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Abstract
Captive breeding of animals is widely used to manage endangered species, frequently with the ambition of future 
reintroduction into the wild. Because this conservation measure is very expensive, we need to optimize decisions, 
such as when to capture wild animals or release captive-bred individuals into the wild. It is unlikely that one partic-
ular strategy will always work best; instead, we expect the best decision to depend on the number of individuals in 
the wild and in captivity. We constructed a first-order Markov-chain population model for two populations, one cap-
tive and one wild, and we used stochastic dynamic programming to identify optimal state-dependent strategies. The 
model recommends unique sequences of optimal management actions over several years. A robust rule of thumb for 
species that can increase faster in captivity than in the wild is to capture the entire wild population whenever the wild 
population is below a threshold size of 20 females. This rule applies even if the wild population is growing and un-
der a broad range of different parameter values. Once a captive population is established, it should be maintained as a 
safety net and animals should be released only if the captive population is close to its carrying capacity. We illustrate 
the utility of this model by applying it to the Arabian oryx (Oryx leucoryx). The threshold for capturing the entire Ara-
bian oryx population in the wild is 36 females, and captive-bred individuals should not be released before the captive 
facilities are at least 85% full.

Resumen
La reproducción de animales en cautiverio es utilizada ampliamente para manejar especies en peligro, frecuente-
mente con la ambición de reintroducirlos al medio natural. Debido a que esta medida de conservación es muy cos-
tosa necesitamos optimizar decisiones, tales como cuando capturar animales silvestres o liberar individuos criados en 
cautiverio. Es poco probable que una estrategia particular siempre funcione mejor; más bien, esperamos que la me-
jor decisión dependa del número de individuos silvestres y en cautiverio. Construimos un modelo poblacional de ca-
dena de Markov de primer orden para dos poblaciones, una en cautiverio y otra silvestre, y usamos programación 
dinámica estocástica para identificar estrategias estado-dependientes óptimas. El modelo recomienda secuencias úni-
cas de acciones de manejo óptimo durante varios años. Una regla básica robusta para especies que pueden incremen-
tar más rápidamente en cautiverio que en su medio natural es la captura de toda la población silvestre, cuando ésta 
se encuentre debajo del umbral de 20 hembras. Esta regla aplica aun si la población silvestre está creciendo y bajo 
una amplia gama de valores de diferentes parámetros. Una vez que se establece una población en cautiverio, debe ser 
mantenida como una red de seguridad y los animales deben ser liberados solo si la población en cautiverio se aprox-
ima a su capacidad de carga. Ilustramos la utilidad de este modelo aplicándolo al Oryx leucoryx. El umbral para la 
captura de toda la población silvestre de oryx es 36 hembras, y los individuos criados en cautiverio no deberán ser lib-
erados antes de que las instalaciones de cautiverio estén llenas por lo menos al 85%.

Keywords: captive breeding, endangered species, optimal management strategies, stochastic dynamic programing, 
translocation, especies en peligro, estrategias de manejo óptimo, programación dinámica estocástica, reproducción en 
cautiverio, translocación
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Introduction

Extinction rates of populations or entire species 
have reached catastrophic levels (MacPhee 1999). Con-
servation biologists aim to prevent species extinction 
in the wild where possible, usually by removing or 
mitigating probable threats such as habitat loss or frag-
mentation, invasive species, or poaching (Vitousek et 
al. 1996). In certain cases, however, in situ conservation 
efforts may be insufficient, and more extreme interven-
tion is required to enhance the probability of species 
persistence. As a last resort, captive breeding may be 
advocated (Beck et al. 1994; Snyder et al. 1996), though 
it is very expensive (Balmford et al. 1996; Kleiman et al. 
2000).

Translocation is an inherent part of any captive 
breeding program. A translocation is the deliberate hu-
man-mediated movement of organisms between popu-
lations. Such translocations include movement between 
wild populations, movement from wild to captive pop-
ulations (capture or collection), and movement from 
captive to wild populations (reintroduction or release). 
Captive breeding involves translocating individuals, ei-
ther to remove them from the threats they face in the 
wild, or, if captive breeding is successful, to attempt 
their reintroduction (Ebenhard 1995).

One of the key factors determining the success of re-
introduction programs is the number of individuals re-
leased (Griffith et al. 1989; Veltman et al. 1996; Wolf et 
al. 1998). As a consequence, the guidelines of the World 
Conservation Union (IUCN) for translocations in gen-
eral (IUCN 1987) and for reintroductions in particu-
lar (IUCN 1998) specifically call for the use of mod-
els “to specify the optimal number … of individuals 
to be released … to promote establishment of a viable 
population.”

Several surveys of success rates for reintroduction 
programs (largely for mammals and birds) have been 
carried out (Griffith et al. 1989; Wolf et al. 1996, 1998; 
Fischer & Lindenmayer 2000). All indicate that suc-
cess rates are poor (< 50%; Griffith et al. 1989; Beck et 
al. 1994) and search for factors that correlate with (and 
potentially cause) reintroduction success. These surveys 
suggest that major factors influencing success include 
the number of individuals released and the number of 
release attempts (Griffith et al. 1989; Veltman et al. 1996; 
Wolf et al. 1998).

