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Abstract

The recent roll-out of rapid diagnostic tests (RDTs) for malaria has highlighted the decreasing proportion of malaria-attributable illness in

endemic areas. Unfortunately, once malaria is excluded, there are few accessible diagnostic tools to guide the management of severe febrile

illnesses in low resource settings. This review summarizes the current state of RDT development for several key infections, including

dengue fever, enteric fever, leptospirosis, brucellosis, visceral leishmaniasis and human African trypanosomiasis, and highlights many

remaining gaps. Most RDTs for non-malarial tropical infections currently rely on the detection of host antibodies against a single infectious

agent. The sensitivity and specificity of host-antibody detection tests are both inherently limited. Moreover, prolonged antibody responses

to many infections preclude the use of most serological RDTs for monitoring response to treatment and/or for diagnosing relapse.

Considering these limitations, there is a pressing need for sensitive pathogen-detection-based RDTs, as have been successfully developed

for malaria and dengue. Ultimately, integration of RDTs into a validated syndromic approach to tropical fevers is urgently needed. Related

research priorities are to define the evolving epidemiology of fever in the tropics, and to determine how combinations of RDTs could be

best used to improve the management of severe and treatable infections requiring specific therapy.
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Introduction

The recent roll-out of rapid diagnostic tests (RDTs) for malaria

has highlighted the decreasing proportion of malaria-attribut-

able illness in endemic areas [1–4], and that the proportion of

patients evaluated for fever suffering from a condition other

than malaria is likely to continue increasing with time [5–8].

Unfortunately, once malaria is excluded, there are few

accessible diagnostic tools to guide the management of severe

febrile illnesses in low resource settings. Making matters worse,

very little epidemiological data underpins clinicians’ assessment

of prior probability in vast areas of Africa and Asia. How-

ever, wherever systematically studied, various non-malarial

infections have been found to be major causes of febrile

syndromes in tropical settings, such as relapsing fever [9],

leptospirosis [10,11], rickettsial infection [12], dengue [13] or

typhoid fever [14]. Such infections can be severe and most are

treatable with specific therapy, but often clinically indistin-

guishable without confirmatory tests.

Based on the successful contribution of RDTs to malaria and

HIV diagnosis, several point-of-care assays and RDTs designed

for peripheral health facilities have been or are being developed

for other tropical infections to improve patient care and

epidemiological surveillance. The purpose of this article is to

review currently available RDTs for the individual case-manage-

ment of non-malarial tropical infections presenting with acute
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or persistent fever. Priority has been given to RDTs

detecting potentially severe illnesses of proven or suspected

epidemiological importance, requiring specific management, for

which ‘immediate’ diagnosiswould bemost useful. In this review,

we will not focus on RDTs developed for febrile illnesses with

predominantly focal symptoms, such as respiratory or diarrho-

eal infections.

For this review, RDTs are defined as any test yielding results

within minutes and that can be performed in health centres with

little infrastructure or trained personnel, preferably without

electricity. These are nearly all immunoassays, in various formats.

New generations of such tests are increasingly single-step lateral

flow assays (immunochromatographic tests in the form of a

dipstick or cassette), which offer technical and operational

advantages over older formats such as latex agglutination kits,

flocculation assays and vertical flow-through assays [15–17].

Diseases

The epidemiological, clinical and reference diagnostic features

of the diseases presented below are summarized in Table 1.

Dengue and chikungunya

The retrospective nature of classical serological tests to

confirm dengue does not help clinicians to manage acutely ill

patients (Table 1). The new combined RDTs that detect both

IgM/IgG and the NS1 antigen provide immediate results and

are able to diagnose dengue at different points in time after

initiation of symptoms (Table 2).

The NS1 antigen is highly specific and detectable in serum

from days 1 to 9 after fever onset [18,19]; its sensitivity depends

on the type of test used and the time since onset of symptoms (it

declines in parallel with viraemia), and is higher in primary than

secondary dengue [20–22]. Tests detecting specific IgM anti-

bodies are generally sensitive for diagnosing dengue, but not in

the first days of fever. In a study among travellers in Israel, IgM

became detectable between days 4 and 8 of fever [23]. Tests that

combine detection of NS1 and IgM can therefore diagnose

dengue throughout the febrile illness. The sensitivity of

combined NS1/antibody tests was 76–93% in six recent studies

conducted in endemic areas (Table 2). Sensitivity was even

higher (96%) among travellers, who are more likely to present

with primary dengue [24]. Whereas specificity of the NS1 band

is very high (>95% in most studies), specificity of the IgM band is

sometimes lower in endemic areas due to cross-reactivity with

other pathogens, mainly Chikungunya virus [25]. Only two

combined NS1/antibody RDTs that have been evaluated in

endemic areas are commercially available: RDT from Panbio

(Inverness Medical Innovations, Brisbane, Australia), presently

available in two separate cassettes (Panbio Dengue Early

RapidTM, detecting NS1, and Panbio Dengue Duo CassetteTM,

detecting IgM/IgG), and the SD Bioline Dengue DuoTM (Standard

Diagnostics, Kionggi, Korea), detecting both NS1 and IgM/IgG in

two cassettes bonded together.

