
Submitted: SIGCSE 2014, 5-8 March, Atlanta GA

Computational Thinking: The Developing Definition
Cynthia C. Selby

University of Southampton
Highfield

Southampton UK
44 (0) 2380 593475

C.Selby@soton.ac.uk

John Woollard
University of Southampton

Highfield
Southampton UK

44 (0) 2380 592998
J.Woollard@soton.ac.uk

ABSTRACT
Since Jeanette Wing’s use of the term computational thinking in
2006, various discussions have arisen seeking a robust definition
of the phrase. With little consensus having been found in the
intervening years, there are even suggestions that a definition is
not important. Perhaps focus should be on how computational
thinking is taught and how its acquisition might be observed.
However, in order to facilitate consistent curriculum design and
appropriate assessment, it is argued that a definition should still be
sought.

In order to contribute to the discussions surrounding a definition
of computational thinking, this review of literature spans the years
since 2006. The most frequently occurring terms, descriptions,
and meanings are identified. Consideration is given to the
motivation for inclusion or exclusion of a term by each individual
author. Where possible, if a description has been given, an
associated term is supplied.

Criteria are developed for the objectives of a computational
thinking definition, in accordance with the needs identified in the
literature. Using the criteria as a guide and the collected terms as
the vocabulary, a definition of computational thinking is proposed
which encompasses the thought processes of abstraction,
decomposition, algorithmic design, evaluation, and generalization.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and Education,
Curriculum

General Terms
Standardization, Theory

Keywords
Computational thinking, definition, abstraction, decomposition,
algorithmic thinking, algorithmic design, generalization,
evaluation

1. INTRODUCTION
The term “computational thinking,” when used by Jeanette Wing
[19] in her call to make thinking like a computer scientist a
fundamental skill for everyone, excited educators (1, 2, 3, 4, 5, 8,
11, 14, 15) and academics (6, 7, 9, 10, 12, 13, 16, 17, 20). This

presented an opportunity to promote computer science to a wider
audience, but it also introduced a challenge. Wing did not
precisely define the term and state exactly what “computational
thinking” is for everyone. Since then, there have been attempts by
authoritative individuals and groups [1, 16, 9, 6] to derive a
definition for computational thinking.

The aim of this investigation is to shed new light on the
discussions that attempt to develop a definition of computational
thinking with the objectives including: to define more narrowly,
not more broadly; to bring an order to the criteria not necessarily
to accommodate all viewpoints; to refine the definition to
facilitate assessment; to retain the validity of work that has been
done previously, such as the development of curriculums; to
separate a definition from those activities that might promote
acquisition of computational thinking skills; and to separate a
definition from those artifacts and activities that evidence the use
of those skills.

1.1 Method
A selection of literature relating to the topic of computational
thinking was examined using the following literature analysis
method. An Internet search engine query using the criteria
“Jeannette Wing” AND “computational thinking” was initially
executed. The entries of the first four pages were checked for
applicability of title. All documents identified as having
applicable titles, indicating a focus on computational thinking,
were individually inspected. This resulted in six documents. The
ACM Digital Library was searched using the term “Jeannette
Wing”. The articles were filtered according to the
abstract/introduction text and being dated post 2005. This led to
the identification of thirteen items. In addition, articles describing
proposed or current computer science curriculum designs (in
Israel [8], Germany [3], New Zealand [2], India [14], England [5],
and the USA [1]) were identified. This gave 7 more documents.
Because of repetition of comments by the same author, 4 of the
original 26 articles were discarded.

In an attempt to contribute to the development of a definition, the
publications were analyzed in chronological order to discern the
development, over time, of the phrase computational thinking.
Descriptions and suggested definitions of computational thinking
were identified in each publication. The terminology, common
across descriptions and definitions, was collated. Where
equivalences allowed, similar terms were grouped together. The
most frequently occurring individual terms and groups are
presented in the following sections. From this basic collection of
terms, a definition of computational thinking is formulated and
proposed.

