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Remote Sensing of Cropland Agriculture

M. Duane Nellis, Kevin P. Price, and Donald Rundquist
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HISTORY OF REMOTE SENSING IN AGRICULTURE

Remote sensing has long been used in monitoring and analyzing agricultural activities.
Well prior to the first coining of the term ‘remote sensing’ in 1958 by Eveyln Pruitt of
the U.S. Office of Naval Research (Estes and Jensen 1998), scientists were using aerial
photography to complete soil and crop surveys associated with agricultural areas in the
United States and other parts of the world (Goodman 1959). Most of such work in the
1930s involved general crop inventoriesbythe U.S. Department of Agriculture and soil
survey mapping as part of the work of the then U.S. Soil Conservation Service. With
new developments in infrared photography during World War II, remote sensing
techniques evolved that allowed for greater understanding of crop status, water
management, and crop-soil condition.

Pioneering work on remote sensing in agriculture was done by Robert Colwell at the
University of California in the 1950s, and during the 1960s new laboratories oriented to
applications in agriculture, such as the one at Purdue (see Landgrebe 1986), were
developed. Crop identification and their areal coverage were early objectives, and Bauer
(1985) provides information about projects such as the Corn Blight Watch Experiment
and the Crop Identification Technology Assessment for Remote Sensing (CITARS)
program.

In the early 1970s, NASA began funding selected universities via its University Affairs
Program in an effort to stimulate the use of remote-sensing technologies, and states
where agriculture was an important aspect of the economy began applying remote
sensing to that sector. Centers and laboratories, such as those at Purdue and Kansas,
were early contributors to the evolution of remote-sensing science in agriculture, and
the research was important in the ultimate selection of the spectral bands incorporated
into future sensor systems.

Subsequent investigations have included many types of sensors, and remote sensing
has been proven capable of providing the necessary reliable data on a timely basis for a
fraction of the cost of traditional methods of information gathering.

The Large Area Crop Inventory Experiment (LACIE) was the first U.S. government
sponsored program aimed at examining the feasibility of using remotely sensed,
satellite data, specifically Landsat, to estimate wheat production over large geographic
areas. The idea was proposed by the National Research Council in 1960, and with the



1972 launch of the first of the Landsat sensor configuration, the possibility of estimating
wheat yield over wide areas became a reality. The LACIE program was operated jointly
under the aegis of NASA, NOAA, and USDA. During 1974-75, the emphasis of the
work was on developing both spectral ‘signatures’ for wheat and the yield-estimation
models for the Great Plains of the U.S. Subsequently, the activity was expanded to
include Canada and the Soviet Union. The successes of LACIE led to a follow-on project
in 1980 called Agriculture and Resources Inventory Surveys Through Aerospace
Remote Sensing (AgRISTARS). The goal of this new program was to expand upon
LACIE and include monitoring of other crops such as barley, corn, cotton, rice,
soybeans, and wheat. An overview of these programs can be found in Rundquist and
Samson (1983), Bauer (1985), and Pinter et al. (2003), while details of historical
development in remote-sensing science and also agricultural applications are provided
by Reeves (1975).

REMOTE SENSING APPLICATIONS IN AGRICULTURE
Crop classification, condition and yield

Remote sensing has played a significant role in crop classification, crop health and yield
assessment. Since the earliest stages of crop classification with digital remote sensing
data, numerous approaches based on applying supervised and unsupervised
classification techniques have been used to map geographic distributions of crops and
characterize cropping practices. Depending on geographic area, crop diversity, field
size, crop phenology, and soil condition, different band ratios of multispectral data and
classifications schemes have been applied. Nellis (1986), for example, used a maximum
likelihood classification approach with Landsat data to map irrigated crop area in the
U.S. High Plains. Price et al. (1997) further refined such approaches, using a multi-date
Landsat Thematic Mapper (TM) dataset in southwest Kansas to map crop distribution
and USDA Conservation Reserve Program (CRP) lands in an extensive irrigated area.

Hyperspectral remote sensing has also helped enhance more detailed analysis of crop
classification. Thenkabail et al. (2004) performed rigorous analysis of hyperspectral
sensors (from 400 to 2500 nm) for crop classification based on data mining techniques
consisting of principal components analysis, lambda-lambda models, stepwise
Discriminant Analysis and derivative greenness vegetation indices. Through these
analyses they established 22 optimal bands that best characterize the agricultural crops.
By increasing the number of channels beyond 22 bands, accuracies only increased
marginally up to 30 bands and became asymptotic beyond that number. In comparison
to Landsat Enhanced The matic Mapper data and other broadband sensors, these
hyperspectral approaches increased accuracy for crop classification from 9 to 43%.



