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Abstract

We present a quadrilateral �nite element with an embedded crack that
can be used to model tensile fracture in two-dimensional concrete solids
and the crack growth. The element has kinematics that can represent
linear jumps in both normal and tangential displacements along the crack
line. The cohesive law in the crack is based on rigid-plasticity with soft-
ening. The required material data for the concrete failure analysis are
the constants of isotropic elasticity and the mode I softening curve. The
results of two well known tests are presented in order to illustrate very
satisfying performance of the presented approach to simulate failure of
concrete solids.

1 Introduction

Numerical �nite element simulations of solids, that consider material failure, are
not reliable if the �nite element formulations are based on the classical contin-
uum mechanics. Mesh-dependent solutions are obtained. Di¤erent approaches
have been proposed to overcome this problem: non-local continuum, higher
order gradient plasticity, viscoplastic regularization, Cosserat continuum, and
some others (see e.g. [3] for a recent review on the topic). Those remedies are
nowadays often replaced by a modi�cation of the classical continuum model,
which allows for discontinuity in displacements, e.g. [11]. We talk about the
embedded discontinuity model. An embedded discontinuity �nite element model
can provide an adequate inelastic dissipation in the discontinuity, regardless of
the chosen �nite element mesh. This ensures mesh-independent solutions of
simulations that include material failure. For a review on di¤erent approaches
towards derivation of the embedded discontinuity model we refer to [11].
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In this work we present a �nite element formulation of the embedded discon-
tinuity model that is based on the quadrilateral two-dimensional �nite element.
The majority of works related to the modeling of failure in two-dimensional
solids by the embedded strong discontinuity �nite element, e.g. [10], [6], [12],
[2], [11], are based on the simple constant strain triangle. The reason for this
choice might be that more complex elements, like the quadrilateral element, are
much more di¢ cult to design to be free of locking when the embedded disconti-
nuity is added to the �nite element formulation, e.g. [5], [9]. Quadrilateral �nite
element with embedded discontinuity, which is presented in this work, does not
show any locking problems. This is mostly due to its enriched kinematics that
can model linear jumps in displacements along the discontinuity line in both
normal and tangential directions.
The derived quadrilateral �nite element with embedded discontinuity is used

for description of tensile fracture process in the two-dimensional plain concrete
solids and to model the crack growth. Relatively simple constitutive equations
are used for that purpose: the plane strain/plane stress linear elasticity for the
bulk concrete material and the rigid-plasticity with softening for the cohesive
law in the crack. The required material data are the constants of isotropic
elasticity and the mode I softening curve. This kind of cohesive law is �ne
for the case of monotonically increasing loading when the crack width increases
monotonically with the load. However, when the loading is cyclic or the crack
opens and closes during the loading process, a more demanding cohesive model
would be needed, e.g. the one based on the modeling of damage, e.g. [12], [18].
The two-dimensional embedded crack formulation for plain concrete pre-

sented below can be extended to three-dimensions and to the reinforced concrete
members. For the embedded crack modeling of reinforced concrete members we
refer to e.g. [15], [19] and for the three-dimensional embedded crack analysis of
concrete members we refer to [16], [17].

2 Quadrilateral �nite element with embedded
crack line

In this section we brie�y present a quadrilateral two-dimensional plane stress/plane
strain �nite element with embedded crack line. The element assumes elastic
material response up to the crack initiation and rigid-plastic softening response
along the crack line during the crack opening.

2.1 Kinematics

Let us consider a quadrilateral �nite element occupying domain 
e in R2. The
element may be divided by the crack line �e into two subdomains, 
e+ and 
e�

(
e = 
e+ [ 
e�). Element�s geometry is de�ned by the bi-linear mapping �

2



7! x (� 2 [�1; 1]� [�1; 1]; x 2 
e) with

x (�) j
e=
4X
a=1

Na (�)xa; xa = [xa; ya]
T
; � = [�; �]

T
; (1)

where xa are coordinates of the �nite element node a and

Na (�) =
1

4
(1 + �a�) (1 + �a�) ;

a 1 2 3 4
�a �1 1 1 �1
�a �1 �1 1 1

: (2)

To model the crack opening, the parameters �n0, �n1, �m0 and �m1 are intro-
duced along the crack line �e. The mid-point of the crack line is denoted by
x�. We assume the element displacement �eld as:

