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Abstract

This paper aims at describing network dynamics through the lenses of modularity.

Different types of networks exist as ways of coping with the dynamics of industry

demands that are based on modular product architectures.  In order to distinguish

between different types of mechanisms in which networks (operating with modular

product architectures may) evolve, two types of networks are introduced: ‘market-

driven product architecture network’ (i.e., when the industrial network is driven by

product architecture that is controlled by the market) and ‘firm-driven product

architecture network’ (when the industrial network is driven by product architecture

that is controlled by the firm).  The history of the technological development of

bicycle, since 1890s to 1990s, illustrates how the bicycle industry survived two cycles

of disaggregation-concentration.
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1. Introduction

Networks are ‘clusters of firms or specialist units coordinated by market mechanism

instead of chain of commands’ (Miles and Snow, 1992:53).  A network allows its

parties to operate independently of each other, working towards a common goal.  An

industrial network exists when companies are linked together by the fact that they

either produce or use complementary or competitive products (Håkansson, 1989:16).

Different types of network organizations emerge as a way of coping with dynamics of

industry demands.  From technology perspective, industrial networks exist to produce

or use competitive components to sustain and to advance sets of interdependent

components of a technological system.  The decomposition of a technological system

into portions allows division of labor and hence for task specialization to take place1.

Components can be outsourced and produced independently by different parties of the

network.   The process of organizing complex products and processes efficiently into

simpler portions is referred to as modularization.

This paper attempts to describe the dynamics of network structures that exist due to

modular product architectures.  The bicycle industry, for instance, is fragmented

based on various specialized capabilities associated with the manufacturing of various

components.  Bicycles are built from components sourced from multiple suppliers

rather than vertical integration as a more efficient method to keep prices low (Garvin

and Morkel, 2001).  In his study of the bicycle industry in Taiwan, Chu (1997) argues

                                                
1 Decomposition of a complex system into smaller, more manageable parts has been well discussed

in management and economic literature (e.g., scientific management principles with respect to

standardized work designs and specialization of labor (Taylor, 1967), nearly decomposable systems

(Simon, 1995; 1996), and Adam Smith’s (1776) view on division of labor and task partitioning).
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that the success of the bicycle assembly sector depends upon having the support of a

network of parts suppliers, which must consist of numerous SMEs with some skills.

The focus of this paper is to show that even in well-established industries with stable

modular product architectures, modularity (through decomposition of systems and

integration of components) plays a special role in changing how industry networks go

through periods of concentration and disaggregation.  This takes place through the

control of interface standards, either by core firms or by the market itself.  In other

words, the extent of product architecture control, to some degree, leads to industry

concentration (i.e., consolidation into vertical structure) or disaggregation (i.e.,

expansion into horizontal structure).  Industry concentration refers to the

concentration of the competition in the product category (Ulrich and Ellison, 1999),

and is an important determinant of vertical integration2 (McDonald, 1985).  A highly

concentrated industry tends to reduce the bargaining power of potential component

suppliers, discouraging entry (Porter, 1980). Industry disaggregation into horizontal

structure, on the other hand, tends to create fierce, commodity-like competition within

individual niches (Fine, 1998).

Standardization of interfaces creates a high degree of independence or ‘loose-

coupling’ between component designs (Orton and Weick, 1990; Sanchez and

Mahoney, 1996) and used interchangeably in different configurations without

compromising system integrity (Flamm, 1988; Garud and Kumaraswamy, 1993,

1995; Garud and Kotha, 1994).  The bicycle industry is one of the oldest industries,

                                                
2 In economic theory, vertical integration is a response to relatively high costs of market exchange

(Williamson, 1981).  It also arises as a result of market power on one side of the market (Stigler,

1951), and the degree of vertical integration in an industry depends on supply as well as on demand

conditions (Langlois and Robertson, 1992).
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with widely established international standards. Over the years, the bicycle industry

has survived through cycles of concentration and disaggregation (Fine, 1998; Galvin

and Morkel, 2001; Ritchie, 1975).  Prior to the establishment of the dominant bicycle

design in the 1890s, there were 607 bicycle producers in the U.S. with no particular

maker dominating the market, but all complying to the interface specifications of the

bicycle.  However, by the end of 1905 the bicycle industry had aggregated in which

the number of bicycle makers had dropped to 12.  The industry concentrated vertically

again during the mid-1950s lead by Schwinn Company, but disaggregated

horizontally again during the 1980s with the popularity of mountain bikes.  Today the

bicycle industry is concentrated around Shimano components comprising nearly 47%

of the bicycles world wide.

The bicycle industry may provide insights into how certain industries (operating in

stable industries with modular product architectures, in which component interface

specifications are well accepted within the industry) may evolve over time.  If so, how

do modular product architectures prompt industries to concentrate vertically and/or to

disaggregate horizontally? How does component innovation impact this dynamics?

In this paper I look into historical evidence of technological development of bicycles

to explain to the relationship between modularity and industry

concentration/disaggregation.  All the data used in this paper are collected from

secondary sources such as newspapers, books, magazines, trade journals, academic

journals, and web sites.  The paper is organized as follows.  A literature review on

modularization is provided in the next section with a discussion of integral and

modular product architectures with respect to the role of interface specification and

standardization.  Next, the impact of modularity in industry network dynamics is
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elaborated.  Here I describe two types of network organizations that may evolve as

result of modular product architectures: ‘market-driven product architecture network’

and ‘firm-driven product architecture network’.  Finally, the dynamics of industry

concentration-disaggregation cycles are illustrated with the evolution of the bicycle

industry, followed by some discussions and future research.

2. Modularization

In broadest terms, modularization is an approach for organizing complex products and

processes efficiently (Baldwin and Clark, 1997) by decomposing complex tasks into

simpler portions so that they can be managed independently and yet operate together

as a whole.  Modularity permits components to be produced separately, or ‘loosely

coupled’ (Orton and Weick, 1990; Sanchez and Mahoney, 1996), and used

interchangeably in different configurations without compromising system integrity

(Flamm, 1988; Garud and Kumaraswamy, 1993; Garud and Kotha, 1994; Garud and

Kumaraswamy, 1995).  Moreover, modularity intentionally creates a high degree of

independence or ‘loose coupling’ between component designs by standardizing

components specifications (Sanchez and Mahoney, 1996), hence the tightness of

coupling between components and the degree to which the “rules” of the system

architecture enable (or prohibit) the mixing-and-matching of components (Schilling,

2000).