In situations where decision makers are faced with 
choices under uncertainty, methods of decision analysis 
can be a useful tool in evaluating different courses of ac-
tion (Raiffa 1968). Models of reintroductions and captive 
breeding programs have been developed with a variety 
of methods and for a variety of systems (e.g., Hearne & 
Swart 1991; Akcakaya et al. 1995; Southgate & Possing-

ham 1995; Sarrazin & Legendre 2000), but few use de-
cision theory or can lay claim to being true optimiza-
tion models (Lubow 1996). Exceptions include Lubow 
(1996), who examined translocations between two wild 
populations with similar demography; Haight et al. 
(2000), who focused on translocation strategies for sce-
narios when there are uncertainties in future biological 
and economic parameters; Maguire (1986), who used a 
decision tree to determine whether proponents and op-
ponents of captive breeding recommended manage-
ment consistent with their beliefs about the status of the 
population; and Kostreva et al. (1999), who developed 
one-period planning models for optimization of genetic 
variation (based on founder contributions) of relocated 
animals.

Here we used an optimization algorithm, stochastic 
dynamic programming (SDP), to identify translocation 
strategies between wild and captive populations (e.g., 
in zoos, captive breeding programs, protected areas) 
that maximize overall species persistence. We were 
particularly interested in generating broadly applica-
ble rules of thumb to guide conservation biologists in 
minimizing the probability of extinction of an endan-
gered species. We first developed a stochastic popula-
tion dynamic model for translocations between wild 
and captive populations that relies on demographic 
parameters and predicts the numbers of individuals 
in both populations. We then applied the model and 
algorithm to a case study of the Arabian oryx (Oryx 
leucoryx).

Models

Stochastic Population Model

In our model we considered a captive population, Z, 
and a wild population, W. Each population was limited 
to a maximum size Kz or Kw. These limits were required 
for the numerical solution of the problem (see below). 
The Kz had a natural interpretation as a consequence of 
space restrictions in the captive facilities. It was tempt-
ing to associate Kw with “carrying capacity” of the wild 
population arising from limited resources or habitat 
through ceiling-type density dependence. A better inter-
pretation, however, was that Kw −  1 is the largest pop-
ulation size explicitly considered. All larger population 
sizes were lumped into a single state, Kw. We discuss the 
accuracy of this approximation below.

We assumed that females always have the opportu-
nity to mate regardless of male abundance, so we only 
tracked the number of females. We also ignored age 
structure, so the dynamics of the populations can be 
modeled as a first-order Markov chain. Let the number 
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of females in a population at any given time be the state 
of the population; the transition matrix describes the 
probability that the population moves from one state to 
another in a single year.

The Markov-chain transition matrix describing the 
transition rates from population density time (t) from 
t to t + 1 was A = LS, which is the matrix product of 
the recruitment matrix L and the survival matrix S. This 
means that only surviving individuals have the oppor-
tunity to reproduce.

Each element of S, si, j, is the probability of having i 
surviving individuals at t + 1, given j individuals at time 
t, with 0 ≤ i ≤ K and 0 ≤ j ≤ K. This is given by the bino-
mial probability

si, j, = { ( j ) μ j– i (1 – μ)i    if   0 ≤ i ≤ j
                i

     otherwise, si, j, = 0                                  (1)

where μ is the annual death probability.
To construct the recruitment matrix L, we first cal-

culated the probability distribution of the number of 
female offspring born to a given number of adult fe-
males. We assumed that the sex ratio is constant with 
probability f of giving birth to a female newborn. Fe-
males had between 0 and imax newborns of both sexes 
that survived to recruitment. There is a probability 
distribution, li, that a female has i surviving newborns 
(i = 0, …, imax). For the present, we assumed that imax 
= 1, l1 = λ, and l0 = 1 − λ. The derivation below will 
work with any discrete, finite distribution. Thus, the 
binomial probability, bi, 1, that a female has i female 
newborns is

                       imax

   bi, 1 = { ∑ lj ( 
j
 ) f i (1 – f ) j–1    if 0 ≤ i ≤ imax ;

                        j = i       
i

              otherwise, bi, 1 = 0                              (2)

The probability that j females have i newborns can be 
obtained recursively as follows:

                           i

    bi, j = { ∑ bk, j–1 bi–k, 1     for i ≤ j * imax ;
                       k = 0

               otherwise, bi, j = 0                                (3)

At high population densities, reproduction is trun-
cated by K such that Σ (female newborns + adult fe-
males) < K. This is the only place where density de-
pendence enters the basic population model. Given bi,j, 
one can calculate the elements of the recruitment ma-
trix L, lm,n, as the probability that the population density 
changes from n to m due to reproduction as

 bm – n, n    if n ≤ m < K
                                   K – 1

  lm,n =   {  1 – ∑ bi – n, n     if   m = K
                                    t = n

               0                  if m < n  or  m > K        (4)

Based on the Markov-chain transition matrices, we cal-
culated an approximation of the per capita growth rate 
as the expected number of female replacements result-
ing from one female:

                    K   
       r = ∑ iAi, 1 ≈ E (nt + 1)          (5)
                  i = 1                    

nt
  

This expected growth rate is a good approximation 
for n up to 90% of K. Above this point the actual expec-
tation is slightly reduced because the population cannot 
grow above K.

