
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

CSE Conference and Workshop Papers Computer Science and Engineering, Department 
of 

4-2001 

Understanding and Measuring the Sources of Variation in the Understanding and Measuring the Sources of Variation in the 

Prioritization of Regression Test Suites Prioritization of Regression Test Suites 

Sebastian Elbaum 
University of Nebraska-Lincoln, selbaum@virginia.edu 

David Gable 
University of Nebraska-Lincoln, dgable@cse.unl.edu 

Gregg Rothermel 
Oregon State University, gerother@ncsu.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork 

 Part of the Computer Sciences Commons 

Elbaum, Sebastian; Gable, David; and Rothermel, Gregg, "Understanding and Measuring the Sources of 
Variation in the Prioritization of Regression Test Suites" (2001). CSE Conference and Workshop Papers. 
56. 
https://digitalcommons.unl.edu/cseconfwork/56 

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and 
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17221744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/56?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

Understanding and Measuring the Sources of Variation 
 in the Prioritization of Regression Test Suites 

 
 

Sebastian Elbaum 
CSE Department 

University of Nebraska  
Lincoln, Nebraska 

elbaum@cse.unl.edu 
 

David Gable 
CSE Department 

University of Nebraska  
Lincoln, Nebraska 

dgable@cse.unl.edu 
 

Gregg Rothermel 
CS Department  

Oregon State University 
Corvallis, Oregon 

grother@cs.orst.edu 
 

 
Abstract 

 
Test case prioritization techniques let testers order their 
test cases so that those with higher priority, according to 
some criterion, are executed earlier than those with lower 
priority. In previous work, we examined a variety of 
prioritization techniques to determine their ability to 
improve the rate of fault detection of test suites.  Our 
studies showed that the rate of fault detection of test suites 
could be significantly improved by using more powerful 
prioritization techniques.  In addition, they indicated that 
rate of fault detection was closely associated with the 
target program.  We also observed a large quantity of 
unexplained variance, indicating that other factors must 
be affecting prioritization effectiveness.  These 
observations motivate the following research questions: 
(1) Are there factors other than the target program and 
the prioritization technique that consistently affect the 
rate of fault detection of test suites? (2) What metrics are 
most representative of each factor? (3) Can the 
consideration of additional factors lead to more efficient 
prioritization techniques? To address these questions, we 
performed a series of experiments exploring three factors: 
program structure, test suite composition, and change 
characteristics.  This paper reports the results and 
implications of those experiments. 

 
 

1. Introduction 
 
Test suite reuse is a common practice during regression 
testing [15].  Testers often reuse test suites by running all 
the test cases in those suites, which can require significant 
effort. Test case prioritization techniques [4, 17, 20] assist 
with test suite reuse by helping testers order their test 
cases such that those with higher priority, according to 
some criterion, are executed earlier than those with lower 
priority. 

 
 Test case prioritization can have several goals; one 
potential goal is that of increasing a test suite’s rate of 
fault detection -- a measure of how quickly the test suite 
detects faults [17].  An improved rate of fault detection 
can provide earlier feedback on the system under 
regression test, and let developers begin debugging earlier 
than might otherwise be possible.  It can also increase the 
likelihood that if testing is prematurely terminated, those 
test cases that offer the greatest fault detection ability in 
the available testing time will have been executed.  In test 
cycles that are sufficiently long or expensive, such gains 
can be advantageous.  
  In previous studies [4, 6, 17, 18], we examined the 
abilities of several test case prioritization techniques to 
improve the rate of fault detection of test suites.  The 
techniques that we investigated prioritized test suites 
based on various metrics, including code coverage, fault 
likelihood, and fault exposure potential.  We showed that 
each technique could significantly improve the rate of 
fault detection of test suites during regression testing, and 
we determined which techniques were the most 
successful.  Our experiments also showed that there was 
significant statistical evidence of an association between 
rate of fault detection and program under test: different 
programs offer different opportunities for test case 
prioritization.  

These results were encouraging; however, the analysis 
of our data also showed that the target program and the 
prioritization technique explained only part of the 
observed variation in prioritization success (rate of fault 
detection achieved).  A better understanding of the factors 
that influence the success of prioritization techniques 
could help both with the creation of new techniques, and 
the development of criteria for selecting appropriate 
techniques in particular circumstances.  This motivates 
the search for other factors that affect the rate of fault 
detection of test suites.  We hypothesize that, in addition 
to technique and program, there are at least two other 
factors affecting test case prioritization: change 

Seventh International Software Metrics Symposium (METRICS'01),  London, England, April 04-April 06, 2001.
DOI: http://doi.ieeecomputersociety.org/10.1109/METRIC.2001.915525



characteristics and test suite composition.  In our search 
of the literature, however, we could discover no previous 
work investigating the sources of variation affecting test 
case prioritization.  In this work, we selected a set of 
metrics to account for these quantitative factors, and 
conducted an empirical study investigating the value of 
the chosen metrics in explaining the sources of additional 
variation.     

 
2. Empirical Study 
 
Our goal is to understand and quantify the sources of 
variation involved in the prioritization of test suites.  To 
address this goal, we designed an empirical study that 
allowed us to manipulate and measure various potential 
sources of variation and prioritization techniques.  

Presentation of the study is structured in four sections. 
This section presents our dependent and independent 
variables, including the list of metrics selected.  Section 3 
provides a summary of the collected data.  Section 4 
presents a principal components analysis performed on 
the collected metrics to understand the problem 
dimensionality, the information provided by each 
variable, and the relationships among variables. Section 5 
presents the analysis of the value of the variables as 
predictors of the rate of fault detection through univariate 
and multiple regression analysis.  
 
2.1. Dependent Variable 
 
In previous work [17], we defined a measure with which 
to quantify and compare the rates of fault detection of test 
suites, called APFD (average percentage of faults 
detected); this measure serves as our sole dependent 
variable.  APFD measures the average cumulative 
percentage of faults detected over the course of executing 

the test cases in the test suite in a given order.  APFD 
values range from 0 to 100 percent: a higher APFD value 
means that faults were found by test cases occurring 
earlier in the order, and a lower APFD value means that 
faults were found by test cases occurring later in the 
order.   

