Association Between Chromosome 9p21 Variants and the
Ankle-Brachial Index Identified by a Meta-Analysis of 21
Genome-Wide Association Studies

Joanne M. Murabito, MD, ScM*; Charles C. White, MPH*; Maryam Kavousi, MD, MSc*; Yan V. Sun, PhD*; Mary F. Feitosa, PhD*; Vijay Nambi, MD*;
Claudia Lamina, PhD*; Arne Schillert, PhD*; Stefan Coassin, PhD; Joshua C. Bis, PhD; Linda Broer, MSc; Dana C. Crawford, PhD;

Nora Franceschini, MD, MPH; Ruth Frikke-Schmidt, MD, PhD; Margot Haun, MSc; Suzanne Holewijn, PhD; Jennifer E. Huffman, MSc; Shih-Jen Hwang, PhD;
Stefan Kiechl, MD; Barbara Kollerits, PhD, MPH; May E. Montasser, PhD; Ilja M. Nolte, PhD; Megan E. Rudock, PhD; Andrea Senft, MSc;
Alexander Teumer, PhD; Pim van der Harst, MD, PhD; Veronique Vitart, PhD; Lindsay L. Waite, MS; Andrew R. Wood, MRes; Christina L. Wassel, PhD;
Devin M. Absher, PhD; Matthew A. Allison, MD, MPH; Najaf Amin, PhD; Alice Amold, PhD; Folkert W. Asselbergs, MD, PhD; Yurii Aulchenko, PhD;
Stefania Bandinelli, MD; Maja Barbalic, PhD; Mladen Boban, MD, PhD; Kiristin Brown-Gentry, MS; David J. Couper, PhD; Michael H. Criqui, MD, MPH;
Abbas Dehghan, MD, PhD; Martin den Heijer, MD, PhD; Benjamin Dieplinger, MD; Jingzhong Ding, PhD; Marcus Dérr, MD; Christine Espinola-Klein, MD;
Stephan B. Felix, MD; Luigi Ferrucci, MD, PhD; Aaron R. Folsom, MD; Gustav Fraedrich, MD; Quince Gibson, MBA; Robert Goodloe, MS; Grgo Gunjaca, MD;
Meinhard Haltmayer, MD; Gerardo Heiss, MD, PhD; Albert Hofman, MD, PhD; Arne Kieback, MD; Lambertus A. Kiemeney, PhD; Ivana Kolcic, MD, PhD;
Iftikhar J. Kullo, MD; Stephen B. Kritchevsky, PhD; Karl J. Lackner, MD; Xiaohui Li, MD, MSc; Wolfgang Lieb, MD, MSc; Kurt Lohman, Mstat;
Christa Meisinger, MD, MPH; David Melzer, MD, PhD; Emile R. Mohler I1I, MD; Ivana Mudnic, MD; Thomas Mueller, MD; Gerjan Navis, MD, PhD;
Friedrich Oberhollenzer, MD; Jeffrey W. Olin, MD; Jeff O’Connell, PhD; Christopher J. O’Donnell, MD, MPH; Walter Palmas, MD, MS;

Brenda W. Penninx, PhD; Astrid Petersmann, MD, PhD; Ozren Polasek, MD, PhD; Bruce M. Psaty, MD, PhD; Barbara Rantner, MD, PhD; Ken Rice, PhD;
Fernando Rivadeneira, MD, PhD; Jerome 1. Rotter, MD; Adrie Seldenrijk, PhD; Marietta Stadler, MD; Monika Summerer, PhD; Toshiko Tanaka, PhD;
Anne Tybjaerg-Hansen, MD, DMSc; Andre G. Uitterlinden, PhD; Wiek H. van Gilst, PhD; Sita H. Vermeulen, PhD; Sarah H. Wild, MB, BChir, PhD;
Philipp S. Wild, MD; Johann Willeit, MD; Tanja Zeller, PhD; Tatijana Zemunik, MD, PhD; Lina Zgaga, MD, PhD; Themistocles L. Assimes, MD, PhD;
Stefan Blankenberg, MD; Eric Boerwinkle, PhD; Harry Campbell, MD; John P. Cooke, MD, PhD; Jacqueline de Graaf, MD, PhD; David Herrington, MD, MHS;
Sharon L.R. Kardia, PhD; Braxton D. Mitchell, PhD; Anna Murray, PhD; Thomas Miinzel, MD; Anne B. Newman, MD, MPH; Ben A. Oostra, PhD;

Igor Rudan, MD, PhD, MPH; Alan R. Shuldiner, MD; Harold Snieder, PhD; Cornelia M. van Duijn, PhD; Uwe Volker, PhD; Alan F. Wright, PhD;
H.-Erich Wichmann, MD, PhD; James F. Wilson, DPhil; Jacqueline C.M. Witteman, PhD; Yongmei Liu, MD, PhD*; Caroline Hayward, PhD*;

Ingrid B. Borecki, PhD*; Andreas Ziegler, PhD*; Kari E. North, PhD*; L. Adrienne Cupples, PhD*; Florian Kronenberg, MD*

Background—Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify
genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a
meta-analysis of genome-wide association study data from 21 population-based cohorts.

