
What eddy-covariance measurements tell us about prior land flux
errors in CO2-flux inversion schemes

Frédéric Chevallier,1 Tao Wang,1 Philippe Ciais,1 Fabienne Maignan,1 Marc Bocquet,2,3

M. Altaf Arain,4 Alessandro Cescatti,5 Jiquan Chen,6 A. Johannes Dolman,7

Beverly E. Law,8 Hank A. Margolis,9 Leonardo Montagnani,10,11,12 and Eddy J. Moors13

Received 21 October 2010; revised 16 November 2011; accepted 3 January 2012; published 10 March 2012.

[1] To guide the future development of CO2-atmospheric inversion modeling systems,
we analyzed the errors arising from prior information about terrestrial ecosystem fluxes.
We compared the surface fluxes calculated by a process-based terrestrial ecosystem model
with daily averages of CO2 flux measurements at 156 sites across the world in the
FLUXNET network. At the daily scale, the standard deviation of the model-data fit was
2.5 gC�m�2�d�1; temporal autocorrelations were significant at the weekly scale (>0.3 for
lags less than four weeks), while spatial correlations were confined to within the first
few hundred kilometers (<0.2 after 200 km). Separating out the plant functional types did
not increase the spatial correlations, except for the deciduous broad-leaved forests. Using
the statistics of the flux measurements as a proxy for the statistics of the prior flux errors
was shown not to be a viable approach. A statistical model allowed us to upscale the
site-level flux error statistics to the coarser spatial and temporal resolutions used in regional
or global models. This approach allowed us to quantify how aggregation reduces error
variances, while increasing correlations. As an example, for a typical inversion of grid
point (300 km � 300 km) monthly fluxes, we found that the prior flux error follows an
approximate e-folding correlation length of 500 km only, with correlations from one month
to the next as large as 0.6.
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1. Introduction

[2] Carbon dioxide (CO2) fluxes at the Earth’s surface
may be recovered (or inverted) from the observed spatial and
temporal gradients of the CO2 concentrations in the atmo-
sphere by applying Bayes’ theorem [e.g., Enting et al., 1995;
Bousquet et al., 2000; Gurney et al., 2002]. Atmospheric
mixing makes the problem ill-constrained and therefore prior
information about the CO2 flux originating from the land
and water surface is also used in the inversion process. In
statistical terms, this approach transforms the prior probability
density p(x) about the CO2 fluxes, jointly called state vector x
here, into the posterior probability density p(x∣y) conditioned

on atmospheric measurements, jointly called y. The statisti-
cally optimal estimator of the fluxes, given the available
information, corresponds to the maximum of the function
p(x∣y). By design, it critically depends on the assumed prior
density function p(x). Under the numerically convenient
assumption of a multivariate Gaussian density, describing
p(x) requires assigning means, variances and correlations.
The atmospheric inversion studies of CO2 fluxes published
so far have assumed various probability distributions centered
on climatology, regional inventory statistics or the output of
terrestrial ecosystem models, as well as ocean carbon cycle
models [Gurney et al., 2002]. In practice, some of the key
characteristics of the prescribed a priori flux error distribu-
tions p(x) in use stem from the capacity of the current flux-
inversion systems to deal with large state vectors x, rather
than from the statistics of the inference problem: the largest
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correlation patterns in space and time are specified in the case
of classical analytical systems (i.e., coarse regions inversions
[e.g., Gurney et al., 2002]), while the narrowest structures
(i.e., pixel size) can be introduced in the variational (i.e.,
adjoint-based) schemes [Chevallier et al., 2005; Rödenbeck,
2005; Baker et al., 2006]. Ensemble methods lie in-between
[Zupanski et al., 2007; Peters et al., 2007; Feng et al., 2009].
This subjective choice of error correlation structures critically
influences the way the information from a single atmospheric
measurement is spread in space and time for the flux inver-
sion systems.
[3] Two studies have attempted to shed light on the