For illustration, consider a program with 10 faults (1-
10), and a test suite of 5 test cases (A-E), with fault 
detecting abilities as shown in Figure 1.A.   

Suppose we place the test cases in order A-B-C-D-E to 
form a prioritized test suite T1.  Figure 4.B shows the 
percentage of detected faults versus the fraction of the test 
suite T1 used.  After running test case A, two of the ten 
faults are detected; thus 20% of the faults have been 
detected after 0.2 of the test suite T1 has been used.  After 
running test case B, two more faults are detected and thus 
40% of the faults have been detected after 0.4 of the test 
suite has been used.  In Figure 4.B, the area inside the 
inscribed rectangles (dashed boxes) represents the 
weighted percentage of the faults detected over the 
corresponding fraction of the test suite.  The solid lines 
connecting the corners of the inscribed interpolate the 
gain in the percentage of detected faults.  The area under 
the curve thus represents the weighted average of the 
percentage of faults detected over the life of the test suite.  
This area is the prioritized test suite’s average percentage 
faults detected measure (APFD); the APFD is 50% in this 
example. 

Figure 4.C reflects what happens when the order of test 
cases is changed to E-D-C-A-B, yielding test suite T2, a 
“faster detecting” suite than T1 with APFD 66%.  Figure 
4.D shows the effects of using a prioritized test suite T3 
whose test case ordering is C-E-D-A-B.  By inspection, it 
is clear that this ordering results in the earliest detection 
of the most faults and illustrates an optimal ordering, with 
APFD 78%. 

Note that as we have defined it, APFD can be used 



only in cases in which it can be determined which faults 
are revealed by which test cases, as in controlled studies. 
 
2.2. Independent Variables 

 
The independent variables in our study are the subject 
programs, the prioritization techniques, the changes in the 
program introduced in a specific version, and the test suite 
characteristics. To characterize our subject progra

The following sections expand the definition of each 
independent variable, relating the metrics used to 
characterize that independent variable within the context 
of this empirical study. 

 
Subject programs.  To obtain greater confidence that 

our results are not dependent on the target program, we 
 

Table 1. Program metrics 

Table 2. Change metrics 

                                                 
1 Measured as a bounded inter-procedural loop free paths. 

analyzed eight different programs written in C2. 
Researchers at Siemens Corporate Research provided 
seven of these programs [9]; the eighth program is an 
application developed by the European Space Agency. 
For each subject program, we captured program 
characteristics using a set of metric tools used in previous 
measurement research efforts [2, 3].  Table 1 describes 
the metrics used.3  
                                                                                              
Versions and Changes.  Each of the eight programs has a 
baseline version, and twenty-nine versions each 
containing multiple faults. By studying many versions 
containing varied types of changes within each program, 
we gain confidence that our analysis and results will not 
be dependent on the nature of the changes.  The 
characteristics of the changes among versions were 
computed using syntactic differencing.  Following the 
procedure detailed in [19], we used the UNIX program 
diff with the “unified” option flag to show which lines 
had been inserted into or deleted from the baseline 
version.  
 Table 2 presents a list of the metrics used to measure 
the distribution and characteristics of changes in the 
program versions.  A “change” consists of one statement 
inserted into or deleted from the baseline version.4 
 
Test Suites.  For each baseline program, a large pool of 
test cases was available.  For the seven Siemens 
programs, the Siemens researchers had created these 
pools in two stages.  First, they created initial pools of 
black-box test cases using the category partition method 
and TSL tool [16].  They then augmented each pool with 
manually-created white-box test cases to ensure that each 
exercisable statement, edge, and definition-use pair in the 
base program or its control flow graph was exercised by 
at least 30 test cases.  For the Space program, the initial 
pool consisted of 10,000 randomly generated test cases 
created by Vokolos and Frankl [19], augmented by 
additional white-box test cases sufficient to achieve 
coverage of each branch by at least 30 test cases [17]. 

We used these test pools as a source for test suites, 
creating 1000 branch-adequate suites for each program by 
randomly selecting test cases from these suites and adding 
them to the test suite if they added coverage, and 
continuing until complete branch coverage had been 
achieved.   Duplicate test suites were discarded.  We then 

                                                 
2 For further details about the programs, versions, and tests suites see 
[17, 4]. 
3 In some cases, to capture certain attributes for high-level entities we 
derived quantities from some lower level entities.  For example, to 
capture program structure (a high-level entity) we computed the average 
function (low-level entity) size for that program, and assumed that the 
average function size has a random distribution across programs. 
4 The values reported by diff were transformed to just “insertions” and 
“deletions” to ensure their consistency.  

Metric Description 

PRG.PROG_S 
Number of new line characters in the source 
code 

PRG.N_EXECST Number of executable statements 

PRG.AN_PATHS 
Mean number of paths1 in the control flow 
graph of a function over all functions 

PRG.N_FUNCT Number of functions in the program 

PRG.A_FSIZE Mean function size across all functions 

PRG.S_FSIZE 
Standard deviation of function size across 
all functions 

PRG.A_FFAN Mean function fan out over all functions 

Metric Description 

CHG.N_FUN_CH 
Number of functions with at least one 
changed statement 

CHG.P_FCH 
Percentage of functions with at least one 
changed statement 

CHG.P_SCH Percentage of statements changed 

CHG.N_INS Number of statements inserted 

CHG.N_DEL Number of statements deleted 

CHG.N_TOT_CH 
Number of statements changed computed 
by using CHG.N_INS + D_DEL 

CHG.P_GLOCOC 
Percentage of global changes over the 
total number of changes 

CHG.N_GLO_CH 
Number of global changes measured by 
counting the changed statements that 
occur outside functions 

CHG.AN_CHMOM 
Mean number of changed functions over 
all functions 



selected, for each subject program, 50 of its associated 
test suites for use in this study. 
 We used the Aristotle program analysis system [8] to 
generate test coverage data for each of the subject 
programs and test cases.  Additional library routines from 
the Aristotle system and newly developed scripts were 
used to match executed statements with the changed lines 
of code reported by the UNIX diff tool discussed above. 
Table 3 presents a list of the metrics used to quantify the 
test suite characteristics.  
 
