
Safeness of make-based incremental recompilation

Niels Jørgensen
Department of Informatics, Copenhagen Business School

Howitzvej 60, DK-2000 Frederiksberg, Denmark

nielsj@cbs.dk

ABSTRACT
The make program is widely used in the software industry to
reduce compilation time in large projects. make skips source
files that would have compiled to the same result as in the
previous build. (Or so it is hoped, at least.) The crucial
issue of safeness of omitting a full build-from-scratch is ad-
dressed by defining a semantic model for make. The model
is in some ways similar to models proposed for logic pro-
gramming languages, because makefiles, similarly to logic
programs, have no global variables and execution is query
driven. Safeness is shown to hold if a set of criteria are
satisfied, including soundness, fairness, and completeness of
makefile rules. The safeness result is useful for the makefile
programmer because these criteria, while stated formally,
are also intuitively reasonable, and may form a basis for a
kind of checklist for makefile rules. The rigorous semantic
definition for make may also be helpful in the construction
of tools for automatic makefile generation.

1. INTRODUCTION
The make program is widely used in the software industry

to reduce compilation time. It reads a makefile consisting of
rules with the following meaning: ”If file G is older than one
or more of the files D1, D2, etc., then execute command C”,
where D1, D2, etc., are source files that G depends on, and
C invokes compilation of G. This is characterized in [1] as
cascading incremental recompilation, because recompilation
spreads to other files along chains of dependency.

Historically, make originated [3] within the Unix/C com-
munity. It is the most useful with languages such as C that
allow for splitting source files into implementation and in-
terface (header) files, because then make’s cascading recom-
pilation can be taylored as follows: Recompile a file either
if the file itself changes, or an interface file on which it de-
pends changes – but not merely if there is a change in the
implementation of what is declared in the interface. This
may be called conventional recompilation (cf. [13]).

Despite the widespread use of make, there are relatively

few scientific or other publications on make. To my best
knowledge a rigorous semantic definition has not been given
in the previous work on make including the POSIX stan-
dardization effort [4]. A number of crucial questions – such
as what are the general criteria that a rule in a makefile
should satisfy ? and is incremental recompilation safe if
the dependency list of a rule has been changed ? – seems
to have not been adressed previously. As a consequence,
in many software development projects there is uncertainty
about how to use make. For example, the Mozilla browser
project publicly states that simultaneously the software is
built incrementally and from scratch, ”.. to make sure our
dependencies are right, and out of sheer paranoia .. ” [7]. In
Mozilla, incremental builds are used only to obtain a prelim-
inary indication of the success of, say a bug fix; subsequently
a program built from scratch is used for verification.

Safeness of make-based incremental compilation, the key
result of this paper, can be stated informally in terms of
three builds: If in a first step the appropriate derived files
have been created in an initial build-from-scratch, then in a
second step, the result of a make-based incremental build is
equivalent to the result of a (second) build-from-scratch.

The rigorous semantic definition – certainly in a modi-
fied, tutorial form – may be of interest to the makefile pro-
grammer since writing correct makefiles by hand is difficult,
and existing tools only automate standard tasks such as the
generation of rules for C files.

A clear definition of basic make execution is also of inter-
est to the designer of make-related tools, e.g. tools for gen-
eration of rules for new languages such as Java. (This was
the starting point for the research reported in this paper).
Using make with languages such as Java where compilers are
available with built-in features for incremental compilation,
is of interest in the following kinds of projects: First, make
is useful if there are chains of dependencies due to compila-
tion in multiple steps, analogously to the conventional use of
make for C source files created by the parser-generator yacc.
Second, in a build system that writes, e.g. configuration
information to log files, make is useful because compilation
of a file is invoked explicitly in the commands of rules, as
opposed to automatically inside a compiler.

Finally, projects such as Mozilla whose development model
is based on frequent building may save time if makefiles can
be verified to meet the criteria for safeness. Such verifica-
tion may employ abstract evaluation of makefile rules, as in
abstract interpretation [2].