characteristics of p(x) based on observations.Michalak et al.
[2005] used CO2 concentration measurements within a flux
inversion system by introducing some poorly known char-
acteristics of the prior errors in the state vector x. They
highlighted the power of their method but stressed its sub-
jectivity. In the second study, Chevallier et al. [2006] relied
on the non-gap-filled, raw CO2 flux measurements at the
eddy-covariance flux sites (total 34) in the northern hemi-
sphere to constrain p(x). They showed a heavy-tail distribution
p(x) that contradicts the usual assumption of a multivariate
Gaussian distribution. Further, the error correlations appeared
to follow a linear temporal dependency after the second lag
day without any particular spatial structure.
[4] Following the approach of Chevallier et al. [2006],

we examine the characteristics of p(x) for terrestrial eco-
system CO2 fluxes, when p(x) is centered around the
Organizing Carbon and Hydrology In Dynamic Ecosystems
(ORCHIDEE), a process-based ecosystem model [Krinner
et al., 2005]. Our study advances our previous knowledge
in two ways. First, it uses a much-wider archive of eddy-
covariance sites (156 in total) with gap-filled records, which
provides more detailed information on p(x) for a variety of
biomes. Additionally, we explore the influence of temporal
and spatial aggregation on the statistics in order to bridge
the gap between the local scale of the daily eddy-covariance
flux measurements that are used to define p(x) and the

typically much larger spatial and temporal scales of the
inversion systems.

2. Methods

[5] Surface CO2 fluxes were measured at tower sites using
the eddy covariance technique, which derives CO2 flux from
the covariance between fluctuations around the mean vertical
wind velocity and CO2 mixing ratio [Aubinet et al., 1999].
Eddy covariance fluxes are typically representative of surface
areas ranging from a few hectares to a few km2, depending
on the height of the sensors above the canopy, on the
roughness of the surface and on the air stability. Flux mea-
surements have been conducted over most major biomes
across the world under a global network of flux towers,
FLUXNET [Baldocchi et al., 2001; Baldocchi, 2008]. A
synthesis data set comprising 253 flux sites, named after the
Italian town La Thuile, was compiled in 2007. This archive
also stores standardized gap-filled measurements of CO2

fluxes at a 30-min time step using a common protocol
[Papale et al., 2006]. The La Thuile archive also collects the
corresponding meteorological data, which we gap-filled based
on the data from the Interim Reanalysis of the European
Centre for Medium-Range Weather Forecasts [Berrisford
et al., 2009] for use as input to the ORCHIDEE model. The
present study focuses on the 156 sites of the La Thuile data-
base that encompass at least three consecutive years of
measurements between 1991 through 2007. Their locations
cover much of the temperature-precipitation climate space
across the world and most biomes (Figure 1). The full site list
is given in Appendix A. Lasslop et al. [2008] estimated the
overall uncertainty of the half-hourly gap-filled fluxes to be
about 0.07 gC�m�2 (one sigma uncertainty [cf. Lasslop et al.,
2008, Figure 2e]. This relatively large uncertainty does not
contain much autocorrelation (i.e., the autocorrelation is <0.2
after only four hours [cf. Lasslop et al., 2008, Figure 5a]) so
that the uncertainty of the fluxes amounts to only a few tenths
of a gC�m�2�d�1 for daily totals [Hollinger and Richardson,

Figure 1. Location of 156 FLUXNET sites used in this study. A different color is used for each dominant
biome type.
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2005]. Therefore, we will not report results here at scales
shorter than one day. Errors are site-specific and therefore
have low spatial correlations. Some systematic errors affect
the measurements: e.g., the measurements do not show
energy balance closure and low nighttime wind conditions
are not properly treated [Baldocchi et al., 2001]. We rely
here on the quality control of the database to minimize these
biases. In any event, biases should not affect the statistics
(standard deviations and correlations) presented in the sub-
sequent analyses.
[6] The site-level meteorological variables were used as

boundary conditions for ORCHIDEE simulations at each
site. The plant functional type (PFT) is prescribed in the
model using parameters that most closely represent the site
vegetation. ORCHIDEE simulates the half-hourly, annual
and longer variations of the carbon, water and energy fluxes,
as well as soil carbon and water pools [Krinner et al., 2005].
This study uses the configuration of the model which was
run to set up the prior information for flux inversions at
Laboratoire des Sciences du Climat et de l’Environnement
(LSCE), as illustrated by Piao et al. [2009] and Chevallier
et al. [2010]. Each site is often a net sink of CO2 (and
rarely a net source of CO2) and may be in a nonsteady state
since the last disturbance event. However, the average
long-term net ecosystem exchange (NEE) simulated by the
ORCHIDEE model is in a steady state because the model
was spun up for 2000 years until soil and biomass pools
reached equilibrium with climate conditions at each site.