Prioritization Techniques.  For this study we selected a 
varied subset of the prioritization techniques used in 
previous studies. We next discuss each technique briefly; 
further details can be found in [4]. 
 

Total function coverage (tc-f).  By instrumenting a 
program we can determine, for any test case, the number 
of functions in that program that were exercised by that 
test case.  We can prioritize these test cases according to 
the total number of functions they cover simply by sorting 
them in order of total function coverage achieved. 

Total statement coverage (tc-s).  Analogous to total 
function coverage prioritization but operating at the level 
of statements, this technique prioritizes test cases 
according to the total number of statements they execute. 

Table 3. Test metrics 

Additional function coverage (ac-f).  Additional function 
coverage prioritization greedily selects a test case that 
yields the greatest function coverage, then adjusts the 
coverage data about subsequent test cases to indicate their 
coverage of functions not yet covered, and then repeats 
this process, until each function covered by at least one 
test case has been covered.  

Additional statement coverage (ac-s).  Analogous to 
additional function coverage prioritization but operating 
at the level of statements, this technique prioritizes test 
cases (greedily) according to the total number of 
additional statements they cover. 

Total fault index (fi-t). Certain functions are more likely 
to contain faults than others.  This fault proneness can be 
associated with measurable software attributes [1, 10, 12, 
13].  Fault index prioritization attempts to take advantage 
of this association by prioritizing test cases based on the 
execution of fault prone functions.  To represent fault 
proneness, we use a fault index based on principal 
component analysis [2, 14, 3].  Prioritization computes 
the sum of the fault indexes for each function each test 
case executes, and then sorts the test cases in decreasing 
order of these sums. 

Additional fault-index (fi-a). Additional fault index 
prioritization is accomplished in a manner similar to 
additional function coverage prioritization.  The set of 
functions that have been covered by previously executed 
test cases is maintained.   If this set contains all functions 
(no test case adds anything to this coverage) the set is 
reinitialized to empty.  To find the next best test case we 
compute, for each test case, the sum of the fault indexes 
for each function that test case executes, except for 
functions in the set of covered functions.  The test case for 
which this sum is the greatest wins.  This process is 
repeated until all test cases have been prioritized. 

Optimal (optimal).  As an experimental control, we 
consider an optimal ordering of the test cases in the test 
suite.  We can obtain such an ordering in our experiments 
because we utilize programs with known faults and know 
which faults each test case exposes: this lets us determine 
the ordering of test cases that maximizes a test suite’s rate 
of fault detection.  In practice, of course, this is not a 
practical technique, but it provides an upper bound on the 
effectiveness of the other heuristics. 

 
3. Data Collected 
 
To capture suspected sources of variation we collected 
various data.  In this section, we use descriptive statistics 
to present that data.  Note that the original data did not 
constitute a normal distribution (it was skewed toward 
high APFD values) and it presented non-homogeneous  

 

Metric Description 
TS.SUITE_S Number of tests in the test suite 

TS.P_TRCHF 
Percentage of tests reaching a function that 
contains a change 

TS.AN_CHFET 
Mean number of changed functions executed 
by a test over a test suite 

TS.SN_CHFET 
Standard deviation of number of changed 
functions executed by a test over a test suite 

TS.AN_CHSET 
Mean number of changed statements executed 
by a test over a test suite 

TS.SN_CHSET 
Standard deviation of number of changed 
statements executed by a test over a test suite 

TS.AN_FET 
Mean number of functions executed by a test 
over a test suite 

TS.SN_FET 
Standard deviation of the number of functions 
executed by a test over a test suite 

TS.AP_FET 
Mean percentage of functions executed by a 
test over a test suite 

TS.SP_FET 
Standard deviation of the percentage of 
functions executed by a test over a test suite 

TS.AP_SET 
Mean percentage of statements executed by a 
test over a test suite 

TS.SP_SET 
Standard deviation of the percentage of 
statements executed by a test over a test suite 

TS.AN_STET 
Mean number of statements executed by a test 
over a test suite 

TS.SN_STET 
Standard deviation of number of statements 
executed by a test over a test suite 



Table 4. Summary program metrics 

Table 5. Summary change metrics 

 
Table 6. Summary test metrics 

variance.  To address this problem, we performed a 
random sampling and assignment on APFD values to help 
distribute the idiosyncratic characteristics of the subjects 
and avoid biasing the outcome of the study. 
 
 

 

 
Program Metrics. Table 4 summarizes the data values 
collected to characterize the subject programs. Space is 
clearly the largest program as measured by most of these 
metrics.  For the other programs, all the metrics are 
substantially smaller, with the noticeable exception of 
average number of paths per function. 
 
Change Characteristic Factor Metrics.  Table 5 
summarizes the metrics collected to characterize the 
changes made to a program in a particular version. For 
each program, change metrics were computed by 
comparing the baseline version of the program with each 
of the versions. The percentage of change was relatively 
small.  On average, CHG.N_INS and CHG.N_DEL per 
version are about 5 statements, while the number of 
global changes was slightly over 1. 
 
Test Suite Composition.  Table 6 summarizes the test 
suite composition metrics. On average, about half of all 
statements are executed by each test case (TS.AP_SET).  
The number of changed statements executed by each test 
case (TS.AN_CHSET) is smaller, which is consistent 
with the small amount of change present in most versions. 
TS.P_TRCHF at 63% suggests that a large percentage of 
test cases are useful for validating the changes. 
 