The analysis framework comprises a semantic definition
for make which is in some ways similar to the semantic defi-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenArchive@CBS

https://core.ac.uk/display/17276924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


nition for (constraint) logic programs given in [6]. Makefile
execution bears resemblence with logic program execution
(as defined in, e.g., [5]). Makefile execution is query-driven,
and does not assign values to global variables. This similar-
ity with logic programs also motivates the use of the notions
of satisfiability of makefile rules and derivability of makefile
targets.

Our analysis framework additionally comprises a small
machinery for reasoning about the time-last-modified of files,
since coarse-grained make controls recompilation on the ba-
sis of the time-last-modified of files. In contrast, more fine-
grained variants of incremental compilation, including those
studied in [13; 1; 11], distinguish between what kind of
changes are made to source files.

Other related work includes scientific [3; 14] and tutorial
[8; 12; 9] publications on make and makefile generators such
as mkmf and makedepend. In restrospect it can be seen that
Stuart Feldman’s original paper on make [3] tacitly assumed
that makefile rules satisfy properties that guarantee safe-
ness. Walden [14] pointed to errors in makefile generators
for C and related tools, in particular in rules whose depen-
dencies were derived files (as opposed to source files), and
proposed new algorithms for such generators.

The preliminary Sections 2-5 define notation, the subset
of makefile syntax accounted for, the reference notion of a
build-from-scratch, and the command execution model.

The semantic definitions in Sections 6-7 begin with rule
satisfiability, whereafter operational semantics is defined in
terms of specifying the order in which rules are fired if they
are not satisfied.

Section 8 defines the notion of a build rule in terms of
idempotence and other criteria, and subject to these criteria
Sections 9-11 show soundness, completeness, and safeness of
make execution. Section 12 concludes.

2. NOTATION
Given sets D and E we write D → E for the set of func-

tions from D to E, D×E for the cartesian product of D and
E, ℘ D for the power set of D, and D∗ for the set of finite
sequences of elements of D. We write nil for the empty list,
and E ∈ L if E occurs in the list L. The concatenation of
lists ds, ds′ ∈ D∗ is written ds; ds′.

Functions are defined in curried from, i.e., having only
a single argument. The function space D → (E → F ) is
written as D → E → F . For a given function F : D →
E → E, the symbol Σ F is used for brevity to denote the
function which has range D∗ → E → E and is defined as
the following recursive application of F :

Σ F nil e = e
Σ F (d; ds) e = Σ F ds (F d e)

3. SYNTAX OF MAKEFILES
The semantic definition is for the following subset of the

language defined for make in the POSIX standard [4]:
The basic syntactic categories are Name and Command.

Command contains a trivial command nil. A rule R ∈ Rule
is of the form

T : Ds;C

and contains a target T ∈ Name, a (possibly empty) list of
dependenciesDs ∈ Name∗, and a command C ∈ Command.

pgm: codegen.o parser.o library # Rpgm

cc codegen.o parser.o library -o pgm

codegen.o: codegen.c definitions # Rcodegen.o

cc -c codegen.c

parser.o: parser.c definitions # Rparser.o

cc -c parser.c

parser.c: parser.y # Rparser.c

yacc parser.y

mv y.tab.c parser.c

Figure 1: A makefile directing the compilation of a C pro-
gram pgm. The four target rules are named Rpgm, Rcodegen.o,
etc.

A rule is said to define its targets. A makefileM ∈Makefile
is a finite set of rules no two of which define the same target.
An invokation of make comprises a makefile and a target list.
If the list contains exactly one element, we call it the initial
target.

Macro rules are omitted; this is without loss of gener-
ality because macro rules are expanded in a preprocessing
phase, leaving only target rules. Multiple rules defining the
same target are omitted; they can be rewritten into a single,
and semantically equivalent rule. Finally, we can add a rule
(default : T ;nil), where T is the first target defined in the
makefile, to account for the target defaulted to when the
target list of an invokation is empty.

No restrictions are imposed on what commands may oc-
cur in a rule.