[ux; uy]
T = u(�;�e) =

4X
a=1

Na(�)da| {z }
ud

+

+Mn0(�;�
e)�n0 +Mn1(�;�

e)�n1 +Mm0(�;�
e)�m0 +Mm1(�;�

e)�m1| {z }
u�

: (3)

Here, da = [uxa; uya]
T are the nodal values of displacements, and u� are

displacements due to the crack opening. Interpolation matrices Mn0(�;�
e),

Mn1(�;�
e), Mm0(�;�

e) and Mm1(�;�
e) are related to the introduced crack-

opening parameters. With four introduced crack-opening parameters we are in
position to model the following four independent modes of element separation
along �e (see Figure 1):

1. "n0" - constant opening in the direction of the crack normal n = [nx; ny]
T ,

2. "n1" - linear opening in the direction of the crack normal n is linear; this
mode corresponds to the rotation of 
e+ around x�,

3. "m0" - constant opening in the direction of the crack line, which is de�ned
by m = [mx;my]

T ,

4. "m1" - linear opening in the direction of the crack line m; this mode
corresponds to the stretching of 
e+ in the direction of �m with zero
stretching at x�.

Displacements of 
e� and 
e+ for a particular separation mode are equal
to, see (3),

umode = ud;mode+u�;mode; u�;mode =Mmode�mode; mode 2 [n0; n1;m0;m1] :
(4)

From (4) it follows

Mmode =
umode � ud;mode

�mode
: (5)
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By examining Figure 1 we can determine umode and u�;mode. By using (5), we
can further derive the interpolation matricesMmode (see [1] for details). Their
forms are:

1. for constant normal separation mode "n0":

Mn0 =

 
H�(x)�

X
a2
e+

Na

!
n; H�(x) =

�
1 for x 2 
e+
0 otherwise

; (6)

2. for linear normal separation mode "n1":

Mn1 = H�(x)

�
0 1
�1 0

�
x�

X
a2
e+

Na

�
0 1
�1 0

�
xa; x = x�x�; (7)

3. for constant tangential separation mode "m0":

Mm0 =

 
H�(x)�

X
a2
e+

Na

!
m; (8)

4. for linear tangential separation mode "m1" :

Mm1 =

 
H�(x)m � x�

X
a2
e+

Nam � xa

!
m: (9)

The vector of small strains at x 2 
e

� =

�
@ux
@x

;
@uy
@y
;
@ux
@y

+
@uy
@x

�T
; (10)

is obtained from (3) and (6)-(9) (see [1] for details) and can be written as

� =
4X
a=1

Bada +Gn0�n0 +Gn1�n1 +Gm0�m0 +Gm1�m1; (11)
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where

Ba =

264 @Na

@x 0

0 @Na

@y
@Na

@y
@Na

@x

375 ;Bn =

24 nx 0
0 ny
ny nx

35 ;Bm =

24 mx 0
0 my

my mx

35 ; (12)
Gn0 = �

X
a2
e+

Ban| {z }
Gn0

+ ��Bnn| {z }
Gn0

; ��(x) =

�
1 for x 2 �e
0 otherwise

; (13)

Gn1 = �
X
a2
e+

Ba

�
0 1
�1 0

�
xa| {z }

Gn1

+ ��Bnn��| {z }
Gn1

; (14)

Gm0 = �
X
a2
e+

Bam| {z }
Gm0

+ ��Bnm| {z }
Gm0

; (15)

Gm1 = H�Bmm�
X
a2
e+

Ba(m � xa)m| {z }
Gm1

+ ��Bnm��| {z }
Gm1

: (16)

In (14) and (16) we denoted by �� 2 [�l�=2; l�=2] a coordinate along �e, which
has value 0 at x� and is positive in the direction of m. The l� represents the
length of the crack. According to (13)-(16) the strains (11) can be divided into
a regular part � and a singular part � as

� = �+ �; (17)

� =
4X
a=1

Bada +Gn0�n0 +Gn1�n1 +Gm0�m0 +Gm1�m1; (18)

� = Gn0�n0 +Gn1�n1 +Gm0�m0 +Gm1�m1; (19)

where the singular part is just a particular representation of the localized de-
formation at the crack.
The kinematic enrichment of the standard quadrilateral element, which leads

to the strains (18)-(19), is viewed in what follows in the manner of the incom-
patible modes, e.g. [4].