Justification for the inclusion or exclusion of terms is presented on
a term-by-term basis. Justification is based on consistency of
usage and consistency of interpretation across the literature. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM X-XXXXX-XXX-X/XX/XXXX …$15.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by e-Prints Soton

https://core.ac.uk/display/17189251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Submitted: SIGCSE 2014, 5-8 March, Atlanta GA

resulting definition reflects much of the consensus found in the
literature while removing the less well-defined terms.

2. EVIDENCE FROM LITERATURE
Some authors/papers/commentaries may assert that a precise
definition of computational thinking is not required [10, 13].
However, the discussion presented in this paper is driven by a
perceived need to support professionals working in the field of
computer science education and the developing computing
curriculums. This need for definition is supported in the literature
[1, 10, 17, 16].

Guzdial [10] has suggested that a very broad definition is
acceptable. Such acceptance could shift the focus away from
what computational thinking is to how computational thinking
should be taught and how evidence of its acquisition might be
observed in learners. Professor of Computer Science, Chenglie
Hu [13], supports this by citing that teachers are confident that the
teaching of computer science does promote computational
thinking. Even though they may not know exactly how this
mechanism works, teachers recognize that the more learners
practice computation, in terms of computer science, the better at
computational thinking they become.

This same argument is expressed by some of those who design or
influence the design of computer science curriculums. Several
curriculums [5, 4, 2, 3], while acknowledging the vagueness of a
computational thinking definition, continue to include a focus on
concepts and techniques from computer science. In presenting
these concepts and techniques, the curriculums include
terminology often found in descriptions of computational
thinking. Some of this terminology will be explored in more
detail below.

Jan Cuny suggests that if computational thinking is included in a
curriculum, it requires assessment. Without agreement on a
common definition of computational thinking, it will be difficult,
if not impossible, to develop appropriate assessment tools that
actually measure the ability to think computationally [16]. So, a
rigorous and agreed definition might ensure that computational
thinking in these new curriculums for the K-12 years will be more
than, as Joyce Malyn-Smith argued, “… just a bunch of examples
that are placed into the curriculum at the discretion of individual
teachers” [17, p.33].

The balance of argument is still in favor of searching for a robust
definition of computational thinking. Although it may be
possible, without a robust definition, to identify examples of the
practice of computational thinking, the ability to measure
computational thinking may be hampered by that same lack.

3. CONSENSUS TERMS
Three terms appear consistently throughout the literature reviewed
here. There appears to be a consensus that a definition of
computational thinking should include the idea of a thought
process, the concept of abstraction, and the concept of
decomposition.

3.1 A Thought Process
When introducing the term, computational thinking, Wing [19]
described it as a way that humans think about solving problems.
It incorporates the set of mental tools used in computer science.
These tools are used to transform a difficult problem into one that
can be solved more easily. In adding his voice to Wing’s, calling
for the explicit teaching of computational thinking, Guzdial [9]
refers to computational thinking as a way of thinking about
computing. Participants in the workshop on the scope and nature

of computational thinking [16], although not tasked with defining
computational thinking, nevertheless agreed that it incorporates a
range of mental tools and concepts from computer science. This
idea is extended to represent problems as information processes
and solutions as algorithms [7]. Al Aho [7] picks up the idea of
problem transformation when he describes computational thinking
as the thought processes in formulating problems and solutions
that can be expressed as algorithms. These thought processes do
have focus; frequently that focus is described as problem solving.
Finally, Wing expresses these refinements by defining
computational thinking as “… the thought processes involved in
formulating problems and their solutions so that the solutions are
represented in a form that can be effectively carried out by an
information-processing agent” (Cuny, Snyder, Wing, 2010, cited
in [22], p.20). Because of this consensus, a definition of
computational thinking should include the concept of a thought
process.