Among the syntactical constructs not captured are suffix
rules, the special target/dependency separator ”::”, and flags
and options specified in make invokations.

A derived file G ∈ der M is a target occurring and M
and which is defined by some rule. A source file G ∈ src M
as any other target occurring in M . Finally, targ M =
(src M) ∪ (der M).

The rules shown in Figure 1 are as in Feldman’s [3] C

compilation example. In all examples command lines are
indicated by tabulation, which is by far the most common
in practice. (In the semantic definitions we use the semi-
colon alternative to keep rules within a single line; in fact,
both variations are POSIX compliant.) Rule commands in
examples comply with the syntax of the Unix Bourne shell.

4. BUILDING FROM SCRATCH
Safeness of make-based incremental recompilation will be

defined in Section 11 in terms of the reference notion of
a build-from-scratch defined in this section. A build-from-
scratch is the full, brute-force build in which everything is
compiled. It is defined in terms of a given makefile, consis-
tently with the common use of make to execute a build-from-
scratch upon using targets such as clobber of Figure 3 to
delete old derived files. Indeed, it is inconvenient to main-
tain the correct order of commands in a script file intended
for sequential execution.

The command order in a build-from-scratch is derived
from what is defined here as the induced make graph:

In the make graph G = 〈targ M,E〉 induced by a makefile
M , the set of edges E is the set of all ordered pairs 〈T,D〉
where D is a dependency in the rule in M defining T . The
direction of an edge is from target to dependency. A make
file is well-formed if the induced make graph is a directed



pgm
��

���� ?

XXXXXXXXXz
codegen.o parser.o

library

�
��	

@
@@R

�
��	

parser.c
XXXz

codegen.c definitions parser.y

XXXXz

Figure 2: The make graph induced by the makefile of Figure
1.

all: pgm # Rall

clean: # Rclean

rm *.o parser.c

clobber: clean # Rclobber

rm pgm

Figure 3: Building from scratch is often invoked upon clean-
ing up with targets such as clobber. If added to the rules
of Figure 1, Rclean deletes intermediary files, and Rclobber

deletes all files.

acyclic graph. Figure 2 shows the make graph induced by
the (well-formed) makefile of Figure 1.

We write G;M G′ if there is a path from node G to node
G′ in M’s induced make graph, possibly the trivial path from
a node to itself. We writeM|T for {(G : Ds;C) ∈M | T ;M G},
the restriction of M to the rules ”reachable” from T . Note
that ;M is a partial ordering on targ M . A sequence of
commands Cs is topologically ordered with respect to a well-
formed makefile M if the following holds for arbitrary rules
R = (T : Ds;C) and R′ = (T ′ : Ds′;C′) in M : if T ;M T ′

then C does not occur in Cs before C′.

Definition 1. Let M be a well-formed makefile. Then
command sequence Cs is a build-from-scratch of target T
with respect to M if it consists of the commands
{C | (T : Ds;C) ∈M|T } and is topologically ordered wrt.
M .

Example 1. The command sequence
(cc -c codegen.c);
(yacc parser.y ; mv y.tab.c parser.c);
(cc -c parser.c);
(cc codegen.o parser.o library -o pgm)

is a build-from-scratch of target pgm wrt. to the makefile of
Figure 1. (And so are two permutations of the sequence).

In the sequel all makefiles are assumed to be well-formed.
This is consistent with the standard practice of make report-
ing a syntax error in the presence of circularly dependent
targets.

5. COMMAND EXECUTION
The formal framework must capture the distinction be-

tween the contents and time-last-modified of a file. The
former is the basis for defining safeness of incremental com-
pilation, the latter is the basis for the semantic definitions,
since make only understands time stamps and not contents.

A file F ∈ File = Time×Content is a pair consisting of
a time-last-modified and contents. Time is equipped with
a linear ordering ⇐ and an extreme element −∞ which is
smaller than all other elements. Since we are not interested
in the contents of a non-existing file, by abuse of notation we
use−∞ to denote any element 〈−∞, X〉 ∈ Time×Contents.