Modularity is made possible by how information is partitioned into visible design

rules (or visible information) and hidden design parameters (or hidden information

decisions that do not affect the design beyond the local module) (Baldwin and Clark,

1997). According to Baldwin and Clark (1997), visible design rules are established

early in the design process and fall into three categories:
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• An architecture which specifies end modules3 and respective functions in the

system

• Interfaces that describe in detail how the modules will interact, fit together,

connect, and communicate

• Standards for testing a module’s conformity to the design rules and for

measuring modules’ performances

There are many reasons why firms pursue modularization as a strategy.  For one,

modular product designs4 enable firms to increase specialization (Langlois, 2000),

encouraging them to pursue specialized learning curves and increasing their

differentiation from competitors (Schilling, 2000) as well as benefiting from

decreased throughput times with elimination of pre-assembly operations (Wilhem,

1997).  Because modularity encourages concurrent and distributed component

development processes, it enables the loose coupling of component designs and

                                                
3 A module can also be a component depending on the level of analysis.  For example, the windshield

wipers controller (WIPER) for Jeep Grand Cherokee is considered a module for Chrysler (as it is a

part of windshield wiper sub-system produced by a first-tier supplier), but the parts embedded in the

WIPER are considered components (which can be produced by lower tier suppliers).  In other

words, whether a part is called a module or a component can be distinguished from the hierarchy of

supplier (or tiers) considered by the assembler, although these two terms are often used

interchangeably (Hsuan, 1999).

4 In modular product design, the standardized interfaces between components are specified to allow

for a range of variations in components to be substituted into a product architecture (Sanchez and

Mahoney, 1996).  The aim of a modular product design is to create a product design that can serve

as the basis for a number of product variations with different performance and cost characteristics

(Sanchez, 1995).
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thereby creating loosely coupled knowledge domains (Sanchez, 1999).  Modularity

also boosts the rate of innovation, and as long as the design rules are followed, more

experimentation and flexibility are given to designers to develop and test the modules

(Baldwin and Clark, 1997).  Other advantages of modularization include cost

reduction (Muffatto, 1999; Sanchez, 1995; Cusumano and Nobeoka, 1998),

economies of scale and scope (Pine, 1993; Friedland, 1994), increased flexibility

(Henderson and Clark, 1990; Christensen and Rosenbloom, 1995; Schilling, 2000;

Sanchez, 1995; Wilhem, 1997; Garud and Kumaraswamy, 1995, Sanderson and

Uzumeri, 1997), and increased number of compatible suppliers (Langlois, 1992, 2000;

Langlois and Robertson, 1992; Tassey, 2000; Reed, 1996; Sanderson and Uzumeri,

1997; Garud and Kumaraswamy, 1993; Morris and Ferguson, 1993; Baldwin and

Clark, 1997).  The degree of modularity of a system is dependent on product

architecture designs.

2.1. Product architectures

Product architecture can be defined as the arrangement of the functional elements5 of

a product into several physical building blocks, including the mapping from

functional elements to physical components6, and the specification of the interfaces

among interacting physical components.  Its purpose is to define the basic physical

                                                
5 The functional elements of a product are the individual operations and transformations that

contribute to the overall performance of the product, and are usually described in schematic form

before they are reduced to specific technologies, components, or physical working principles

(Ulrich and Eppinger, 1995).

6 The physical elements of a product are the parts, components, and subassemblies that ultimately

implement the product’s functions. These elements are inextricably linked to the product concept

and are defined at the time of concept selection (Ulrich and Eppinger, 1995).
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building blocks of the product in terms of both what they do and what their interfaces

are with the rest of the device (Ulrich, 1995; Ulrich and Eppinger, 1995).   A bicycle’s

product architecture, for instance, can be decomposed into ‘groupsets’, where

different components that make a bicycle’s mechanical profile (e.g., chains, gear,

brakes and pedals) are designed as a complete ensemble.  Each component is finished

to a particular standard, and shares the same product name and styling (Wilson and

Hirst, 1994).  Product architectures generally vary from integral to modular.

2.2. Integral product architectures

Integral product architectures are designed with maximum performance in mind, and

the implementation of functional elements may be distributed across multiple

components.  Innovation within integral product architecture tends to be systemic

(Chesbrough and Teece, 1996; Teece, 1996). The introduction of systemic

innovations requires significant readjustment to other components of the system. It

takes place when the benefits of innovation can be realized only in conjunction with

related, complementary innovations.  Moreover, organization integration facilitates

systemic innovations by facilitating information flows, and the coordination of

investment plans (Teece, 1996).  Integral product architecture innovations tend to

favor horizontal industry structure. For instance, Polaroid needed to develop both new

film technology and new camera technology in order to profit from instant

photography.  This type of innovation requires organizational members to be highly

dependent of each other.  In addition, information sharing and coordinated

adjustments must be managed throughout an entire product system.  Coordinating

architectural innovations is particularly difficult when industry standards do not exist

and must be pioneered.  When innovation depends on a series of interdependent



Industry structure and modular product architectures

9

innovations, independent companies (such as ones linked through arm’s-length

contracts) will not usually be able to coordinate themselves to knit those innovations

together (Chesbrough and Teece, 1996).

