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Abstract

This paper proposes a functional specification approach for dynamic stochastic gen-
eral equilibrium (DSGE) models that explores the properties of the solution method
used to approximate policy functions. In particular, the solution-driven specification
takes the properties of the solution method directly into account when designing the
structural model in order to deliver enhanced flexibility and facilitate parameter identifi-
cation within the structure imposed by the underlying economic theory. A prototypical
application reveals the importance of this method in improving the specification of
functional nonlinearities that are consistent with economic theory. The solution-driven
specification is also shown to have the potential to greatly improve model fit and provide
alternative policy recommendations when compared to standard DSGE model designs.
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1 Introduction

Economic theory has always postulated the existence of nonlinear relationships between

economic variables. From utility functions that reflect risk aversion to production functions

with diminishing returns to scale, the presence of nonlinearities in economic models is

pervasive and well established both theoretically and empirically; see e.g. Lau (1986) and

Granger and Teräsvirta (1993) for examples of such theoretical and empirical accounts.
∗A considerable part of this work was developed during the author’s visit to Banco de Portugal. The

author is thankful to Banco de Portugal for the visiting researcher’s grant and the Dutch Science Foundation
(NWO) for financial support. The author is also thankful to Andre Lucas, Siem Jan Koopman and those
present at the Banco de Portugal Economics Seminar and the VU Amsterdam Internal Econometrics Seminar
for helpful comments and suggestions. Corresponding address: VU University Amsterdam, FEWEB/FIN,
de Boelelaan 1105, 1081 HV Amsterdam, Netherlands, email: f.blasques@vu.nl.
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Unfortunately, the accurate nonlinear design of structural models has often been neglected.

This apparent lack of interest for an appropriate nonlinear specification of the model can

be traced back to at least five historical factors that exerted a profound influence on the

DSGE literature.

First, the most popular techniques for solving DSGE models involved originally the

linearization of first-order optimality conditions; see e.g. Blanchard and Kahn (1980). Nat-

urally, this linearization step led the nonlinear specification of functions to take a secondary

role. However, in the last three decades, much research has been devoted to developing

nonlinear solution methods for DSGE models and today researchers are by no means con-

strained by linearization requirements; see e.g. Judd (1992, 1998) and Aruoba et al. (2006)

for a comparison of methods. Most importantly, in this new world of nonlinear solution

methods, the nonlinear specification of the model matters and plays a crucial for the study

of phenomena such as time-varying risk premia; see e.g. Uribe (2011).

Second, some lack of concern with functional form misspecification might be explained

by the fact that the quantitative analysis of DSGE models has been typically carried out

in recognition that the model is misspecified and provides only a stylized description of a

potentially very complex data generating process. As a result, misspecification arising only

from subtle higher-order nonlinearities might seem comparatively less important than those

arising from first order restrictions. As we shall see however, this fact should not reduce

our efforts to improve nonlinear functional specification. On the contrary, this paper shows

that appropriate modeling of nonlinear dynamics can greatly improve a model’s ability to

describe fundamental features of the business cycle.

Third, the modeling of nonlinear functional forms has been naturally relegated to sec-

ond plan by the fact that economic theory provides little guidance about the actual form

of utility functions, production functions and others. Indeed, as pointed out by e.g. Lau

(1986) and Diewert and Wales (1987) among others, when it comes to nonlinear functional

form, economic theory usually suggests only restrictions of a more general nature such as

smoothness, monotonicity, concavity, etc. It does not however point to exact parametric

specifications. This lack of guidance has often lead to the adoption restrictive paramet-

ric functional forms that are justified by the desire for analytical simplicity and algebraic
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tractability. As we shall see, this type of model specification might come however at a very

high price, at least, when the researcher is concerned with quantitative analysis, model fit,

and the accurate description of business cycle characteristics. The solution-driven specifica-

tion of the DSGE model avoids these problems by adopting a functional form specification

that imposes only those general restrictions captured by the solution method and justified

by economic theory.

Forth, paying much attention to nonlinear functional form specification might have

seemed rather unnecessary since DSGE models have been often designed to explain only

the first and second order moments of the business cycle. As we shall see however, this line

of reasoning is an unfounded misconception since low order moments are also functions of

parameters determining only high-order nonlinear features of various functions. In partic-

ular, the current paper reveals that solution-driven DSGE modeling can greatly improve

model fit (by approximately 25% in the application presented here) even when the notion

of “model fit” is based only on matching the auto-covariance structure of the data.

