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Université Toulouse III - Paul Sabatier,
118 route de Narbonne,
31062 Toulouse, France.
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Introduction générale

L’analyse des données fonctionnelles est un champ de la statistique moderne ayant
pour objet d’étude des fonctions aléatoires X = {X(t) : t ∈ T ⊂ R} appartenant
à un espace de fonctions F (i.e. des variables aléatoires à valeurs dans un
espace fonctionnel de dimension infinie), dont les réalisations sont des courbes
lisses. Les avancées technologiques dans la mesure, la collecte et le traitement
de l’information ont permis un accès rapide et précis à ces données, présentes de
nombreuses disciplines comme la bioinformatique, les sciences médicales, la physique,
l’économie, la géologie, l’astronomie, la météorologie, pour n’en citer qu’une partie.
Au cours des vingt dernières années, de nombreux nouveaux développements
méthodologiques et théoriques ont eu lieu, en analyse des composantes principales et
de corrélation canonique fonctionnel, en classification/régression fonctionnelle, sur
les séries temporelles, les modèles additifs généralisés fonctionnels, les modèles non
paramétriques fonctionnels, entre autres.

L’une des principales difficultés de l’analyse statistique des fonctions consiste à
extraire un motif commun, quand il existe, qui synthétise l’information contenue
par toutes les fonctions de l’échantillon lorsque les trajectoires individuelles varient
en amplitude et en phase. C’est le sujet principal de cette thèse. Le motif est
représenté par une courbe inconnue f qui préserve les caractéristiques structurelles
de l’échantillon de courbes fi, i = 1, . . . , n.

Chapitre 2

Ce chapitre examine le problème d’identification d’une fonction qui représente
le motif commun d’un échantillon de courbes en supposant que les données
appartiennent à une variété ou en sont suffisamment proches, d’une variété M
non linéaire de basse dimension intrinsèque munie d’une structure géométrique
inconnue et incluse dans un espace de grande dimension. Sous cette hypothèse
géométrique, le problème de l’estimation de la courbe commune est équivalent à
considérer une mesure de la centralité de l’échantillon de fonctions par rapport à
la distance géodésique intrinsèque δ associée à la variété. Pour répondre à cette
question, nous proposons un nouvel algorithme basé sur une version modifiée de
l’algorithme Isomap (isometric featuring mapping en anglais) de Tenenbaum et al.
[96] pour l’approximation de la distance géodésique. Cette approximation est utilisée
pour calculer la fonction médiane empirique de Fréchet correspondante. Cela fournit
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Introduction générale

un estimateur intrinsèque robuste de la forme commune f . L’algorithme proposé est
moins sensible à la présence de valeurs aberrantes et, à différence de l’algorithme
Isomap original, ne requiert pas de choix des paramètres de voisinage pour la
construction du graphe d’adjacence. Les comparaisons avec d’autres méthodes, sur
des données simulées et réelles, montrent que notre algorithme fonctionne bien et
surpasse d’autres méthodes.

Chapitre 3

Ce chapitre étudie les propriétés asymptotiques de la méthode de normalisation
quantile développée par Bolstad et al. [12] qui est devenue l’une des méthodes
les plus populaires pour aligner des courbes de densité en analyse de données de
microarrays en bioinformatique. L’idée centrale de la normalisation quantile consiste
à aligner les distributions empiriques des intensités. C’est-à-dire que le diagramme
quantile-quantile entre deux vecteurs de données doit être au plus proche de la
première bissectrice. Cette méthode est considérée comme un cas particulier de
la procédure de la moyenne structurelle pour l’alignement des courbes proposée
par Dupuy et al. [35]. Les propriétés sont démontrées à partir d’un modèle de
déformation, dans lequel chaque fonction de distribution Fi, i = 1, . . . , n est obtenue
par déformation d’une fonction de distribution commune F par un échantillon de
fonctions de déformation Hi. Nous étudions la convergence forte et la distribution
asymptotique de l’estimateur de normalisation quantile. De plus, nous montrons par
des simulations que la méthode de normalisation quantile échoue dans certains cas.
Ainsi, nous proposons une nouvelle méthode, pour faire face à ce problème. Cette
méthode utilise l’algorithme développée dans le Chapitre 2.

Chapitre 4

Dans ce chapitre, nous étendons le problème d’estimation de calage pour la moyenne
d’une population finie de la variable de sondage Y dans un cadre de données
fonctionnelles. L’idée consiste à modifier les poids de base du plan de sondage
de base (di)i∈a de l’estimateur sans biais d’Horvitz-Thompson fonctionnel par de
nouveaux poids de calage fonctionnel wi(t) plus efficaces et suffisamment proches
des di selon une certaine fonction de distance de dissimilarité D∗a(w, d) satisfaisant
la restriction de calage fonctionnel. Nous considérons le problème de l’estimation
des poids de sondage fonctionnel à travers le principe du maximum d’entropie sur la
moyenne (Gamboa [40], et Gamboa and Gassiat [41]). En particulier, l’estimation
par calage est considérée comme un problème inverse linéaire de dimension infinie
suivant la structure de l’approche du maximum d’entropie sur la moyenne. La
méthode appliquée se concentre sur la reconstruction d’une mesure ν∗ unique qui

xvi



maximise l’entropie relative S(ν ‖ υ) par rapport à une mesure a priori υ sous une
contrainte linéaire donnée par la restriction de calage fonctionnel. Nous donnons
un résultat précis d’estimation des poids de calage fonctionnels pour deux types de
mesures aléatoires a priori : la measure Gaussienne centrée et la measure de Poisson
généralisée. Une étude de simulation simple, montre que notre estimateur de calage
fonctionnel est plus précis que l’estimateur d’Horvitz-Thompson fonctionnel.
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Chapter 1

General presentation

1.1 Motivation

In the domain of classical statistical practice, the sample of random elements is
usually a set of finite-dimensional objects such as random variables, random vectors
or random sequences. Nevertheless, in many real life scientific applications, these
objects instead are properly assumed as real-valued random functions belonging
to some infinite-dimensional (or functional) space F . It is a sample of curves
as realizations of a stochastic process X ∈ F . So, as indicated by its name, in
Functional Data Analysis −FDA− the variables are viewed as functions defined on
some index set I, i.e. X = {X(t) : t ∈ I ⊂ R}, where the dataset is obtained from
observations of a smooth random process observed at discrete time points. The
functional data assumption is appropriate in different cases including, for instance,
irregularly spaced measurements, high-frequency data, analysis with derivatives of
the functions, among others.

Recently, in the last twenty years, the statistical literature has witnessed
numerous advances about statistical analysis of functions with its subsequent
applications in a wide variety of scientific areas (e.g., in bioinformatics, medicine,
physical sciences, economics, finance, marketing, education, ecology, astronomy,
meteorology, geology, archeology, criminology, physiology, etc.), constituting itself
as an important and dynamic area of modern statistics. Indeed, several
methodological and theoretical developments have been directed toward, for
instance, functional principal components analysis and canonical correlation,
functional classification/regression, functional time series, functional additive
models, functional nonparametric models, functional testing, among many others.
The textbooks by Ramsay and Silverman [79], and Horváth and Kokoszka [51] offer
detailed introductions to the branch of functional data analysis. The books by Bosq
[13], and Bosq and Blanke [14] study its mathematical foundations and asymptotic
analysis. Ferraty and Vieu [37] and Ramsay and Graves [76] cover the nonparametric
statistical methods and computational aspects, respectively. Ramsay and Silverman
[78] illustrate by case studies its application in several fields of science.

1



General presentation

One of the main difficulties in statistical analysis of functions is the extraction
of a meaningful common pattern that summarizes the information conveyed by
all functions in the sample. This is the main subject of the present thesis. This
task is often crucial to inference, prediction, or to apply any subsequent statistical
analysis. The pattern is represented by an unknown curve f , called the template
function, which preserves the structural features of the sample of curves fi, i =
1, . . . , n. However, a serious difficulty arises when individual trajectories vary both in
amplitude (variation on the y-axis) and phase (variation on the x-axis). In particular,
when the phase variability is ignored the classical descriptive statistics such as the
mean, variance, correlations, and standard multivariate statistical tools as principal
component analysis are seriously affected (Ramsay and Silverman [79]). Thus the
estimation of f through the classical pointwise mean is not a good strategy. Indeed
it does not resemble any of the observed curves and fails to capture the structural
characteristics in the sample (Ramsay and Li [77]).

One well-known method to obtain f in presence of this systematic phase
variability between curves is though a synchronization or alignment process. In the
statistical literature, this process is known as curve registration (also curve alignment
in biology, structural averaging in computing, or time warping in engineering).
Historically, the curve registration problem comes from the seminal papers by Kneip
and Gasser [58] and Sakoe and Chiba [84] in statistics and engineering, respectively.
Since these works, various curve registration methods have been proposed using
different strategies. See, for instance, Kneip and Gasser [58], Wang and Gasser
[106], Ramsay and Li [77], Kneip et al. [61], James [55], Tang and Müller [95], Kneip
and Ramsay [59], and Dupuy et al. [35].

The problem setup may be formulated as follows. Let a collection of n ≥ 2 units
for which mi observations on any variable X at tij ∈ I := [a, b] ⊂ R are available,
denoted by Xij, j = 1, . . . ,mi, i = 1, . . . , n. The observations are considered as
realizations generated by evaluating the set of unknown smooth functions fi at points
tij, i.e. Xij = fi(tij). Generally, an observational error term εij is assumed to be
present in the data collection process, so that Xij satisfies the regression model

Xij = fi(tij) + σiεij, j = 1 . . . ,mi, i = 1, . . . , n. (1.1)

Here εij are centered independent and identically distributed (i.i.d.) random
variables with E(ε2ij) = 1 and σi > 0 for all i. In presence of errors, the unknown
smooth functions fi can be estimated from the observed pairs (tij, Xij) applying some
nonparametric curve estimation method as local polynomial regression or projection
estimation using some appropriate basis function system as Fourier, splines or
wavelets basis (see for instance Ramsay and Silverman [79] and Tsybakov [99], and
references therein).

The registration problem relies on the assumption that there exists an unknown
common pattern f from which each individual function fi may be deduced by

2



1.1. Motivation

warping f through a time-warping function hi(t), which monotonically shifts the
(time) index set I into itself. If a nonparametric model is assumed, then each curve
is given by a time-warping model fi(t) = f ◦ h−1

i (t). Thus, the model (1.1) can be
rewritten as

Xij = f ◦ h−1
i (tij) + σiεij,

where hi are i.i.d. invertible random functions from a general warping process H.
The template is found by taking the cross-sectional mean of the sample of warped
curves, with respect to a given template f0 of f , by using the estimated warping
functions. Usually the first curve or the mean of the observed curves is used for f0.

An alternative way to express the individual curves can be adopted appealing to
a semi-parametric approach through a self-modeling regression framework fi(t) =
f(t, θi) (see Kneip and Gasser [57]), where all functions are deduced with respect to
f by mean a finite-dimensional individual parameter vector θi ∈ Θ ⊂ Rp (p ∈ Z++),

Xij = f(tij, θi) + σiεij.

This model is appropriate when there exists certain homogeneity in structure of
the sample of curves (Kneip and Gasser [57]). A common type of model that allows
amplitude and time variations of f is given by a shape invariant model given by

Xij = Di + Cif(Bitij − Ai) + σiεij.

This particular specification is adopted, for example, by Silverman [88], Rønn
[81], Gervini and Gasser [45], Gamboa et al. [42], Castillo and Loubes [18], Bigot
and Gadat [9], Bigot et al. [10], and Trigano et al. [98]. Usually the estimation of f
is made by a backfitting algorithm. The algorithm is based on two recursive steps
assuming an initial estimate of f by a first guess. In the first step, the estimation of
θi = (Ai, Bi, Ci, Di), i = 1, . . . , n is performed. In the second step, the estimate of f
is updated. In both steps, estimations are performed using a least squares criterion
(Kneip and Gasser [57]).

In this thesis, all curves are assumed to be observed at the same time with the
same occurrence, i.e. tij = tj and mi = m, and the variance of the additive error
term σiεij is constant, i.e. σ2

i = σ2.

Nevertheless, there exists a different approach for estimating the template f
without assuming any deformation model for the individual curves as above. Instead,
the template is obtained directly from the sample of observed curves without
stressing any particular curve. The estimated function is assumed to be located
at the center of the sample capturing its central amplitude behavior. This will be
the approach assumed in Chapter 2.

For instance, López-Pintado and Romo [68], and Arribas-Gil and Romo [3]
explore this idea proposing an estimator of f appealing to the concept of functional
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data depth as a measure of “centrality” of a function with respect to the sample of
curves. In particular, López-Pintado and Romo [68] propose a new notion of band
depth for functional data based on the graphic representation of the functions and
making use of bands defined of their graphs on the plane. This notion is defined as
follows.

Definition 1.1. For a set of functions f1, . . . , fn, the band depth for any of these
curves fi, i = 1, . . . , n is defined by

BDn,L(fi) =
L∑
l=2

(
n

l

)−1 ∑
1≤i1<···<il≤n

1 {G(fi) ⊆ B(fi1 , . . . , fil)} ,

for some fixed value L ∈ [2, n], where

B(fi1 , . . . , fik) =
{

(t, g) : t ∈ I, min
r=1,...,k

fir(t) ≤ g ≤ max
r=1,...,k

fir(t)
}

=
{

(t, g) : t ∈ I, g = λ min
r=1,...,k

fir(t) + (1− λ) max
r=1,...,k

fir(t), λ ∈ [0, 1]
}

is the band in R2 delimited by the curves fi1 , . . . , fik , G(fi) = {(t, fi(t) : t ∈ I)} is
the graph of the function fi, and 1(·) denotes the indicator function.

Remark 1.1. This notion allows ordering the curves from the center-outward
providing a generalization of L-statistics to the functional framework. Also the finite-
dimensional version of the functional band depth provides a depth for multivariate
data (López-Pintado and Romo [68]).

Remark 1.2. López-Pintado and Romo [68] recommend to use a L = 3 value in
their band depth definition. Between the reasons for this choice are the stability and
computational simplicity of the method. Additionally, the bands corresponding to
large values of L do not resemble the shape of any of the curves in the sample.

Remark 1.3. A robust estimate of the template curve can be given by the function
in the sample of curves with the highest depth corresponding to the median function,
i.e. the deepest curve in the sample,

f̂n = arg max
f∈{f1,...,fn}

BDn,L(f).

1.2 Template estimation based on manifold em-

bedding

The Chapter 2 deals with the problem of finding a meaningful template function
that represents the common pattern of a sample of curves from a manifold point of
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1.2. Template estimation based on manifold embedding

view. It is, assuming that functional data lie on, or close enough on, an intrinsically
low-dimensional nonlinear submanifold M with an unknown underlying geometric
structure embedding in a high-dimensional space. In other words, the observed
functions are modeled as variables with values on a manifold that is nearly isomorphic
to a low-dimensional Euclidean space. Although the manifold is unknown, the
nice property is that its underlying geometric structure is contained in the sample
of observed functions so that it can be reconstructed from the functional data.
Below, we provided some preliminary definitions and results concerning the theory
of manifolds. For more details, see, for instance, do Carmo [32], Small [90] and Jost
[56].

Definition 1.2. LetM be a topological space with topology U . A bijective mapping
ϕ : (U ⊂M)→ (V ⊂ Rd) continuous in both directions is called a homeomorphism.
It provides that both ϕ and ϕ−1 are continuous.

Consider a collection of open subsets {Uα}α∈A covering the topological spaceM
(i.e. ∪α∈AUα =M, where A is an arbitrary index set) with a corresponding collection
of homeomorphisms ϕα : (Uα ⊂ M) → (V ⊂ Rd) called (coordinate) charts on M.
The family {Uα, ϕα}α∈A is said to form an atlas on M. Note that ϕ maps every
point p ∈ U to d coordinate points ϕ(p) = (ϕ1(p), . . . , ϕd(p)) = (ϕ1, . . . , ϕd), which
are considered as local coordinates on the manifold M when ϕ is a chart.

Definition 1.3. The setM together with its atlas {Uα, ϕα}α∈A is called a topological
manifold of dimension d. This is, a topological space that is locally homeomorphic
to the Euclidean space (i.e. for each point p ∈ M there exists a neighborhood U
that is homeomorphic to an open subset of Rd).

Definition 1.4. An atlas {Uα, ϕα}α∈A on a manifold is called differentiable if all
chart transitions

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ) for all α, β ∈ A

are differentiable of class C∞ (i.e. ϕβ ◦ ϕ−1
α are diffeomorphisms). If the atlas

is differentiable then the topological manifold of dimension d is called a smooth
(or differentiable) manifold of dimension d. In other words, a smooth manifold of
dimension d is a d-dimensional manifold that is locally diffeomorphic to Rd.

Definition 1.5. Assume that M is a smooth manifold and let γ(t) be a smooth
path in M passing through a point γ0 = (γ1(0), . . . , γd(0)) at t = 0. Suppose
that a coordinate system is provided by a chart of M around γ0 so that γ(t) =
(γ1(t), . . . , γd(t)). The vector space of all tangent vectors to the manifoldM at each
given point γ ∈M is called the tangent space ofM at γ, denoted by Tγ(M). Here,
a tangent vector γ̇(t) to the path γ(t) at γ0 is defined by the equivalence class of all
coordinate paths ζ(t) inM such that ζ(0) = γ0 and ζ(t) is tangent to γ(t) at t = 0.
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Remark 1.4. The tangent vectors in Tγ(M) are spanned by the basis
∂/∂γ1, . . . , ∂/∂γd. Thus any tangent vector v in Tγ(M) can be written as v =∑d

j=1 v
j∂/∂γj. Hence, for example, the tangent vector v = γ̇(t) can be written as

γ̇(t) =
d∑
j=1

γ̇j(t) ∂

∂γj
,

where γ̇j(t) = dγj(t)/dt.

The geometric structure of a smooth manifold M is specified by a Riemannian
metric, which is defined by the inner product of tangent vectors in Tγ(M) given by

〈v, w〉 =
〈

d∑
j=1

vj∂j,

d∑
k=1

wk∂k

〉
=

d∑
j=1

d∑
k=1

gjk(γ)vjwk = v>G(γ)w,

where ∂j is a common shorter notation for ∂/∂γj, and G(γ) = {gjk(γ)} = {〈∂j, ∂k〉}
is positive definite symmetric matrix for all γ ∈M.

Definition 1.6. A smooth manifold M endowed with a Riemannian metric 〈·, ·〉 is
called a Riemannian manifold.

Definition 1.7. A mapping g : M → S of a d-dimensional manifold M into a m-
dimensional manifold S is an embedding if it is a smooth homeomorphism to its
image g(M) ⊂ S. If g is an embedding then g(M) is an embedded submanifold of
S.

Now, with definitions given above, a distance measure between two points along
the manifold may be established by mean the corresponding shortest path. This
path is called a geodesic, and the length of the path is known as the geodesic
distance. In local regions of the manifold the Euclidean distance converges to the
geodesic distance as the radius of the region decreases, and for “far” points on a well-
sampled Euclidean manifold, the geodesic may be approximated through graphical
methods. The corresponding geodesic distance between two points on the manifold
M is defined as the minimum length between all smooth curves (paths) connecting
the two points. Formally, it is defined as:

Definition 1.8. Let M be a connected Riemannian manifold, i.e. M is pathwise
connected in the sense that for any two points in M there exists a smooth path
γ(t) : [a, b] →M such that γ(a) = p and γ(b) = q. The geodesic distance between
points p and q is given by

δ(p, q) = δ
(
γ(a), γ(b)

)
= inf

γ
L
(
γ(t)

)
,
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where L(γ) is the arc-length along the curve γ(t) from a to b,

L
(
γ(t)

)
=
∫ b

a

‖γ̇(t)‖ dt =
∫ b

a

(
〈γ̇(t), γ̇(t)〉

)1/2dt

=

∫ b

a

(
d∑
j=1

d∑
k=1

gjk (γ(t)) γ̇j(t)γ̇k(t)
)1/2

dt.

The Figure 1.1 by Tenenbaum et al. [96], corresponding to the well-known two-
dimensional “Swiss roll” manifold, illustrates how the geodesic distance captures
the geometry of manifolds. Indeed for two arbitrary distant points on the nonlinear
manifold, the geodesic distance (solid curved line) reflects appropriately the intrinsic
nonlinear geometric structure of the manifold taking into account its curvature,
unlike the Euclidean distance (dashed line) which obscures the intrinsic manifold
structure. Thus the next result is stated.

Figure 1.1: “Swiss roll” manifold

Theorem 1.1. The topology onM induced by the distance function δ coincides with
the original manifold topology of M.

Proof. See Jost [56].