Methods and Results—Continuous ABI and PAD (ABI =0.9) phenotypes adjusted for age and sex were examined.
Each study conducted genotyping and imputed data to the ~2.5 million single nucleotide polymorphisms (SNPs)
in HapMap. Linear and logistic regression models were used to test each SNP for association with ABI and PAD
using additive genetic models. Study-specific data were combined using fixed effects inverse variance weighted
meta-analyses. There were a total of 41 692 participants of European ancestry (=60% women, mean ABI 1.02 to
1.19), including 3409 participants with PAD and with genome-wide association study data available. In the
discovery meta-analysis, rs10757269 on chromosome 9 near CDKN2B had the strongest association with ABI
(B=-0.006, P=2.46X10""%). We sought replication of the 6 strongest SNP associations in 5 population-based
studies and 3 clinical samples (n=16717). The assoc1at10n for rs10757269 strengthened in the combined
discovery and replication analysis (P=2.65X10""). No other SNP associations for ABI or PAD achieved
genome-wide significance. However, 2 previously reported candidate genes for PAD and 1 SNP associated with
coronary artery disease were associated with ABI: DAB2IP (1513290547, P=3.6X10"°), CYBA (rs3794624,
P=6.3X10""), and rs1122608 (LDLR, P=0. 0026).

Conclusions—Genome-wide association studies in more than 40 000 individuals identified 1 genome wide significant
association on chromosome 9p21 with ABL. Two candidate genes for PAD and 1 SNP for coronary artery disease are
associated with ABI. (Circ Cardiovasc Genet. 2012;5:100-112.)
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Peripheral arterial disease (PAD) affects approximately 27
million people in Europe and North America,' and is
associated with increased risk for myocardial infarction, stroke,
and mortality.>-® Measurement of ankle and arm blood pressures
with a Doppler device and calculation of the ankle-brachial
index (ABI) is a simple and reliable method to detect PAD. An
ABI =0.90 is indicative of definite PAD.” In previous work, the
Ankle-Brachial Index Collaboration demonstrated a reverse
J-shaped relationship of ABI with mortality and coronary events,
with a low risk ABI ranging from 1.11 to 1.40.8

Clinical Perspective on p 112

Little is known about genetic susceptibility to PAD, but
familial aggregation and heritability estimates suggest a
significant genetic component.®~13 A study of 112 biological
candidate genes identified only 2 single nucleotide poly-
morphisms (SNPs) in NOS3 significantly associated with
ABI." The candidate gene approach to identify novel genetic
variants for PAD has been limited by modest study sample
size, relatively small number of genes examined, and lack of
replication in independent samples.'3

Genome-wide association studies (GWAS) have led suc-
cessfully to the discovery of novel genetic variants for several
common diseases, including coronary artery disease (CAD).'s
The association between genetic variants on chromosome
9p21 and CAD has demonstrated replication,'®!7 persistent
association across race or ethnicity,'® and association with
other vascular diseases.'”-2! Notably, GWAS of subclinical
atherosclerosis phenotypes, such as intima-medial thickness
or ABI, are sparse. Therefore, we conducted a meta-analysis
of GWAS findings for ABI within an international consor-
tium of 21 population-based cohort studies that included
41 692 participants of European ancestry, among whom 3409
participants had PAD (ABI =0.90). We conducted replica-
tion analyses of our strongest findings in over 16 000 indi-
viduals from population-based cohort studies and clinically
based samples of PAD. We hypothesized that this approach
would lead to the unbiased identification of genetic variants
associated with ABI. Further, we hypothesized that some
genetic variants for ABI would be identical to those reported
to be associated with CAD or its risk factors given shared
underlying biological pathways, while some genetic variants
would be associated uniquely with PAD.

Methods

Discovery Studies

Our analyses were conducted within the international Cohorts for
Heart and Aging Research in Genomic Epidemiology (CHARGE)
Consortium,?? and included 4 of the 5 original CHARGE cohorts:
Atherosclerosis Risk in Communities Study (ARIC, n=7630), the
Cardiovascular Health Study (CHS, n=3193), the Framingham
Heart Study (FHS, n=3572), and the Rotterdam Study (RS-I,
n=5169 and RS-II, n=1642). Ten additional population-based
cohorts joined the collaboration for analysis of ABI phenotypes: the
Family Heart Study (FamHS, n=1736), Genetic Epidemiology
Network of Arteriopathy Study (GENOA, n=991), Gutenberg Heart
Study (GHS, n=3122), Health, Aging, and Body Composition
(Health ABC, n=1564), the Invecchiare in Chianti Study (InCHIANTI,
n=1130), Cooperative Health Research in the Region of Augs-
burg (KORA F3, n=1581 and KORA F4, n=1407), Netherlands
Study of Anxiety and Depression (NESDA, n=1612), Nijmegen
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Biomedical Study (NBS, n=544), and the Study of Health in
Pomerania (SHIP, n=543). A further 6 studies derived from popu-
lation isolates also were available for the analyses: Amish Study
(Amish, n=1183), Croatia-Vis (n=897), Croatia-Korcula (n=851),
Croatia-Split (n=499), Erasmus Rucphen Family Study (ERF,
n=2133), and the Orkney Complex Disease Study (ORCADES,
n=693). For all studies participating in the meta-analyses, each
participant self-identified as European or European-American and
provided written informed consent, and the Institutional Review
Board at the parent institution for each respective cohort approved
the study protocols. More detailed study-specific information is
provided in the online-only Data Supplement Methods.