3. Results

3.1. Daily Fluxes at Site Scale

[7] When combining all site-years together, the standard
deviation of the differences between simulated and observed
daily fluxes is 2.5 gC�m�2�d�1. The distribution is biased by
0.7 gC�m�2�d�1, with the ORCHIDEE model having the

smaller annual mean carbon uptake by vegetation. This bias
is partially expected because of the equilibrium assumption
set for the simulation and the fact that many FLUXNET sites
are managed ecosystems with higher uptake than the
regional means within the global context. The measurement
biases may also explain some of the bias. The differences
between model- and observed values vary with the season,
with larger values during the growing season. From May to
August, the bias rises to 1.2 gC�m�2�d�1 with a standard
deviation of 3.6 gC�m�2�d�1. Interestingly, the observed
variability in NEE across the year has a standard deviation of
2.3 gC�m�2�d�1 only, suggesting that, at the synoptic scale,
the NEE uncertainty for a model like ORCHIDEE is no
better than assuming a constant flux field.
[8] The spatial structure of the error appears to be a

function of the lag distance between pairs of sites based
on the Pearson correlation coefficient of the model-minus-
observation differences (Figure 2). The median reveals spatial
structure at short distances (less than 100 km) that did not
show up in the 34-site study conducted by Chevallier et al.
[2006]: the correlation median is 0.33 for distances <100 km,
0.26 for distances between 100 and 200 km, and negligible
beyond 400 km. Some systematic and spatially coherent
errors in the modeling of plant phenology [e.g., Demarty
et al., 2007] may contribute to the correlations. As expected,
the observed variability of NEE contains larger correlations:
the median is 0.55 for distances less than 100 km, 0.44 for
distances between 100 and 200 km, and is still larger than
0.1 after 2500 km. Therefore, the model errors are at a finer
spatial scale than the measured signal itself, which implies
that the model captures the main patterns of the true NEE
for spatially averaged quantities.
[9] Chevallier et al. [2006] did not address the possibility

that spatial error correlations could be significant within a
given vegetation type. If this is the case, inverting surface
fluxes directly in eco-regions would be legitimate [e.g., Peters
et al., 2007]. Figure 3 examines this possibility by restricting
the scatterplots to a single dominating PFT, such as cropland,
deciduous broad-leaf forest, evergreen broad-leaf forest,
evergreen needleleaf forest, and grassland. Only the decidu-
ous broad-leaf forest type increased the average correlation
coefficient, by about 0.4, compared to the all-site statistics.
Clearly, assigning biome-dependent correlations does not
seem justified, at least given the spatial density of the La
Thuile flux network data.
[10] Figure 4 shows the temporal structure of the error in a

manner similar to Figure 2. To minimize edge effects, we
condense the results in an all-site-year correlation, rather
than in a binned median correlation. The former quantity
gives more weight to the sites with long data records than the
latter and yields slightly larger values (Figure 4). The all-site
correlation is positive for lags <85 days and for lags
>275 days, which reflects some seasonal pattern of the error.
Limited negative correlations exist at lags of 85–275 days,
the all-site correlation being not lower than �0.03. Again,
the measurement-only statistics of NEE (not shown) contain
larger temporal correlations: the all-site correlation remains
positive until day 95 and the negative correlations reach
�0.1 around the six-month lag. This highlights some skill of
the model at a seasonal scale.

Figure 2. Distance correlogram, i.e., correlation between
the daily net ecosystem exchange (NEE) errors of the
ORCHIDEE model at pairs of distant sites for a same time.
Each point includes all the common years of one of the site
pairs. The black line represents the median of the points per
100-km bin.
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3.2. Effect of Temporal and Spatial Aggregation
of the Fluxes

[11] The FLUXNET database enables a synthetic estima-
tion of the daily NEE error statistics of the ORCHIDEE
model at the site scale, while Bayesian atmospheric CO2 flux
inversion systems usually operate at coarser temporal and
spatial scales, typically several 10,000 km2 and several days
or weeks for global inversions. Therefore, the effect of space-

time aggregation on the NEE prior error characterization
needs to be investigated.
[12] If the site-level daily error statistics are normally

distributed (i.e., Gaussian) with covariance matrix B, the
corresponding low resolution error statistics are also nor-
mally distributed and have a covariance matrix as follows
[e.g., Kaminski et al., 2001; Bocquet et al., 2011]:

B′ ¼ UBUT ð1Þ

Figure 3. Distance correlogram for errors between sites within the same dominant PFT. The regression
line of the points is shown, for visualization purpose only, in blue. The black line represents the median for
all sites, as shown in Figure 2.