A mapping S ∈ State = Name→ File associates names
with files. Changing the contents or time-last-modified of file
names, whether by manual editing or command execution
via make, or whatever, is simply modeled by a multitude of
states, say a state prior to editing and another state upon
editing. A mapping S ∈ State is identified with its natural
extension to (℘ Name)→ ℘ (Time× Content).

Command execution is modeled in terms of a function
exec : Command → State → State. By abuse of notation,
exec is identified with Σ exec, and thus given the command
sequence C;C′ we write

exec (C;C′) S = exec C′ (exec C S)

Example 2. Let S′ = exec(rm pgm)S. Then S′pgm = −∞.

Files F, F ′ ∈ File are equivalent, written F ≡ F ′, if they
have the same contents, that is, if F = 〈T,X〉 and F ′ =
〈T ′, X〉. When T ⇐ T ′, we write F ⇐ F ′ if F = 〈T,X〉 and
F ′ = 〈T ′, X ′〉.

6. SATISFIABILITY
The motivation for using the logical notion of satisfiabil-

ity is the intuitive, declarative reading of a makefile as a
statement that certain rules must be satisfied, i.e., that cer-
tain targets must be as least as new as their dependencies.

Satisfiability is defined by reversely engineering the crite-
ria make uses to decide whether a rule fires. In the literature
– including [3; 12; 9; 4; 14] – there is agreement about the
basic criteria but, apparently, nowhere there is a fully gen-
eral definition which covers all the special cases, such as the
combination of an empty dependency list and a non-existing
target. However, the behavior in the extreme cases can be
deduced from the observable agreement concerning the se-
mantics of ”extreme” rules such as Rclobber of Figure 3.

For an individual file G ∈ Name we write S |= G if G
exists in context S, that is, if S G 6= −∞.

Definition 2. (|=) Satisfiability of target ruleR = (G : Ds;C)
in state S, written S |= R, is defined to hold if either S |= G
holds and additionally Ds is non-empty and S |= D and
T ⇐ D hold for all D ∈ Ds; or alternatively if C = nil.

Satisfiability of makefile M in state S, written S |= M ,
is defined to hold if S |= R holds for all target rules in M .

When φ is a file or a rule, we write S |= {φ, φ′, . . . } if
S |= φ, S |= φ′, etc. hold, and S 6|= φ if it does not hold
that S |= φ; analogously S 6|= {φ, φ′, . . . } means S 6|= φ,
S 6|= φ′,etc.

Example 3. Assume that M is as in Figure 1 and

S |= {codegen.c, definitions, parser.y, library}
S 6|= {codegen.o, parser.c, parser.o, pgm}

- that is, only source files and the external library exist.
Then

S 6|= {Rparser.c, Rparser.o, Rcodegen.o, Rpgm}

This is because satisfiability of a rule requires that the rule’s
dependencies exist.



By Definition 2, rules with the trivial command nil con-
stitute an exception, in the sense that they are trivially sat-
isfied regardless of whether the dependencies are newer than
the target.

Example 4. See Figure 3. For all S we have

S |= Rall

S 6|= Rclean

Rule Rclobber is satisfied in S unless clobber does not exist,
or clean does not exist, or clean is newer than clobber.

Definition 3. Target T is up-do-date (in S and wrt. M)
if S |= M|T holds.

Thus for a target to be up-to-date is defined recursively,
in terms of the target’s direct and indirect dependencies. In
contrast, satisfiability of a single rule is merely a relationship
between the rule’s target and (direct) dependencies.

Example 5. Suppose S is as in Example 3. Then all is
not up-to-date, because pgm is not up-to-date. On the other
hand, suppose pgm is up-to-date. Then all is up-to-date as
well; many make implementations would in fact produce a
message stating this. This is the rationale for the exception
concerning rules such as Rall with trivial commands.

7. OPERATIONAL SEMANTICS
The operational semantics defines what commands are

executed, and in what order. We first define a semi-formal
operational semantics in terms of graph theory.

