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[1] This paper compares two global inversions to estimate carbon monoxide (CO)
emissions for 2004. Either surface flask observations from the National Oceanic and
Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global
Monitoring Division (GMD) or CO total columns from the Measurement of Pollution
in the Troposphere (MOPITT) instrument are assimilated in a 4D-Var framework. Inferred
emission estimates from the two inversions are consistent over the Northern Hemisphere
(NH). For example, both inversions increase anthropogenic CO emissions over Europe
(from 46 to 94 Tg CO/yr) and Asia (from 222 to 420 Tg CO/yr). In the Southern Hemisphere
(SH), three important findings are reported. First, due to their different vertical sensitivity,
the stations-only inversion increases SH biomass burning emissions by 108 Tg CO/yr
more than the MOPITT-only inversion. Conversely, the MOPITT-only inversion results in
SH natural emissions (mainly CO from oxidation of NMVOCs) that are 185 Tg CO/yr
higher compared to the stations-only inversion. Second, MOPITT-only derived biomass
burning emissions are reduced with respect to the prior which is in contrast to previous
(inverse) modeling studies. Finally, MOPITT derived total emissions are significantly
higher for South America and Africa compared to the stations-only inversion. This is likely
due to a positive bias in the MOPITT V4 product. This bias is also apparent from validation
with surface stations and ground-truth FTIR columns. Our results show that a combined
inversion is promising in the NH. However, implementation of a satellite bias correction
scheme is essential to combine both observational data sets in the SH.
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1. Introduction

[2] Carbon monoxide (CO) is emitted to the atmosphere
by the process of incomplete combustion of fossil and bio-
fuels and biomass burning. CO is also produced in the
atmosphere by oxidation of methane and non-methane volatile
organic compounds (NMVOCs). Through its main removal

process, reaction with the radical OH, CO perturbs the oxi-
dation capacity of the atmosphere [Logan et al., 1981] and
in particular the methane lifetime. It is also a precursor of
tropospheric ozone in high NOx conditions, thus contrib-
uting to photochemical smog.
[3] The magnitude of CO sources reported in literature

shows a large range [e.g., Duncan et al., 2007]. The large
uncertainties are caused by several factors, for example
increasing emissions from fossil and biofuel combustion in
East-Asia for the Northern Hemisphere (NH) as well as
interannual variability of CO emissions in the Tropics and
boreal NH due to biomass burning [van der Werf et al., 2010].
Also, the amount of CO produced by the oxidation of
NMVOCs (mainly isoprene and monoterpenes) is uncertain.
[4] Inverse modeling can be used to optimize CO source

estimates. So far, inversion studies used either flask obser-
vations from surface stations [e.g., Bergamaschi et al., 2000;
Kasibhatla et al., 2002; Pétron et al., 2002; Pison et al., 2009;
Hooghiemstra et al., 2011], aircraft observations [Palmer
et al., 2003; Heald et al., 2004] or satellite observations
[e.g., Arellano et al., 2004; Pétron et al., 2004; Arellano et al.,
2006; Stavrakou and Müller, 2006; Chevallier et al., 2009;
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Jones et al., 2009; Kopacz et al., 2009, 2010; Fortems-
Cheiney et al., 2011]. Due to the different spatiotemporal
resolution, analytical precision and altitude sensitivity, these
different types of measurements potentially yield comple-
mentary information about CO in the atmosphere.
[5] Although Müller and Stavrakou [2005] used both sur-

face data and observations from Fourier-Transform Infrared
Spectrometers (FTIR), to our knowledge, at present no study
assimilated both surface and satellite observations jointly in
a four-dimensional variational (4D-Var) data assimilation
system for CO. For methane, Bergamaschi et al. [2007,
2009] and Meirink et al. [2008a] performed inversions using
both flask measurements from the National Oceanic and
Atmospheric Administration Earth System Research Labo-
ratory (NOAA/ESRL) Global Monitoring Division (GMD)
and total columns from the Scanning Imaging Absorption
Spectrometer for Atmospheric Cartography (SCIAMACHY)
instrument. They found that a bias correction scheme was
necessary to obtain good agreement of model simulations
with both data sets. Hence, before we can actually perform
inversions combining surface and satellite observations for
CO, it is important to analyze the consistency and possible
differences between inversions using either data set.
[6] Therefore, we present in this study two inversions for

the year 2004: The first inversion assimilates flask observa-
tions from the NOAA surface network. The second inversion
uses CO total columns from the Measurement of Pollution in
the Troposphere (MOPITT) instrument, version 4 (V4) to
constrain the emissions. Since the MOPITT V4 product
[Deeter et al., 2010] is modeled using lognormal probability
distributions, we will describe in detail how we assimilated
these observations in our 4D-Var system. According to
Deeter et al. [2010], the MOPITT V4 product is improved on
retrieval performance, i.e., more retrievals converge leading
to more observations, in particular in very clean and highly
polluted regions. This was confirmed by Fortems-Cheiney
et al. [2011], who compared a prior model simulation to
MOPITT V3 and MOPITT V4 columns and reported a mean
model data bias reduction of 80% for V4 compared to V3.
However, the long-term bias drift present in V3 has not been
solved and is still present in the V4 product [Deeter et al.,
2010]. Fortems-Cheiney et al. [2011] reported the first CO
inversion results in a variational data assimilation using
MOPITT V4 data and the posterior simulation was shown to
improve the agreement with independent NOAA surface
flasks in the NH and the Tropics. However, the agreement
deteriorated significantly in the SH, where posterior modeled
CO mixing ratios are much higher compared to the NOAA
stations in the remote SH. In the current framework we will
explicitly test the consistency in optimized emissions using
either NOAA surface flask observations or MOPITT total
columns. This is another step in evaluating the effect of the
assimilated observations on the inferred emission estimates.
To test the validity of our inferred emission estimates, we will
validate our results with independent (non-assimilated)
observations.
[7] With respect to our previous study [Hooghiemstra

et al., 2011], we have optimized CO from NMVOC oxida-
tion on the resolution of the underlying model. This approach
was first used by Stavrakou and Müller [2006] and more
recently in the studies of Pison et al. [2009] and Fortems-
Cheiney et al. [2011]. Jiang et al. [2011] recently showed

that aggregating the NMVOC-CO source to a global source
has large effects on the inferred emission estimates. Therefore,
it is interesting to compare our results to previous (inverse)
model studies, because some recent inversion studies [Jones
et al., 2009; Kopacz et al., 2010] did not optimize the
NMVOC-CO source explicitly on the resolution of the
model, bearing the risk that deficiencies in the NMVOC-CO
priors used might be projected on either the biomass burning
or anthropogenic emissions. For example, Kopacz et al.
[2010] and Liu et al. [2010] found that (apart from under-
estimated fossil and biofuel combustion emissions in East
Asia) in particular biomass burning CO emissions seem to be
underestimated in the Global Fire Emissions Database
(GFED) v2.
[8] This paper is organized as follows: The 4D-Var system

is described in section 2, where we introduce the chemistry
transport model TM5 and the prior information used. Fur-
thermore, we describe the observational data sets that are
assimilated and those used for validation. In addition, tech-
nical details concerning the convergence of the method and
data rejection criteria are given. In section 3 the inferred
emissions of the two inversions are discussed and compared
in detail. Furthermore, our results are compared to recent
literature studies and validated with independent data. A
series of sensitivity studies is presented in section 4. Con-
clusions are presented in section 5.

2. Method

[9] The 4D-Var system used in this study is based on
the system described by Hooghiemstra et al. [2011]. In
short, 4D-Var inverse modeling optimizes a state vector x
(containing e.g. emissions) such that modeled CO mixing
ratios H(x) are close to a set of observations y weighted with
the observational error covariance matrix R, while staying
close to the prior state xb weighted with the prior error
covariance matrix B. Mathematically this means that

x̂ ¼ min argJ ;

J xð Þ ¼ 1

2
x� xbð Þ⊤B�1 x� xbð Þ

þ 1

2

XM
i¼1

yi � H xð Þi
� �⊤

R�1
i yi � H xð Þi
� �

; ð1Þ

where x̂ is the optimized state vector, i refers to the time
step, M is the number of time steps with observations and T
is the transpose operator. We use the iterative minimizer
CONGRAD [Fisher and Courtier, 1995] which is based on
the conjugate gradient method, [Hestenes and Stiefel, 1952]
and the Lanczos algorithm [Lanczos, 1950]. After N iterations
CONGRAD returns both x̂ and the N leading eigenpairs
(lj, nj), j = 1,., N of the Hessian of the cost function. These
eigenpairs are used to construct an approximation of the
posterior error covariance matrix corresponding to x̂ . We
applied a stricter stopping criterion for the iterative minimi-
zation method with respect to our previous work. We now
require a gradient norm reduction (preduc) of 106 for con-
vergence (100 in work by Hooghiemstra et al. [2011]),
since calculations showed that for preduc values of 50, 200
and 1000, the annual posterior emission estimates may still
vary regionally. The sensitivity of the inferred emissions
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with respect to the chosen preduc value will be further
discussed in section 4. Generally, a preduc value of at least
1000 is required for convergence of the emissions in our
system. As outlined by Meirink et al. [2008b], the system
first optimizes large scale patterns to obtain a large cost
function reduction. In later iterations fine scale patterns are
optimized, which is accompanied by a convergence of the
posterior errors. Therefore we use a preduc factor of 106 for
our base inversions to obtain the best estimate of the pos-
terior error covariance matrix.