Stochastic Dynamic Programming (SDP) Algorithm

The algorithm optimized management decisions in-
volving captive breeding programs. We addressed the 
following general questions: (1) At what population size 
should a wildlife manager start breeding an endangered 
species in captivity? (2) How many individuals should 
we take out of the wild? (3) How many individuals 
should we release into the wild?

The SDP model has three states: the number of indi-
viduals in captivity (nz = 0, … , Kz), the number of indi-
viduals in the wild (nw = 0, … , Kw), and the time over 
which the management plan will be optimized (t = 
0, … , T ). The change in population size over time in 
both populations follows from Markov-chain popula-
tion matrices for the wild population Aw and the zoo 
population Az. We assumed that the per capita growth 
rate of the captive population equals or exceeds that of 
the wild population.

At each time step a wildlife manager can either do 
nothing or transfer n individuals from the wild into cap-
tivity (captures) or vice versa (releases). The maximum 
number of captures or releases depends on the current 
population sizes in captivity and in the wild. If we de-
fine releases as negative captures, the SDP model eval-
uates the consequences of all possible captures (decision 
variable d = −nz, … , 0, … , nw). We set an objective func-
tion V that gives a reward to the manager at the end of 
the time horizon (t = T) that minimizes the probability 
that the wild population is extinct ε years after the cap-
tive breeding programs ceases:

 V(T, nw, nz) = 1 – a′0, nw ,                     (6)

where a′i,j is an element of the transition matrix Aε
w. 

In matrix models one can project populations into the 
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future by raising the population matrix to the power 
of the number of future time steps. The V minimizes 
the extinction probability ε time steps in the future, 
thus rewarding solutions resulting in higher wild 
population sizes. We normally set ε = 128 years. With 
some parameter settings, however, the wild popula-
tion is virtually guaranteed to be extinct long before 
128 years. In those cases we set ε = 32. The value of ε 
is a power of 2 to minimize the number of matrix mul-
tiplications by repeatedly squaring the matrix (AA = 
A2, A2A2 = A4, and so on). Equation 6 represents one 
of many possible objective functions. Other possibili-
ties are minimizing the cost of translocation strategies 
or simply having any number of wild individuals. Ob-
viously, the optimal strategy depends on the objective 
function used.

Transferring individuals between captivity and the 
wild imposes certain biological costs on the popula-
tions. The SDP model considers the following costs in 
terms of decreased reproduction and increased mor-
tality. (1) We assumed that, as a result of stress and 
disorientation, translocated individuals do not breed 
in the year of translocation. It is largely unknown 
whether newly translocated individuals may breed, so 
we assumed the worst-case scenario. (2) Only a frac-
tion of wild individuals survive the transfer to cap-
tivity because individuals may die from injuries sus-
tained during capture or from stress during transport. 
Similarly, not all individuals translocated from captiv-
ity to the wild survive. (3) In addition, there might be a 
cost to the wild population as a whole if captive breed-
ing programs create an uncontrolled demand for live 
individuals and profiteers think they can sell them to 
zoos (Rabinowitz 1995; Struhsaker & Siex 1998). We as-
sumed that all aforementioned costs apply only to the 
first year following capture or release of animals. This 
implies that appropriate government actions against 
illegal hunting take effect within 1 year and that the 
genetic makeup between captive and wild animals is 
the same. The latter assumption might be violated for 
some species, particularly after long periods of captiv-
ity. Directionally selected traits important to survival, 
such as foraging ability, disease resistance, or predator 
avoidance, when released from selection, can decline 
as much as 2% due to an increased frequency of dele-
terious mutation (Shabalina et al. 1997; Reed & Bryant 
2001). Including long-term effects greatly increases the 
state space, however, and the magnitude of long-term 
effects is largely unknown for most species.

Mortality costs were modeled by means of the ratio 
α (α = reduced survival/natural survival). The factors 
ranged from 1 to 0, with lower values indicating higher 
costs. So the new mortality was μnew = 1 − [(1 − μ)α]. We 
calculated three additional Markov-chain matrices em-
ploying Equations 1–4 but using higher mortality rates 

for calculating S: Arel for released individuals, Acapt for 
captured individuals, and Afixed for the noncaptured in-
dividuals of the wild population. Stochastic dynamic 
programming operates by back-stepping from the ter-
minal time (at which we receive reward V ) to the pres-
ent (Bellman 1957). The dynamic programming equa-
tion in this case was

 do nothing       if d = 0

V(T, nw, nz) = max {  release   if d < 0    (7)
                                       

d

   capture   if d > 0

where d is the number of captured or translocated indi-
viduals (releases being considered negative captures), 
and

                                                   Kz  Kw

      do nothing  = ∑ ∑ V(t + 1, i, j) × aw
j,nw a

z
i,nz ,

                                                 i = 0   j = 0

                                                             Kz   Kw    0

      release  = φ + ∑ ∑ ∑ V(t + 1, i, j – k)
                                                           i = 0   j = 0  k = d

                          × aw
j,nw a

rel
–k,–d a

z
i,nz+d , and

                                                                Kz  Kw    d

      capture  =  φ + ∑ ∑ ∑ V(t + 1, i + k, j)
                                                             i = 0   j = 0  k = 0

                             × aw–b
j,nw–d a

cap
k,d a

z
i,nz 

Superscripts indicate the transition matrix (e.g., az
i,nz  is 

the probability that nz females of the captive population 
in year t become i females in year t + 1).