Under the assumed geometric framework, any statistical analysis of random
objects lying in a smooth manifold should be carried out carefully. Indeed, new
definitions, for example, for probability density and distribution functions, measures
of location and dispersion, etc., must be revised due to these involve integrals with
respect to the manifold. In particular, the problem of template curve estimation is
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then equivalent to consider a central location of data with respect to the intrinsic
geodesic distance associated to the manifold. Following Pennec [75], a general notion
of central location value for a probability measure Q on a metric spaceM with metric
δ is through the mean deviation at order p or Fréchet function.

Definition 1.9. Let (M, δ) be a metric space and let p > 0 be a given real number.
For a given probability measure Q defined on the Borel σ-field of M, the Fréchet
function of Q is defined as

Fp(µ) =
∫
M
δp(X,µ)Q(dx), µ ∈M.

If the function Fp(µ) has a unique minimizer, then it is called the Fréchet central
point at order p, and whenM is a geodesically connected and complete Riemannian
manifold, it is refereed as the intrinsic central point at order p, denoted by µpI (Q).
For instance, when p takes the 1 and 2 values the intrinsic median and mean are
obtained, respectively. Also for p→∞, the “barycenter” of the distribution support
is obtained. Statistical analysis of a probability measure Q on a differentiable
manifold has diverse applications in morphometrics, medical diagnostics and image
analysis (see, e.g., Small [90], Bhattacharya and Patrangenaru [7], and Pennec [75]).

Bhattacharya and Patrangenaru [7] prove that every probability measureQ onM
has a unique intrinsic mean, provided F2(µ) is finite for some µ. Furthermore, they
show the strong consistency of the Fréchet sample mean toward the Fréchet mean.
A central limit theorem for Fréchet sample means is derived by Bhattacharya and
Patrangenaru [8], leading to an asymptotic distribution theory of intrinsic sample
means on Riemannian manifolds. The existence and uniqueness of intrinsic medians
µ1

I (Q), and the strong consistency of Fréchet sample medians in compact Riemannian
manifolds have been recently proved by Yang [111].

Chapter 2 deals particularly with the intrinsic median µ1
I (Q) in order to obtain a

robust estimate for the template f ∈M, following Koenker [62]. The corresponding
empirical intrinsic median is

µ̂1
I = arg min

µ∈M

n∑
i=1

δ (Xi, µ) . (1.2)

However, this estimator depends on the unobserved manifold M and on its
underlying geodesic distance δ that need to be approximated. One method for this
goal, is by mean the Isometric featuring mapping −Isomap− algorithm developed
by Tenenbaum et al. [96]. It is one of the most known and applied procedures
for manifold learning in high-dimensional data analysis or nonlinear dimensionality
reduction. Manifold learning consists in finding a low-dimensional representation of
the data (i.e. to “learn” a manifold from the data points). Formally, it assumes
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1.2. Template estimation based on manifold embedding

that observed data lie on a d-dimensional manifold M embedded into a high-
dimensional space Rm with d << m. Therefore, the main problem consists in
mapping a given m-dimensional data set Xi ∈ M ⊂ Rm into a d-dimensional data
set Yi ∈ Rd, i = 1, . . . , n preserving the intrinsic (local or global) geometry of the
original manifold as much as possible.

There are other algorithms developed over the last decade for nonlinear
dimensionality reduction and data representation. Some of these are, for instance,
the Local Linear Embedding −LLE− (Roweis and Saul [82]), Laplacian Eigenmap
(Belkin and Niyogi [5]), Hessian Eigenmap (Donoho and Grimes [33]), Diffusion maps
(Coifman and Lafon [21]) and Local Tangent Space Alignment −LTSA− (Zhang and
Zha [116]). For surveys on manifold algorithms see Cayton [19], Lee and Verleysen
[66], and Izenman [54]. All of these procedures, except the diffusion map, are based
on graph-based algorithms summarized in three steps: 1) find k-nearest neighbors
(or ε-neighborhood) for each point Xi, 2) estimate local properties of the manifold
by looking at found neighborhoods, and 3) find a global embedding that preserves
the properties found in the previous step.

Isometric featuring mapping −Isomap−

The Isomap algorithm relies on the assumptions that the manifold is compact and
convex (holes are not allowed), and that there exists an isometric coordinate chart
ϕ : M→ Rd, i.e. a chart that preserves the distances,

‖ϕ(Xi)− ϕ(Xi′)‖ = δ(Xi, Xi′), for all i 6= i′ ∈ {1, . . . , n} .

The algorithm approximates the unknown geodesic distance δ between any pairs of
points inM in terms of its shortest path distance between the points on a proximity
graph G constructed from the data points Xi ∈ Rm, i = 1, . . . , n. Few definitions
related to some concepts of graph theory are given in the Appendix

Definition 1.10. Given n points X1, . . . , Xn with Xi ∈ Rm. A proximity graph is
a (undirected) weighted graph G with vertices {X1, . . . , Xn}. If there exists an edge
between Xi and Xi′ , then the weight of this edge is given by a distance d(Xi, Xi′)
function (e.g. the Euclidean distance). There are two popular proximity graphs:

• k-nearest neighbors graph (k-rule). Let 1 ≤ k ≤ n be an integer. In a k-nearest
neighbors graph G, there is an edge between Xi and Xi′ if and only if Xi′ is
one of the k closest neighbors of Xi.

• ε-ball graph (ε-rule). Let ε > 0 be a real number. In a ε-ball graph G, there
is an edge between Xi and Xi′ if and only if Xi′ lies in a ball of radius ε with
center Xi, B(Xi, ε).
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The Isomap method consists of three steps summarized in the Algorithm 1.1.
As we will see, Isomap can be considered as an extension of the Multidimensional
Scaling method.

Based on the Euclidean distances d(Xi, Xi′) = ‖Xi −Xi′‖ between points Xi

and Xi′ , a weighted neighborhood graph G = G(X , E) with set of nodes X =
{X1, . . . , Xn} and set of edges E = {d(Xi, Xi′)} is constructed according to a k-
rule or ε-rule. The choice of the parameter k or ε controls the neighborhood size and
therefore the success of algorithm.

In the next step, the unknown geodesic distances δ(Xi, Xi′) between all pairs of
points in the manifoldM are estimated by computing the matrix of graph distances
DG = {dG(Xi, Xi′)}, which are the shortest path distances between all pairs of points
in the graph G. Algorithms for computing the graph distances between every pair of
vertices in a graph are the Floyd’s and Dijkstra’s algorithms (see Lee and Verleysen
[66]). A description of the Dijkstra’s algorithms, which is used in Chapter 2, is also
provided in the Appendix.

Finally, the embedding of the data in a d-dimensional Euclidean space preserving,
as much as possible, the intrinsic geometry of the estimated manifold is obtained.
This is done by applying the classical Multidimensional Scaling −cMDS− method.
It is based on the connection between the space of Euclidean distance matrices and
the space of inner product (Gram) matrices, which permits convert an Euclidean
distance matrix into a Gram matrix. For Isomap, the input to cMDS is the matrix
of pairwise squared geodesic distances S =

{
D2
G(i, i′)

}
. Thus, cMDS converts the

matrix of geodesic distances DG into a n× n Gram matrix

τ(DG) = −1
2HSH,

where H = In − n−11n1>n is the centering (positive semidefinite) matrix, where 1n
is the n-dimensional vector of ones. More details on MDS can be found in Cox and
Cox [22] or Izenman [54].

The embedding coordinates in the d-dimensional Euclidean space are obtained
by computing the spectral decomposition of τ(DG), τ(DG) = V ΛV >, and choosing
the d eigenvectors of V , Vd = (v1, . . . , vd) corresponding to the d largest eigenvalues
λ1 ≥ · · · ≥ λd, i.e. the embedding is given by

Ŷ = (Ŷ1, . . . , Ŷn) = Λ1/2
d V >d =

(
λ

1/2
1 v1, . . . , λ

1/2
d vd

)
.

One of the most important stages of the Isomap algorithm involves the estimation
of the geodesic distance δ between pair of data points in M based upon the graph
distance dG with respect to the graph G. Bernstein et al. [6] show that these two
distance metrics approximate asymptotically each other arbitrarily closely under
some sampling condition and some conditions on the graph G, and therefore the
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Algorithm 1.1 Isomap algorithm

Require: Xi ∈ Rm, i = 1, . . . , n and k
Ensure: Ŷi ∈ Rd, i = 1, . . . , n

1: Find the k-nearest neighbors (or ε-neighborhoods) for each Xi based on the
Euclidean distances d(Xi, Xi′) = ‖Xi −Xi′‖ between Xi, and Xi′ , and construct
a graph G = G(X , E) with sets of vertices and edges X = {X1 . . . , Xn} and
E = {d(Xi, Xi′)}, respectively.

2: Obtain the matrix of shortest path distances DG = dG(Xi, Xi′) between all pairs
of points in G applying the Floyd’s or Dijkstra’s algorithm.

3: Obtain Ŷ = (Ŷ1, . . . , Ŷn) by applying the cMDS method to S =
{
D2
G(i, i′)

}
.

Isomap recovers the true structure of manifolds that are isometric to a convex subset
of the Euclidean space. The next theorem due to Bernstein et al. [6] gives conditions
for this convergence.

Theorem 1.2. LetM be a compact submanifold of Rm and let Xi ∈M, i = 1, . . . , n
be a set of data points. Assume that a graph G is constructed from Xi, and there are
positive real numbers λ1, λ2 < 1, εmin, εmax and τ . Suppose that:

1. G contains all edges XiXi′ of length ‖Xi −Xi′‖ ≤ εmin,
2. All edges of G have length ‖Xi −Xi′‖ ≤ εmax,
3. For every point p ∈M there is a point Xi for which δ(p,Xi) ≤ τ ,∗ and
4. M is geodesically convex, i.e. any two points Xi, Xi′ ∈ M are connected by

δ(Xi, Xi′).

Then provided that:

5. εmax < s0, where s0 is the minimum branch separation of M,†

6. εmax ≤ (2/π)r0
√

24λ1, where r0 is the minimum radius of curvature of M,‡

7. τ ≤ λ2εmin/4,

it follows that the inequalities

(1− λ1)δ(Xi, Xi′) ≤ dG(Xi, Xi′) ≤ (1 + λ2)δ(Xi, Xi′)

are valid for all Xi, Xi′ ∈M.

Proof. Bernstein et al. [6].

∗ This condition is referred as the “τ -sampling condition” in M for the data set Xi ∈ Rm, i =
1, . . . , n.

† The minimum branch separation s0 is defined as the largest positive number for which
‖Xi −Xi′‖ < s0 implies δ(Xi, Xi′) ≤ πr0 for all Xi, Xi′ ∈M.

‡ The minimum radius of curvature r0 is defined by r−1
0 = maxγ(t) {‖γ̈(t)‖}, where the path

γ : I → Rm varies over all unit-speed geodesics in M.
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Local linear embedding −LLE−

The local linear embedding algorithm (Roweis and Saul [82]) is similar to the
Isomap algorithm, but it attempts to preserve local neighborhood information on the
Riemannian manifold without estimating the geodesic distances. Thus LLE is viewed
as a local method rather than as a global one as is the Isomap. The philosophy of the
method comes from visualizing a manifold as a collection of overlapping coordinate
patches. If the neighborhood sizes are small and the manifold is sufficiently smooth,
then these patches will be approximately linear.

The method starts representing each point Xi as a linear combination of its k
nearest neighbors Ni = NXi

, Xi =
∑

i′∈Ni
wii′Xi′ , where wii′ is a scalar weight with

constraints
∑

i′ wii′ = 1, and wii′ = 0 if i′ /∈ Ni, reflecting that the method is local.
The weight (sparse) n × n matrix W is estimated by solving the constrained least
squares fit

Ŵ = arg min
W

n∑
i=1

∥∥∥∥∥Xi −
∑
i′∈Ni

wii′Xi′

∥∥∥∥∥
2

subject to
∑

i′ wii′ = 1, and wii′ = 0 if i′ /∈ Ni.

By mean the Lagrange multipliers method (see Izenman [54] for the details), the
estimated local weights for each point are given by

ŵi = C−11n
1>nC−11n

=
∑

i∗C
−1
i′i∗∑

i′
∑

i∗ C
−1
i′i∗
, i = 1, . . . , n,

where C = {Ci′i∗} is a symmetric and positive semi-definite n× n local matrix with
Ci′i∗ = (Xi −Xi′)>(Xi −Xi∗) for i′, i∗ ∈ Ni.

Finally the global embedding d× n matrix Y is found by solving the problem

min
Y

n∑
i=1

∥∥∥∥∥Yi −
n∑

i′=1

ŵii′Yi′

∥∥∥∥∥
2

= min
Y

trace

{
Y
(
In − Ŵ

)>(
In − Ŵ

)
Y >
}
,

subject to the constraints
∑

i Yi = Y 1n = 0, which centers the embedding on the
origin, and

∑
i YiY

>
i = Y Y > = Id, which forces the solution to be of range d.

The unique global minimum of the objective function is given by the eigenvectors
V = (v0, v1, . . . , vd) corresponding to the smallest d + 1 eigenvalues Λ =
(λ0, λ1, . . . , λd) of the sparse, symmetric, and positive semi-definite n × n matrix(
In− Ŵ

)>(
In− Ŵ

)
. The smallest eigenvalue is zero with corresponding eigenvector

1. Thus the final coordinate of each point is identical. To avoid this degenerate
dimension, the d-dimensional embedding is given by the smallest non-constant d
eigenvectors, obtaining that

Ŷ = (Ŷ1, . . . , Ŷn) = (v1, . . . , vd)>.

The LLE method is summarized in the Algorithm 1.2.
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Algorithm 1.2 Local linear embedding algorithm

Require: Xi ∈ Rm, i = 1, . . . , n, k and d
Ensure: Ŷi ∈ Rd, i = 1, . . . , n

1: Find the k-nearest neighbors Ni for each Xi.
2: Compute the weight matrix Ŵ , where each column is

ŵi = C−11n
1>nC−11n

=
∑

i∗ C
−1
i′i∗∑

i′
∑

i∗ C
−1
i′i∗
, i = 1, . . . , n,

where C = {Ci′i∗} with Ci′i∗ = (Xi −Xi′)>(Xi −Xi∗) for i′, i∗ ∈ Ni.
3: Obtain the smallest non-constant d eigenvectors v1, . . . , vd associated to the

nonzero eigenvalues λ1, . . . , λd of the matrix
(
In − Ŵ

)>(
In − Ŵ

)
, and set

Ŷ = (v1, . . . , vd)>.

Laplacian eigenmap

The Laplacian eigenmaps algorithm is closely related to local linear embedding
although, it tackles the problem in a different way. The method relies on the spectral
graph theory, and particularly on the concept of Laplacian operator of a graph. To
begin with, given a graph G and an edge weight n × n matrix W = {wii′}, the
(unnormalized) graph Laplacian matrix is defined as

L = D −W,

where D = diag(
∑

i′ wii′). L is a symmetric, positive semidefinite matrix that
provides a natural measure on the graph vertices (Belkin and Niyogi [5]).

The eigenvalues and eigenvectors of L provide information about whether the
graph is complete or connected. Therefore, it can be used to capture the local
information on the manifold. Belkin and Niyogi [5] propose to use a Gaussian heat
kernel with scale parameter σ to define the entries of the local adjacency matrix W ,
defined as

W = {wii′} =
{

exp {−‖Xi −Xi′‖}2 /σ if Xi′ ∈ Ni

0 if Xi′ /∈ Ni.

Note that σ is an additional parameter that has to be taking into account in the
algorithm, join to the parameters k and d.

The low-embedding d×n matrix Y is found in a similar way to the LLE method
by solving the problem

min
Y

∑
i

∑
i′

wii′‖Yi − Yi′‖2 = min
Y

trace
{
Y LY >

}
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subject to the constrain Y DY > = Id, which forces Y to be of full dimensionality,
i.e. prevents to have a solution onto a subspace of fewer than d− 1 dimensions.

This minimization problem tries to ensure that if Xi and Xi′ are close then Yi
and Yi′ are close as well. This problem reduces to solving the generalized eigenvalue
problem

Lv = λDv.

As in the LLE method, the d-dimensional embedding is given by the d smallest
non-constant eigenvectors, Ŷ = (v1, . . . , vd)>. The method is summarized in the
Algorithm 1.3

Algorithm 1.3 Laplacian eigenmap algorithm

Require: Xi ∈ Rm, i = 1, . . . , n, k, σ and d
Ensure: Ŷi ∈ Rd, i = 1, . . . , n

1: Find the k-nearest neighbors Ni for each Xi.
2: Compute the weight matrix W = {wii′}, where each entry is

wii′ =
{

exp {−‖Xi −Xi′‖}2 /σ if Xi′ ∈ Ni

0 if Xi′ /∈ Ni.

3: Obtain non-constant eigenvectors v1, . . . , vd associated to non-zero d eigenvalues
λ1, . . . , λd of the generalized eigenequation Lv = λDv, where L = D −W with
D = diag(

∑
i′ wii′), and set Ŷ = (v1, . . . , vd)>.

Hessian eigenmap

This method is closely related to LLE and Laplacian eigenmap algorithms,
substituting a quadratic form based on the Hessian instead of one based on the
Laplacian. The method has been proposed for recovering manifolds of high-
dimensional libraries of articulated images where the underlying parameter space
is often not convex (Donoho and Grimes [33]).

The method assumes that there is a smooth mapping ϕ : Θ → Rm such that
the smooth manifold is given by M = ϕ(Θ) ⊂ Rm (i.e. the manifold of articulated
images). Thus, given Xi ∈ M, i = 1, . . . , n, the aim consists in recovering the
mapping ϕ and the parameter points θi. However, this problem is ill-posed, because
if ψ is one solution, and ζ : Rd → Rd is a morphing of Rd, then ψ ◦ ζ is also a
solution. Thus additional hypotheses are required. Donoho and Grimes [33] replace
the convexity and isometry assumptions of Isomap by weaker conditions: i) the
parameter space Θ ⊂ Rd is open and connected, and ii) in a small neighborhood of
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1.2. Template estimation based on manifold embedding

each point in M, the geodesic distances to nearby points Xi′ ∈ M are equal to the
Euclidean distances between the corresponding parameter points θi and θi′ ,

δ(Xi, Xi′) = ‖θi − θi′‖, for all Xi = ϕ(θi) and Xi′ = ϕ(θi′).

The theoretical solution under this framework relies on the properties of a
quadratic form H(f) defined on functions f : M→ R, expressed as

H(f) =
∫
M
‖Htan

f (X)‖2
FdX,

where ‖H‖2
F =

∑
i

∑
i′ H

2
ii′ is the Frobenius norm of a square matrix.

This form is based on the tangent space TX(M) at X ∈ M. Viewing it as a
subspace of Rm, an orthonormal coordinate system can be associated to each tangent
space TX(M) ⊂ Rm through the inner product on Rm. Let NX be a neighborhood
of X such that each point Xi′ ∈ NX has a unique closest point ξi′ ∈ TX(M) (it is a
point in NX with local tangent coordinates ξ = ξ(X) = (ξ1(X), . . . , ξd(X)). Thus if
the point Xi′ ∈ NX has local coordinates ξ ∈ Td, then the rule g(ξ) = f(X) defines
a twice continuously differentiable function g : U → R , where U is a neighborhood
of 0 ∈ Rm. Hence the d × d tangent Hessian matrix Htan

f (X), that measures the
“curviness” of f at X ∈M, is given by

Htan
f (X) =

{
∂2g(ξ)
∂ξi∂ξi′

∣∣∣∣
ξ=0

}
.

Finally, Donoho and Grimes [33] show that H(f) has a (d + 1)-dimensional
null space consisting of a constant function and a d-dimensional space of functions
spanned by the original isometric coordinates. Hence, the isometric coordinates can
be recovered, up to a rigid motion, from the null space of H(f). The steps to get
a discrete approximation of H and obtain the embedding d-dimensional Euclidean
space are given in the Algorithm 1.4.

Diffusion map

This method relies on a diffusion processes framework for finding meaningful
geometric descriptions of the data. Coifman and Lafon [21] show that eigenfunctions
of Markov transition probability matrices can be used to construct coordinates that
generate efficient representations of complex geometric structures. These coordinates
are obtained by defining a family of mappings, known as diffusion maps, that embed
the data points into a Euclidean space.