2.1. Chemistry Transport Model TM5

[10] The chemistry transport model TM5 is used to
simulate CO mixing ratios. TM5 [Krol et al., 2005] uses
meteorological fields from the European Centre for Medium-
Range Weather Forecasts (ECMWF). These fields drive
model transport on a 3-hourly basis (6-hourly for 3-D fields).
As in our previous study, we use the TM5-CO only version
[Hooghiemstra et al., 2011]. Hence, climatological OH
[Spivakovsky et al., 2000], scaled with a factor 0.92 (based
on methylchloroform simulations for the years 2000–2006
[Huijnen et al., 2010]), is used to keep the model linear.
All simulations are performed on a 6� � 4� grid resolution
with 25 vertical levels.

2.2. Prior Information and Error Structure (xb, B)

[11] The prior state vector xb consists of monthly mean CO
emissions for three categories. Anthropogenic (combustion of
fossil and biofuels) emissions are taken from the Emissions
Database for Global Atmospheric Research (EDGARv4.1,
compiled for the year 2004, European Commission and
Netherlands Environmental Assessment Agency, http://edgar.
jrc.ec.europa.eu/overview.php?v=41) and total to 462 Tg CO
in 2004. Biomass burning (vegetation fires) emissions from
the Global Fire Emissions Database (GFEDv3 [van der Werf
et al., 2010]) are used with a total of 334 Tg CO in 2004.
The natural source consists of direct emissions from plants
and the oceans amounting to 115 Tg CO/yr [Houweling
et al., 1998] and the contribution of NMVOC-CO. We add
NMVOC-CO to the natural source since the bulk of this
source consists of biogenic (isoprene and monoterpenes)
emissions. The NMVOC-CO source is based on monthly 3-D

CO production fields (the same as used by Hooghiemstra
et al. [2011], but following their posterior emission esti-
mates, scaled to an annual total of 400 Tg CO/yr) from a
full-chemistry run with the TM4 model [Myriokefalitakis
et al., 2008]. These fields are summed over the vertical
coordinate and combined with the direct emissions from
plants and the oceans to obtain a monthly 2-D emission field,
while archiving the corresponding vertical distribution. The
resulting 2-D field is added to the state vector and totals to
515 Tg CO/yr. In this way we effectively optimize a volume
CO source. A similar approach has been adopted in the
studies of Pison et al. [2009] and Fortems-Cheiney et al.
[2011]. However, in their model a separate formaldehyde
tracer was added whereas here we emit directly CO. More-
over, Fortems-Cheiney et al. [2011] optimized the full 3-D
chemical production field of formaldehyde. Here we have
chosen to assume the vertical distribution to be known a
priori and only optimize 2-D emission fields to reduce the
length of the state vector. In contrast to Hooghiemstra et al.
[2011] we do not optimize CO production from methane
oxidation. Instead we use optimized methane mixing ratio
fields from a 4D-Var inversion for methane [Bergamaschi
et al., 2009; S. Houweling et al., manuscript in preparation,
2012] that are consistent with the NOAA surface network.
The production of CO from methane (assuming a CO yield
of 1.0) accounts for 865 Tg CO/yr. Hooghiemstra et al.
[2011] used a constant tropospheric methane mixing ratio
of 1800 ppb resulting in 885 Tg CO/yr from methane oxida-
tion. The total prior emissions (including CO from methane
oxidation) amount to 2176 Tg CO in 2004. Although the
emissions presented here are optimized as 2-D fields, bio-
mass burning and natural emissions are distributed vertically
as shown in Figures 1a and 1d, respectively. As shown also
by Val Martin et al. [2009], biomass burning CO is mostly
released within the boundary layer, except when pyrogenic
clouds are triggered. In contrast, CO production from the
oxidation of methane and NMVOCs occurs at higher
altitudes.
[12] The prior error structure used in our inversions is kept

the same as in work by Hooghiemstra et al. [2011]: Grid-
scale monthly errors of 250% of the corresponding grid-scale
emissions are chosen for the natural source and the biomass

Figure 1. Zonally and yearly averaged (a, b, and c) biomass burning emissions and (d) NMVOC-CO
emissions. The biomass burning vertical distributions correspond to the base simulation (all emissions
released below 2 km, Figure 1a), the FVERT used in this study (Figure 1b) and the FVERT sensitivity
simulation by Hooghiemstra et al. [2011] (Figure 1c). NMVOC-CO (Figure 1d) is emitted higher up in
the troposphere.

HOOGHIEMSTRA ET AL.: CO INVERSIONS USING MOPITT OR NOAA DATA D06309D06309

3 of 23



burning source. For the anthropogenic source the grid-scale
error is set to 50% for the Western developed world (North
America, Europe and Australia) and to 250% for the rest of
the world. Note that these large prior errors implicitly allow
for the possibility of negative emissions. This could be
avoided by employing a ‘semi-exponential’ description of
the emission distribution as is done recently for methane
inversions [Bergamaschi et al., 2009, 2010]. However, this
would lead to a non-quadratic cost function for which the
conjugate gradient method is not suited anymore. This will
be discussed in more detail in section 2.3.2. We assign spatial
and temporal error correlations to reduce the effective num-
ber of variables to be optimized by the inversion. A Gaussian
spatial correlation length of 1000 km is used for all emission
categories. This is in particular important for the stations-
only inversion in which the number of observations is much
smaller compared to the number of state vector elements. For
a fair comparison, this correlation length was kept 1000 km
in the MOPITT-only inversion. An e-folding temporal corre-
lation length of 9.5 months (0.9 month-to-month correlation
coefficient) is set for the anthropogenic and natural emissions.
For biomass burning emissions an e-folding temporal corre-
lation length of 0.62 months (0.2 month-to-month correlation
coefficient) is used.

2.3. Observations Assimilated in 4D-Var (y, R)

[13] In this section we describe the observations that are
assimilated in the 4D-Var system. For both NOAA surface
flask observations and MOPITT total columns, the observa-
tions used are described as well as the assigned uncertainty
and the contribution of an observation to the cost function
(equation (1)).
2.3.1. NOAA Surface Flask Observations
[14] Currently the NOAA ESRL surface network consists

of over 50 surface stations worldwide at which CO mixing
ratios are measured weekly with very high analytical preci-
sion by using flask samples [Novelli et al., 2003]. However,
model simulations on a coarse grid are difficult to compare
one-to-one with these flask observations, specifically due to
model representativeness errors. For example, in the model
the emissions are given per grid box and time step and are
instantaneously mixed over the grid volume. In reality, the
subgrid-scale variability of the emissions leads to a hetero-
geneous distribution of CO mixing ratios in that box. Hence,
a station located downwind of an emission, would observe
higher CO mixing ratios compared to the model. Further-
more, strong gradients in CO mixing ratios due to passing
pollution plumes are much sharper in reality than the model
can represent.
[15] For these reasons, inverse modeling studies deweight

or reject some stations before assimilation to prevent biased
results. For example, in CarbonTracker Europe (optimization
of CO2 fluxes using Kalman filtering [Peters et al., 2010])
2 stations are explicitly not assimilated and stations in strong
emissions regions are assigned large fixed errors (of 7.5 ppm
CO2). Bergamaschi et al. [2010] (4D-Var optimization of
methane fluxes) give an advanced description of the model
representativeness error in TM5. The total observational
error sobs is the sum of a measurement error and the model
representativeness error, consisting of errors due to local
emissions, modeled 3-D gradients and variations in time. It
was shown that the observational errors calculated in this

way vary largely from station to station and can vary in time
for a certain station throughout the year.
[16] In this study we first apply a quantitative criterion to

select the stations that we assimilate in the system and then
apply the scheme to estimate the overall observational error
of Bergamaschi et al. [2010]. The criterion is based on a
model simulation with prior sources for the year 2004. The
idea is that stations with a large diurnal cycle, most likely due
to nearby sources in the model, are excluded whereas back-
ground stations and stations influenced by seasonal emis-
sions from for example biomass burning, are maintained.
With a model time step of 45 minutes, the model samples
each station 32 times per day. From these modeled CO
mixing ratio series we compute a daily standard deviation
and use the mean daily standard deviation over the whole
year as a measure of the diurnal variation. If this measure
exceeds a certain threshold (set to 3.5 ppb in this study), the
station is not assimilated in the 4D-Var system. As an illus-
tration, the modeled simulation and the mean daily standard
deviation for three stations are presented in Figure 2. For
comparison also the standard deviation of the complete
model time series (annual standard deviation) is given. For
station Sede Boker (Figure 2, top), the mean daily standard
deviation amounts to 8.7 ppb and the station is not assimi-
lated. In contrast, although station Barrow, Alaska (Figure 2,
middle) has an annual standard deviation of 23.5 ppb, the
mean daily standard deviation is only 2 ppb. This station is
maintained in the assimilation because the model is expected
to reproduce the seasonal cycle more accurately than the
diurnal cycle. For comparison, station South Pole, Antarctica
shows only a very small spread throughout the year (6.9 ppb)
and no daily spread as there are no sources of CO nearby. We
acknowledge that since the criterion is based on a model
simulation, the choice of stations to be assimilated depends
strongly on the emissions used in this simulation. Here we
used the prior emissions as described in section 2.2 and we
believe that we assimilate mainly stations for which the
coarse model can reproduce the observations. The location of
the 34 stations maintained in the assimilation are shown in
Figure 3.
[17] With respect to our previous study, the measurement

error has been increased to 3 ppb, because Hooghiemstra
et al. [2011] found that a measurement error of 1.5 ppb was
too conservative in particular on the remote SH. This was
likely due to an underestimate of the model error in this
region as potential chemistry and transport errors were not
included in this error. As a consequence, a large fraction of
the observations was not assimilated in the second cycle (see
below). With the enhanced observational errors, the total
observational error ranges typically from 3–20 ppb. Close
to emission regions, the error can even become as large as
100 ppb. In the clean remote SH, the observation error is
dominated by the measurement component of 3 ppb. In
contrast, in the polluted NH, where most surface CO is
released, the model representativeness error is the dominant
error term (e.g., see the black bars representing the total
observational error in Figure 7).
[18] Each flask observation contributes to the observa-