For some parameter combinations the optimization 
surface was very flat, resulting in virtually the same sur-
vival probabilities for a range of management strategies. 
If the benefit of transferring some individuals from cap-
tivity to the wild or vice versa is insignificant, it makes 
more sense to do nothing. Therefore, we introduced a 
small penalty, φ, for doing something, with φ = 10−12.

Model Scenarios

The SDP algorithm calculates the optimal decision 
for each combination of wild and captive population 
numbers at each time step. For example, if we consider 
population sizes of 0–50 females in the wild and 0–20 fe-
males in captivity, the size of the decision matrix at each 
time step is 1071 (decision matrix, [Kw + 1] × [Kz + 1] = 
1071). This complexity makes the interpretation of an 
extensive sensitivity analysis infeasible. Instead, we ran 
the model with a limited set of different parameter com-
binations. We changed one or two parameters at a time 
for either the wild or the captive population. The pa-
rameters of all scenarios are listed in Tables 1 and 2.
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Results

We consider a maximum of Kw = 50 females in the 
wild and Kz = 20 females in captivity. The objective of 
the optimization algorithm was to minimize the extinc-
tion probability in the wild, so the entire captive pop-
ulation is released at the time horizon (T = 100). Here 
we only present stationary decisions, which means we 
stepped backward in time until the decisions were inde-
pendent of the time remaining. This generally occurred 
by T = 70. The results of the SDP algorithm are complex 
because they can be different for each combination of fe-
male numbers in the wild and in captivity. We present 
the entire decision matrix for two scenarios. For the re-
maining scenarios, we show only the boundaries be-
tween d < 0 (start releasing animals), d = 0 (doing noth-
ing), and d > 0(stop capturing) (boundaries between the 
gray and white areas in Figure 1). If the population was 
growing faster in captivity than in the wild, the model 
suggested aiming for a large captive population, even if 
the wild population was growing. The particulars of the 
optimal strategy differed depending on the growth rates 
of the populations in the wild and in captivity. Chang-
ing the capturing mortality (αcapt), fixed mortality (αfixed), 
or release mortality (αrel) did not influence the optimal 
management strategy significantly (results not shown).

These population boundaries are rather small, but 
running the model with larger values of Kw and Kz was 
not feasible because the size of the population in the 
wild and in captivity determined the state space, and in 
SDP models the running time increases exponentially 
with the state space. For example, running the model 
with slightly larger maximum populations of Kw = 150 
and Kz = 30 took > 9 days on a 700 MHz PIII. We carried 
out a small number of scenarios with larger state spaces. 
A larger value of Kz shifted the entire release state space 
to larger captive population sizes; the state space for 
capturing remained the same. If a population is threat-
ened with extinction, the captive facilities should be 
filled as quickly as possible and maintained; thus, the 
larger the captive facilities the larger the number of an-
imals captured. Increasing Kw changed neither the cap-
turing nor the release state space. The results were in-
dependent of Kw because the transition probabilities are 
independent of Kw, given nw < Kw. However, the small 
value of Kw limited the applicability of this implemen-
tation of the model to the management of populations 
that had already declined to very low levels (nw < 50) 
because the calculated strategy did not cover wild pop-
ulations larger than this.

Influence of the Per Capita Growth Rate  
in Captivity, Rz

As a baseline case, we assumed that the wild popula-
tion was decreasing annually by 15% and that the cap-
tive population was increasing annually by 30% (Fig-
ure 1). In general, the lower the population numbers in 
the wild and in captivity, the higher the proportion of 
wild animals captured. For example, if the wild popu-
lation was ≤ 36 females and there was no captive pop-
ulation, our model suggested transferring the entire 
wild population into captivity. In some cases, the aver-
age number of captured animals exceeded the carrying 
capacity of the captive population. Although this may 
seem counterintuitive, it is better to guarantee filling 
up the captive facilities despite the high risk of losing 
some animals through lack of space in the captive facil-
ities because the wild population is rapidly approach-
ing extinction. With increasing growth rate in captivity, 
the region of the state space where capturing was op-
timal decreased (Figure 2). Because the captive popula-
tion serves as a safety net, it is best to maintain a large 
captive population. This is achieved more quickly with 
high breeding success in captivity; so the initiation of 
capturing should be delayed until lower abundances of 
the captive population are reached.

The optimal release strategy was relatively indepen-
dent of population numbers in the wild. Animals were 
only released if the captive population was close to its 
maximum size, and only relatively small numbers were 
released (between two and six females) (Figure 1). With 

Figure 1. Optimal number of translocated animals as a func-
tion of population numbers in the wild and in captivity. The 
grayscale intensity is proportional to the number of translo-
cated animals: white = 0; dark gray = 50. Key: C, captures; R, 
releases; stripes, entire wild population should be captured (d 
= nw) (captive population: λz = 1.0, μz = 0.1, rz = 1.3; wild popu-
lation: λw = 0.8, μw = 0.4; rw = 0.85).
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increasing growth rate in captivity, the state space that 
suggested releasing females increased (Figure 2). If the 
population in captivity only replaced itself (rz = 1.0), no 
animals were released. The captive population was an 
important safety net as long as the population growth 
rate in captivity was higher than that in the wild, and 
only surplus females were released into the wild. If rz = 
1.0, a surplus in captivity was unlikely. Hence, no ani-
mals were released.