Chikungunya is an emerging alphavirus with wide geograph-

ical distribution [26]. RDTs based on IgM detection have been

recently developed with limited field validation. Sensitivity was

poor in the first week of illness but increased afterwards [27,28].

Enteric fever

The diagnosis of enteric fever is notoriously difficult, owing to

its non-specific clinical presentation, a very low number of

circulating bacteria in blood [29], and antigenic similarity to

other members of the Enterobacteraceae [30]. The Widal test is

a simple serological assay detecting antibodies against lipo-

polysaccharide (LPS; O) and flagellar (H) antigens of S. Typhi.

Introduced over 115 years ago, this test continues to be

widely used despite its unacceptably low accuracy [31–35].

Numerous RDTs based on host antibody detection have

attempted to improve diagnostic performance, with limited

success (Table 3). The IDL TUBEX TFTM (IDL Biotech AB,

Bromma, Sweden) is a semi-quantitative colorimetric test

detecting anti-0:9 IgM antibodies. Results are available within

3 min at room temperature and require minimal laboratory

supplies. The TyphidotTM platform (Reszon Diagnostics Interna-

tional Sdn. Bhd., Selangor, Malaysia) qualitatively detects anti-

bodies to the outer membrane protein (Vi; OMP) and is

commercialized in three forms: the TyphidotTM detects either

IgM or IgG antibody via an enzyme immunoblot assay and yields

qualitative results in 60 min; the Typhidot Rapid IgMTM and

Typhidot Rapid IgM IgG ComboTM are immunochromatographic

(ICT) cassettes featuring separate lines for IgG and IgM and yield

results in 15 min. Other commercialized RDTs include the RTI

LPS IgM ICTTM (Royal Tropical Institute, Amsterdam, the

Netherlands; now produced by LifeAssay Diagnostics Ltd)

detecting anti-LPS (O antigen) IgM, and the Typhoid Rapid

TestTM (SD Bioline, Kionggi, Korea) detecting total IgM/IgG

against an unspecified S. Typhi antigen. All of these RDTs detect

antibodies against antigens selected from S. Typhi isolates.

TUBEX and Typhidot are non-reactive with sera from S.

Paratyphi infections [36]. Conversely, the RTI LPS IgM ICT is

equally sensitive for infections from S.Typhi andS.Paratyphi [37].

In general, the sensitivity of serological tests is unsatisfac-

tory initially and increases with longer duration of illness. In

Indonesia, the sensitivity of Widal and the RTI LPS IgM ICT

increased from 43–48% at days 4–6 of fever to 90–100% after

more than 9 days, compared with positive blood cultures [37].

The reported specificity of RDTs is affected by imperfect

sensitivity of reference standard blood cultures, and rises from
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46–80% when clinical suspects with negative blood cultures are

used as controls, to 83–100% when controls have an

established alternative diagnosis (Table 3). In addition, numer-

ous other host factors may affect the specificity of antibody-

detection tests. Thus, the modest accuracy of available RDTs

for early enteric fever precludes their routine use, except

perhaps in the setting of a high pre-test probability, such as

during outbreaks [14].

TABLE 1. Epidemiology, clinical features and reference diagnostic tests of dengue fever, enteric fever, leptospirosis, brucellosis,

human African trypanosomiasis and visceral leishmaniasis

Disease Burden and epidemiology Clinical features Reference diagnostic testing

Dengue fever Annual global incidence estimated at
50–100 million cases. 500 000 people
with severe dengue require
hospitalization each year, esentially
children, of whom about 2.5% die.
Dengue is found in tropical and
sub-tropical climates worldwide,
mostly in urban and semi-urban areas.
About half of the world’s population
is now at risk.
Transmitted by Aedes mosquitoes
(e.g. A. aegypti).
No animal reservoir

Suspect case defined by acute fever with
at least two of the following: headache,
retro-orbital pain, myalgia, arthralgia,
nausea, vomiting, swollen glands or
rash. Symptoms usually last for 2–7 days.
Severe dengue is characterized by
shock, respiratory distress, severe
bleeding or organ impairment. Warning
signs occur 3–7 days after the first
symptoms.