2.3. Modular product architectures

Contrary to integral product architectures, modular product architectures7 (Sanchez

and Mahoney, 1996; Ulrich and Eppinger, 1995; Lundqvist et al., 1996) are used as

flexible platforms for leveraging a large number of product variations8  (Gilmore and

Pine, 1997; Meyer et al., 1997; Robertson and Ulrich, 1998; Sanchez, 1996; Sanchez

1999), enabling a firm to gain cost savings through economies of scale from

component commonality, inventory, logistics, as well as to introduce technologically

improved products more rapidly.  Some of the motivations for product change include

upgrade, add-ons, adaptation, wear, consumption, flexibility in use, and reuse (Ulrich

and Eppinger, 1995).  Modular architectures enable firms to minimize the physical

changes required to achieve a functional change.  Product variants often are achieved

through modular product architectures where changes in one component do not lead

to changes in other components, and physical changes can be more easily varied

without adding tremendous complexity to the manufacturing system.  Outsourcing

decisions are often made concurrently with the design of modular product

architectures, and specialization of knowledge is gained through division of labor.

                                                
7 Lundqvist et al. (1996) use the term ‘remodularization’ to redefine modular architecture or

architectural innovation of a product, as the reconfiguration of product systems and not necessarily

changes in functionality or the technical performance of components.

8 Ulrich and Eppinger (1995) defined variety as the range of product models the firm can produce

within a particular time period in response to market demand.
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In a modular product architecture, components can be disassembled and recombined

into new configurations, possibly substituting various new components into the

configuration, without losing functionality and performance (Langlois, 1992;

Sanchez, 1995).  Furthermore, one of the most important characteristics of modular

product architectures is the modularity distinguished by a great number of

components with standardized interfaces facilitating upgradability, reusability, and

substitutability.  Modular upgradability enables firms to react to customer feedback

and alter their systems accordingly by substituting some components while retaining

others (Garud and Kumaraswamy, 1993, 1995).

Modular product architecture strategy fits with autonomous innovations9 (Chesbrough

and Teece, 1996; Teece, 1996), which are innovations that can be pursued

independently from other innovations, hence modular.  For example, to increase

horsepower of a new turbocharger in an automobile can be developed without a

complete redesign of the engine or the rest of the car.  With this type of innovation,

centralized virtual organization10 can manage the development and commercialization

tasks efficiently.  Information embedded in modular architectures is codified

information in the sense that specifications that are captured in industry standard and

design rules can often be transferred effectively within and across companies, hence

not easily protected (Chesbrough and Teece, 1996).  Components with standardized

                                                
9 Contrary to systemic innovation, autonomous innovation is one which can be introduced without

modifying other components of a system (Teece, 1986).

10 Hoogeweegen et al. (1999:1075) define virtual organization as a “network of organizations from

which temporary alignments are formed to combine the specific core capabilities of its members in

order to quickly exploit a specific product or service manufacturing opportunity, after which the
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and industry-wide accepted interface specifications decouple firms from one another,

leading to increased specialization and technological improvement of components

independently of innovations from other firms.

One crucial element of modularity is substitutability.  According to Garud and

Kumaraswamy (1993:365) “economies of substitution occur due to preservation and

enhancement of existing knowledge through the use of standardized interface

specifications and technological platforms with wide degrees of freedom.”

Components have to be compatible in order to be substitutable.  Compatibility has “a

relational attribute that defines rules of fit and interaction between components across

boundaries called interfaces.  The overall set of rules that defines acceptable fit and

interactions constitutes a system’s architecture” (Garud and Kumaraswamy, 1995).

Lack of compatibility among components of any system results in sub-optimal system

performance.

According to many scholars, one of the fundamental key characteristics of modularity

in product architectures is related to creating flexibility through mixing-and-matching

of components (Garud and Kumaraswamy, 1995; Sanchez and Mahoney, 1996;

Schilling, 2000; Pine, 1993) to create product variety.  Schilling (2000), for instance,

captures some of the factors influencing mixing-and-matching of components in

system architecture by discussing direct and indirect effects of why a firm should

adopt modular strategy versus integral strategy.  She discusses trade-offs between

disaggregation and integration by using the term ‘synergistic specificity’ to describe

the degree to which a system achieves greater functionality by its components being

                                                                                                                                           
temporary alignment is dissolved and the members become available for another virtual and

temporary assignment.”
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specific to one another.  For instance, high levels of synergistic specificity oppose the

system’s shift to a more modular design.

2.3.1. Interface Specification and Standardization

Interfaces are linkages shared between and among components of a given product

architecture.  Interface specifications define the protocol for the fundamental

interactions across all components comprising a technological system.  For instance,

the specification for the majority of road bike wheels are manufactured to 27 inch-

diameter and mountain bikes to 26 inches (Galvin and Morkel, 2001).

Component interfaces can be classified and specified according to the following

(Sanchez, 1999):

1. Attachment interfaces – define how one component physically attaches to another.

2. Spatial interfaces – define the physical space (dimension and position) that a

component occupies in relation to other components.

3. Transfer interfaces – define the way one component transfers electrical or

mechanical power, fluid, a bi-stream, or other primary flow to another.

4. Control and communication interfaces – define the way one component informs

another of its current state and the way that other components communicate a

signal to change the original component’s current state.

5. Environmental interfaces – define the effects, often unintended, that the presence

or functioning of one component can have on the functioning of another (e.g.,

heat, magnetic fields, corrosive vapors, radiation, etc.).
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6. Ambient interfaces – define the range of ambient use conditions (e.g., ambient

temperature, humidity, elevation, etc.) in which a component is intended to

perform.

7. User interfaces – define specific ways in which users will interact with a product.

Modularity in bicycles takes place through standardizing attachment and spatial

interfaces (Galvin and Morkel, 2001).  The degree to which interfaces become

standardized and specified defines the compatibility and substitutability between

components, hence the degree of modularity.  Standardized components have well

specified interfaces, hence product architectures comprised of standardized

components are considered modular product architectures.  According to Langlois and

Robertson (1995:5), “standardization of interfaces creates ‘external economies of

scope’ that substitute in large part for centralized coordination among the wielders of

complementary capabilities.  This allows the makers of components to concentrate

their capabilities narrowly and deeply and thus to improve their piece of the system

independently of others.”  Standardization also impacts innovation and technology

diffusion, influencing industry structure and hence determining which firms benefit

(or not) from technological change (Tassey, 2000).  Interface standards allow multiple

proprietary component designs to coexist.  With standardized interfaces, substitution

of old components with technologically advanced components is possible.  A bicycle

can be treated as a close-assembled system (Tushman and Rosenkopf, 1992)

assembled from components sourced from multiple suppliers. The number of

components and the way these components are attached (functionally and spatially) to

one another through standardized interfaces allows for interchangeability of parts

across models and determines the degree of modularity in bicycles.  The dominant
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design of today’s bicycles was institutionalized in the 1890s, and most of the bicycle

components have defined interfaces for over 50 years, making the bicycle industry

one of the oldest industries to have international standards for its components.  The

bicycle industry can be described as fragmented with relatively little architectural11

and radical innovation (Galvin and Morkel, 2001).

