
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Faculty Publications in Computer & Electronics
Engineering (to 2015)

Electrical & Computer Engineering, Department
of

12-2005

An Ultra Wide Band Simulator Using MATLAB/Simulink An Ultra Wide Band Simulator Using MATLAB/Simulink

Peter Vial
University of Wollongong, peterv@uow.edu.au

Beata J. Wysocki
University of Nebraska-Lincoln, bwysocki2@unl.edu

Tadeusz A. Wysocki
University of Nebraska-Lincoln, wysocki@uow.edu.au

Follow this and additional works at: https://digitalcommons.unl.edu/computerelectronicfacpub

 Part of the Computer Engineering Commons

Vial, Peter; Wysocki, Beata J.; and Wysocki, Tadeusz A., "An Ultra Wide Band Simulator Using MATLAB/
Simulink" (2005). Faculty Publications in Computer & Electronics Engineering (to 2015). 46.
https://digitalcommons.unl.edu/computerelectronicfacpub/46

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in
Computer & Electronics Engineering (to 2015) by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17221442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerelectronicfacpub
https://digitalcommons.unl.edu/computerelectronicfacpub
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/computerelectronicfacpub?utm_source=digitalcommons.unl.edu%2Fcomputerelectronicfacpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerelectronicfacpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerelectronicfacpub/46?utm_source=digitalcommons.unl.edu%2Fcomputerelectronicfacpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages

An Ultra Wide Band Simulator Using MATLAB/Simulink

Peter James Vial, Beata Wysocki and Tad Wysocki
University of Wollongong

Abstract: Ultra Wide Band (UWB) is a promising technology for sensor networks, broadband wireless data access and location
finding applications. This study outlines the development and validation of a single transmitter and receiver system across the
multipath channel proposed by Saleh-Valenzuela. We have designed and tested a UWB simulator using MATLAB’s Simulink in
combination with the Real Time Workshop(RTW) Tool box for Simulink using the Fixed Step Discrete Solvers of RTW which is
required to produce executable simulations on multiple computers (both Linux and Microsoft based devices). This paper
outlines the basic design and modules chosen for the simulation and compares our results to those published in the literature.
We found that our simulator provides similar performance to the reported results. We also found that an error floor occurs at
high signal to noise ratio when the Saleh-Valenzuela channel is used and the assumption is made that the channel changes
every symbol period. Using time traces from the simulation we show the mechanism behind this phenomenom.

I. INTRODUCTION

Ultra Wideband (UWB) is an area of interest to researchers
interested in the areas of sensor networks and wireless
broadband data access in particular. There are various forms
of this proposed technology. Direct Sequence systems can be
classified into Pulse Position Modulation (PPM) and Pulse
Amplitude Modulation (PAM). Mathematical expressions
have been provided in the published literature which include
both types of systems in the same mathematical analysis, for
example Yang & Giannakis does this in [1].

Our simulator is designed to consider only PPM so PAM
systems will not be considered further here (see [1] for
analysis). We also assume a system with perfect knowledge
of the Channel State Information (CSI), where all the phases
and gains of the channel are known. Since UWB signals are
real, we only consider the real part or inphase component of
the channel setting the imaginary or quadrature component
to zero. We also limit the channel to 100 nano-seconds,
truncating any further multipath that Saleh-Valenzuela
channel may have generated to zero thus ignoring any
possible Inter Symbol Interference (ISI). For the current
version of the simulation we use only one Gaussian pulse to
represent a symbol and the CSI changes for each such pulse.
This is not typical in a real system where a channel is slow
flat fading and changes approximately every 300
milliseconds. We do not implement any spreading or time
hopping which will result in a very peaked and discrete
power spectrum which would also not be implemented in a
real system.

Section II describes the Gaussian pulse used and defines the
signal and channel state information used in the Simulator.
Section III describes how the channel state information was
generated and what parameters were used in its generation.
Section IV describes the developed Simulink model and how

MATLAB’s Real Time Workshop (RTW) was used to
generate monte carlo type simulations. Section V compares
the results of our study to those found in Yang & Giannakis
[1] and uses a time trace to explain the observed error floor
inherent in high SNR values. Section VI provides
conclusions and future work.

II. UWB Signals and Channel

To develop a UWB simulator we first needed to define a
pulse shape. In order to compare results we adopted the
pulse shape seen at the receiver suggested in [1]. This pulse
shape, called)(tω , was suggested by [1] to be the second
derivative of the Gaussian function:

() ()22
413 2

3
τ

π
τ tetg −




















= (1)

Which we calculated to be:

() () ()











−




























= −− 2222

2

2

2

413 212
3

2 ττ

ττπ
τω tt eett (2)

Here ns1225.0=τ which [1] points out gives a pulse
width of 0.7ns. Figure 1 shows a plot of the squared value of
the pulse, which was shown using Mathematica and
MATLAB to have a unit area under the curve and hence unit
energy (as suggested by [1]). Figure 2 shows a plot of the
expression in Equation 2 which was the modeled received
waveform)(tω [1].