Isolation of the dengue virus from
serum, plasma, leukocytes or tissues.
Demonstration of a fourfold or
greater rise in reciprocal IgG or
IgM antibody titres to one or more
dengue virus antigens in paired
serum samples,
Detection of viral genomic sequences
in tissue, serum or CSF samples
by PCR.

Enteric fever
(Salmonella
Typhi/Paratyphi)

Annual global incidence estimated at
27 million cases (22 million S. Typhi,
5 million S. Paratyphi) with 216 150
deaths [80]. Occurs worldwide in
low/middle income countries, particularly
south/southeast Asia. African burden less
clear. Under-reporting and diagnostic
difficulty make precise estimates difficult.
Faecal-oral transmission.
No animal reservoir.

Clinical spectrum ranging from fever and
malaise to severe complications such as
intestinal perforation and encephalopathy.
Fever generally increases abruptly after
first week of illness in untreated patients.
Splenomegaly and fleeting rash may occur.
Diarrhoea in less than 50% of cases.

Recovery of Salmonella
Typhi/Paratyphi from blood or bone
marrow (BM). Recovery from intestinal
tract may represent chronic carriage.
Sensitivity <100% for all specimens,
depending on many factors. Combination
of several samples (blood, BM, urine,
gastric aspirates, rose spots) increases
yield [81].
Drawing sufficient volume of blood
(i.e � 20–30 mL) is the most
important factor affecting the yield
of blood cultures [29,82].

Leptospirosis Zoonotic disease caused by bacteria of the
genus Leptospira.
Worldwide distribution but true disease
burden unknown. Most common in urban
slums and rural tropics. Epidemics often
seen during flooding.
Main transmission to humans by exposure to
water and soil contaminated by the urine of
infected animals (e.g. rodents) [83].

Wide spectrum from asymptomatic to
fulminant disease. Fever, malaise,
headaches, severe myalgias, conjunctival
suffusion, anorexia, nausea, vomiting
followed by aseptic meningitis in up to
25% cases. Severe forms: jaundice, renal
failure and haemorrhage (Weil’s
disease) and/or respiratory distress

Culture from blood or other body
fluids has low sensitivity and very
slow growth rate.
The microscopic agglutination test
(MAT) detects serogroup-specific
IgM and IgG antibodies. Paired sera
required for definitive diagnosis
(seroconversion or fourfold increase
in titres)
Conventional and real-time PCR in
blood or serum useful for early
diagnosis, despite limited sensitivity
[51,84].

Brucellosis
(B. melitensis,
B. abortus, B. suis)

Leading zoonosis in the world, with annual
global incidence of ~500 000 cases, and
prevalence � 10/100 000 in some countries [85].
Transmission by contact with fluids from
infected animals or derived food products.
Reservoir is domestic livestock, differs by
Brucella species.
Worldwide occurrence, highest in Mediterranean
basin, Indian subcontinent, Mexico and Central
and South America.

Extremely wide clinical spectrum. Acute
disease presents as fever � focal
symptoms (e.g. arthritis). Chronic
disease (e.g. abscess) may be more
difficult to diagnose.
Treatment requires at least 6 weeks of
dual drug therapy, and relapses are
frequent.

Recovery of Brucella species in culture
of any body fluid or tissue.
Blood or bone marrow have highest
yield, and may require prolonged
incubation (up to 3 weeks) if manual
culture systems are used.

Human African
trypanosomiasis (HAT)

Exclusively in Africa; due to Trypanosoma brucei
gambiense or T. b. rhodesiense
T. b. gambiense: Foci in rural areas of west and
central Africa; most prevalent in Democratic
Republic of Congo, Central African Republic
and southern Sudan;since 2009, less than 10 000
cases reported annually but proportion of
under-reported cases unknown [86].
T. b. rhodesiense: Foci in rural areas of east and
southern Africa; less than 200 cases reported
in 2009 [86].

First (early) haematolymphatic stage:
intermittent fever, headache, pruritus,
lymphadenopathy.
Second (late) meningo-encephalitic stage:
sleep disturbances and neuropsychiatric
disorders.
More severe symptoms and faster
evolution to the meningoencephalitic
stage for T. b. rhodesiense; fatal if left
untreated.

Microscopic examination of
trypanosomes in body fluid (lymph,
blood or cerebrospinal fluid [CSF]).
Need for concentration methods for
T. b. gambiense HAT (e.g.
microhaematocrit centrifugation
technique, mini-anion-exchange
centrifugation technique) because of
scanty parasites. Diagnosis of second
stage HAT based on presence of
trypanosomes and/or more than 5
white blood cells per lL in CSF [58].

Visceral leishmaniasis Systemic protozoan infection due to Leishmania
donovani in South Asia and East Africa or
L. infantum in Latin America and the
Mediterranean region. 200 000–400 000 cases
occur annually in 70 countries. The five most
affected countries are India, Bangladesh, Sudan,
South Sudan and Ethiopia [87]. Fatal if left
untreated.