Based on a Gaussian heat kernel (called also isotropic Gaussian kernel) W =
{wii′}, wii′ = exp {−‖Xi −Xi′‖}2 /σ, a diffusion process is constructed by re-
normalizing the symmetric and positive semi-definite matrix W as A = D−1W ,
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Algorithm 1.4 Hessian eigenmap algorithm

Require: Xi ∈ Rm, i = 1, . . . , n, k and d, with k > d.
Ensure: Ŷi ∈ Rd, i = 1, . . . , n

1: Find the k-nearest neighbors Ni for each Xi.
2: Form an n× k matrix Mi = (Xi1 − X̄i, . . . , Xik − X̄i) with X̄i =

∑
i′∈Ni

Xi′ , and
obtain the tangent coordinates through a singular value decomposition of Mi,
Mi = UiΣV >i , where the k × k matrix Vi approximates the tangent space at Xi.
Next, construct the k × (1 + d+ d(d+ 1)/2) matrix

Zi =
(
1, Vi,1 . . . , Vi,d, V 2

i,1, . . . , V
2
i,d, Vi,1Vi,2, . . . , Vi,d−1Vi,d

)
,

where Vi,jVi,j′ is the pointwise (Hadamard) product between Vi,j and Vi,j′ .
Perform a Gram-Schmidt orthogonalization on Zi,

Z̃i =
(
1, ṽi,1 . . . , ṽi,d, w̃i,1, . . . , w̃i,d(d+1)/2

)
,

and obtain the tangent Hessian matrix given by the transpose of last d(d+ 1)/2
orthonormal columns of Z̃i, Ĥi =

(
w̃i,1, . . . , w̃i,d(d+1)/2

)>
.

3: Obtain non-constant eigenvectors v1, . . . , vd associated to non-zero d eigenvalues
λ1, . . . , λd of the m×m matrix,

Ĥjj′ =
∑

i

∑
i′

(
Ĥi

)
i′j

(
Ĥi

)
i′j′
.

Finally set Ŷ = (v1, . . . , vd)>.

where D = diag(
∑

i′ wii′), and satisfying
∑n

i′=1Aii′ = 1 for all i ∈ {1, . . . , n}.
Hence the matrix A constitutes a row Markov matrix with transition probabilities
Aii′ = P(Xt+1 = Xi|Xt = Xi′) = P (Xi, Xi′) ≥ 0.

By using the spectral decomposition of the matrix A, A = ΦΛΨ>, Coifman and
Lafon [21] prove that it induces a diffusion distance at time t ≥ 0, defined as

dt(Xi, Xi′) = ‖Φt(Xi)− Φt(Xi′)‖ =
(∑

l≥1

λ2t
l

(
φl(Xi)− φl(Xi′)

)2
)1/2

,

where Φt = (λt1φ1(Xi), λt2φ2(Xi), . . .) is called the diffusion map.

The diffusion distance can be approximated by retaining a finite number of
terms by considering a truncate diffusion map with first d eigenfunctions, which
embeds the data points into Rd in an approximately isometric fashion, with respect
to the diffusion distance. Therefore this provides an embedding Ŷi = Φt,d(Xi) =
(λt1φ1(Xi), . . . , λtdφd(Xi)) for each i = 1, . . . , n.

Coifman and Lafon [21] consider a generalization of the method proposing a
general family of normalizations and their corresponding diffusions based on a
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1.2. Template estimation based on manifold embedding

specific anisotropic kernel. The steps of the method for this generalization are
gathered in the Algorithm 1.5, where the definitions given above are recovered by
setting the α value, stated in the algorithm below, to 0.

Algorithm 1.5 Diffusion map algorithm
Require: Xi ∈ Rm, i = 1, . . . , n, σ, α ≥ 0.
Ensure: Ŷi ∈ Rd, i = 1, . . . , n

1: Compute a Gaussian kernel W = {wii′}, with wii′ = exp {−‖Xi −Xi′‖}2 /σ.
2: Construct the family of kernels:

w
(α)
ii′ = wii′

pαi p
α
i′
, where pi =

∑
i′
wii′ .

Form the Markov matrix (anisotropic transition kernel)

A(α) =
(
D(α))−1

W (α), where D(α) = diag
(∑

i′
w

(α)
ii′

)
.

3: Compute the singular value decomposition of the matrix A(α), A(α) = ΦΛΨ>,
and determine the embedding using the first d eigenvectors and eigenvalues as,
Ŷi = Φt,d(Xi) = (λt1φ1(Xi), . . . , λtdφd(Xi)), for each i = 1, . . . , n.

Local tangent space alignment −LTSA−

The goal of this method is to preserve the local coordinates of the data points
in the neighborhood with respect to the tangent space at each data point, which
provides a low-dimensional linear approximation of the local geometric structure of
M. Those local tangent coordinates are aligned in the low-dimensional space by
different local affine transformations to obtain a global coordinate system. Zhang
and Zha [116] consider the problem of nonlinear dimensionality reduction in a
parameterized d-dimensional manifold M = ϕ(Θ) defined by a unknown mapping
ϕ : Θ ⊂ Rd → Rm. They assume that points are sampled with noise from M,
Xi = ϕ(θi) + εi, i = 1, . . . , n, where εi is the noise.

To recover the θi’s from Xi’s, they approximate the set of k-nearest neighbors Ni

of each Xi using a d-dimensional (affine) linear subspace

Xii′
≈ X̄i +Qi%

(i)
i′ , i′ ∈ Ni = {1, . . . , ki} ,

where X̄i =
∑

i′∈Ni
Xi′ and %

(i)
i′ are the local coordinates of Xii′

’s associated with the
orthonormal m×d matrix Qi. The optimal fit is determined by solving the problem:

min
c,Q,%i′

∑
i′∈Ni

‖Xii′
− (c+Q%i′)‖2

2 subject to Q>Q = Id.
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General presentation

The optimal solution is given by the singular value decomposition of the centered
matrix X(i) = (Xi1 − X̄i, . . . , Xik − X̄i) with X(i) = UiΣiV

>
i . The optimal Q̂i is

then given by the matrix of the d left eigenvectors corresponding to the d largest

eigenvalues, Q̂i = (Ui1, . . . , Uid), and the corresponding optimal Γ̂i =
(
%̂

(i)
i1
, . . . , %̂

(i)
iki

)
with %̂

(i)
i′ = Q̂>i (Xi′ − X̄i).

Finally, a local affine transformation (linear alignment) Li is postulated such that,
in each neighborhood, the corresponding global parameter vectors Θi = (θi1 , . . . , θiki

)
are represented in terms of the local ones Γ̂i =

(
%̂

(i)
i1
, . . . , %̂

(i)
iki

)
. To preserve the local

geometry in the low-dimensional space the optimal parameters have to solve

min
Θi,Li

∑
i

‖Θi(Ik − k−111>)− LiΓ̂i)‖2
F = min

Θ
trace

{
ΘΓ̃Θ>

}
,

subject to ΘΘ> = Id, where Γ̃ =
∑

i SiWiW
>
i S
>
i is the n×n alignment matrix with

Si the 0-1 selection matrix such that Θi = ΘSi, and Wi = (Ik−k−111>)(Ik− Γ̂+
i Γ̂i),

were Γ̂ †i is the Moore-Penrose pseudoinverse of Γ̂i.

The optimal Θ̂ = (θ̂1, . . . , θ̂n) is given by the d eigenvectors of Γ̃ corresponding

to the eigenvalues λ2, . . . , λd+1 of Γ̃ (see Zhang and Zha [116] for the details).

Algorithm 1.6 Local tangent space alignment algorithm

Require: Xi ∈ Rm, i = 1, . . . , n and k.
Ensure: Ŷi ∈ Rd, i = 1, . . . , n

1: Find the k-nearest neighbors Ni for each Xi.
2: Form an n×k matrix X(i) = (Xi1− X̄i, . . . , Xik− X̄i) with X̄i =

∑
i′∈Ni

Xi′ , and

obtain its singular value decomposition X(i) = UiΣiV
>
i . Define the matrix of the

d left eigenvectors corresponding to the d largest eigenvalues, Q̂i = (Ui1, . . . , Uid),
and the local coordinates Γ̂i =

(
%̂

(i)
i1
, . . . , %̂

(i)
iki

)
with %̂

(i)
i′ = Q̂>i (Xi′ − X̄i).

3: Form the alignment matrix Γ̃ =
∑

i SiWiW
>
i S
>
i , where Si is the 0-1 selection

matrix such that Θi = ΘSi, and Wi = (Ik − k−111>)(Ik − Γ̂+
i Γ̂i), where

Γ̂ †i is the Moore-Penrose pseudoinverse of Γ̂i. Compute the singular value

decomposition of Γ̃ , and determine the embedding by using the d eigenvectors
v2, . . . , vd+1 corresponding to the first λ2, . . . , λd+1 eigenvalues. Finally set

Ŷ = (v2, . . . , vd+1)> = Θ̂ = (θ̂1, . . . , θ̂n).

A graphical comparison of the nonlinear dimensionality reduction methods
described above is provided in the Figure 1.2 for the “Swiss roll” data set using
the MANIfold Learning Matlab Demo provided by Todd Wittman free available at
http://www.math.ucla.edu/~wittman/mani/index.html.
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Figure 1.2: Comparison of manifold learning methods on the “Swiss roll” data set

Although we have described several methods for nonlinear dimensionality
reduction, our original main goal is to approximate the geodesic distances to calculate
the empirical intrinsic median given in (1.2) as a robust estimator of the template
curve f . Hence, we use the Isomap algorithm to carry out this issue. In Chapter 2,
a modified version (of the first two steps) of the Isomap algorithm applied to
functional data is proposed. The proposed algorithm has the advantage of being
less sensitive to outliers and does not require any additional tuning parameter, as in
the original Isomap procedure, making it much easier to handle. The algorithm has
been applied successfully to obtain the common pattern function on several samples
of curves in different scientific areas. For example, the Figure 1.3 illustrates the
template functions estimated through the robust estimator based upon the manifold
framework corresponding to some samples of real curves which are used in this thesis.
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General presentation

As we can see, for each of the examples of samples of curves, the corresponding
estimated template functions capture appropriately the common structural behavior
of the samples.
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Figure 1.3: Examples of samples of curves and their respective template curve (bold
solid line) estimated through the empirical intrinsic median.

1.3 Density curve alignment

In Chapter 3, the curve alignment problem of a sample of probability density
functions is considered. This particular situation arises for example in bioinformatics
and economics, where usually the goal is to study experiments that involve multiple
(often thousands) high density oligonucleotide arrays (Bolstad et al. [12]) or analyze
the densities of a relative household income of the household head over several years
(Kneip and Utikal [60]).
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1.3. Density curve alignment

1.3.1 Quantile normalization

In bioinformatics, the observed variability among density curves of expression (also
intensity) measures of oligonucleotide arrays usually can not be directly correlated
to the biological phenomenon under study. This non-biological variations are
associated, principally, to different efficiencies of reverse transcription, labeling,
hybridization reactions, physical problems with arrays, reagent batch effects, and
laboratory conditions. Therefore, the intensities need to be adjusted to give accurate
measurements of specific hybridization, i.e. remove (or at least reduce) from
microarray data the effects which arise from systematic technical variations in the
technology, ensuring that differences in intensity indeed reflect the differential gene
expressions. This process is known as normalization, which can be considered as an
alignment method for density functions. Unless arrays are appropriately normalized,
comparisons from different arrays can lead to misleading results. Smyth and Speed
[93], and Irizarry et al. [53] offer details about the normalization process.

One of most popular and wide used normalization method is the quantile
normalization developed by Bolstad et al. [12]. Its popularity is due to its simplicity
and nice estimation results. A comparison study of a number of normalization
methods to high-density oligonucleotide data is provided by Bolstad et al. [12].
The central idea of quantile normalization consists in to enforce the same empirical
distribution of intensities to each array. This imply that the quantile-quantile plot
between two data vectors should be close to the 45-degree diagonal line. The
Figure 1.4 illustrates an example of how the quantile normalization method works
in the simple case of n = 2 vectors.

Thereby, in n dimensions, and based on sample quantiles, the“mean”distribution
is obtained through the projection of the empirical quantile vector of the j-th sample
quantiles, q̂j = (q̂1,j, . . . , q̂n,j)>, onto the vector d = (1/

√
n, . . . , 1/

√
n)>, given by

projdq̂j = (n−1∑n
i=1 q̂i,j, . . . , n

−1∑n
i=1 q̂i,j)>. The quantile normalization method

is given in the Algorithm 1.7. This method can be understood as a quantile-
quantile plot extended to n dimensions such that if all n data vectors share the
same distribution, then the plot gives a straight line along the line d.

Algorithm 1.7 Quantile normalization algorithm
Require: A matrix X of n vectors of m observations.
Ensure: A normalized matrix Xnorm.

1: Form the n-vector d = (1/
√
n, . . . , 1/

√
n)>

2: Obtain the matrix of sample quantiles Q̂ by sorting the columns of X
3: Obtain a matrix Q̂proj, where each row is the projection of each row of Q̂,

q̂j = (q̂1,j, . . . , q̂n,j)>, j = 1, . . . ,m, onto d. It is, each row of Q̂proj is given
by projdq̂j = (n−1∑n

i=1 q̂i,j, . . . , n
−1∑n

i=1 q̂i,j)>.

4: Get Xnorm by rearranging each column of Q̂proj to have the same ordering as X.
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Figure 1.4: Boxplots and quantile-quantile plots for unnormalized (on the left) and
normalized (on the right) data with the quantile normalization method.

However, despite its popularity, its large sample properties have not yet been
studied. This is one of the goal of this thesis. To obtain the asymptotic properties
of the quantile normalization method which is a particular case of the structural
mean curve alignment procedure proposed by Dupuy et al. [35]. The properties
are proved starting from a warping model in which each distribution function Fi is
obtained by warping a common distribution function F by a sample of invertible
and differentiable warping mappings Hi

Fi(t) = F ◦H−1
i (t), i = 1, . . . , n, j = 1, . . . ,m,

where H1, . . . , Hn are i.i.d functions from a stochastic process H with mean function
φ and variance function ϑ.

The estimation problem of F and H from Fi, i = 1, . . . , n based on the warping
model is not identifiable. More precisely, the unknown distribution function F
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1.3. Density curve alignment

and the unknown warping process H cannot be uniquely estimated. Indeed, let
H̃ : I → I be an increasing continuous function, then we have, for all i ∈ {1, . . . , n},

Fi(t) = F ◦H−1
i (t) = F ◦ H̃−1 ◦ H̃ ◦H−1

i (t) = F̂ ◦ Ĥ−1
i (t).

Hence the function F̂ = F ◦H̃−1 associated with the warping process H◦H̃−1
i is also

a solution. In fact there are infinitely many different representations of the same
observed process for any H̃.

To overcome the identifiability problem the method by Dupuy et al. [35] is
followed, where an archetype function, observed in the center of the sample,
representing the common behavior of the sample is defined, without stressing any
particular curve but taking into account the information conveyed by the warping
process itself. It is the archetype is directly obtained from the data. Hence, we
consider the definition of structural expectation (SE ) for the quantile function, given
by

qSE(α) := F−1
SE(α) = E(Hi) ◦ F−1(α) = φ ◦ F−1(α), 0 ≤ α ≤ 1,

where its estimator is

qn(α) = 1
n

n∑
i=1

qi(α) = 1
n

n∑
i=1

Hi ◦ F−1(α).

As the distribution function is not observed, the corresponding order statistics
Xi,1:m ≤ · · · ≤ Xi,m:m of random samples Xi,1, . . . , Xi,m from Fi are used to estimate
the quantile functions qi(α) by q̂i,m(α) = Xi,j:m for (j − 1)/m < α ≤ j/m,
j = 1, . . . ,m, such that the estimator for qSE(α) is given by

q̂j = 1
n

n∑
i=1

q̂i,j = 1
n

n∑
i=1

Xi,j:m, j = 1, . . . ,m.

In Chapter 3, strong consistency and asymptotic distribution of the quantile
normalization estimator q̂j are proved: q̂j

a.s−→ qSE(αj), as m,n→∞ for j = 1, . . . , n;
and

√
m

 q̂j1 − qSE(α1)
...

q̂jK − qSE(αK)

 D−−−−→
m,n→∞

NK (0,Σ)

for any K ∈ N and fixed (α1, . . . , αK) ∈ [0, 1]K , where the (k, k′)-element of matrix
Σ is Σk,k′ = ϑ

(
q(αk), q(αk′)

)
for all (αk, αk′) ∈ [0, 1]2 with αk < αk′ .

1.3.2 Manifold normalization

A natural distance to measure the proximity between two cumulative distribution
functions F (x) = µ [X ≤ x] and G(y) = ν [Y ≤ y] is the well-known Wasserstein
metric (see, for instance Villani [104]) given by
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Definition 1.11. The Wasserstein distance of order p ≥ 1 between two Borel
probability measures µ and ν on a given a metric space (X , d) is defined by

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
X×X

d(x, y)pdπ(x, y)
)1/p

= inf (E [d(X, Y )p])1/p ,

where Π(µ, ν) denotes the collection of all probability measures on X × X with
marginals µ = law(X) and ν = law(Y ) having finite pth moments.

Upon this framework, the problem of finding a mean probability measure can
be posed, for example, in the space of probability measures with finite second order
moments (i.e. the Wasserstein space)

P2(X ) :=
{
µ ∈ P (X ) :

∫
X
d(x0, x)2µ(dx) < +∞ for some x0 ∈ X

}
,

by solving the minimization problem

min
µ∈P2(X )

1
n

n∑
i=1

W 2
2 (µi, µ), (1.3)

with the Mallows-Wasserstein metric

W 2
2 (µi, µ) =

∫ 1

0

∣∣F−1
i (α)− F−1(α)

∣∣2 dα, 0 ≤ α ≤ 1

where Fi and F are the distributions functions of µi, i = 1, . . . , n and µ in P2(X ),
respectively.

The solution of the problem is refereed as the barycenter of the measures µi.
The existence and uniqueness of such a minimizer is a difficult task in a general
framework. Indeed these have been recently proved by Agueh and Carlier [1].
However, for one-dimensional distributions, an explicit solution can be given, which
corresponds to the structural expectation defined in Dupuy et al. [35].

An alternative criterion to the Mallows-Wasserstein metric in (1.3) can be
explored proposing any other distance function on the inverse of distribution
functions. In Chapter 3, we appeal to the assumption made in Chapter 2, considering
that functional data belong to a manifold M. Thus, the geodesic distance δ
provides also a natural way to compare two objects upon this framework. Therefore,
the manifold embedding approach for a sample of density curves, that we rename
manifold normalization, is applied as an interesting alternative to the problem. This
gives rise to the problem

min
F∈M

1
n

n∑
i=1

δ2(F−1, F−1
i

)
.
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1.4. Maxentropic functional calibration estimation

For this, based on the observed random variables Xi,j, i = 1, . . . , n, j = 1, . . . ,m,
the approximation of the geodesic distance between the inverse of the distribution
functions, F−1

i (α), (j − 1)/m < α ≤ j/m, is conducted by using the corresponding
order statistics Xi,j:m. Denoting the sorted vector Xi,1:m, . . . , Xi,m:m for i = 1, . . . , n
by X(i)., the intrinsic mean is defined as

µ̂δ̂ = arg min
x∈{X(i)., i=1,...,n}

1
n

n∑
i=1

δ̂2(X(i)., x
)
,

where δ̂ is the approximation of the geodesic distance between vectors X(i)., using
the modified version of the algorithm developed in Chapter 2.

1.4 Maxentropic functional calibration estimation

Usually the way in which data are collected is rarely considered by the statistician,
assuming that data are independent replications from a common distribution. That
is, the sample consists in several simultaneous measurements of the same random
experiment. However, sometimes the sample a of n elements comes from a survey
sampling strategy over a finite survey population UN = {1, . . . , N}, which must be
taken into account in the estimation of unknown parameters. Assume that associated
with the ith population element there is a random variable denoted by Yi, i ∈ UN . A
finite population parameter of particular interest is the finite population mean given
by

µY = 1
N

∑
i∈UN

Yi.

The problem of obtaining an estimate for the unknown finite population mean
parameter of the survey variable Y is conducted by using the information contained
in a subset of UN rather that UN itself (i.e. based on a sample a of n elements selected
from the set UN). The selection of the sample is carry out according to a probabilistic
selection scheme. A wide variety of random sampling selection methods exists in the
literature, see for instance Särndal et al. [86]. Based on a given sample selection
scheme is possible to define the sampling design p(a) = P(A = a), where a ∈ A with
A denoting the collection of all subsets A of UN that contains all possible samples
of n different elements randomly drawn from UN , and P is a probability measure on
A. The function p(a) gives the probability of selecting a sample a under the scheme
used.The sampling design specifies the probability structure of selecting an element
i in the sample, obtaining the inclusion probabilities given by

πi = P(i ∈ a) =
∑
a∈A(i)

p(a),
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where A(i) is the set of samples that contain the ith element.

A popular design-unbiased and consistent estimator of µY , assuming that all
inclusion probabilities are strictly positive for all i ∈ UN , is given by the linear
estimator (commonly known as the Horvitz-Thompson or π estimator, see Horvitz
and Thompson [52]), defined as

µ̂HT
Y = 1

N

∑
i∈a

π−1
i Yi = 1

N

∑
i∈a

diYi.