2.2 Constitutive equations

We assume that the behavior of the concrete can be described by the plane
stress/plane strain elasticity

� = C�; � = [�x; �y; �xy]
T (20)

up to the crack appearance. Here, � is the stress vector and C is the corre-
sponding constitutive matrix. Once the crack appears, we assume that the bulk
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of the �nite element 
e=�e remains elastic and that the tractions at the crack
line �e are related to the crack opening by some cohesive softening law. The
crack appearance is governed by the failure criterion discussed further below.
Since the governing fracture mode in brittle materials is mode I, the orienta-
tion of the crackm is chosen as perpendicular to the direction of the maximum
tensile principal stress. The later is evaluated by using the average stress �eld
in the element �avg= [�avgx ; �avgy ; �avgxy ]

T .
We relate the tractions at a crack point x 2 �e;

t = [tn; tm]
T
; (21)

to the crack opening u = [un; um]
T at that point, which is further de�ned in

terms of the kinematic parameters �n0, �n1, �m0 and �m1. The chosen cohesive
law that relates t and u is based on rigid-plasticity with softening. The failure
criterion that checks for the initiation of the crack at x 2�e and governs its
further response is de�ned in terms of the tractions t and the stress-like softening
variable q

� = �(t; q) � 0: (22)

The later is de�ned in terms of the strain-like softening variable �, i.e. q(�).
The remaining ingredients of the rigid-plasticity with softening are the evolution
equations for the crack opening and the softening variable

_u = _

@�

@t
;

_
� = _


@�

@q
; (23)

the loading/unloading conditions, and the consistency condition

_
 � 0; � � 0; _
� = 0; _

_
� = 0: (24)

Here, _
 � 0 is the plastic multiplier. The plastic dissipation that takes place at
x 2 �e is given as D

p
= tT _u+ q

_
�:

2.3 Equilibrium equations

Let a two-dimensional body be discretized by the �nite element mesh with
Nel quadrilateral elements. The weak form of the equilibrium equations for a
discretized body can be written as

ANel
e=1

�
��int;(e) � ��ext;(e)

�
= 0; ��int;(e) = t(e)

Z

e
�̂T�d
: (25)

Here, A is the assembly operator, ��int;(e) and ��ext;(e) can be interpreted
as virtual works of internal and external forces, respectively, t(e) is element�s
thickness and �̂ is vector of virtual strains. Interpolation of virtual strains is
carried out in the same way as interpolation of real strains, see (11),

�̂ =
4X
a=1

Bad̂a + Ĝn0�̂n0 + Ĝn1�̂n1 + Ĝm0�̂m0 + Ĝm1�̂m1: (26)
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The crack opening parameters are viewed as element�s additional degrees of
freedom associated with the incompatible modes. Therefore, the interpolation
matrices Ĝmode are de�ned as

Ĝmode = Gmode �
1

A
e

Z

e
Gmoded
; mode 2 [n0; n1;m0;m1] ; (27)

which ensures the convergence of the derived element in the spirit of the patch
test (see e.g. [4]). By introducing (13)-(16) into (27), we obtain

Ĝn0 = Gn0 �
1

A
e

Z

e
Gn0d
�

l�
A
e

Bnn| {z }
Ĝn0

+��Bnn; (28)

Ĝn1 = Gn1 �
1

A
e

Z

e
Gn1d
| {z }

Ĝn1

+��Bnn��; (29)

Ĝm0 = Gm0 �
1

A
e

Z

e
Gm0d
�

l�
A
e

Bnm| {z }
Ĝm0

+��Bnm; (30)

Ĝm1 = Gm1 �
1

A
e

Z

e
Gm1d
| {z }

Ĝm1

+��Bnm��: (31)

A single element contribution to the internal virtual work can be now written
as:

��int;(e) =
4X
a=1

d̂a
T
t(e)
Z

e
BT
a�d
| {z }

f
int;(e)
a| {z }

standard

+

t(e)
Z

e

�
�̂n0Ĝ

T

n0 + �̂n1Ĝ
T

n1 + �̂m0Ĝ
T

m0 + �̂m1Ĝ
T

m1

�
�d
| {z }

additional

(32)