Prolonged fever, malaise, weight loss,
epistaxis, cough, enlarged liver and
spleen, lymphadenopathies, progressive
anaemia, concomitant infections
(e.g. pneumonia).

Microscopic examination of Leishmania
amatigote forms in aspirates from
lymph node, bone marrow or spleen.
Sensitivity >90% only with spleen
aspirate examination but risk of
major bleeding ~0.1%. Sensitivity
improved by culture or PCR. Various
serological methods with high
sensitivity and specificity: ELISA, IF,
Western blot, DAT [61,88].
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The detection of S. Typhi antigens in clinical samples has

been shown to have comparable accuracy to antibody-

detection tests [38–40]. A valuable alternative use for putative

RDTs based on such assays could be the rapid identification of

S. Typhi/Paratyphi in culture media, greatly simplifying blood

cultures in basic laboratories.

Leptospirosis

The Lepto lateral flowTM has been developed by the Royal

Tropical Institute (KIT, Amsterdam, the Netherlands) [41]. It is

based on the binding of specific IgM antibodies to a whole-cell

antigen prepared from the non-pathogenic Patoc 1 strain. In the

Andaman Islands, India, its sensitivity increasedwith the duration

of illness, from 34% on days 2–3 to 63% on days 4–5 and 85% at

the endof thefirstweek,with high specificity (94%) [42]. It is now

commercialized as Test-itTM Leptospira (LifeAssay Diagnostics).

Most publications of the late 1990s and early 2000s evaluated

earlier formats of RDTs developed by the KIT or commercial

RDTs that are, to our knowledge, no longer available [43–48].

The persistence of anti-leptospiral IgM after infection and

frequent exposure to non-pathogenic leptospires (e.g. during

farming) are likely to explain the limited specificity of ELISA and

RDTs using whole-cell antigens, as reported by some [48–50].

Diagnostic accuracy could theoretically be improvedwith assays

using more specific antigens [51]. A novel Dual Path Plat-

formTM(DPP) assay (Chembio Diagnostics Systems, Medford,

USA) incorporates recombinant leptospiral immunoglobulin-

like proteins as antigens. In a phase 2 study conducted in Latin

America, the assay achieved sensitivity of 85% and 64% in severe

and mild leptospirosis, respectively. Like the other serological

tests, sensitivity increasedwith durationof symptoms. Specificity

was high (>93%) in various control groups butmoderate (86%) in

healthy slum residents, suggesting some background immunity

also against this antigen in highly exposed populations [52].

The detection of leptospiral antigen in the blood or urine is

a promising approach, as it may allow for earlier diagnosis (i.e.

before the appearance of specific IgM) and therefore prompter

treatment to prevent late clinical complications [53].

Brucellosis

Serological tests detecting antibodies to Brucella spp. antigens

are the most frequently used modality for acute and chronic

TABLE 2. Selected studies evaluating RDTs for dengue fevera (adapted from Blacksell et al. [89])

Author Year Assay Country
Sample timing
(days of illness) Reference comparator

Antigen or
antibody
detected

Sensitivity%
(95% CI)

Specificity%
(95% CI)

Shu et al. [90] 2009 BioRad STRIP Taiwan 1–7 (median: 2) PCR or paired ELISA NS1 77.3 (0.54–0.92) 100
Hang et al. [91] 2009 Vietnam 1–6 PCR or paired ELISA NS1 72.8 (64.1–80.3) 100 (91.6–100)
Chaiyaratana et al. [92] 2009 Thailand 1–8 NS1 Ag ELISA NS1 98.9 (96.8–100) 90.6 (85.6–95.7)
Ramirez et al. [93] 2009 Venezuela 2–6 PCR or paired ELISA NS1 67.8 (57.4–76.7) 94.4 (80.9–99.4)
Lima et al. [94] 2010 Brazil 1–6 Combinations of viral

culture, PCR, NS1
Ag ELISA

NS1 89.6 (84.7–93.2) 99.1 (96.9–99.9)

Tricou et al. [95] 2010 Vietnam 1–6 PCR or paired ELISA NS1 61.6 (55.2–67.8) 100 (93.8–100)
Osorio et al. [96] 2010 Colombia 2–7 (median: 4) Viral culture, PCR or

paired ELISA
NS1 57.7 (47.6–67.3) 95.3 (84.2–99.4)

Blacksell et al. [25] 2011 Sri Lanka Median 5; IQR 2–7 AFRIMS ELISA paired
samples

NS1 58.6 (48.2–68.4) 98.8 (95.6–99.9)