CHEVALLIER ET AL.: PRIOR ERRORS IN CO2-FLUX INVERSION GB1021GB1021

4 of 9



where U is the operator that upscales the fluxes from the
high-resolution scale to the low resolution one (i.e., coarse-
graining operator). Equation (1) provides a straightforward
approach to upscale the error statistics, but its application
for global atmospheric inversion systems is hampered by
the large dimension of B. We therefore introduce an alter-
native approach to upscale the error statistics from the
relatively high resolution of our previous results to any
coarser regular spatial and temporal resolution. The model
is described in Appendix B. It consists of two simple
equations, equation (B3) and equation (B4), which bridge
the gap between the scales. They show that aggregation
dampens the higher frequencies of the error and therefore
reduces it in relative values (equation (B3)), while increasing
the low (correlated) frequencies (equation (B4)).
[13] Figure 5 shows the effect of temporal and spatial

aggregation on the error statistics, as computed from the
error model for various lags and aggregation scales. We have
assumed that each one of the coarse-resolution NEE fluxes
can be split into high-resolution pixels of 1 day and 1 km2

for time and space, respectively. Correlation lags are defined

Figure 4. Time correlogram, i.e., autocorrelation between
the errors of the ORCHIDEE model at distant times for a
same site. Each red line corresponds to a different site. The
black line represents the all-site autocorrelation.

Figure 5. Effect of (a and c) temporal and (b and d) spatial aggregation of the fluxes on error correlation
in the same dimension (Figures 5a and 5b) and on error standard deviation (Figures 5c and 5d). The aggre-
gation distance (Figures 5b and 5d) is defined as the length of the side of a square on which the aggregation
is performed.
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from a reference point taken as the middle of a coarse-
resolution tile of length g. For a given aggregation time or
distance g, the correlation behaves like a staircase function:
it is constant between lags 0 and g/2, between lags g/2 and
g + g/2, between lags g + g/2 and 2 g + g/2, etc. We illustrate
the variations of the correlations R with two examples: at
lag time 30 days (Figure 5a), R varies between 0.4 (without
any aggregation) and 1.0 (with 60-day aggregation or
more); at lag distance 500 km, R varies between 0.1
(without any aggregation) and 1.0 (with 1000-km aggre-
gation or more). The standard deviations S decrease from
2.5 gC�m�2�d�1 to 1.6 gC�m�2�d�1 for 90-day aggregation
and to 0.7 gC�m�2�d�1 for 1000-km aggregation.

[14] The high temporal density of the flux data allows us
to evaluate the model behavior for temporal aggregation.
Here we take the example of semi-monthly averaged fluxes,
for which we still have a sufficient number of flux pairs to
perform the statistics despite the averaging. For the standard
deviation S of the semi-monthly flux errors at the site scale,
our model yields a value of 2.1 gC�m�2�d�1 (Figure 5c),
which is the same value as the actual model-minus-obser-
vation statistics (to be compared with s = 2.5 gC�m�2�d�1

for 24-h site-scale). The correlations in the model and in the
data for the semi-monthly fluxes are displayed in Figure 6.
The model reproduces the behavior of the data fairly well,
except for lag times longer than 200 days where differences
of up to 0.1 are seen. Note for instance the good simulation
for lags less than 15 days in Figure 6b, for which the shape of
the data all-site correlation significantly differs between high
and low temporal resolutions (Figure 4 versus Figure 6b). For
longer lags, the two-week aggregation does not change the
correlations much.
[15] We use the statistical model to compute error statis-

tics at the typical space-time resolution of current global
atmospheric inversion systems that use ORCHIDEE fluxes as
prior information [Piao et al., 2009; Chevallier et al., 2010].
For the eight-day fluxes used by Chevallier et al. [2010] that
had an e-folding temporal error correlation length of four
weeks (the e-folding length being the lag required for the
correlation to decrease by a factor of e; note that these authors
separate daytime and nighttime, which is not performed
here), the coarse-resolution errors (Figure 5a) are correlated
by 0.43 at lag one month (instead of 0.35 in the case of daily
fluxes), which is close to an exponentially decreasing func-
tion of e-folding length of 36 days. We note that an expo-
nentially decreasing function does not capture the positive
values at the one-year lag (Figure 4). The standard deviation
of the eight-day flux error at the site scale is 2.2 gC�m�2�d�1