From the term named "standard" in (32) the vector of element�s internal nodal
forces follows as

f int;(e) =
h
f int;(e)

T

a

iT
; f int;(e)a = t(e)

Z

e
BT
a�d
: (33)

From ��ext;(e) the vector of element external nodal forces fext;(e) follows as

��ext;(e) =
4X
a=1

d̂a
T
fext;(e)a ; fext;(e) =

h
fext;(e)

T

a

iT
;
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representing the consistent external load applied to the element�s nodes (the
crack opening parameters do not contribute to the external load vector). The
�nite element mesh assembly of vectors f int;(e) and fext;(e) leads to a set of
global equilibrium equations, see (25),

ANel
e=1

�
f int;(e) � fext;(e)

�
= 0: (34)

We have not used the term named "additional" in (32) when constructing
the set of global equilibrium equations (34). We have rather chosen to express
the contribution of that term to (25) on an element level. In view of (32) and
(28)-(31), the following equations are obtained for each element of the mesh

h
(e)
n0 = t(e)

Z

e
Ĝ
T

n0�d
| {z }
h


e
n0

+ t(e)
Z
�e
nTBT

n�| {z }
=tn

d�

| {z }
h�

e
n0

= 0; (35)

h
(e)
n1 = t(e)

Z

e
Ĝ
T

n1�d
| {z }
h


e
n1

+ t(e)
Z
�e
�� n

TBT
n�| {z }

=tn

d�

| {z }
h�

e
n1

= 0; (36)

h
(e)
m0 = t(e)

Z

e
Ĝ
T

m0�d
| {z }
h


e
m0

+ t(e)
Z
�e
mTBT

n�| {z }
=tm

d�

| {z }
h�

e
m0

= 0; (37)

h
(e)
m1 = t(e)

Z

e
Ĝ
T

m1�d
| {z }
h


e
m1

+ t(e)
Z
�e
��m

TBT
n�| {z }

=tm

d�

| {z }
h�

e
m1

= 0; 8e 2 [1; Nel] :(38)

Note, that
R

e
�� (�) d
 =

R
�e
(�) d� was used. The tractions tn and tm have

been de�ned in (35)-(38). The tn represents the normal and the tm the tangen-
tial component of the traction t at a crack point. The vector form of equations
(35)-(38) is:

h(e) = h

e

+ h�
e

=
h
h


e

n0 ; h

e

n1 ; h

e

m0; h

e

m1

iT
+
h
h�

e

n0; h
�e

n1; h
�e

m0; h
�e

m1

iT
= 0: (39)

A Gauss integration scheme with 2 � 2 points is used for the numerical
integration of the integrals of the form

R

e
g (x; y) d
. A 2-point Gauss integra-

tion scheme is used for the numerical integration of the integrals of the formR
�e
f (��) d�, see Figure 2. The integration along the crack is thus carried out

as Z l�
2

� l�
2

f(��)d� =

2X
cip=1

f(�cip� )wcip
l�
2
; �cip� = � l�

2
p
3
; wcip = 1; (40)
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where f(��) in a scalar function, f(�
cip
� ) is its value at the Gauss point with

coordinate �cip� and wcip is its corresponding weight. By using (40), the h�
e

of
equation (39) can be written as

h�
e

=
t(e)l�
2

�
t1n + t

2
n; �

1
�t
1
n + �

2
�t
2
n; t

1
m + t

2
m; �

1
�t
1
m + �

2
�t
2
m

�T
; (41)

where t1 =
�
t1n t

1
m

�T
is the traction in the �rst integration point and t2 =�

t2n t
2
m

�T
is the traction in the second integration point.

In order to get solution (the displacements at nodes of the �nite element
mesh and the crack-opening parameters of each �nite element), equations (34)
and (39) need to be solved.