Tricou et al. [95] 2010 SD Bioline
Dengue Duo

Vietnam 1–6 PCR or paired ELISA NS1 62.4 (56.1–68.5) 100 (93.8–100)
Wang and Sekaran [97] 2010 Malaysia 1–15 Virus isolation, PCR,

paired ELISA
NS1 65.4 (58.5–72.3) 98.8 (96.2–100)

Osorio et al. [96] 2010 Colombia 2–7 (median: 4) Viral culture, PCR or
paired ELISA

NS1 51 (44.1–57.7) 96.7 (90.8–99.3)

Blacksell et al. [25] 2011 Sri Lanka Median 5; IQR 2–7 Paired ELISA NS1 48.5 (38.5–58.7) 99.4 (96.6–100)
Fry et al. [98] 2011 Panbio Early

Rapid NS1
Vietnam 1–5 (84.5%<3) PCR or paired ELISA NS1 69.2 (62.8–75.6) 96% (92.2–99.8)

Fry et al. [98] 2011 Malaysia 1–15 (70% � 5) PCR or paired ELISA NS1 68.9 (61.8–76.1) 96.7 (82.8–99.9)
Blacksell et al. [25] 2011 Sri Lanka Median 5; IQR 2–7 Paired ELISA NS1 58.6 (48.2–68.4) 92.5 (87.3–96.1)
Wang and Sekaran [97] 2010 SD Bioline

Dengue Duo
Malaysia 1–15 Virus isolation, PCR,

rising titre in a
paired sample using
MAC ELISA

IgM 53.5 100

Blacksell et al. [25] 2011 Sri Lanka Median 5; IQR 2–7 Paired ELISA IgM 79.2 (70.5–87.2) 89.4 (83.5–93.7)
Blacksell et al. [25] 2011 Panbio Dengue

Duo Cassette
Sri Lanka Median 5; IQR 2–7 Paired ELISA IgM 70.7 (60.7–79.4) 80.0 (73.0–85.9)

Blacksell et al. [25] 2011 Merlin IgM Sri Lanka Median 5; IQR 2–7 Paired ELISA IgM 72.7 (62.9–81.2) 73.8 (66.2–80.4)
Blacksell et al. [25] 2011 Biosynex IgM Sri Lanka Median 5; IQR 2–7 Paired ELISA IgM 79.8 (70.5–87.2) 46.3 (38.3–54.3)
Tricou et al. [95] 2010 SD Dengue

Duo Bioline
Vietnam 1–6 PCR or paired ELISA NS1/IgM 75.5 (69.6–80.8) 100 (93.8–100)

NS1/IgM/IgG 83.7 (78.4–88.1) 97.9 (88.7–99.9)
Wang and Sekaran [97] 2010 Malaysia 1–15 Virus isolation, PCR,

paired ELISA
NS1/IgM 88.7 (84.0–93.3) 98.8 (96.3–100)

Osorio et al. [96] 2010 Colombia 2–7 (median: 4) Viral culture, PCR or
paired ELISA

NS1/IgM 78.4 (72.4–83.7) 91.3 (83.6–96.2)
NS1/IgM/IgG 80.7 (75–85.7) 89.1 (81–94.7)

Blacksell et al. [25] 2011 Sri Lanka Median 5; IQR 2–7 Paired ELISA NS1/IgM 92.9 (83.9–97.1) 88.8 (82.8–93.2
Fry et al. [98] 2011 Panbio Early Rapid

NS1 and Duo assay
Malaysia 1–15 (70% � 5) PCR or paired ELISA NS1/IgM 89.0 (85.2–92.8) Not reported

NS1/IgM/IgG 93 Not reported
Blacksell et al. [25] 2011 Sri Lanka Median 5; IQR 2–7 Paired ELISA NS1/IgM 89.9 (82.2–95.0) 75.0 (67.6–81.5)

aStudies were included if: (i) study undertaken in a dengue endemic country; (ii) test detecting either NS1 or IgM or both; (iii) reference method including at least PCR or ELISA on
paired samples when evaluating NS1 and at least ELISA on paired samples when evaluating IgM; (iv) sample timing described; (v) study published from 2009 onwards.

ª2013 The Authors

Clinical Microbiology and Infection ª2013 European Society of Clinical Microbiology and Infectious Diseases, CMI

4 Clinical Microbiology and Infection CMI



infection. The Rose Bengal test (RBT) is a rapid slide-

agglutination assay that uses a stained B. abortus suspension

to detect anti-Brucella antibodies. It has long been used as a

screening test in low-resource settings, but confusion about its

diagnostic accuracy led the WHO to recommend that positive

RBT results be confirmed by another method. Concerns have

focused on perceived low sensitivity for chronic infection,

cross-reactivity with other pathogens and the prozone effect.

