estimated positively and of the same

magnitude across the sub-periods.
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4 Conclusions

In the paper we have set up a stochastic volatility model of commodity price behavior and

estimated the model parameters using panel data of soybean futures prices and soybean option

prices. The empirical analysis was based on an integrated time-series estimation approach

which makes use of the information in both the time series characteristics of the involved

soybean product prices as well as the information inherent in futures price structures and

option price structures across different exercise prices and maturities.

Besides estimating model parameters, which among other things facilitate implementation

of hedging strategies and related applications of the specific model, we find a clear seasonal

pattern in both volatilities and convenience yields. Also, our results are to some extent con-

sistent with the theory of storage in the sense that the estimations suggest that convenience

yields tend to be low when inventories/supply is high, and vice versa. However, our results do

not support the view that convenience yields are like timing options since convenience yields

are not positively correlated with volatility. Furthermore, we find a positive correlation be-

tween spot prices and volatility, as opposed to the so-called leverage effect in equity markets.

This, however, is consistent with a different sloping “smirk” in the implied volatility curve for

soybean options.
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Appendix

Lemma 1 Let pt = logPt. The conditional means and conditional variances of the process

Xt = (pt, δt, vt), described by the stochastic differential equation system (1), (2), and (3), are

given by

Et[Xt+∆] = Φ(t+ ∆)

(

Xt +

∫ t+∆

t

Φ−1(u)l(u) du

)

(30)

Vart[Xt+∆] = Φ(t+ ∆)

(∫ t+∆

t

Et [vu] Φ−1(u)Σ(u)Φ−1(u)′ du

)

Φ(t+ ∆)′ (31)

where

l(u) =




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θ


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ν(u) ρ23σvσδe
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
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

and where Φ is the unique solution to the matrix differential equation

dΦ(u)

du
= L(u)Φ(u) , Φ(t) = I (32)

with

L(u) =











0 −1 −1
2 + λP e

1
2
ν(u)

0 −β λδσδe
1
2
ν(u)

0 0 −κ+ λvσv











.

In particular, the conditional expectations entering the right hand side integral of (31) are

described by (30) and given by Et[vu] = vte
−κ(u−t) + θ

κ
(1 − e−κ(u−t)).

Proof: The dynamics of Xt = (pt, δt, vt) can be written in matrix form as

dXt = (L(t)Xt + l(t)) dt+
√
vt σ(t) dWt (33)

where σ(t) = diag[e
1
2
ν(t), σδe

1
2
ν(t), σv] is a diagonal matrix with the three arguments in the

diagonal and zeros off the diagonal. By using Ito’s lemma, and the definition of Φ in (32), it

is seen that X can be characterized as the solution to (s ≥ t)

Xs = Φ(s)

(

Xt +

∫ s

t

Φ−1(u)l(u) du+

∫ s

t

√
vu Φ−1(u)σ(u) dWu

)

. (34)

Note that
∫ s

t

√
vu Φ−1(u)σ(u) dWu, s ≥ t, is a martingale starting at zero at time t. Hence,

by taking conditional expectations in (34) (and setting s = t+ ∆), one obtains (30). Further-

more, since the two first terms on the right hand side of (34) are Ft-measurable, the result

in (31) follows by an application of e.g. Karatzas and Shreve (1991), Proposition 2.17, p. 144.
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Table 1: Summary statistics for soybean futures, 1984-1999.

Days to maturity Settlement prices

Contracts
Number of

observations Mean Mean Std. deviation

All 6024 209.53 627.49 86.08

Grouped into time to maturity:

1. Maturity 753 28.60 622.86 97.13

2. Maturity 753 81.75 624.82 95.24

3. Maturity 753 132.52 626.84 92.24

4. Maturity 753 183.57 627.88 87.92

5. Maturity 753 234.00 628.75 83.81

6. Maturity 753 284.36 628.99 80.09

7. Maturity 753 337.77 629.18 76.38

8. Maturity 753 393.63 630.59 72.68

Grouped into expiration months:

January 893 215.46 622.51 81.96

March 877 210.84 628.02 85.24

May 872 212.17 634.03 87.13

July 883 214.26 638.37 91.18

August 812 197.62 632.63 90.16

September 808 197.84 621.02 84.49

November 879 216.55 615.77 80.09
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Table 2: Summary statistics for soybean call options, 1984-1999.