(Figure 5c) instead of 2.5 gC�m�2�d�1 at daily scale. For
monthly fluxes (used by Piao et al. [2009] without any
temporal error correlation), the coarse-resolution flux errors
are correlated by 0.59 from one month to the next (Figure 5a).
The standard deviation of the monthly error at site scale is
2.0 gC�m�2�d�1 (Figure 5c). For fluxes at the scale of a
square grid box of 300 km � 300 km (comparable to work
by Piao et al. [2009] and Chevallier et al. [2010] with,
respectively e-folding correlation lengths of 1000 km and
500 km) the between-grid-boxes spatial correlation expo-
nentially decreases with the distance with an approximate
e-folding length of 500 km (Figure 5b). The error standard
deviation at the coarse scale reduces to 1.2 gC�m�2�d�1

(Figure 5d). Combining spatial (300 km) and temporal
(eight-day or monthly) averaging does not change the
computed correlations but further reduces the error stan-
dard deviation to 1.1 and 1.0 gC�m�2�d�1, respectively, for
eight-day and monthly fluxes.

4. Discussion and Conclusions

[16] We estimated prior NEE errors for CO2-flux atmo-
spheric inversions. Using the ORCHIDEE simulations as an
example of prior information and based on observations
made at 156 FLUXNET sites across the world, we described
the mean, variances and correlations of the prior errors at the
site scale with a 24-h temporal resolution. The model error

Figure 6. (a) Distance and (b) time correlograms for semi-
monthly site-scale fluxes. Each point includes all the common
years of a given pair. The black line represents the median of
the correlations per 100-km bin (Figure 6a) or the all-site cor-
relation (Figure 6b). The blue lines correspond to the statisti-
cal model of the errors. The model curves are extracted from
Figures 5a and 5b with a two-week smoothing in the case of
Figure 5b.
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statistics differed substantially from those of the fluxes
themselves. A model generalized these results to a range of
larger temporal and spatial scales.
[17] There are four main limitations to this study. First, it

only addresses natural vegetation fluxes and cannot consider
the emissions from agricultural crops, fossil fuel, cement
manufacturing and fires. Second, the ORCHIDEE simula-
tions at the site scale are based on local meteorological
measurements as boundary conditions and rely on an accu-
rate description of the vegetation type, but boundary condi-
tions for regional to global simulations can carry large biases.
Low accuracy (i.e., large biases) of the coarse resolution
boundary conditions (usually provided by weather centers)
would tend to increase the spatial correlations of the errors
compared to the situation described here. Third, it is not clear
if our results apply to models other than ORCHIDEE. We
argue that the correlation lengths would decrease with better
model accuracy and vice versa. Fourth, the results are tied to
the La Thuile database of the FLUXNET. This spatially
heterogeneous network may poorly represent the error sta-
tistics outside North America and Europe, and, even there,
they may not be dense enough to describe the fine features
of the error statistics.
[18] Keeping these limitations in mind, the main char-

acteristics of the prior errors may include: (i) that the simu-
lated site-scale daily (24-h) flux is biased by a few tenths of a
gC�m�2�d�1 toward a too low carbon uptake, with random
errors of standard deviations of 2.5 gC�m�2�d�1 (by com-
parison, Chevallier et al. [2006] obtained 2.0 gC�m�2�d�1 as
the standard deviation for their 34 study sites without gap-
filling); (ii) that some small positive spatial correlations of
the error (unnoticed in work by Chevallier et al. [2006]) are
seen within the first few hundred kilometers only; (iii) that
correlations between areas dominated by a same vegetation
type are not larger than the others, except in the case of
deciduous broad-leaf forests; (iv) that positive temporal
correlations exist within the first few weeks and after a year;
and (v) that negative correlations are negligible. Aggregating
the fluxes in space or time makes the covariance matrix of
the error a bit denser and significantly reduces the variances.
It should be highlighted that a side effect of aggregation is
the increase of the observation errors and their complexity
(as discussed by Kaminski et al. [2001]).
[19] The unknown mean distribution of the NEE of the