However, the RBT was recently assessed in a large study using

stored samples from culture-confirmed cases (n = 208) and

controls with other illnesses (n = 1159) [54]. RBT results

were highly concordant with other serological methods,

except when positive titres were lower than 1:8, for which

confirmation using another test appears necessary.

An RDT has recently been developed that could allow testing

at the point of care. The Lateral Flow immunochromatography

assayTM (LFiC; KIT) detects IgM and IgG to the polysaccharide

section of the Brucella S. lipopolysaccharide (S-LPS; O) antigen.

The test is simple, uses fingerprick blood, does not require

refrigeration, and has shown sensitivity of 96–100% and

specificity reaching 99% when used for disease confirmation,

compared with positive blood cultures [55,56], and high

concordance with standard serological methods [54,57]. Fur-

ther studies are needed to define LFiC performance in different

human epidemiological and clinical settings (e.g. relapse). The

LFiC is now produced by LifeAssay Diagnostics Ltd.

Human African trypanosomiasis

For decades, the card agglutination test for trypanosomiasis

(CATT) has been used for screening and diagnosis of T.

b. gambienseHAT. Although not an RDT sensu stricto (it requires

electricity and other equipment), it can be performed in remote

settings. Its diagnostic accuracy (sensitivity, 87–98% on undiluted

whole blood; specificity, 95%) has been evaluated in the context

of mass screening of predominantly asymptomatic individuals

[58], but never in clinically suspect patients (e.g. with persistent

fever or neurological disorders). A new and more practical

format (CATT-D10), with similar performance, has been devel-

oped to screen a smaller number of patients in peripheral health

facilities [59]. Two lateral flow immunochromatographic RDTs

for the serodiagnosis of T. b. gambiense HAT have reached

advanced stages of development: (i) the ‘Immunochromato-

TABLE 3. Selected studies evaluating RDTs for enteric fevera

Author Year Assay Country
Sample timing
(days of illness)

True positive
definition

True negative
definition

Sensitivity%
(95% CI)

Specificity%
(95% CI)

Keddy
et al. [99]

2011 IDL TUBEX�

TF (IgM)
South Africa
Tanzania

Not reporteda Automated blood
culture (Bac-T Alert)

Febrile patients with
negative blood cultures

73 (60.3–83.4) 69 (49.2–84.7)

Ley
et al. [100]

2011 Tanzania Not reporteda Automated blood
culture (BACTEC)

All non-typhi Bacteraemia 79 (52–81) 89 (81–94)

Naheed
et al. [101]

2008 Bangladesh Median 3
(range 1–30)

Manual blood culture Blood culture neg and
other bacteraemia

60 64

Kawano
et al. [102]

2007 Philippines Not reporteda Manual blood
culture and BACTEC

Febrile patients with
negative blood cultures

94.7 (86–98) 80.4 (71–87)

Dutta
et al. [36]

2006 India Median 4
(range 3–60)

Automated blood
culture (BACTEC)

Paratyphoid and
malaria cases

56 (47–66) 88 (82–94)

Olsen
et al. [103]

2004 Vietnam Median 11
(range 4–55)

Manual blood
culture and BACTEC

Other laboratory-confirmed
diagnoses

78 (65–88) 94 (71–100)

House
et al. [104]

2001 Vietnam Median 12
(range 7–17)

Blood culture
(not specified)

Febrile patients with
negative blood cultures

87 (66–87) 76 (63–89)

Keddy
et al. [99]

2011 Typhidot (IgM) South Africa
Tanzania

Not reporteda Automated blood
culture (Bac-T Alert)

Febrile patients with
negative blood cultures

75.0 (61.1–86.0) 60.7 (40.6–78.5)

Kawano
et al. [102]

2007 Philippines Not reporteda Manual blood
culture and BACTEC

Febrile patients with
negative blood cultures

55 (43–66) 65 (55–74)

Dutta
et al. [36]

2006 India Median 4
(range 3–60)

Automated blood
culture (BACTEC)

Paratyphoid and malaria
cases

47 (37–58) 83 (71–94)

Olsen
et al. [103]

2004 Vietnam Median 11
(range 4–55)

Manual blood
culture and BACTEC

Other laboratory-confirmed
diagnoses

79 (66–88) 89 (66–98)

Keddy
et al. [99]

2011 Typhidot (IgG) South Africa
Tanzania

Not reporteda Automated blood
culture (Bac-T Alert)

Febrile patients with
negative blood cultures

69.2 (54.9–81.3) 70.4 (49.8–86.2)

Kawano
et al. [102]

2007 Philippines Not reporteda Manual blood
culture and BACTEC

Febrile patients with
negative blood cultures

73 (62–83) 46 (36–56)

Naheed
et al. [101]

2008 Typhidot
Rapid IgM
IgG Combo
(IgM/IgG)

Bangladesh Median 3
(range 1–30)

Manual blood culture Blood culture neg and
other bacteraemia

67 (51–81) 54 (33–74)

Hatta
et al. [37]

2002 RTI LPS IgM
ICT (IgM)

Indonesia Median
(25–75IQR)
8 (5–11)
15 (12–18)
29 (25–31)

Manual blood culture Febrile hospitalized
patients with a final
diagnosis other than
typhoid fever.

