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Abstract

Numerical investigation is carried out for natural convection heat transfer in
an isosceles triangular enclosure partitioned in the centre by a vertical wall
with infinite conductivity. A sudden temperature difference between two
zones of the enclosure has been imposed to trigger the natural convection.
As a result, heat is transferred between both sides of the enclosure through
the conducting vertical wall with natural convection boundary layers form-
ing adjacent to the middle partition and two inclined surfaces. The Finite
Volume based software, Ansys 14.5 (Fluent) is used for the numerical sim-
ulations. The numerical results are obtained for different values of aspect
ratio, A (0.2, 0.5 and 1.0) and Rayleigh number, Ra (105 ≤ Ra ≤ 108) for a
fixed Prandtl number, Pr = 0.72 of air. It is anticipated from the numerical
simulations that the coupled thermal boundary layers development adjacent
to the partition undergoes several distinct stages including an initial stage,
a transitional stage and a steady stage. Time dependent features of the cou-
pled thermal boundary layers as well as the overall natural convection flow
in the partitioned enclosure have been discussed in this study.
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Nomenclature

A aspect ratio
g acceleration due to gravity
H height of the enclosure
l length of the enclosure
m meter
N number of partition
NuL local Nusselt number
Nu overall Nusselt number
p pressure
Pr Prandtl number
Ra Rayleigh Number
s second
t time
ts steady state time scale
T temperature of the fluid
Tc, Th temperatures of the cold and hot inclined walls
∆T temperature difference between the hot and cold inclined walls
u, v velocity components in the x- and y- direction respectively
x, y Cartesian coordinates

Greek letters
β thermal expansion coefficient
δT thickness of the thermal boundary layer
κ thermal diffusivity
ρ density of the fluid
ν kinematic viscosity

1. Introduction

Natural convection occurs everywhere in nature. Natural convection in
enclosures is a topic of considerable interest for the engineers. The main
areas of studying natural convection are in the thermal design of buildings,
solar collector design, nuclear reactor design, and others. Extensive studies
of natural convection in the enclosures and adjacent to walls using analytical,
experimental and numerical methods are available in the literature [1–4]. It
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is noticeable that most of the studies devoted to an enclosure with no par-
titions. However, placing vertical partition in the enclosure can enhance or
suppress heat transfer. There are several studies available in the literature
related to vertical partition in the rectangular enclosure [5–11]. This problem
is of fundamental importance for a variety of reasons. From the fundamental
research point of view it is important to understand the interaction of two
convective systems coupled across a partially conducting wall. The vertical
conducting partition plays an important role in heat transfer between two
fluid zones. It is seen from the earlier studies that the partition depresses
natural convection in the cavity in comparison with that in a non-partitioned
cavity for a laminar flow regime even though the partition is perfectly con-
ducting [12–15].

Table 1: Previous partitioned cavity studies (rectangular cases)

Authors Pr Ra N A

Anderson and Bejan [16] 6 109 ≤ Ra ≤ 1010 0-2 0.33
Cuckovic-Dzodzo et al. [13] 2700-7000 104 ≤ Ra ≤ 106 0-1 1.0

Nishimura et al. [15] 6 108 ≤ Ra ≤ 1010 0-4 4.0
Turkoglu and Yucel [18] 0.71 105 ≤ Ra ≤ 107 0-4 0.5-1.5

Xu et al. [14] 7.0 1.8× 109 0-1 1.0
Williamson et al. [26] 7.5 0.6− 1.6× 1010 0-1 1.0

Natural convection in rectangular enclosures with multiple vertical par-
titions is studied by [15–18] (see also in Table 1). The effect of multiple
thin partitions has been investigated both experimentally and numerically
by Nishimura et al. [15]. The experiments were performed in enclosures with
aspect ratios, A = 4 and 10, for the range 106 ≤ Ra ≤ 108 and the range
of partitions 1 ≤ N ≤ 4. The authors concluded that the average Nusselt
number is inversely proportional to (1 + N). By placing double partitions
in the middle of a rectangular enclosue, Anderson and Bejan [16] found that
the heat transfer rate for double partitions is 20% less than that for a single
partition. The similar studies were conducted by Jones [17] with multiple
partitions for the case of laminar natural convection flows in rectangular en-
closure. The author revealed that the effect of dividing the enclosure into six
cells reduces the heat transfer rate by a factor of six.

In comparison with the rectangular or square enclosures, studies on trian-
gular enclosure receive less attention before. However, because of its various
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applications in many domestic and industrial systems as well as in geophys-
ical flows, recently much attention is given to this geometry [19–24]. One
of the important applications of studying this geometry is to investigate the
fluid flow and heat transfer in the attic space. In both hot and cold climates
the heat transfer through the attic space is seen as an important study for
attic shaped houses. It is expected that one of the main objectives to design
and construction of houses should be to provide thermal comfort for occu-
pants. Moreover, it is also a requirement for houses to be energy efficient as
the source of energy in the world is limited, i.e. the energy consumption for
heating or air-conditioning houses must be minimized.