Days to maturity Implied volatilities

Contracts
Number of

observations Mean Mean Std. deviation

All 3765 71.95 19.99 6.60

Grouped into time to maturity and moneyness:

1. Maturity – ITM∗ 753 40.50 18.88 6.53

1. Maturity – ATM∗ 753 40.50 19.61 6.99

1. Maturity – OTM∗ 753 40.50 21.58 7.19

2. Maturity – ATM∗ 753 93.71 19.81 6.38

3. Maturity – ATM∗ 753 144.69 20.06 5.51

Grouped into expiration months:

January 548 66.65 18.13 4.72

March 636 77.32 17.13 3.72

May 645 78.49 16.71 4.17

July 631 81.50 19.40 4.84

August 431 71.85 25.17 8.40

September 374 59.04 26.28 8.76

November 500 60.17 21.47 5.74

∗ The average call prices are: 30.58 for 1. Maturity – ITM, 15.68 for 1. Maturity – ATM, 8.31

for 1. Maturity – OTM, 25.25 for 2. Maturity – ATM, and 31.37 for 3. Maturity – ATM.
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Table 3: Parameter estimates for soybean contracts, Full sample: Oct. 1984 – Mar. 1999.

Volatility κ : 2.2708 θ : 0.1542 σv : 0.7414 ν1 : −0.4096 ν∗1 : −0.2626 ν2 : 0.2250 ν∗2 : 0.1293
parameters: (0.2654) (0.0085) (0.0299) (0.0387) (0.0483) (0.0229) (0.0223)

Convenience yield β : 0.8145 σδ : 0.9933 α0 : 0.0612 α1 : −0.2683 α∗

1 : 0.1915 α2 : 0.2338 α∗

2 : 0.2689
parameters: (0.2100) (0.1345) (0.0086) (0.0276) (0.0130) (0.0255) (0.0600)

Correlations and risk ρ12 : 0.3979 ρ13 : 0.4078 ρ23 : −0.0784 λP : −0.6274 λδ : −0.1282 λv : −3.7829
premia parameters: (0.0110) (0.0461) (0.0772) (1.3001) (1.2286) (1.5610)

Correlation matrix of measurement errors (standard deviation estimates in diagonal):











































0.9606

−0.3075 0.8040

0.0489 0.2150 2.4068

0.0164 0.1373 0.7310 3.4679

−0.2480 0.1719 0.1118 0.1053 0.0180

−0.1871 0.1153 0.1435 0.1549 0.8947 0.0265

−0.1236 0.0850 0.2187 0.2398 0.7175 0.9137 0.0279

−0.0638 0.0566 0.2922 0.3084 0.5302 0.7388 0.9238 0.0254

−0.0688 0.0755 0.2306 0.2765 0.3838 0.5751 0.7466 0.8870 0.0193

−0.1199 0.0808 0.1573 0.2042 0.2053 0.3663 0.4892 0.6014 0.8191 0.0116











































Log-likelihood function value: 8468.59

Notes: Heteroscedasticity-consistent standard errors from White (1980) in parentheses.
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Table 4: Parameter estimates for soybean contracts, 1. half: Oct. 1984 – Nov. 1991.

Volatility κ : 0.7373 θ : 0.1103 σv : 0.7626 ν1 : −0.3825 ν∗1 : −0.1448 ν2 : 0.2461 ν∗2 : 0.0861
parameters: (0.5038) (0.0110) (0.0282) (0.0371) (0.0423) (0.0332) (0.0186)

Convenience yield β : 0.3186 σδ : 0.7385 α0 : 0.0872 α1 : −0.2103 α∗

1 : 0.1571 α2 : 0.2300 α∗

2 : 0.2454
parameters: (0.1921) (0.0887) (0.0090) (0.0336) (0.0139) (0.0335) (0.0516)

Correlations and risk ρ12 : 0.3549 ρ13 : 0.4989 ρ23 : −0.0638 λP : −3.0441 λδ : −1.9042 λv : −5.4792
premia parameters: (0.0150) (0.1052) (0.0836) (2.0377) (1.6564) (1.8105)

Correlation matrix of measurement errors (standard deviation estimates in diagonal):











