2.4 Solution procedure

The solution of the set of global nonlinear equations in (34) and of the set
of local nonlinear equations in (39) is obtained at discrete pseudo-time val-
ues 0; �1; �2; : : : ; �n�1; �n; �n+1; : : : ; T by means of the incremental-iterative
scheme. We will consider a typical pseudo-time increment from �n to �n+1. Let

us assume that all necessary variables at �n, i.e. d
(e)
n =

h
dT1;n;d

T
2;n;d

T
3;n;d

T
4;n

iT
; �

(e)
n =

[�n0;n; �n1;n; �m0;n; �m1;n]
T and �

cip

n are given for each element (e). The iter-
ations in the pseudo-time step (with (i) as the iteration counter) are then per-
formed in order to compute the converged values of those variables at �n+1, i.e.

d
(e)
n+1; �

(e)
n+1 and �

cip

n+1:This computation is split into two phases:

(a) The global phase computes the current iterative values of nodal displace-
ments at �n+1 as d

(e);(i)
n+1 = d

(e);(i�1)
n+1 + �d

(e);(i�1)
n+1 , while keeping the other

variables �xed. The computation of iterative update �d(e);(i�1)n+1 will be
explained further below.

(b) The local phase computes the new values of crack variables �(e)n+1; �
cip

n+1

while keeping d(e);(i)n+1 �xed. This procedure is activated if the considered
element has a crack or it is at the crack front.

Let us �rst describe the phase (b). It is carried out only in those �nite
elements where: (i) the element had a crack at the end of the previous pseudo-
time step �n; or (ii) the element had no crack at the end of the previous pseudo-
time step but there was a crack in one of the neighboring elements. In the latter
case we �rst compute, by using the average stress �eld, the direction of the
possible crack m, the normal to the possible crack n, and related geometry
(x�E , 
e�, 
e+, l�).
The computation of crack variables starts with the computation of trial

values for tractions in crack integration points. Equilibrium equations (39) are
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used. With h

e;trial

n+1 = h

e
�
�(d

(e);(i)
n+1 ;�n)

�
and (41) a system of four algebraic

equations
h


e;trial
n+1 + h�

e

(t1;trialn+1 ; t2;trialn+1 ) = 0; (42)

is obtained that provides two trial tractions at each crack integration point,

i.e. t1;trialn+1 =
h
t1;trialn;n+1 ; t

1;trial
m;n+1

iT
, t2;trialn+1 =

h
t2;trialn;n+1 ; t

2;trial
m;n+1

iT
. The trial failure

criteria is further evaluated

�
1;trial

= �(t1;trialn+1 ; q(�
1

n)) � 0 or �
2;trial

= �(t2;trialn+1 ; q(�
2

n)) � 0| {z }
?

: (43)

If the criterion (43) is satis�ed, the values of softening plasticity local variables
remain unchanged

�
1;trial

� 0 or �
2;trial

� 0 =) �
(e)
n+1 = �

(e)
n ; �

1

n+1 = �
1

n; �
2

n+1 = �
2

n: (44)

It means that that the crack has not appeared in the case of (ii) above. It also
means that the opening of the crack has not changed in the case of (i) above.
If (43) is violated, the values of crack openings are updated by backward Euler
integration scheme

u
1
n+1 = u

1
n + 


1
n+1

@�

@t
j�1� ; �

1

n+1 = �
1

n + 

1
n+1

@�

@q
j�1� ; (45)

u
2
n+1 = u

2
n + 


2
n+1

@�

@t
j�2� ; �

2

n+1 = �
2

n + 

2
n+1

@�

@q
j�2� ; (46)

where 

1
n+1 =

_

1

n+1(�n+1 � �n) and 

2
n+1 =

_

2

n+1(�n+1 � �n). The values of


1
n+1 and 


2
n+1 are obtained by solving the system of two nonlinear equations

�
1
�
t1n+1

�
�
(e)
n+1

�


1
n+1; 


2
n+1

��
; q

�
�
1

n+1

�


1
n+1

���
= �

1 �


1
n+1; 


2
n+1

�
= 0; (47)

�
2
�
t2n+1

�
�
(e)
n+1

�


1
n+1; 


2
n+1

��
; q

�
�
2

n+1

�


2
n+1

���
= �

2 �


1
n+1; 


2
n+1

�
= 0: (48)

In (47)-(48) the relations between the jumps in displacements at the integration

points u
1
;u

2
and the crack-opening kinematic parameters �(e) = �(e)