Definition 4. The operational semantics of executing make

with makefile M and initial target T is as follows:
Perform a postorder traversal of the induced make graph’s

derived files, starting with node T . A visit of node G, de-
fined by rule (G : Ds;C) ∈ M entails the following action:
if S 6|= (G : Ds;C) then command C is executed.

A formal semantic definition is given below in Definition
5. The format of the definition is partly in the style of de-
notational semantics [10], including the notational conven-
tion of using [[·]] to distuinghish function arguments that are
syntactical objects - and more generally in the attempted
mathematical rigour. However, because of the finite nature
of make’s graph traversal the full machinery of a fixpoint-
based definition is not required.

The value of an expression M [[M ]]TsS is the list of com-
mands executed when make is invoked with initial target
list Ts in the context of state S. The definition of M is
in terms of the auxilliary functions defines : makefile →
Name → {true, false} and rule : Makefile → Name →
Rule. defines M T is true if M contains a rule defining
target T , in which case ruleM T is the unique rule defining
T .

A triplet 〈V,Cs, S〉 ∈ Dom represents the list of nodes
visited so far (V ), the commands executed (Cs), and the re-
sulting state (S). The function R represents rule evaluation.

Definition 5. The semantic function M is defined as fol-
lows.

Dom = Name∗ × Command∗ × State
M : Makefile→ State→ Name∗ → Command∗

T : Makefile→ Name→ Dom→ Dom
R : Rule→ Dom→ Dom

M [[M ]] S Ts =
let 〈V,Cs, S′〉 = Σ (T [[M ]]) Ts 〈nil, nil, S〉 in Cs

T [[M ]] T 〈V,Cs, S〉 =
if T ∈ V or not defines M T then 〈V,Cs, S〉
else R [[(rule M T )]] 〈(V ;T ), Cs, S〉

R [[T : Ds;C]] 〈V,Cs, S〉 =
let 〈V ′, Cs′, S′〉 = Σ (T [[M ]])Ds 〈V,Cs, S〉 in
if S′ |= (T : Ds;C) then 〈V ′, Cs′, S′〉
else 〈V ′, (Cs′;C), exec C S′〉

The definition of M is in some ways similar to the seman-
tic definition for constraint logic programs given in [6], due
to the similarity between the reduction of a list of goals in
constraint logic program exectution, vs. make’s reduction of
a list of targets.

In the sequel we build on the graph-based as well as the
formal semantic definition.

8. DERIVABILITY
The goal in the remainder of the paper is to establish

soundness, completeness, and safeness results. As a pre-
requisite, we define a collection of desirable properties of
makefile rules, and compound them in the notion of a build
rule.

First, a build rule must be sound in the sense that exe-
cuting the rule’s command renders the rule satisfiable.

Second, we require a rule (T : Ds;C) to be fair in M and
wrt. state S:

fair (T : Ds;C)M S
⇔ ∀T ′ ∈ (der M) \ {T} : exec C S T ′ = S T ′

Thus, execution of a fair rule’s command does not in-
terfere with other rules, say, by updating or deleting their
targets. Many makefiles contain rules with commands that
write additional information to log files, recording for in-
stance the time a build was started. Writing to such files is
consistent with fairness which only precludes the ”touching”
of files whose names are (derived) targets of the makefile.

Soundness and fairness of rules suffice to establish sound-
ness (see Section 9) and completeness (see Section 10) of
make. (It is possible to relax the notion of fairness, at the
expense of a more complex definition as well as more com-
plex proofs).

Third, to infer safeness of incremental builds, we require
a rule (T : Ds;C) to be complete wrt. S:

complete (T : Ds;C) S
⇔ ∀S′ : S′ Ds ≡ S Ds : exec C S′ T ≡ exec C S T

Thus when executing a complete rule’s command, the
effect on the rule’s target is independent of any file not oc-
curring in the dependency list.