Relative to crop condition, some remote sensing studies have focused on individual
physical parameters of the crop system, such as nutrient stress or water availability as
variables in analyzing crop health and yield. Other research has focused more on
synoptic perspectives of regional crop condition using remote sensing indices. At the
same time, some researchers (Seidl et al. 2004) have demonstrated that such approaches
can be limited for crop yield and health monitoring given satellite over flight timing in
the context of the crop calendar.

The normalized difference vegetation index (NDVI), vegetation condition index (VCI),
leaf area index (LAI), General Yield Unified Reference Index (GYURI), and temperature
crop index (TCI) are all examples of indices that have been used for mapping and
monitoring drought and assessment of vegetation health and productivity
(Doraiswamy et al. 2003, Ferencz et al. 2004, Prasad et al. 2006). Wang et al. (2005), for
example, used satellite remote sensing of NDVI to provide characterizations of
landscape level patterns of net primary productivity within the U.S. Great Plains, and
Kogan et al. (2005) used vegetation indices from Advanced Very High Resolution
Radiometer (AVHRR) data to model corn yield and early drought warning in China.
Hadria et al. (2006) provides an example of developing leaf area indices from four
satellite scenarios to estimate distribution of yield and irrigated wheat in semi-arid
areas. Zhang et al. (2005) have also modified leaf area indices based on MODIS
(MODerate resolution Imaging Spectrometer) using a climate-variability impact index
(CVII) related to contributions to monthly anomalies in annual crop growth. Using
MODIS the researchers were able to establish the relationship between CVII and LAI to
accurately model regional crop forecasts.

In addition, to refine regional crop forecasting, researchers have modified standard
NDVI approaches using crop yield masking. This technique involves restricting
analysis to a subset region's pixels rather than using all the pixels in the scene.
According to work by Kastens et al. (2005) yield correlation masking is shown to have
comparable performance to cropland masking across eight major U.S. crop forecasting
scenarios. Jensen (2007) provides further examples of the broad range of popular
vegetation indices used in remote sensing of agricultural systems.

Recent research has documented radar as a tool for crop monitoring. Chen and Mcnairn
(2006) used radar, for example, in rice monitoring within Asia. In their work, they
found that backscatter increases significantly during short periods of vegetation
growth, which can be used to differentiate rice fields from other land cover.

Recent commercial satellites with fine spatial resolution have also proven of value in
mapping crop growth and yield. Yang et al. (2006) used QuickBird satellite imagery for
mapping plant growth and yield patterns within grain sorghum fields as compared
with airborne multispectral image data. The results suggest QuickBird data and
airborne spectral data were equally useful.



Although satellite remotely sensed data have historically been used for assessing
specific crop stress parameters, such as indications of nitrogen stress (Reyniers and
Vrindts 2006), more detailed insights regarding crop condition are being gained using
hyperspectral remote sensing, thermal radiometers, and related devices. Such
approaches have also contributed to effective uses of these data in precision agriculture
(Yang et al. 2004). Hyper-spectral sensors and related techniques can also be used to
estimate various other crop biophysical and biochemical parameters, such as leaf
nitrogen content, leaf chlorophyll content, and associated factors related to soil moisture
(Goel et al. 2003). Remote sensing of soil moisture will be elaborated on later in this
chapter. Ye et al. (2006) used hyper-spectral images to predict tree crop yield in citrus
groves, Vijaya-Kumar and colleagues (2005) used an infrared thermometer and spectral
radiometer for screening germplasm and stress in castor beans, while Nicholas (2004)
used visible, near infrared, and thermal sensors to assess crop conditions.

Vegetation stages of development (phenology) are influenced by a variety of factors
such as available soil moisture, dateof planting, air temperature, day length, and soil
condition. These factors therefore also influence plant conditions and their productivity.
For example, corn crop yields can be negatively impacted if temperatures are too high
at the time of pollination. For this reason, knowing the temperature at the time of corn
pollination could help forecasters better predict corn yields.

McMaster (2004) has summarized the importance of phenology, asserting that,
“Understanding crop phenology is fundamental to crop management, where timing of
management practices is increasingly based on stages of crop development. Simulating
canopy development is also critical for crop growth models, whether to predict the
appearance of sources and sinks, determining carbon assimilation and transpiration,
partitioning carbohydrates and nutrients, or determining critical life cycle events such
as anthesis and maturity.’