3.2 Abstraction
Although the idea of abstraction, hiding complexity, as being part
of computational thinking is introduced by Wing in her original
article [19], the definition develops over the subsequent years.
She amends the definition to include simultaneous consideration
for multiple layers of abstraction and consideration for defining
the interfaces between the layers [20]. Even Peter Denning [18]
acknowledges that abstraction plays an important part in
computing, including programming. However, he points out that
the act of abstracting is not unique to computer science. The next
year, Wing [21] defines abstraction as the cornerstone of
computational thinking. Several participants in the workshop on
the scope and nature of computational thinking (NRC) concur that
computational thinking has a focus around the process of
abstraction, creating them and defining the relationships between
them [16]. More recently, in their report on workshops sponsored
by the Computer Science Teachers Association (CSTA) and the
International Society for Technology in Education (ISTE) to
incorporate computational thinking into the K-12 curriculum, Barr
and Stephenson [1] also include the ability to abstract in a
definition of computational thinking. The concept of abstraction
is explored by L’Heureux et al. [15] where it is one of six aspects
of their information technology approach to computational
thinking. Because of this consensus, a definition of computational
thinking should include the concept of abstraction.

3.3 Decomposition
Breaking problems down by functionality is identified by Wing
[19, 20] as part of computational thinking. Decomposition is
required when dealing with large problems, complex systems, or
complex tasks. The participants in the first NRC workshop also
identify the need for problem decomposition [16]. In the next
workshop, focusing on pedagogy, participants extend this idea.
Robert Tinker views the core of computational thinking as
breaking down big problems [17]. Danny Edelson points out that
the creation of solutions requires breaking problems down into
chunks of particular functionality and sequencing the chunks [17].
Most recently, in refining his own definition of computational
thinking, Guzdial [11] includes the use of tools including
abstraction and decomposition. In light of this consensus, a
definition of computational thinking should include the concept of
decomposition.

Three terms are proposed for inclusion in the definition of
computational thinking. Inclusion of a thought process,
abstraction, and decomposition is supported by a consensus found
in the reviewed literature. These terms are used consistently

Submitted: SIGCSE 2014, 5-8 March, Atlanta GA

across the literature. Their use does not reflect any discrepancy in
perceived meaning of the terms. Although consensus has been
demonstrated for these terms, others receive less support and more
varied interpretation. Some of these additional terms and their
applicability for inclusion in a definition of computational
thinking are discussed below.

4. POSSIBLE TERMS
Although less consistently than the terms above, several different
terms and ideas do recur across the literature reviewed here. Even
if a term or idea recurs, its interpretation is not always consistent
across articles. Several ideas proposed as part of a definition for
computational thinking are broad and high-level. A lack of
specific interpretation may make inclusion of these terms in a
definition difficult. The terms identified fall into these four areas:
thinking, problem solving, computer science and imitation terms

There are two descriptions of thinking, three general terms
associated with problem solving, three terms associated with
computer science concepts, and three terms associated with the
concept of imitation or representation. The specific terms are:
logical thinking and algorithmic thinking; problem solving,
analysis, and generalization; systems design, automation, and
more general computer science concepts; and modeling,
simulation, and visualization.

Support for inclusion or exclusion of these terms in a definition of
computational thinking is presented in this section. Justification is
based on consistency of usage and consistency of interpretation
across the literature.

4.1 Thinking Terms
Although the idea that computational thinking represents a
cognitive process attracts consensus, there are suggestions that
several specific types of thinking should also be included. These
specific types of thinking are logical thinking, algorithmic
thinking, engineering thinking, and mathematical thinking. This
section explores the viability of incorporating these types of
thinking into the definition of computational thinking.