tional part of the cost function. The costs for a mismatch are

defined as 1
2

ym�y
sobs

� �2
, where ym is the mean modeled CO

mixing ratio during a 3 hour period, y is the observed CO
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mixing ratio and sobs is the observation error. We assume
the errors to be uncorrelated leading to a diagonal observa-
tional error covariance matrix R.
[19] We perform the inversion using surface flask obser-

vations in 2 cycles following the approach of Bergamaschi
et al. [2005]. After the first inversion cycle, all observations
outside a 3s interval are not used in the second cycle
to avoid single outliers to bias the emission estimates.
In our previous work, the amount of rejected data points was
15–20% influencing the inferred emissions regionally from
cycle 1 to cycle 2. With the larger observation errors used
in this study, the number of rejected data points is reduced
to around 8% based on a preduc factor of 100 as used by
Hooghiemstra et al. [2011]. Moreover, for a preduc factor

of 106, this number further reduces to 4% since the model
fits the observations more accurately. As a result, the differ-
ence in inferred emissions from cycle 1 to cycle 2 becomes
much smaller. We acknowledge that a rejection of 4% is still
a large number given the Gaussian range of 3s that statisti-
cally should lead to a rejection of less than 1% of the data.
However, this 4% is mainly caused by a few stations that are
still difficult to fit, most likely due to transitions from pol-
luted to very clean air masses that the coarse model can not
resolve and is difficult to model as a representativeness error.
2.3.2. MOPITT V4 CO Total Columns
[20] The MOPITT instrument was launched in December

1999 on board NASA’s Terra satellite. Although a cooler
failure occurred at one side in May 2001, the instrument is

Figure 2. Modeled CO mixing ratio at three NOAA stations for 2004. Numbers between brackets repre-
sent the annual standard deviation (ppb) and the mean daily standard deviation (ppb), respectively. The
daily standard deviation is computed as the standard deviation of the model CO mixing ratios sampled
in each time step during one day. The mean daily standard deviation is the average of these daily standard
deviations over the whole year. The annual standard deviation is computed as the standard deviation of the
model CO mixing ratios sampled per time step during the year. Our station selection criterion rejects
stations with a mean daily standard deviation > 3.5 ppb.
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already supplying valuable CO observations for 11 years.
The MOPITT instrument measures upwelling radiances in a
thermal-infrared (TIR) spectral band near 4.7mm and in a
short-wave infrared (SWIR) spectral band near 2.3mm. An
optimal estimation technique is used to derive CO profiles
[Deeter et al., 2003]. A priori information is supplied since
the optimization problem is ill-conditioned. In this paper we
use MOPITT Version 4, Level 3 data [Deeter et al., 2010],
which are based exclusively on TIR observations. This data
comes as a daily product, gridded at a 1� � 1� resolution and
the a priori profile, retrieved profile and the corresponding
averaging kernel matrix are supplied. As for the extensively
validated MOPITT V3 [e.g., Emmons et al., 2009], we use
daytime observations between 65�S and 65�N only. Except
in regions of strong thermal contrast, theMOPITT TIR-based
V4 product is mainly sensitive to free tropospheric CO at
altitudes from 4–7 km and per profile on average less than
2 independent pieces of information are inferred. Since the
total column is generally retrieved more accurately than a
single level [Deeter et al., 2003], we only use the CO tro-
pospheric mean mixing ratio expressed in ppb. Figure 4
shows the differences in the CO tropospheric mean mixing
ratio between MOPITT V3 and V4 for the months of March
and September 2004. In general, MOPITT V4 is significantly
lower compared to MOPITT V3. On the NH, differences up
to 30 ppb are observed. In the SH, differences are smaller
(up to 20 ppb in September) but the relative differences are
as large as on the NH due to the North–south gradient in CO
mixing ratios.
[21] So far, inversion studies assimilating MOPITT

columns always used all MOPITT pixels over both ocean
and land surfaces. However, de Laat et al. [2010] and
Hooghiemstra et al. [2011] showed that MOPITT columns
over deserts are biased high. De Laat et al. [2010] compared
observed MOPITT V3 total columns in a latitude band over

the Sahara desert to model columns and SCIAMACHY
observed columns (taking into account the averaging kernels
for MOPITT and assuming the SCIAMACHY averaging
kernels to be unity [de Laat et al., 2010]). They found that
while all three were in good agreement over the Atlantic
ocean, a sharp increase in MOPITT observed CO total col-
umns at the land-ocean boundary was found, whereas the
model and SCIAMACHY data did not show such an increase.
Over the Sahara desert MOPITT total columns were on
average 25% higher than model and SCIAMACHY columns.
Moreover,Deeter et al. [2010] also showed that MOPITT V4
at 700 hPa was 10–30 ppb higher compared to the NOAA
station Assekrem, Algeria. Hooghiemstra et al. [2011] con-
ducted a global inversion for the year 2004 using NOAA
surface flasks and compared both the prior and the posterior
simulation with MOPITT V4 columns. They found differ-
ences over the Sahara desert of 15% between MOPITT and
the model simulation for both the prior and the posterior
simulations. Figure 5 shows the mean modeled and observed
total columns between 15–26�N for all longitudes and the
differences (in black on the right axis) with the columns
simulated using the prior emissions. MOPITT columns are
up to 20% (and 20 ppb) higher over the Sahara desert and the
Arabian Peninsula, located between longitudes �15� and
55�E. This discrepancy can not be explained by emissions
or by transport. Therefore, we decided not to assimilate
MOPITT land pixels in our 4D-Var system in this study.
One might expect an unbalanced or even biased system due
to this approach as the SH contains more ocean surface
compared to the NH and is thus heavier constrained by the
observations. However, a sensitivity study using all MOPITT
observations (including land pixels) showed only large dif-
ferences in inferred emission estimates for Africa (see
Figure 13). Moreover, this inversion was not able to reduce
the prior mismatch over the Sahara desert completely due to

Figure 3. Positions of the 34 stations assimilated in the stations-only inversion (black dots) and the
NOAA aircraft sites used for validation (red triangles).
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the lack of emissions in this region in the prior emission
inventory. Sensitivity studies will be discussed in detail in
section 4.
[22] The contribution to the observational part of the cost

function for a MOPITT observation is in principal calculated

in the same way as for the surface stations described above.

Thus, the costs are defined as 1
2

�
ym�y
sobs

�2
. ym and sobs are

detailed below. In contrast to the MOPITT V3 retrievals
resulting in CO profiles in volume mixing ratios (VMR), the

Figure 5. MOPITT observed (blue) and prior modeled (red) CO total columns for a latitude band from
15–26�N as a function of longitude. Differences (MOPITT-model) are given in black on the right axis.

Figure 4. Column-averaged CO mixing ratios from MOPITT products (left) V3 and (right) V4 for the
months (top) March and (bottom) September 2004.
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MOPITT V4 retrieved profiles are modeled as log(VMR)
values. The V4 averaging kernels describe the sensitivity of
retrieved log(VMR) to true atmospheric log(VMR) values.
According to the MOPITT V4 user guide [Deeter, 2009], an
in-situ or model profile should be transformed using the
averaging kernel and a priori profile, resulting in a pseudo
profile:

ln xps
� � ¼ ln xað Þ þ A ln xmð Þ � ln xað Þð Þ; ð2Þ

where xps is the resulting pseudo profile, xa is the MOPITT
V4 a priori profile, A is the MOPITT V4 averaging kernel
and xm is the modeled CO profile, interpolated to the MOPITT
pressure grid. The logarithms in equation (2) however, require
the arguments to be positive. Due to the large Gaussian prior
errors assigned to the emissions, negative emissions may arise
during the iterative 4D-Var process. These negative emissions
may occasionally lead to negative model profiles xmð Þ and
invalid logarithms in equation (2). Another disadvantage of
the formulation in equation (2) is that it leads to a non-linear
observation operator in the 4D-Var framework and prevents
us from using the conjugate gradient method. This method
has the important advantage that posterior emission uncer-
tainties can be easily computed [Meirink et al., 2008b].
Therefore, we have chosen to approximate the averaging
kernel to first order (derivation in Appendix A), resulting in
an averaging kernel Ã that can be used in the following way
to construct the pseudo profile:

xps ¼ xa þ Ã xm � xað Þ: ð3Þ

[23] From the pseudo profile xps , the scalar tropospheric-
mean mixing ratio ym is computed by

ym ¼ 1

psurf

XNlev

i¼1

xps
� �

i Dpð Þi; ð4Þ

where psurf is the surface pressure, Nlev is the number of
levels for the MOPITT profile (10 or less depending on
orography) and Dp is the vector of layer thicknesses in
pressure units. We analyzed the differences in modeled CO
columns using equation (3) compared to equation (2). The
global monthly mean differences are typically within 2%
(1 ppb). However, larger regional differences up to 10%
(15 ppb) may occur as shown in Figure 6. These differences
also vary over the year as the linearized approach leads to
higher model columns on the SH and the NH Tropics, but
slightly lower columns on the NH midlatitudes in March
2004 (Figure 6, top). For September 2004, higher model
columns are found over much of the NH. In the SH both
larger and smaller model columns are present when using the
linearized averaging kernel compared to the formulation of
equation (2). Hence, we note that this approach may intro-
duce a small bias and thus slightly biased emission estimates.
However, a sensitivity study in which we explicitly corrected
for the difference between application of equation (3) and
equation (2) by subtracting the difference from the model
columns in the prior simulation, led to optimized emissions
well within the error bounds of the base inversion for each
emission category (see Table 5).