Definition 6. Let M and S be given. Consider a rule R =
(T : Ds;C) and let SDs = exec Cs S, where Cs is a sequence
of commands containing, for each dependency D ∈ Ds, a
subsequence for the building-from-scratch of D with respect
to S and M . Then R is a build rule in M wrt. S, written
M `S R, if R satisfies the following:

exec C SDs |= R (soundness of R)
fair RM SDs (fairness of R wrt. other derived targets)
complete R SDs (completeness of R’s dependency list)



The three required properties are defined in terms of a
state SDs in which all elements of the dependency list Ds of
the rule in question have been created. If the dependencies
are source files, that state is the same as the initial state S.
If the dependencies are themselves derived targets – for ex-
ample parser.c in Figure 1 – the relevant context is indeed
a state wherein they have been created by their respective
rules.

Since it is unfeasible for the human programmer to verify
completeness when there are many source files, tools such as
mkmf [8] for generating makefiles for C programs are of great
importance. Essentially the method is to scan source files for
dependent-on files, assuming compliance with suffix conven-
tions for C, yacc, etc. Walden’s [14] analysis showed that a
number of tools did not generate (in our terminology) com-
plete rules for targets with dependencies that were derived
targets. Our notion of build rules supplements Walden’s
work because our notion of (rule) completeness is defined
formally and independently of C, and so provides a stronger
basis for arguing the correctness of makefile generators based
on, say, the rectified algorithm proposed by Walden.

Example 6. Let makefile M consist of the rules
{Rpgm, Rcodegen.o, Rparser.o, Rparser.c, Rall, Rclean, Rclobber}
(cf. Figures 1 and 3). ThenRall, Rpgm, andRparser.c are build
rules inM for all S. (This assumes the usual semantics of the
commands cc, yacc, rm, etc.) Rclean and Rclobber are never
build rules in M . Rcodegen.o and Rparser.o are sound and fair,
and whether they are complete depends on the contents, in
a given state S, of the files codegen.c (for Rcodegen.o) and
definitions (for both rules).

Derivability of a target (M `S T ) is defined in terms of
reachable build rules, analogously to Definition 3 of a target
being up-to-date (S |= M|T ) in terms of reachable satisfiable
rules:

Definition 7. (`) Target T is derivable from makefile M
in S, written M `S T , if M defines T and M|T contains
only build rules wrt. S.

The notion of derivability of targets complies with the
common practice of using the notion of a derived file to
refer to a file that appears as the targets of make rules and
is created by executing the rule’s command.

9. SOUNDNESS: MAKE BRINGS TARGETS
UP-TO-DATE

Proposition 1 below can be read as a soundness result
guaranteeing that execution of a makefile yields satisfiability,
via changing the file state.

If a target T is derivable and all relevant source files exist,
then T becomes up-to-date upon execution of make with
target T :

Proposition 1. Assume S |= src (M|T ) and M `S T ,
and let S′ = exec S (M [[M ]] S T ). Then S′ |= M|T .

Proof. All rules in M|T are visited. Soundness of build
rules ensures that upon evaluating a rule, the rule is sat-
isfied. Fairness ensures that a rule, once satisfied, is not
rendered unsatisfied qua the execution of another rule’s com-
mand.

Since only the source files of M ’s restriction to T are
required to exist, M can be a ”real” makefile with non-build
rules such as Rclobber of Figure 3.

10. COMPLETENESS: MAKE INVOKES A
BUILD-FROM-SCRATCH (IF REQUIRED)

Proposition 3 of this section can be read as a completeness
result: make yields a build-from-scratch if no derived files
exist.

Completeness is a consequence of the more general result
expressed as Proposition 2 and which says the following.
The rule defining G fires if and only if target G is reachable
from the initial target and is not up-to-date. Or we may say
metaphorically that recompilation cascasdes along any path
from a not up-to-date target to the initial target, cf. [1].

Proposition 2. Assume S |= src M and M `S T and
let (G : Ds;C) ∈M|T . Then

C ∈M [[M ]] S T ⇔ S 6|= M|G

Proof. By soundness and fairness of build rules

Example 7. Let M be as in Example 3 and suppose S |=
M . Now assume parser.y is edited, yielding state Sedited
that satisfies all rules in M except for Rparser.c. Then the
commands belonging to M [[M ]] Sedited all will be the com-
mands of the rulesRpgm, Rparser.o, andRparser.c. RuleRcodegen.o

does not fire.