Ankle-Brachial Index Phenotypes
Ankle and brachial blood pressure measurements for each partici-
pating study were obtained from the baseline examination or the first
examination in which the measurement was obtained. Details on the
ABI protocol used and the calculation performed in each study are
provided in online-only Data Supplement Table I. To calculate the
ABI for each leg, the systolic blood pressure at each ankle was
divided by the systolic blood pressure in the arm. If the systolic
blood pressure was measured in both arms, the higher arm reading
was used in the ABI calculation. If replicate readings were obtained,
the mean of the 2 measurements for each limb was used to calculate
the ABI, with the exception of INCHIANTI, which used the higher
of the 2 readings of each measurement set to calculate the ABI. The
lower of the ABIs from the 2 legs was used for analysis. In ARIC and
FamHS, the ABI was measured in only 1 leg, chosen at random.
Participants with an ABI >1.40 were excluded because this high
ABI may represent medial sclerosis, fibrocalcific disease secondary
to diabetes mellitus, or other causes of noncompressible vessels.
To maximize the sample size and the power to detect genetic
variants with modest effects, and to examine the entire range of ABI
values given the recent evidence of increased cardiovascular disease
risk associated with ABI values up to 1.1, we examined the
continuous range of ABI <1.40. As a secondary analysis to provide
a clinical phenotype, we defined PAD as ABI =0.90 and conducted
a case (ABI =0.9)/control; ABI >0.90 and <1.40) comparison
analysis.

Genotyping and Imputation

Different genotyping platforms were used by the 21 studies (online-
only Data Supplement Table II). Each study imputed the genotype
“dosage” (0 to 2) for the expected number of alleles for ~2.5 million
Phase II HapMap CEU SNPs for each participant using currently
available imputation methods.?* CHS used BIMBAM (available at
http://stephenslab.uchicago.edu/software.html),>* GHS, InCHIANTI,
NESDA, and SHIP used IMPUTE,?5 and all other cohorts used
MACH (http://www.sph.umich.edu/csg/abecasis/MaCH/).

Statistical Analysis

We devised a GWAS analysis plan for the ABI and PAD phenotypes
that each study independently implemented. Sex-specific and age-
adjusted residuals of ABI were created from linear regression models
and used as phenotypes in the analysis. No transformation of the ABI
measure was performed before analysis. In FHS, residuals also were
obtained separately in the original and offspring cohorts. Multi-site
studies (ARIC, CHS, and FamHS) additionally adjusted for field
study site. Each SNP was tested for association with ABI in additive
genetic models using linear regression. The Amish Study, FamHS,
FHS, and GENOA cohorts used linear mixed effects models to
account for familial correlations. Croatia-Vis, Croatia-Korcula,
Croatia-Split, ERF, and ORCADES used the “mmscore” function of
the GenABEL package for R statistical software for the association
test under an additive model. This score test for a family-based
association takes into account pedigree structure and allows unbiased
estimations of SNP allelic effect when relatedness is present between
examinees. Logistic regression adjusting for age and sex was used to
test each SNP for association with the PAD phenotype. The FamHS,
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FHS, and GENOA cohorts used generalized estimating equations
clustering on family to account for family correlations.

A genome-wide meta-analysis using a fixed effects approach with
inverse variance weighting was then conducted in METAL?® [www.
sph.umich.edu/csg/abecasis/metal] for 2 669 158 SNPs in the meta-
analysis, excluding the population isolates (2 670 732 SNPs includ-
ing the population isolates) that met imputation and quality control
criteria (online-only Data Supplement Table II). Before meta-anal-
ysis, genomic control was applied to each study. The association of
ABI per each additional risk allele was quantified by the regression
slope (PB), its standard error [SE()], and the corresponding proba-
bility value. We calculated a meta-analysis odds ratio for each of the
most significant SNP associations for PAD. The meta-analysis odds
ratio estimates the increase in odds of PAD for each additional copy
of the risk allele of the SNP. SNP associations were considered to be
significant on a genome-wide level at P<<5X10%.27:28 Standardized
gene and SNP annotations were created using a PERL script.?® We
also tested for heterogeneity of study specific regression parameters
using Cochran Q statistic. Because of concerns about heterogeneity,
we conducted analyses of nonisolate studies and of the full group of
studies. We selected SNPs for replication using results from the
meta-analysis, excluding the population isolates, because the avail-
able replication samples did not include isolates. We excluded SNP
association results if the total meta-analysis sample was less than
20 000 and if the average minor allele frequency of the SNP was
<5%.

Replication

We sought to replicate independent SNP associations for ABI that
attained genome-wide significance (1 region), SNPs with suggestive
associations (5 regions, P<10"%), and bioinformatics data support-
ing the signal. The bioinformatic analyses are described in detail in
the online-only Data Supplement Material. In addition, we sought to
replicate 1 SNP associated with both ABI and PAD at P<10~*. The
replication studies included 5 population-based studies and 3
clinically-based studies, including a total of over 16 000 participants:
the Bruneck Study (n=786), the Copenhagen City Heart Study
(CCHS, n=5330), the Multi-Ethnic Study of Atherosclerosis
(MESA, n=2611), the National Health and Nutrition Examination
Surveys (NHANES 1999-2002, n=2335), Prevention of Renal and
Vascular End-stage disease (PREVEND, n=3691) cohort, Cardio-
vascular Disease in Intermittent Claudication (CAVASIC, n=443)
Study, Genetic Determinants of Peripheral Arterial Disease (Gene-
PAD, n=850), and the Linz Peripheral Arterial Disease (LIPAD,
n=671) Study. Each collaborating study was provided with a SNP
list and a detailed analysis plan. MESA and PREVEND used in silico
genotyping (online-only Data Supplement Table II), and the remain-
ing studies genotyped the SNPs using Tagman assays or Sequenom.
Relative excess heterozygosity analysis demonstrated that all geno-
typed SNPs were compatible with Hardy-Weinberg equilibrium at
the nominal 5% test-level (online-only Data Supplement Table III).3°