4. Understanding the dimensionality of the 
problem 
 
The data collection process targeted 32 metrics from three 
different domains: program characteristics, test suite 
composition and change attributes.  Although each of 
these metrics plays a role in explaining the variability in 
the collected data, a smaller set of metrics suffices to 
capture most of the observed variance.  To find a smaller 
set of these metrics representing the true dimensionality 
of the data we employed principal component analysis [7, 

Programs 

Metrics 

re
pl

ac
e 

sc
he

d 

sc
he

d2
 

sp
ac

e 

tc
as

 

to
ke

ns
 

to
ke

ns
2 

to
t_

in
f Mean Std Dev 

PRG.N_EXECST 160 98 95 3152 48 171 122 64 488.75 1076.96 
PRG.PROG_S 563 412 307 9126 173 563 510 406 1507.50 3081.19 
PRG.N_FUNCT 21 18 16 136 9 18 19 7 30.50 42.91 
PRG.A_FFAN 2.33 1.83 2.19 4.10 2.00 2.61 1.89 1.29 2.28 0.83 
PRG.A_FSIZE 12.10 7.78 8.44 26.18 6.56 11.72 8.37 15.57 12.09 6.40 
PRG.S_FSIZE 8.22 6.99 5.53 25.56 7.56 13.06 7.08 14.81 11.10 6.67 
PRG.AN_PATHS 7.24 3.06 6.75 15.80 1.78 5.61 30.89 47.29 14.80 16.17 

Metrics Mean Std Dev. Min Max 
CHG.P_FCH 16% 12% 0% 57% 

CHG.P_SCH  2% 2% 0% 17% 

CHG.N_INS 5.47 9.44 0 73 

CHG.N_DEL 5.63 9.97 0 73 

CHG.N_TOT_CH 11.10 19.30 1 146 

CHG.P_GLOCOC 12% 24% 0% 100% 

CHG.N_GLO_CH 1.18 2.89 0 12 

CHG.AN_CHMOM 0.43 0.35 0.00 2.89 

Metrics Mean Std Dev. Min Max 
TS.SUITE_S 21.14 38.04 50 166 

TS.P_TRCHF 63% 35% 0% 100% 

TS.SN_CHFET 0.67 0.39 0.00 2.46 

TS.SN_CHSET 0.86 0.92 0.00 9.17 

TS.AN_CHFET 1.05 0.80 0.00 5.58 

TS.AN_CHSET 1.30 1.49 0.00 12.81 

TS.AN_STET 146.68 226.74 32.20 971.49 

TS.SN_STET 109.64 251.18 13.89 1060.21 

TS.AN_FET 14.80 12.14 3.75 57.68 

TS.SN_FET 6.27 4.35 1.60 21.42 

TS.AP_SET 48% 8% 28% 66% 

TS.SP_SET 22% 6% 9% 32% 

TS.AP_FET 70% 10% 40% 86% 

TS.SP_FET 31% 6% 15% 42% 



11]. This classical multivariate analysis technique reduces 
the dimensionality of the data to its principal orthogonal 
components. (The mechanisms for generating principal 
components are outside the scope of this paper; it suffices 
to understand that principal component analysis groups 
variables such that all the variables within a group 
(component) are highly correlated but have small 
correlations with variables in other components. The 
result is a series of orthogonal components representing 
an underlying common attribute domain.).  The first step 
in this process is to determine how many orthogonal 
sources of variation are really being measured y the set of 
metrics. Principal component analysis identified six 
principal components (PCs) from our set of metrics. This 
component structure contradicted some of 
   
 

Table 7. Principal component analysis 

our expectations and indicated that some other sources of 
information may be important to predicting APFD.   

To clarify the component structure we used a varimax 
rotation [11], which maximizes the metrics correlation 
coefficients, also known as variable loadings. Table 7 
presents the component structure indicating the greater 
loadings by coloring the corresponding cells.   
 After performing the principal component analysis, we 
proceeded to interpret the components and the metrics 
loadings.  PC1 explains almost half of the observed 
variation. There are two interesting findings within PC1.  

First, most “program characteristics” (all except 
PRG.AN_PATHS) and several “test suite composition” 
metrics (TS.AN_FET, TS.SN_FET, TS.SUITE_S, 
TS.AN_STET, and TS.SN_STET) were both strongly  

 
 
 

Metrics PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 
TS.SUITE_S 0.963 0.087 0.220 -0.048 -0.044 0.019 
PRG.N_EXECST 0.952 0.107 0.226 -0.051 -0.070 0.019 
PRG.N_FUNCT 0.951 0.104 0.226 -0.073 -0.102 -0.058 
TS.AN_STET 0.951 0.109 0.224 -0.062 -0.085 0.041 
PRG.PROG_S 0.950 0.112 0.226 -0.059 -0.072 0.038 
TS.SN_STET 0.944 0.118 0.229 -0.055 -0.091 0.026 
TS.AN_FET 0.942 0.062 0.214 -0.091 -0.123 -0.118 
TS.SN_FET 0.896 0.118 0.230 -0.124 -0.188 -0.200 
PRG.A_FFAN 0.895 -0.089 0.167 0.038 0.086 -0.343 
PRG.A_FSIZE 0.831 0.107 0.161 -0.041 0.130 0.447 
PRG.S_FSIZE 0.799 0.067 0.158 -0.079 0.227 0.438 
TS.AP_FET -0.732 -0.254 -0.222 0.055 0.026 0.127 
TS.SP_SET -0.750 0.224 -0.056 -0.099 -0.263 -0.273 
TS.AP_SET -0.778 0.269 -0.112 -0.039 -0.107 0.105 
TS.SP_FET -0.821 0.057 -0.079 -0.002 -0.172 -0.148 
TS.P_TRCHF -0.067 0.941 0.053 0.050 -0.115 0.009 
TS.AN_CHFET 0.108 0.905 0.141 0.261 -0.045 -0.004 
TS.AN_CHSET 0.366 0.700 0.235 0.177 0.052 -0.026 
TS.SN_CHFET 0.071 0.662 0.187 0.406 -0.096 -0.082 
CHG.N_INS 0.497 0.130 0.824 0.161 0.074 -0.015 
CHG.N_TOT_CH 0.518 0.134 0.819 0.142 0.058 -0.003 
TS.SN_CHSET 0.310 0.299 0.807 0.175 -0.048 -0.019 
CHG.N_DEL 0.532 0.137 0.805 0.123 0.043 0.009 
CHG.AN_CHMOM -0.123 0.321 0.338 0.807 0.000 0.162 
CHG.P_SCH -0.207 0.135 0.148 0.806 0.261 -0.252 
CHG.P_FCH -0.353 0.341 -0.062 0.729 -0.065 0.342 
CHG.N_FUN_CH 0.398 0.453 0.171 0.575 -0.183 -0.105 
CHG.N_GLO_CH 0.033 -0.052 0.055 0.142 0.924 -0.096 
CHG.P_GLOCOC -0.052 -0.216 -0.003 -0.082 0.902 0.073 
PRG.AN_PATHS -0.003 -0.070 -0.029 0.028 -0.048 0.943 
Eigenvalues 13.031 4.458 3.491 2.618 2.105 1.823 
% Variance  47% 16% 13% 10% 8% 7% 
Accumulated 47% 63% 76% 86% 94% 100% 