During the era during which Landsat was temporarily privatized (see also Goward et
al., in this volume) after the 1990s, some remote sensing scientists begin experimenting
with the use of coarse spatial resolution (1.0 km) imagery (also see Justice et al., in this
volume). These data were free, and they allowed for a synoptic view of the
conterminous U.S. on a daily to bi-daily temporal frequency. As methods were
developed for cloud removal or minimization, new high temporal (weekly to biweekly)
cloud-free or near cloud-free datasets were made freely available for a variety of
applications and research endeavors. In the early 1980s, Badhwar and Henderson (1981)
published a paper in the Agronomy Journal describing the use of spectral data for
characterizing terrestrial vegetation development. In 1990, Lloyd described the use of a
shortwave vegetation index (the Normalized Difference Vegetation Index (NDVI)) for
characterizing phenological stages of plant development for terrestrial land cover, and
in 1994, Reed et al. described how high temporal resolution NDVI datasets could be
used to examine variability in interannual phenology at the continental scale.



Using coarse spatial resolution and high temporal resolution data, for the first time
plant response to varying growing conditions could be examined at or near a
continental scale, for example, the conterminous US. Since the publication of the
manuscripts referenced above, many studies that followed used AVHRR NDVI datasets
for such tasks as assessing crop relative condition and making yield forecasts (Steven et
al. 1983, Quarmby et al. 1993, Groten 1993, Kastens et al. 2005), characterization of
Central Great Plains grass life forms (Reed et al. 1996, Tieszen et al. 1997), studying
vegetation response to intra- and interannual climatic variation (Yu et al. 2003,
Breshears et al. 2005), and for many other agriculturally related purposes.

Annual NDVI profiles are extracted in operational remote sensing for 12 vegetation
phenology metrics (VPMs), and these metrics are used to characterize agricultural
vegetation response to varying climatic and land management practices (Reed et al.
1994; Figure 26.1 and Table 26.1).

Crop biophysical characterization

Remote sensing can play an important role in agriculture by providing timely spectral-
reflectance information that can be linked to biophysical indicators of plant health.
Quantitative techniques can be applied to the spectral data, whether acquired from
close-range or by aircraft or satellite-based sensors, in order to estimate crop
status/condition. The technology is capable of playing an important role in crop
management by providing at least the following types of information:

fraction of vegetative cover,

chlorophyll content,

green leaf area index, and,

other measurable biophysical parameters
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Figure 26.1 A twelve month, hypothetical NDVI temporal response curve for
vegetation. Additionally, the vegetation metrics are displayed to show their relation to
both NDVI values and time (after Reed et al. 1994).

Table 26.1 Vegetation phenology metrics characterize vegetation phenoclogy and are used
to develop summary regional data for research on agro-ecosystem attributes (after Reed
et al. 1994}

Type Metric Interpretation
Tempaoral 1 Time of onset of greenness Beginning of photosynthetic activity

2 Time of end of greenness End of photosynthetic activity

3 Duration of greenness Length of photosynthetic activity

4 Time of maximum greenmness Time when photosynthesis at maximum
NDVI-value 5 Value of onset of greenness Level of photosynthesis at start

6 Value of end of greenness Level of photosynthesis at end

7 Value of maximum NDVI Lewvel of photosynthesis at maximum

8 Range of NDVI Range of measurable photosynthesis
Derived 9 Accumulated NDVI Met Primary Production (NPP)

10 Rate of green-up
11 Rate of senescence
12 Mean daily NOVI

Fraction of Vegetation Cover

Acceleration of increasing photosynthetic activity
Acceleration of decreasing photosynthetic activity
Mean daily photosynthetic activity

Remote sensing offers, bymeans of multitemporal data collection, the capability of
monitoring changes in fraction of vegetative cover associated with crop phenology.
Details associated with the growth of a corn crop over time were provided by Vina et al.



(2004) who used visible atmospherically resistant spectral indices to document a
capability for detecting changes in the crop due to biomass accumulation, changes
induced by the appearance and development of reproductive structures, and the onset
of senescence. Gitelson et al. (2002), studying wheat and corn, developed spectral
indices using only the visible region of the spectrum to estimate vegetation fraction
(VF). They found these indices to be more sensitive than NDVI to changes in vegetation
fraction at high levels (>60%) of cover, and the error in VF prediction did not exceed
10%.

Chlorophyll Content

One very important and useful indicator of vegetation condition is the content of
chlorophyll, a pigment producing the characteristic green color in plants. Variability in
chlorophyll content is related to growth stage in the plant's life cycle, photosynthetic
capacity/productivity, and stresses (Ustin et al. 1998). The measurement of chlorophyll
content is also important with regard to nitrogen management, a key element of
variable rate field fertilization technology.