Fifth, despite the existence of a clear theoretical case for the use of nonlinear DSGE

models capable of describing phenomena such as time-varying risk premia, the empirical case

for nonlinear DSGE models has sometimes been weaker. For example, Fernandez-Villaverde

and Rubio-Ramirez (2006) report little gains from the adoption of nonlinear solutions in the

description of capital dynamics.1 We will see that these results rely however on obtaining

higher-order solutions of a model whose functional forms are restrictive and essentially

imposed for operational convenience. Hence, any nonlinearities present in the reduced form

solution reflect the restrictions imposed from the outset on the DSGE model. In accordance

with Fernandez-Villaverde and Rubio-Ramirez (2006), we show here an example where,

under a standard DSGE model specification, the nonlinear solutions produce only marginal

differences in parameter estimates and model fit, yet great gains are obtained from the same

nonlinear solutions when adopting a solution-driven DSGE specification. The importance

of nonlinear solutions can thus be greatly enhanced when functional forms are appropriately

modeled. In particular, it will become clear that both data and theory call for a functional

specification that renders the DSGE model more flexible on those features about which the
1Empirical support for nonlinear DSGEs has nonetheless been found by several authors; see e.g. Kim and

Ruge-Murcia (2009).
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theory is silent.

Before moving on, it is also important to note that the solution-driven DSGE specifica-

tion has a natural place in at least two well-developed strands of the DSGE literature.

First, the solution-driven DSGE specification is founded on the literature devoted to

nonlinear solutions of rational expectation models and approximation of policy functions;

see e.g. Judd (1992, 1998) and Aruoba et al. (2006) for a review. In essence, the solution-

driven DSGE specification ties the DSGE model design to the solution method employed

in the policy function approximation.

Second, the solution-driven DSGE specification constitutes a natural extension to the

existing literature on DSGE models with flexible functional forms; see e.g. Lau (1986) and

Diewert and Wales (1987). The solution-driven specification is however unique in adopting

functional forms justified by the nature of the employed solution method.

Section 2 below uses a prototypical DSGE model to introduce the solution-driven DSGE

model design. Section 3 describes the main features of the business cycle and explains how

these features can be used by an indirect inference estimator to estimate the structural

parameters. Finally, Section 4 compares the estimation results obtained form several spec-

ifications of the same model. Section 5 concludes.

2 The Solution-Driven DSGE Specification

For simplicity, let us consider a prototypical DSGE model similar to that used in Judd

(1992). This model postulates that (i) consumption ct is determined by maximizing the

expected value of a discounted stream of future utilities defined by an instantaneous utility

function u; (ii) the capital stock kt is the result of an accumulation process with a fraction

(1− δ) being lost to depreciation and increments determined by investment it which corre-

sponds to the fraction of output that is not consumed, (iv) output yt is a function f of the

capital stock kt and total factor productivity (TFP) shocks zt; and finally (v) TFP shocks

contain dependence generated by an autoregressive function g. This prototypical model is
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thus summarized as,

max
{cs}∞s=t

Et

[ ∞∑
s=t

βs−tu(cs)
]

s.t. kt+1 = (1− δ)kt + it , it = yt − ct ,

yt = f(kt, zt) , zt = g(zt−1) + εt ,

(1)

where β is the intertemporal discount rate and the innovations of the TFP process follow

an independent Gaussian process {εt} ∼ NID(0, σ2
ε ). The first-order optimality conditions

for this dynamic optimization problem are well known and given by,

u′c(ct) = βE
[(
f ′k(kt+1, zt+1) + 1− δ

)
u′c(ct+1)

]
kt+1 = (1− δ)kt + it , it = yt − ct ,

yt = f(kt, zt) , zt = g(zt−1) + εt.

(2)

Despite its remarkable simplicity, this model is still quite general. Typically, restrictions

of a much more specific nature are however introduced when adopting parametric functional

forms for the unknown functions u, f and g. Common choices correspond to utility functions

of the CRRA type, production functions of the AK family, and linear dynamics for TFP

shocks,

u(ct) ≈ u(ct; θ) = c1−θ
t /(1− θ) , g(zt−1) ≈ g(zt−1; ρ) = ρzt−1 ,

f(kt, zt) ≈ f(kt, zt;α) = exp(zt)Akαt .
(3)

These choices lead to the familiar system of first-order conditions given by,

c−θt = βEt
[
(αzt+1k

α−1
t+1 + (1− δ))c−θt+1

]
,

kt+1 = (1− δ)kt + exp(zt)kαt − ct , zt = ρzt−1 + εt.