associated with PC1, even though we had expected these 
two classes of metrics to quantify different domains. This 
metric loading suggests that as program size increases, the 
expected number of test cases in the associated test suite 
will also increase, and also the average number of entities 
(statements or functions) executed by each test case will 
increase. The second interesting issue is that four of the 
“test suite composition” metrics (TS.SP_SET, 
TS.AP_FET, TS.AP_SET, and TS.SP_FET) have a high 
negative correlation to PC1. Since those metrics specify 
the percentage of code reached by a test case, it makes 
sense for them to decrease as a function of program size.  
 PC2 explains over 16% of the observed variation.  The 
metrics identified as mapping predominantly to PC2 
(TS.P_TRCHF, TS.AN_CHFET, TS.AN_CHSET, 
TS.SN_CHFET) are a subset of the “test suite 
composition” metrics.  This subset consists of metrics that 
measure the number of changed statements executed by a 
test case. This differs from the PC1 testing metrics, which 
do not capture any information about changes, 
constituting a unique (and unanticipated) component that 
quantifies a combination of test execution and change 
characteristics.   
 PC3, PC4 and PC5 present high loading on the 
“change characteristics” metrics. PC3 explains almost 
13% of the observed variance and most of its metrics (3 
out of 4) are associated with “change characteristics”. 
This subset of metrics measures the extent of changes 
within the program.  The exception is TS.SN_CHSET, 
which was classified as a “test suite composition” metric. 
Although this metric does capture some information about 
changes, it is unclear why it is more correlated to PC3 
than to PC2, which otherwise involves metrics that 
measure test coverage of changes.  PC4 explains almost 
10% of the observed variation and is highly correlated to 
another subset of the metrics identified as “change 
characteristics” (CHG.AN_CHMOM, CHG.P_FCH, and 
CHG.P_SCH). These metrics differ from those in PC3 
because they measure the distribution of changes instead 
of the extent of the changes.  PC5 includes the 
CHG.N_GLO_CH and CHG.P_GLOCOC metrics, which 
are also “change characteristics” metrics. These metrics 
capture unique characteristics such as global variables, 
global constants, and global structure type definitions.  

PC 6 correlates to just one metric: PRG.AN_PATHS.  
Principal component analysis shows that the average 
number of paths is not correlated with any of the other 
metrics that we have considered, including the other 
“program characteristics” metrics. This is probably due to 
the fact that the number of paths per function is a control 
flow measure, which constitutes a source of variation not 
captured by the other program metrics. 
 In summary, the principal component analysis 
discovered 6 underlying uncorrelated sources of variation. 
These sources of variation did not match the ones that we 

had expected to find, in number or nature, because: (1) 
most of the metrics describing program characteristics 
and the metrics associated with the distribution of the 
testing activity behave in a similar fashion;  (2) metrics 
describing how the testing activity is associated with the 
changes constitute a unique source of variation, and thus, 
testing metrics are present in two domains: one in 
association with programs and the other involving 
changes; and (3) there is more than one dimension 
describing change characteristics: the extent, distribution 
and global characteristics of changes constitute 
independent dimensions.  
 
5. Regression Analysis 
 
The principal component analysis provided insights into 
the underlying dimensions of the collected metrics.  This 
section takes the analysis a step further by deriving 
relationships between the collected metrics and APFD.  
We use regression analysis to examine the relationships 
between one or more independent variables and the 
dependent variable.  In other words, we use regression 
analysis to evaluate the collected metrics as predictors of 
our measurement criterion APFD.  We performed this 
analysis in two phases. First, we individually regressed 
each variable against the measurement criterion APFD.  
Second, we created a multiple regression model with 
metrics representing various factors.  Note that, in 
following this process, we are not attempting to evaluate 
the prioritization techniques [4, 17], nor are we trying to 
build a prediction model.  Instead, this section explores 
the influence of certain factors (as represented by the 
chosen metrics) across the different prioritization 
techniques. 
 
5.1. Univariate Regression 

 
Table 8 synthesizes the univariate regression analysis. 
Each metric was analyzed independently under each 
technique to account for that metric’s influence on APFD. 
For space reasons, we present only the squared multiple R 
(referred to as R-square or R2)5.  The R-square value 
represents the amount of reduction in the variability of 
APFD obtained through the regressor variable.  Next to 
each R-square value in the table and within parentheses is 
the number of observations made per technique for each 
metric. Given the large number of observations, the p 
values were all very small (smaller than 0.005) so we 
rejected the hypothesis that for each metric in the table, 
the coefficient was zero. Some of the cells in Table 8 have 
a gray shade to assist in data visualization. The three 
shades of gray, from darkest to lightest, correspond to R-

                                                 
5 Access to the rest of the model per variable can be obtained at [5]. 



square values in the ranges of [1, 0.8], (0.8, 0.7], and (0.7, 
0.6], respectively.  

Most of the metrics with higher R-square values had a 
high correlation with PC1, in particular metrics such as 
PRG.A_FSIZE that reflect the structure of the program in 
terms of its distribution (means, standard deviation, and 
so forth).  The same holds for most of the metrics that 
describe the relationship between the program and test 
cases such as TS.AP_FET.  Some of the metrics highly 
correlated with PC2 also had relatively high R-square 
values, but only within some of the techniques (and 
especially with optimal). For example, TS.SN_CHFET 
was approximately 0.6 for all the techniques.  
Interestingly, the metrics that correlated highly with PC3 
presented lower R-square values, which means that the 
sizes of the changes did not correlate directly with APFD.  
In PC4, which reflected the distribution of changes, the   