[24] For multiple 1� � 1� MOPITT profiles in the same
6� � 4� model grid box (up to 24), we use the same model
profile xm to compute xps in equation (3) and ym in
equation (4). However, since every MOPITT retrieval has
its own prior and averaging kernel, the values of ym in the
same model grid box will differ. Due to the varying
orography in a grid box, the surface pressure defined on
the 6� � 4� grid may differ from the retrieved surface pressure
for theMOPITT observation that is given on 1� � 1�. To solve
this, a surface pressure filter adopted from Bergamaschi et al.
[2009] is used in which only observations are used with a
surface pressure that is within 25 hPa of the model surface
pressure.
[25] For the MOPITT observations we specify an obser-

vation error (sobs) for each (1� � 1�) observation. This error
consists of a model error smod and two types of measurement
error (sunc and svar) such that

sobs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
mod þ s2

unc þ s2
var

q
: ð5Þ

The svar is given in the MOPITT product and represents the
variability of all MOPITT profiles falling in the 1� � 1� box.
The model error smod is non-zero only if multiple MOPITT
observations fall in the same 6� � 4� model grid box and is
defined as the standard deviation of the modeled CO total
columns ym within that grid box. The dominant part of the
observation error is sunc which represents the uncertainty in
the MOPITT observation. The resulting sobs is approxi-
mately 10% per observation. As for the surface flask obser-
vations, we do not include correlations between observations
in the observation error covariance matrix. However, corre-
lations are present in both the observations (as roughly the
same air mass might be sampled more than once) and in the
modeled columns. So far, similar studies have ignored cor-
relations between observations by rebinning the observations
on larger spatial scales, e.g., the model resolution. Chevallier
[2007] performed an Observing System Simulation Experi-
ment (OSSE) for CO2 using simulated OCO measurements
binned to the 3� � 2� model resolution. They investigated
the effect of different treatments for the observations on the
inferred emissions. It turned out that the best results are
obtained by inflation of the observation errors as an approx-
imation to taking all correlations between observations into
account. More recently, Mukherjee et al. [2011] introduced
the statistical CAR model to take care of observation corre-
lations. The statistical model is described by a few para-
meters that are jointly optimized with the emissions in the
inversion. In addition, this approach was capable to fill in
missing observations. Although they showed this approach
to be appealing, it was only applied in a so-called big-region
approach [Stavrakou and Müller, 2006] in which the length
of the state vector remains small. However, Mukherjee et al.
[2011] state that this approach is scalable to larger state
vectors typically used in 4D-Var systems.
[26] Chevallier [2007] used an arbitrary error inflation

factor of 2 in combination with observations that were
binned to a 3� � 2� model resolution. Would Chevallier
[2007] have assimilated the observations on a 1� � 1� res-
olution, the number of observations would have roughly
scaled with a factor 6 and hence it is expected that the
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observational part of the cost function also increases by
a factor 6. Therefore, since we assimilate the MOPITT
columns on a 1� � 1� resolution, we should reduce the cost
function by inflation of the error by an additional factor offfiffiffi
6

p
. Therefore, we initially used an inflation factor of

ffiffiffiffiffi
24

p
,

but this led to unrealistic emission estimates as the observa-
tions were overfitted (possibly due to the grid-scale emission
error of 250%). We ultimately chose a rather large inflation
factor of

ffiffiffiffiffi
50

p
. With this choice we obtained an observational

cost function value for the MOPITT data set that was roughly
twice the size of the corresponding cost function for the
stations-only inversion. The rather large factor of

ffiffiffiffiffi
50

p
is

justified by the fact that there are unknown correlations
between the MOPITT observations. Moreover, in a future
joint assimilation one needs to balance the observational
costs of the individual data sets, otherwise the system may
fit mainly the satellite observations and the fit with the

stations might deteriorate significantly in the SH as repor-
ted in previous studies [e.g., Arellano et al., 2006; Kopacz
et al., 2010; Fortems-Cheiney et al., 2011].

2.4. Observations Used for Validation

[27] The assimilation of CO observations leads to emis-
sion changes with respect to the prior emissions. Model
simulations using the optimized emission estimates are
compared to independent observations for validation. If the
inversion yields a more realistic model state, the agreement
with non-assimilated observations should improve from the
prior to the posterior simulation. Below we describe the
observations used for validation in this study.
2.4.1. Aircraft Observations
[28] In addition to surface flasks, NOAA also samples

flask data using aircraft. These observations are mainly over
North America and below 8 km altitude. In this work we

Figure 6. Relative model column differences using the linearized averaging kernel equation (3) minus
model columns using the lognormal averaging kernels equation (2) for (top) March and (bottom) September
2004.
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compare modeled CO mixing ratios to flask measurements
at altitudes >2 km above the sites shown in Figure 3 as red
triangles.
[29] The MOZAIC (Measurement of OZone, water

vapour, carbon monoxide and nitrogen oxides by Airbus In-
service airCraft) program produces in-situ measurements of
CO during commercial flights [Nedelec et al., 2003]. These
flights are mainly over the NH from Europe to the US, Asia
and the Middle East. The SH is poorly covered by these
flights. We compare model CO with in-situ measurements at
altitudes >2 km to validate our results above the polluted
boundary layer. A large fraction of these data is sampled at
aircraft cruise altitude (10–12 km). Hence, in the mid and
high latitudes of the NH, these flights cross the stratosphere
in which the model chemistry and also the vertical transport
are less accurate. These measurements are therefore omitted
from the comparison.
2.4.2. FTIR Total Column Observations
[30] Several Fourier-Transform Infrared Spectrometer

(FTIR) stations worldwide measure total columns from the
ground. The data used in this paper is publicly available
from the Web site of the Network for the Detection of
Atmospheric Composition Change (NDACC:http://www.
ndsc.ncep.noaa.gov/). We compare our modeled CO on the
coarse model resolution (6� � 4�) to column data taking into
account the averaging kernels if available (and also present
the comparison without using the averaging kernels; see
Table 3). Due to the small footprint of the FTIR measure-
ments, the model will likely overestimate the observations in
mountain regions as the model surface pressure will be
larger and hence, the model column will be deeper compared

to the FTIR column. For a fair comparison, the partial model
column below the FTIR surface pressure is ignored.

3. Results and Discussion

3.1. Emission Increments and the Fit
to the Observations

[31] We start this section with a comparison between
simulated and observed CO mixing ratios for those obser-
vations that have been assimilated in the 4D-Var system. For
NOAA surface network observations, Figure 7 shows the
prior (yellow line) and posterior simulation for the station
inversion (blue line) at 6 stations as well as the flask obser-
vations (black dots with computed 1s observation errors).
The red line shows the posterior simulation using MOPITT
derived emissions and will be discussed in section 3.3. For
the NH stations (Figure 7, top), the prior simulation under-
estimates the observations whereas for the SH (Figure 7,
bottom), the prior simulation compares well with the NOAA
surface observations. For the MOPITT inversion, the com-
parison with MOPITT total columns is shown in Figure 8.
Three-monthly composites of the difference between the
model simulation and the observations are shown for the
prior simulation (Figure 8, left) and the posterior simulation
(Figure 8, middle). Reddish colors indicate a model under-
estimate and bluish colors indicate a model overestimate
compared to the MOPITT observations. The right most
column shows the comparison for the posterior simulation
using emissions derived from the stations-only inversion and
will be discussed in section 3.3. As for the NOAA stations,
the prior simulation (Figure 8, left) underestimates the

Figure 7. Prior and posterior simulation for 2004 sampled at 6 NOAA stations that were assimilated in
the 4D-Var inversion stations-only. The simulation in red used optimized emissions from the MOPITT-
only inversion. Black dots represent the NOAA flask observations. Error bars denote the total observation
error (including the model representativeness error). The comparison with additional stations is presented
in the auxiliary material.
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MOPITT observations in the NH. In contrast to the NOAA
stations, however, in the SH the prior simulation also
underestimates MOPITT total columns. This inconsistency
in the SH for the prior simulation compared to the observa-
tions will result in different optimized emissions. Below the
inferred emission estimates from the two inversions are
discussed.
[32] Figure 9 shows the prior (yellow) and posterior (blue

(NOAA) and red (MOPITT)) emissions for the three emis-
sion categories for the continents and the globe. The large
global increment in anthropogenic emissions is mainly
attributed to Asia and to a lesser extent to Europe and Africa.
Both inversions yield significantly higher emissions for Asia
than the new EDGARv4.1 inventory. Table 1 reports the
emissions including the uncertainties as calculated from the
posterior error covariance matrix. The anthropogenic source
in Asia is increased by 191 Tg CO/yr and 210 Tg CO/yr,
respectively for the stations-only and the MOPITT-only
inversion. In addition, the uncertainty reduction for both
inversions is large (65% and 70%) as the observations con-
strain the emissions in the region well and because the uncer-
tainty assigned to the prior emissions was large. However, the
spatial correlation lengths of 1000 km may lead to some
aggregation error and hence a slightly overestimated uncer-
tainty reduction [Meirink et al., 2008b]. The emission incre-
ment leads to an improved fit with the MOPITT observations
(Figure 8, middle). For Europe, optimized anthropogenic

emissions are nearly a factor 2 higher than the prior estimates,
indicating that EDGARv4.1 is also too low for Europe. The
50% uncertainty reduction for the stations-only inversion is
larger than for the MOPITT-only inversion (20%), likely due
to the three high-latitude European stations (Ocean Station M
(STM), Pallas, Finland (PAL) and Ny-Alesund, Spitsbergen
(ZEP)) that constrain the emissions well. This is further illus-
trated in Figure 10 showing the grid-scale annual uncertainty
reduction. Note that we only use MOPITT CO columns over
the oceans between 65�S and 65�N, which typically lead to
less uncertainty reduction for the NH continents. North
American emissions remain close to the prior estimates,
indicating that the inferred emissions are consistent with
EDGARv4.1. In general, the NOAA surface observations
and MOPITT total column observations result in comparable
emission estimates in the NH.
[33] When we compare the posterior emissions for the SH

continents, a first difference between the inversions in the
total emission increment is observed: The large prior model
underestimate compared to MOPITT total columns in the SH
(Figure 8) results in higher posterior emissions compared to
the stations-only inversion for South America (+60 Tg CO/yr)
and Africa (+50 Tg CO/yr). However, the opposite is true for
Oceania, where lower emissions are inferred (�55 Tg CO/yr)
when assimilating MOPITT compared to the assimilation
with NOAA stations. For the complete SH, the stations-only
and MOPITT-only inversion yield 568 and 683 Tg CO/yr,