1.0093

−0.1240 0.8056

0.1506 0.2121 2.6630

0.0842 0.1804 0.6474 3.6959

−0.2235 0.1148 0.1393 0.0651 0.0142

−0.1720 0.0662 0.0958 0.0409 0.9347 0.0219

−0.1396 0.0662 0.1087 0.0256 0.8492 0.9599 0.0251

−0.1216 0.0656 0.1563 0.0505 0.7250 0.8476 0.9381 0.0244

−0.1333 0.0901 0.0660 0.0475 0.5411 0.6404 0.7345 0.8644 0.0206

−0.1787 0.0821 −0.0131 0.0266 0.3112 0.3578 0.4195 0.5321 0.8027 0.0129











































Log-likelihood function value: 4205.60

Notes: Heteroscedasticity-consistent standard errors from White (1980) in parentheses.

39



Table 5: Parameter estimates for soybean contracts, 2. half: Nov. 1991 – Mar. 1999.

Volatility κ : 4.3447 θ : 0.2572 σv : 0.8736 ν1 : −0.4185 ν∗1 : −0.2587 ν2 : 0.2193 ν∗2 : 0.1421
parameters: (0.3286) (0.0144) (0.0351) (0.0190) (0.0268) (0.0108) (0.0103)

Convenience yield β : 1.1901 σδ : 1.1621 α0 : 0.0328 α1 : −0.1875 α∗

1 : 0.1777 α2 : 0.1489 α∗

2 : 0.1879
parameters: (0.0794) (0.1401) (0.0047) (0.0068) (0.0073) (0.0039) (0.0035)

Correlations and risk ρ12 : 0.3972 ρ13 : 0.5085 ρ23 : −0.0409 λP : −0.7322 λδ : −1.8687 λv : −3.5911
premia parameters: (0.0115) (0.0361) (0.1197) (2.1073) (1.9719) (2.8661)

Correlation matrix of measurement errors (standard deviation estimates in diagonal):











































0.9013

−0.4926 0.7990

−0.1575 0.3329 1.9643

−0.1543 0.2437 0.7839 2.5335

−0.2784 0.1928 0.0113 0.0066 0.0213

−0.2068 0.1145 0.0766 0.0743 0.8746 0.0303

−0.1114 0.0506 0.1487 0.1832 0.6274 0.8831 0.0297

−0.0207 0.0071 0.2015 0.2410 0.3607 0.6371 0.8998 0.0254

−0.0263 0.0403 0.1731 0.1870 0.1877 0.4560 0.6987 0.8859 0.0178

−0.0891 0.0948 0.1543 0.1252 0.0098 0.2526 0.4272 0.5733 0.8113 0.0107











































Log-likelihood function value: 4642.37

Notes: Heteroscedasticity-consistent standard errors from White (1980) in parentheses.
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Figure 1: Time series of soybean futures prices. The figure displays the futures prices on

the contracts with the shortest (1. Maturity) time to maturity and the longest (8. Maturity)

time to maturity over the full sample period from October 1984 to March 1999.
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Figure 2: Time series of implied volatilities on soybean call options. The figure

displays the implied volatilities on the at-the-money call option contracts with the shortest (1.

Maturity) time to maturity over the full sample period from October 1984 to March 1999.

42



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

- 0.75

- 0.50

- 0.25

0.00

0.25

0.50

0.75

1.00

PSfrag replacements

ν(t)

α(t)

Figure 3: The seasonal functions α(t) and ν(t). The figure displays the target seasonal

level of convenience yields, α(t), and the seasonal component in the soybean price volatility,

ν(t).
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Figure 4: The three volatility seasonal functions ν(t), ν1(t), and ν2(t). The figure

displays the seasonal component in the soybean price volatility for the full sample, ν(t), the

first sub-period, ν1(t), and the second sub-period, ν2(t)

44



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

- 1.50

- 1.00

- 0.50

0.00

0.50

1.00

1.50

2.00

PSfrag replacements

α(t)

α1(t)

α2(t)

Figure 5: The three convenience yield seasonal functions α(t), α1(t), and α2(t). The

figure displays the relative seasonal level of convenience yields for the full sample, α(t), the

first sub-period, α1(t), and the second sub-period, α2(t)
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