In general, standardization of parts enables tasks to be performed independently,

encouraging supplier specialization to take place often fostering the emergence of

network organizations.  The rate at which interface specifications change (which has

deep implications for component integration and decomposition) influences the way

product architecture is controlled, hence impacting how firms organize within the

industry to compete or to cooperate around the new set of interface specifications.

3. Modularity and Industrial Network Dynamics

Modularity is an attractive strategy for many firms to benefit from cost savings due to

economies of scale, task specialization, and independent task organization.  Although

modular products are vulnerable to competition, a firm’s market power and

architectural control can still be protected when it has control of unique assets12, or

                                                
11 Architectural innovations are (Henderson and Clark, 1990:10) “innovations that change the way in

which the components of a product are linked together, while leaving the core design concepts

untouched.”  The emphasis of an architectural innovation, often triggered by a change in a

component, is the reconfiguration of an established system to link together existing components in a

new way.

12 Assets are stocks of resources that are owned or controlled by the firm (Amit and Shoemaker, 1993;

Dierickx and Cool, 1989).  Firm-specific assets are resources that are difficult to imitate, such as

quality, miniaturization, and systems integration capabilities.  These resources are typically
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accessibility to complementary assets13 (Teece, 1986).  But to protect such assets from

competitors (e.g., reverse engineering, spin-offs, etc.) is not an easy task.  The extent

of control and accessibility to complementary assets determines, to some degree,

whether a firm lean towards an integral or a modular solution to product architecture

designs.

There is performance, time, and cost trade-offs associated with modular and integral

product architecture designs.  As described by Baldwin and Clark (1997), modular

systems are much harder to design than comparable interconnected systems because

the designers of modular systems must know a great deal about the overall product or

process in order to develop the visible design rules necessary to make the modules

function as a whole.  This means that interface designs with respect to integration of

parts must be done carefully in terms of defining and organizing the modules.

Muffatto (1999) further points out that rigidity can be introduced by modularization if

cost benefits were exploited and flexibility must be maintained on model changes, as

this does not encourage standardization through module development.

Different types of network organizations14 emerge as a way of coping with the

dynamics of industry demands.  According to Robertson and Langlois (1995), when

                                                                                                                                           
assembled in integrated clusters spanning across multiple technologies or product lines, and may

extend outside the firm to embrace alliance partners (Teece et al., 1997).

13 There are three types of complementary assets: generic, specialized, and co-specialized.  Generic

assets are not tailored to the innovation.  Specialized and co-specialized assets have unilateral and

bilateral dependence, respectively, between the innovation and the complementary assets.

14 Robertson and Langlois (1995) use the term ‘core networks’ to describe networks that are organized

around a single firm or a large assembler, such as the relationships between Japanese and US auto

manufacturers and their assemblers.
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there is modularity, both vertical and horizontal networks may arise. Vertical

specialization arises when there are few economies of scale in assembly and consumer

prefer the ability to choose components rather than pre-packaged sets.  But firms can

not control the practices of their competitors and manufacturers because assembly

requires a high degree of standardization to permit compatibility.  This gives rise to

the emergence of horizontal networks.

Modularity through system decomposition with standardization of interfaces tends to

generate momentum for industries to disaggregate into autonomous, specialized units.

Innovation takes place at the component level, and when a new innovation is created

(either with integration of existing components or with entirely new technology) that

is accepted and demanded by the market, then a new momentum is generated for the

innovating firm(s) to integrate in order to gain technological control of the innovation.

Other firms will resist to such change creating inertia to slow down the momentum.

The extent of network concentration (when the industrial network is driven by product

architecture that is controlled by core firms) or disaggregation (when the industrial

network is driven by product architecture that is controlled by the market) of an

industry is, in part, led by the degree to which the standardized interfaces of

components within modular product architectures are accepted as industry standards

(Figure 1).

******** Figure 1 about here ********
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3.1.1. Market-driven product architecture (MDPA) network

One of the main motivations behind market-driven product architecture (MDPA)

network is to create strategic flexibility.  Strategic flexibility denotes a firm’s ability

to respond to various demands from dynamic competitive environments (Sanchez,

1995).  Strategic flexibility in product competition represents a fundamental approach

to the management of uncertainty (Sanchez, 1995), and it requires an organizational

climate that nurtures learning and knowledge creation (Adler, 1988; Garud and Kotha,

1994; Garvin, 1993; Kotha, 1995; Nonaka, 1991, 1994) which requires the tapping of

tacit knowledge and often highly subjective insights, intuitions, and ideals of the

firm’s employees (Nonaka, 1991).

Since the 1980s, the increasing competitive global business environment is moving

away from centrally coordinated, multi-level hierarchies and toward a variety of more

flexible structures that closely resembled network (Miles and Snow, 1992).  Many

established firms de-layered management hierarchies and started to shift towards

outsourcing a wide range of activities.  New firms sought to gain competitive

advantage through alliances with independent suppliers and/or distributors instead of

vertically integrating.  Firms turned to contracts and other exchange arrangements to

link together external components into various types of network structures.  Some

characteristics of network include:

• Use of collective assets of several firms located at various points along the value

chain

• Dependence more on market mechanisms than administrative processes to

manage resource flows.  Network members recognize their interdependence
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• Proactive, voluntary behavior among participants to improve the final product

or service rather than simply fulfilling contractual obligations

• Cooperation and mutual shareholding among groups of manufacturers,

suppliers, and trading and finance companies

Modular product architectures enable firms to gain strategic flexibility.  When

interface specification of a system is published and accessible publicly (such as open

source software systems), any firm is invited to innovate.  Firms operating within the

network have loose control of product architectures.  In other words, no single firm

has the power to change the product architecture as the components are compatible

and can be sourced from multiple suppliers who operate independently of one another.