terrestrial biosphere violates the assumption of unbiased
prior error statistics in the Bayesian CO2-flux inversions.
One may therefore wonder if assigned variances and corre-
lations could empirically be tuned to account for biases. To
meet the requirement of optimal estimation, any bias on the
prior is reduced by the inversion, by the same amount as the
prior error variances. However, it is common practice to
inflate the prior variances in order to allow the inversion
system to yield larger reductions of the bias, at the expense
of increased random errors. As long as the biases of the prior
fluxes are much smaller than their error standard deviations,
there is no advantage to tune the prior correlations as well
and biases can be neglected in the inversion design.

Appendix A: List of the Selected FLUXNET Sites

[20] The identification codes of the FLUXNET sites used
in this study are: AT-Neu [Wohlfahrt et al., 2008], AU-How,

AU-Tum, AU-Wac, BE-Bra, BE-Lon, BE-Vie, BR-Ban,
BR-Cax, BR-Ji2, BR-Ma2, BR-Sa1, BR-Sa3, BW-Ma1,
CA-Ca1, CA-Ca2, CA-Ca3, CA-Gro, CA-Let [Flanagan
and Johnson, 2005], CA-Man [Dunn et al., 2007], CA-Mer
[Lafleur et al., 2003], CA-NS1, CA-NS2, CA-NS3, CA-NS4,
CA-NS5, CA-NS6, CA-NS7, CA-Oas, CA-Obs, CA-Ojp,
CA-Qcu [Giasson et al., 2006], CA-Qfo [Bergeron et al.,
2007], CA-SF1 [Mkhabela et al., 2009], CA-SF2 [Mkhabela
et al., 2009], CA-SF3 [Mkhabela et al., 2009], CA-SJ1,
CA-SJ2, CA-TP2, CA-TP3 [Peichl et al., 2010], CA-TP4
[Peichl and Arain, 2007], CA-WP1 [Cai et al., 2010],
CH-Oe1, CN-HaM, CN-Xfs, CZ-BK1, CZ-BK2, DE-Bay,
DE-Geb, DE-Hai, DE-Kli, DE-Meh, DE-Tha, DE-Wet,
DK-Sor, ES-ES1, ES-ES2, ES-LMa, ES-VDA, FI-Hyy,
FI-Kaa, FI-Sod, FR-Hes, FR-LBr [Berbigier et al., 2001],
FR-Lq1, FR-Lq2, FR-Pue, GF-Guy, HU-Bug, HU-Mat,
IE-Ca1, IE-Dri, IL-Yat, IS-Gun, IT-Amp, IT-BCi, IT-Col,
IT-Cpz [Garbulsky et al., 2008], IT-Lav, IT-LMa, IT-Mal,
IT-MBo, IT-Noe, IT-Non, IT-Pia, IT-PT1, IT-Ren, IT-Ro1
[Rey et al., 2002], IT-Ro2 [Tedeschi et al., 2006], IT-SRo,
JP-Tak, JP-Tom, KR-Hnm, KR-Kw1, NL-Ca1, NL-Hor,
NL-Loo, PT-Esp, PT-Mi1, PT-Mi2, RU-Che, RU-Cok,
RU-Fyo, RU-Ha1 [Belelli Marchesini et al., 2007], RU-Zot,
SE-Deg, SE-Fla, SE-Nor, UK-ESa, U.S.-ARM, U.S.-Atq,
U.S.-Aud, U.S.-Bkg, U.S.-Blo, U.S.-Bo1, U.S.-Bo2, U.S.-
Brw, U.S.-Dk1, U.S.-Dk2, U.S.-Dk3, U.S.-FPe, U.S.-FR2,
U.S.-Goo, U.S.-Ha1 [Urbanski et al., 2007], U.S.-Ho1, U.S.-
Ho2, U.S.-IB1, U.S.-IB2, U.S.-Ivo, U.S.-KS2, U.S.-Los,
U.S.-LPH, U.S.-Me2 [Thomas et al., 2009], U.S.-Me4
[Law et al., 2001], U.S.-MMS, U.S.-MOz, U.S.-Ne1, U.S.-
Ne2, U.S.-Ne3, U.S.-PFa, U.S.-SO2, U.S.-SO4, U.S.-
SP2, U.S.-SP3, U.S.-SRM, U.S.-Syv, U.S.-Ton [Ma et al.,
2007], U.S.-UMB, U.S.-Var [Ma et al., 2007], U.S.-
WBW, U.S.-WCr, U.S.-Wi4, U.S.-Wkg, U.S.-Wrc, VU-Coc,
ZA-Kru.
[21] The site citations above are those given at http://