Figure 9. Prior and posterior emission estimates for the three categories: (top) anthropogenic, (middle)
natural + NMVOC and (bottom) biomass burning. Prior emissions are in yellow, posterior emissions
assimilating NOAA surface network observations are in blue and posterior emissions assimilating
MOPITT total column observations are in red. Note that the emissions on the global scale correspond
to the axis on the left whereas the continental emissions correspond to the axis on the right. Error bars
show the 1�s uncertainty in the aggregated emissions, based on the approximated inverse Hessian.
See text for details.

HOOGHIEMSTRA ET AL.: CO INVERSIONS USING MOPITT OR NOAA DATA D06309D06309

12 of 23



respectively. Due to the 3-day global coverage of MOPITT,
the uncertainty reduction for the SH continental regions is
much larger compared to the stations-only inversion
(Figure 10). For example, African and South American bio-
mass burning emissions show an uncertainty reduction of 80
and 73% respectively for the MOPITT-only inversion. The
stations-only inversion results in an uncertainty reduction of
37 and 41% for those two regions, but this is likely due to the
large prior errors we assigned to the emissions. In general, the
MOPITT-only inversion constrains in particular the emis-
sions in the Tropics, whereas the surface stations constrain
the NH.
[34] Furthermore, a remarkable shift from the biomass

burning source to the natural source is observed (Table 1 and
Figure 9). For example, the stations-only inversion increases
GFED3.1 biomass burning emissions for South America
(+41 Tg CO/yr), Africa (+6 Tg CO/yr) and Oceania (+23 Tg
CO/yr), whereas the MOPITT-only inversion decreases
biomass burning emissions for these regions (�4 Tg CO/yr,
�17 Tg CO/yr and�19 Tg CO/yr for South America, Africa
and Oceania, respectively). However, the MOPITT-only
inversion increases the natural source (mainly CO from
NMVOC oxidation) significantly. For example, natural
emissions are roughly doubled over South America, Africa
and Oceania with respect to the prior, whereas the stations-
only inversion shows much smaller increments for this

source in these regions. The shift in emission increments
from the biomass burning source to the natural source can be
explained as follows: Due to the observations (from
MOPITT or the NOAA surface network), the emissions over
SH continents are required to increase. However, this
increment can be added to either of the three sources in a
certain region. For the stations-only inversion, since there
are almost no surface stations close to the source regions in
the SH, it is cheapest in terms of costs in the cost function to
increase the biomass burning emissions that stay much
closer to the surface compared to the natural emissions and
only take place in a specific part of the year (the dry season)
and over relative small areas (compared to the natural
emissions). These increased biomass burning emissions will
be partly diluted and partly chemically removed in the
atmosphere and thus only slightly enhance CO concentra-
tions at the stations. The MOPITT instrument is more sen-
sitive to the natural source than the biomass burning source,
as the NMVOC-CO in the natural source is released higher
up in the troposphere (see Figures 1a and 1d for the vertical
distributions of biomass burning and the natural source,
respectively). Also, since the natural emissions are specified
in the prior throughout the year and over larger geographical
areas compared to the biomass burning emissions, increas-
ing this source results in a reduction of the prior mismatch
between model and observations with minimal costs in the
background part of the cost function. Moreover, increasing
biomass burning as in the stations-only inversion does not
improve the agreement with MOPITT columns (Figure 8,
right) as the model overestimates CO in the Tropics (in
particular in Indonesia). We acknowledge that deficiencies
in the vertical distribution of the natural emissions, i.e., a too
high injection height may cause model data mismatches to
be projected on the natural emissions, specifically for the
MOPITT-only inversion.
[35] In conclusion, the difference in vertical sensitivity of

the two observational data sets (NOAA stations are mainly
sensitive to boundary layer CO, whereas MOPITT is mainly
sensitive to lofted CO), and the higher spatiotemporal reso-
lution of the MOPITT observations and thus better global
coverage leads to a shift in the partitioning of the emissions
into different source categories. Furthermore, inconsistencies
in the prior mismatch between model and observations
lead to different emission increments for the MOPITT-only
inversion compared to the stations-only inversion.
[36] It should be noted here that the inverse modeling

system can only optimize total CO emissions given a certain
mismatch between model and observations. Hence, separa-
tion of different sources is only possible if realistic spatial
and temporal information from prior inventories is supplied
to the inversion system. In the current inversions the system
has difficulties to separate the anthropogenic from the nat-
ural CO source. Aggregated to continental scales and an
annual time scale, the derived posterior correlation coeffi-
cient ranges from �0.62 for South America to �0.88 for
North America. The system is better capable to separate the
biomass burning source from the anthropogenic source due
to differences in the spatial patterns of the prior emissions.
The posterior correlations are less than �0.2. Although in
particular in the Tropics the spatial patterns of the biomass
burning and natural CO emissions overlap, the specific

Table 1. Prior and Posterior Emission Estimates per Emission
Category, Aggregated to Continental-Scale Regions for the Stations-
Only and the MOPITT-Only Inversions in Tg CO/yr

Region Prior

Posterior

Stations-Only MOPITT-Only

Anthropogenic
Nam 80 � 23 73 � 19 90 � 20
Europe 46 � 30 93 � 15 95 � 24
Asia 222 � 165 413 � 58 432 � 49
Sam 28 � 25 12 � 23 57 � 21
Africa 56 � 37 92 � 35 144 � 34
Oceania 27 � 26 36 � 19 �11 � 17
NH 401 � 175 681 � 66 714 � 61
SH 62 � 37 43 � 32 92 � 29
Globe 463 � 180 724 � 75 806 � 69

Natural + NMVOC
Nam 69 � 37 100 � 24 70 � 19
Europe 16 � 15 28 � 13 29 � 14
Asia 101 � 49 149 � 45 81 � 41
Sam 102 � 76 116 � 49 176 � 24
Africa 102 � 64 157 � 46 178 � 33
Oceania 62 � 37 74 � 19 108 � 20
NH 303 � 87 448 � 62 299 � 53
SH 212 � 82 256 � 51 434 � 29
Globe 515 � 128 704 � 78 733 � 60

Biomass Burning
Nam 33 � 39 35 � 9 42 � 9
Europe 1 � 1 1 � 1 2 � 1
Asia 38 � 39 26 � 20 36 � 14
Sam 64 � 56 105 � 33 60 � 15
Africa 145 � 82 151 � 52 128 � 16
Oceania 51 � 36 74 � 19 32 � 9
NH 144 � 71 126 � 42 148 � 21
SH 191 � 96 268 � 43 157 � 26
Globe 334 � 119 394 � 60 304 � 28
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timing of biomass burning in the dry season leads to poste-
rior error correlations on yearly time scales of around �0.3.

3.2. Comparison With Recent Studies

[37] Our emission estimates are compared with four recent
global inversions, all for the year 2004 (or parts of that year).
Jones et al. [2009] assimilated MOPITT V3 and TES (Tro-
pospheric Emission Spectrometer) observations separately
for November 2004 and we compare our results with their
MOPITT-based emissions. Kopacz et al. [2010] assimi-
lated observations from three satellite instruments (AIRS,
MOPITT V3 and SCIAMACHY). However, the number of
AIRS measurements used was three times higher compared
to the number of MOPITT observations and even 36 times
larger than the number of SCIAMACHY observations.
Fortems-Cheiney et al. [2011] used MOPITT V4 (as in the
current study) and Hooghiemstra et al. [2011] assimilated
NOAA surface flasks. All satellite derived emissions in the
literature studies used observations over land and ocean. The
comparison is difficult due to differences in the inversion

setup (e.g., definition of the state vector and error settings),
the definition of the aggregation regions, the observations
that have been assimilated, and the atmospheric chemistry
models used. In Table 2 we report the sum of the anthropo-
genic and biomass burning emissions. In addition, we give
the global source of CO due to oxidation of NMVOCs and
methane. Our North American (108 and 132 Tg CO/yr) and
European (94 and 97 Tg CO/yr) emission estimates (for the
stations-only and the MOPITT-only inversions, respectively)
are in the low end of the range reported in the studies in
Table 2. For Asia, our emission estimates are slightly lower
compared to the other studies. Also in the SH, our emission
estimates are somewhat lower compared to the other studies.
For example, our South American emission estimates are
117 Tg CO/yr compared to previous emission estimates
ranging from 141 to 184 Tg CO/yr. Similarly, for Africa,
where our emission estimates of 243 and 272 Tg CO/yr are
in particular lower compared to Kopacz et al.’s [2010]
emission estimate of 343 Tg CO/yr.