�
u
1
;u

2
�

are needed, which are easy to get. We can thus determine the updated values of

�
(e)
n+1 = �

(e)
�
u
1
n+1(


1
n+1);u

2
n+1(


2
n+1)

�
once the values of the plastic multipli-

ers 

1
n+1 and 


2
n+1 are known. The �nal result of the above described softening

plasticity procedure are the new values of parameters �(e)n+1, which in�uence
the stress state of the element by giving the new values of stress in the bulk
integration points bip as

�bipn+1 = C�(d
(e);(i)
n+1 ;�

(e)
n+1): (49)
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Once the local variables are computed, we turn to the global phase (a). We
perform a new iterative loop, if needed, in order to provide new iterative values
of nodal displacements. First, the set of global equilibrium equations (34) is
checked with newly computed �bipn+1 from the phase (b)


ANel

e=1[f
int;(e)
n+1 � fext;(e);(i)n+1 ]




 ?
< tol: (50)

If the convergence criterion (50) is satis�ed, we move on to the next pseudo-time
incremental step. If the convergence criterion fails, we perform a new iterative
sweep within the present pseudo-time incremental step. New iterative values
of nodal generalized displacements of the �nite element mesh are computed by
accounting for each element contribution. A single element contribution can be
written as�

K(e) Kf�

Khd Kh�

�(i)
n+1

 
�d

(e);(i)
n+1

��
(e);(i)
n+1

!
=

�
f
ext;(e)
n+1 � f int;(e);(i)n+1

0

�
; (51)

where the parts of the element sti¤ness matrix can be formally written as

K
(e);(i)
n+1 =

�
@f int;(e)

@d(e)

�(i)
n+1

; K
f�;(i)
n+1 =

�
@f int;(e)

@�(e)

�(i)
n+1

;

K
hd;(i)
n+1 =

�
@h(e)

@d(e)

�(i)
n+1

; K
h�;(i)
n+1 =

�
@h(e)

@�(e)

�(i)
n+1

:
(52)

The static condensation in (51) allows to get the standard form of the element

sti¤ness matrix cK(e);(i)

n+1 that contributes to the �nite element assembly

ANel
e=1

�cK(e);(i)

n+1 �d
(i)
n+1

�
= ANel

e=1

�
f
ext;(e)
n+1 � f int;(e);(i)n+1

�
; (53)

where cK(e);(i)

n+1 =K
(e);(i)
n+1 �Kf�;(i)

n+1

�
K
h�;(i)
n+1

��1
K
hd;(i)
n+1 : (54)

Solution of (53) gives the values of iterative update �d(e);(i)n+1 .

3 Examples

In this section we provide the results of numerical simulations of two well known
tests to illustrate a very satisfying performance of the proposed �nite element.
The �nite element code was generated by using symbolic manipulation code
AceGen and the examples were computed by using �nite element program Ace-
Fem, both developed by Korelc, see [8].
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3.1 Three point bending test

We consider a classical benchmark problem of a notched concrete beam sub-
jected to three point loads, see [5] and references therein. Similar test was
considered by other authors, e.g. [14]. In Figure 3 we present the geometry of
the specimen, a 200 cm � 20 cm � 5 cm simply supported concrete beam with
a 2 cm � 10 cm � 5 cm notch placed at the bottom center of the beam. The
beam is loaded by a downward displacement imposed at its top center. The ma-
terial characteristics of the material are: Young�s modulus E = 3000 kN/cm2,
Poisson�s ratio � = 0:2 and the ultimate tensile strength �u = 3:33 kN/cm2.
The crack propagates from the notch in mode I fashion, therefore we de�ne the
cohesive response in the crack only in its normal direction. The crack response
in its tangential direction is not considered in simulations. The tensile failure
criterion (55) is of the form