We use the Saleh-Valenzuela channel model[2] which till
relatively recently was accepted as a sound model for the
UWB channel [3]. This was chosen to validate our simulator
using results found in [1] where the Saleh-Valenzuela model
was used.

In our model the channel multipath arrive in clusters within
the observation window of 100ns. We have a cluster arrival

Vial, Wysocki & Wysocki in 4th Workshop on the Internet, Telecommunications and Signal Processing (2005)

rate with Poissonian mean Λ , while within clusters we have
a ray arrival rate with Poissonian mean λ . These values
determine the time of arrival of each ray within the channel.
The amplitude of each arriving ray is then chosen from a
Rayleigh distributed random variable which is now
dependent on which cluster the ray arrives in and then on
another Rayleigh distributed variable within the cluster. That
is, one Rayleigh variable is assigned which determines all
the clusters amplitudes and the other is assigned on an
individual basis within the arriving rays within the cluster.
These are then denoted (in nano-seconds) as Γ for the
cluster and γ for the individual rays within the cluster.
These values determine the rate of decay of the amplitudes
over time which conforms to results found in [2].

0 0.5 1 1.5 2 2.5 3

x 10
-9

0

1

2

3

4

5

6

7

8

9
x 10

9

am
pl

itu
de

 s
qu

ar
ed

 o
f
se

co
nd

 d
er

va
tiv

e
of

 g
au

ss
ia

n
pu

ls
e

time (seconds)

Squared Value of second derivative of gaussian pulse which has unit energy

Figure 1: Squared value of second derivative of Gaussian

pulse

0 0.5 1 1.5 2 2.5 3

x 10
-9

-10

-5

0

5

am
pl

itu
de

,s
ec

on
d

de
riv

at
iv

e
of

 g
au

ss
ia

n
pu

ls
e(

X
 1

00
00

)

Plot of the UWB signal used in Simulator

time (seconds)
Figure 2: Time plot of second derivative of Gaussian pulse

 MATLAB code sourced from [4] was modified so that it
produced channel data which conformed to that for the
Saleh-Valenzuela model suggested by [2] and used in [1].
We produced the real and imaginary components of the
channel, but as UWB is a real signal we only used the real
values of the channel as input to our simulink model. The

MATLAB program then generated many versions of the
channel into an array which could be easily read at the start
of the Simulink session and processed to create quickly the
channel. This was done using embedded MATLAB. A snap
shot of one channel is shown in Figure 3. To generate this
data a threshold was selected which limited the number of
possible multipath to between 100 and 300 paths. The
number of multipath was further culled to 200 for our
simulated channel data.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x 10
-7

-40

-30

-20

-10

0

10

20

Time (seconds)

am
pl

itu
de

 (
re

al
)

Channel Data for one symbol (snap shot) with a '1' being transmitted

Figure 3: Snap shot of a single channel over 100ns

III. Channel Definition and modeling

Modifying some MATLAB files from [4] we generated
thousands of different channel state information sets, which
were to ensure that the channel behaved as per the
description in [1]. These channels were changed every
symbol and there was no spreading or time hopping patterns
used (simply peer to peer single user system was examined).
This also means that the system was changing at a faster rate
than would be expected in an actual UWB channel, where as
a rule of thumb the channel changes every 300 milliseconds

Once the channel data set was generated and stored into an
array with such information as time of multipath arrival with
respect to the line of sight path and using a NLOS (Non Line
of Sight) models as suggested in [1] and [2]. To generate this
data we used the parameters ns33=Γ , ns5=γ , ns21 =Λ

and ns5.01 =λ
. These parameters were used by [1] for their

results as per the description in [2]. The simulation of the
channel was done with a sampling rate of 12101× samples
per second so that one channel span of 100ns would have
100000 samples.

The array which was produced by the MATLAB code was
then input via the Simulink block “Matrix Channel Data”
which at the start of the simulation loads all of the matrix
into Simulinks data space. This was followed by a Variable
Selector and an embedded MATLAB function which

Vial, Wysocki & Wysocki in 4th Workshop on the Internet, Telecommunications and Signal Processing (2005)

randomly chose a channel matrix to use for generating the
channel. Figure 4 shows the technique employed to do this.