Proposition 3. Assume S |= src M , S 6|= der M , and
M `S T and let (G : Ds;C) ∈ M|T . Then M [[M ]] S T is a
build-from-scratch of T wrt. M .

Proof. By Proposition 2 all rules in M|T fire. Since make
traverses the make graph in post order, they are executed
in topological order, so the command sequence executed is
a build-from-scratch.

11. SAFENESS OF INCREMENTAL BUILDS
The scope of safeness is a series of states obtained in

cycles of building and editing.
The build part of a cycle is essentially a pre-build state

and a post-build state: A build cycle B = 〈S,M, T, Sbuild〉
consists of a state S, a makefile M , and a target T such that
M `S T , plus another state Sbuild satisfying Sbuild |= M|T
and Sbuild ≡ execCsS, where Cs is a build-from-scratch of T
with respect to M . That is, in the post-build state, target T
is up-to-date and the contents of files are as by a build-from-
scratch. Typically the first build cycle is created by actually
doing a build-from-scratch; and Theorem 1 below states that
in subsequent build cycles, a make-based, incremental build
suffices.



Bold B
Sold

q
build-from-scratch' $

?

Sold−build

q editing-

S

q
build-from-scratch' $

?
incremental build

(make-based)-

Sbuild

q

Figure 4: A sequence of states associated with build cycles
Bold and B. Arrows represent transitions between states.
Safeness is illustrated by the two arrows both leading to the
state Sbuild.

Build cycle B = 〈S,M, T, Sbuild〉 is obtained from build
cycle Bold = 〈Sold,Mold, T, Sold−build〉 in an edit cycle if the
following holds:

S (der M) = Sold−build (der M) (1)

G ∈ (der M) \ (der Mold) ⇒ S G =⊥ (2)

(G : Ds;C) ∈M ∧ (G : Dsold;Cold) ∈Mold ⇒ C = Cold (3)

Equation (1) and implication (2) essentially limit editing
to source files and the makefile: (1) states the obvious re-
quirement that upon building in Bold, editing is not allowed
to change neither contents nor time-last-modified of a de-
rived file. (2) says that if editing the makefile introduces a
new derived file, then a file with that name may not already
exist, which is also an obvious requirement.

Implication (3) lays down what kind of makefile editing is
allowed: it rules out changing a command associated with a
target defined in the makefile both before and after editing.
(Indeed, upon such editing a target should always be re-
built, and as is, make is incapable of enforcing this). While
the notion of an edit cycle does not capture command edit-
ing, the notion does capture editing the dependencies of the
makefile, as well as the introduction or elimination of tar-
gets in the makefile. Of course, the dependencies must be
correct with respect to the editing of the source files that
has taken place, in the sense required by the definition of
build rules.

Figure 4 illustrates safeness of make-based incremental
recompilation. The Figure shows a sequence of states, where
Sold and Sold−build are associated with build cycle Bold, and
S and Sbuild are the corresponding states in B, which is in
turn obtained from Bold in an edit cycle. The two arrows
leading to the final state Sbuild illustrate safeness, which is
expressed by the following Theorem.

Theorem 1. Suppose build cycle B = 〈S,M, T, Sbuild〉 is
obtained from some build cycle in an edit cycle. Define
Smake = exec (M [[M ]] S T ) S. Then for any derived file
G ∈ (der M|T ) we have Smake G = Sbuild G.

Proof. Consider an arbitrary target G defined by a rule
R = (G : Ds;C) ∈M|T . Assume, by induction, that
Smake D ≡ Sbuild D holds for any dependency D ∈ Ds which
is a derived target. It suffices to show

Smake G ≡ Sbuild G (4)

Assume S 6|= R. Then C ∈ M [[M ]] S T (by Proposition
2), so G is re-created in the make-based build, and thus (4)
holds.