Table 8. Univariate regression 

number of functions that changed shows an R-square 
value greater than 0.6 across all the techniques. The 
metrics mapped to PC5 did not show high R-square 
values, which indicates that the extent to which changes 
are global did not have a large impact on APFD. The 
same can be said about PC6.  
 It is also worth observing that the optimal technique 
has the highest R-square value for the majority of the 
shaded cells.  This might be due to the fact that orderings 
computed by the optimal technique are computed 
knowing the location of the faults, and this minimizes a 
source of noise present in all the other techniques.  
Although the prediction of APFD under the optimal 
technique itself does not make much practical sense (it is 
only a control technique), we could use our ability to 
predict optimal based on our metrics to set an upper 
threshold for prioritization possibilities when the location  
 
 

Technique 
Ac-f Ac-s Fi-a Fi-t Optimal Tc-f Tc-s 

P
C

s 

Metric 
R2 (1779) R2 (1639) R2 (1683) R2 (1452) R2 (532) R2 (1512) R2 (1470) 

TS.SUITE_S 0.361 0.34 0.366 0.364 0.319 0.369 0.36 
PRG.N_EXECST 0.261 0.247 0.273 0.272 0.253 0.276 0.271 
PRG.N_FUNCT 0.485 0.461 0.482 0.475 0.404 0.474 0.47 
TS.AN_STET 0.418 0.391 0.417 0.413 0.355 0.415 0.41 
PRG.PROG_S 0.298 0.281 0.307 0.305 0.278 0.309 0.303 
TS.SN_STET 0.274 0.258 0.284 0.28 0.26 0.284 0.281 
TS.AN_FET 0.632 0.621 0.63 0.624 0.556 0.618 0.614 
TS.SN_FET 0.657 0.663 0.654 0.644 0.614 0.638 0.636 
PRG.A_FFAN 0.778 0.796 0.787 0.795 0.889 0.783 0.781 
PRG.A_FSIZE 0.777 0.756 0.78 0.78 0.816 0.772 0.768 
PRG.S_FSIZE 0.736 0.738 0.747 0.744 0.78 0.734 0.733 
TS.AP_FET 0.705 0.749 0.706 0.707 0.953 0.693 0.694 
TS.SP_SET 0.627 0.677 0.617 0.609 0.894 0.595 0.597 
TS.AP_SET 0.681 0.719 0.676 0.667 0.941 0.656 0.656 

1 

TS.SP_FET 0.674  .714  0.669  0.661  0.921  0.649  0.651  
TS.P_TRCHF 0.5 0.596 0.496 0.493 0.749 0.485 0.483 
TS.AN_CHFET 0.458 0.51 0.441 0.451 0.573 0.448 0.44 
TS.AN_CHSET 0.395 0.391 0.368 0.388 0.369 0.386 0.389 

2 

TS.SN_CHFET 0.597 0.584 0.596 0.603 0.736 0.597 0.591 
CHG.N_INS 0.356 0.322 0.334 0.339 0.271 0.327 0.322 
CHG.N_TOT_CH 0.356 0.317 0.336 0.338 0.265 0.329 0.23 
TS.SN_CHSET 0.493 0.437 0.458 0.486 0.415 0.453 0.456 

3 

CHG.N_DEL 0.348 0.308 0.333 0.332 0.257 0.326 0.313 
CHG.AN_CHMOM 0.565 0.487 0.541 0.54 0.543 0.557 0.542 
CHG.P_SCH 0.426 0.338 0.394 0.397 0.358 0.409 0.405 
CHG.P_FCH 0.553 0.521 0.532 0.512 0.595 0.53 0.525 

4 

CHG.N_FUN_CH 0.657 0.643 0.639 0.631 0.648 0.651 0.638 
CHG.N_GLO_CH 0.143 0.136 0.153 0.147 0.184 0.152 0.163 5 
CHG.P_GLOCOC 0.146 0.157 0.145 0.147 0.219 0.149 0.154 

6 PRG.AN_PATHS 0.457 0.418 0.461 0.441 0.533 0.439 0.447 



of faults is not known.  
In summary and based on this univariate regression 

study, it seems that metrics reflecting the normalized 
program characteristics6, and the characteristics of the test 
suite in relation to the program (expected coverage 
measures) and in association with the changes, are the 
main contributors to the variation in APFD.  In other 
words, most of the metrics with high R-square values 
have high loadings on PC1 and a few from PC2 and PC4 
also have relatively high R-square values. Those metrics 
with the highest R-square values are important because 
they can explain the most variance in APFD and offer 
better prediction of APFD. The other 55% of the metrics 
were not able to explain even half of the variation in 
APFD, as measured by their R-square value. It is also 
worth noting that in the majority of cases, the metrics 
prediction power was consistent across techniques; 
metrics with high R-square under one technique were 
likely to be good predictors of APFD independent of the 
chosen prioritization technique. 
 
5.2. Multiple Regression 
 
 This section can be considered an extension of the 
previous univariate regression section, in that here we 
create a regression model that considers a set of metrics 
acting as predictors of the APFD criterion.  We conjecture 
that by using a set of metrics that captures different 
sources of variation, we will be able to generate a more 
appropriate model to explain APFD behavior. To create 
the multiple regression model, we first selected a subset 
of the metrics to act as predictor variables because a 
regression model with many metrics (we had more than 
30) would make the results difficult to interpret, and 
likely unstable.  
 Metrics were selected based on just one criterion: 
having the highest prediction capability (as indicated by 
the R-square values in the univariate analysis) within the 
groups of metrics that mapped to the same PC7.  Initially, 
we selected 3 metrics: PRG.A_FFAN, TS.P_TRCHF and 
CHG.N_FUN_CH, each with the highest R-square value 
within its domain.  By selecting metrics from different 
components we capture several factors affecting our 
criterion, which is likely to lead to more stable regression 
models.  Then, we added TS.AP_FET to account for the 
possible effect of the test suite coverage metrics that had 
high negative loadings with PC1.  
 Table 9 presents 8 multiple regression models, one for 
each of the techniques and one overall model. The column 

                                                 
6 The results were fairly consistent across all programs. Individual tables 
per program are included in [5]. 
7 Stepwise regression could have been used to keep the metrics that 
contributed the most to explaining APFD variation. However, 
preliminary results using stepwise regression did not reduce the number 
of metrics enough to make the model comprehensible. 

labeled “N” indicates the number of observations 
available to construct each model.  In addition to the 
multiple R (an indicator of how well the model fits the 
data), we have included the adjusted R-square values to 
account for the addition of metrics to the model, so that 
more variables will not necessarily guarantee a higher 
prediction coefficient.  The adjusted R-square is a stricter 
estimator of the model prediction power than the 
optimistic R because it considers the number of 
regressors.  The p value for each model is presented in the 
next column.  The last four columns introduce the model 
coefficients for each of the chosen metrics.   