To control the heat transfer by placing a vertical partition into the tri-
angular enclosure is still not available in the literature. The lack of such
investigation has motivated the present study to investigate the heat transfer
phenomena for partitioned triangular enclosure. The obtained results could
help the builders for their insulation system in the attic shaped houses. The
emphasis has been given to the transient process of natural convection re-
sulting from a suddenly generated temperature difference between the fluids
on the two sides of a conducting partition which has been placed along the
geometric centre line of the enclosure. Effects of aspect ratio and Rayleigh
number for heat transfer and fluid flow are also investigated in this study.

2. Problem formulation

Under consideration is an air filled triangular cavity of height H, half
length of the base l, which is initially at quiescent. A partition is placed
along the geometric centre line of the enclosure. Two interiors of both sides
of the partition together with adjacent inclined walls receive different tem-
perature with the left side receiving cold (Tc) and the right side receiving hot
temperature (Th) after time t = 0s. Two bottom tips of the enclosure are
cut off by 5% to avoid singularities (see [19, 20, 22]) and rigid non-slip and
adiabatic vertical walls are assumed at the cutting points (refer to Fig. 1).
The bottom surface is also considered as adiabatic and rigid non-slip. The
origin of the coordinate is the intersection point of the partition and the
bottom surface.

The development of natural convection inside an attic space is governed
by the following two-dimensional Navier-Stokes and energy equations with
the Boussinesq approximation:
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The three important parameters, which govern the natural convection,
the Rayleigh number, the Prandtl number, and the aspect ratio are defined
respectively as

Ra =
gβ∆TH3

κν
, Pr =

ν

κ
, and A =

H

l
. (5)

In this study the working fluid is considered as air (Pr = 0.72); the range
of aspect ratio of the enclosure as 0.2 ≤ A ≤ 1 and the range of Rayleigh
number as 105 ≤ Ra ≤ 108. The thickness of the partition is considered
as zero with infinite conductivity, which is vertically placed in the geometric
centreline of the enclosure and is diathermal for which only horizontal heat
transfer is considered (refer to [8, 14, 16]) and all three surfaces and the
partition are rigid and non-slip. The fluid inside the enclosure is initially
at rest. At time t = 0s, the temperature of the fluid on the left side of
the partition is T = 290K, and that on the right side of the partition is
T = 300K.

3. Numerical scheme and grid and time step dependence tests

Equations (1) - (4) are solved along with the initial and boundary con-
ditions using the simple scheme with the help of cfd software fluent
14.5. The finite volume method has been chosen to discretize the govern-
ing equations, with the quick scheme (see Leonard and Mokhtari [25]) ap-
proximating the advection term. The diffusion terms are discretized using
central-differencing with second order accuracy. A second order implicit time-
marching scheme has also been used for the unsteady term.

5



Two non-uniform grid sizes, 200 × 100 and 300× 150 with coarser grids
in the core and finer grids concentrated in the proximity of all wall and par-
tition boundaries were constructed for grid dependence tests for A = 0.5.
Fig. 2 plots time series of the temperatures at the point P (−0.014m, 0.5m)
of A = 0.5, in the middle of the thermal boundary layer on the left side of the
partition calculated using the two grid systems for Ra = 108. Clearly, two
solutions almost overlapped. This means that either grid system is able to
resolve the transient natural convection in the partitioned cavity and charac-
terize the details of the boundary layers adjacent to the partition and other
walls.

For time step dependency, two time steps of 0.05s (for 200×100 grid) and
0.01s (for 300×150 grid) are examined for A = 0.5. Fig. 2 shows the numer-
ical results obtained using the above two time steps and their corrsponding
grid sizes for A = 0.5. Evidently, the development of the flow is not sensitive
to the two tested time steps, with either choice being satisfactory. Accord-
ingly, the larger time step of 0.05s and coarser 200× 100 grid are considered
to be sufficiently small to capture the global transient features of the flow
development and is adopted here for A = 0.5. The similar studies were con-
ducted for two other aspect ratios. The similar grid size and time step of
A = 0.5 is chosen for A = 1.0 and grid size of 400 × 100 and time step of
0.05s are chosen for A = 0.2 for the numerical simulations.