Gitelson et al. (2005) developed a model, based upon field measurements made by
means of a hyperspectral radiometer, for non-destructive estimation of chlorophyll in
maize and soybean canopies. Separate models were developed for corn and soybeans
individually, but the optimum model for evaluating corn and soybeans together, in an
effort to obtain a non-species-specific solution, took the form [(R nir/ R 720-730)—1] where
R is the reflectance at the specified wavelength in nm. This model allowed estimation (R
2 =0.95) of cholorophyll in the range 0.03-4.33 g/m?, with an RMSE of less than 0.32
g/m? for corn and soybeans considered together.

Numerous other authors have dealt with the issue of remote sensing of chlorophyll
content, including Broge and Leblanc (2000), Daughtry et al. (2000), and Broge and
Mortensen (2002).

Green Leaf Area Index

The measurement of Leaf Area Index (LAI) is not only important as an estimate of
primary production, but also as an input to climate models. Therefore, remote sensing
of LAl is often undertaken. Gitelson et al. (2003b) proposed a technique to estimate LAI
and green leaf biomass using spectral reflectance either in the green region (around 550
nm) or at the red edge (near 700 nm) along with the near-infrared (beyond 750 nm).
Close relationships were found between the spectral indices tested and LAI (ranging



from 0 to more than 6) as well as green leaf biomass (ranging from 0 to 3500 kg/ha).
Numerous other authors have addressed the topic of remote sensing of LAI including
Gilabert et al. (1996), Carlson and Ripley (1997), Broge and Leblanc (2000), and
Haboudane et al. (2004).

Other Measurable Biophysical Variables

Other biophysical variables may also be measurable by means of remote sensing.
Danson et al. (1992) showed that the first derivatives of reflectance associated with the
slopes of the lines near water-absorption bands were highly correlated with leaf water
content. Gitelson et al. (2003a) developed a technique based upon remote sensing that
accounted for more than 90 percent of the variability in mid-day canopy photosynthesis
of irrigated corn. Researchers have also addressed crop yield (e.g., Hatfield 1983,
Serrano et al. 2000, Shanahan et al. 2001, Teal et al. 2006), canopy transpiration (e.g.,
Inoue and Moran 1997), plant litter (e.g., Nagler et al. 2000, Streck et al. 2002); and
phytomass (e.g., Daughtry et al. 1992).

THE CHALLENGE:
PRACTICAL APPLICATION OF BIOPHYSICAL MEASURES

Using remote sensing, it is possible to infer certain biophysical parameters of cropland
vegetation, but in order to make use of the biophysical properties in a practical manner,
one must attempt to link them to a set of ‘agronomic indicators.” This may mean
developing algorithms that incorporate both spectral and agronomic parameters to
provide economically viable, practical products (e.g., maps of pigment densities in
specific fields, useful descriptors of general crop status and condition as depicted in
map form, nutrient management information that can be used effectively and efficiently
to improve the application of nitrogen, and biomass measurements used to estimate
potential yield in near-real time). It is only through the development of such practical
products that remote sensing will gain wide acceptance and use.

Precision farming is an emerging methodology designed to link management actions to
site-specific soil and crop conditions, and place inputs of fertilizers, herbicides, and
pesticides where they are most needed to maximize farm efficiency and minimize
environmental contamination. One of the crucial parts in this system is information on
soil and crop conditions at the temporal frequency and spatial resolution required for



making crop management decisions. Remote sensing is a viable tool for providing such
information.

Crop water management

Information on crop-water demand, water use, soil moisture condition, and related
plant growth at different stages of cultivation can be obtained through use of various
forms of remote sensing, extending from synoptic views using satellite data to detailed
analyses with thermal and hyperspectral sensor systems. Bandara (2003), for example,
used NOAA satellite data to assess the performance of three large irrigation projects in
Sri Lanka. Within this analysis, estimates using remote sensing of crop-water utilization
were compared to actual water availability to determine irrigation efficiency. In a
related study, Martin De Santa Olalla et al. (2003) used GIS with NDVI and a
hydrological management unit (HMU) to create an Irrigation Advisory Service linked to
water requirements of crops and estimates of the volume of irrigation water used.
Linking such approaches to groundwater use has further extended analysis
methodologies. Wu et al. (1999), used Landsat Thematic Mapper data to characterize
the relationship between land use and groundwater depletion in the fragile U.S. High
Plains resource system.

Remote sensing has also been used to evaluate irrigation water distribution at variable
scales of the agro-water system. Nellis (1985) used thermal infrared imagery, for
example, at the field level to determine parameters related to uniformity of water
distribution and conveyance system irregularities in Oregon. In western Turkey,
research by Droogers and Kite (2002) used a parametric basin-scale model and a
physically based crop-scale model linked to NOAA-AVHRR images to analyze water
use for irrigation at the field scale, irrigation scheme scale, and basin scale.