As a result, innovation takes place at the component level, or autonomous innovation

(Chesbrough and Teece, 1996; Teece, 1996).  For instance, Shimano has taken the

lead in the market with innovations such as ‘index shifting’, which uses tight cables to

make gear changes more precise, and ‘step-in-pedals’, which clip onto a rider’s shoe

like a ski binding (Kerber, 1998).

One of the most important areas of modularity is the role of standard setting as means

of competition (Morris and Ferguson, 1993; Langlois, 1992, 2000; Tassey, 2000; Link

and Tassey, 1987; Galvin and Morkel, 2001).  In his study of the microcomputer

industry, Langlois (1992) describes how modular systems allow well-coordinated

division of labor in the market, which in turn allows for the rapid creation of new

capabilities.  Modularity permits more entry points for new firms to innovate and thus

adding to the diversity in the system.  He argues that a decentralized and fragmented

system can have advantages in innovation leading to rapid trial-and-error learning,
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especially when technology is changing rapidly and there is a high degree of

technological and market uncertainty.  When product variety and quick response

require fluid response mechanisms, multi-tasking overcomes the rigidities that set in

from the division of labor (Adler, 1988; Walton and Susman, 1987).  Specialization

and division of labor should lead to a low degree of vertical and horizontal integration

(Robertson and Langlois, 1995).

In devising a modular approach to product architecture as a competitive advantage,

there should be a balance between the gains achievable through recombination (e.g.,

mixing-and-matching) of components and the gains achievable through specificity

(e.g., higher performance through components) in determining the pressure for or

against the decomposition of a system (Schilling, 2000).  Although modular designs

increase flexibility in the end product by allowing a variety of possible configurations

to be assembled (Sanchez, 1995; Garud and Kumaraswamy, 1995; Baldwin and

Clark, 1997), it also increases the coordination effort (in logistics, marketing, retail,

etc.) of these components.  Too much product variety for customers to choose from

may actually create frustration and can backfire, especially when customers are not

able to distinguish the performance, quality, and value among different components.

Nissan, for instance, retreated from customization when it became evident that buyers

did not want eighty-seven different varieties of steering wheels (Pine et al., 1993).

Chesbrough and Kusunoki (2001:203) use the term ‘modularity trap’ to describe the

situation in which “a firm that has successfully aligned its organization with a

modular phase of technology encounters difficulty capturing value from its innovation

activities when the technology phase shifts from modular to integral.”  In modular
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phase of the technology, virtual organizational strategies15 best match their internal

organization to the modular technological characteristics of that phase.  Moreover,

much of their innovation activities are coordinated via the market place where

independent firms come together to buy and sell technology and the components that

are used to make the various items (Chesbrough and Teece, 1996).  However, when

technologies shift into a more integral form, virtual organization’s capability to focus

within a specific configuration of technology, especially when there is a lack of

systems expertise, becomes a significant liability.  Some firms tend to exert some

kinds of control by bundling components (e.g., Shimano), hence gaining some control

over the modularity of bicycles in terms of how components should interface with

another.  For instance, Champagnolo and Shimano try to enforce different

international standards for similar components.

3.1.2. Firm-driven product architecture (FDPA) network

Architectural momentum towards industry aggregation takes place when a product

architecture becomes so modular that it is not efficient for one single firm to produce

the system.  Any firm operating in such network can innovate as long as the interfaces

among components remain constant.  However, when significant technological

component improvements are well perceived and demanded by the market, often the

core firm gains the control of the product architecture making it more efficient for the

industry to vertically aggregate.

                                                
15 According to Chesbrough and Teece (1996) virtual companies coordinate much of their business

through the marketplace, and they can harness the power of market forces to develop, manufacture,

market, distribute, and support their offerings in ways that fully integrated companies can not

duplicate.
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As mentioned, the setting and development of interface specifications have a

tremendous impact on industry standards.  When interface specifications of a well

established architecture operating in a stable industry are altered in such a way (either

through radical innovations, or through integration of existing components into a new

component) that creates incompatibility with existing components, compelling

customers to lock-in into its technology and respective interface specifications.  When

such specification gain market acceptance, inevitably it changes the competitive

environment in which the industry operates.  The firm with technological control of

this new innovation – that is, the core firm – generates certain amount of momentum,

prompting the industry to concentrate into a vertical structure forcing other parties of

the industrial network to operate around this new specification.  I refer to such group

of firms competing in this industrial setting as the ‘firm-driven product architecture

network’.

In the bicycle industry, currently the core firm is Shimano, a Japanese components

manufacturer for bicycles.  Mainly through mergers and acquisitions, Shimano is the

dominant parts supplier in the U.S. market controlling about 80 percent of the world

market for hubs, gears, chain wheels, and other key components (Frazier, 2000).  In

1995, Shimano gained market share in the U.S. by integrating traditionally modular

components, particularly the drive train.  For instance, the rear hub and cog set were

integrated in a way that other brands of cogs and hubs were incompatible with

Shimano’s components.  Shimano also integrated its shift levers into the braking

system, requiring bicycle assemblers to purchase Shimano brake and shift levers as a

single unit. Furthermore, bike makers that rely on Shimano parts become distributors

making gross profit margins ranging from 25% to 50% (Kerber, 1998).
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In order to become less reliant on core firm’s components, some firms try to create

differentiation by manufacturing the whole bicycle.  This in turn intensifies the

competition within the supplier network, perhaps forcing the bicycle industry to

disaggregate into a market-driven product architecture network.  Galvin and Morkel

(2001:31) suggest that ‘long-term, constant international standards are effectively able

to replace communication and other forms of coordination, eventually leading to

fragmentation of the industry and low levels of innovation beyond the component

level.’