IV. Design of Simulink Model

The Simulink model uses the data from the channel matrix
and embedded MATLAB to generate a sequence of pulses
with different amplitudes but zero phase (for real UWB
signals). Embedded MATLAB provides a cut down or
reduced set of MATLAB functions. Using embedded
MATLAB and RTW compilations it was possible to have
multiple simulations with different seed values in a
reasonable time frame. Also, we were able to access
available clusters of computers to run multiple simulations in
parallel without needing any MATLAB or Simulink
licenses. This allowed the results reported to include 95%
confidence intervals, as shown in Figure 6.

The Simulink Model itself used a section to generate the
case where a ‘1’ was sent and a section to generate the case

where a ‘0’ was sent. In this simulation we used Orthogonal
PPM with a spacing of 1ns to conform to the simulations in
[1]. These were generated simultaneously even though only
one of the two was transmitted. The energy of the signal and
the energy of the noise as per the description in [1] was
calculated. The Expected SNR was calculated based on the
ratio of received signal strength (for all received paths) to the
received noise power multiplied by channel gains. The
system implemented a partial Rake using the Lth best
arriving (useful) rays but rejecting rays that had multipath
too close (within 1ns) of each other . A Maximal Ratio
Combining (MRC) decision was made to decide for a ‘1’ or
a ‘0’.
In our model we assume that 100% of the power is detected
by the receiver (in [1], it is assumed that 10% of the power is
lost). We used the case where we had the template using ‘1’
path (L=1) and ‘4’ paths (L=4). Figure 5 shows some of the
modules used in the ‘correct value sent’ communication link.

Figure 4: Selecting the Channel in Simulink

Integrate
and Dump

Integrate
and Dump

Re(u)

Im(u)
K -

1/T chip for signal
u

Math
Function Complex Conjugate

Figure 5: Main communication link in simulator

Vial, Wysocki & Wysocki in 4th Workshop on the Internet, Telecommunications and Signal Processing (2005)

0 5 10 15 20 25 30

10
-3

10
-2

10
-1

10
0

Expected SNR (dB)

B
E

R

L=1 from Simulink

L=1 from [1]

L=4 from Simulink

L=4 from [1]

Figure 6: Comparison of measurements from Simulink

model to estimates from Figures 7 and 8 from [1]

V. Model Validation

Using the data found in [1] we obtained estimates of the
simulation when orthogonal PPM with spacing between the
‘0’ and ‘1’ being 1 nanosecond was used for the case the
number of paths in the template was ‘1’ and the case where
the number of paths was ‘4’. Figure 6 shows the data that the
Simulink simulation / RTW produced compared to that from
Figures 7 and 8 in [1]. It can be seen that our data is very
close to that reported in [1] with BER’s versus Expected

0 5 10 15 20 25 30 35
10

-3

10
-2

10
-1

10
0

Expected SNR (dB)

B
E

R

L=4 from Simulink Simulator for one seed value

Figure 7: Plot of a single seed for L=4 showing an error floor

appearing after 28dB in Simulink Simulation

SNR either within error bars or close to the estimated (by
eye) data from [1], especially for Expected SNR less than
22dB. Above 22dB, for L=4, we found that our system had a
slightly smaller BER than that reported in [1] until we were

above 28dB where we found an error floor to develop. All
results for L=4 above 22dB were measured until 100 error
events occurred to ensure that the data was statistically
reliable (using the law of large numbers). Above 20dB for
L=1 we found that our system experienced a smaller BER.
The explanation for this is the conservative selection of the
number of multipaths that were included, an example of
which is shown in Figure 3. The error events used to
generate the data in Figure 6 for L=1 had a minimum value
of 200 errors (which was more than the minimum used of
100 error events chosen for L=4 measurements). Figure 8
and 9 show the results from the Simulink simulator for the
case L=1 and L=4 respectively when the first set of arriving
rays is used, a Partial Rake is implemented and a Selective
Rake is implemented.

0 5 10 15 20 25 30

10
-2

10
-1

10
0

Expecte SNR (dB)

B
E

R

L=1 First Arriving Ray

L=1 First Arriving Useful Ray (Partial Rake or PRake)
L=1 Strongest Arriving Ray (Selective Rake or SRake)

Figure 8: BER versus Expected SNR (dB) for first arriving
ray, first useful (PRake) arriving ray and strongest arriving

ray (SRake) for Simulink Simulation

0 5 10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

10
0

Expected SNR (dB)

B
E

R

L=4 First Four Arriving Rays

L=4 First Four Useful Arriving Rays (PRake)

L=4 Strongest Four Arriving Rays (SRake)

Figure 9: BER versus Expected SNR (dB) for the case first 4

arriving rays, first 4 useful (PRake) arriving rays and
strongest 4 arriving rays (SRake) for Simulink Simulation

We plot in Figure 7 for a single seed value the observed
data. It shows that the curve flattens out at high SNR. When
we ran the simulator using the UWB channel model and no
noise we found errors occurred. The Simulator with
multipath was then run under no noise to locate where the
first error occurred and a time trace was recorded. Figure 10