Since early on in digital remote sensing, researchers have used various approaches to
estimate crop evapotranspiration, soil moisture, and biomass growth (Bastiaanssen et
al. 2001, Ray and Dadhwal 2001). Neale and colleagues (2005) provide an historical
perspective on high resolution airborne remote sensing of crop coefficients for obtaining
actual crop evapotranspiration. Although most approaches use simple direct
correlations between remote sensed digital data and evapotranspiration, some combine
various forms of remotely sensed data types. Consoli and colleagues (2006), for
example, used IKONOS high resolution satellite along with hyperspectral ground data
with agro-meteorological information from orange groves in southern Italy to estimate
evapotranspiration fluxes.

Water impact on erosive capacity and sediment yield using GIS and remote sensing has
also gained considerable attention by researchers. Khan et al. (2001), for example, used



spatial data on land-forms, land cover, and slope to estimate potential erosivity and
sediment yield in India. In addition, Wu and colleagues (1997) used spatial data linked
to a GIS coupled with Landsat TM land cover data to evaluate USDA Conservation
Reserve Program (CRP) lands and related soil properties in the U.S. High Plains.

Clearly remote sensing is playing an ever increasing role in water management of the
agricultural system. Such developments have been further enhanced with the evolution
of hyperspectral sensors and the ability to link spatially analyzed remote sensing data
with other spatial data through GIS and GPS technologies.

Crop and soil characteristics

As has been articulated by Sullivan et al. (2005), numerous studies have demonstrated
the utility of remote sensing for distinguishing various soil properties, including
erosion prediction, application of agrochemicals to soils for precision management, soil
organic carbon, iron oxide content, and soil texture (see also Chapter 24 on soils
applications (Campbell, in this volume)). Over 25 years ago, Stoner and Baumgardner's
work (1981), for example, showed an increasing level soil carbon was inversely
correlated with reflectance in the visible and infrared regions. In contrast, more recent
work by Bajwa and Tian (2005) demonstrated the potential of aerial visible/infrared
(VIR) hyper-spectral imagery for characterizing soil fertility factors in the U.S. Midwest.
Soil fertility parameters included pH, organic matter (OM), Ca, Mg, P, K, and soil
electrical conductivity. In this analysis, the measured soil fertility characteristics were
modeled on first derivatives of the reflectance data using partial least square regression.
The model explained a higher degree of variability in Ca (82%), Mg (72%), and OM
(66%), for example, and less so for properties such as pH (48%).

Controlled field and laboratory studies have been the basis in remote sensing research
related to soil particle size. Such work has often relied on high spectral resolution
radiometers (Salisbury and D'Aria 1992, for example). This research has found
increasing spectral response with increasing sand content, which is likely associated
with a corresponding decrease in water holding capacity of coarser soils.

The refinement in thermal sensing systems and access to hyperspectral sensors (as was
earlier noted) have further extended remote sensing applications to soil properties.
Salisbury and D'Aria (1992) have used thermal infrared band ratios to estimate quartz
content, but varying levels of clay, iron, and soil organic carbon complicated the results.

According to Sullivan et al. (2005), Barnes and Baker (2000), and Russell (2003), spatially
and temporally dynamic surface conditions, such as water content, surface roughness,
crusting, and crop residue cover, significantly impact spectral response and complicate



the remote sensing analysis process. For example, recent studies by Ben-Dor et al. (2003)
and Eshel et al. (2004) have shown that crusted soil surfaces of many different types of
soils tend to have higher reflective responses due to the simple occurrence of greater
quartz exposures when such crusted soils are freshly tilled exposing quartz surfaces.

Ground based sensors or ‘on the go” sensors (sensors mounted on a tractor and data
mapped with coincident position information) have developed rapidly in recent years.
Such efforts provide soil organic matter, electrical conductivity, nitrate content, and
compaction (Barnes et al. 2003), and when integrated with other data sources maximize
the information for the farm manager.

Numerous remote sensing studies of soil moisture (in addition to earlier references)
have focused on the use of thermal and microwave sensing. Casanova et al. (2006) used
microwave remote sensing models to improve estimates of soil moisture, and
Verstraeten et al. (2006) used a combination of optical and thermal spectral information
of METEOSAT imaging to determine thermal inertia relative to soil moisture content.

Also at the interface between water and soil dynamics are processes that lead to soil
salinity in irrigated agricultural areas. Again remote sensing has provided important
analysis of such applications, as illustrated by the work of Masoud and Koike (2006), in
which they used Landsat TM/ETM taken over 16 years coupled with 30 m DEM and
field observations in Egypt to successfully document salinity changes in soils and their
related land cover.