77.0 (61–89)
82.1 (66–92)
97.4 (87–100)

100 (98.5–100)

Kawano
et al. [102]

2007 SD Bioline
Typhoid
Rapid Test
(IgM/IgG)

Philippines Not reporteda Manual blood
culture and BACTEC

Febrile patients with
negative blood cultures

IgM: 69 (55–80)
IgG: 71 (59–81)

IgM: 79 (70–87)
IgG: 76 (70–83)

aStudies were included if (i) blood or bone marrow cultures were used as the reference standard, (ii) enteric fever clinical suspects were used for specificity calculations, (iii) 95%
confidence intervals around performance estimates were given or calculable from presented data, and (iv) time elapsed since the onset of fever was indicated, because host
antibody responses and test sensitivity are time-dependent [37]. The results from Keddy et al. and Ley et al. [99,100] are reported despite the lack of timing data because they are
the only published high-quality studies in African populations. Results from Kawano et al. [102] are reported despite the lack of timing data because it is the only study evaluating
the RDT from SD Bioline.
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graphic HAT-RDT’, manufactured by Standard Diagnostics, in

collaboration with the Foundation for Innovative New Diagnos-

tics (FIND) and (ii) the ‘Gambiense-Sero-K-set’ developed by

Coris BioConcept (Gembloux, Belgium) in collaboration with

the Institute of Tropical Medicine, Antwerp. Results of phase 2

evaluations should be published soon for both RDTs, while phase

3 studies among clinically suspect patients are ongoing.

For T. b. rhodesiense HAT, there is no RDT in development.

Diagnosis is, however, straightforward with classic micros-

copy, because parasite load is usually high in the blood during

clinical illness.

Visceral leishmaniasis

The first RDT detecting antibodies against rK39, a recombinant

antigen from Leishmania infantum, was evaluated in India in the

late 1990s [60]. A meta-analysis of 13 rK39 RDT evaluation

studies revealed an overall sensitivity of 93.7% and a specificity of

95.3%, with a trend towards decreased sensitivity in East Africa

[61]. This trend was confirmed in recent studies, particularly

among HIV co-infected patients [62–64]. Only two rK39 RDTs

have been sufficiently validated for use in clinical practice, the

Kalazar DetectTM from Inbios, Seattle, WA, USA, and the IT-

LEISHTM from BioRad, Marnes-la-Coquette, France (formerly

from DiaMed AG, Switzerland). Both can confirm VL, provided

that they are applied on strictly-defined clinically suspect

patients (e.g. � 2 weeks fever and splenomegaly), but a negative

rK39 RDT test result confidently rules out VL in SouthAsia only,

highlighting the need for the development of a more sensitive

RDT for East Africa. Newly developed RDTs based on detection

of antibodies against rK28, a synthetic polyprotein, showed

promising sensitivity estimates (95.9–98.1%) in a limited number

of VL patients in Sudan and Bangladesh [65].

As antibodies remain detectable for years after treatment

[66], serological-based assays are useless to diagnose VL

relapses. For this purpose, efforts are currently being made to

transform an existing antigen detection test in urine (KAtexTM,

Kalon Biological Ltd, Guildford, UK) into a more practical

lateral flow test.

Other febrile diseases

Rickettsial diseases are a large group of infections with

worldwide (e.g. murine typhus) or limited (e.g. scrub typhus)

distribution [67]. Diagnostic confirmation can sometimes be

made clinically in the presence of a typical eschar (e.g. scrub

typhus), but most often relies on the detection of specific

antibodies, generally on paired samples. Serological RDTs have

been developed and validated for scrub typhus only, with very

variable sensitivity estimates (39–97%) [68–72]. Rapid diag-

nostic tests are in development for melioidosis, an infection

due to Burkholderia pseudomallei that is a frequent cause of

febrile illness and sepsis in southeastern Asia and northem

Australia. Numerous species of Borrelia spp may cause

relapsing fever, an underestimated cause of fever in some

tropical areas [9]. Despite the low sensitivity of classic

microscopy compared with molecular techniques [73], no

RDT has been developed to improve diagnosis in remote

settings.