The classes of functions defined in (3) are indexed by a single parameter and hence

very restrictive (or very small in a space entropy sense; see e.g. van der Vaart and Wellner

(1996)). Consider for example the space of AK functions defined as
{

exp(zt)Akαt , α ∈

(0, 1)
}
. It is true that each element of this class of functions satisfies important basic
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requirements for a meaningful understanding of the model, namely that output be increasing

in capital stock and productivity levels. It is also true that each element of this class satisfies

basic economic-theoretic requirements for the existence of a steady-state (namely that the

production function be concave in the capital dimension). Unfortunately, this class of

functions defines also a host of other restrictions that are unnecessarily imposed and turn

out to have a strong influence on the implied dynamic behavior of consumption, output,

investment and capital stock. For instance, within the AK family, curvature and slope

cannot be determined independently. In effect, selecting an AK production function with

larger marginal productivity of capital at the steady-state, implies necessarily selecting a

production function with stronger diminishing returns to scale. Actually, no two derivatives

of the production function can be determined independently. As we shall see this is an

unnecessary and unjustified restriction that comes at a high cost as it renders the model

incapable of explaining several observed features of the business cycle.

The solution-driven DSGE model design is instead guided by the approximation theo-

retic properties of the employed solution method. In particular, it relies on the properties

(both advantages and limitations) of the solution method to select appropriate functional

forms for the structural model. For example, in the case of the perturbation solution method

(see Jin and Judd (2002) and Schmitt-Grohe and Uribe (2004)), the design of the DSGE is

itself based on polynomial functions. In what follows, we take the perturbation solution to

be our workhorse and call the resulting solution-driven DSGE model the perturbation-driven

DSGE model. This model will make extensive use of polynomial functional forms. This is

justified by the realization that selected functional forms should always:

(i) satisfy economic theory restrictions that are reflected by the solution method;

(ii) satisfy statistical restrictions that are reflected by the solution method;

(iii) be identifiable from the solution method’s reduced form.

Point (i) above highlights e.g. that, since the perturbation solution method only pre-

serves the local properties of the original functions, then theoretical restrictions should only

be met locally. For example, it is irrelevant to select utility functions or production func-

tions that satisfy monotonicity or concavity constraints globally, when in fact nonlinear
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perturbation approximations are simply incapable of ever satisfying these properties glob-

ally. Recognizing this limitation of nonlinear perturbation approximations will turn out to

be an advantage.

Point (ii) reflects the same principle as (i), but it applies it to the stochastic properties

of the model. In particular, it points out that while selecting functional forms with uni-

formly bounded derivatives is often important to ensure global stability, stationarity and

ergodicity of autoregressive models (see Bougerol (1991) or Pötscher and Prucha (1997)),

in this context, it is simply irrelevant since the data will be simulated from a polynomial

approximation that can never achieve global stability. Again, recognizing this limitation of

perturbation approximations will turn out to be a practical advantage.

Finally, point (iii) highlights the natural fact that it is useless to specify nonlinear

features for structural functions independently of solution methods since identification of

the former depends on the nature of the latter. For example, a linear perturbation solution

is simply incapable of providing information about the curvature of structural functions.2

Likewise, it would be useless to explore higher-order solution methods if all structural

functions were linear.

Given (i), (ii) and (iii) above, it is thus natural to select functional forms that mimic

as closely as possible the form of the approximate perturbation solution. Specifically, we

shall make use of polynomials of the same order as those of the solution method and obtain

polynomial forms,

u(ct; θ) =
nu∑
i=0

θiĉ
i
t , f(kt, zt; α) =

nf∑
|i|=0

αik̂
i
tz
i
t , g(zt−1; ρ) =

ng∑
i=0

ρiz
i
t−1, (4)

where ĉt, k̂t and ẑt denote variables in deviations from the steady-state.3 The selected

functional forms allow us to satisfy requirements (i), (ii) and (iii) above. In particular,

they allow us to (a) impose local theoretical restrictions of monotonicity and concavity

that are naturally preserved by the perturbation solution; (b) impose local restrictions of
2As we shall see below, the only reason why linearized DSGE models often seem to provide information

about parameters associated with curvature of functions is precisely that, in restrictive functional forms, the
parameters typically bind all derivatives together and hence estimates of slope are simply imposed on the
curvature. This is shown to be problematic.

3∑nf

|i|=0 is written is multi-index notation.
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stability that are consistent with the adopted perturbation order; and (c) identify curvature

parameters that are reflected in the reduced form parameters of perturbation solution.

Furthermore, the functional forms in (4) are much more flexible than typical ones. For

example, in the third-order truncated power series case, it is worth noting that first, second

and third derivatives (and cross-derivatives) can all be set independently of each other. As

pointed out above, this was impossible when making use of the classical functional forms in

(3) where all derivatives are deterministically linked and fixed by a single parameter.