Examination of Candidate Genes Associated With
Peripheral Artery Disease and Coronary Artery
Disease/Myocardial Infarction

We selected candidate genes for ABI or PAD from the published
literature using PubMed search terms “([ankle-brachial index] OR
[peripheral arterial disease]) AND polymorphism.” Association stud-
ies with at least 100 cases and 100 controls were included regardless
of whether the original study results were positive or negative. Using
the discovery meta-analysis results for ABI, we then identified the
most strongly associated SNPs based on probability values within
the gene region *100 kb upstream or downstream of the candidate
gene. Because of the high correlation of imputed genotypes, the
effective number of loci were calculated for each gene region?! using
the genotype scores from the KORA F4 Study (online-only Data
Supplement Methods). Bonferroni correction of probability values
then was applied in each region using the effective number of loci.
Subsequently, false discovery rates (FDR) were calculated using
these corrected probability values, accounting for the number of gene

regions examined (online-only Data Supplement Methods). Lastly,
we examined the association with ABI of 30 SNPs strongly associ-
ated with CAD in recent GWAS.32-34 Our ABI discovery meta-anal-
ysis did not include 2 of the 30 SNPs (rs17465637 and rs3798220),
and we were unable to identify proxy SNPs available in our data.
Using the probability values for the 28 SNPs in our discovery
meta-analysis, we then calculated the FDR for each CAD SNP,
accounting for the 28 regions examined.

Results

Study Sample

The study sample included 41 692 participants of European
ancestry (56% women, 6256 from population isolates) with
ABI data and genome-wide genotyping. Participant char-
acteristics at the time of ABI measurement for each cohort
are provided in online-only Data Supplement Table IV.
Across the studies the mean age ranged from 41.8 years to
73.8 years, the mean ABI ranged from 1.02 to 1.19, and
8.2% (n=3409) had PAD (ABI <0.9). Characteristics of
the replication samples were similar to the discovery set
(online-only Data Supplement Table V).

ABI-SNP Associations

We conducted a meta-analysis with (n=41 692) and without
(n=35 434) the population isolates (online-only Data Supple-
ment Figures I and II, QQ-plots and Manhattan plots, and
study-specific lambdas ranged from 0.997 to 1.044). Our
primary meta-analysis excluded studies from population iso-
lates because of concern for study heterogeneity and the lack
of availability of replication samples from isolates. The
strongest SNP association for ABI was rs10757269 on
chromosome 9 near CDKN2B (f=—0.006, P=2.46X10"% P
for heterogeneity=0.23, Table 1; meta-analysis results, in-
cluding the population isolates, online-only Data Supplement
Table VII). Among the 96 SNP associations for ABI with
P<<10"3, 79 were located in the chromosome 9p21 region
(online-only Data Supplement Table VI). The ABI SNP
rs10757269 is in strong linkage disequilibrium (LD), with
several SNPs in the region previously reported to be associ-
ated with CAD or myocardial infarction (r>>0.8), but this
ABI SNP is not in LD with SNPs previously associated with
the type 2 diabetes mellitus (Figure 1). We repeated the
meta-analysis to examine the association between ABI and
rs10757269, first adjusting for CAD and then excluding
individuals with CAD among the nonisolate studies. The
association remained but was no longer genome-wide signif-
icant (adjusting for CAD: P=5.56X10"°; excluding CAD:
P=3.79x10"7). Next, we sought to replicate the association
between rs10757269 and ABI in both population-based and
clinically-based samples (n=16 717). The magnitude and
direction of the association in the replication studies was
similar to the discovery set (3=—0.0035, P=0.0176), pro-
viding evidence of replication. In the combined stage 2
discovery plus replication meta-analysis, the ABI-
rs10757269 association became stronger (P=2.65X107°).
The study-specific estimates of effect for the discovery
studies, population isolates, replication studies, and overall
discovery plus replication meta-analyses are presented in
Figure 2. Two studies among the population isolates (the
Amish Study and Croatia-Split) had effect estimates in the
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Table 1. Meta-Analysis Results: ABI-SNP Associations with P<10~% in the Primary Discovery Analysis With Population Isolates Excluded
Physical Closest Risk/Non- Risk Allele
SNP Chr Position Gene Risk Allele Frequency Meta-Analysis N Beta SE P Value Pret
rs10757269 9 22062264 CDKNZ2B G/A 0.49 ABI discovery 35036 —0.0056 0.001 2.46E-08 0.23
ABI replication 16 672 —0.0035 0.0015 1.76E-02 0.67
ABI combined 51708 —0.0049 0.0008 2.65E-09 0.38
PADt discovery 34 555 0.0849 0.0296 4.15E-03 0.32
rs4659996 1 238912747 GREMZ2 AG 0.48 ABI discovery 28 087 —0.006 0.0012 4.44€E-07 0.34
ABI replication 16 658 —0.0018 0.0016 2.67E-01 0.65
ABI combined 44745 —0.0045 0.001 2.12E-06 0.32
PAD discovery 27 574 0.0725 0.0319 2.31E-02 0.52
rs7003385 8 41705907 ANKTE T/C 0.67 ABI discovery 35375 —0.0053 0.0011 5.24E-07 0.49
ABI replication 16 690 —0.002 0.0016 2.20E-01 0.52
ABI combined 52 065 —0.0043 0.0009 1.11E-06 0.43
PAD discovery 34903 0.0838 0.0314 7.57E-03 0.24
rs819750 1 99469651 LPPR4% G/T 0.12 ABI discovery 35278 —0.007 0.0015 3.64E-06 0.51
ABI replication 16 660 0.0022 0.0023 3.22E-01 0.99
ABI combined 51938 —0.0041 0.0013 1.01E-03 0.31
PAD discovery 34780 0.1068 0.0437 1.45E-02 0.06
rs9485528 6 102221473 GRIK2% AG 0.17 ABI discovery 35339 —0.0061 0.0013 4.63E-06 0.78
ABI replication 16 679 0.0002 0.002 9.24E-01 0.63
ABI combined 52018 —0.0041 0.0011 1.77E-04 0.48
PAD discovery 34 850 0.1172 0.0380 2.02E-03 0.80
rs722453 7 84037497 SEMA3A G/A 0.42 ABI discovery 26 200 —0.0054 0.0012 6.43E-06 0.69
ABI replication 6300 —0.0046 0.0025 5.74E-02 0.08
ABI combined 32 500 —0.0052 0.0011 1.02E-06 0.59
PAD discovery 25706 0.0575 0.0318 7.05E-02 0.63
rs16824978 2 211380306 CPS1 T/C 0.25 ABI discovery 34 950 —0.0054 0.0012 7.77E-06 0.37
ABI replication 14 340 0.0000 0.0019 9.94E-01 0.22
ABI combined 49 290 —0.0039 0.001 1.48E-04 0.11
PAD discovery 34518 0.0760 0.0343 2.65E-02 0.39