The Horvitz-Thompson estimator although design-unbiased has low precision,
especially if the sample is small, implying that the sample does not describe well the
behavior of the variable of interest in the total population. So, to prevent biased
estimation due to bad sample selection, inference on the sample can be achieved by
considering a modification of the weights of the individuals chosen in the sample. One
modification method to obtain an improvement of the estimator can be conducted
by incorporating auxiliary information observed for each element in the population,
i ∈ UN . The method, proposed by Deville and Särndal [30], is called calibration
estimation and consists in modifying the standard sampling design weights di = π−1

i

of the Horvitz-Thompson estimator by new weights wi close enough to di’s according
to some distance function D(w, d), satisfying a linear calibration equation, in which
the auxiliary information is taken into account,

1
N

∑
i∈a

wiXi = µX ,

where the q-dimensional vector Xi represents the auxiliary information.

The calibration weights wi will generally result in estimates that are design
consistent, and that have a smaller variance than the Horvitz-Thompson estimator
(see, for instance, Deville and Särndal [30] and Särndal [85]). The idea of calibration
has been extended to estimate other finite population parameters.

The calibration estimator for µY based on the calibration weights is expressed
by the linear weighted estimator µ̂Y = N−1∑

i∈a ŵiYi. Note that there are two
basic components in the construction of calibration estimators: the dissimilarity
function and the set of calibration equations. Different calibration estimators can
be obtained depending on the chosen distance function (Deville and Särndal [30]).
However, it is well known that all of calibration estimators are asymptotically
equivalent to the one obtained through the use of the chi-square distance function
Da(w, d) =

∑
i∈a(wi − di)2/2diqi, where qi is an individual given positive weight

uncorrelated with di.

In Chapter 4, the estimation of the finite population mean of a survey variable is
covered under a infinite-dimensional setting. Particularly, the problem of functional
calibration estimation for the finite population mean of the functional survey
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1.4. Maxentropic functional calibration estimation

variable Y (t), with values in the space of continuous functions on [0, 1], C([0, 1]),
is considered using the information provided by functional auxiliary information
X(t) ∈ C([0, 1]q), q ≥ 1, in order to correct the bad sample effect and thus improve
its accuracy in terms of efficiency. As was described above, the goal is how to
obtain a design consistent estimator for the unknown functional finite population
mean µY (t) = N−1∑

i∈UN
Yi(t) based on the calibration method. The idea consists

in modify the basic sampling design weights di of the unbiased functional Horvitz-
Thompson estimator µ̂HT

Y (t) = N−1∑
i∈a diYi(t) for new more efficient functional

calibration weights wi(t). These must to be sufficiently close to di’s according to
some dissimilarity distance function D∗a(w, d), satisfying the functional calibration
restriction

1
N

∑
i∈a

wi(t)Xi(t) = µX(t). (1.4)

The functional calibration estimator for µY (t) is then expressed as

µ̂Y (t) = 1
N

∑
i∈a

wi(t)Yi(t).

In this thesis the functional calibration sampling weights are obtained by
matching the calibration estimation problem with the maximum entropy on the
mean principle. In particular, the calibration estimation is viewed as an infinite-
dimensional linear inverse problem following the structure of the maximum entropy
on the mean approach as follows.

1.4.1 Principle of the Maximum entropy on the mean

Consider the following linear inverse problem

y = Kx, (1.5)

where K : X → Y is a known bounded linear operator between separable Hilbert
spaces X and Y . Here y and x are respectively the observed and the unknown data.

The goal is to build a solution for x denoted by x̂. However, its well-known
that, in general, this kind of inverse problems suffers of ill-posedness in the sense of
Hadamard (see for instance Engl et al. [36] and Gzyl and Velásquez [49]). Therefore,
a regularization method must be applied in order to get a unique and stable solution.
In addition, to the popular Tikhonov’s regularization method (see Engl et al.
[36]), there also exist alternative methods such as probabilistic-based approaches
which instead of finding an explicit solution to the equation (1.5), searching for a
probability distribution ν such that the possible solution is the mean of a random
variable X. Among these, the Maximum Entropy on the Mean approach arises as a
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powerful alternative method to solve constrained linear inverse problems (Gamboa
[40], Dacunha-Castelle and Gamboa [26], and Gzyl and Velásquez [49]).

The Maximum Entropy on the Mean approach considers x as the mean value of
a random element X, such that the equation (1.5) becomes

y = KEν(X),

where the expectation is over an unknown probability measure ν.

The solution of the inverse problem x̂ is then defined as the mathematical
expectation of X under a probability measure ν∗ that must be determined. More
precisely, we study the case where this measure is constructed by the maximization,
over the (convex) set of all probability measures, of the entropy functional

S(ν ‖ υ) = −D(ν ‖ υ),

subject to the constraint
y = KEν(X).

Here, D(ν ‖ υ) is the Kullback-Leibler divergence between a feasible finite
measure ν with respect to a given prior probability measure υ, whose definition
is as follows:

Let (X ,B(X )) be a measurable space, where B(X ) is the Borel σ-field of X , and
P(X ) set of probability measures on (X ,B(X )).

Definition 1.12. For ν, υ ∈ P(X ), the Kullback-Leibler information divergence
(also I-divergence and relative entropy) of ν with respect to υ is defined by,

D(ν ‖ υ) =
{∫
X log

(
dν
dυ

)
dν if ν � υ

+∞ otherwise,

where ν � υ means that ν is absolutely continuous with respect to υ.

Remark 1.5. It is important to remark that although the Kullback-Leibler
divergence is always nonnegative and is zero if and only if ν = υ, it is not a
true distance since it is not symmetric and does not satisfy the triangle inequality.
Nevertheless, it is often useful to think of Kullback-Leibler divergence as a“distance”
between measures.

The uniqueness of the probability measure ν∗ is guaranteed by the theorem below.
This theorem relies on the concept of I-projection (Csiszár [24, 25]).

Definition 1.13. Let υ ∈ P(X ) be a probability measure and C a convex subset of
P(X ) such that D(C ‖ υ) < +∞. A probability measure ν∗ is called the I-projection
(or entropic projection) of υ on C if ν∗ ∈ C and

D(ν∗ ‖ υ) = inf
ν∈C

D(ν ‖ υ).
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1.4. Maxentropic functional calibration estimation

This condition, in terms of the entropy function S, is given by

S(ν∗ ‖ υ) = −D(ν∗ ‖ υ) = inf
ν∈C
−D(ν ‖ υ) = sup

ν∈C
S(ν ‖ υ).

Now we let X be a locally convex topological vector space. The following
Theorem due to Csiszár [25] characterizes the entropic projection of a given
probability measure on a convex set. For further details see also Gozlan [47, Chapter
2].

Theorem 1.3. Let υ be a probability measure on X and C ⊂ P(X ) a convex set of
X whose interior has a non-empty intersection with the convex hull of the support
of υ. Let Π(C) =

{
ν ∈ P(X ) :

∫
X xdν(x) ∈ C

}
. Then the I-projection ν∗ of υ on

Π(C) is given by the (exponential family) relation defined by

dν∗
dυ = exp {〈λ∗,Kx〉}

Zυ(λ∗)
,

where λ∗ ∈ Y ′ (dual space of Y) minimizes the function

Hυ(λ) = logZυ(λ)− inf
y∈Y
〈λ, y〉,

with Zυ(λ) = Eυ [exp {〈λ,Kx〉}] =
∫
X exp {〈λ,Kx〉} dυ(x) < +∞.

In Chapter 4, the problem of estimation of functional survey weights wi(t) is
conducted by mean the maximum entropy on the mean principle, expressing the
calibration constraint

∑
i∈awi (t)Xi(t) = NµX(t) as an infinite-dimensional linear

inverse problem, writing wi(t) as

wi(t) =
∫ 1

0
K(s, t)$i (s) ds+ di, for each i ∈ a,

where K(s, t) is a known continuous, real-valued and bounded kernel function and
$i(s) the mean value of a stochastic process Wi(s).

Thus, we have the following inverse problem

NµX(t) = KEν [W ]

=
∑
i∈a

Eν
[∫ 1

0
K(s, t)dWi (s) + di

]
Xi(t)

=
∫ 1

0

∑
i∈a

K(s, t)Xi(t)Eν [dWi (s)] +
∑
i∈a

diXi(t), t ∈ [0, 1] ,

which takes the form of a Fredholm integral equation of the first kind. In general,
integral equations of the first kind with continuous kernels provides typical examples
for ill-posed problems (see, e.g. Kress [64]).
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The probability measure ν∗ is given by applying the Theorem above, where the
corresponding inner product is given by

〈λ,KW〉 =
∫ 1

0
λ>(dt)

(∫ 1

0

∑
i∈a

K(s, t)Xi(t)dWi(s) +
∑
i∈a

diXi(t)
)
.

The estimated functional calibration weights are

ŵi(t) =
∫ 1

0
K(s, t)$∗i (s)ds+ di, i ∈ a,

where $∗i (s)ds = dEν∗ [Wi (s)] depends of the stochastic processes W assumed as
prior.

In the present thesis, two prior measures are assumed: the centered Gaussian
and compound Poisson random measures.

Appendix

Some definitions related to some concepts of graph theory are given below. For
details see, for instance, West [108].

Definition 1.14. A graph G = G(V,E) consists of a vertex set V (G) and edge set
E(G). Each edge e ∈ E is said to join two vertices called its endpoints.

Definition 1.15. A loop is an edge whose endpoints are equal. Multiple edges are
edges having the same pair of endpoints. A simple graph is a graph having no loops
or multiple edges. A simple graph is specified by its vertex set V (G) and edge set
E(G), treating E(G) as a set of unordered pairs of vertices. When x and x′ are the
endpoints of an edge e = xx′, they are adjacent and are neighbors.

Definition 1.16. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G)
such that for all e = xx′ ∈ E(H), we have that x, x′ ∈ V (G), denoted as H ⊆ G.

Definition 1.17. A (x0, xn)-walk in G is an alternating sequence of vertices and
edges [x0, e1, x1, e2, . . . , xn−1, en, xn], with ei = xi−1xi. In a closed walk, x0 = xn. A
trail is a walk where all edges are distinct; a path is a trail where also all vertices are
distinct. A cycle is a closed trail where all vertices except x0 and xn are distinct.

Definition 1.18. Two vertices x and x′ in a graph G are connected if there exists
a (x, x′)-path in G. G is connected if all pairs of distinct vertices are connected.

Definition 1.19. A complete graph is a simple graph whose vertices are pairwise
adjacent.
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1.4. Maxentropic functional calibration estimation

Definition 1.20. The neighbor set N(x) of a vertex x ∈ V (G) is the set of all its
adjacent vertices, i.e. N(x) := {x′ ∈ V (G)|x 6= x′,∃e ∈ V (G) : e = xx′}.

Definition 1.21. A simple, connected graph having no cycles is called a tree, i.e.
an acyclic graph in which any two vertices are connected by exactly one simple path.
A spanning subgraph of G is a subgraph with vertex set V (G). A spanning tree is a
spanning subgraph that is a tree.

Definition 1.22. A weighted graph G is a graph for which each edge e = xx′ ∈ E(G)
has an associated real number w(e) = w(x, x′) called its weight. For any subgraph
H ⊆ G, the weight of H is the sum of weights of its edges, w(H) =

∑
e∈E(H) w(e).

Definition 1.23. Let P be a (x, x′)-path with minimal weight among all (x, x′)-
paths in a graph G. The weight of P is known as the (geodesic) distance dG(x, x′),
and P is the shortest path, or geodesic between x and x′.

Definition 1.24. A minimum spanning tree is a spanning tree with minimal weight
among all spanning trees in G.

Dijkstra’s algorithm

This algorithm is an efficient method for computing the shortest paths from a given
vertex x to all other vertices in a given graph. It is probably the most popular
algorithm for this issue. The algorithm is more efficient when graphs are large and
have many edges. The algorithm solves the problem using the observation that an
(x, x?)-portion of a shortest (x, x′)-path must be a shortest (x, x?)-path. It finds
optimal paths from x to other vertices x′ in increasing order of dG(x, x′).

Algorithm 1.8 Dijkstra’s algorithm

Require: G with w(v, v′) > 0, ∀ vv′ ∈ E(G), and an initial vertex x. Let
w(v, v′) =∞ if vv′ /∈ E(G).

Ensure: Shortest paths from one vertex to all other vertices in a weighted graph
1: Idea: Keep the set S of vertices to which a shortest path from x is known,

enlarging S to include all vertices, maintaining a tentative distance t(x′) from x
to each x′ /∈ S, being the length of the shortest (x, x′)-path yet found.

2: Initialization: Set S = {x}; t(x) = 0; t(x′) = w(x, x′) for x′ 6= x.
3: Iteration: Select a vertex x∗ outside S such that t(x∗) = minx′ /∈S t(x′). Add
x∗ to S. Explore edges from x∗ to update tentative distances: for each edge
x∗x′ with x′ /∈ S, update t(x′) to min {t(x′), t(x∗) + w(x∗, x′)}. The iteration
continues until S = V (G) or until t(x′) = ∞ for every x′ /∈ S. At the end, set
dG(x, x∗) = t(x∗) for all x∗.
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Chapter 2

A robust algorithm for template
curve estimation based on manifold
embedding

joint work with C. Dimeglio∗, J-M. Loubes† and E. Maza‡

Abstract: This chapter considers the problem of finding a meaningful
template function that represents the common pattern of a sample of
curves. To address this issue, a novel algorithm based on a robust ver-
sion of the isometric featuring mapping (Isomap) algorithm is developed.
Assuming that the functional data lie on an intrinsically low-dimensional
smooth manifold with unknown underlying structure, we propose an ap-
proximation of the geodesic distance. This approximation is used to
compute the corresponding empirical Fréchet median function, which pro-
vides an intrinsic estimator of the template function. Unlike the Isomap
method, the algorithm has the advantage of being parameter free and
easier to use. Comparisons with other methods, with both simulated and
real datasets, show that the algorithm works well and outperforms these
methods.
Key Words: Fréchet median; functional data analysis; Isomap; mani-
fold learning.
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A robust algorithm for template curve estimation based on manifold embedding

2.1 Introduction

Nowadays, experiments where the outcome constitutes a sample of functions
{fi(t) : t ∈ T ⊂ R, i = 1, . . . , n} are more and more frequent. Such kind of functional
data are now commonly encountered in speech signal recognition in engineering,
growth curves analysis in biology and medicine, microarray experiments in molecular
biology and genetics, expenditure and income studies in economics, just to name a
few.

However, extracting the information conveyed by all the curves is a difficult
task. Indeed when finding a meaningful representative function that characterizes
the common behavior of the sample, capturing its inner characteristics (as trends,
local extrema and inflection points), a major difficulty comes from the fact that
usually there are both amplitude (variation on the y-axis) and phase (variation on
the x-axis) variations with respect to the common pattern, as pointed out in Ramsay
and Li [77], Ramsay and Silverman [79], or Vantini [101] for instance. Hence, in the
two last decades, there has been a growing interest for statistical methodologies and
algorithms to remove the phase variability and recover a single template conveying
all the information in the data since the classical cross-sectional mean is not a good
representative of the data (see for instance Kneip and Gasser [58]).

Two different kinds of methods have been developed for template function
estimation. The first group relies on the assumption that there exists a mean
pattern from which all the observations differ, i.e an unknown function f such that
each observed curve is given by fi(t) = f ◦hi(t), where hi are deformation functions.
Hence finding this patten is achieved by aligning all curves fi. This method is known
as curve registration. In this direction, various curve registration methods have been
proposed using different strategies. When the warping operator is not specified, we
refer for instance to Kneip and Gasser [58], Wang and Gasser [106] Kneip et al.
[61], James [55], Tang and Müller [95], and Kneip and Ramsay [59] or Dupuy et al.
[35]. When a parametric model for the deformation is chosen, the statistical problem
requires a semi-parametric approach through a self-modeling regression framework
fi(t) = f(t, θi) (see Kneip and Gasser [57]), where all functions are deduced with
respect to the template f by mean a finite-dimensional individual parameter vector
θi. This point of view is also followed in Silverman [88], Rønn [81], Gamboa et al.
[42], Castillo and Loubes [18], Bigot et al. [10] and Trigano et al. [98].

The second category of methods do not assume any deformation model for the
individual functions. The purpose is to select a curve which is assumed to be located
at the center of the functions and estimate it directly from the data without stressing
any particular curve. This is achieved for instance by López-Pintado and Romo [68]
and Arribas-Gil and Romo [3] estimating the template based on the concept of depth
for functional data as measure of centrality of the sample.

In this chapter, we propose an alternative way based on the ideas of manifold
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learning theory. We assume that the observed functions can be modeled as variables
with values in a manifold M with an unknown geometry. Although the manifold is
unknown, the key property is that its underlying geometric structure is contained in
the sample of observed curves so that the geodesic distance can be reconstructed
directly from the data. The template curve estimation is then equivalent to
consider a location measure of the data with respect to this geodesic distance,
hence approximating the Fréchet mean or median of the data. Recently, Chen and
Müller [20] have also adopted a similar methodology appealing to the nonlinear
manifold representation for functional data. Several algorithms have been developed
over the last decade in order to reconstruct the natural embedding of data onto
a manifold. Some of these are, for instance, the Isometric featuring mapping
−Isomap− (Tenenbaum et al. [96]), Local Linear Embedding −LLE− (Roweis and
Saul [82]), Laplacian Eigenmap (Belkin and Niyogi [5]), Hessian Eigenmap (Donoho
and Grimes [33]), Diffusion maps (Coifman and Lafon [21]), Local Tangent Space
Alignment −LTSA− (Zhang and Zha [116]), among others. In the following, we
propose a robust version of the Isomap algorithm devoted to functional data, less
sensitive to outliers and easier to handle. The performance of the algorithm is
evaluated both on simulations and real data sets.

The chapter is organized as follows. The frame of our study is described in
Section 2.2. Section 2.3 is devoted to the robust modification of the Isomap algorithm
proposed to the metric construction of the approximated geodesic distance based on
the observed curves. In Section 2.4 we analyze the template estimation problem in
a shape invariant model, showing that this issue can be solved using the manifold
geodesic approximation procedure. In Section 2.5, the performance of our algorithm
is studied using simulated data. In Section 2.6, several applications on real functional
data sets are performed. Some concluding remarks are given in Section 2.7.

2.2 Template estimation with a manifold embed-

ding framework

Consider discrete realizations of functions fi observed at time tij ∈ T , with T a
bounded interval of R. For simplicity, we assume that all curves are observed at
the same time with the same occurrence, i.e. tij = tj and j = 1, . . . ,m. Set
Xi = {fi(tij), j = 1, . . . ,m} ∈ Rm for i = 1, . . . , n. We assume that the data have
a common structure which can be modeled as a manifold embedding. Hence the
sample E = {X1, . . . , Xn} consists of i.i.d random variables sampled from a law
Q ∈ M ,where M is an unknown connected smooth submanifold of Rm, endowed
with the geodesic distance δ induced by the Riemannian metric g on M⊂ Rm (see
for instance do Carmo [32]).

Under this geometrical framework, the statistical analysis of the curves should
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be carried out carefully, using the intrinsic geodesic distance and not the Euclidean
distance, see for instance Pennec [75] . In particular, an extension of the usual notion
of central value from Euclidean spaces to arbitrary manifolds is based on the Fréchet
function, defined by

Definition 2.1 (Fréchet function). Let (M, δ) be a metric space and let α > 0 be
a given real number. For a given probability measure Q defined on the Borel σ-field
of M, the Fréchet function of Q is given by

Fα(µ) =
∫
M
δα(X,µ)Q(dx), µ ∈M.

For α = 1 and α = 2, the minimizers of Fα(µ), if there exist, are called the Fréchet
(or intrinsic) median and mean respectively. Following Koenker [62], in this chapter
we will particularly deal with the intrinsic median, denoted by µ1

I(Q) to obtain a
robust estimate for the template function f ∈ M. Hence define the corresponding
empirical intrinsic median as

µ̂1
I = arg min

µ∈M

n∑
i=1

δ (Xi, µ) . (2.1)

However, the previous estimator relies on the unobserved manifold M and its
underlying geodesic distance δ. A popular estimator is given by the Isomap algorithm
for δ. The idea is to build a simple metric graph from the data, which will be
close enough from the manifold. Hence the approximation of the geodesic distance
between two points depends on the length of the edges of the graph which connect
these points. The algorithm approximates the unknown geodesic distance δ between
all pairs of points in M in terms of shortest path distance between all pairs of
points in a nearest neighbor graph G constructed from the data points E . If the
discretization of the manifold contains enough points with regards to the curvature
of the manifold, hence the graph distance will be a good approximation of the
geodesic distance. For details about the Isomap algorithm, see Tenenbaum et al.
[96], Bernstein et al. [6], and de Silva and Tenenbaum [29].