The adopted functional forms imply working with the following system of first order

conditions,

nu∑
i=1

iθiĉ
i−1
t = βEt

[
(
nk∑
i=1

nz∑
j=0

iαi,j k̂
i−1
t+1z

j
t+1 + 1− δ)

nu∑
i=1

iθiĉ
i−1
t+1

]
,

kt+1 = (1− δ)kt +
nk∑
i=0

nz∑
j=0

αi,j k̂
i
tz
j
t − ct , zt =

ng∑
i=0

ρiz
i
t−1 + εt

In the remainder of this paper we describe the indirect inference estimation of the

perturbation-driven DSGEmodel and provide evidence of the importance of the perturbation-

driven specification of functional forms.

3 Data and Estimation

Estimation of the perturbation-driven DSGE model will be based on indirect inference

estimator of Gourieroux et al. (1993). The II estimator minimizes a divergences between

a vector of auxiliary statistics obtained from both observed and simulated data. The II

estimator of is thus defined as,

θ̂T := arg min
θ∈ΘT

‖ β̂T (θ0) − β̃T,S(θ)‖

where Θ is the parameter space of structural parameters and ‖·‖ is the employed divergence

between the vector of auxiliary statistics β̂T (θ0) that describes observed data and the vector

β̃T,S(θ) that describes simulated data generated from the model under θ by averaging over

S simulations β̃T,S(θ) = 1/S
∑S
s=1 β̃T,s(θ). The II estimator relies on the convergence

of the auxiliary statistics β̂T (θ0) and β̃T,S(θ) to limits β(θ0) and β(θ) as T → ∞, and
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on the injective nature of the limit map so that β(θ0) 6= β(θ) ∀θ 6= θ0 ∈ Θ. Under

certain regularity conditions the II estimator will then converge in probability to the unique

minimizer of the limit criterion ‖β(θ0) − β(θ)‖. Under the influence of an axiom of

correct specification this limit is the true parameter θ0. When the model is misspecified,

i.e. θ0 /∈ Θ, the II estimator is consistent to a pseudo-true parameter θ∗0 ∈ Θ that provides

the best approximation to the data generating process, as judged by the limit divergence

‖ · ‖ between the limit auxiliary vectors β(θ0) and β(θ). As we shall see in the following

section, the perturbation-driven DSGE specification estimated using the II estimator can,

at the very minimum, provide a considerably better approximation to the data generating

process.

The data used in the empirical exercise that follows comprises quarterly observations of

US GDP, aggregate consumption and aggregate investment in volumes from 1947 to 2012

obtained from the Federal Reserve of Saint Louis. Figure 1 plots the log of these variables

in levels and the business cycle extracted by HP-filtering.

1947 1979 2012

2
4
6
8

10
12
14

US Data

 

 

GDP

Con

Inv

1947 1979 2012

−0.2

0

0.2

US Business Cycle

Figure 1: Logarithms of real aggregates (above) and the business cycle (below) as described
by deviations of the HP-filtered logarithms (approximately % deviations) from long run HP
trend.

Table 1 reports the estimated variance ratios and autocorrelation structure of the US

business cycle. The elements of this table shall constitute the vector of auxiliary statistics

β̂T (θ0) that describes observed data. Table 1 shows various well-known stylized facts of
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the business cycle. Namely, that private investment is much more volatile throughout the

business cycle than GDP, and that aggregate consumption is the less volatile component.

It is also interesting to point out that investment has considerably higher contemporaneous

correlation with GDP than consumption, and that the contemporaneous correlation between

investment and consumption is relatively weaker than any other. Finally, GDP reveals the

highest values of autocorrelation, and investment the lowest. In the following section, we

compare various formulations of our prototypical DSGE model in their ability to generate

paths of simulated data whose properties resemble those of observed data as described by

Table 1.

Auto-Covariance Structure

σ/σy ry rc ri ry−1 rc−1 ri−1

yt 1.00 - 0.78 0.85 0.85 0.77 0.75
ct 0.77 0.78 - 0.70 0.61 0.82 0.61
it 4.90 0.85 0.70 - 0.66 0.73 0.79

Table 1: US business cycle characterization. σ/σy shows ratio of standard deviations w.r.t. output. rx

shows estimated correlation with variable x. rx−1 shows estimated correlation with the lag of x.

Since the estimated moments reported in Table 1 will constitute the set of auxiliary

statistics used for II estimation, the II estimator will be equivalent to a simulated method

of moments estimator. Small sample properties of such estimators in the present context of

nonlinear DSGE models are studied in Ruge-Murcia (2012).