Discussion

In many peripheral health facilities in the tropics, RDT-based

diagnosis of malaria is nowadays straightforward. Unfortu-

nately, once malaria is excluded, there are few accessible

diagnostic tools to guide the management of myriad severe

febrile illnesses [6]. This review summarizes the current state

of RDT development for several key infections and highlights

many remaining gaps.

Most RDTs for non-malarial tropical infections currently

rely on the detection of specific antibodies against a single

infectious agent. Antibodies usually take several days after

the appearance of fever to be detectable in peripheral

blood, which limits the sensitivity of serological RDTs in

acute fever [42,52,68]. Their specificity can also be altered

by cross-reactivity with other infectious agents, background

seroprevalence in the healthy exposed population and long-

term persistence of antibodies after infection [52,74]. The

latter may also prevent the use of serological RDTs to

monitor treatment response and/or to diagnose relapse

[75]. Considering the above limitations, there is an urgent

need to foster the development of sufficiently sensitive

antigen-based RDTs, as successfully accomplished for

malaria and dengue.

In many studies, evaluation of RDT accuracy is impaired by an

imperfect reference standard (e.g. blood culture for typhoid

fever, microscopic agglutination tests (MAT) for leptospirosis or

bone marrow aspiration for VL), leading to over-estimation of

RDT sensitivity and under-estimation of specificity. Optimizing

the choice of reference standard (e.g. using a composite

reference standard) or adjusting for the absence of reference

standard (e.g. applying latent class analysis) should be strongly

encouraged in all diagnostic studies evaluating the ‘true’ RDT

performance [76,77].

In addition to being highly accurate, RDTs need to be

affordable, user friendly, rapid and robust, equipment-free and

delivered to end-users, as summarized in the ASSURED

criteria [78]. Even if the ASSURED criteria are met, many

potential obstacles to widespread correct use of RDTs and

other point-of-curve tests remain, as recently reviewed

[78,79]. A striking feature is the lack of current production
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of many validated RDTs, possibly reflecting the fragile com-

mitment of manufacturers to maintaining the availability of

such tests, and the lack of regulatory and financial conditions

that could facilitate or incentivise such commitments. The

advantages and pitfalls of RDTs in low resource settings are

summarized in the Box.

Box: Advantages and pitfalls of rdts in low-resource settings

Advantages of RDTs over conventional laboratory tests:

� Access to appropriate diagnosis-based management, i.e.

� Comparatively low skill required for use
� Minimal infrastructure requirements
� Low cost

� Rapid results in a clinically relevant time-frame
� Potentially increased standardization of care

Pitfalls and limitations of immunoassay-based RDTs:

Technical

� RDTs based on detection of host antibodies generally have low

sensitivity in the first several days of disease – when treatment

might be most desirable. Moreover, the accuracy of such tests is

affected by host factors and prior infections.
� Despite having a broad range of operating and storage temper-

atures, antibodies used for RDT assembly may degrade in

extreme environments.
� Inherent limits in sensitivity when conventional colorimetric

detection is used. Inter-reader variability can be significant,

especially for faint test lines.
� May be susceptible to the prozone phenomenon (i.e. falsely

negative or borderline results due to an excess of either the

antigen or the antibody of interest).
� Specificity may be severely decreased (i.e. false positives) in the

presence of concomitant conditions that cause polyclonal hyper-

gammaglobulinaemia.

Operational

� Training and quality assurance are essential: even the simplest RDTs

can be improperly used or misinterpreted, and inaccurate results

can harm patients and undermine their confidence in local medical

services.
� Feasibility at the point-of-care: unlike conventional laboratory

services, health workers using RDTs might assume responsibility

for specimen collection and testing, as well as for quality control

and documentation. This will become an organizational challenge

as RDTs for an ever increasing list of diseases become available.
� User-interpretation of the signal, documentation and archiving of

results: these may be addressed by battery-operated automated

RDT readers, which digitally photograph RDT test strips,

uniformly interpret the results, and archive standardized photos

for subsequent quality assurance.
� One test = one disease: while microscopy and bacterial culture have

the ability to detect multiple pathogens at once, including

unsuspected ones, most existing RDTs only detect a single

pathogen. This limits the usefulness of current RDTs in the

management of some important clinical syndromes such as sepsis.

Current approaches to fever in low-resource settings are

most often fragmented or rely on non-specific clinical data and

empirical therapy. There is abundant evidence that this

approach is harmful and that integrated diagnostic pathways

for febrile illness are urgently needed [8]. In addition to the

development of locally validated RDTs, research priorities are

(i) filling the void of epidemiological knowledge in much of the

tropics (to assess pre-test probability) and (ii) developing

validated pathways combining key epidemiological and clinical

features with the use of RDTs, either alone or in tailored

panels, to better manage severe and treatable infections

requiring specific therapy.
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