The concept of logical thinking, although not specifically defined,
occurs several times in the literature spanning these years. Albeit
not perceived exactly as equivalent, terms to describe similar
types of thinking are grouped into this category. These include
mathematical thinking, engineering thinking, and heuristic
thinking. In her original article, Wing [19] indicates that
computational thinking incorporates heuristic reasoning to devise
a solution. In addition to abstraction and decomposition, Guzdial
[11] also includes heuristic reasoning as an appropriate tool to use
when engaging in computational thinking. Computational
thinking is equivalent to the logical reasoning used by people
[12]. Logical reasoning is included by Iyer et al. [14] in their
model computer science curriculum in order to promote high-level
thinking skills that are not necessarily subject specific.
L’Heureux et al. [15], in detailing an aspect of their information
technology approach to computational thinking, define logical
thinking as the ability to develop and test hypotheses.

Computational thinking also intersects with engineering because
computer systems interact with the real world. However,
computational thinkers can design and create virtual worlds, not
limited by physical reality [20]. Although Wing [20] states that
computer science relies on mathematics as a foundation, Gerald
Sussman [16] affirms that mathematical thinking revolves around
abstract structures while computational thinking revolves around
abstract methodology. Computational thinking could be viewed
as bringing science and engineering together. It could be viewed

as a meta-science concerned with studying methods of thinking
that are applicable to many different disciplines [16]. While the
ability to think logically, mathematically, heuristically, and from
an engineering perspective are certainly capabilities that a
computational thinker may exhibit, references to these terms in
this literature are not well expanded.

Although the term logical thinking, as described above, may not
be suitable to include in a definition of computational thinking,
the potentially analogous term, algorithmic thinking, requires
further investigation. In her original article, Wing [19] does not
use the term algorithmic thinking, preferring the word heuristic
instead. However, by 2011, she extends her definition of
computational thinking to include algorithmic and parallel
thinking [22]. David Moursund [16] suggests that computational
thinking is related to the idea of procedural thinking, as proposed
by Seymour Papert in Mindstorms. He defines a procedure as a
step-by-step set of instructions that can be carried out by a device.
The same theme is continued by Gerald Sussman [16], who
defines computational thinking as a way of devising explicit
instructions for accomplishing tasks. Inclusion of algorithmic
thinking in a curriculum for high schools appears prior to Wing’s
contribution. In the Israeli computer science curriculum, Gal-Ezer
et al. [8] placed an emphasis on inclusion of the study of
algorithmic processes. There appears to be a consensus that
computational thinking incorporates aspects of algorithmic
thinking and algorithmic design. The term algorithm is
interpreted as a step-by-step procedure for accomplishing tasks,
not just in computer science, but in other disciplines. It is
evidenced through the creation of algorithms – algorithmic
design. Because of its wide acceptance and appropriate
definition, algorithmic thinking may be applicable for inclusion in
a definition of computational thinking.

Not all of the types of thinking proposed for inclusion in the
definition of computational thinking bring further refinement to
the term. Tying a definition of computational thinking to other
terms such as logically or heuristically, with their open-ended
interpretation, or to specific disciplines such as mathematics or
engineering may not help advance the development of K-12
curriculums and may not aid in the development of computational
thinking assessment instruments. For these reasons, terms
expressing the idea of logical thinking or equivalence may dilute a
definition of computational thinking. On the other hand,
algorithmic thinking is represented consistently in literature and
its interpretation does not vary. Of all the potential terms
associated with thinking, algorithmic thinking is the only possible
term which may be suitable for inclusion in a definition for
computational thinking.

4.2 Problem Solving Terms
The idea that computational thinking has some relationship to
problem solving appears frequently in the cited literature. The
specific terms problem solving, analysis, and generalization are
most frequently employed in discussions of general problem-
solving skills. This section explores the interpretation of these
terms and the viability of incorporating them into the definition of
computational thinking.