Vial, Wysocki & Wysocki in 4th Workshop on the Internet, Telecommunications and Signal Processing (2005)

shows a snapshot of the results from probe signals inside the
simulation. It shows the location of the pulse sent for a zero
and then the location of a series of pulses close to each other
which combine to ‘appear’ to be the correct symbol sent
(using MRC). Table 1 shows the data that was used to form
the channel at the location where the error occurred. The
first column in Table 1 indicates the magnitude of the real
part of the multipath at the time index appearing in column 2
of Table 1. The third column in Table 1 represents the time
elapsed since the start of the current symbol’s period (which
is a total of 100ns). The fourth column of Table 1 is an
internal simulation flag to indicate if a multipath is present
or not (there is a maximum of 200 such paths, but in many
instances there are less than 200). The fifth column of Table
1 is a flag to indicate if the multipath element satisfied the
criteria used initially to indicate if the multipath was useful

in terms of magnitude and relative location to other
significant multipath. From Table 1 the magnitude of the
surrounding pulses to the main pulse were of opposite phase
and comparable magnitude. More importantly the two
multipath that were 0.4ns and 1ns away from the correct
decision point (bottom two entries in Table 1) were nearly as
large and had the same phase reinforcing each other and
creating the error condition. Better choice of simulation data
set would alleviate this problem, but in a real system this
would correspond to ignoring a complete channel set or
choosing pulses which had smaller magnitude decreasing the
expected SNR of the system.

6.608 6.6085 6.609 6.6095 6.61 6.6105 6.611 6.6115

x 10
-6

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

time (seconds)

S
ca

le
d

A
m

pl
itu

de
s

(r
ea

l v
al

ue
s

no
t

sh
ow

n)

Channel signal with
multipath for a '0' sent

Output of Integrator for
a '1' symbol sent

which was larger than that
for a '0' even though the '0' was sent

pulse showing
where the channel had

sent a '0'

Template pulse to detect the
presence of a '1' on channel

The extra surrounding multipath
reinforced the signal

when no noise source present

Figure 10: Snapshot of a small segment of channel signal at the point where error occurs without any noise.

Magnitude Time

Index
Time
(secs)

Present Useful
Number

3.7774e-005 16889 1.6888e-008 1 0
-0.00035181 17647 1.7646e-008 1 1
8.5502e-005 17672 1.7671e-008 1 0
0.00022275 18112 1.8111e-008 1 0
4.9095e-005 18352 1.8351e-008 1 0

Table 1: Data used to form the channel around the location of the error.

Vial, Wysocki & Wysocki in 4th Workshop on the Internet, Telecommunications and Signal Processing (2005)

VI. CONCLUSIONS

We have developed a UWB simulation using Simulink
which shows comparable results to those reported in [1]. We
did this for a Saleh-Valenzula channel using the same
parameters as [1]. We also found that for our randomly
generated data set with the channel changing every symbol
sent an error floor became evident at about 28dB expected
SNR. This was found to be a result of the multipath around
the incorrect decision point.

We have developed a model which can be modified such
that the rate of fading can be changed relatively easily. The
shape of the received pulse can also be changed with some
effort. We plan to add time hopping followed by direct
sequence spreading to our simulator. It is expected that if the
channel state information is changed less often that the
simulation time will decrease as there will not be a
requirement for the embedded MATLAB to be called as
often to modify the channel state information. The
developed model is flexible in that we can also use its
framework to model other channel models by generating the
channel state information separately and importing these into
our simulinks channel data array (see Figure 4). This allows
the simulator to be used for other datasets (that’s is for other
UWB channel models proposed in the literature [4]).

References

1. Liuqing Yang, Georgios B Giannakis, “Analog Space-

Time Coding for Multi-Antenna Ultra-Wideband
Transmissions”, IEEE Transactions on
Communications, March 2004, pp. 507-517

2. Adel A M Saleh, Reinaldo A Valenzuela, “A Statistical
Model for Indoor Multipath Propagation”, IEEE Journal
on selected Areas in Communications, vo1 SAC-5, No 2
Feb. 1987, pp. 128-137

3. Ian Oppermann, Matti Hamalainen, Jari Linatti, “UWB:
Theory and Applications”, Wiley Press, 2004, pp. 23-
33.

4. Maria-Gabriella Di Benedetto, Guerino Giancola,
“Understanding Ultra Wide Band Radio Fundamentals”,
Pearson, 2004

Vial, Wysocki & Wysocki in 4th Workshop on the Internet, Telecommunications and Signal Processing (2005)

	An Ultra Wide Band Simulator Using MATLAB/Simulink
	

	Microsoft Word - P124.doc