As long as the growth rate, rz, was the same, the ex-
act combination of the recruitment rate, λz, and the mor-
tality rate, μz, had little influence on the results. The rel-
ative values of recruitment and mortality were more 
important than the absolute values. The exception was 
in scenarios with rz = 1.2, where the “capturing” state 
space was larger for μz = 0.2 (i.e., shifted toward the 
right) compared with μz = 0.04. This was because the in-
crease in mortality between the two scenarios needed to 
maintain a growth rate of 1.2 was much larger than for 
any of the other scenarios.

Influence of the Per Capita Growth Rate  
in the Wild, Rw

Next we assumed that the wild population was 
growing annually by 10% and, as before, that the cap-

tive population was increasing annually by 30% (Fig-
ure 3). If the wild population was ≤ 29 females and the 
captive population was rather small, our model recom-
mended capturing the entire wild population. In con-
trast to the scenario with a negative growth rate in the 
wild (Figure 1), the state space where animals were cap-
tured was smaller, mainly because the wild population 
was left alone if the population exceeded 30 females. If 
the wild population was rather small, the risk of extinc-
tion was significant, even if the population was grow-
ing. Consequently, it was advantageous to maintain a 
viable captive population. With decreasing growth rates 
in the wild, the state space that suggested capturing ≥1 
animal increased (Figure 4). There was a trade-off be-
tween the risk of individuals dying in the wild and the 
risk of individuals dying in captivity as a result of the 
limited maximum size. The worse off the population 
was in the wild the more the balance shifted in favor of 
the captive population, resulting in an increasing “cap-
turing” state space with decreasing per capita growth 
rate in the wild.

The release strategy depended on whether the wild 
per capita growth rate, rw, was > 1 or < 1. If the popula-
tion was decreasing in numbers (rw < 1), the “release” 
state space decreased with decreasing wild population 

Figure 2. Influence of changing breeding success in captiv-
ity on the optimal captive breeding strategies, given that rw = 
0.85. Lines indicate the boundaries between d > 0 (capturing), 
d = 0 (do nothing), and d < 0 (releasing) (boundaries between 
the gray and white areas in Figure 1). Dotted lines specify the 
“capturing” state space boundary and solid lines the “releas-
ing” state space. Letters next to each line indicate the value for 
the per capita growth rate in captivity: a, rz = 1.3; b, rz = 1.2; c, 
rz = 1.1; d, rz = 1.0. If rz = 1.0, the model suggested that animals 
should never be released from captivity; consequently, there is 
no d in the “releasing” state space.

Figure 3. Optimal number of translocated animals as a func-
tion of population numbers in the wild and in captivity. The 
gray-scale intensity is proportional to the number of translo-
cated animals: white, 0; dark gray, 50. Key: C, captures; R, re-
leases; stripes, entire wild population should be captured (d = 
nw) (captive population: λz = 1.0, μz = 0.1, rz = 1.3; wild popula-
tion: λw = 0.8, μw = 0.2, rw = 1.1). Arrow indicates the only com-
bination of states where releases take place.
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growth rate, rw, until no animals were released at rw < 
0.85. At this point the mortality risk in the wild was 
similar to the mortality risk of the captive population 
approaching its carrying capacity, and it was better 
not to release individuals. If the wild population was 
growing (rw > 1), animals were only released if the cap-
tive population had reached its carrying capacity and 
the wild population was extinct. Not to release excess 
animals from the zoo was a bit surprising, but if the 
wild per capita growth rate is > 1, increasing the num-
ber of wild animals does not increase their long-term 
survival probability because the population will most 
likely recover from small population sizes on its own, 
and if the population happens to go extinct, the cap-
tive population provides females to recolonize the wild 
population.

Case Study: Arabian Oryx

Arabian oryx populations once ranged through-
out most of the desert plains of the Arabian Peninsula 
but became threatened by overhunting and poach-
ing (Marshall & Spalton 2000). Several captive breed-
ing programs were initiated with the intent of reestab-
lishing oryx into native habitats (Stanley Price 1989; 
Ostrowski et al. 1998; Spalton et al. 1999). Reintroduc-
tions started in 1982, and the wild population increased 
to 400 animals in 1996. Unfortunately poaching began 
again and is threatening Arabian oryx with extinction in 
the wild a second time (Spalton et al. 1999). Oryx pop-
ulations flourished so well in sanctuaries that Treydte 
et al. (2001) developed a population viability analysis 
(PVA) model to determine the optimal number of oryx 
to eliminate from a sanctuary to minimize the effect of 
overcrowding.