Problem solving, in one form or another, appears frequently in the
literature presented here. There is agreement for describing
computational thinking as a problem-solving activity. However,
the literature does not illuminate problem solving in detail. Wing
[19, 21], of course, incorporates solving problems using computer
science concepts in her definition of computational thinking. The
broadness of the problem-solving skills employed in

Submitted: SIGCSE 2014, 5-8 March, Atlanta GA

computational thinking, in opposition to specific technical skills,
is pointed out by Larry Snyder [16]. A requirement for a
computing device is introduced by Barr and Stephenson [1], who
state that the essence of computational thinking is solving
problems in a way that can be implemented with a computer.
Peter Henderson [17] concisely describes computational thinking
as a type of generalized problem solving with constraints.
Problem solving is emphasized by Marcia Linn [16] who includes
in the qualities of a successful computational thinker, the ability to
engage in sustained investigative processes to generate problem
solutions. Although there appears to be a consensus that
computational thinking is a type of problem solving, the term may
not be sufficiently specific to define it. Due to the broadness of
the term, problem solving may not be suitable for inclusion in a
definition of computational thinking.

The term analysis is included by some commentators in the
definition of computational thinking. Interestingly, the term
appears in relation to both problems and solutions, as in analyze a
problem and analyze a solution. Analyze, in the context of
problems, fits the category of problem solving, as defined above.
However, analyze, in the context of solutions, could be interpreted
as the comparable term evaluate. In her initial article, Wing [19]
expresses the need for a computational thinker to make trade-offs,
by evaluating the use of time and space, power and storage. This
evaluation of algorithmic processes, including their power and
limitations, is foreshadowed by Gal-Ezer et al. [8]. Application of
the term to user interfaces is evidenced in the second objective of
the New Zealand proposed curriculum, as part of designing
programs [2]. In their IT approach, L’Heureux et al. [15] include
the ability to evaluate processes, in terms of efficiency and
resource utilization, and the ability to recognize and evaluate
outcomes. Although the term analyze attracts some agreement for
inclusion in a definition of computational thinking, descriptions of
the term found in this literature imply an evaluative process.
Therefore, because of interpretative consensus in the description,
the term evaluate may be suitable for inclusion in a definition of
computational thinking.

A specific term that appears sparingly in the literature definitions
is generalization. It is the ability to move from specific to broader
applicability, for example, understanding how to draw a square by
defining internal angles, then applying the same algorithm to
produce an approximation of a circle. The ability to recognize
parts of solutions that have been used in previous situations or that
might be used in future situations is included by Kolodner in a
definition of computational thinking [17]. These parts, or
functional pieces, can be used to solve the current problem or
combined in different ways to solve new problems [17]. The term
generalization, itself, is described in a proposed curriculum as
recognizing common patterns and by sharing common features
[5]. The idea moves forward from decomposition, described
above. Generalization is the step of recognizing how small pieces
may be reused and reapplied to similar or unique problems.
Although the exact term, generalization, is used sparingly in the
literature, the idea of recognizing and reusing common parts of a
solution is a possibility for inclusion in a definition of
computational thinking.

Possible terms examined in this section include problem solving,
analysis, and generalization. Problem solving is a broad term
which, although used consistently throughout the literature, is not
well defined. Analysis, used in the context of a problem, is also a
broad term, often incorporating the ideas of abstraction and
decomposition, as discussed above. Analysis, used in the context
of a solution, is analogous to evaluation and is used consistently in

the literature. Although the term generalization is used
infrequently in the literature, there are descriptions of analogous
processes. Therefore, from this set of possible terms, the ones
used most consistently, with the least disparity of interpretation,
and which may be suitable for inclusion in a definition of
computational thinking are evaluation and generalization.

4.3 Computer Science Terms
The authors cited here concede that computational thinking has a
deep relationship with computer science. Some suggest specific
computer science terminology to be included in a definition of
computer science. The specific terms include systems design,
automation, and more general computer science concepts such as
recursion and recovery through redundancy. This section
explores the viability of incorporating these terms into the
definition of computational thinking.