Figure 10. Uncertainty reduction for the (top) stations-only and (bottom) MOPITT-only inversions.
Uncertainty reduction is defined as 100% 1� sa

sb

� �
, where sa is the standard deviation of the posterior

emission (aggregated over some time window and or spatial region) and sb is the standard deviation
corresponding to the prior emissions. Here we show the uncertainty reduction for the total emissions
(anthropogenic + natural + biomass burning) on the grid-scale, aggregated over the whole year 2004.
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[38] The main reason for these differences is likely our
approach to (1) optimize the NMVOC-CO source on the
model resolution and (2) using a vertical distribution which
releases significant CO in the free troposphere. Some recent
studies [Jones et al., 2009; Kopacz et al., 2010] optimized
the CO production from oxidation of NMVOCs by a single
parameter. But for these studies, posterior production terms
for oxidation of methane and NMVOCs remained close to
the prior terms, possibly due to too tight error settings on
these sources. As a consequence of this approach, any prior
mismatch between the model and observations will be pro-
jected on either the biomass burning emissions or the anthro-
pogenic emissions. In our previous study [Hooghiemstra
et al., 2011] we also used monthly global scaling parameter
for NMVOC-CO and CH4-CO sources. The relatively large
differences in emissions estimates in the current study com-
pared to the results of Hooghiemstra et al. [2011] is
explained by (1) the aggregation of the NMVOC-CO source
in a single parameter and (2) the compensation mechanism
which is extensively described by Hooghiemstra et al.
[2011]. In short, since the observations mainly constrain
total emissions, an increase in one emission category may be
compensated for by a decrease in another emission category.
In the current setup, the natural emissions (see Table 1)
increase in both inversions for all regions. This results in
global natural emissions of 704 or 733 Tg CO/yr (for the
stations-only and the MOPITT-only inversion, respectively).
When we add the CH4-CO, our total oxidation source of CO
amounts to 1569 and 1598 Tg CO/yr (for the stations-only
and the MOPITT-only inversions, respectively). This is in
contrast with the study of Fortems-Cheiney et al. [2011], in
which the posterior CO production through oxidation of
formaldehyde was reduced compared to the prior (A. Fortems-
Cheiney, personal communication, 2011) and resulted in a
total oxidation source of CO of 1176 Tg CO/yr. The main
reason for this difference is likely our large prior grid-scale
error of 250%. However, this error choice is justified because
also the NMVOC-CO source strength is uncertain and more
constraints on this emission category seem needed. Joint
assimilation of formaldehyde and CO columns may lead to
more accurate emission estimates particularly in the Tropics.
Stavrakou et al. [2009] for example, used space-based
formaldehyde columns to infer isoprene emissions. Although
their inversion results were close to the prior emission

estimates on a global scale, large emission increments (up to
55%) were found regionally.
[39] If we compare biomass burning emissions only, our

optimized biomass burning emissions from the MOPITT-
only inversion are not in agreement with recent studies. For
example, Kopacz et al. [2010] and Liu et al. [2010] found
that the GFEDv2 biomass burning inventory was too low by
up to a factor 2. Here we started from the more recent
GFEDv3 [van der Werf et al., 2010] inventory that is even
lower than GFEDv2 by about 70 Tg CO/yr globally and
posterior biomass burning emission estimates are another
20 Tg CO/yr reduced (Table 1). Kopacz et al. [2010] inverted
CO emissions using 3 satellite instruments, including
MOPITT. They optimized the total CO surface emissions and
attributed large corrections to the total prior emissions in the
biomass burning season to deficiencies in the GFEDv2
product. However, Arellano et al. [2006] showed that both
the anthropogenic source and the biomass burning source
increased from the prior to the posterior estimate even during
the biomass burning season. This indicates that not all
increments in this period should be attributed to biomass
burning emissions only. Moreover, the posterior simulation
corresponding to the optimized emissions from the joint
inversion were not in agreement with MOPITT V3 columns.
This was shown to be caused by a not-corrected positive bias
in the AIRS observations on the SH (>10%) in combination
with the large weight of these observations. Liu et al. [2010]
performed forward model simulations with two sets of
meteorological data (GEOS-4 and GEOS-5) and compared
the simulations with TES and MLS data. They showed that
simulations with either bottom-up emission estimates or
bottom-up emissions scaled using parameters derived by
Kopacz et al. [2010] were not fully consistent with the
observations in the Tropics. They concluded that apart from
deficiencies in the emissions, meteorological fields and
model transport may dominate model-data mismatches.

3.3. Validation of Posterior Emission Estimates
With Independent Observations

[40] As a first validation step, we used so-called cross
validation of the inferred emissions to validate the two
inversions. In this context, cross validation means that the
posterior simulation using optimized emissions from either
inversion are compared to the other observational data set.

Table 2. Comparison of Our Derived Total Emissions (Sum of Anthropogenic and Biomass Burning Emissions) Using Either NOAA
Stations or MOPITT Observations With Recent Values From Literaturea

Region

This Study
Jones et al.
[2009]

Kopacz et al.
[2010]

Fortems-Cheiney et al.
[2011]

Hooghiemstra et al.
[2011]Stations MOPITT

Nam 108 � 21 132 � 22 146 71 199 166
Europe 94 � 15 97 � 24 111 95 137 92
Asia 439 � 56 468 � 48 531 660 506 597
Sam 117 � 37 117 � 24 141 183 184 156
Africa 243 � 62 272 � 38 304 343 283 338
Oceania 110 � 26 21 � 19 185 - 117 -
Subtotal 1118 � 88 1110 � 71 1417 1350 1441 1390

NMVOC-CO 704 � 78 733� 60 1344 1290 1176 410
CH4-CO 865 865 887
Total 2687 2708 2762 2642 2602 2646

aAll studies shown here performed an inversion for the year 2004 (or parts of that year). The global estimate of CO from oxidation of NMVOCs and
methane and the total CO production for 2004 are also given. For studies that only reported an oxidation source of CO (from methane and NMVOCs),
we report that number.
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[41] Cross validation of the MOPITT-only inversion with
the NOAA stations is shown in Figure 7 (red line). Generally
good agreement on NH stations is found and the fit with the
stations improves even though these observations are not
assimilated. In particular for Europe (represented here by
station Mace Head) the red line is really close to the poste-
rior simulation corresponding to the stations-only inversion
(blue line). For the high latitude NH (represented by station
Barrow, Alaska) the agreement with the observations is in
particular good in the first part of the year. Biomass burning
emissions from the MOPITT-only inversion are significantly
higher for this region (compared to the stations-only inver-
sion: 42 Tg CO/yr versus 35 Tg CO/yr) and modeled CO
mixing ratios are therefore higher than the observations in
summer. However, for the SH, the MOPITT-only simulation
largely overestimates the observed CO mixing ratios on the
SH stations (Mahe Island, Seychelles (+10 ppb), Cape Grim,
Tasmania (+20 ppb) and South Pole station (+20 ppb); see
Figure 7 (bottom)), indicating an overestimation of SH
emissions, probably due to some bias in the MOPITT
observations. The comparison for all assimilated stations is
available in the auxiliary material.1

[42] Figure 8 (right) shows the cross validation the other
way around. A clear improvement from prior to posterior
simulation (for the stations-only inversion) in all seasons is

observed on the NH, mainly due to increased anthropogenic
emissions over Asia and Europe. For the SH, the stations-
only simulation underestimates the MOPITT total columns
south of 30�S in all seasons by about 5–8 ppb and over-
estimates CO columns in particular in Indonesia (Figure 8,
right). From this validation it seems likely that MOPITT CO
total columns have some positive bias in the SH south of
30�S.
[43] A second validation is performed using aircraft data.

Figure 11 shows monthly mean differences (modeled minus
observed CO mixing ratio) for all NOAA aircraft flasks
above 2 km altitude. The posterior simulation improves the
comparison with NOAA aircraft observations compared to
the prior simulation for both inversions in very similar ways:
The prior underestimate ranging from 10–40 ppb per month is
reduced to less than 10 ppb for all months in both inversions.
This indicates that the model reproduces CO mixing ratios
over North America very well up to 8 km. This agreement
was also found by Deeter et al. [2010] who found no sig-
nificant bias when comparing MOPITT V4 data with the
NOAA aircraft data. This is in sharp contrast, however, with
the validations of MOPITT V3 performed by Emmons et al.
[2007, 2009]. They reported a positive bias of 7 � 9% with
respect to the NOAA aircraft data in 2004, but on the SH, a
bias of +20% was reported. Figure 12 shows the comparison
for modeled and observed CO mixing ratios from the
MOZAIC program. Above 10 km altitude, only measure-
ments south of 40�N have been used to avoid stratospheric

Figure 11. Comparison of model with independent aircraft observations >2 km from NOAA, mainly
over North America. Per month, the mean difference (model - observation) is given for the prior simulation
(yellow), the posterior simulation using optimized emissions from an inversion assimilating NOAA surface
network observations (blue) and the posterior simulation using optimized emissions from an inversion
assimilating MOPITT total column observations (red). Numbers represent the amount of observations we
compared with per month. The error bars are defined as the standard deviation of the differences per month.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011JD017043.
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influence. Since there are almost no flights in the SH, such
a cut-off was not necessary there. The majority of the
MOZAIC measurements is from flights between Europe
and the US or between Europe and East Asia and the
middle East. The measurements were averaged into 1 km
bins from 2 to 12 km altitude and are shown as grey boxes
in Figure 12, the error bars denote the corresponding stan-
dard deviation of the observations. The co-sampled model
prior simulation is given in yellow and the posterior model
simulations corresponding to the stations-only and MOPITT-

only inversions are in blue and red, respectively. Throughout
the troposphere, the prior model simulation underestimates
observed CO by 10 to 30 ppb. The largest differences are
found near the surface reflecting the too low prior emissions
on the NH. The posterior simulations show an improved
agreement and are typically within a few ppb in the lower
troposphere (3–7 km). At higher altitudes (>7 km) the
agreement between observations and the MOPITT-only
inversion is much better than the agreement with the stations-
only inversion due to the higher sensitivity of MOPITT at