The construction of the weighted neighborhood graph in the first step of the
Isomap algorithm requires the choice of a parameter which controls the neighborhood
size and therefore its success. This is made according to a K−rule (connecting each
point with its K nearest neighbors) or ε−rule (connecting each point with all points
lying within a ball of radius ε) which are closely related to the local curvature of
the manifold. Points which are too distant to be connected to the biggest graph
are not used, making the algorithm unstable (see Balasubramanian and Schwartz
[4]). In this chapter we propose a robust version of this algorithm which leads to an

approximation of the geodesic distance, δ̂. Our version does not exclude any point
and does not require any additional tuning parameter. This algorithm has been
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applied with success to align density curves in microarray data analysis (task known
as normalization in bioinformatics) in Gallón et al. [39]. The construction of the
approximated geodesic distance is detailed in Section 2.3.

Once an estimator of the geodesic distance is built, we propose to estimate the
empirical Fréchet median by its approximated version

µ̂1
I,n = arg min

µ∈G

n∑
i=1

δ̂ (Xi, µ) . (2.2)

This estimator is restricted to stay within the graph G since the approximated
geodesic distance is only defined on the graph. Hence we choose as a pattern of the
observation the point which is at the center of the dataset, where center has to be
understood with respect to the inner geometry of the observations.

2.3 The robust manifold learning algorithm

Let X be a random variable with values in an unknown connected and geodesically
complete Riemannian manifoldM⊂ Rm, and a sample E = {Xi ∈M, i = 1, . . . , n}
with distribution Q. Set d the Euclidean distance on Rm and δ the induced geodesic
distance onM. Our aim is to estimate the geodesic distance between two points on
the manifold δ (Xi, Xi′) for all i 6= i′ ∈ {1, . . . , n}.

The Isomap algorithm proposes to learn the manifold topology from a
neighborhood graph. In the same way, our purpose is to approximate the geodesic
distance δ between a pair of data points by the graph distance on the shortest path
between the pair on the neighborhood graph. The main difference between our
algorithm and the Isomap algorithm lies in the treatment of points which are far
from the others. Indeed, the first step of the original Isomap algorithm consists in
constructing the K-nearest neighbor graph or the ε-nearest neighbor graph for a
given positive integer K or a real ε > 0, respectively and then to exclude points
which are not connected to the graph. Such a step is not present in our algorithm
since we consider that a distant point is not always considered an outlier. Hence,
we do not exclude any points. Moreover, a sensitive issue of the Isomap algorithm is
that it requires the choice of the neighbor parameter (K or ε) which is closely related
to the local curvature of the manifold, determining the quality of the construction
(see, for instance, Balasubramanian and Schwartz [4]). In our algorithm, we give a
tuning parameter free process to simplify the analysis.

The algorithm has three steps. The first step constructs a complete weighted
graph associated to E based on Euclidean distances d(Xi, Xi′) between all pairwise
points Xi, Xi′ ∈ Rm. It is a complete Euclidean graph GE = (E , E) with set of nodes
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E and set of edges E = {{Xi, Xi′} , i = 1, . . . , n− 1, i′ = i+ 1, . . . , n} weighted with
the corresponding Euclidean distances.

In the second step, the algorithm obtains the Euclidean Minimum Spanning Tree
GMST = (E , ET) associated to GE, i.e. the spanning tree that minimizes the sum of
the weights of the edges in the spanning tree of GE,

∑
{Xi,Xi′}∈ET

d (Xi, Xi′). The
underlying idea in this construction is that, if two points Xi and Xi′ are relatively
close, then we have that δ (Xi, Xi′) ≈ d (Xi, Xi′). This may not be true if the
manifold is very twisted and/or if too few points are observed, and may induce bad
approximations. So the algorithm will produce a good approximation for relatively
regular manifolds. This drawback is well known when dealing with graph-based
approximations of the geodesic distance (Tenenbaum et al. [96], and de Silva and
Tenenbaum [29]).

An approximation of δ (Xi, Xi′) is provided by the sum of all the Euclidean
distances of the edges of the shortest path on GMST connecting Xi to Xi′ , i.e.
δ̂ (Xi, Xi′) = mingii′∈GMST

L (gii′), where L (gii′) denotes the length of a path gii′
connecting Xi to Xi′ on GMST. However, this construction is highly unstable since
the addition of new points may change completely the structure of the graph.

To cope with this problem, we propose in the third stage to add more robustness
in the construction of the approximation graph. Actually, in our algorithm we add
more edges between the data points to add extra paths and thus to cover better the
manifold. The underlying idea is that paths which are close to the ones selected in
the construction of the GMST could also provide good alternate ways of connecting the
edges. Closeness here is understood as lying in open balls B (Xi, εi) ⊂ Rm around
the point Xi with radius εi = max{Xi,Xi}∈ET

d (Xi, Xi′). Hence, these new paths
between the data are admissible and should be added to the edges of the graph.
Finally, we obtain a new robustified graph G ′ = (E , E ′) defined by

{Xi, Xi′} ∈ E ′ ⇐⇒ XiXi′ ⊂
n⋃
i=1

B (Xi, εi) ,

where

XiXi′ = {X ∈ Rm, ∃λ ∈ [0, 1], X = λXi + (1− λ)Xi′} .

Finally, G ′ is the graph which gives rise to our estimator of δ, given by

δ̂ (Xi, Xi′) = min
gii′∈G′

L (gii′) . (2.3)

Hence, δ̂ is the distance associated with G ′, that is, for each pair of points Xi and
Xi′ , we have δ̂ (Xi, Xi′) = L (γ̂ii′) where γ̂i is the minimum length path between Xi

and Xi′ associated to G ′. We point out that all points of the data sets are connected
in the new graph G ′.

38



2.3. The robust manifold learning algorithm

Algorithm 2.1 Robust approximation of δ

Require: E = {Xi ∈ Rm, i = 1, . . . , n}
Ensure: δ̂

1: Calculate d(Xi, Xi′) = ‖Xi−Xi′‖2 between all pairwise data points Xi and Xi′ ,
i = 1, . . . , n − 1, i′ = i + 1, . . . , n, and construct the complete Euclidean graph
GE = (E , E) with set of edges E = {{Xi, Xi′}}.

2: Obtain the Euclidean Minimum Spanning Tree GMST = (E , ET) associated to
GE.

3: For each i = 1, . . . , n calculate εi = max{Xi,Xi′}∈ET
d (Xi, Xi′), and open balls

B (Xi, εi) ⊂ Rm of center Xi and radius εi. Construct a graph G ′ = (E , E ′)
adding more edges between points according to the rule

{Xi, Xi′} ∈ E ′ ⇐⇒ XiXi′ ⊂
n⋃
i=1

B (Xi, εi) ,

where XiXi′ = {X ∈ Rm, ∃λ ∈ [0, 1], X = λXi + (1− λ)Xi′}.
4: Estimate the geodesic distance between two points by the length of the shortest

path in the graph G ′ between these points using the Floyd’s or Dijkstra’s
algorithm (see, e.g. Lee and Verleysen [66]).

A summary of the procedure is gathered in the Algorithm 2.1 and its
corresponding R code is given in the Appendix B.

Note that, the 3-step algorithm described above contains widespread graph-based
methods to achieve our purpose. In this article, all graph-based calculations, such
as Minimum Spanning Tree estimation or shortest path calculus, were carried out
with the igraph package for network analysis by Csárdi and Nepusz [23].

An illustration of the algorithm and its behavior when the number of observations
increases are displayed respectively in Figures 2.1 and 2.2. In Figure 2.1, points
(X1

i , X
2
i )i are simulated as follows:

X1
i = 2i− n− 1

n− 1 + ε1i , and X2
i = 2

(
2i− n− 1
n− 1

)2

+ ε2i , (2.4)

where ε1i and ε2i are independent and normally distributed with mean 0 and variance
0.01 for i = 1, . . . , n and n = 30. In Figure 2.2, some results of graph G ′ for
n = 10, 30, 100 are given. We can see that graph G ′ tends to be close to the true
manifold {(t, t2) ∈ R2, t ∈ R} when n increases.

Obviously, this estimation shows that the recovered structures in Figures 2.1
and 2.2 are pretty sensitive to noise. Nevertheless, to estimate a representative of a
sample of curves, a prior smoothing step is almost always carried out as in Ramsay
and Silverman [79]. This is done in Section 2.6 for our real data sets.
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Step 1 Step 2 Step 3

Figure 2.1: The 3-step construction of a subgraph G ′ from Simulation (2.4). On
the left, the simulated data set (black dots) and the associated complete Euclidean
graph GE (Step 1). On the middle, the GMST associated with the complete graph GE
(Step 2). On the right, the associated open balls and the corresponding subgraph G ′
(Step 3).

n=10 n=30 n=100

Figure 2.2: Evolution of graph G ′ from Simulation (2.4) for n = 10, 30, 100

2.4 Application: template estimation in a shape

invariant model

In this section, we consider the case where the observations are curves warped from
an unknown template f : T → R. We want to study whether the central curve
defined previously as the median of the data with respect to the geodesic distance
provides a good pattern of the curves. Good means, in that particular case, that the
intrinsic median should be close to the pattern f .

We consider a translation model indexed by a real valued random variable A with
unknown distribution on an interval (b, c) ⊂ R

Xij = fi(tj) = f (tj − Ai) , i = 1, . . . , n, j = 1, . . . ,m, (2.5)
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where (Ai)i are i.i.d random variables drawn with distribution A which models the
unknown shift parameters. This specification is an special case of the self-modeling
regression mentioned in the introduction.

Under a nonparametric registration model, Maza [70] and Dupuy et al. [35] define
the structural expectation function of a sample of curves and build a registration
procedure in order to estimate it. Following the same philosophy, but for the case of
the translation effect model (2.5), we propose to use as a good pattern of the dataset
the Structural Median function fSM defined as

fSM = f (· −med(A)) , (2.6)

where med(A) denotes the median of A.

We will see that the manifold embedding point of view enables to recover this
pattern. Actually, define a one-dimensional function in M ⊂ Rm parameterized by
a parameter a ∈ (b, c) ⊂ R as

X : (b, c)→ Rm

a 7→ X(a) = (f (t1 − a) , . . . , f (tm − a)) ,

and set C = {X(a) ∈ Rm, a ∈ (b, c)}.
As soon as X is a regular curve, that is, if its first derivative never vanishes,

X ′ 6= 0⇐⇒ ∀a ∈ (b, c), ∃j ∈ {1, . . . ,m}, f ′ (tj − a) 6= 0, (2.7)

then, the smooth mapping X : a 7→ X(a) provides a natural parametrization of C
which can thus be seen as a submanifold of Rm of dimension 1 (do Carmo [32]). The
corresponding geodesic distance is given by

δ (X(a1), X(a2)) =
∣∣∣∣∫ a2

a1

‖X ′(a)‖ da
∣∣∣∣ , (2.8)

with X ′(a) = dX(a)/da = (dX1(a)/da, . . . , dXm(a)/da)>.

The observation model (2.5) can then be seen as a discretization of the manifold
C for different values (Ai)i. Hence, finding the intrinsic median of all shifted curves
can be done by understanding the geometry of space C, and thus, by approximating
the geodesic distance between observed curves. Define the intrinsic median with
respect to the geodesic distance (2.8) on C, that is

µ̂1
I = arg min

µ∈C

n∑
i=1

δ (Xi, µ) . (2.9)

The following theorem gives a minimizer, whose proof is provided in the Appendix
A.
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Theorem 2.1. Under the assumption (2.7) that X is a regular curve, we get that

µ̂1
I =

(
f
(
t1 − m̂ed(A)

)
, . . . , f

(
tm − m̂ed(A)

))
,

where m̂ed(A) is the empirical median.

Hence as soon as we observe a sufficient number of curves to ensure that
the median and the empirical median are close, the intrinsic median is a natural
approximation of (2.6). Therefore, the manifold framework provides a geometrical
interpretation of the structural median of a sample of curves. The estimator is thus
given by

µ̂1
I,n = arg min

µ∈E

n∑
i=1

δ̂ (Xi, µ) , (2.10)

where δ̂ is an approximation of the unknown underlying geodesic distance, that is
estimated by the algorithm described in Section 2.3.

We point out that in many situations, giving a particular model for the
deformations corresponds actually to consider a particular manifold embedding for
the data. Once the manifold is known, its corresponding geodesic distance may be
properly computed, as done in the translation case. So in some particular cases,
the minimization in (2.9) can give an explicit formulation and then it is possible to
identify the resulting Fréchet median. Hence previous theorem may be generalized
to such cases as done in Gallón et al. [39].

Note first that this case only holds for the Fréchet median (α = 1) but not
the mean for which the so-called structural expectation and the Fréchet mean are
different. Moreover, the choice of the median is also driven by the need for a robust
method, whose good behavior will be highlighted in the simulations and applications
in the following sections.

As shown in the simulation study below, when the observations can be modeled
by a set of curves warped from an unknown template by a general deformation
process, estimate (2.10) enables to recover the main pattern in a better way than
classical methods. Obviously, the method relies on the assumption that all the
observed data belong to an embedded manifold whose geodesic distance can be well
approximated by the proposed algorithm.

2.5 Simulation study

IIn this section, the numerical properties of our estimator, called Robust Manifold
Embedding (RME), defined by the equation (2.10) in Section 2.4 are studied using
simulated data. The estimator is compared to those obtained with the Isomap
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algorithm and the Modified Band Median (MBM) estimator proposed by Arribas-
Gil and Romo [3], which is based on the concept of depth for functional data (see
López-Pintado and Romo [68]). The behavior of the estimator when the number of
curves increases is also analyzed.

Four different types of simulations of increasing warping complexity for the
single shape invariant model were carried out, observing n = 15, 30, 45, 60 curves
on m = 100 equally spaced discrete points (tj)j in the interval [−10, 10]. The
experiment was conducted with R = 100 repetitions. The template function f and
shape invariant model, for each simulation, are given as follows:

Simulation 1 : One-dimensional manifold defined by f(t) = 5 sin(t)/t and

Xij = f (tj + Ai) ,

where (Ai)i are i.i.d uniform random variables on interval [−5, 5].
Simulation 2 : Two-dimensional manifold given by f(t) = 5 sin(t) and

Xij = f (Aitj +Bi) ,

where (Ai)i and (Bi)i are independent and (respectively) i.i.d uniform random
variables on intervals [0.7, 1.3] and [−1, 1].
Simulation 3 : Four-dimensional manifold given by f(t) = t sin(t) and

Xij = Aif (Bitj + Ci) +Di,

where (Ai)i, (Bi)i, (Ci)i and (Di)i are independent and (respectively) i.i.d uniform
random variables on intervals [0.7, 1.3], [0.7, 1.3], [−1, 1] and [−1, 1].
Simulation 4 : Four-dimensional manifold given by f(t) = φt+ t sin(t) cos(t) with
φ = 0.9, and

Xij = Aif (Bitj + Ci) +Di,

where (Ai)i, (Bi)i, (Ci)i and (Di)i as in the Simulation 3.

Figure 2.3 illustrates the simulated data sets from Simulations 1-4 with n = 30
curves for one simulation run (one of 100 repetitions). For Simulation 1, where there
is only phase variability, all methods follows the structural characteristics of the
sample of curves, where the template estimated by the robust manifold approach is
the closest curve to the theoretical function. The same conclusion can be inferred
from Simulation 2. Indeed, for this simulation type, and for this particular simulation
run, the RME estimator coincides with the theoretical template function. For the
four-dimensional manifolds in Simulations 3 and 4, where there is an additional
amplitude variability, the robust manifold estimator captures better the structural
pattern in the sample of curves followed by the Isomap estimator. Note that in the
Simulation 4, both approaches coincide. Although the MBM estimator follows the
shape of the theoretical template, the estimator deviates from it in the cases 2-4.
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Figure 2.3: Simulated curves (gray) from Simulation 1 (top left), 2 (top right), 3
(bottom left) and 4 (bottom right) for one simulation run, and the respective target
template function f (solid line), MBM (dash-dotted line), Isomap (dotted line), and
RME (dashed line) template estimators.

In order to compare more accurately the estimators described above, we calculate,
for each one, the empirical mean squared error obtained on the R = 100 repetitions
of each type of simulation. We recall the definition, for estimator f̂ of a given type
of simulation, of the mean squared error:

Mean Squared Error
(
f̂
)

= 1
R

R∑
r=1

‖f̂r − f‖2
2,

where, f̂r is the estimation from the r-th repetition of the given simulation type,
f is the true template function and ‖ · ‖2 is the classical Euclidean norm. We also
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highlight, for our comparisons, the fact that

Mean Squared Error
(
f̂
)

= 1
R

R∑
r=1

‖f̂r − f̄‖2
2︸ ︷︷ ︸

Variance

+ ‖f̄ − f‖2
2︸ ︷︷ ︸

Squared bias

,

where f̄ is the mean of all R obtained estimations.

Table 2.1 shows the mean squared errors, variances and squared biases of
each estimator for simulations 1, 2, 3 and 4, and for different number on curves
n = 15, 30, 45, 60 in the sample. Values have been rounded to zero decimal places to
facilitate the comparisons, and the minimum values are signed in bold.

Table 2.1: Comparison of estimators for simulations 1-4 with different sample sizes.

n Statistic
Simulation1 Simulation 2

MBM Isomap RME MBM Isomap RME
MSE 136 389 335 790 400 435

15 Bias2 23 152 118 141 35 46
Variance 113 236 217 649 366 389
MSE 30 108 92 666 338 268

30 Bias2 8 13 10 98 34 18
Variance 22 95 82 568 304 249
MSE 24 139 66 669 244 155

45 Bias2 10 23 5 120 20 9
Variance 14 116 60 549 224 147
MSE 14 85 55 634 168 136

60 Bias2 5 9 4 161 5 4
Variance 10 76 51 472 163 132

n Statistic
Simulation 3 Simulation 4

MBM Isomap RME MBM Isomap RME
MSE 1350 1152 1171 876 890 893

15 Bias2 251 375 441 394 512 522
Variance 1098 777 730 483 378 371
MSE 1025 673 721 911 861 876

30 Bias2 212 160 248 470 536 554
Variance 813 513 473 441 325 323
MSE 1034 553 498 820 827 868

45 Bias2 223 105 141 397 524 569
Variance 811 449 356 423 303 299
MSE 965 572 402 879 776 842

60 Bias2 168 97 122 458 474 563
Variance 797 475 280 421 302 279

From the table, we observe that when the number of curves in the sample is
small (n = 15) the MBM estimator has better results in terms of the MSE, Bias2
and variance for the Simulation 1. The same is true when n = 30. With n = 45, 60

45



A robust algorithm for template curve estimation based on manifold embedding

curves the MBM estimator has minimum mean squared error and variance, and our
estimator has smaller bias. Comparing the Isomap and RME methods only, the
latter overcomes the former. For Simulation 2, the RME estimator overcomes the
MBM and Isomap estimators for n = 30, 45, 60 curves, except when n = 15, where
the Isomap estimator is better. However, in this case there are not big differences
between Isomap and RME estimators. As we expected, when the geometry of the
curves is more complex, i.e. when we have a four-dimensional manifolds, the results
are more variated. For Simulation 3, the RME estimator has a good performance
with n = 45, 60. With n = 15, 30 the better results are shared by the MBM and
Isomap methods. In Simulation 4, the MBM estimator has, in general, better results.
Finally, note that although the theorem in Section 2.4 is valid for one-dimensional
manifolds generated by time shifts (Simulation 1), we can see that the intrinsic
sample median estimator by approximating the corresponding geodesic distance with
the robust algorithm performs well for manifolds of higher dimension (Simulations
2-4).

2.5.1 Robustness analysis

In order to assess the robustness of the RME estimator, we carried out an additional
simulation study generating atypical curves in the functional data sets. In particular,
from n = 15, 30, 45, 60 curves we generated 10% of them as atypical according
to the single shape invariant model in the four type of simulations considered
above, modifying the corresponding individual shift parameters but preserving the
geometric structure of the curves. So, for each simulation, the non-atypical curves
Xij with i = 1, . . . , (n − d0.10ne) are generated as above, and the atypical curves
X̃ij with i = (n− d0.10ne) + 1, . . . , n were generated as:

Simulation 1 : One-dimensional manifold defined by f(t) = 5 sin(t)/t and

X̃ij = f
(
tj + Ãi

)
,

where
(
Ãi
)
i

are i.i.d uniform random variables on interval [4.5, 6].
Simulation 2 : Two-dimensional manifold given by f(t) = 5 sin(t) and

X̃ij = f
(
Ãitj + B̃i

)
,

where
(
Ãi
)
i

and
(
B̃i

)
i

are independent and (respectively) i.i.d uniform random
variables on intervals [0.35, 0.65] and [−0.5, 0.5].
Simulation 3 : Four-dimensional manifold given by f(t) = t sin(t) and

X̃ij = Ãif
(
B̃itj + C̃i

)
+ D̃i,

where
(
Ãi
)
i
,
(
B̃i

)
i
,
(
C̃i
)
i

and
(
D̃i

)
i

are independent and (respectively) i.i.d uniform
random variables on intervals [1.3, 1.4], [0.7, 1.3], [−1.5,−1] and [1, 1.5].
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Simulation 4 : Four-dimensional manifold given by f(t) = φt+ t sin(t) cos(t) with
φ = 0.9, and

X̃ij = Ãif
(
B̃itj + C̃i

)
+ D̃i,

where
(
Ãi
)
i
,
(
B̃i

)
i
,
(
C̃i
)
i

and
(
D̃i

)
i

are independent and (respectively) i.i.d uniform
random variables on intervals [1.05, 1.95], [1.05, 1.95], [−1, 1] and [−1, 1].