Systems design, although not mentioned frequently, is still used to
describe computational thinking. Designing systems based on
concepts used in computer science is mentioned by Wing [19].
Again, this inclusion is foreshadowed by Gal-Ezer et al. [8] who
incorporates the study of the design and implementation of
computing systems in their curriculum. One of Peter Denning’s
Great Principles of Computing includes a category based on the
design and building of software systems [6]. He goes further in
describing systems as one of the four core practices, in which
computing professionals engage, along with programming,
modeling, and innovating [18]. The focus in each of these cases is
systems design as a product oriented process. It is evidence of the
ability to think computationally, not necessarily a definition of it.
Therefore, the term systems design may not be suitable for
inclusion in a definition of computational thinking.

Another term, popularized by Wing in defining computational
thinking, is automation. She connects the term to that of
abstraction when discussing the mechanization of abstraction
layers and the relationships between them [20]. Even Denning
acknowledges that this is what happens when programming [18].
Later, a stronger connection is made by Wing [21] when defining
computing as the “automation of our abstractions” (p. 3718). This
introduces the need for a computational device to interpret the
abstractions, the need for a computer to execute a program. The
process or processes required in the creation of these automations
may be possible terms for defining computational thinking. On
the other hand, a program artifact, similar to system design as
discussed above, is only evidence that computational thinking has
taken place. Previously, a consensus was presented that
emphasized the thought process aspect of computational thinking.
Based on that consensus, automation, interpreted as a program
artifact, may not be a useful addition to the definition of
computational thinking.

Throughout the literature, terms closely related to the general
content of computer science studies appear in descriptions of
computational thinking. Wing [20] herself introduces computer
science concepts such as thinking recursively, interpreting code as
data and data as code, type checking, prevention, detection,
recovery through redundancy, damage containment, error
correction, prefetching, and caching. Additional concepts such as
parallel processing, testing, debugging, search strategies,
algorithmic complexity, and pattern matching are recognized in
the NRC report [16]. Barr and Stephenson [1] include the abilities
to think iteratively and recursively. Closer analysis reveals that
not all of these concepts are unique to the field of computer
science. For example, mathematicians think iteratively and
engineers plan for recovery through redundancy. While each of

Submitted: SIGCSE 2014, 5-8 March, Atlanta GA

these concepts may be mastered by computational thinkers, none
of them uniquely defines or helps narrow a definition of
computational thinking. Therefore, terms interpretable as
computer science content may not be helpful in defining
computational thinking.

Possible terms examined in this section include systems design,
automation, and more general computer science concepts such as
recursion and recovery through redundancy. Systems design,
resulting in a product, is evidence of the use of computational
thinking skills, not a definition of it. Again, automation, as a
product or program, evidences the use of computational thinking
skills. Finally, those terms that are interpretable as computer
science content do not bring focus to the definition of
computational thinking. Therefore, none of the suggested terms
discussed in this section appears suitable to be included in a
definition of computational thinking.

4.4 Imitation Terms
Three additional terms, also used in discussions of computational
thinking, are modeling, simulation, and visualization. These
terms appear frequently in the cited literature. This section
explores the viability of including these terms in a definition of
computational thinking.

Wing [19] began by defining computational thinking as modeling
the appropriate parts of a problem to facilitate a solution. Later,
Brian Blake [16] insists that the definition of computational
thinking should include modeling and visualizations. Brinda,
Puhlmann, and Schulte [3] have identified, as one achievable
curriculum standard, the processes involved in modeling data. On
the other hand, Edward Fox and Janet Kolodner [16] point out that
it is the manipulation of abstractions (models, simulations, and
visualizations) that contribute to the development of
computational thinking skills. Observing the results of changing
variable values, forming hypotheses, finding anomalies in data,
and identifying invariants can all be achieved by interacting with
models, simulations, and visualizations. The manipulation of
these representations are agreed to enhance the development of
computational thinking skills, but do not necessarily define it.
Although these tools are effective aids in developing
computational thinking skills, they may not be suitable for
inclusion in a definition of computational thinking.

. The following section, based on the term’s consistency of use
and consistency of interpretation across the literature, summarizes
the arguments presented above and suggests a definition of
computational thinking.