4. Concentration-Disaggregation Cycles of the Bicycle

Industry

Consistent with Utterback’s (1994) model of the dynamics of innovation16, the early

bicycle industry was characterized by great uncertainty over which bicycle design

would become standard for the industry (Pinch and Bijker, 1987). The dominant

design for bicycles was set during the 1890s.  Prior to 1890s, the development of

American bicycle industry, in general, can be analyzed into four eras of successive

generations: ordinaries, high-wheel safeties, solid-tire safeties, and pneumatic-tire

safeties.  During the 1890s, firms entered and exited the industry at a fast rate, and the

industry sales per capita rose and fell, reaching a peak in 1897 that would not be

reached again until 1965 (Dowell and Swaminathan, 2000).  Most of the components

in today’s bicycles have international standards for over 50 years making the bicycle

                                                
16 Before the establishment of a dominant design, firms have the opportunity to experiment more by

increasing product variety, and thus are more likely to come up with the dominant design

(Utterback and Suarez, 1995).
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industry one of the oldest industries (Galvin and Morkel, 2001).  See Appendix A for

a chronology of bicycle development.

In some 125 years of history, the bicycle industry has gone through two phases of

concentration-disaggregation cycles, from vertical in late 1800s to horizontal (in early

1900s), then back to vertical due to Schwinn (in mid-1900s) and horizontal (in early

1980s).  Today, we witness a vertical industry structure dominated by Shimano.

4.1. Industry disaggregation, early 1900s

The architecture of bicycle has changed little since the late 1890s, and technological

improvements have taken place at the component level as way to create

differentiation.  For instance, the derailleur gear system was introduced in the early

1920s. The earlier technology consisted of a chain that shifted between rear sprockets

of different sizes using levers, cables and springs (Wilson and Hirst, 1994).  The

modern derailleur system is much advanced from the earlier days, but the working

principles remain mostly the same.

Due to standardization of interfaces of key components, the design process became

separate from the production process, making possible for mass production to take

place. This led to the fragmentation of industry into autonomous units with low

barriers of entry, leaving no particular producer(s) controlling the product

architecture.  Prior to the establishment of the dominant design of the bicycle,

different types of bicycles were mass-produced by some 607 producers in the U.S.

alone.  Competition was intense as autonomous innovation continued to be pursed by

independent producers, which pushed out the weaker innovators out of the market.  In

1905, there were only 12 bicycle companies in the U.S., mainly assemblers.  This is
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an indication that the bicycle industry was aggregating.  The disaggregated industry

structure lasted until the dominance of the Schwinn Company, which took advantages

of the modular product architecture of bicycles to gain market leadership.

4.2. Industry concentration, 1900s – 1970s17

During the early 1900s, the bicycle’s inherently modular design allowed a large

number of suppliers to compete, in innovation as well as in prices.  The parts maker

standardized their products so they could keep their costs low and profit margins high,

consequently they avoided improvements in materials, engineering, or design.  For

instance, for nearly 30 years, the U.S. Rubber Company sold essentially one type of

single-tube tire to American bicycle manufacturers.  Similarly, the Torrington

Company sold spokes, pedals, and handlebars.

In 1925 the parts makers and chain stores started to trade directly with one another,

and components were delivered directly to the bicycle manufacturer who merely

packed the goods with his simple frame sets, consisted of a diamond-shaped frame,

forks and cranks.  This enabled the emergence of many look-alike bikes in the market.

Schwinn Company decided to make better bikes, focusing on quality and innovative

designs.  It started by changing the industry specification of tires into a new one.  So

far the American tire market was dominated by U.S. Rubber, which had monopoly of

single-tube tires.  The European bicycles, however, had used wide cord tires whose

double tubes provided a softer ride, referred to as the ‘balloon tires’.  Schwinn

persuaded independent bike dealers and hardware store owners to sell Schwinn bikes

with ‘balloon tires’, which in 1935 became the American industry standard.  Schwinn

continued to introduce new technology into its bikes in order to gain control of
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product architecture, and during the 1930s it was awarded more than forty patents.

However, with the modular nature of the bicycles, product architecture control as

means of sustaining market share was difficult.  Schwinn peaked with 25.5% market

share in 1950.  When competitors introduced their own imitations in addition to

imports, its market share dropped to 13.7% in 1955.

Schwinn Company was creative in bicycle designs that satisfy consumer tastes,

although the company supplied only its name on the bicycles, and purchased all the

components from outside vendors.  During the 1960s it introduced banana seats and a

provocative looking, ‘high-rise’ bicycle for children called Sting-Ray which led the

company back to be the market leader accounting for more than 60% of all bikes sold

in the U.S.  The company continued to enjoy its market leadership during the 1970s

with other bike models (e.g., Varsity and and Continental).  By 1970s, Schwinn had

become the dominant manufacturer of derailleur-equipped bicycles, accounting for

80% of U.S. production.

For decades Schwinn had been the standard-bearer in quality with little domestic

competition, and it had told its dealers that the company could supply all their needs,

from parts to finished product.  However, Schwinn could not keep up with the over

demand and satisfy its dealer and started to import bicycles from Japan.  In the mid-

1970s, Schwinn created the multi-speed mountain bike.  The bike incorporated newer

components from around the world: and English saddle, Japanese gears, French and

German hubs, for instance.  This revolutionary product changed the basic product

architecture of bicycles in terms of standardization of component interfaces that

                                                                                                                                           
17 The information about the Schwinn Company is extracted from Crown and Coleman (1996).
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changed the competitive landscape of the bicycle industry, and eventually led the

industry to disaggregate into a horizontal structure.

4.3. Industry disaggregation, 1980s

In the 1980s, the bicycle industry witnessed another transformation by the

introduction of mass-produced mountain bikes.  Autonomous innovation was taking

place with no particular company controlling the product architecture of mountain

bikes, which led bike producers to focus on improving suspension with the front and

back forks technology borrowed from motorcycles.  For example, Grip Shift,

developed by SRAM, is a mechanism that allows bicyclists to shift gears by rotating a

dial on their handle bars rather than pushing tow levers up or down (Fine, 1998).