Figure 2.4 illustrates the simulated data sets from Simulations 1-4 with n = 30
curves for one replication. The curves signed in red color correspond to the atypical
curves. For this particular simulation run, we see that the atypical curves has
influence over the Isomap estimator for all types of simulation. For the one and
two-dimensional manifolds in Simulations 1 and 2 respectively we observe that the
RME estimator has a good performance. For example, note, as in the simulation
study without atypical curves developed above, the RME estimator coincides with
the theoretical template function for the simulation type 1, and for this particular
simulation run. For complex shape functions as in Simulations 3 and 4, our
estimator captures adequately the common pattern of the sample in presence on
atypical curves. As expected, the depth-based estimator is robust against atypical
observations.

The mean squared errors, variances and squared biases of each estimator for
Simulations 1-4 and different number on curves n = 15, 30, 45, 60 including atypical
curves are showed in the Table 2.2. For Simulation 1, the MBM estimator has the
best results for all number of curves. In this case, the RME method overcomes its
not robust version estimator (Isomap). Additionally, when the warping complexity
increases, the RME estimator has minimum mean squared errors in most cases for
Simulations 2-4. As expected, only the when the number of curves is small (n = 15)
the estimator performs less well.

2.6 Applications

In this section we apply the proposed robust manifold learning algorithm to extract
the template function of a sample of curves on three real datasets of functional
data: the well-known Berkeley Growth and Gait data in functional data applications
(Ramsay and Silverman [79]), and a reflectance data of two landscape types. Our
algorithm is compared with the Isomap and Modified Band Median methods.

2.6.1 Berkeley growth study

The data of the Berkeley’s study consist in 31 height measurements for 54 girls and 38
boys recorded between the ages of 1 and 18 years. Intervals between measurements
range from 3 months (age 1-2 years), to yearly (age 3-8), to half-yearly (age 8-18).
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Figure 2.4: Simulated curves (gray) from simulation type 1 (top left), 2 (top right), 3
(bottom left) and 4 (bottom right) including atypical curves (red) for one simulation
run, and the respective target template function f (solid line), MBM (dash-dotted
line), Isomap (dotted line), and RME (dashed line) template estimators.

One of the goals with this kind of data is the pattern analysis of growth velocity
and acceleration curves, represented by the first and second derivatives of the height
functions, in order to characterize its spurts and trends during years. The velocity
and acceleration curves for girls and boys were obtained by taking the first and second
order differences, respectively, of the height curves, whose functional representations
were made using a B-spline smoothing (see Ramsay and Silverman [79] for details).

Figure 2.5 provides the smoothed velocity curves (on the top) measured in
centimeters per year (cm/year) and the smoothed acceleration curves (on the
bottom) measured in centimeters per squared year (cm/year2) of height for girls
(on the left) and for boys (on the right). It is evident that all individuals exhibit a
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Table 2.2: Comparison of estimators for simulations 1-4 including atypical curves
for different sample sizes.

n Statistic
Simulation1 Simulation 2

MBM Isomap RME MBM Isomap RME
MSE 107 452 400 830 570 680

15 Bias2 21 215 169 186 76 116
Variance 85 237 232 645 495 564
MSE 36 177 166 649 409 300

30 Bias2 8 49 46 115 39 20
Variance 28 128 120 535 370 280
MSE 21 121 81 523 296 212

45 Bias2 9 32 26 89 23 11
Variance 13 89 56 433 273 200
MSE 19 151 90 551 276 212

60 Bias2 9 45 40 98 63 46
Variance 10 106 51 453 213 166

n Statistic
Simulation 3 Simulation 4

MBM Isomap RME MBM Isomap RME
MSE 1387 1093 1098 990 983 963

15 Bias2 257 327 396 485 561 538
Variance 1129 766 702 505 422 425
MSE 1370 856 857 901 861 856

30 Bias2 260 204 312 434 505 511
Variance 1110 652 545 467 355 345
MSE 1206 640 547 874 863 860

45 Bias2 234 155 197 556 541 406
Variance 972 484 350 317 322 454
MSE 963 585 462 924 864 861

60 Bias2 154 118 165 500 537 561
Variance 809 468 297 424 327 301

common velocity and acceleration pattern throughout years, but features as peaks,
troughs and inflection points occur at different times for each child.

From all of the graphs in the Figure 2.5, we see, in general, that all the template
estimators obtain a curve situated in the middle of the samples of curves capturing
its common shape pattern appropriately. For the case of sample velocity curves of
girls (top-left graph) the RME and MBM estimators coincide. The Isomap estimator
deviates slightly from the center. In the case of samples of velocity and acceleration
curves of boys, both the RME and Isomap estimators choose the same template
function. Only in the case of acceleration curves of girls (bottom-left graph), the
three methods choose different functions. In summary, we infer that the RME
estimator seems to perform a good work extracting a meaningful shape curve.
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Figure 2.5: Velocity (on the top) and acceleration (on the bottom) curves of 54 girls
(on the left) and 31 boys (on the right) in the Berkeley growth study (gray lines). The
estimated template functions with the MBM (dashed line), Isomap (dashed-dotted
line), and RME (solid line) methods.

2.6.2 Gait cycle data

For this application, we consider the data of angle measurements (in degrees) in the
sagittal plane formed by the hip and knee of 39 children through a gait cycle, where
time is measured in terms of the child’s gait cycle such that every curve is given for
values ranging between 0 and 1. The smoothed curves were obtained by fitting a
Fourier basis system following the analysis of Ramsay and Silverman [79] for this
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data, where both sets of curves are periodic. Figure 2.6 displays the curves of hip
(on the left) and knee (on the right) angles observed during the gait. As we can see,
a two-phase process can be identified for the knee motion, while for the hip motion
there is a single-phase. Also, both sets of curves share a common pattern around
which there are both phase and amplitude variability.

For this application, the template functions obtained by the Robust Manifold
Estimator based on our algorithm seem to capture the salient features of the sample
of hip and knee angle curves. Note also that the same template, located in the center
of the samples, was chosen by all the estimators.
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Figure 2.6: Angle curves formed by the hip (on the left) and knee (on the right) of
39 children through a gait cycle, and the MBM (dash-dotted line), Isomap (dotted
line), and RME (dashed line) template estimators.

2.6.3 Landscape reflectances data

Finally, we consider two data sets where the corresponding observed curves represent
the weekly reflectance profiles of two particular landscapes (corn and wheat). The
reflectance is a measure of the incident electromagnetic radiation that is reflected
by a given interface. For these data, there are 23 and 124 curves for corn and
wheat landscapes respectively. The aim consists in extracting a representative
curve of a type of landscape while observing the reflectance profiles of different
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landscapes of the same type. In Figure 2.7, the smoothed curves corresponding to
reflectance patterns of two landscape types in the same region in the same period
are showed. The smoothing was obtained from discrete data with B-spline basis
system. The reflectance depends on the vegetation whose growth depends on the
weather condition and the soil behavior. It is therefore relevant to consider that these
profiles are deformations in translation, scale and amplitude of a single representative
function of the reflectance behavior of each landscape type in this region at this time.

In Figure 2.7, we observe that for the corn landscape case, where there are
relatively a few number of curves, the robust manifold estimator chooses a meaningful
template curve which seems to appear at the center of curve sample, which coincides
with the curve obtained by the modified band median estimator. The Isomap
estimator chooses a different curve as representative function which is slightly away
from the center of the sample. For the wheat landscape, all of three estimators
choose a different template curve. Although all the estimated template curves follow
the structural features of the sample, the RME estimator select a curve that is
located more in the middle. In this application domain, extracting a curve by RME
is best able to report data as reflecting their structure and thus to obtain a better
representative and improve further future functional analysis.
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Figure 2.7: Reflectance curves of corn (left) and wheat (right) landscapes, and
MBM (dash-dotted line), Isomap (dotted line), and RME (dashed line) template
estimators.
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2.7 Concluding remarks

In this chapter, we have proposed a robust algorithm to approximate the geodesic
distance of the underlying manifold. This approximated distance is used to build an
empirical Fréchet median of the functions. This function is a meaningful template
curve for a sample of functions, which have both amplitude and time deformations.

Our approach relies on the fundamental paradigm of functional data analysis
which involves treating the entire observed curve as a unit of observation rather than
individual measurements from the curve. Indeed, we show that, when the structure
of the deformations entails that the curve can be embedded into a manifold, finding
a representative of a sample of curves corresponds to calculate an intrinsic statistic
of observed curves on their unknown underlying manifold. Moreover in a translation
model, i.e where the curves are actually warped from an unknown pattern, both
methodologies coincide since the structural median of a sample of curves corresponds
to the intrinsic median on a one-dimensional manifold. Moreover, we show that our
method improves the performance of other pattern extraction methods, for simulated
and real data sets.

From a computational point of view, our method is inspired by the ideas of the
Isomap algorithm. We note that we have also used the Isomap algorithm in the
simulation study and the applications with some similar results with to respect to
our algorithm. Hence, our algorithm has the advantage of being parameter free and
then it is of easiest use. One of the major drawbacks of these methodologies are
that a relatively high number of data are required in order to guarantee a good
approximation of the geodesic distance at the core of this work (see Tenenbaum
et al. [96]). This drawback is clearly related with the high variance of our estimator
discussed previously and should be outperformed with further work. But, anyway,
we show that our method improves the performance of other classical ones.

Appendix A

Proof of Theorem 2.1. Let X be defined by

X : (b, c)→ Rm

a 7→ X(a) = (f (t1 − a) , . . . , f (tm − a))

and set C = {X(a) ∈ Rm, a ∈ (b, c)}.

By assumption (2.7), C can be seen as a submanifold of Rm of dimension 1 with
corresponding geodesic distance defined by (2.8).
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Take µ = X(α) with α ∈ (b, c), thus we can write

µ̂1
I = arg min

X(α)∈C

n∑
i=1

δ (X (Ai) , X(α))

= arg min
µ∈C

n∑
i=1

D (Ai, α) = arg min
µ∈C

C(α),

where D is the distance on (b, c), given by

D (Ai, α) =
∣∣∣∣∫ α

Ai

‖X ′(a)‖ da
∣∣∣∣ .

In the following, let
(
A(i)
)
i

be the ordered parameters. That is A(1) < · · · < A(n).
Then, for a given α ∈ (b, c) such that A(j) < α < A(j+1), we get that

C(α) = jD
(
α,A(j)

)
+

j−1∑
i=1

iD
(
A(i), A(i+1)

)
+ (n− j)D

(
α,A(j+1)

)
+

n−1∑
i=j+1

(n− i)D
(
A(i), A(i+1)

)
.

For the sake of simplicity, let n = 2q + 1. It follows that M̂ed(A) = A(q+1).
Moreover, let α = A(j) with j < q+1. By symmetry, the case j > q+1 holds. Then,
we rewrite C (α) as

C (α) =
j−1∑
i=1

iD
(
A(i), A(i+1)

)
+

n−1∑
i=j

(n− i)D
(
A(i), A(i+1)

)
and, by introducing A(q+1), we get that

C(α) =
j−1∑
i=1

iD
(
A(i), A(i+1)

)
+

q∑
i=j

iD
(
A(i), A(i+1)

)
+

q∑
i=j

(n− 2i)D
(
A(i), A(i+1)

)
+

n−1∑
i=q+1

(n− i)D
(
A(i), A(i+1)

)
.

Finally, we notice that

C(α) = C
(
A(q+1)

)
+

q∑
i=j

(n− 2i)D
(
A(i), A(i+1)

)
> C

(
A(q+1)

)
.

And the result follows since

µ̂1
I = arg min

µ∈C
C(α) = X

(
A(q+1)

)
= X

(
M̂ed(A)

)
= f̂SM.
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Appendix B

library(igraph)

# Function to calculate the Minimum Spanning Tree of a data set X

mst <- function(X) {

D <- as.matrix(dist(X))

G <- graph.adjacency(D, "undirected", weighted = TRUE)

T <- minimum.spanning.tree(G)

A <- get.adjacency(T)

return(A)

}

# Function to obtain an extended graph

manif <- function(X) {

D <- as.matrix(dist(X))

A <- mst(X)

DA <- D*A

R <- apply(DA, 1, max)

n <- dim(X)[1]

d <- dim(X)[2]

A <- matrix(0, nrow=n, ncol=n)

L <- 100

f <- function(l,k) {

(1-l)*X[i,k]+l*X[j,k]

}

for (i in 1:(n-1)) {

for (j in (i+1):n) {

P <- outer(1:L/(L+1), 1:d, f)

E <- as.matrix(dist(rbind(P, X)))

F <- E[(L+1):(L+n), 1:L]

if (all(apply(F<R, 2, any))) A[i,j]=1

}

}

A <- A + t(A)

return(A)

}

# Function to calculate the estimated intrinsic mean

imean <- function(X, moment=2) {

n <- dim(X)[1]

D <- as.matrix(dist(X))
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A <- manif(X)

DA <- D*A

G <- graph.adjacency(DA, "undirected", weighted = TRUE)

GD <- shortest.paths(G)

GD <- GD^moment

d <- apply(GD, 2, sum)

im <- which.min(d)

return(im)

}
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Chapter 3

Statistical properties of the quan-
tile normalization method for den-
sity curve alignment∗

joint work with J-M. Loubes† and E. Maza‡

Abstract: The chapter investigates the large sample properties of the
quantile normalization method by Bolstad et al. [12] which has become
one of the most popular methods to align density curves in microarray
data analysis. We prove consistency of this method which is viewed as
a particular case of the structural expectation procedure for curve align-
ment, which corresponds to a notion of barycenter of measures in the
Wasserstein space. Moreover, we show that, this method fails in some
case of mixtures, and we propose a new methodology to cope with this
issue.
Key Words: Curve registration; Manifold registration; Microarray data
analysis; Normalization; Order statistics; Structural expectation; Wasser-
stein distance.

3.1 Introduction

We consider a density estimation problem in the particular situation where the
data are samples of density curves, observed with some variations which are not
directly correlated to the studied studied phenomenon. This situation occurs often in

∗ The results of this chapter have been recently published in Mathematical Biosciences, 242(2),
129–142, 2013.

† Institut de Mathématiques de Toulouse, Université Paul Sabatier - Toulouse III, Toulouse, France.
E-mail: jean-michel.loubes@math.univ-toulouse.fr

‡ École Nationale Supérieure Agronomique de Toulouse, and Genomic & Biotechnology of the Fruit
Laboratory. UMR 990 INRA/INP-ENSAT. E-mail: elie.maza@ensat.fr
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biology, for example when considering gene expression data obtained from microarray
technologies, which is used to measure genome wide expression levels of genes in a
given organism. A microarray may contain thousands of spots, each one containing
a few million copies of identical DNA molecules that uniquely correspond to a gene.
From each spot, a measure is obtained and then one of the most popular applications
is to compare gene expression levels on different conditions, which leads to millions
of measures of gene expression levels on technical and biological samples. However,
before performing any statistical analysis on such data, it is necessary to process raw
data in order to remove any systematic bias inhering to the microarray technology:
differential efficiency of the two fluorescent dyes, different amounts of starting mRNA
material, background noise, hybridization reactions and conditions. A natural way
to handle this phenomena is to try remove these variations in order to align the
measured densities, which proves difficult since the densities are unknown. In
bioinformatics and computational biology, a method to reduce this kind of variability
is known as normalization.

Among the many normalization methods, the quantile normalization method
proposed by Bolstad et al. [12] has received a large interest. The procedure consists in
assuming that there is an underlying common distribution followed by the measures.
Then, for i = 1, . . . , n samples of j = 1, . . . ,m of i.i.d random variables Xij, the
mean distribution is achieved by projecting the j-th empirical vector of sample
quantiles, q̂ j = (q̂1,j, . . . , q̂n,j)>, onto the vector d = (1/

√
n, . . . , 1/

√
n)>. This

gives projd q̂ j = (n−1∑n
i=1 q̂i,j, . . . , n

−1∑n
i=1 q̂i,j)>, which is such that if all n data

vectors Xi, i = 1, . . . , n, share the same distribution, then the plot of the quantiles
gives a straight line along the line d . We refer to Bolstad et al. [12] and Irizarry
et al. [53] for some applications of this method. An example of this method is given
in Figure 3.1, where the densities of a sample of 18 two-color microarrays are plotted
after normalization of the expression log-ratios within two-color arrays. The dot-
dashed and solid lines through densities corresponds to cross-sectional mean and
quantile normalization of the log intensities across the arrays, respectively. The
quantile normalization method has the advantages to be simple and quick with
respect to others normalization procedures and yet providing very good estimation
results. However its statistical properties have not been derived yet up to our
knowledge.

Actually, normalization of density samples may be seen as the empirical version
of a warping problem between distribution functions. This issue has received a
growing attention in the last decade where many authors tackle the problem of
recovering an unknown curve observed with both amplitude (variation in the y-axis)
or phase (variation in the x−axis) variations, which prevent any direct extraction
of classical statistics such as the mean or the median. Indeed the classical cross-
sectional mean does not provide a consistent estimate of the function of interest
when the phase variations are ignored since it fails to capture the characteristics of
the sample of curves as quoted in Ramsay and Li [77]. Therefore curve registration
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Figure 3.1: Densities for individual-channel intensities for two-color microarray data
after normalization within arrays. Dotted and solid gray lines correspond to the
“green” and “red” color arrays, respectively.

(also called curve alignment, structural averaging, and time warping) methods have
been proposed in the statistical literature, among them we refer, for example, to
Kneip and Gasser [58], Silverman [88], Gasser and Kneip [44], Wang and Gasser
[106, 107], Ramsay and Li [77], Liu and Müller [67], Gamboa et al. [42], James [55],
Kneip and Ramsay [59], and Dupuy et al. [35] and references therein.

Hence, in this chapter we point out that the quantile normalization can be seen
as a particular case of the structural mean procedure, described in Dupuy et al. [35],
which corresponds to a notion of barycenter of measures in the Wasserstein space as
described in Boissard et al. [11]. We study the large sample properties of the quantile
normalization method. In addition, when this procedure fails, using the analogy with
warping issues, we propose a variation of this method to still recover a mean density
and thus improving one pointed drawback of the quantile normalization method.

The outline of the chapter is as follows. In Section 3.2 we describe a
nonparametric warping functional model, which is related with the quantile
normalization method. In Section 3.3 we present the quantile estimation method and
derive the asymptotic properties of the quantile normalization method. Section 3.4 is
devoted to present the connection between normalization and distribution function
alignment, which enables to improve quantile normalization method. Simulations are
shown in Section 3.5. Finally, in Section 3.6 we apply the methods to normalize two-
channel spotted microarray densities and evaluate its utility to identify differentially
expressed genes. All proofs are gathered in Appendix A.
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3.2 Statistical model for density warping

Let Xi,j, i = 1, . . . , n, j = 1, . . . ,mi be a sample of n independent real valued
random variables of size mi with density function fi : R→ [0,+∞) and distribution
function Fi : R → [0, 1]. We assume without loss of generality that mi = m for all
units i = 1, . . . , n. The random variables are assumed to model the same phenomena
with a variation effect modeled as follows.

Each distribution function Fi is obtained by warping a common distribution
function F : R → [0, 1] by an invertible and differentiable warping function Hi, of
the following manner:

Fi(t) = P(Xi,j ≤ t) = F ◦H−1
i (t), i = 1, . . . , n, j = 1, . . . ,m, (3.1)

where Hi is random, in the sense that (H1, . . . , Hn) is an i.i.d random sample from a
(non parametric) warping stochastic process H : Ω → C(R) defined on an unknown
probability space (Ω,A,P), while C(R) denotes the space of all continuous functions
defined on R. Define φ its mean and let ϑ be its variance which is assumed to be
finite. This model is also considered in Gamboa et al. [42] and in Dupuy et al. [35].

Since the model (3.1) to estimate the function f is not identifiable (see Dupuy
et al. [35]), we consider the structural expectation (SE) of the quantile function to
overcome this problem as

qSE(α) := F−1
SE(α) = φ ◦ F−1(α), 0 ≤ α ≤ 1. (3.2)

Inverting equation (3.1) leads to

qi(α) = F−1
i (α) = Hi ◦ F−1(α), 0 ≤ α ≤ 1, (3.3)

where qi(α) is the population quantile function (the left continuous generalized
inverse of Fi), F

−1
i : [0, 1]→ R, given by

qi(α) = F−1
i (α) = inf {xij ∈ R : Fi(xij) ≥ α} , 0 ≤ α ≤ 1.