4 Model Analysis and Comparison

Given the small sample size of T = 261 typical of macroeconomic datasets, we adopt low-

order truncations for the perturbation solution and power-series functions in (2) of nu = 3,

nk = 2, nz = 2, ng = 1. The first-order conditions for the perturbation-driven DSGE model

are thus given by,

θ1 + 2θ2ĉt + 3θ3ĉ
2
t = βEt

[
(α1 + 2α2k̂ + α5ẑt + 1− δ)(θ1 + 2θ2ĉt + 3θ3ĉ

2
t )
]

kt+1 = (1− δ)kt + α0 + α1k̂t + α2k̂
2 + α3zt + α4z

2
t + α5k̂tzt − ct , zt = ρizt−1 + εt.

(5)
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It is important to note that the first-order conditions in (5) are compatible with the

increasingly popular second-order perturbation solutions. In other words, second-order

perturbation solutions contain information about all the polynomial function parameters

(θ1, θ2, θ3, α1, α2, α3, α4, α5, ) in (5).

Table 2 presents the calibrated and estimated parameters for the standard formulation

of the DSGE model postulated in (2) using both linear and quadratic solutions. Table 3

provides estimates of the parameters of the perturbation-driven DSGE (PD-DSGE) model

in (5). Both models have been estimated with δ and β at calibrated values δ = 0.05 and

β = 0.987. These values are common in the literature. Both tables report also the bounds

that have been imposed on the parameter space.

BM Lin P Quad P Bounds
min max

α 0.25 0.17 0.17 0.15 0.35
θ 2.00 2.47 2.47 1.20 2.80
ρ 0.85 0.89 0.89 0.73 0.97
σ 0.014 0.013 0.013 0.010 0.018
δ 0.05 - - - -
β 0.987 - - - -

Table 2: Column 1 (BM) shows benchmark calibrated parameter values α θ, ρ, σ, δ and β. Columns 2 and
3 (LIN P and Quad P) show parameter estimates of α θ, ρ and σ (note that δ and β are kept at calibrated
values) for the linear and quadratic perturbation solutions of the standard DSGE model design defined in
(1), (2) and (3). Last two columns contain the parameter space bounds imposed during estimation and show
that there were no corner solutions in the estimation algorithm.

An interesting feature of Table 2 is that the estimates of linear and quadratic model are

very similar. In fact, differences are of magnitude smaller than 0.01 leaving the rounded

values in the table undistinguishable. One might be tempted to interpret these results (and

also the marginal differences in fit shown in Table 5) as meaning that nonlinear approxi-

mations are unnecessary in DSGE models. As we shall see however, this phenomenon is

explained precisely by the incorrect functional forms being imposed. Important gains in

fit and differences in parameter estimates will be obtained from nonlinear solutions when

functional forms are modeled appropriately.

11



Table 3 shows parameter estimates obtained under the perturbation-driven DSGE model

design with quadratic perturbation solution. The auxiliary statistics and criterion function

is exactly the same as that employed in the estimation of the DSGE models in Table 2.

PD-DSGE Bounds
Calibrated Estimated Min Max

α0 25.3 28.4 20.2 30.3
10α1 0.63 0.37 0.25 1.01
103α2 -0.24 -0.25 -0.05 -0.43
α3 25.3 36.0 5.1 45.5
α4 12.6 7.23 2.5 22.7

10α5 0.63 0.26 0.1 1.1
103θ1 2.43 3.72 0.2 4.6
105θ2 -12.0 -8.36 -1.2 -22.8
106θ3 5.93 2.39 0.6 11.3
ρ 0.85 0.92 0.75 0.95
σ 0.014 0.009 0.007 0.021
δ 0.05 - - -
β 0.987 - - -

Table 3: Calibrated and estimated parameter values (first and second columns respectively) for
perturbation-driven DSGE model defined in (1), (2) and (4). Parameters δ and β are calibrated at bench-
mark calibration δ = 0.05 and β = 0.987. Last two columns contain the parameter space bounds imposed
during estimation and show that there were no corner solutions in the estimation algorithm.

Regardless of the similarity of the estimated parameters for the linear and quadratic

models, it is important to note that the implied moments are quite different. Table 4

compares the observed moments estimated from the US data to those moments implied

by the estimated DSGE model under linear and quadratic perturbation as well as those

implied by the PD-DSGE model. The implied moments were obtained from a simulated

path of 1005 periods that brings the estimation error to under 0.01.