Pret indicates P value for heterogeneity; +, SNP is located within the gene; rs819750 is within 60kb of the gene; 1, PAD discovery: ABlI <0.9 vs ABI >0.9.

Chr indicates chromosome.

opposite direction to the other studies. None of the other SNP
associations for ABI achieved genome-wide significance.
The significance of the associations for the additional SNPs
chosen for replication diminished in the discovery plus
replication meta-analysis (Table 1, online-only Data Supple-
ment Table VII).

PAD-SNP Associations

None of the SNP associations for the PAD phenotype
(defined by an ABI =0.9) achieved genome-wide signifi-
cance (Table 2; for meta-analysis results including population
isolates see online-only Data Supplement Table VIII). The
strongest association was found for rs6584389 on chromo-
some 10 near the PAX2 gene (odds ratio 1.17, 95% confi-
dence interval 1.10, 1.25, P:2.34X10_6). Of note, the
chromosome 9 SNP rs10757269 association with PAD was in
a direction consistent with the ABI association but did not
achieve statistical significance (Table 1, [B=0.0849,
P=0.004, increasing the odds of PAD).

Overlap in SNP Associations for ABI and PAD
While the directions of effect for the ABI SNPs in Table 1
were consistent with the PAD association result (lower ABI,
increased odds of PAD), there was little overlap in the top
associations for the 2 phenotypes. Only 3 regions marked by
SNPs in or near IDE (10q23—q25), DAB21P (9q33.2), and
GRAMDIC (3q13.31), in addition to the chromosome 9p21
region, showed association with both ABI and PAD at the
P<10"*level (online-only Data Supplement Table IX). SNP
rs7100623 in IDE demonstrated the strongest novel associa-
tion with both ABI (8=—0.005, P=1.89X10">) and PAD
(B=0.139, P=8.39x10%) at P<<10~*; however, the associ-
ation probability value was not significant in the replication
stage, and diminished in the combined discovery plus repli-
cation meta-analysis.

Examination of PAD Candidate Genes

Among the 55 candidate genes or regions previously tested
for association with ABI or PAD, 8 regions showed nomi-
nally significant probability values (P<<0.05) after correction
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Figure 1. Genomic context of the genome-wide significant signal at chromosome 9p21 plotted against the —log,, P values. r? is
between the top signal (rs10757269) and each SNP is shown. SNPs previously reported from genome-wide association studies (GWAS)
to be associated with coronary artery disease (CHD, arrows), type 2 diabetes (T2DM, arrows), and P value for association with ankle-
brachial index are shown. Chromosome positions are based on build hg18.

for the number of effective loci for each gene region. After
accounting for the number of regions examined using a false
discovery rate (FDR <0.10), we found evidence of associa-
tion between ABI and CYBA (rs3794624, uncorrected
P=6.3X107°, corrected P=0.0036, FDR=0.0665) and
DAB2IP (rs13290547, uncorrected P=3.6X107°, corrected
P=0.0035, FDR=0.0665), in addition to the chromosome
9p21 locus (rs1333049) reported to be associated with ABI
(Table 3).35 We found no evidence of association between
ABI and any of the other candidate genes previously tested
for association with ABI or PAD (online-only Data Supple-
ment Table X).