Figure 12. Comparison of the model with MOZAIC in-situ aircraft data averaged per altitude level.
Rectangular symbols represent the mean of all MOZAIC observations in the layer (of width 1 km) above
the corresponding altitude. Model simulations are represented by yellow (prior), blue (posterior NOAA)
and red (posterior MOPITT) stars. The error bars indicate the standard deviations corresponding to the
means. Numbers indicate the amount of observations used in this validation per layer. For altitudes above
10 km, only observations south of 40�N are used to minimize stratospheric sampling.
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this altitude. At aircraft cruise altitudes (10–12 km) this ten-
dency continues. The model prior and MOPITT posterior
simulation remain quite close to the observations at these
altitudes, but the stations-only simulation largely over-
estimates the observations. This is attributed to the natural
emissions that are approximately 140 Tg CO/yr higher on the
NH in the stations-only inversion compared to the MOPITT-
only inversion (see Table 1) and are injected higher up in the
troposphere. Clearly this is not in agreement with both
MOPITT and aircraft observations. Unfortunately, no aircraft
profiles are available south of 30S, where the MOPITT bias
appears to be most prominent.
[44] Further validation with FTIR total column observa-

tions showed overall good agreement on the NH (Table 3):
the prior underestimate of 16–20% (13–22 ppb) is signifi-
cantly reduced for all FTIR stations due to increased emis-
sions over the NH. Although both inversions slightly
underestimate the FTIR total columns at Reunion Island, this
is different for the other two FTIR sites in the SH (Table 3).
For Lauder, New Zealand and Arrival Heights, Antarctica,
the MOPITT-only inversion results in too high CO columns
for both Lauder (+7% or 3.5 ppb) and Arrival Heights (+9%
or 4.6 ppb). For the FTIR measurements made in Lauder,
this was already shown by Yurganov et al. [2010] who per-
formed a direct comparison between MOPITT and the FTIR
observations. For these FTIR sites, the stations-only inver-
sion tends to underestimate the FTIR CO columns by 9%
(4.8 ppb) and 10% (4.9 ppb) for Lauder and Arrival Heights,
respectively.

4. Sensitivity Studies

[45] Although it seems that the MOPITT-only inversion
results in too high CO in the SH compared to other obser-
vations due to a positive bias in the MOPITT V4 product in

the SH, model uncertainties may also play a role. For
example, the climatological OH field used and the vertical
distribution of biomass burning emissions can have large
impacts on the inferred emissions as shown byHooghiemstra
et al. [2011]. But also deficiencies in model transport and the
effect of linearizing the MOPITT averaging kernels may
influence the inferred emission estimates. Therefore, we
present a series of sensitivity inversions to address these
issues. For the stations-only inversion we performed three
sensitivity simulations using (S1) a preduc factor of 50 and
(S2) a preduc factor of 200 (instead of a preduc factor of 106)
(S3) a different OH field from a full-chemistry simulation
with TM5 [Huijnen et al., 2010] and (S4) a different vertical
distribution for biomass burning emissions (FVERT). The
vertical distribution for this sensitivity inversion is shown in
Figure 1b as a function of latitude and model level. This
distribution is slightly different compared to the one we used
by Hooghiemstra et al. [2011] (Figure 1c). The current
choice combines the findings in reported literature that boreal
forest fires inject CO at higher altitudes [Val Martin et al.,
2009], whereas in the Tropics, biomass burning emissions
from savannah fires remain largely below 3 km, but tropical
forest fires in South East Asia and Indonesia also inject
biomass burning CO in the free troposphere. In contrast,
the vertical distribution in a sensitivity experiment by
Hooghiemstra et al. [2011] followed the injection height
derived by Gonzi and Palmer [2010] that also emitted bio-
mass burning CO in the free troposphere in the Tropics. For
the MOPITT-only inversion we performed sensitivity studies
(S5) and (S6) similar to studies S3 and S4 described above
and in addition we assimilated (S7) all MOPITT observations
(S8) all MOPITT observations with a different vertical dis-
tribution of biomass burning emissions (Figure 1b) and (S9)
corrected for the linearization of the averaging kernel

Table 3. Comparison With Independent FTIR Observations for Seven Sites Around the Globea

Station Latitude (deg) Longitude (deg) Altitude (m.a.s.l.) Observed Prior Posterior (NOAA) Posterior (MOPITT)

Kiruna, Sweden 67.84 20.41 419 104.8 82.6 (84.1) 107.1 (108.7) 108.0 (109.5)
Zugspitze, Germany 47.42 10.98 2964 82.4 69.0 (69.2) 88.4 (89.1) 84.0 (84.2)
Jungfraujoch, Switzerland 46.55 7.98 3580 86.7 73.6 (70.3) 92.3 (89.1) 88.7 (85.4)
Izaña, Tenerife, Spain 28.30 �16.48 2367 81.7 68.7 (69.1) 85.5 (86.0) 77.8 (78.1)
Reunion Island, France �20.90 55.50 10 94.5 67.8 (64.4) 83.0 (79.7) 88.3 (84.9)
Lauder, New Zealand �45.04 169.68 370 52.9 46.0 48.1 56.4
Arrival Heights, Antarctica �77.82 166.65 250 51.5 43.1 46.4 56.1

aReported values are averaged annual modeled and observed column-averaged CO mixing ratios in ppb. Values between parentheses represent modeled
columns when the averaging kernel was not taken into account. Note that for stations Lauder, New Zealand and Arrival Heights, Antarctica, no averaging
kernels were available.

Table 4. Details of the Sensitivity Studies Described in Section 4a

Study Data Assimilated OH Field Preduc FVERT CORRECTION

S1 stations Spivakovsky et al. [2000] 50 <2 km –
S2 stations Spivakovsky et al. [2000] 200 <2 km –
S3 stations Huijnen et al. [2010] 1000 <2 km –
S4 stations Spivakovsky et al. [2000] 1000 <2 km –
S5 MOPITT Huijnen et al. [2010] 1000 35% > 2 km No
S6 MOPITT Spivakovsky et al. [2000] 1000 <2 km No
S7 MOPITT Spivakovsky et al. [2000] 1000 35% > 2 No
S8 MOPITT Spivakovsky et al. [2000] 1000 <2 km No
S9 MOPITT Spivakovsky et al. [2000] 1000 35% > 2 Yes

aSee text for details.
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(CORRECTION). The correction is applied as follows:
For the prior simulation we compute the tropospheric-
mean mixing ratio using either equation (2) or equation (3)
and archive the differences. In subsequent iterations, these
differences are subtracted from the calculated modeled
tropospheric-mean mixing ratios. To reduce the computa-
tional burden we used a preduc factor of 1000 for the
sensitivity studies (except for S1 and S2). The sensitivity
studies are detailed in Table 4. The results are summarized
below and visualized in Figure 13 and Table 5.
[46] 1. A preduc factor of 50 or 200 (S1 and S2) does

influence the posterior emission estimates compared to a
fully converged optimization with a preduc factor of 106.
Although on the global scale the effects are rather small, on a
continental scale difference range from 10–40%. However,
these differences in optimized emissions are in a similar
range as the effect of a different OH field and to a lesser
extend, the correction for the linearization of the averaging
kernel (see below). Moreover, the comparison with inde-
pendent observations does not improve from preduc 50 to
preduc 106. Still, we find a preduc factor of 106 useful since
for smaller preduc values, derived posterior emission uncer-
tainties haven not yet converged and remain larger compared
to a fully converged inversion [Meirink et al., 2008b].
In addition, since the small scale emissions are optimized only
in these later iterations, a large preduc value is typically nec-
essary to infer CO emissions on a higher spatial resolution
(in combination with a spatial correlation length <1000 km).
[47] 2. A different OH field (S3 and S5) has a large effect.

As outlined by Hooghiemstra et al. [2011], the TM5-based
OH field has a larger North-south ratio (1.15) compared to
the OH field from Spivakovsky et al. [2000] used in the base
inversion (North-south ratio of 1.0) and thus results in higher
inferred emissions on the NH and lower emissions on the
SH. Magnitudes are similar to what was reported by
Hooghiemstra et al. [2011].
[48] 3. With a different distribution of biomass burning

emissions, one would expect more emissions in the stations-
only inversion (S4), as these emissions are lofted and not
picked up by the stations, and lower emissions for the
MOPITT-only inversion (S6), as the emissions are more
easily observed by the instrument. However, the sensitivity
to this distribution appears to be only small. This is in

contrast with our previous study [Hooghiemstra et al., 2011],
where the difference was as large as 70 Tg CO/yr. This is
likely due to the new implementation of the NMVOC-CO
source, but the lower injection height in the Tropics compared
to Hooghiemstra et al. [2011] might also play a role. For
the MOPITT-only inversion the sensitivity to a different
biomass burning injection height is negligible. This is
explained by comparing the vertical distribution to the dis-
tribution for the NMVOC-CO source (Figures 1b and 1d).
Since the NMVOC-CO emissions are injected much higher,
the MOPITT-only inversion is mainly sensitive to this source
and less sensitive to biomass burning injection heights.
[49] 4. Including MOPITT land observations (S7 and S8)

makes a minor difference except for Africa and Asia. Due
to the absence of CO sources in the prior over the Sahara
desert where the large mismatch is found, natural emissions
increase heavily in Africa. As a compensating result, this
source decreases for Asia. Since the emissions from the
inversion including MOPITT land observations deviate more
from the stations-only inferred emissions, this points to a
positive bias of MOPITT over desert areas.
[50] 5. Correcting for the linearization of the averaging

kernel (S9) results in higher anthropogenic emissions (in
Asia and Africa) and somewhat lower natural emissions
(including NMVOC-CO). In addition, the biomass burning
emissions slightly increase from 311 Tg CO/yr in the base
inversion to 335 Tg CO/yr. On both global and continental
scales, however, the differences are generally within the error
bounds of the base MOPITT inversion.
[51] Despite regional differences, the results of the sensi-

tivity inversions are largely within error bounds of the base
inversions on continental and regional scales for the indi-
vidual emission categories. However, since the system has
difficulties separating the different source categories, the
inversion finds negative posterior correlations between the
categories which lead to much smaller posterior uncertainties
for the total CO source compared to the individual categories
[Hooghiemstra et al., 2011]. Our reported total CO emissions
for the sensitivity studies (Table 5) vary typically more than
the calculated posterior error for the base inversion. This
posterior error (9 Tg CO/yr for the MOPITT-only base
inversion) becomes small because it is the result of a total
global source that has to compensate the global total sink