Table 4 reveals that increasing the solution order when imposing restrictive incorrect

functional forms does not help improve the ability of the model to describe the stylized

facts of the business cycle. In fact, the table shows that higher order solutions may actually

harm moment fit in some occasions. For example, the estimated quadratic model implies a

variance for investment that is 16% lower than the observed value of 0.687, when the linear

model actually provided an almost perfect match of this moment. This is reflected also in
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Data Lin P Quad P PD-DSGE
value value % diff value % diff value % diff

100σy 2.86 2.97 4 2.94 3 2.87 0
100σi 68.7 68.6 0 57.7 -16 68.4 0
100σc 1.68 0.63 -62 0.61 -64 0.99 -41
σy/σi 4.90 4.81 -4 4.43 -18 4.88 -1
σy/σc 0.77 0.46 -64 0.46 -65 0.59 -41

ryi 0.85 0.98 15 0.98 16 0.97 14
ryc 0.78 0.95 21 0.95 21 0.97 24
ric 0.70 0.86 24 0.87 25 0.88 27

ryy−1 0.85 0.71 -16 0.72 -15 0.72 -15
ryi−1 0.75 0.74 -3 0.74 -2 0.73 -3
ryc−1 0.77 0.62 -19 0.62 -19 0.66 -14
riy−1 0.66 0.63 -5 0.63 -5 0.60 -10
rii−1 0.79 0.69 -13 0.69 -13 0.67 -16
ric−1 0.72 0.49 -32 0.48 -33 0.49 -31
rcy−1 0.61 0.79 30 0.79 30 0.79 30
rci−1 0.61 0.75 24 0.75 23 0.75 24
rcc−1 0.82 0.79 -3 0.79 -3 0.78 -4

Table 4: Moments estimated from observed data (in Data column) and model implied moments obtained
from simulated path of 105 periods generated at estimated parameter values for Lin P and Quad P models
in Tables 2 and PD-DSGE model in Table 3 (with values and percentage differences from data moments in
‘value’ and ‘% diff’ columns respectively). US business cycle characterization. σx denotes simulated standard
deviations of variables x. σy/σx shows ratio of standard deviations w.r.t. output. rxx′ shows simulated
unconditional correlations between variables x and x′. rxx′−1

shows simulated unconditional correlations
between x and lag of x′.

the implied output-to-investment variance ratio σy/σi that was underestimated by the linear

model in only 4% and is underestimated by 18% in the quadratic model. In the remaining

moments there are marginal differences between the linear and the quadratic model. This

does not happen however with the PD-DSGE model using the same quadratic solution.

Indeed, by not imposing restrictive functional forms the perturbation-driven DSGE specifi-

cation is capable of bringing the fit to investment variance back to an almost perfect match

and to actually improve on the estimated GDP-to-investment variance ratio. Furthermore,

the perturbation-driven DSGE specification is also capable of matching the variance of out-

put almost perfectly and to improve the fit to the variance of consumption by more than

20% compared to both the linear and quadratic DSGE models. This is naturally reflected

also on the improvement of the fit to the GDP-to-consumption variance ratio σy/σc. A very
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significant improvement can be found in the fit of the cross-autocorrelation between output

and consumption ryc−1 . Most of the remaining moments have only marginal differences

between the standard DSGE models and the perturbation-driven DSGE specification with

the exception of the cross-autocorrelations riy−1 and rii−1 for which the perturbation-driven

DSGE specification performs worse.

Table 5 summarizes the model fit by (i) evaluating the realized criterion function of the

II estimator at the estimated parameters; and (ii) providing the unweighted total difference

between observed moments and simulated moments.

Criterion Function Fit

BM-Lin BM-Quad Lin P Quad P PD-DSGE
14685 16224 4521 4523 3612
4.07 4.49 1.25 1.25 1.00

Total Moment Difference

BM-Lin BM-Quad Lin P Quad P PD-DSGE
4.95 5.06 3.38 3.71 2.97
1.67 1.71 1.14 1.25 1.00

Table 5: The BM-Lin and BM-Quad columns report values for the benchmark calibrated model with linear
and quadratic perturbation solutions, respectively. The Lin Pert and Quad Pert columns report values for
the estimated benchmark model under linear and quadratic perturbation solutions, respectively. Finally,
the perturbation-driven specification column reports the value for the estimated PD-DSGE model. The
criterion fit uses optimal weighting matrix and is hence weighted by uncertainty in estimates. Total moment
difference is unweighted sum of percentage differences. Second rows report standardized values w.r.t. to the
PD-DSGE model.

In Table 5 it is clear that model estimation improves the fit on any model. Indeed,

estimated models reveal a great improvement in both criterion fit and a total moment

difference when compared to the calibrated model which was used as a starting point for the

indirect inference estimation of all models. Most importantly, the calibrated model solved

with quadratic solution (BM-Quad) actually does a worse job in describing the observed

moments than the calibrated model with linear solution. This is evidence once again, that

imposing incorrect functional forms on the data is harmful. Similar evidence is found when

comparing the estimated linear and quadratic models. While the criterion function seems
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relatively unchanged, the unweighted total moment difference reveals that the quadratic

model provides a worse fit than the linear model. Again, it is important to highlight that

it would be a mistake to interpret these results as meaning that nonlinear approximations

are unnecessary in DSGE models. On the contrary, this phenomenon is explained precisely

by the incorrect functional forms being imposed. This is supported by the fact that the

PD-DSGE model provides a remarkable improvement in fit, both in criterion function terms

and total moment difference. In effect, the criterion fit is 25% better than both the linear

and quadratic estimated DSGE models, and total moment difference is 14% better than

any alternative.