For each of the models p was less than 0.001, 
indicating that there was a linear relationship between the 
response variable, APFD, and the subset of chosen 
independent variables. For all but one model, the adjusted 
R-square indicates that approximately 80% of the 
variation in APFD can be explained by that model. The 
noticeable exception is the model for the optimal 
technique, where over 99% of the variation can be 
explained.  Note also that the overall model, which does 
not discriminate among techniques, still has a high 
adjusted R-square. 

In addition to evaluating the goodness of fit of the 
model through the correlation coefficients, we evaluated 
the adequacy of the overall model by analyzing the 
residuals and performing a detection of influential 
observations.  We identified 40 observations that had a 
disproportionate influence on the model by using Cook’s 
test [11]. Those 40 observations corresponded to the same 
version of the program space -- the one with the largest 
number of faults. These observations, although extreme, 
are valid and cannot be dismissed from the observation 
set.  This fact indicates that we might need additional 
metrics in the model to capture those outliers 
appropriately. We also realized that since our model did 
not account for APFD bounds, some estimations were 
over the proper range. Slight adjustments to the model 
(piecewise regression) to account for those discontinuities 
would address this disparity.  
 In a nutshell, the implications of this section’s analysis 
are twofold. First, we have determined that more powerful 
models to explain the variation in APFD can be 
developed through the combination of different metrics. 
Second, we expect this understanding to lead us to the 
creation of more powerful prioritization techniques that 
may be able to improve the rate of fault detection by 
including and joining the sources of variation captured by 
these new metrics (which are not a part of our current 
prioritization techniques).   
 

 
  



 Table 9. Multiple regression  
 

6. Threats to Validity 
 
In this section, we summarize in three groups the potential 
threats to the validity of our study. 
 
Internal Validity (causal relationship between 
independent and dependent variables).  Our regression 
models provide statistical evidence of the relationships 
between various metrics and our APFD measure.  
However, this type of model cannot guarantee causality.  
We limited this threat by providing an environment in 
which most factors (e.g., test suites, changes and 
techniques) were controllable. We also ensured that the 
assumptions necessary to perform regression analysis 
held, by performing random sampling and transforming 
the data (to ensure normality, linearity and constant 
variance), choosing a small number of modeling variables 
for the multiple regression, and employing principal 
component analysis to address the multicolinearity 
problem.  A second (and hopefully minor) internal threat 
involves the tools and processes used in the data 
collection.  We have continually validated the tools for 
metric generation.  However, our tools for syntactic 
differencing are based on other tools for which the level 
of accuracy can be questioned (e.g., diff reports). We 
have validated many small inputs to control this threat. 
 
External validity (results generalization).  The 
representativeness of our subject programs is the major 
external threat to validity for our study.  Although we 
were able to manipulate our test suites, versions and 
techniques, our results are somewhat limited in terms of 
the number and nature of subject programs that were 
considered.  Furthermore, the fact that a large percentage 
of the changes we considered constituted faults may have 
caused prediction models based on change metrics to be 
optimistically biased.  This threat also prevents us from  

                                                 
8 The t statistic indicated that the individual variable was not useful 
(significant) for the model.  

 
 

blindly discarding some of the metrics (e.g., global 
change metrics) that had low prediction capabilities due to 
the subject programs’ specific characteristics (e.g., small 
number of global variables or global changes).  A third 
threat involves our test cases and test suites.   Although 
these suites are constructed from a mix of tests, they may 
not represent distributions of test cases that would occur 
in practice.  In general, however, such threats to external 
validity as these can be addressed only by additional 
studies on additional subjects.  
 
Construct validity (measure appropriateness).  The 
dependent variable APFD is not the only possible 
measure of rate of fault detection and it does not capture 
every aspect of prioritization effectiveness.  For example, 
APFD does not account for fault severity, test cases with 
different costs, and the value of re-detection of faults by 
additional test cases.  Also, the metrics that we choose to 
quantify the sources of variation affecting APFD were the 
best metrics that we could generate with the tools 
available in our environment.  Although more appropriate 
metrics might exist, we provided sufficient confidence in 
our metric selection through the verification of the 
sources of variation we captured (principal component 
analysis) and through the amount of APFD variation the 
selected metrics could explain (regression analysis). 
 
7. Conclusions 
 
In this study, we have explored factors that might affect a 
test suite’s rate of fault detection as measured by APFD.  
Our study employed a large set of metrics to capture the 
sources of variation corresponding to those factors 
affecting APFD.  We first learned that many of the 
selected metrics encapsulated similar dimensions and 
were in some way redundant in their information content.  
In addition, we discovered that the identified dimensions 
(factors) were not exactly those we had anticipated.  We 
also determined which metrics accounted for the greatest 
variation for our criterion: in other words, which metrics 

Coefficients Model 
  

Technique 
N Multiple 

R 
Adjusted 
R-Square p 

CHG.N_FUN_CH PRG.A_FFAN TS.AP_FET TS.P_TRCHF 
Ac-f 1779 0.892 0.795 0.001 4.8 14.8 18.1 -15.6 
Ac-s 1639 0.901 0.811 0.001 2.1 14.2 25.5 -3.2 8 
Fi-a 1683 0.896 0.803 0.001 4.0 16.0 23.1 -18.8 
Fi-t 1452 0.905 0.818 0.001 4.3 16.9 27.9 -24.8 
Optimal 532 0.997 0.994 0.001 -0.8 14.9 84.4 8.8 
Tc-f 1512 0.898 0.805 0.001 5.4 15.3 24.5 -21.8 
Tc-s 1470 0.898 0.806 0.001 5.1 15.5 28.2 -24.8 
Overall 10067 0.896 0.803  4.0 15.8 26.9 -17.9 



were the best predictors of APFD.  Finally, we created a 
multiple regression model to illustrate how several 
metrics can be used to obtain greater prediction power. 