We parameterized our model with data on Arabian 
oryx (Oryx leucoryx) from the literature. Here, we sum-
marize the range of vital rates published for this spe-
cies. Recruitment: Under optimal conditions females 
give birth to a single calf each year, which has a 75% 
(Mace 1988) to 92.5% (Vie 1996) chance of surviving 
the first year. Therefore the annual recruitment rate, λ, 
is 0.75–0.925, and the sex ratio f = 0.5 (Mace 1988; Vie 
1996; Spalton et al. 1999). Mortality: Annual mortality 
of adult Arabian oryx in captivity ranges between 4% 
and 15% (Abu Jafar & Hays-Shahin 1988; Mace 1988). 
We assumed that the wild mortality rate increases up 
to 40% due to poaching (Spalton et al. 1999). Translo-
cation costs: The losses due to capturing and transfer-
ring Arabian oryx into captivity and vice versa are 
small, with mortality ranging between 0 and 5% (S. Os-
trowski, personal communication). As far as we know, 
fixed costs have not been documented for Arabian 
oryx. For the sake of parsimony, we assumed that the 
fixed costs are the same as the variable translocation 
costs (0.05).

For the captive population, we assumed a best-case 
scenario with a per capita growth rate of 1.3 (λz = 0.5; 
μz = 0.13), and for the wild population we assumed a 
per capita growth rate of 0.85 (λw = 0.4; μw = 0.4). These 
per capita growth rates are consistent with population 
growth rates found in Arabian oryx sanctuaries (Abu Ja-
far & Hays-Shahin 1988; Ostrowski et al. 1998; Spalton 
et al. 1999; Marshall & Spalton 2000). These parame-
ter combinations are identical to the ones used to calcu-
late the optimal breeding strategies in our first scenario 
(Figure 1). If the population of Arabian oryx in the wild 
drops below 36 females, the entire population should be 
transferred into captivity, and captive-bred individuals 
should not be released unless the captive facilities are at 
least 85% full.

Discussion

Reintroduction programs have been proposed or car-
ried out for a wide taxonomic range of species. Although 
many taxonomic groups are suitable for translocations, 
the majority have been birds and large mammals (Griffith 
et al. 1989; Wolf et al. 1996, 1998). However, success has 
been limited (Griffith et al. 1989; Beck et al. 1994), and 

Figure 4. Influence of changing the per capita growth rate of 
the wild population on optimal captive breeding strategies, 
given rz = 1.3. Lines indicate the boundaries between d > 0 
(capturing), d = 0 (do nothing), and d < 0 (releasing) (boundar-
ies between the gray and white areas in Figure 3). Dotted lines 
specify the “capturing” state space boundary and solid lines 
the “releasing” state space. Letters next to each line indicate 
the value for the per capita growth rate in the wild: a, rw = 1.1; 
b, rw = 0.9; c, rz = 0.85; d, rw = 0.8; e, rw = 0.7. Small and capital 
letters indicate different recruitment rates in the wild: A and 
C, λw = 0.8; b, d, and e, λw = 0.5.
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we are in need of improved translocation strategies. Crit-
ical for the success of translocation programs is the size 
of translocations between captivity and the wild (Griffith 
et al. 1989; Veltman et al. 1996; Wolf et al. 1998). It is un-
likely that one particular translocation size will always 
work best; instead, we expect the number of animals 
translocated to depend on the current number of individ-
uals in the wild (nw) and in captivity (nz). The combina-
tion of animal numbers in the wild and in captivity may 
be different each year as a result of demographic change 
or some management action. We developed an optimiza-
tion model that finds such state-dependent strategies and 
recommends unique sequences of optimal management 
actions over several years.

The maximum population sizes in the model were 
kept small for practical reasons, but we believe our results 
have implications for the management of populations 
that could be larger (i.e., have larger “carrying capacity”) 
but that for whatever reason have been reduced to small 
numbers. This is because the upper boundary for the wild 
population can be interpreted as “all population sizes 
equal or larger than Kw.” This is not strictly correct be-
cause the true transition rates out of a state Kw+ to states 
nw < Kw would incorporate the fact that the population 

could be far above Kw, whereas our approximation as-
sumes that transitions are all coming from Kw. Therefore, 
our approximation was a somewhat too high of a proba-
bility of reaching states below Kw. However, the effect of 
this error is small. We compared the 128-year extinction 
probability from a transition matrix with Kw = 50 with the 
extinction probability from a transition matrix with Kw = 
100, both with rw  ≈ 1. For nw < 40 they were indistinguish-
able to the eye, and even at nw = 49 the difference was 
only 0.029 (Kw = 50) versus 0.017 (Kw = 100).The approx-
imation was best when population growth was negative 
and got worse as the population growth rate increased.

Table 1. Parameter combination for different scenarios in the model for translocations between wild and captive populations.