The difficulty of restrictive DSGE models in improving model fit with higher-order

solutions can be well understood by looking at the curvature properties of the estimated

utility and production functions. Table 6 reports both the calibrated and estimated first,

second and third derivatives at the steady-state of the utility function under the standard

model and PD-DSGE model. The estimated utility functions and respective derivatives are

plotted in Figure 3.

Estimated Utility Function Derivatives

Model 103uc 105ucc uccc

BM 6.00 -93.0 216.1
Lin/Quad P 1.82 -34.8 93.4
PD-DSGE 3.72 -16.7 14.3

Table 6: First (uc), second (ucc) and third (uccc) derivatives of the utility function evaluated at the
steady-state for the benchmark calibrated model (BM), the linear and quadratic perturbation (Lin/Quad P)
solutions of the standard DSGE model design defined in (1), (2) and (3), and the perturbation-driven DSGE
(PD-DSGE).

Clearly, the benchmark DSGE model calibrated at θ = 2 implied a first and third deriva-

tive that were too large and a second derivative that was too small. This appreciation is

supported by the fact that all estimated models diverge from the Benchmark in a consis-

tent way in terms of first second and third derivatives. Unfortunately in the CRRA utility

function these derivatives can not be set independently and as a result the estimated value

of θ must ‘compromise’ between slope and curvature. For example, increasing the slope

of the CRRA utility function implies necessarily reducing its curvature (second derivative
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rises closer to zero and the utility become flatter); see Figure 2 which plots the derivatives

of the CRAA utility function as a function of θ.
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Figure 2: Plots of CRRA utility derivatives as functions of the parameter θ that shows
unique relation between derivatives in CRRA utility function. An increase in θ implies a
decrease in slope and an increase in curvature.
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Figure 3: Plots of utility functions (left), first derivatives (center) and second derivatives
(right) over 10% deviations of consumption from its steady-state value and under cali-
brated benchmark model (BM), linear and quadratic estimated models (Lin/Quad P) and
perturbation-driven DSGE (PD-DSGE).

The effect of the restriction characterized in Figure 2 is clear. Figure 3 shows that,

compared to the perturbation-driven specification utility function whose slope and curvature

are estimated freely, the estimated CRRA utility must set the slope of the utility function

much lower in order to reduce the curvature of the function (i.e. in order to bring the

second derivative close to zero). The left graph in Figure 3 shows precisely the effects of

such restrictions on estimated utility functions. In the CRRA utility function, a smaller

θ would increase the slope of the utility function, but also, at the same time, increase

the curvature (i.e. pull the second derivative further down) which is already higher than
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the freely estimated one in the perturbation-driven specification utility. This restriction

compromises the ability of the standard DSGE to fit the data appropriately.

Similar analysis can be made about the estimated production function. In particu-

lar, Table 7 suggests that the calibrated AK production function implies a slope for the

production function that is too large and a curvature that is too small.

Estimated Production Function

10fk 103fkk fz fzz 10fkz

BM 0.63 -0.47 25.3 25.3 0.63
Lin/Quad P 0.29 -0.24 17.5 17.5 0.29
PD-DSGE 0.37 -0.49 36.0 14.5 0.26

Table 7: First and second derivatives with respect to capital (fk and fkk respectively) and TFP (fz

and fzz respectively) and cross-derivative (fkz) of the production function evaluated at steady-state under
calibrated benchmark model (BM), linear and quadratic estimated models (Lin/Quad P) and perturbation-
driven DSGE (PD-DSGE).

In effect, the freely estimated derivatives of the perturbation-driven specification pro-

duction function suggest that while the slope of the production function could be reduced,

its curvature should be stronger. However, in the AK family of production functions, a

smaller estimate of α, besides reducing the slope of the production, would simultaneously

imply a reduction in curvature through an increase in the second derivative (bringing it

closer to zero) and making the production function flatter. Figure 4 plots the derivatives

of the AK production function as functions of α.
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Figure 4: First (left) and second (right) derivatives of AK production w.r.t. capital as
functions of parameter α.