www.fluxdata.org/ (accessed 5 October 2010), as requested
by the La Thuile data policy. A description of each site can be
found at http://www.fluxdata.org:8080/SitePages/ (accessed
16 July 2010).

Appendix B: Aggregation Model

[22] In the following, the high-resolution (in space or time)
error statistics are symbolized by lowercase letters (s for a
standard deviation and r for a correlation), while capital
letters (S for a standard deviation and R for a correlation)
represent the coarse resolution (in space or time) error sta-
tistics. We represent the high-resolution errors as a stationary
field of normally and identically distributed random vari-
ables, all with zero mean and the same standard deviation s.
The stationarity property implies that the correlations depend
on the time-space distance between the pairs of random
variables but not on their absolute position in time and
space. The high-resolution standard deviation s is set to
2.5 gC�m�2�d�1 (i.e., the standard deviation of the model-
minus-observation differences for daily fluxes at site scale).
The high resolution correlations are represented (i) by a
continuous parameterization of the all-site autocorrelation
as a function of the lag time (equation (B1) and Figure 4)
and (ii) by a continuous parameterization of the median
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correlation as a function of the lag distance between pairs
of sites (equation (B2) and Figure 2):

rtðtÞ ¼ 0:767� 0:018⋅t þ ð0:01222⋅tÞ2 � ð0:00809⋅tÞ3

þ ð0:00513⋅tÞ4 � ð0:0012⋅tÞ5 þ 0:216=ð1þ 10⋅tÞ
ðB1Þ

rdðdÞ ¼ 1=ð0:032⋅dþ 1Þ ðB2Þ

with rt the dependency of the correlation as a function of lag
time t, in days, and rd the correlation as a function of the lag
distance d, in km. The parameterization of rt (equation (B1))
is only valid for lag times less than 365 days. Equations (B1)
and (B2) have been obtained by regression on the data. They
fit the thick lines of Figures 2 and 4 with a root mean square
of 0.01 and 0.06, respectively.
[23] By developing the variance estimator (i.e., Si xi

2/n,
with xi the n random samples of a random variable with
zero mean) for the errors of the coarse-resolution NEE fluxes
(i.e., time- and space-normalized), one can show that:

S2 ¼ s2 ⋅ �rintra ðB3Þ

with �r intra being the arithmetic mean of the correlations r
between all possible pairs of high-resolution-fluxes within
the coarse-resolution fluxes. The definition of �rintra is illus-
trated in Figure B1a.
[24] Similarly, the Pearson correlation between the errors

of a pair of coarse-resolution NEE fluxes f1 and f2 can be
expressed as:

Rð f1; f2Þ ¼ �rinterð f 1; f 2Þ=�rintra ðB4Þ

where �r inter ( f1, f2) is the arithmetic mean of the distant
correlations between all the different possible pairs of fine-

resolution NEE fluxes that it is possible to construct from
those inside coarse flux regions f1 and f2. The definition of
�rinter is illustrated in Figure B1b.
[25] The computation of �rinter ( f1, f2) and �rintra stems

from the above-described high-resolution statistics (s and the
correlations r) and the geometry of the fluxes. Equations (B3)
and (B4) quantify how aggregation dampens the higher fre-
quencies of the error (equation (B3)), while increasing the
low (correlated) frequencies (equation (B4)).
[26] The last hypothesis of our error model is that spatial

upscaling is independent from temporal upscaling. In this
case, the coarse-scale standard deviation after aggregation in
both space and time can be simply simulated by applying
equation (B3) in each dimension successively, while coarse-
scale correlations follow equation (B4) in each dimension
separately.
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