Other developments include aluminum frames and titanium frames (Griffith, 1994).

In 1995 approximately 50% of mass merchant level sales of bicycles were mountain

bikes, accounting for approximately 10 million of the industry’s 12 to 15 million

annual unit sales overall in U.S. (McEvoy, 1995).

Under the disaggregated industry structure, firms tend to turn to their functional

strengths to gain competitive advantage. The National Bicycle Industrial Co Ltd.

(NBI) of Japan, for instance, has focused on its manufacturing competence to create

customization for its customers.  In 1987, NBI implemented an agile manufacturing

system (that is based on just-in-time inventory, computer-aided design and

manufacturing and robotic processing concepts) to produce personalized bicycles.

Over 11 million combinations are available with production time ranging from eight

to ten days, and some 50 to 60 semi-custom bikes are turned out daily (Bell, 1993)18.

                                                
18 This type of manufacturing strategy is referred to as mass customization (Kotha, 1985).
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4.4. Industry concentration, 1990s

Although Schwinn filed for chapter eleven in 1992, bicycle industry was

disaggregating into a horizontal structure that started during the early 1980s with the

introduction of mountain bikes in the U.S., and Shimano became the new market

leader.  In 1993, over 86% of bicycles in U.S. (listed in the Bicycling magazine Super

Specs database) came with Shimano components.  Moreover, of the 536 mountain

bikes in the database, about 95% had Shimano components (Fine, 1998).

Like Schwinn, Shimano also took component innovations seriously as a means to

compete in the modular product architecture market of bicycles. For instance, index

gears was developed by Shimano and had a profound impact on mountain bike sales

(Wilson and Hirst, 1994).  Furthermore, not only new components were developed, in

order to keep its market leadership, Shimano integrated different components into

groupsets to improve performance and quality of the bikes, and to control

compatibility among components as a means to make retailers lock in to Shimano’s

system.  For instance, STI (a dual control lever) is a system where the gear shifting

lever is integrated into the brake lever, was introduced in 1990 and has attracted a

great deal of interest among professional cyclists (Wilson and Hirst, 1994).

Champanolo, the Italian producer, on the other hand, designs its components with

standard gauges and sizes so that the customer is not dependent upon it for

replacement parts (Wilson and Hirst, 1994).

Today the bicycle industry is concentrated around Shimano components accounting

for nearly 47% of the bicycles world wide.  In 2000, about 70% of Shimano’s revenue

are contributed from bicycle components business (Worldscope Database).  During

the early 1990s, 84.5% of Shimano sales came from bicycle components (Wilson and



Industry structure and modular product architectures

28

Hirst, 1994).  How long can the bicycle industry remain in its current concentrated

structure? There are signs indicating that the industry may face new changes.  Some

bicycle industry analysts predict that, manufacturers that can not compete on low

prices or that can not differentiate their bikes from others equipped with Shimano

parts will be forced out of the market, or forced to consolidate (Kerber, 1998).

Moreover, Shimano is facing competitive pressure from Taiwanese assemblers.

5. Conclusion and discussions

This paper attempted to describe network dynamics through the lenses of modular

product architectures.  It was argued that even well established industries with stable

product architectures, the control of component interface specifications creates

momentum for industries to concentrate into vertical structure or to disaggregate into

horizontal structure.  The extent of network concentration (when the industrial

network is driven by product architecture that is controlled by core firms) or

disaggregation (when the industrial network is driven by product architecture that is

controlled by the market) of an industry is, in part, led by the degree to which the

standardized interfaces of components within modular product architectures are

accepted as industry standards.

Different types of network dynamics emerge as ways of coping with the dynamics of

industry demands as well as creating strategic flexibility for firms operating within the

networks.  In order to distinguish between different types of mechanisms in which

networks operating with modular product architectures may evolve, two types of

networks were introduced: ‘market-driven product architecture network’ and ‘firm-

driven product architecture network’.  In market-driven product architecture network,

the goal is to create strategic flexibility for firms and to manage uncertainty.  Firms
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operating within the network have loose control of the product architecture.

Component specifications are widely published, and no single firm has the power to

change the product architecture.  As a result, technological development tends to be

incremental, fostering autonomous innovations.  Much of the innovation activities are

coordinated via the market place where independent firms come together to buy and

sell the technology and components that are used to ensure proper functionality and

performance of the product architecture.  It was argued that modularity through

system decomposition with standardization of interfaces generates momentum for

industries to disaggregate into autonomous, specialized units.  The decomposition of

technological systems into more manageable portions allows for division of labor and

task specialization to take place.

Firms, in general, seek to earn profits and wish to gain market share.  Firms that wish

to control the market in some way often resist the momentum created by ‘market-

driven product architecture network’.  This takes place when a product architecture

become so modular that it is not sufficient for one single firm to produce the system.

When interface standards of modular product architecture is altered in new ways,

often through the integration of components into a new component, it limits the

compatibility of components with other systems.  The firm with the technological

control of the new component eventually become the core firm of the industry with

certain amount of control over the technological development of the product

architecture.  The firms operating under this type of network is referred in this paper

as the ‘firm-driven product architecture network’.

As an example of how industries may go through cycles of concentration and

disaggregation based on modular product architectures, a history the technological
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development of the bicycle is illustrated.  As the 125-year history of development of

bicycle reveals that the industry has gone through two cycles of concentration-

disaggregation.  During the disaggregation era, the industry resembled that of

‘market-driven product architecture network’.  However, during the concentration era,

core firms had some control of the product architecture, by Schwinn Company (during

1900s – 1970s) and Shimano (during 1990s).  As bicycle industry is one of the oldest

industries, can we apply the same logic to analyze newer industries that also compete

based on modular product architectures, whether the product architecture in early

2000 is ‘firm-driven’ (e.g., automobiles, mobile phones, personal computers, etc.) or

‘market-driven’ (e.g., open source software systems, e-commerce)?
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Appendix A

Chronology of bicycle development

Technological and Process
Advancements

Industry and Market
Landscape

1800s • Velociferes or celeripedes had the
bodies of either horses or lions –
steered by feet