Table 5. Global Emission Estimates per Emission Category for 2004 for Nine Sensitivities Studiesa

Stations-Only

Prior Posterior (Base) Preduc (50) Preduc (200) OH FVERT

ANT 463 � 180 724 � 75 778 � 107 747 � 92 796 � 89 756 � 87
NAT 515 � 128 704 � 78 667 � 108 689 � 105 630 � 90 688 � 91
BB 334 � 119 394 � 60 416 � 100 391 � 95 353 � 67 386 � 69
Total 1312 � 251 1822 � 45 1860 � 115 1827 � 73 1779 � 57 1831 � 64

MOPITT-Only

Prior Posterior (Base) OH FVERT All All-FVERT Correction

ANT 463 � 180 806 � 69 702 � 73 742 � 75 761 � 75 758 � 73 805 � 74
NAT 515 � 128 733 � 60 791 � 67 784 � 70 829 � 66 804 � 66 734 � 67
BB 334 � 119 304 � 28 265 � 39 307 � 42 282 � 40 304 � 35 335 � 38
Total 1312 � 251 1843 � 12 1758 � 14 1834 � 16 1873 � 11 1868 � 10 1874 � 16

aThe results of the base inversions are also included.
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(OH and surface deposition) such that a set of observations is
optimally fitted. The sensitivity studies show that the global
total emissions are typically estimated within 10%. Hence,
the true error is probably larger than the approximation we
calculate and depends on the OH sink, the vertical distribu-
tion of the emissions and on the set of measurements used in
the inversion. Additional model errors may also play a role
(e.g., transport). A first attempt to quantify systematic model
errors was made by Jiang et al. [2011]. They also found that
model transport, the OH field and the treatment of the
NMVOC-CO source yield differences in inferred emission
estimates up to 20%. Nonetheless, we think that the approx-
imation of the posterior uncertainties as presented here are
valuable in assessing the information content of the assimi-
lated observations.

5. Summary and Conclusions

[52] CO emission estimates have been derived using a
4D-Var framework and utilizing two different observational
data sets: surface observations from the NOAA network
and total columns from the MOPITT instrument on board
NASA’s Terra satellite. We have discussed and validated
the optimized emission estimates and compared them to
values reported in the recent literature. The main conclu-
sions are:
[53] 1. Optimized emissions using either data set show a

global increase of CO emissions from the prior to the poste-
rior estimate of 500 Tg CO/yr. Our estimates for total annual
CO emissions from the anthropogenic, biomass burning and
natural sources (excluding the oxidation of methane) amount
to 1822� 45 and 1843 � 12 Tg CO in 2004 for the stations-
only and the MOPITT-only inversions, respectively. The
regions to which this increment is attributed are East Asia,
South America, Europe and Africa. Our results suggest that
the EDGARv4.1 bottom up inventories for East Asia and
Europe could be too low by up to a factor 2. In South
America and Africa, in particular CO production from oxi-
dation of NMVOC-CO is increased when only MOPITT
total columns are assimilated, whereas biomass burning
emissions are increased when assimilating only NOAA
surface observations.
[54] 2. Applying the 4D-Var analysis to CO emission

estimates reduces the prior uncertainty for the different
source categories significantly. With MOPITT’s higher spa-
tiotemporal resolution and better coverage in the Tropics and
in the SH compared to the NOAA surface stations, the
MOPITT derived emissions show larger uncertainty reduc-
tions over the tropical regions. However, due to the high
density of NOAA stations on the NH, the high precision of
these measurements and the fact that we do not assimilate
MOPITT land pixels, uncertainty reduction in the NH mid-
latitudes is typically largest for the stations-only inversion.
[55] 3. A detailed comparison of the stations-only and the

MOPITT-only inversions shows that in particular the parti-
tioning of the SH sources is different. The difference in
optimized biomass burning (or natural) emissions between
the stations-only and the MOPITT-only inversions is attrib-
uted to the different vertical sensitivity of these observational
data sets. Due to the faster vertical mixing in the Tropics,
Tropical NOAA stations are quite insensitive to CO

emissions and hardly constrain emissions that are released
higher up in the atmosphere. In contrast, MOPITT columns
are sensitive to free tropospheric CO and attributes model
data mismatches mostly to the natural source. However, also
the much higher spatiotemporal resolution of the MOPITT
observations, and thus the better global coverage compared
to the NOAA observations, plays a role.
[56] 4. We showed that by optimizing the NMVOC CO

source on the model resolution, the biomass burning source
in the MOPITT-only inversion was no longer increased, as
opposed to some recent studies that found that the GFEDv2
inventory underestimated biomass burning emissions. Our
approach reduces the risk that all mismatches between the
prior model simulation and the observations is projected
onto the biomass burning source in the Tropics.
[57] 5. The posterior emission estimates have been vali-

dated with aircraft observations from NOAA (observations
up to 8 km) and showed large improvement with respect to
the prior comparison for both inversions. The comparison
with MOZAIC aircraft observations also improved in the
lower troposphere. However, higher up in the troposphere
(above 8 km), in particular the stations-only posterior sim-
ulation diverged from the observations, whereas the
MOPITT-only posterior simulation remained close to the
observations. Additional comparisons with FTIR total col-
umn measurements improved particularly for the NH sites.
[58] 6. Validation in the SH is limited by the amount of

independent data available. A cross validation showed that
MOPITT-only derived emissions yield too high CO mixing
ratios on the SH stations Cape Grim (+20 ppb) and South
Pole (+20 ppb). Validation with FTIR total columns at
Lauder, New Zealand and Arrival Heights, Antarctica also
hint towards a small but significant positive bias in MOPITT.
It should be kept in mind however, that model uncertainties
such as model transport and the OH climatology used as well
as the linearized MOPITT averaging kernels may introduce
biases in the optimized emission estimates. However, the
inferred emission estimates of sensitivity studies aggregated
to continental and global scales are within the error bounds
from the base inversions.
[59] With the results presented in this paper it seems an

obvious next step to combine surface observations with
satellite retrievals to estimate surface sources of CO. In the
NH, both data sets seem to be broadly consistent. However,
on the high latitude SH and Indonesia, large differences in
inferred emission estimates using the two data sets are
apparent. Similar to the station - SCIAMACHY inversion
performed for methane [Meirink et al., 2008a; Bergamaschi
et al., 2009, 2010], a bias correction scheme seems to be
necessary to obtain accurate and realistic emission estimates
that are in agreement with both data sets and independent
observations. Furthermore, extra constraints in the form of
formaldehyde columns could serve to better constrain the
NMVOC-CO source. Also, higher spatial model resolution
should lead to smaller model representativeness errors.

Appendix A: Derivation of Ã

[60] To properly compare a model profile to a MOPITT
retrieved profile, one has to use the averaging kernel as
described by Deeter [2009]. This averaging kernel is
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modeled in terms of a lognormal distribution and hence one
typically computes:

ln xpsið Þ ¼ ln xai
� �þXn

j¼1

Aij ln xmj

� �
� ln xaj

� �� �
; ðA1Þ

where xps is the model profile smoothed with the MOPITT
averaging kernel A and a priori profile xa and xm is the
original profile interpolated to the MOPITT pressure grid
and n is the number of pressure levels. Rewriting this to
avoid the logarithms yields:

xpsi ¼ xai ⋅ ∏
n

j¼1

xmj
xaj

 !Aij

: ðA2Þ

For a Gaussian distributed averaging kernel (K) equation (A1)
would read

xpsi ¼ xai þ
Xn
j¼1

Kij xmj � xaj

� �
; ðA3Þ

from which it follows that

Kij ¼ dxpsi
dxmj

ðA4Þ

Now, taking the derivative of equation (A2) to xmj yields

dxpsi
dxmj

¼ Aij

xmj
xpsi ; ðA5Þ

hence, if we define

˜Aij ¼ Aij

xmj
xpsi ðA6Þ

it is consistent with Kij to first order. However, since both
xmj and xpsi depend on the model simulation, they change
every iteration when the emissions are perturbed during
the iterative optimization. To avoid this and to obtain a
formula for the averaging kernel that is constant during the
iterative process, we approximate those terms by values
given by MOPITT. Naturally, xmj is approximated by the
MOPITT prior xaj and xpsi is approximated by the MOPITT
retrieval xretri :

Ãij ¼ Aij

xaj
xretri : ðA7Þ

It has been tested that this approximation yields mean model
total column CO values that are on average within 2% of the
columns using the non-linear formulation. Regionally, larger
differences up to 10% are observed.
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