Assume S |= R. Consider the build cycle Bold =
〈Sold,Mold, T, Sold−build〉 from which B was obtained in an
edit cycle. It must be the case that G ∈ der (Mold|T ) (by
(2)), so in the context of Smake, file G is as built in Bold.
Assumption (3) excludes command editing, so (4) holds in
this case as well.

Theorem 1 is directly applicable to a series of incremental
builds; only the initial build need be a build-from-scratch.

12. CONCLUSION
The main result is Theorem 1 which states sufficient cri-

teria for make-based, incremental recompilation to produce
the same result as a build-from-scratch. The theorem allows
for changing a rule’s dependency list but not its command
part, and for adding or deleting targets. Safeness is shown to
hold subject to soundness, fairness, and completeness prop-
erties of makefile rules, as defined on the basis of a formal
model of makefile execution.

Further results shown include soundness and complete-
ness of make. The formal model also brings out the similar-
ity with logic program execution, which motivates the use of
terminology from logic, e.g., satisfiability of makefile rules.

From a practical point of view, the analysis pursued here
may be of interest as the basis for tutorial material, com-
plementing available writings such as [12; 9], about what
kind of safety can be achieved by make, and guidelines for
writing makefiles that attain it. The properties which suffice
for safeness and which are compounded in the notion of a
build rule are all natural, and may be translated into rules
of thumb for makefile programming, for example: Execution
of the command of a build rule must render the rule satisfi-
able (cf. rule soundness); and execution of the command of
a build rule should not effect the targets of other rules (cf.
rule fairness).

Finally, verification that makefile rules satisfy the various
properties is given a strong basis because of the formal ap-
proach, for example the properties are stated generically in
the sense of independently of any particular programming
language.



13. REFERENCES

[1] Rolf Adams, Walter Tichy, and Annette Weinert. The
cost of selective recompilation and environment pro-
cessing. ACM Transactions on Software Engineering
and Methodology, Vol. 3 (1), January 1994, pages 3-28.

[2] P. Cousot and R. Cousot. Automatic synthesis of op-
timal invariant assertions: Mathematical foundations.
Proc. ACM Symposium on Artificial Intelligence and
programming languages, SIGPLAN Notices, Vol. 12 (8),
1977, pages 1-12.

[3] S. I. Feldman. Make - a program for maintaining com-
puter programs. Software - Practice and Experience,
Vol. 9, 1979, pages 255-265.

[4] Institute of Electrical and Electronics Engineers. Infor-
mation technology - Portable Operating System Infer-
face (POSIX) . ANSI/IEEE Std. 1003.2, 1993, Part2:
Shell and Utilities, Volume 1, pages 1013-1020.

[5] J.W. Lloyd. Foundations of logic programming.
Springer-Verlag, 1984.

[6] K. Marriott and H. Søndergaard. Analysis of constraint
logic programs, Proc. North American Conference on
Logic Programming, Austin, 1988, pages 521-540.

[7] The Mozilla build process is described at
http://www.mozilla.org/tinderbox.html in the
context of a presentation of the build tool ”Tinder-
box”. The quote about paranoia is from this web page
as of February 14, 2000.

[8] P.J. Nicklin. Mkmf - makefile editor. UNIX Program-
mer’s Manual 4.2 BSD, June 1983.

[9] A. Oram and S. Talbott. Managing projects with make.
O’Reilly, 1993.

[10] D.A. Schmidt. Denotational semantics - a methodoogy
for language development. Allyn and Bacon, 1986.

[11] Z. Shao and A. W. Appel. Smartest Recompilation.
20th ACM Symposium on Principle of Programming
Languages, January 1993.

[12] Richard Stallman and Roland McGrath. GNU Make,
Version 3.77. Free Software Foundation, 1998.

[13] W. F. Ticky. Smart recompilation. ACM Transactions
on Programming Languages and Systems, Vol. 8 (3),
July 1986, pages 273-291.

[14] K. Walden. Automatic Generation of Make Dependen-
cies. Software - Practice and Experience, Vol. 14 (6),
June 1984, pages 575-585.