With increasingly narrower hyperspectral bands in the thermal range of
electromagnetic energy and coupled with other spatial data derived from field
observations, remote sensing is clearly playing an ever more important role in
understanding crop soil characteristics. Such efforts, when linked to GPS, provide
promising results in precision agriculture.

Precision Agriculture and ‘on-the-go sensors’

Precision Agriculture

Precision farming is an emerging methodology designed to link management actions to
site-specific soil and crop conditions, and place inputs of fertilizers, herbicides, and
pesticides where they are most needed to maximize farm efficiency and minimize
environmental contamination. The core technologies in precision agriculture are GIS,
GPS, and remote sensing. The importance of these technologies in agriculture was



underscored when NASA (Stennis Space Center), in the early portion of the current
century, embarked upon the Ag 2020 program in an effort to commercialize the
geospatial technologies, develop practical tools for producers, and undertake projects
with various types of crops to illustrate the utility of the technologies.

Critical to precision farming is the acquisition of information on soil and crop
conditions at the temporal frequency and spatial resolution required for making crop
management decisions. Remote sensing is no doubt a viable tool for providing such
information. However, for remote sensing to contribute to the management of small
parcels, the imagery must be of high spatial resolution. Until relatively recently, such
satellite imagery has been unavailable, and though available today, it remains quite
expensive. Examples of previous precision agriculture work done using data acquired
by high-resolution satellite sensors include that of Yanget al. (2006) and Bannariet al.
(2006). General summaries regarding procedures and issues related to precision
agriculture are provided by Barnes et al. (1996), Bramley et al. (1999), Campanella
(2000), and Moran (2000).

The Role of Remote Sensing in Precision Agriculture

While “‘geospatial technologies,” especially GPS and GIS, are certainly visible, integral
components of the movement in agriculture toward precision approaches, remote
sensing unfortunately remains poorly understood and less widely used. Today, most
combines are equipped with GPS capability, and even planting is often done within a
framework of precise geographic location. Similarly, the concept of yield mapping and
comparing those results to detailed soils maps have brought GIS to the fore in modern
agriculture. Remote sensing, on the other hand, while it has much to offer the
agriculturalist, seems less important to producers for several reasons including the high
cost of obtaining imagery, the need to register the images to other spatial data, the need
for imagery of both high spatial and temporal resolutions, and a learning curve that is
rather steep for most on-farm operators and even agronomic consultants. The digital
overlay and analysis of spatial, and especially spectral, datasets is perceived as being
too difficult for many producers and consultants, and they often are reluctant to acquire
the software skills necessary to accomplish the tasks noted previously. The need of most
agricultural producers and consultants seems to be useful map products. Another
challenge in applying remote sensing to agriculture in general has been the delivery of
image data in a timely manner. Pelzmann (1997) indicates that imagery should be
delivered within 48 hours of acquisition or less to be truly useful.

Despite the complexities associated with incorporating remote sensing into the day-to-
day operations of farming, there are some relatively simple products that can serve to
enhance the producer's understanding of his farm as well as facilitate site-specific



management. Aerial photographs have potential for delineating management zones
(Schepers et al. 2000). Conventional-color aerial photography, acquired at a leaf-off
condition, is an important tool in the early stages of preparing a field for site-specific
management. Such air photos provideanun commonly good view of general soil
conditions; most specifically, the variability in organic content from place to place
(Schepers 2002). Aerial videography has been shown to be a useful tool for monitoring
within-field plant-growth variation, as well as establishing management zones for
precision farming (Yang et al. 1998).

Nitrogen Management

One of the major environmental issues is the need for nitrogen (N) management, as the
ground water in some areas of intensive agriculture, such as the Midwestern U.S., has
become increasingly polluted with nitrates. Because N is relatively cheap and small
inputs increase yields, producers have a tendency to apply large amounts of ‘insurance
nitrogen,” thereby increasing the potential for groundwater pollution (Schepers 2002).
Thus, there is a need to develop procedures, including possibly remote sensing, that
may have utility for mitigating the problem of N overuse. The appropriate approach
seems to be variable-rate technology in order to apply the fertilizer only on plants that
are in need and only in portions of the field where that need exists, rather than across
the entire field. Studies by Blackmer et al. (1996), Shanahan et al. (2001), and Scharf et al.
(2002) provide useful background on the subject of nitrogen management by means of
remote sensing.