Examination of Coronary Artery Disease/
Myocardial Infarction Candidate Genes

Among the 30 SNPs previously reported by GWAS to be
associated with CAD or myocardial infarction, 28 SNPs were
available in our discovery meta-analysis of ABIL, and 2 of
these SNPs demonstrated an association (FDR <0.10) with
ABI, including rs4977574 near CDKN2B (P=2.33X10"°)
and rs1122608 in LDLR (P=0.0026) (Table 3, online-only
Data Supplement Table XI).

Discussion
Our GWAS meta-analysis for ABI conducted in more than
40 000 adults of European ancestry has several notable
findings. First, we identified and replicated 1 genome-wide
significant association between a SNP in the chromosome
9p21 region and ABI. No other ABI-SNP associations
achieved genome-wide significance. Second, in our discovery

sample, over 3000 adults had PAD (ABI =0.9); however,
none of the SNP associations were significant. Third, the
directions of effect were consistent across the 2 pheno-
types for the most significant ABI SNPs (lower ABI,
increased odds of PAD): however, we observed minimal
overlap in the top SNP associations for ABI and PAD.
Finally, the effect size for the 9p21 SNP was modest. The
association itself is, however, intriguing, and may provide
insights into the biological mechanisms contributing to
generalized atherosclerosis.

Chromosome 9p21 Locus and

Atherosclerosis Susceptibility

Common genetic variants in the 9p21 locus are associated
strongly with myocardial infarction and CAD,!7-33-3¢ and
confer risk for other atherosclerotic diseases including
stroke,!® cerebral and abdominal aortic aneurysm,?°2! and
clinically diagnosed PAD; however, the relation with PAD
was diminished when coronary artery disease cases were
excluded.?® SNP associations at the 9p21 locus with subclin-
ical measures of atherosclerosis have been conflicting. Ini-
tially, no association was observed with carotid intima-medial
thickness or flow mediated dilation in young or older
adults;37-38 however, more recent reports demonstrate an
association with the development and progression of carotid
atherosclerosis®® and with the suggestion of a stronger effect
in men.*® To further investigate the ABI-9p21 SNP associa-
tion noted in this study, we conducted the meta-analysis after
adjusting for CAD and after exclusion of individuals with
CAD. Not surprisingly, the association persisted but was no
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Genome-Wide Meta-Analysis of Ankle-Brachial Index

Stage Cohort Sample Size Beta P-value
Discovery
ARIC 7630 -0.0018 L 3
CHS 3193 -0.0069 —0—
FamHS 1736 -0.0067 —_—a—
FHS 3549 -0.0049 —
GENOA 991 -0.0095 —_—
GHS 2762 -0.0033 —a
Health ABC 1564 -0.0155 —
INCHIANTI 1130 -0.0160 —_—
KORA F3 1581 -0.0040 —e
KORA F4 1407 -0.0100 —e
NESDA 1612 -0.0036 —
NBS 527 0.0015 —
RS- 5169 -0.0062 ——
RS-l 1642 -0.0145 —
SHIP 543 -0.0110
Discovery Meta-Result - No Isolates 35036 -0.0056 2.50E-08 ‘
Heterogeneity P-value 0.2294
Isolates
Amish 1183 0.0112 —
Croatia-Vis 897 -0.0050 —
ERF 2133 -0.0102 —
Croatia-Korcula 851 -0.0025 —
ORCADES 693 -0.0061 —_—
Croatia-Split 499 0.0113 —
Discovery Meta-Result - With Isolates 41292 -0.0048 1.20E-07 0
Heterogeneity P-value 0.0103
Replication
CAVASIC Case 131 0.0196
CAVASIC Control 302 -0.0009
LIPAD Case 272 0.0250
LIPAD Control 384 -0.0038 —_—
GenePAD 833 -0.0057
Bruneck 783 0.0012 —_—
CCHS 5330 -0.0049 —
MESA 2611 0.0005 ——
NHANES 2335 -0.0052 ——
PREVEND 3691 -0.0072 ——
Replication Meta-Result 16672 -0.0035 1.80E-02 ‘
Heterogeneity P-value 0.6725
OVERALL META-RESULTS - NO ISOLATES 51708 -0.0049 2.70E-09 0
Heterogeneity P-value 0.3795
OVERALL META-RESULT - WITH ISOLATES 57964 -0.0045 8.80E-09 Q
Heterogeneity P-value 0.0415
—0‘04 —0102 (I) 0 :)2 0,:!4 0.:)6 0.:)8

Beta (95% Cl)

105

Figure 2. Ankle-brachial index-chromosome 9p21 (rs10757269) association: study-specific estimates of effect for the discovery studies,
population isolates, replication studies, and overall discovery and replication meta-analyses.

longer genome-wide significant. Both CAD and PAD are
manifestations of underlying atherosclerosis, and nearly two
thirds of individuals with PAD have coexisting coronary or
cerebrovascular disease.*! One previous report conducted in 3
studies of older adults identified an association between a
variant at 9p21 and lower ABI, as well as an increased risk for
PAD.3> The primary effect of the chromosome 9p21 region
may be on the atherosclerotic process itself, and there are
likely to be many other factors, both genetic and environmen-
tal, that determine whether it manifests as CAD, PAD, or

another clinical atherosclerotic phenotype. The primary bio-
logical mechanism underlying the association with ABI is
unknown but appears to be independent of 2 major PAD risk
factors, diabetes and smoking, as the ABI SNP in the 9p21
region we identified is not in linkage disequilibrium with the
SNPs in the region associated with diabetes risk*>43 or
smoking-related behaviors.** The mechanism may be related
to modulation of platelet reactivity,*> atheroma formation,
plaque instability, thrombosis, or biological processes not yet
identified.#¢ The SNP associated with ABI is nearest to