5. PROPOSED DEFINITION
The intent of this investigation is to shed new light on the
discussions that attempt to develop a definition of computational
thinking. The objectives for such a definition, as stated above,
are: to define more narrowly, not more broadly; to bring an order
to the criteria not necessarily to accommodate all viewpoints; to
refine the definition to facilitate assessment; to retain the validity
of work that has been done previously, such as the development of
curriculums; to separate a definition from those activities that
might promote acquisition of computational thinking skills; and to
separate a definition from those artifacts and activities that
evidence the use of computational thinking skills. Justification for
inclusion or exclusion is based on consistency of usage and
consistency of meaning across the literature. The resulting
definition reflects much of the consensus found in the literature
while removing the less well-defined terms.

Table 1 summarizes the justification for each prospective term’s
inclusion in or exclusion from a proposed definition of
computational thinking.

Term Status Justification

A thought
process

Include Consensus found in the
literature

Abstraction Include Consensus found in the
literature

Decomposition Include Consensus found in the
literature

Logical thinking Exclude Broad term, not-well defined

Algorithmic
thinking

Include Well-defined across multiple
disciplines

Problem solving Exclude Broad term, evidences the use
of skills; develops acquisition
of skills

Evaluation Include Well-defined across multiple
disciplines

Generalization Include Well-defined concept, although
the term may not be familiar

Systems design Exclude Evidences the use of skills

Automation Exclude Evidences the use of skills

Computer
science content

Exclude Evidences the use of skills

Modeling,
simulation, and

Exclude Evidences the use of skills in
their creation; manipulation
develops acquisition of skills

Table 1. Computational Thinking Definition Terminology

As supported by the preceding arguments, computational thinking
is an activity, often product oriented, associated with, but not
limited to, problem solving. It is a cognitive or thought process
that reflects

 the ability to think in abstractions,
 the ability to think in terms of decomposition,
 the ability to think algorithmically,
 the ability to think in terms of evaluations, and
 the ability to think in generalizations.

This proposed definition attempts to incorporate only those terms
for which there is a consensus in the literature or those terms that
are well defined across disciplines. The intent is to focus on the
thinking aspect of the original phrase.

In other words, computational thinking is a focused approach to
problem solving, incorporating thought processes that utilize
abstraction, decomposition, algorithmic design, evaluation, and
generalizations.

6. CONCLUSION
There is a genuine need for a robust and agreed definition of
computational thinking. The definition can facilitate the
development of computer science curriculums in line with Wing’s
original vision to encourage computational thinking for all. The
definition may also ensure that the K-12 curriculums will not
become just a collection of interesting resources presented at
teachers’ discretions. The definition may ensure that appropriate
assessment tools can be developed which measure computational
thinking skills. The description narrows the definition by

Submitted: SIGCSE 2014, 5-8 March, Atlanta GA

excluding some proposed terms. It separates the practice of skills
and the results or evidence of the application of skills from the
activity of thinking. However, it does not invalidate the
curriculum designs, especially as they often focus on the doing or
evidence of doing computational thinking. It leaves open the
possibilities to develop assessment tools to measure the ability to
think computationally. Of course, the discussions of a definition
for computational thinking are not yet concluded. It may well be
that the definition changes as understanding of computational
thinking develops over the coming years. This is especially true
as younger learners are exposed to the concepts in fulfillment of
Wing’s original vision of computational thinking for all. This
review of the literature simply attempts to inform these
discussions.

7. REFERENCES
[1] Barr, V. & Stephenson, C. 2011. Bringing computational

thinking to K-12: what is Involved and what is the role of the
computer science education community? ACM Inroads, 2,
48-54.

[2] Bell, T., Andreae, P. & Lambert, L. 2010. Computer Science
in New Zealand high schools. Proceedings of the Twelfth
Australasian Conference on Computing Education - Volume
103. Brisbane, Australia: Australian Computer Society, Inc.