On-the-go sensors

On-the-go-sensors include implement mounted devices that make measurements of
soils, crop canopies, or even individual plants at close-range. The measurements may
not necessarily be spectral in nature, but certainly could be.

The essence of the new approaches in site-specific management is highlighted by the
fact that combine-mounted yield monitors are commonly used for attempting to assess
within-field variation and to delineate crop-management zones (Pinter et. al. 2003). Yet,
as Pinter et. al point out, yield maps may not be an accurate portrayal of the extremes of
variability, and they do not provide information about yield-reducing stresses because
they are acquired at the end of the season. Also, the yield maps only document the
spatial distribution; they do not explain the cause of variation (Doerge 1999). This is
where remote sensing is capable of making a contribution, but again, high spatial
resolution is a requirement.



Systems have been devised for closed-loop, real-time, variable-rate application
implements (Adamchuk et al. 2003), including for identifying weeds versus soil or crop
residue (e.g., Meyer et al. 1998). Often, the system involves a sprayer, for example to
apply herbicide to weeds, which is operated by means of a computer linked to an
optical sensor. The sensor provides a computer algorithm with an image of a weed, the
analysis proceeds based either on leaf reflectance or leaf shape, and the algorithm
makes the decision to activate the spray, thus (hopefully) killing the weed (Schepers
2002). A similar approach could be used to apply nitrogen to plants where leaf color or
reflectance indicates a shortage of that particular nutrient. Again, the benefit is that an
entire field is spared from large amounts of fertilizer or pesticides and only the plants in
need actually receive the spray. Stamatiadis et al. (2006) used on-the-go multispectral
sensing at close-range in a Greek vineyard to demonstrate the value of proximal sensing
for optimizing production, improving wine quality, and reducing chemical inputs.
Ground-based sensors are also used for monitoring soils. Such instruments provide soil
organic matter, electrical conductivity, nitrate content, and compaction (Barnes et al.
2003), and when integrated with other data sources maximize the information for the
farm manager.

Specialty crops

Viticulture, the cultivation of grapevines, generally for wine production, is an important
agricultural and economic enterprise in many parts of the world, including the United
States. Managers of large vineyards know that the extent of grapevine productivity is
the result of many topographic, climatic, and edaphic parameters, and the assumption
is that these parameters are spatially variable, thus causing differences in vine vigor and
yield from place to place in the vineyard. Viticulturalists must monitor vineyard
conditions for the purpose of making decisions about irrigation, fertilizer application,
canopy management, and when to actually harvest the grapes in order to maximize
juice (and thus wine) quality. An additional important objective of ongoing vineyard
scrutiny is to detect the presence of stressors including pathogens that affect either the
vegetation or the fruit itself. Therefore, remote sensing may be a cost effective tool for
providing the viticulturalist with a synoptic view of the vineyard that yields useful
practical information.

Several authors have conducted research on the subject of remote sensing of grapevines.
General overviews of such work are provided by Lang (1997), Peterson and Johnson
(2000), Carothers (2000), and Hall et al. (2002). Examples of “viticultural sensing’ include
that by Johnson et al. (2001) who evaluated airborne multispectral imagery for
delineating vineyard management zones as a step toward “precision viticulture” while
Lanjeri et al. (2004) used Landsat Thematic Mapper (TM) images and NDVI to assess
change over time in Spanish vineyards.



A few investigators have used remote sensing technologies to detect and/or monitor
pathogens. Wildman et al. (1983) made use of color infrared aerial photography for
detecting and monitoring the spread of Phyloxera, a root louse that can devastate entire
grape-growing regions. Johnson et al. (1996) examined airborne CASI multispectral
imagery at 5 m spatial resolution for the same purpose.

Work dealing with remote sensing as a means of inferring biophysical characteristics of
grapevine canopies includes that of Montero et al. (1999) who used Landsat-TM data
and NDVI to measure percent vegetation cover, biomass, plant height, and leaf area
index. The authors found positive linear relationships with parameters measured in-situ
in Spanish vineyards. Lanjeri et al. (2001) also used TM imagery acquired over
vineyards in Central Spain to document high positive correlations between NDVI and
biomass, plant height, and vegetation cover. Johnson et al. (2003) used IKONOS
imagery to convert NDVI to LAI for two commercial vineyards in California, and
estimated LAI with an r 2 of 0.72 when compared to in-situ measurements. Those
authors concluded that remote sensing appears useful for mapping vineyard leaf area
in low LAI vineyards. Stamatiadis et al. (2006) made use of ground-based canopy
multispectral sensors to estimate biomass production and the quality of Merlot grapes
in Northern Greece.