Table 2. Meta-Analysis Results: SNP Associations for PAD (ABI <0.9 vs ABI >0.9) With P<10~° With Population Isolates Excluded
Physical Closest Risk/Non- Risk Allele 95% Confidence

SNP Chr Position Gene Risk Allele Frequency N OR Interval P Value Pret
rs6584389 10 102459392 PAX2 C/A 0.50 24 474 117 (1.10, 1.25) 2.34E-06 0.37
rs9998941 4 162544312 FSTL5* AG 0.23 34 670 1.18 (1.10,1.27) 2.34E-06 0.61
rs11751656 6 42751046 UBR2* G/A 0.07 27 470 1.61 (1.32,1.96) 2.46E-06 0.75
rs4535726 8 68938371 DEPDC2 T/C 0.20 34915 1.18 (1.10, 1.26) 3.79E-06 0.01
rs2090205 17 73897869 PGS1* A/C 0.24 34912 1.16 (1.09, 1.24) 5.01E-06 0.17
rs11933540 4 25729099 RBPJ CT 0.30 34830 1.15 (1.08, 1.23) 9.86E-06 0.08

Pt indicates P value for heterogeneity.
*SNP is located within the gene. Chr indicates chromosome.
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Table 3. Literature-Reported Candidate Genes for Peripheral Artery Disease and Coronary Artery Disease and Their Association
With Ankle-Brachial Index in the CHARGE GWAS Discovery Sample (Population Isolates Excluded) With FDR <0.10t
Risk/ # of False
Physical Closest  Non-Risk  Risk Allele effective P Value Discovery

SNP Chr Position Gene Allele Frequency N Beta SE P Value* locit Correctedt Ratet
PAD genes

rs10757269 9 22 062264  CDKN2B G/A 0.51 35036 —0.006 0.001  2.50E-08 69 1.70E-06 9.32E-05

rs3794624 16 87 244 575 CYBA G/A 0.34 31035 —0.005 0.001  6.30E-05 58 3.60E-03 0.0665

rs13290547 9 123527316  DABZIP T/C 0.06 32135 —0.009 0.002  3.60E-05 97 3.50E-03 0.0665
CAD genes

rs4977574 9 22088574  CDKNZB G/A 0.49 35411 —0.0047 0.001 2.33E-06 C. s 6.52E-05

rs1122608 19 11 024 601 LDLR G/T 0.74 35384 —0.0035 0.001 2.56E-03 . . 0.036

*P value from Discovery GWAS of ABI. Chr indicates chromosome.

tCandidate genes for PAD were selected for testing with ABI if an association study with at least 100 cases and 100 controls was available in the literature,
independent of whether the study was positive or negative. Genes for CAD were considered only for testing with ABI if they were identified by recent GWAS to be
genome-wide significantly associated with CAD. The table shows only the genes which showed an experiment-wise significant association with ABI after correction
for multiple testing. The entire list of genes can be seen in online-only Data Supplement Table X and XI for PAD and CAD genes, respectively.

FDue to the high correlation of imputed genotype scores, the effective number of loci was calculated for each PAD gene region (31) using the genotype scores
from the KORA F4 Study. Bonferroni correction of P values then was applied in each region using this number. Furthermore, the corrected P value thresholds of
significance for 28 CAD loci (tested in online-only Data Supplement Table X, «=0.05/28, 1.85x 10~ %) and 55 PAD loci (tested in online-only Data Supplement Table
X, a=0.05/effective number of loci) were calculated. We also calculated a false discovery rate (FDR) using the corrected P values accounting for the number of gene

regions examined. An FDR <0.10 defined evidence of a significant association.

CDKN2B, a well recognized tumor-suppressor gene that
encodes a cyclin-dependent kinase inhibitor and is involved
in regulation of the cell cycle. CDKN2B is abundantly
expressed in human atherosclerotic lesions,*” and animal
models suggest that altered CDKN2A/B expression results in
abnormal regulation of vascular cell proliferation.*® Func-
tional studies reveal a long noncoding RNA at this locus
named ANRIL, and a mouse model has confirmed the
essential role of ANRIL in regulation of CDKN2B expression
through a cis-acting mechanism.**->© ANRIL is implicated in
proliferation and senescence.