The results of this study have three major implications.  
First, the metrics capturing the new factors might lead to 
the development of more powerful prioritization 
techniques.  Novel techniques could incorporate the 
information provided by those new metrics that best 
predict APFD, enhancing the probability of generating a 
more effective test suite order.  For example, since the 
fan-out metric showed a high correlation with the 
effectiveness of our current prioritization techniques, we 
could devise a new prioritization technique that takes 
advantage of fan-out data.  Such a prioritization technique 
could sort test cases so that those that execute functions 
with high fan-out are given priority.  Furthermore, this 
prioritization technique could also incorporate the 
information regarding the location of the changes.  
Second, the identification and understanding of the 
sources of variation that impact APFD will help us to 
develop guidelines to assist the practitioner in 
determining which techniques are likely to be more 
appropriate for a given environment (program, test suite, 
and changes). Third, the high prediction capabilities of the 
regression model for the optimal technique open new 
opportunities for the evaluation of test suite orderings, 
because it can accurately estimate an upper threshold for 
prioritization potential without knowing the location of 
the faults. 

There are still many challenges ahead of us.  First, we 
must find a way to modify existing techniques to 
incorporate the new information.  Second, we must design 
experiments and perform additional analyses to develop 
rules that will guide the technique selection process.  Last, 
we need to replicate this work on a larger sample of 
subjects to reinforce the current empirical evidence.  
Through these efforts we hope to provide practitioners 
with useful, cost-effective methodologies for prioritizing 
test cases. 
 
Acknowledgements 
 
This work was supported by a Nasa-Epscor Space Grant 
Award to the University of Nebraska-Lincoln, by NSF 
Faculty Early Career Development Award CCR-9703108 
and NSF award CCR-9707792 to Oregon State 
University, and by NSF ITR grants CCR-0080898 and 
CCR-0080900 to the University of Nebraska-Lincoln and 
Oregon State University, respectively. Siemens 
Corporation shared the Siemens programs. A. Pasquini, P. 
Frankl and F. Vokolos shared the Space program and its 
test cases. A. Malishevsky assisted in the data 
manipulation. 
 

References 
[1] L.Briand, J. Wust, S. Ikonomovski and H.Lounis. 
Investigating quality factors in object oriented designs: an 
industrial case study. In Proc. Int’l. Conf. Softw. Eng., pages 
345-354, May 1999. 
[2] S. Elbaum and J. Munson.  Code churn:  A measure for 
estimating the impact of code change.  In Proc.  Int’l. Conf. 
Softw. Maint., pages 24-31, Nov. 1998. 
[3] S.G. Elbaum and J.C. Munson.   Software evolution and the 
code fault introduction process.  Emp.  Softw.  Eng., 4(3): 241-
262, Sept. 1999. 
[4]  S. Elbaum, A. Malishevsky, and G. Rothermel.  Prioritizing 
test cases for regression testing. Proc. Int’l Symp. Softw. Testing 
and Analysis, pages 102-112, Aug. 2000. 
[5]  S. Elbaum, D. Gable and G. Rothermel. On the sources of 
variation in the prioritization of regression test suites.  Tech. 
Rep. TRW-SW-2000-1. University of Nebraska – Lincoln, CSE. 
[6] S. Elbaum, A. Malishevsky, and G. Rothermel, Incorporating 
varying test costs and fault severities into test case prioritization, 
Proc. Int’l Conf. Softw. Eng., May, 2000 (to appear). 
[7] Everitt, B. and Dunn, G. Applied Multivariate Data Analysis. 
Edward Arnold. 1991. 
[8] M. Harrold and G. Rothermel.  Aristotle: A system for 
research on and development of program analysis based tools.  
Tech. Rep. OSU-CISRC-3/97-TR17, Ohio State University, 
Mar. 1997. 
[9] M.Hutchins, H.Foster, T.Goradia and T.Ostrand. 
Experiments on the effectiveness of dataflow and controlflow 
based test adequacy criteria. In Proc. Int’l Conf. Softw. Eng., 
pages 191-200, May 1994.  
[10] Software Engineering Standards, volume 3 of Std.1061: 
Standard for Software Quality Methodology. Institute of 
Electrical and Electronics Engineers, 1992. 
[11] Johnson, R. and Wichern, D. Applied Multivariate 
Statistical Analysis. Prentice Hall. 1992. 
[12] T.M. Khoshgoftaar and J.C. Munson.  Predicting software 
development errors using complexity metrics.  J. Selected Areas 
in Comm., 8(2):253-261, Feb. 1990. 
[13] J. Munson. Software measurement: Problems and practice. 
Annals of Softw. Eng., 1(1):255-258, 1995. 
[14] A. Nikora and J. Munson.  Software evolution and the fault 
process. In Proc. Twenty Third Annual Softw. Eng. Workshop, 
NASA/Goddard Space Flight Center, 1998. 
[15] K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma.  
Regression testing in an industrial environment.  Comm. ACM, 
41(5):81-86, May 1998. 
[16] T. Ostrand and M. Balcer.  The category-partition method 
for specifying and generating functional tests.  Comm. ACM, 
31(6): 676-686, June 1988. 
[17] G. Rothermel, R.Untch, C.Chu, and M.J. Harrold. Test case 
prioritization: an empirical study.  In Proc.  Int’l Conf. Softw  
Maint., pages 179-188, Aug. 1999. 
[18] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Test 
case prioritization.  ACM Trans. Softw. Eng. and Meth. (to 
appear). 
[19] F. Vokolos and P. Frankl.  Empirical evaluation of the 
textual differencing regression testing technique.  In Proc. Int’l 
Conf. Soft. Maint., pages 44-53, Nov. 1998. 
[20] W. E. Wong, J. R. Horgan, S. London, and A. Agrawal. A 
study of effective regression testing in practice.  In Proc. Eighth 
Int’l Symp. Softw. Rel. Eng., pages 230-238, Nov. 1997.  


	Understanding and Measuring the Sources of Variation in the Prioritization of Regression Test Suites
	

	Microsoft Word - camera7.doc