A review of the literature dealing with remote sensing in viticulture leads one to
conclude that this application is indeed feasible but that there are also some unique
constraints. First, imagery of high spatial resolution, on the order of a few meters, is
required in order to make inferences about planted blocks of vines or even individual
plants within those blocks (e.g., Hall et al. 2001). Distance between vine rows (often
only a meter in California) will, of course, affect the outcome of image analyses.
Temporal resolution is important as it relates to the important phenological stages in
vine development (e.g., bud break, flowering, veraison, and harvest). Bramley et al.
(2003) suggest that veraison +/— two weeks is the optimal time for image acquisition
(assuming that imagery is obtained at only one point in time). It seems as though little
research has been conducted with hyperspectral sensors, but the previous literature
indicates that broad-band sensors are capable of providing useful information. The
target background for the sensor imaging rows of grapes (e.g., whether that
background is green grass or bare soil) is an important consideration as is the fact that
sensor fields of view in vineyards include wood posts and trellis wire, all of which

combine to make the search for spectral end-members interesting if not downright
difficult.



CHALLENGES AND THE FUTURE

Since the early 1970s, one of the greatest challenges to using satellite remotely sensed
data for agricultural applications has been the lack of usable images collected often
enough and at consistent intervals over the growing season. This inadequate temporal
resolution of nadir-viewing moderate and high spatial resolution satellite acquired
imagery can only be resolved by increasing the revisit frequency of the sensors, and this
can only be achieved by increasing the number of satellite sensors collecting imagery.
Currently, and in the past, the revisit frequency of the moderate resolution sensors like
Landsat and SPOT is or has been approximately bimonthly to monthly. Such temporal
resolution is inadequate to capture key changing crop conditions (phenological stages)
throughout the growing season. This is especially true in areas where there is frequent
cloud cover. In the central US, for example, there is often only two or three usable
images acquired during the growing season, and due to varying cloud cover conditions,
the acquisition dates can significantly vary annually making year-to year comparisons
of vegetation conditions very challenging and often impossible.

RapidEye is planning to launch a constellation of five satellites in 2008 with the
objective of providing daily geospatial information of high spatial resolution to global
customers with an interest in agriculture and forestry, among others (RapidEye 2007).
The sensor is to be a five-channel multispectral system operating in the visible and near-
infrared. Such an operational capability would no doubt be of great interest to
agriculturalists. Without such operational satellite remote sensing system the
development of commercial remote sensing products to support agribusiness and the
land management decision-making processes would be greatly hampered. Not having
an operational system has created a lack of confidence in future availability and
consistency in data types and its quality. Insufficient image temporal resolution and the
lack of a dependable and consistent remote sensing system are the two most significant
factors influencing the use of remotely sensed data in the area of agriculture.

During the early stages of the satellite remote sensing era, most research focused on the
use of the data for classification of land cover types with crop types being a major focus
among those interested in agricultural applications. Over the past decade or so, the
work in agricultural remote sensing has focused more on characterization of plant
biophysical properties. As scientists have gained greater access to spectroradiometer
data and airborne and space borne hyperspectral data and imagery, a new area of
research interest is focusing on the use of near infrared analysis and chemometrics
software and models for characterizing the chemical constituencies of plant parts, soils,
rocks, etc. Unfortunately, research findings in this area of study will not become
operational until high quality hyperspectral satellite imagery become available at an
affordable price.



Efforts in the field of precision agricultural are leading to new commercial applications
as studies continue to refine the science and instruments used in ‘on-the-go’
(implement-mounted) sensors. Special interest is now focusing on rapid in-the-field
plant leaf nitrogen characterization so that real-time fertilizer applications can be
implemented. Similar efforts are being made for other critical nutrients as well. In
addition, researchers continue to develop agricultural applications that involve the use
of high spatial resolution airborne imagery for field level ‘“prescription” of fertilizers and
herbicides that are administered using ‘smart’” sprayer applicator technology. Airborne
imagery is also being used to defining soil and crop management zones and
hyperspectral measurements of plant conditions are being used as an indicator of soil
nutrients conditions.

Spectral measurements are also being used to measure plant biophysical properties that
can be linked to biogeochemical fluxes, with special interests in CO>. Remotely sensed
data are also being used to map not only land cover, but land use, which has significant
influence of CO; fluxes. Such data will be very useful for assessing land use practices
that influence land owner carbon credit qualifications.

Finally, remote sensing in agriculture is moving toward nano-scale analysis. A new and
nontraditional remote sensing application involves the implanting of nano-chips in
plant and seed tissue that can be used in near-real time to monitor crop. Clearly, these
and other new approaches will reinforce the importance of remote sensing in future
analysis of agricultural sciences.
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