  λz μz λw μw αcapt αfixed αrel τ η rz rw

Varying rz by keeping λz constant  1.0 0.13 0.8 0.4  0.05 0.05 0.05 — — 1.3 0.85
  and changing μz accordingly 1.0 0.20 0.8 0.4  0.05 0.05 0.05 — — 1.2 0.85
  1.0 0.27 0.8 0.4  0.05 0.05 0.05 — — 1.1 0.85
  1.0 0.33 0.8 0.4  0.05 0.05 0.05 — — 1.0 0.85
  0.5 0.04 0.8 0.4  0.05 0.05 0.05 — — 1.2 0.85
  0.5 0.12 0.8 0.4  0.05 0.05 0.05 — — 1.1 0.85
  0.5 0.20 0.8 0.4  0.05 0.05 0.05 — — 1.0 0.85
Varying rw by keeping λw constant 1.0 0.13 0.5 0.25 0.05 0.05 0.05 — — 1.3 0.9 
   and changing μw accordingly 1.0 0.13 0.5 0.36 0.05 0.05 0.05 — — 1.3 0.8 
  1.0 0.13 0.5 0.44 0.05 0.05 0.05 — — 1.3 0.7 
  1.0 0.13 0.2 0.18 0.05 0.05 0.05 — — 1.3 0.9 
  1.0 0.13 0.2 0.27 0.05 0.05 0.05 — — 1.3 0.8 
  1.0 0.13 0.2 0.36 0.05 0.05 0.05 — — 1.3 0.7 
Varying αcapt 1.0 0.13 0.8 0.4  0.0  0.05 0.05 — — 1.3 0.85
  1.0 0.13 0.8 0.4  0.05 0.05 0.05 — — 1.3 0.85
  1.0 0.13 0.8 0.4  0.1  0.05 0.05 — — 1.3 0.85
Varying αfixed 1.0 0.13 0.8 0.4  0.05 0.0  0.05 — — 1.3 0.85
 1.0 0.13 0.8 0.4  0.05 0.05 0.05 — — 1.3 0.85
  1.0 0.13 0.8 0.4  0.05 0.1  0.05 — — 1.3 0.85
Varying αrel 1.0 0.13 0.8 0.4  0.05 0.05 0.0  — — 1.3 0.85
  1.0 0.13 0.8 0.4  0.05 0.05 0.05 — — 1.3 0.85
  1.0 0.13 0.8 0.4  0.05 0.05 0.1  — — 1.3 0.85
DD αrel 1.0 0.13 0.8 0.4  0.05 0.05 — 0.1 0.99 1.3 0.85
  1.0 0.13 0.8 0.4  0.05 0.05 — 0.3 0.99 1.3 0.85
  1.0 0.13 0.8 0.4  0.05 0.05 — 1   0.99 1.3 0.85
  1.0 0.13 0.8 0.4  0.05 0.05 — 2   0.99 1.3 0.85

Key: μz, μw, mortality rates in captivity or in the wild; λz, λw, recruitment rate in captivity or in the wild; rz, rw, per capita growth rate in captivity 
or in the wild; αcapt, αfixed, αrel, mortality costs for captured individuals, for individuals remaining in the wild, and for released individuals, 
respectively; τ, rate determining how quickly αrel decreases with increasing number of released animals; η, specifies αrel if only a single animal 
is released. In all scenarios the carrying capacity for the wild population, Kw, is 50, and for the captive population, Kz, = 20. If λz = 0.25, it is 
impossible to get a growth rate of rz = 1.3.

Table 2. Parameter combinations to generate different per 
capita growth rates in the wild (rw) and in captivity (rz), given 
the following recruitment rates: λz = 1.0 and λw = 0.2

              Captive population                       Wild population
 rz  µz  rw  µw

 1.0  0.334  0.7  0.363
 1.1  0.2667  0.8  0.2728
 1.2  0.20  0.9  0.1818
 1.3  0.1333  1.0  0.0909
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The key determinants of the optimal policy are the 
per capita growth rates in the wild and in captivity, r, 
which are determined by λ and μ. The exact combina-
tion of the recruitment rates, λ, and the mortality rates, 
μ, have negligible influence on the optimal captive 
breeding strategies. It is their relative not absolute sizes 
that matter. This means that time-series analysis can be 
used to estimate the r values, if such data are available, 
rather than estimating μ and λ independently.

From these results, we suggest the following gen-
eral rules of thumb be used as a decision tool for de-
signing translocation programs without running a sto-
chastic programming (SDP) model for every situation, 
assuming that the zoo population has a better growth 
rate than the wild population. (1) The frequency of (nw 
× nz) combinations suggesting translocations from the 
wild into captivity and the number of animals involved 
is higher when the captive population and/or the wild 
population is smaller. If the wild population is very 
small (< 20 females), the entire wild population is cap-
tured, even if the wild population is growing. (2) The 
frequency of (nw × nz) combinations suggesting translo-
cations from captivity into the wild and the number of 
animals involved is practically independent of the size 
of the wild population but increases with an increasing 
captive population.

These rules emphasize that a captive population is 
critical for the persistence of small populations, assum-
ing that the per capita growth rate in captivity exceeds 
that in the wild. In fact, if the wild population is small, 
our model suggests transferring every single wild ani-
mal into captivity. Somewhat surprisingly, this holds 
true even if the per capita growth rate of the wild pop-
ulation is positive. Small populations are inherently in 
danger of extinction as a result of demographic stochas-
ticity. Thus, the best strategy entails building up pop-
ulation numbers as quickly as possible, which is by 
propagation in captivity. Once a captive population is 
established, it is best to maintain it as a safety net and 
only release animals if the captive population is close to 
its carrying capacity.

The model does not presently incorporate environ-
mental stochasticity, which would result in fluctua-
tions of vital rates, and consequently growth rates, 
through time. We also did not incorporate catastro-
phes, either in the wild or in captivity. This is not to 
suggest that these processes do not occur or are not im-
portant, and they could be included in future versions 
of the model. However, we would expect that includ-
ing environmental stochasticity and/or catastrophes in 
the wild would result in strategies where capturing the 
entire wild population is recommended for even larger 
wild population sizes. Including catastrophic mortal-
ity in the captive population delays capturing the en-
tire wild population to a time when population sizes 
are smaller.