4. Results and discussions

4.1. Transient flow development

The time developments of the temperature at the point (−0.014m, 0.5m)
have been depicted in Fig. 2. This figure demonstrates the overall develop-
ment of natural convection from a suddenly generated temperature difference
between the fluids on the two sides of the partition to a steady state. As
shown in Fig. 2, the flow development can be classified into three main stages:
an initial stage, a transitional stage and a steady stage. At the early stage
the conduction dominates the heat transfer. The temperature inside the
boundary layer increases with time. When the conduction term in the en-
ergy equation balances with convection term, the scaling of that time (ts)
was given by Saha et al. [19, 20] as

ts =
(1 + Pr)0.5

sinθ(RaPr)0.5

(
H2

κ

)
(6)
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where θ is the angle of the inclined surface with the horizontal. For the
partition wall θ = π/2. It is noted that the temperature growth does not
cease immediately after ts, time for convection to balance conduction. The
flow undergoes several overshoots and undershoots during the transitional
stage. As time progresses the thermal flows from the boundary layer of both
sides of the partition discharge fluid into the core of the enclosure. At the
end, the fluid inside the enclosure becomes steady state.

The time evolution of two isotherms (T = 291K and 299K) on both sides
of the partition has been shown in Fig. 3. It is seen that the isotherms are
shifting horizontally which means that the thickness of the coupled thermal
boundary layers also increases with time. Saha et al. [19, 20] and others have
pointed out that the thickness of the thermal boundary layer adjacent to an
isothermal wall (either vertical or inclined) grows with time according to the
scaling relation

δT ∼ κ0.5t0.5 (7)

Now, on the right side of the partition the cold fluid from the boundary
layer has no choice but to travel down along the right horizontal intrusion.
Eventually the fluid from the intrusion layer discharges into the core of the
enclosure. On the other hand the hot fluid of the boundary layer of the left
side of the partition moves up to the top tip and starts travelling along the
left inclined wall. This fluid from the boundary layer also discharges into
the core of the enclosure. At the end the fluid inside the enclosure becomes
stratified. The steady state scaling value of the thermal layer thickness (Saha
et al. [19, 20]) is,

δTs =
H(1 + Pr)0.25

sin0.5θ(RaPr)0.25
(8)

4.2. Effect of aspect ratio

Steady state values of temperature contours and stream functions are
depicted in Fig. 4 for three values of aspect ratio (A = 0.2, 0.5 and 1.0)
while Ra = 108. As it is seen in Fig. 4(a,c,e) the hot fluid from the thermal
boundary layer adjacent to the left side of middle partition travels through
the left inclined wall and discharges into the core region of the enclosure. The
similar phenomena is seen on the right side of the partition. The cold fluid
from the boundary layer travels downwards and then moves horizontally to
the right. Gradually the whole enclosure becomes thermally stratified at the
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steady stage for all three cases of aspect ratios. It is obseved that the flow
becomes stronger when the aspect ratio is lower as it is evidenced by their
stream function values.

Figure 5 shows the time developments of Nusselt number calculated on
the middle partition for three different aspect ratios when Ra = 108. Initially,
the Nusselt number is very high for all aspect ratios as the heat transfer is
dominated by conduction. Then the heat transfer decreaes sharply followed
by a little oscillation in the transitinal stage. The Nusselt number then
reduces gradually until it becomes completely steady state. It is revealed
that the heat transfer strongly depends on the aspect ratio. The Nusselt
number reduces as the aspect ratio increases.

4.3. Effect of Rayleigh number

Figure 6 shows the steady state values of temperature contours and
streamlines for different values of Rayleigh number (Ra = 105, 106, 107 and 108)
while A = 0.5. It is observed in the isotherms that the fluid is horizontally
stratified for higher Rayleigh number. For lower Rayleigh number the flow is
weaker which is expected. The correspodning stream functions also confirm
the flow is stronger for higher Rayleigh number. The flow is seen oscillating
near the bottom surface when the Rayleigh number is higher. It is also no-
ticed that the values of stream functions reduce when the Rayleigh number
is reduced.

Time developments of Nusselt number on the middle partition has been
shown in Fig. 7 for four different Rayleigh numbers when A = 0.5. Again,
the Nusselt number is very high initially for all Rayleigh numbers as the
heat transfer is dominated by pure conduction. However, the heat transfer
is reduced dramatically with time after that and show a little oscillation as
a form of undershoot and overshoot in the transitional stage. For higher
Rayleigh number the Nusselt number reduces for some time and finally be-
comes steady state. However, the flow becomes steady state immidiately
after the oscillation for lower Rayleigh numbers. This is because the flow is
more stable for the lower Rayleigh number. It is also evident that the Nusselt
number is very high for higher Rayleigh number because convection has a
strong leading role for heat transfer.