�(t; q) = tn �
�
�u � q

�
� 0: (55)

and the softening curve is

q = �u

�
1� exp�

��u
Gf

�
; (56)

where Gf = 0:124 � 10�2 kN/cm is the fracture energy. Note, that � = un.
The assumed rigid-plastic softening curve in the normal direction is presented
in Figure 4.
In Figure 5 we present two �nite element meshes that were used. The coarser

mesh consists of 530 �nite elements and the �ner one of 2186 �nite elements.
On the left side of Figure 6 we plot the reaction force Ry versus the imposed
displacement uy for both meshes. The crack starts at the notch when tn reaches
the tensile strength �u. It has been chosen that the crack propagates in the
direction perpendicular to the maximum principal stress, i.e. in the mode I
fashion. However, a problem was encountered when using the above criterion to
determine the crack direction. Namely, the direction of the maximum principal
stress at some point suddenly changes for 90 degrees. This causes a problem
in convergence with the �ne mesh and a non-physical response with the coarse
mesh, see left side of Figure 6. The crack direction problem was also reported
in [2], [10] and [13] and we direct the reader therein for further discussion. One
of the possible solutions is to de�ne crack propagation in the direction of the
maximum circumferential stress that is evaluated on a circle of a small diameter
centered at the crack tip.
In order to obtain a solution we predetermined direction of the crack. The

crack was allowed to propagate perpendicular to the length of the beam, which is
expected for mode I situation. With this modi�cation we obtained results that
are within the experimentally established bounds (the experimental results have
been taken from [5]). The results of all simulations are given in Figure 6 (left).
In the center and right side of Figure 6 we present the deformed con�guration
(magni�ed 100 times) of the area near the notch.
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3.2 Four point bending test

We consider another classical benchmark problem - the four point bending test
of a concrete beam with a notch, see [5] and references therein. In Figure 7
we present the specimen�s geometry together with loading and supports. The
material characteristics are: Young�s modulus E = 2880 kN/cm2, Poisson�s ratio
� = 0:18 and the ultimate tensile strength �u = 2:8 kN/cm2. The initiation and
behavior of the crack is governed by the failure criterion (55) and the softening
curve

q = max
h
�u;�Ks�

i
; (57)

with softening modulus Ks = �39:2 kN/cm2. In Figure 8 we present the mesh
used in simulations. With respect to the description of the crack opening we
considered three cases: (i) "n0+m0" - constant jump in displacements in both
normal and tangential direction, (ii) "n0+n1" - linear jump in displacement in
normal direction only and (iii) "n0" - constant jump in displacements in normal
direction only. In the case "n0 +m0" we considered a reduced shear sti¤ness
for the tangential response according to

�(tm) = tm � kmum = 0; (58)

where km = 2:88 kN/cm3.
The results are presented in Figures 9 and 10. On the left side of Figure 9 we

plot the applied load versus crack mouth sliding displacement. The results are
compared with those from [5]. We can see that all used formulations give good
prediction of the limit load, while only the mixed mode formulation "n0 +m0"
was able to capture the softening response. On the right side of Figure 9 we plot
the crack paths that correspond to curves on the left side of the same �gure.
In Figure 10 we present the deformed (magni�ed 200 times) mesh of the area
near the notch. The crack paths presented in Figure 9 and the deformed meshes
presented in Figure 10 are in agreement with those from [5].

4 Conclusions

A �nite element with embedded strong discontinuity has been presented and
used to model the fracture process in two-dimensional concrete solids. The
element has linear interpolations of the displacements jumps (in both normal
and tangential directions), which are important for its locking-free response.
The used cohesive law in the crack, which is based on rigid-plasticity with
softening, has proven to be a reasonable model for representation of the crack
behavior, when the loading is increasing monotonically. With this constitutive
model, the simulations of two well known benchmark tests have provided very
satisfying results. In order to make the crack growth algorithm more robust,
the continuity of the crack has been enforced. As shown by the �rst numerical
example, the tracking of the direction of the crack propagation may be false,
when related only to the local stress state in a single element.
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Figure 1: Di¤erent crack opening modes of quadrilateral �nite element with
embedded crack.
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Figure 2: Integration points of the quadrilateral �nite element with embedded
crack

Figure 3: Three point bending test: geometry data.

Figure 4: Rigid-plastic cohesive law in crack normal direction.
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Figure 5: Coarse and �ne meshes for the three-point bending test.

Figure 6: Force versus imposed displacement curves (left). Deformed meshes
around the notch (right).
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Figure 7: Four point bending test: geometry and loading.

Figure 8: Four point bending test: geometry and loading.
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Figure 9: Load versus crack mouth sliding displacement curves (left). The
corresponding crack paths (right).

Figure 10: Deformed meshes for "n0 +m0", "n0 + n1" and "n0" formulations.
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