About 1817 • Draisienne – no animal heads,
lighter wheels and framework,
front wheel pivoting on the frame
so it could steer around corners

About 1819 • Johnson’s hobby horse – lighter,
usage of bigger wheels, 50 lbs

About 1832 • Drais improved velocipede –
systematic application of power,
inspired from the principle of the
steam engine

1860s • Two-wheeled ‘boneshaker’
velocipede: cranks and pedals
directly attached to the hub of the
front wheel, wooden spokes,
metal rims

• Intensive activity in technology
(e.g., machine with two speeds
and freewheel)

• Macmillan’s velocipede – the
‘earliest bicycle’: backwards-and-
forwards movement of the legs
into a circular motion in the
wheel, variable gear, pedals close
to the front wheel

• ‘Bicycle’ (two-wheeled
velocipede): ball-bearings fitted
to the front wheel

• Do-it-yourself plans for
component parts from
blacksmiths, coach-builders and
wheelwrights

• Emergence of ‘technical’
worker

• Common pool of ideas, but no
agreement on the fundamentals
of the bicycle

• A rush of inventions to
improve the velocipede

• Inventor specialized in making
the velocipedes alone, and
marketed and sold them
himself

• Mechanization of the industry
• Mass production methods

developing
• Patent of the first American

bicycle in 1866
• Cycling races
• Bicycle clubs
• There were at least 40

velocipede makers in England
by the end of 1869
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Technological and Process
Advancements

Industry and Market
Landscape

1870s • Larger front wheel, smaller back
wheel, wooden wheels

• Ordinary or ‘high’ bicycle:
saddles as close as to the upright
forks

• ‘Ariel’ the first English Ordinary:
novel system for tensioning a
metal-spoked wheel, back wheel
brake, rubber tires, 50 lbs

• ‘Tangent’ system: wheel held
rigid by the spokes that were
tensioned in four different
directions

• ‘Balance gear’ or ‘Double-driving
gear’ or later as ‘differential’:
innovation mainly from tricycles,
breaking the main driving axle
with a system of bevel wheels and
pinions, driven by a chain from a
chain-wheel connected to the end
of the cranks (a continuous chain)

• ‘Bicyclette’ (patented in 1879):
big front wheel, small back
wheel, chain-wheel and
continuous chain-drive

• Specialist and professional
bicycle manufacturers,
disappearance of amateurs

• Bicycle Union formed in 1878
in London

• Two-wheel bicycle accepted
almost universally as the most
efficient system

• ‘Ariel’ set new standard in
bicycle manufacture - first all-
metal English bicycle to be
mass produced

• In 1874 there were about 20
firms making bicycles in
England

• In 1878 there were more than
68 makers in England

1880s • Between 1886 and 1887 the large
front-wheeled direct-steer became
the standard

• The Ordinary bicycle was
dominant until about 1885

• Rear-driven ‘safety’ bicycle
• Rover ‘safety’ (1886):

Disappearance of ‘dwarf’ rear
drivers, driven by chain to the
back wheel

• Pneumatic tires replaced the solid
tires

• Application of mass
production assembly line

• Tricycle union founded in
1882

• Rivalry between different
types of ‘safety’ bicycles

1890s • The establishment of dominant
design

• Ergonomic design improvements
• Design process became separate

from production made possible by
standardization

• The bicycle was used on a
mass scale

• Bicycles mass produced on
assembly lines

• In 1898, there were 607
bicycle producers in US
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Technological and Process
Advancements

Industry and Market
Landscape

• Fixed wheel, slightly drooped
bars, leather saddle, optional
plunger brake, pneumatic tires,
and encased chain

• Horizontal industry structure

Early 1900s • Freewheel, cable-operated brakes,
two- and three-speed hub gears,
aluminum alloys

• Derailleur system: chain is
shifted between rear sprockets of
different sizes using levers, cables
and springs

• Standardization of components –
for three decades, the US Tubber
Company sold essentially one
type of single-tube tire to
American bike manufacturers

• In 1935 the wide-cord tires with
double tubes became the
American industry standard

• Cantilever frame (future standard)

• In 1905 there were 12 bicycle
companies in US, mainly
assemblers

• Consolidation of parts markers
• Low cost strategy
• Bicycles sold through chains

stores (e.g, Montgomery
Ward, Sears)

Mid-1900s • Innovative bicycle designs from
Schwinn: the banana seat, Sting-
Ray, Varsity, Continental

• “High-Rise” bikes

• In US the use of bicycle
slumped due to increased
demand for automobile

• Vertical industry structure
(due to Schwinn)

• In 1950, Schwinn had 25.5%
market share

• Some 15,000 outlets selling
Schwinn bikes

1970s • Creation o mountain bikes by
Schwinn

• Schwinn the dominant player
• US production of 6.9 million

(in 1970) to 15.2 million
bicycles (in 1973)

• About 80% of derailleur-
equipped bicycles in the US
was manufactured by Schwinn
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Technological and Process
Advancements

Industry and Market
Landscape

1980s • Improvement of suspension with
the front and back forks
technology of mountain bikes

• Improvements in aerodynamics
• Index gears by Shimano
• Grip Shift by SRAM

• Horizontal industry structure
during early 1980s

• Sales surge of mountain bikes

1990s • Schwinn filed for Chapter 11
bankruptcy protection on
August 16, 1992

• Vertical industry structure
(due to Shimano)

• Nearly 47% of bicycles sold in
the world has Shimano parts

Sources: McEvoy (1995), Fine (1998), Galvin and Morkel (2001), Ritchie (1975),
Frazier (2000), Griffith (1994), Dowell and Swaminathan (2000), Pinch and Bijker
(1987), Whitt and Wilson (1983), Crown and Coleman (1996), Wilson and Hirst
(1994), Smith (1972)
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Modular Product Architecture

•  Components
•  Interfaces

Concentration

Firm-driven
product

architecture
network

Disaggregation

Market-driven
product

architecture
network

component integration
momentum

inertia

momentum
system decomposition

inertia

Figure 1. Modularity and Industry Dynamics.