Figure 8 shows the profiles of the local Nusselt numbers at the steady
state on the partition and two inclined walls of the enclosure. It is clear that
the local Nusselt number on the inclined walls is non-uniform and in the
upstream section of the walls, it is much larger than that in the downstream
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section due to the formation of the stratification in the core of the enclosure.
However, the local Nusselt number on the partition is approximately constant
but not so at two ends of the partition. The heat transfer through the
middle height of partition does not vary with the height except for in the
closeness to the top tip and the bottom wall. That means the partition is
approximately isoflux at the steady state even though the inclined walls are
isotherm which is an interesting phenomena at the steady state condition of
the flow. Time series of the overall Nusselt number which are calculated on
the inclined walls of the partitioned and non-partitioned triangular enclosure
have been presented in Fig. 9. It is noticed that the Nusselt number on the
left inclined cold wall (Fig. 9a) of the non-partitioned enclosure is higher at
the transitional stage. However, the opposite scenario can be seen in the
right heated wall (see Fig. 9b).

5. Conclusions

The coupled thermal boundary layers between the fluids of two zones in
an isosceles triangular enclosure separated by a partition induced by suddenly
generated temperature difference between the fluid zones are investigated nu-
merically for different flow parameters. It is revealed that the development
of the transient boundary layers adjacent to the partition are classified into
three distinct stages; an initial stage, a transitional stage and a steady state
stage. As soon as the fluids of two different temperatures reach the diather-
mal partition the coupled thermal boundary layers near both sides of the
partition start to grow. When the conduction and convection terms in the
energy equation are balanced the flow enters into the transitional stage. The
thermal fluids discharged from the downstream ends of the coupled thermal
boundary layers continuously fill each half of the partitioned cavity from
transition stage to the steady state stage. As time progress another thermal
boundary layer forms adjacent to the inclined wall. On a close observation
of the flow phenomena in the transient process, it may be concluded that the
temperature distribution on the partition enclosed by the coupled thermal
boundary layers changes from an initially isothermal to an approximately
linear profile at the steady state for higher Rayleigh number. As a result, an
isoflux condition is set up along the middle portion of partition in the steady
state stage. It is found from the numerical simulations that the heat transfer
through the coupled thermal boundary layers is higher for lower aspect ratio
for a fixed Rayleigh number. However, the heat transfer is higher for larger
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Rayleigh number for a fixed aspect ratio.
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Figure Captions:

Fig. 1. Schematic of the computational domains and boundary conditions.

Fig. 2. Time developments of the temperatures at the point (−0.014m, 0.5m)
in the middle of developed thermal boundary layer on the left side of the par-
tition calculated using different meshes and time steps.

Fig. 3. Growth of the thermal boundary layers shown as isotherms for
T = 291K and T = 299K at different times.

Fig. 4. Temperature contours (a, c, e) and stream functions (b, d, f) for
different aspect ratio when Ra = 108.

Fig. 5. Temperature contours (a, c, e, g) and stream functions (b, d, f, h)
for different values of Rayleigh number when A = 0.5.

Fig. 6. Time developments of Nusselt number through the vetical partition
for different aspect ratio when Ra = 108.

Fig. 7. Time developments of Nusselt number through the vetical partition
for different Rayleigh number when A = 0.5.

Fig. 8. Profiles of the local Nusselt numbers on the vertical partition and
two inclined walls of enclosure.
Fig. 9. Time series of Nusselt number calculated on (a) left inclined walls ,
(b) right inclined walls of the partitioned and non-partitioned enclosure.
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Figure 1: Schematic of the computational domains and boundary conditions.
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Figure 2: Time developments of the temperatures at the point
(−0.014m, 0.5m) in the middle of developed thermal boundary layer on the
left side of the partition calculated using different meshes and time steps.
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Figure 3: Growth of the thermal boundary layers shown as isotherms for
T = 291K and T = 299K at different times.
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Figure 4: Temperature contours (a, c, e) and stream functions (b, d, f) for
different aspect ratio when Ra = 108.
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Figure 5: Time developments of Nusselt number through the vetical partition
for different aspect ratio when Ra = 108.
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Figure 6: Temperature contours (a, c, e, g) and stream functions (b, d, f, h)
for different values of Rayleigh number when A = 0.5.

18



Time (s)

N
u

0 5 10 15 20 25 30 35 400

10

20

30

40

50
Ra = 108

Ra = 107

Ra = 106

Ra = 105

Figure 7: Time developments of Nusselt number through the vetical partition
of the emclosure for different Rayleigh number when A = 0.5.

Figure 8: Profiles of the local Nusselt numbers on the vertical partition and
two inclined walls of enclosure.
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Figure 9: Time series of Nusselt number calculated on (a) left inclined walls
, (b) right inclined walls of the partitioned and non-partitioned enclosure.
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