[3] Brinda, T., Puhlmann, H. & Schulte, C. 2009. Bridging ICT
and CS: educational standards for computer science in lower
secondary education. Proceedings of the 14th annual ACM
SIGCSE conference on Innovation and technology in
computer science education. Paris, France: ACM.

[4] Computer Science Teachers Association Task Force. 2011.
K–12 Computer Science Standards, New York, ACM.

[5] Computing at School Working Group. 2012. Computer
Science: A curriculum for schools. Available:
http://www.computingatschool.org.uk/data/uploads/Computi
ngCurric.pdf [Accessed 26-12-2012].

[6] Denning, P. J. 2007. Computing is a natural science.
Commun. ACM, 50, 13-18.

[7] Denning, P. J. 2011. Ubiquity symposium: What have we
said about computation?: closing statement. Ubiquity, 2011,
1-7.

[8] Gal-Ezer, J., Beeri, C., Harel, D. & Yehudai, A. 1995. A high
school program in computer science. Computer, 28, 73-80.

[9] Guzdial, M. 2008. Education: Paving the way for
computational thinking. Commun. ACM, 51, 25-27.

[10] Guzdial, M. 2011. A Definition of Computational Thinking
from Jeannette Wing. Computing Education Blog [Online].
Available from:
http://computinged.wordpress.com/2011/03/22/a-definition-
of-computational-thinking-from-jeanette-wing/ [Accessed
22-03-11].

[11] Guzdial, M. 2012. A nice definition of computational
thinking, including risks and cyber-security. Computing
Education Blog [Online]. Available from:
http://computinged.wordpress.com/2012/04/06/a-nice-
definition-of-computational-thinking-including-risks-and-
cyber-security/ [Accessed 06-04-12].

[12] Henderson, P. B., Cortina, T. J. & Wing, J. M. 2007.
Computational thinking. Proceedings of the 38th SIGCSE
technical symposium on Computer science education.
Covington, Kentucky, USA: ACM.

[13] Hu, C. 2011. Computational thinking: what it might mean
and what we might do about it. Proceedings of the 16th
annual joint conference on Innovation and technology in
computer science education. Darmstadt, Germany: ACM.

[14] Iyer, S., Baru, M., Chita, V., Khan, F. & Vishwanathan, U.
2010. Model Computer Science Curriculum for Schools.
Available: http://www.cse.iitb.ac.in/~sri/papers/CSC-
April2010.pdf [Accessed 28-12-2012].

[15] L'Heureux, J., Boisvert, D., Cohen, R. & Sanghera, K. 2012.
IT problem solving: an implementation of computational
thinking in information technology. Proceedings of the 13th
annual conference on Information technology education.
Calgary, Alberta, Canada: ACM.

[16] National Research Council. 2010. Report of a Workshop on
the Scope and Nature of Computational Thinking. Available:
http://www.nap.edu/catalog.php?record_id=12840 [Accessed
10-05-2011].

[17] National Research Council. 2011. Report of a Workshop of
Pedagogical Aspects of Computational Thinking. Available:
http://www.nap.edu/catalog.php?record_id=13170 [Accessed
10-10-2011].

[18] Ubiquity. 2007. An Interview with Peter Denning on the
great principles of computing. Ubiquity, 2007, 1-1.

[19] Wing, J. 2006. Computational thinking. Commun. ACM, 49,
33-35.

[20] Wing, J. 2007. Computational Thinking [Online]. Available:
http://www.cs.cmu.edu/afs/cs/usr/wing/www/Computational
_Thinking.pdf [Accessed 14-12-12].

[21] Wing, J. 2008. Computational thinking and thinking about
computing. Philosophical Transactions of The Royal Society
A, 366, 3717-3725.

[22] Wing, J. 2011. Research Notebook: Computational Thinking
- What and Why? The Link. Pittsburgh, PA: Carneige
Mellon.