Figure 5 plots the isoquants of the calibrated and estimated production functions. In-

terestingly, the freely estimated perturbation-driven specification production function also
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provides an estimated production function that is convex in the direction of zt. However,

the convexity is not of the exponential type (as postulated by the AK production function).

On the contrary, first and second derivative on the direction of zt are quite different. In

particular, the first derivative is much larger than the second, yielding the production func-

tion with a larger slope but less pronounced curvature than the functional form implied by

the estimated AK function.
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Figure 5: Contour line of production function under calibrated benchmark model (left),
linear and quadratic estimated standard DSGE model (center) and estimated perturbation-
driven DSGE model (right).

Finally, Table 8 reveals fundamental differences in the estimates of various economic

quantities of interest obtained from both the standard DSGE and PD-DSGE models. In

particular, Table 8 provides estimates of the Arrow-Pratt coefficient of relative risk aver-

sion (APC), elasticity of intertemporal substitution (IES), marginal productivity of capital

(MPK), and relative curvature of the production function in the capital dimension (RCK),

TFP dimension (RCZ) and cross dimension (RCKZ).

APC EIS MPK RCK RCZ RCKZ
Calibrated 2.00 0.50 0.63 -0.75 1.00 0.040

Lin/Quad P 2.47 0.41 0.30 -0.83 1.00 0.057
PD-DSGE 0.91 1.10 0.37 -1.33 0.40 0.020

Table 8: Steady-state values of relevant economic quantities estimated under different model
formulations. Relative curvatures defined as ratio of second and first derivatives.

It is important to highlight that these quantities can be easily obtained regardless of
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the adopted functional forms. Consider for example the APC which is defined as,

APC(c) = −u
′′(c)
u′(c) .

In general, this coefficient is a function of the first two derivatives of the utility function u′

and u′′ and the consumption level c. In the special case of the CRRA utility function the

APC is constant in c and given by APC(c) = θ ∀ c. However, regardless of the form of the

utility function, the APC is defined as long as the first and second derivatives of the utility

function are well defined. Unfortunately, as we have seen before, the estimated derivatives

of the utility function can be severely biased if the utility function is too restrictive. Table

6 showed that estimating correctly u′ and u′′ in the CRRA class can be complicated when

both derivatives depend on the same parameter θ. Here, Table 8 reveals that the flexible

estimation of these derivatives offered by the perturbation-driven DSGE specification im-

plies a much lower coefficient at the steady-state than that implied by the CRRA utility.

This is naturally reflected in a larger estimate for the EIS under the perturbation-driven

DSGE specification than that obtained under the standard DSGE formulation.

Finally, we note that these different estimates have important policy implications. For

example, the estimated EIS below unity in the CRRA utility function implies that, given

rise of interest rates, the income effect dominates the inter-temporal substitution effect.

This implies that consumption increases as a result of a rise in interest rates because the

effect of a rise in interest in creating a more favorable intertemporal budget constraint is

larger than the substitution effect that makes savings relatively more attractive under a

higher interest. A logarithmic utility function implies a EIS = 1 and hence that both

effects cancel out. The perturbation-driven specification utility function where both first

and second derivatives are freely estimated lead to an EIS above unity. This implies that the

substitution effect dominates and consumption drops in response to a rise in interest rates

as consumers shift their budget towards savings. This example shows the dramatic change

to the model’s policy implications that can occur as a result of appropriately modeling

functional forms.
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5 Conclusion

This paper proposed a novel DSGE model design strategy based on adopting functional

forms that are consistent with the solution methods employed and highlighted the limita-

tions of DSGE model design with restrictive functional forms. The enhanced flexibility of

the solution-driven DSGE specification was shown to significantly improve the fit of the

prototypical DSGE structure and deliver very different estimates of function shapes and

implied coefficients of risk aversion, elasticity of substitution, marginal capital productivity

and others.

The paper’s main objective was that of introducing the solution-driven DSGE specifi-

cation, explaining its main features and using a prototypical DSGE to analyze some of its

potential strengths. Future research will be devoted to the application of the solution-driven

specification in larger DSGE models. In effect, the larger the model, the more likely it is for

the solution-driven specification design to have a significant influence on fit. This is so for

three reasons. First, larger models contain more equations with functions whose form is un-

known, and hence, a more significant role can be played by the solution-driven specification

design strategy. Second, the extra data allows for higher order approximations, especially

when focusing on approximating a small number of functions. Third, DSGE models with

more variables have much larger variance-covariance matrices (whose number of elements

grow exponentially with each new variable), but typically only few new parameters. Hence,

it becomes comparatively more difficult to find a good fit to all moments with few extra

parameters. As this paper revealed, this is precisely where the solution-driven specification

design gains advantage over traditional model design.
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