Hence the natural estimator of the structural expectation (3.2) is given by

qn(α) = 1
n

n∑
i=1

qi(α), 0 ≤ α ≤ 1. (3.4)

In order to get the asymptotic behavior of the estimator, the following
assumptions on the warping process H and on the distribution function F are
considered:
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Assumption 1. There exists a constant C1 > 0 such that for all (α, β) ∈ [0, 1]2, we
have

E
[∣∣H(α)− EH(α)−

(
H(β)− EH(β)

)∣∣2] ≤ C1 |α− β|2 .

Assumption 2. There exists a constant C2 > 0 such that, for all (α, β) ∈ [0, 1]2,
we have

E
[∣∣F−1(α)− F−1(β)

∣∣2] ≤ C2 |α− β|2 .

The following theorem deals with the asymptotic behavior of the estimator (3.4).

Theorem 3.1. The estimator qn(α) is consistent is the sense that∥∥∥qn(α)− E
(
qn(α)

)∥∥∥
∞

=
∥∥∥qn(α)− qSE(α)

∥∥∥
∞

a.s.−−−→
n→∞

0.

Moreover, under assumptions 1 and 2, the estimator is asymptotically Gaussian,
for any K ∈ N and fixed (α1, . . . , αK) ∈ [0, 1]K,

√
n

 qn(α1)− qSE(α1)
...

qn(αK)− qSE(αK)

 D−−−→
n→∞

NK (0,Σ) ,

where the (k, k′)-element of the asymptotic variance-covariance matrix Σ is given by
Σk,k′ = ϑ

(
q(αk), q(αk′)

)
for all (αk, αk′) ∈ [0, 1]2 with αk < αk′.

3.3 Quantile estimation and the quantile normal-

ization method

The distribution function is not observed and only random samples Xi,1, . . . , Xi,m

from Fi(x) for i = 1, . . . , n are observed. The i-th empirical quantile function is
a natural estimator of F−1

i when there is not any information on the underlying
distribution function Fi. Consider the order statisticsXi,1:m ≤ Xi,2:m ≤ · · · ≤ Xi,m:m,
hence the estimation of the quantile functions, qi(α), is obtained by

q̂i,m(α) = F−1
i,m(α) = inf {xij ∈ R : Fi,m(xij) ≥ α}

= Xi,j:m for
j − 1
m

< α ≤ j

m
, j = 1, . . . ,m,

where F−1
i,m is the ith empirical quantile function.

Finally, the estimator of the structural quantile is given by

q̂j = 1
n

n∑
i=1

q̂i,j = 1
n

n∑
i=1

Xi,j:m, j = 1, . . . ,m. (3.5)
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Note that, this procedure corresponds to the so-called quantile normalization method
proposed by Bolstad et al. [12].

Based on sample quantiles we can obtain a “mean” distribution through the
projection of the empirical quantile vector of the j-th sample quantiles, q̂ j =
(q̂1,j, . . . , q̂n,j)>, onto the vector d = (1/

√
n, . . . , 1/

√
n)>, given by projd q̂ j =

(n−1∑n
i=1 q̂i,j, . . . , n

−1∑n
i=1 q̂i,j)>. The quantile normalization method can be

understood as a quantile-quantile plot extended to n dimensions such that if all
n data vectors share the same distribution, then the plot of the quantiles gives a
straight line along the line d .

The asymptotic behavior of the quantile normalization estimator (3.5) is
established by the next theorem.

Theorem 3.2. The quantile normalization estimator q̂j is strongly consistent,

q̂j
a.s−→ qSE(αj) as soon as n,m → ∞, j = 1, . . . ,m. Also under the assumptions

of compactly central data, |Xi,j:m − E (Xi,j:m)| ≤ L < ∞ for all i and j, and√
n/m → 0, it is asymptotically Gaussian. Actually, for any K ∈ N and fixed

(α1, . . . , αK) ∈ [0, 1]K,

√
n

 q̂j1 − qSE(α1)
...

q̂jK − qSE(αK)

 D−−−−→
n,m→∞

NK (0,Σ) ,

where the (k, k′)-element of the asymptotic variance-covariance matrix Σ is given by
Σk,k′ = ϑ

(
q(αk), q(αk′)

)
for all (αk, αk′) ∈ [0, 1]2 with αk < αk′.

This theorem relies on the asymptotic behavior of the quantile estimator, q̂i,m(α),
given by the following proposition.

Proposition 3.1. Assume Fi is continuously differentiable at the αth population
quantile qi(α) which is the unique solution of Fi(qi(α)−) ≤ α ≤ Fi(qi(α)), and
fi
(
qi(α)

)
> 0 for a fixed 0 < α < 1. Also assume m−1/2(j/m − α) = o(1). Then,

for i = 1, . . . , n, the estimator q̂i,m(α) is strongly consistent, q̂i,m(α) a.s.−−→ qi(α) as
m→∞; and asymptotically Gaussian

√
m
(
Xi,j:m−Hi ◦q(α)

) D−−−→
m→∞

N

0, α(1− α)(
f ◦H−1

i

(
Hi ◦ q(α)

)
·
(
H−1
i

)′(
Hi ◦ q(α)

))2

 ,

where
(
H−1
i

)′
(z) = dH−1

i (z)/dz =
{
H
′
i ◦H−1

i (z)
}−1

.
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3.4 Density alignment as a registration problem

As we have seen in the previous sections, quantile normalization amounts to finding
a mean distribution that fits the data density. Indeed, if the distribution function
were known, hence, given respectively Fi’s the distribution functions and µi’s the
distributions of the i.i.d sample Xi,j, i = 1, . . . , n, j = 1, . . . ,m, the problem consists
in finding a distribution function F and a probability µ which plays the role of a mean
function but close enough to the data. This corresponds to the usual registration
problem of the Fi’s function restricted to the set of distribution functions.

One of the major issue in registration problem is to find the fitting criterion
which enables to give a sense to the notion of mean of a sample of points. A natural
criterion is in this framework given by the Wasserstein distance and this problem
can be rewritten as finding a measure µ which minimizes

µ 7→ 1
n

n∑
i=1

W 2
2 (µ, µi), (3.6)

where W 2
2 stands for the 2-Wasserstein distance

W 2
2 (µ, µi) =

∫ ∣∣F−1
i (α)− F−1(α)

∣∣2 dα.
The existence and the uniqueness of such a minimizer is a difficult task in

a general framework, which has been proved very recently under some technical
conditions on the µi’s in Agueh and Carlier [1]. However, for one-dimensional
distributions, an explicit solution can be given, which corresponds to the structural
expectation defined in Dupuy et al. [35]. Here, the Fi’s and the µi’s are not
observed and only their empirical version are available. The estimation counterpart
is considered in Section 3.3.

As pointed here, Wasserstein distance appears as a natural way to model distance
between distribution functions which are warped one from another. Nevertheless,
other criterion than (3.6) can be investigated. Indeed, for any distance d on the
inverse of distribution functions, we can define a criterion to be minimized

F 7→ 1
n

n∑
i=1

d
(
F−1, F−1

i

)
.

Each choice of d implies different properties for the minimizers. Recall that
the choice of the L2 loss corresponds to the Wasserstein distance between the
distributions. Another choice, when dealing with warping problems, is to consider
that the functional data belong to a non euclidean set, and to look for the most
suitable corresponding distance. Hence, a natural framework is given by considering
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that the functions belong to a manifold using a manifold embedding and, in this
context, the geodesic distance provides a natural way to compare two objects. This
point of view has been developed in Dimeglio et al. [31] where δ̂, an approximation
of the geodesic distance δ, is provided using an Isomap-type graph approximation,
following Tenenbaum et al. [96]. This gives rise to the criterion

F 7→ 1
n

n∑
i=1

δ̂
(
F−1, F−1

i

)
.

Only the approximation of the distribution function remains.

A theoretical study of this framework is difficult, mainly due to the problems
of both choosing a good manifold embedding and then approximating the geodesic
distance.

Many authors have considered this issue but results on the consistency of
minimizers of such criterion are very scarce. Hence, we provide here a feasible
algorithm to compute it and compare the performances of the corresponding
estimator. For this, recall that we observe Xi,j, i = 1, . . . , n, j = 1, . . . ,m random
variables. In order to mimic the geodesic distance between the inverse of the
distribution functions, we will directly estimate F−1

i (α), for (j − 1)/m < α ≤ j/m
by the corresponding order statistics Xi,j:m. Hence, we sort the observations for
each sample i, and denote by X(i). the sorted vector Xi,1:m, . . . , Xi,m:m and thus

we obtain an array of sorted observations (X(1)., . . . , X(n).). We then consider δ̂
an approximation of the geodesic distance between the vectors X(i). and define
the corresponding geodesic mean as the minimizer over all the observation vectors
x ∈ {X(i)., i = 1, . . . , n} of the criterion x 7→ n−1∑n

i=1 δ̂
(
x,X(i).

)
.

Even if the theoretical properties of this estimate are hard to understand due
to the difficulties inherent to the graph-type geodesic approximation, its practical
properties for density normalization will be studied in the next section.

3.5 Simulation study

In this section, we illustrate by mean of simulated data the cases in which the quantile
normalization method by Bolstad et al. [12] works and the situation in which it has
problems to represent properly the behavior of the sample of density curves.

We simulated a sample of n mixture density functions as linear combinations of
three Gaussian probability density functions φil(x;µil, σil), l = 1, 2, 3,

fi(x) =
3∑
l=1

ωilφil(x;µil, σil), i = 1, . . . , n,
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where ωil ∈ [0, 1] are the probability weights with
∑3

l=1 ωil = 1, i = 1, . . . , n.

The simulated sample of mixture density functions were generated following the
next procedure:

1. For each i = 1, . . . , n three samples of size m of random observations are drawn
from a Gaussian distribution.

2. A sampling (with replacement) of size m is carried out on the three samples
based on the probability weights for obtaining the elements for each i.

3. Finally, for each i a kernel density estimate is obtained.

The values assumed to the location parameters were µi1 = 1, µi2 = 4 and µi3 = 7;
to the scale parameters σi1 = 0.7, σi2 = 0.8, and σi3 = 0.9; and to the probability
weights ωi1 = 0.4, ωi2 = 0.3, and ωi3 = 0.3. The number of simulated curves and
observations assumed were n = 50 and m = 1000 respectively. The variability for
the sample of curves was generated according to the next cases:

Case 1 (location variations): U(µil − 0.15, µil + 0.15), l = 1, 2, 3.

Case 2 (scale variations): U(σil−0.35, σil + 0.35), l = 1, 2, and U(σi3−0.5, σi3 +
0.5).

Case 3 (location and scale variations): Cases 1 and 2 together.

Case 4 (probability weight variations): U(ωil − 0.1, ωil + 0.1), l = 1, 2,

where U is a uniformly distributed random variable.

Figure 3.2 shows the simulated density and distribution functions for each case.
The estimated “mean” density and distribution functions using the quantile and
manifold normalization methods corresponds to the solid and dash lines, respectively.
The R code for the manifold normalization is given in the Appendix B. From the
graphs, we can see that the quantile normalization estimate represents the variability
among the density curves for the cases 1, 2 and 3, i.e when the probability weights
do not vary among the densities, ωil = ωi′l, l = 1, 2, 3 for i, i′ = 1, . . . , n. In the
case 4, on the contrary, there are large differences between quantile and manifold
normalization methods, where the based quantile method does not capture the
structural characteristics across the set of densities.

To overcome the drawback corresponding to case 4, we propose to apply the
manifold embedding approach to estimate the structural mean pattern f based on
an approximation of the induced geodesic distance on an unknown connected and
geodesically complete Riemannian manifold M ⊂ Rm by Dimeglio et al. [31]. As
we can see in the Figure 3.2, the estimation of the “mean” density f through the
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manifold normalization improves the normalization of the sample of densities for the
case of variations in probability weights (case 4) capturing properly the structural
mean behavior of sample of curves.

3.6 Application to identification of differentially

expressed genes

In this section, we apply the quantile and manifold methods to normalize two-channel
(two-color) spotted microarrays in order to remove, from the expression measures,
the systematic variations which arise from the microarray technology rather than
from the differences between the probes, retaining the biological signals. For a
description on two-channel spotted microarrays see Yang and Thorne [114] and Yang
and Paquet [112]. We also evaluate the new manifold normalization method with
respect to its ability to identify differentially expressed genes. For this we use two
data sets of Tomato and Swirl experiments.

3.6.1 Tomato data set

The two-channel spotted microarray expression data comes from an experiment
carried out by Wang et al. [105] in the Génomique et Biotechnologie des Fruits
(GBF) laboratory at the Institut National Polytechnique-Ecole Nationale Superieure
Agronomique de Toulouse (INP-ENSAT), which studies the underlying molecular
mechanisms of the process of fruit set (i.e. the transition from flower-to-fruit) of
tomato plants (Solanum lycopersicum). The data are provided by the experiment
E-MEXP-1617 downloaded from the ArrayExpress database of functional genomic
experiments at the European Bioinformatics Institute (EBI).

The data set contains 11860 spots (probes) and 18 arrays. The Bioconductor
limma package (http://www.bioconductor.org/) based on the R programming
language was used to read and carry out the quality assessment of the intensity
data (Smyth and Speed [93] and Smyth [92]). Figure 3.3 shows the density
plots for individual-channel intensities of two-color microarrays. Dotted and solid
lines correspond to densities of “green” and “red” color intensities for each array,
respectively.

We normalize the two-channel microarray data applying the single-channel
normalization method by Yang and Thorne [114], which removes the systematic
intensity bias from the red and green channels separately, both within and between
arrays. The method proceeds in two stages: a within-array normalization followed
by a between-array (between all channels from multiple arrays) normalization. The
first stage normalizes the expression log-ratios (M -values, M = log2(R/G), where
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Figure 3.2: Simulated density (left side) and distribution (right side) functions.
Quantile (bold solid) and manifold (dash) normalizations. Cases 1, 2, 3 and 4 from
the top to bottom
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Statistical properties of quantile normalization method for density curve alignment

R and G are the red and green intensities, respectively) from two-color arrays such
that these average to zero within each array separately. The advantage of using the
log-ratios for measuring relative gene expression within two samples on the same
slide rather than log-intensity values is due to these are considered to be more stable
than the absolute intensities across slides (Yang and Thorne [114]). The second
stage normalizes the log intensities across arrays ensuring that these have the same
empirical distribution across arrays and across channels. Procedures for within-array
and between-array normalizations are implemented in the normalizeWithinArrays

and normalizeBetweenArrays functions from the limma package, respectively.
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Figure 3.3: Densities for individual-channel intensities for two-color microarray data.
Dotted and solid lines correspond to the “green” and “red” color arrays, respectively.

The log-ratios within arrays were normalized using the loess method (see Smyth
and Speed [93] and Yang and Paquet [112]). Figure 3.4 plots the densities for
each array after loess normalization. The normalization between arrays applying
the quantile and manifold normalization are plotted in the same figure in solid
and dashed lines. As we can see, the manifold normalization captures better the
structural characteristics of the densities, in particular those that corresponding to
the inflection points present in the individual arrays.

Now we evaluate the usefulness of the manifold normalization to identify
differentially expressed genes. One of the aims of the tomato experiment in
Wang et al. [105] is to identify gene expression in the (MicroTom) tomato lines
downregulated in the expression of the Indole Acetic Acid 9 gene (AS-IAA9) and
the wild type at three developmental stages during fruit set: flower bud, anthesis (i.e.
the period during which the flower is fully open and functional), and post-anthesis.
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Figure 3.4: Densities for individual-channel intensities for two-color microarray data
after loess normalization within arrays. Solid and dashed lines correspond the
normalization between arrays applying the quantile and manifold normalization,
respectively.

Thus, there are three experiments of identification of genes taking each tomato fruit
stage separately. Hence, the experimental designs were based on six arrays for each
corresponding stage, in two dye-swap pairs.

The statistical tool used for the identification of differentially expression genes
in designed microarray experiments was the procedure based on the fit of gene-
wise linear models and the application of empirical Bayes methods developed by
Smyth [91]. The method relies on the “moderated” t-statistic across genes, a
classical t-statistic improved by moderation of the standard errors, i.e., posterior
estimators that shrunk the standard errors towards a common prior value using
a Bayesian model (see Smyth [91] and Smyth et al. [94] for details). The tables
for each stage show the top 30 differentially expression genes identified using the
expression intensities normalized with the quantile and manifold normalizations
methods, respectively. In the subsequent tables (Table 3.2-3.6) are included, for
each identified gene, the M -value, the moderate t-statistic, the adjusted p-value and
the B-statistic (log-odds that the gene is differentially expressed). The ranking of
genes with significant differential expression are reported in order of increasing B-
values. To adjust the p-values for multiple testing the Benjamini-Hochberg’s method
was used to control the expected false discovery rate (FDR) (see Smyth et al. [94]).
The number of differentially expressed genes detected, for each stage of the tomato
fruit, by the use of normalized log-ratios through the two normalization methods

69



Statistical properties of quantile normalization method for density curve alignment

are reported in the Table 3.1, according to an assumed threshold value of 0.05
for adjusted p-values. In the same table are also reported the number of common
genes shared by both methods, and the number of genes identified with the quantile
(manifold) normalization but not with the manifold (quantile) method.

Table 3.1: Number of differentially expressed genes identified for each stage of tomato
fruit assuming an adjusted p-value less than 0.05

Tomato stage
Bud Anthesis Post-anthesis

Quantile 93 1291 262
Manifold 68 1274 254
Quantile ∩Manifold 68 1250 252
Quantile−Manifold 25 41 10
Manifold−Quantile 0 24 2
A−B denotes the difference set between sets A and B.
A ∩B denotes the intersection between sets A and B.

Bud stage

For the bud stage of tomato fruit, the number of differentially expressed genes
identified employing the normalized expression log-ratios through quantile and
manifold normalization methods were 93 and 68, respectively, with a common
number of genes of 68. The top 30 of differentially expressed genes detected are
shown in the Table 3.2. The ordering of genes of first 30 genes is more or less
parallel between both normalization methods. Some common genes have a quite
different position, e.g. genes 5812, 6848, 9173, 3786, 7180, 4646 and 7859. Mostly
of these top genes are common, except the genes 11454 and 11019 in the quantile
normalization, and genes 8254 and 12181 in the manifold method.

Important features on genes can be found by means of the scatterplot between
the average of log2 fold changes against the average of log-intensity A = log2

√
R×G

for each probe over all arrays in the experiment (MA-plot). There are other
plots over which the identification can be contrasted, e.g., scatterplots between the
moderated t-statistics and the average of log-intensity A, between the B-statistics
against average of log2 fold changes (volcano plot), and quantile-quantile plots of
moderated t-statistics (Yang and Speed [113]). Although we choose the MA-plots
to save space, the results were practically the same for these graphs. The MA-plot
for the respective normalization method are in the Figure 3.5. The black symbols
correspond to differentially expressed genes with adjusted p-value less than 0.05.
From the MA-plots is clear that these symbols are well separated from the clouds
such that the corresponding genes are likely to be differentially expressed (Yang and
Speed [113]). The genes detected with the normalized expressions by the quantile
normalization that are not identified with the manifold method are signed in red
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points for the manifold MA-plot (on the bottom) for comparison. The number of
theses genes are reported in the Table 3.1.