PAD Candidate Genes

We performed a literature search to identify all candidate
gene regions previously investigated for association with
PAD or ABI, irrespective of whether the association was
reported to be positive or negative. This approach revealed 2
further associated gene regions: DAB2IP and CYBA. DAB2IP
rs13290547 was not only associated with ABI, but also with
PAD (P=3.62X10"° and 2.2X10 >, respectively; online-
only Data Supplement Table X). The DAB2IP gene encodes
an inhibitor that is involved in the regulation of cell survival
and proliferation. One variant in the DABZ2IP gene
(rs70254486) recently has been detected in a GWAS of
abdominal aortic aneurysm.>! That study also detected an
association with PAD as a secondary end point in 3690 cases
versus 12271 controls (P=3.9x107°). The same SNP
showed an association with CVD within a meta-analysis of
case control studies.>> The CYBA gene is involved in NADPH
oxidase regulation, which contributes to oxidative stress and
plays a key role in the pathophysiology of coronary disease.
Only 1 report investigated a SNP (rs4673) in this gene for
association with PAD among 324 cases and 295 controls, but
did not find an association.>® Our study found an association
of 1s3794624 (*=0.5 with rs4673) with continuous ABI,
which may indicate that the earlier study likely lacked power

to find this association. None of the other gene regions had
sufficient evidence for association with continuous ABI in
our meta-analysis. Another very wide-reaching approach
designed to systematically examine a large number of genes
related to intermediate phenotypes of atherosclerosis, such as
blood pressure regulation, lipoprotein metabolism, inflamma-
tion, oxidative stress, vascular wall biology, obesity, and
diabetes, found only eNOS to be significantly associated with
ABIL.'* This gene could not be confirmed by our candidate
gene examination.

Coronary Candidate Genes

Besides the chromosome 9 locus, 1 other SNP reported to be
associated with coronary disease in recent GWAS also
showed an association with ABI in our study; rs1122608 in
LDLR. The LDLR gene plays an important role in cholesterol
homeostasis, and mutations at this gene have been shown to
influence LDL cholesterol levels and the subsequent risk for
coronary disease.>* The association of LDLR gene with ABI
in our study is a confirmation of the shared biological
pathways underlying both subclinical and clinically apparent
disease.

Strengths/Limitations

Our meta-analysis represents the largest collaborative effort
to date to identify genome-wide SNP associations for varia-
tion in ABI and PAD (ABI =0.90), and our findings suggest
the absence of common variants with large effects on ABI.
Use of ABI as our primary phenotype has major advantages
of detecting asymptomatic PAD, as the ABI is an objective
measurement, whereas clinical PAD requires subjective
symptoms of exertional leg discomfort and mobility of the
individual. However, several limitations of our meta-analysis
merit comment. The blood pressure measurement protocol
and ABI calculation was heterogeneous across participating
studies. While protocols were standardized within each study,
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the studies were not designed to be fully standardized and
comparable across studies (online-only Data Supplement
Table I). This phenotype heterogeneity may have impacted
our ability to detect associations. Furthermore, for many
studies, information about a previous revascularization inter-
vention was not available. This lack of data may have resulted
in the misclassification of some of the most affected persons
by placing them into an ABI range of unaffected individuals
and consequently reducing our power to detect true associa-
tions. Our sample was restricted to individuals of European
ancestry, and thus our findings cannot yet be generalized to
individuals of other race or ethnic groups. Furthermore, some
PAD susceptibility variants may be race or ethnic specific
and only can be uncovered through the study of non-
Europeans. For example, African-Americans have a higher
prevalence of PAD that cannot be attributed to traditional or
novel risk factors.>> This observation raises the hypothesis
that polymorphisms unique to African-Americans partially
may be responsible for the higher prevalence of PAD.5> We
did not evaluate gene by environment interactions, which
may be especially relevant for cigarette smoking, a strong risk
factor for PAD,3¢ and a factor known to interact with other
genes to modulate atherosclerosis.>”

Conclusions

In conclusion, a common variant near the CDKN2B gene in
the chromosome 9p21 locus is associated with a lower ABI.
PAD represents a diffuse form of atherosclerosis associated
with increased risk for death and incident CVD events. Thus,
the identification of genetic variants associated with ABI may
provide an important opportunity not only to unravel the
biological basis of PAD, but also to improve our understand-
ing of the causes of the variation in degree of atherosclerosis
from 1 arterial bed to another. Additional studies are war-
ranted to identify the causal variants in the 9p21 locus and to
characterize their functional significance. The search for
genes influencing predilection to PAD remains elusive, and
alternative approaches are warranted.
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CLINICAL PERSPECTIVE

Little is known about the genetic susceptibility to peripheral arterial disease (PAD). We conducted a meta-analysis of
genome-wide association study findings for the ankle-brachial index (ABI), a noninvasive measure of PAD, within an
international consortium of 21 population-based cohort studies that included over 40 000 participants of European descent,
and conducted replication analyses in over 16 000 individuals from population-based cohorts and clinically-based studies
of PAD. We identified and replicated 1 genome-wide significant association between a genetic variant in the chromosome
9p21 region and a lower ABI. Common genetic variants in the 9p21 locus are associated strongly with coronary artery
disease and confer risk for other atherosclerotic diseases. Therefore, the primary effect of the 9p21 region may be on the
atherosclerotic process itself, and there are likely many other factors, both genetic and environmental, that determine
whether it manifests as coronary disease, PAD, or another clinical atherosclerotic phenotype. The primary biological
mechanism underlying the association with ABI is unknown but appears independent of 2 major PAD risk factors, diabetes
and smoking, as the ABI single nucleotide polymorphisms (SNP) in the 9p21 region we identified is not in linkage
disequilibrium with the SNPs in the region associated with diabetes or smoking-related behaviors. PAD represents a diffuse
form of atherosclerosis associated with increased risk for death and incident CVD events. Identification of genetic variants
associated with ABI may provide an opportunity to unravel the biological basis of PAD.