Even though the emphasis on a captive population 
makes intuitive sense, maintaining a captive popula-
tion as a safety net over many years might not always be 
practical because of budget constraints. Our model does 
not include the economic costs of creating and maintain-
ing a captive facility. The costs of captive breeding facil-
ities vary greatly depending on design and species re-
quirements. In some cases, captive facilities consist of 
only a protective fence against predators, and the ani-
mal may pay for itself from visitor revenue. In this case, 
the maintenance costs could be negligible.

Our model also provides guidance for designing a 
release program. The key feature of the optimal release 
scheme is to release small groups of animals over sev-
eral years. The exact group size varies depending on the 
abundance of animals in the wild and in captivity. This 
scheme has three advantages. First, the success of each 
single release endeavor is of less importance. Sometimes 
the establishment of released animals is affected by ad-
verse weather conditions, such as droughts. Thus, releas-
ing animals over several years reduces the effect of envi-
ronmental stochasticity on the success of reintroduction 
or relocation programs. Second, captive animals mul-
tiply at a relatively high rate, supplying the reintroduc-
tion program over time with a large number of animals. 
Third, the state dependency of the optimal management 
program allows regular adjustment of management ac-
tions in response to changes in the population numbers 
in the wild and in captivity. This way, management ac-
tions can be adjusted to improvements in estimates of vi-
tal population parameters or the occurrence of catastro-
phes (e.g., high mortality in a drought year).

Obviously there are different factors that affect the 
outcome of captive breeding and translocation pro-
grams, including choosing release sites within the for-
mer historical range of the species (Griffith et al. 1989; 
Wolf et al. 1998) and with high habitat quality (e.g., Wolf 
et al. 1998); using a soft release design (e.g., Letty et al. 
2000); controlling predators at the release site (Sinclair 
et al. 1998); training released animals to avoid predators 
(Griffin et al. 2000); minimizing the risk of transmitting 
diseases between captive and wild populations (e.g., 
Griffith et al. 1993; Snyder et al. 1996); and preventing 
genetic change in captivity (e.g., Ballou 1997; Earnhardt 
1999). It is often difficult to change release conditions or 
foresee the performance of released animals in the wild. 
Our model allows one to examine scenarios with dif-
ferent growth rates of the wild population. For exam-
ple, if one expects a low per capita growth rate of the 
wild population as a result of poor habitat quality of the 
release site or high predation pressure, the state space 
identifying optimal releases decreases and the state 
space suggesting captures increases (see Figure 4). Ex-
amining worst- and best-case scenarios allowed us to as-
sess how sensitive optimal release strategies are to dif-
ferent environmental conditions.
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Other Modeling Approaches

The need for a theoretical framework for transloca-
tion strategies is widely recognized (Hodder & Bullock 
1997). Issues that have been addressed theoretically in-
clude determining under what circumstances soft re-
lease should be favored over hard release; the propor-
tion of the budget that should be allocated to monitoring 
and the allocation of funds between prerelease and re-
lease activities (Haight et al. 2000); the age structure of 
founder animals (Sarrazin & Legendre 2000); the opti-
mal size of founder populations and the necessary de-
gree of predator control (Sinclair et al. 1998); and the 
best distribution of animals between patches (Lubow 
1996). No model to date has derived optimal transloca-
tion strategies by linking wild and captive populations.

Lubow (1996) also used stochastic dynamic program-
ming (SDP) to find the optimal size and frequency of 
translocations but only between populations in two re-
serves. Thus, the parameter values in both populations 
are identical. He employed a discrete version of the lo-
gistic population growth model to describe the popu-
lation dynamic within reserves. In contrast, we envi-
sioned populations threatened with extinction or reared 
in captivity, so the dynamics are better described with 
an exponential growth model, such as a first-order Mar-
kov-chain model, with ceiling density dependence. 
In captivity, animals are kept under “optimal” condi-
tions, which allows animal abundance to increase expo-
nentially. Only when the captive facilities are full does 
the per capita growth rate equal zero. This sort of ceil-
ing model is often used in software packages for esti-
mating extinction probabilities (e.g., RAMAS, Akcakaya 
& Ferson 1990; ALEX, Possingham & Davies 1995). De-
spite the differences in the modeling approaches, both 
models suggest optimal strategies that include frequent 
movements of a small number of animals between two 
populations.

Wolf et al. (1998) suggest using population viability 
analysis (PVA) to determine the minimum viable num-
ber of animals to be released. In principle, this popula-
tion number could also be used as an indicator to insti-
gate conservation measures to “save” the species, such 
as captive breeding. However, the performance of PVA 
depends on the availability of high-quality data and the 
assumption that the distribution of vital rates and pop-
ulation growth rates are constant in the future (Coulson 
et al. 2001). The optimal release scheme we proposed 
relies less on high-quality data or accurate predictions 
of future population performance. Our model is based 
only on a few parameters, and the general predictions 
are relatively robust to changes in parameter values.
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