Table 3.2: Top 30 differentially expressed genes identified in the bud stage

Quantile normalization Manifold normalization
Gene M -val. mod. t adj. p-val. B Gene M -val. mod. t adj. p-val. B
3733 2.86 29.87 0.001 7.958 3733 2.854 18.77 0.002 6.488
9737 2.484 13.67 0.011 5.246 9737 2.371 13.39 0.013 5.056

12795 -0.897 -11.89 0.017 4.533 12795 -0.866 -11.72 0.023 4.382
10960 0.896 11.44 0.017 4.324 10905 0.815 10.68 0.027 3.883
10905 0.876 11.27 0.017 4.244 8334 0.989 10.57 0.027 3.823
5812 0.91 10.27 0.023 3.725 10960 0.86 10.34 0.027 3.701
8334 1.046 10.21 0.023 3.692 3786 0.769 9.184 0.034 3.028
6768 0.881 10.12 0.023 3.640 6768 0.828 9.166 0.034 3.017
8712 0.906 9.849 0.024 3.485 7338 0.662 8.999 0.034 2.909
6848 0.903 9.387 0.031 3.205 8712 0.878 8.933 0.034 2.867
9173 0.765 9.01 0.031 2.964 7859 -0.847 -8.846 0.034 2.809
7338 0.665 8.783 0.031 2.811 7180 1.057 8.748 0.034 2.744
2266 0.706 8.7 0.031 2.755 2266 0.678 8.742 0.034 2.740

12214 -0.814 -8.611 0.031 2.693 4646 0.622 8.547 0.034 2.607
2489 0.775 8.6 0.031 2.686 12214 -0.79 -8.542 0.034 2.604
3786 0.786 8.584 0.031 2.674 4603 0.649 8.517 0.034 2.587
4603 0.669 8.525 0.031 2.633 5812 0.886 8.401 0.034 2.505
3426 -0.752 -8.509 0.031 2.622 12787 1.317 8.387 0.034 2.495
7180 1.04 8.498 0.031 2.614 7948 0.757 8.102 0.034 2.289
4646 0.627 8.302 0.031 2.473 2489 0.75 8.079 0.034 2.273

12787 1.358 8.265 0.031 2.447 6826 0.616 8.077 0.034 2.270
4192 0.863 8.25 0.031 2.435 3426 -0.755 -8.068 0.034 2.264
7859 -0.842 -8.077 0.031 2.308 4192 0.817 8.051 0.034 2.252
7948 0.77 8.044 0.031 2.283 2432 0.572 8.048 0.034 2.249
6826 0.632 7.995 0.031 2.245 8254 0.882 7.972 0.034 2.192
2432 0.586 7.992 0.031 2.243 12181 -0.613 -7.91 0.034 2.146

11454 0.639 7.929 0.031 2.195 6848 0.842 7.847 0.034 2.098
6474 0.591 7.822 0.031 2.113 87 0.676 7.844 0.034 2.096

87 0.691 7.822 0.031 2.112 9173 0.731 7.831 0.034 2.085
11019 -0.63 -7.796 0.031 2.092 6474 0.562 7.743 0.034 2.018

Anthesis stage

The number of differentially expressed genes detected in the anthesis stage with
the expression intensities normalized with the quantile and manifold methods were
1291 and 1274, respectively, with 1250 genes in common. As is illustrated in the
Table 3.3, the first 30 genes identified with both normalization methods are almost
the same, except the gene 9582 for the quantile normalization and the gene 4209
for the manifold normalization. As in the bud stage, the position of genes in this
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ranking is fairly parallel for both methods, where only the position of genes 7825,
1127, 132, 4312 and 7164 is slightly different.

Although there are not big differences in the MA-plots between both normaliza-
tion methods shown in Figure 3.5, the identification with the normalized intensities
with the manifold method is a little bit sparser with respect to the quantile method,
identifying 17 genes less. In the plots, the genes detected with the quantile normal-
ization that are not identified with the manifold method are signed in red points for
the manifold MA-plot (on the bottom), and the genes identified with the manifold
normalization but not detected by the quantile method are represented by red pluses
for the quantile MA-plot (on the top).

Table 3.3: Top 30 differentially expressed genes identified in the anthesis stage

Quantile normalization Manifold normalization
Gene M -val. mod. t adj. p-val. B Gene M -val. mod. t adj. p-val. B
9306 -2.1 -35.99 0 11.17 9306 -2.137 -34.99 0 10.92

10855 1.39 20.62 0.0004 8.521 10855 1.334 21.04 0.0004 8.541
4051 1.6 19.43 0.0004 8.169 7075 1.383 19.03 0.0004 7.962
7075 1.435 19.29 0.0004 8.127 4051 1.537 18.54 0.0004 7.806

7 -1.488 -18.52 0.0004 7.880 8180 -1.423 -17.53 0.0004 7.467
8180 -1.474 -17.63 0.0004 7.578 7 -1.424 -17.45 0.0004 7.440
7825 -2.703 -17.58 0.0004 7.561 6884 1.098 17.43 0.0004 7.430
6884 1.124 17.53 0.0004 7.542 7904 0.986 17.38 0.0004 7.415

12861 1.178 17.37 0.0004 7.483 12861 1.149 17.35 0.0004 7.403
8334 1.172 17.30 0.0004 7.461 8334 1.15 17.31 0.0004 7.390
7904 1.004 17.19 0.0004 7.418 10617 1.17 16.99 0.0004 7.275

10617 1.193 16.70 0.0004 7.238 7825 -2.604 -16.84 0.0004 7.217
9963 1.537 16.47 0.0004 7.146 9963 1.487 16.10 0.0006 6.936
1127 -1.801 -16.45 0.0004 7.139 4040 -2.253 -15.82 0.0006 6.822
4040 -2.265 -16.43 0.0004 7.132 12795 -2.852 -15.75 0.0006 6.794

12795 -2.985 -15.83 0.0005 6.891 7686 -0.952 -15.57 0.0006 6.718
7686 -0.972 -15.78 0.0005 6.871 6218 -0.964 -15.24 0.0006 6.582
6218 -0.992 -15.60 0.0005 6.795 4209 1.406 15.14 0.0006 6.541
9582 1.177 15.18 0.0005 6.617 7164 0.908 14.72 0.0006 6.357

12911 -1.804 -15.12 0.0005 6.592 11406 0.94 14.71 0.0006 6.353
9457 0.97 15.05 0.0005 6.563 1127 -1.7 -14.67 0.0006 6.335
132 -1.235 -15.05 0.0005 6.560 9457 0.936 14.65 0.0006 6.325

4312 1.156 14.95 0.0005 6.516 7118 0.826 14.63 0.0006 6.316
11406 0.952 14.74 0.0005 6.425 3117 -1.126 -14.63 0.0006 6.314
3117 -1.153 -14.71 0.0005 6.412 12911 -1.752 -14.60 0.0006 6.302
7164 0.948 14.66 0.0005 6.387 8241 -1.395 -14.43 0.0006 6.226
7118 0.841 14.60 0.0005 6.363 2339 -1.158 -14.37 0.0006 6.198
8241 -1.421 -14.43 0.0005 6.281 132 -1.193 -14.35 0.0006 6.186
9876 -1.735 -14.26 0.0006 6.204 9876 -1.694 -14.25 0.0006 6.142
2339 -1.219 -14.23 0.0006 6.192 4312 1.118 14.24 0.0006 6.138
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Post-anthesis stage

For the post-anthesis stage, 262 and 254 differentially expressed genes were identified
with the quantile and manifold normalization, respectively, where the number of
genes shared by both methods was 252. The top 30 genes are reported in the
Table 3.4. As in the two previous stages, the position of these genes in table is
parallel, especially for the top 10 genes. After, the position changes a little, specially
for genes 7038, 6785, 2282, 6234 and 6806. There exist only four no common genes
in the first 30 identified genes (gene 11474 and 8456 for the quantile method and
10240 and 6497 for the manifold normalization). The MA-plots for both methods
are shown in Figure 3.5. As in the bud and anthesis stages, mostly of detected genes
are relatively far from the to zero line on the M-axis.

Table 3.4: Top 30 differentially expressed genes identified in the post-anthesis stage

Quantile normalization Manifold normalization
Gene M -val. mod. t adj. p-val. B Gene M -val. mod. t adj. p-val. B
3161 -1.669 -21.43 0.0013 7.380 3161 -1.637 -21.26 0.0012 7.305
7953 -2.826 -19.88 0.0013 7.073 7953 -2.744 -20.20 0.0012 7.099
5626 -1.119 -15.30 0.0051 5.851 5626 -1.08 -15.75 0.0045 5.961
8339 -1.329 -14.75 0.0051 5.662 8339 -1.295 -14.25 0.0054 5.447
980 -1.439 -14.14 0.0054 5.441 980 -1.399 -14.22 0.0054 5.435

4789 -0.85 -13.44 0.0064 5.163 4789 -0.822 -13.02 0.0062 4.957
11217 -1.455 -12.74 0.0064 4.866 914 -0.806 -12.95 0.0062 4.927

914 -0.843 -12.53 0.0064 4.776 11217 -1.393 -12.57 0.0062 4.761
8590 -0.814 -12.44 0.0064 4.732 8590 -0.796 -12.44 0.0062 4.704
6927 -0.872 -12.34 0.0064 4.688 7038 -1.151 -12.42 0.0062 4.696
9637 -0.752 -12.27 0.0064 4.653 6927 -0.841 -12.08 0.0062 4.537
8912 -0.918 -11.93 0.0064 4.496 9637 -0.733 -12.06 0.0062 4.528
3211 -1.005 -11.83 0.0064 4.447 3211 -0.986 -11.96 0.0062 4.477
6253 -0.962 -11.81 0.0064 4.435 6253 -0.934 -11.73 0.0063 4.365
7038 -1.1 -11.63 0.0064 4.346 8912 -0.88 -11.60 0.0063 4.304
4040 -1.187 -11.55 0.0064 4.306 985 -0.705 -11.54 0.0063 4.271
5405 -0.712 -11.48 0.0064 4.269 4040 -1.149 -11.34 0.0063 4.199
985 -0.723 -11.41 0.0064 4.234 5405 -0.684 -11.34 0.0063 4.169

2649 -0.753 -11.25 0.0067 4.150 6785 1.731 14.57 0.0062 4.164
5672 0.813 11.01 0.0073 4.022 2649 -0.742 -11.27 0.0063 4.134

12787 1.85 10.71 0.0082 3.860 12787 1.796 11.23 0.0063 4.114
7342 -0.808 -10.45 0.0082 3.713 6234 -0.921 -10.72 0.0081 3.836
6785 1.816 12.96 0.0079 3.711 5672 0.764 10.59 0.0081 3.764
2282 -0.8 -10.41 0.0082 3.688 10240 0.572 10.41 0.0081 3.666
6992 0.607 10.36 0.0082 3.662 7342 -0.766 -10.41 0.0081 3.662

11474 -0.799 -10.29 0.0082 3.621 6806 -0.781 -10.35 0.0081 3.629
10032 -1.138 -10.27 0.0082 3.606 6992 0.58 10.31 0.0081 3.607
8456 -0.838 -10.23 0.0082 3.584 10032 -1.091 -10.31 0.0081 3.607
6234 -0.965 -10.12 0.0082 3.566 2282 -0.783 -10.31 0.0081 3.601
6806 -0.805 -10.18 0.0082 3.553 6497 -0.745 -10.19 0.0084 3.534
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Figure 3.5: Graphical illustration of the differentially expressed genes identified
for bud (top-left), anthesis (top-right) and post-anthesis (bottom) stages using the
normalized expressions with the quantile and manifold methods. Black points and
pluses correspond to the detected genes with a assuming an adjusted p-value less
than 0.05. The red points (pluses) symbols correspond to the genes identified with
the quantile (manifold) normalization but not with the manifold (quantile) method
(see Table 3.1).74
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Validation by qRT-PCR data

Finally, in order to validate the microarray analysis of tomato data set in terms of
the accuracy to detect differentially expressed genes during the fruit set using the
normalized log ratios with the quantile and manifold normalization methods, the
results of a quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis
over 28 genes carried out by Wang et al. [105] were employed. In the Table 3.5, the
qRT-PCR column, for each of developmental stage of fruit set, indicates whether
the corresponding analyzed gene was validated (categorized as “yes”) or not in the
analysis by Wang et al. [105]. The columns of the quantile and manifold methods
indicate whether the respective gene was detected as differentially expressed in each
stage. Numbers within parenthesis indicate the position of the identified gene in the
ranking of genes.

The comparison between the identification results with the normalization
methods and the validation results by the qRT-PCR shows that the detection of
genes using normalized expressions with both of normalization methods have a good
accuracy. In general, for all stages of fruit set, there is a proportion of 75.5% of
favorable cases (i.e. identified gene matching with validated gene or not identified
gene matching with not validated gene). Additionally, the manifold method seems
to have a higher significance, identifying first the validated gene with respect to
the quantile method; 33 cases of validated genes are identified fist by the manifold
normalization (82.5%).

3.6.2 Swirl zebrafish data set

The same exercise of identification of differentially expressed genes was carried out
with the popular Swirl data set, which can be downloaded from http://bioinf.

wehi.edu.au/limmaGUI/DataSets.html. This experiment was conducted using
zebrafish (Brachydanio rerio) as a model organism to study early development in
vertebrates. Swirl is a point mutation in the BMP2 gene that affects the dorsal-
ventral body axis. Ventral fates such as blood are reduced, whereas dorsal structures
such as somites and the notochord are expanded. One of the goals of the experiment
is to identify genes with altered expression in the swirl mutant compared to wild-type
zebrafish. See Dudoit and Yang [34], Yang and Speed [113] or Smyth [91] for detailed
information about this experiment. A total of four arrays were performed in two
dye-swap pairs with 8448 probes. Smyth [91] normalized the expression of log-ratios
within-arrays using the print-tip loess normalization with a window span of 0.3 and
three robustifying iterations. We follow his method, but instead of between arrays
scale normalization of log intensities, here, of course, the quantile and manifold
normalization are applied to compare both methods. The Figures 3.6 and 3.7 show
the densities of unnormalized individual-channel intensities for two-color microarrays
and its corresponding print-tip loess normalization within arrays, respectively. Solid
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3.6. Application to identification of differentially expressed genes

and dashed lines in Figure 3.7 correspond to densities after normalization between
arrays applying the quantile and manifold normalization, respectively.
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Figure 3.6: Densities for individual-channel intensities for two-color microarray data.
Dotted and solid lines correspond to the “green” and “red” color arrays, respectively.
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Figure 3.7: Densities for individual-channel intensities of of swirl data after print-tip
loess normalization within arrays. Solid and dashed lines denotes the normalization
between arrays with the quantile and manifold normalization, respectively.
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Statistical properties of quantile normalization method for density curve alignment

The top 30 differentially expressed genes based on the quantile and manifold
normalizations are reported in Table 3.6, respectively. With a threshold value of
0.05 for adjusted p-values, the number of differentially expressed genes identified
with the quantile and manifold methods were 168 and 150, respectively. The 150
genes detected using the manifold method are also identified with the quantile
normalization. The additional 18 genes detected with the quantile method are signed
in the MA-plot for the manifold case in red points. As in the Tomato data, comparing
with the quantile normalization, the detection of differential expressed genes based
on the intensities normalized with the manifold method restricts a bit more the
number of genes, being a more conservative (sparse) method. The MA-plots are
shown in Figure 3.8.

Unfortunately, for the swirl zebrafish experiment there is not exist qRT-PCR data
to validate the results of identification of differentially expressed genes found when
the expression intensities normalized with the quantile and manifold normalizations
methods are used.
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Figure 3.8: Graphical illustration of differentially expressed genes identified using
the normalized expressions with the quantile and manifold methods. Red symbols
correspond to genes identified with the quantile normalization but not with the
manifold method.
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3.6. Application to identification of differentially expressed genes

Table 3.6: Top 30 differentially expressed genes identified from swirl zebrafish data

Quantile normalization Manifold normalization
Gene M -val. mod. t adj. p-val. B Gene M -val. mod. t adj. p-val. B
2961 -2.633 -17.198 0.002 6.966 2961 -2.553 -16.684 0.0033 6.415
3723 -2.185 -16.415 0.002 6.713 3723 -2.072 -15.647 0.0033 6.079
1611 -2.186 -15.736 0.002 6.479 1611 -2.082 -15.471 0.0033 6.018
3721 -2.198 -14.329 0.0024 5.939 3721 -2.133 -14.282 0.0038 5.580
1609 -2.325 -13.71 0.0024 5.677 1609 -2.233 -14.008 0.0038 5.472
7602 1.21 13.121 0.0024 5.412 8295 1.291 13.442 0.0038 5.237
8295 1.306 13.07 0.0024 5.388 319 -1.243 -13.275 0.0038 5.165
319 -1.265 -13.05 0.0024 5.378 515 1.246 13.08 0.0038 5.080
515 1.308 12.835 0.0024 5.277 7602 1.124 12.738 0.0039 4.925

5075 1.373 12.795 0.0024 5.258 3790 1.168 12.598 0.0039 4.860
3790 1.187 12.356 0.0024 5.042 157 -1.701 -12.216 0.0039 4.678
157 -1.792 -12.301 0.0024 5.014 5931 -1.066 -12.105 0.0039 4.624

7307 1.228 12.253 0.0024 4.989 7307 1.147 11.987 0.0039 4.565
7036 1.376 12.018 0.0024 4.869 7491 1.282 11.74 0.0039 4.440
2276 1.253 11.978 0.0024 4.848 1697 1.057 11.726 0.0039 4.433
7491 1.353 11.907 0.0024 4.810 3726 -1.238 -11.698 0.0039 4.419
3726 -1.28 -11.873 0.0024 4.792 683 1.29 11.608 0.0039 4.372
5931 -1.091 -11.857 0.0024 4.784 7036 1.295 11.549 0.0039 4.341
683 1.35 11.657 0.0026 4.676 5084 -1.049 -11.118 0.0044 4.110

1697 1.119 11.534 0.0026 4.609 5075 1.223 11.11 0.0044 4.106
4380 1.265 11.415 0.0027 4.543 4188 -1.206 -11.044 0.0044 4.069
7542 1.141 11.287 0.0028 4.471 4380 1.181 10.965 0.0044 4.025
4032 1.341 10.884 0.0034 4.239 7542 1.072 10.89 0.0044 3.983
4188 -1.22 -10.827 0.0034 4.205 2276 1.104 10.861 0.0044 3.967
5084 -1.072 -10.731 0.0035 4.147 4032 1.206 10.808 0.0044 3.937
6903 -1.251 -10.585 0.0036 4.059 6903 -1.185 -10.436 0.0053 3.720
6023 1.012 10.238 0.0044 3.843 4017 -1.042 -10.202 0.0059 3.579
3695 1.057 10.167 0.0045 3.798 6023 0.933 10.1 0.0061 3.516
4546 1.269 10.012 0.0048 3.697 3695 0.998 10.031 0.0062 3.474
2679 -1.233 -9.75 0.0052 3.524 4546 1.189 9.744 0.0071 3.292

Appendix A

Proof of Theorem 3.1. In order to prove the almost sure convergence of the estimator
qn(α) given in the equation (3.4) the following corollary by Ledoux and Talagrand
[65] is required.

Corollary (Corollary 7.10, Ledoux and Talagrand [65]). Let Wi be a sequence of
independent and identically distributed Borel random variables distributed like W
with values in a separable Banach space B, and the nth partial sum Sn =

∑n
i=1 Wi.

Then the sequence Sn/n −→ 0 strongly as n → ∞ if and only if E‖W‖ < ∞ and
E(W ) = 0.
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Statistical properties of quantile normalization method for density curve alignment

Now first note, from the equation (3.3), that

E
(
qi(α)

)
= E

(
F−1
i (α)

)
= E

(
Hi ◦ F−1(α)

)
= E(Hi) ◦ F−1(α)
= φ ◦ F−1(α) = F−1

SE(α)
= φ ◦ q(α) = qSE(α),

where q(α) = F−1(α) = inf {x ∈ R : F (x) ≥ α} , 0 ≤ α ≤ 1.

Thus we have

qn(α)− E
(
qn(α)

)
= 1
n

n∑
i=1

Hi ◦ F−1(α)− φ ◦ F−1(α)

= 1
n

n∑
i=1

(Hi − φ) ◦ F−1(α)

= 1
n

n∑
i=1

(Hi − φ) ◦ q(α).

Setting Sn =
∑n

i=1Wi, where Wi = (Hi − φ) ◦ q(α) is a sequence of independent
and identically distributed random variables in a separable Banach space B =
C([0, 1]), and applying the above Corollary, the almost sure convergence of qn(α)
is guaranteed.

The asymptotic normality of qn(α) is now obtained applying the multivariate
central limit theorem. For any K ∈ N, and fixed (α1, . . . , αK) ∈ [0, 1]K ,

√
n

 qn(α1)− Eqn(α1)
...

qn(αK)− Eqn(αK)

 =
√
n


1
n

n∑
i=1

(Hi − φ) ◦ q(α1)
...

1
n

n∑
i=1

(Hi − φ) ◦ q(αK)

 D−−−→
n→∞

NK (0,Σ) ,

where the (k, k′)-element of the asymptotic variance-covariance matrix Σ is given by
Σk,k′ = ϑ

(
q(αk), q(αk′)

)
for all (αk, αk′) ∈ [0, 1]2 with αk < αk′ , which is obtained as

Cov
(
qn(αk), qn(αk′)

)
= Cov

(
1
n

n∑
i=1

qi(αk),
1
n

n∑
i=1

qi(αk′)
)

= 1
n2

n∑
i=1

Cov
(
Hi ◦ q(αk), Hi ◦ q(αk′)

)
= 1
n
ϑ
(
q(αk), q(αk′)

)
,
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3.6. Application to identification of differentially expressed genes

where ϑ
(
q(αk), q(αk′)

)
is the autocovariance function of Hi, i = 1, . . . , n.

Finally, following van der Vaart and Wellner [100], the tightness moment
condition to weak convergence is given by

E
[∣∣∣√n(qn(α)− Eqn(α)

)
−
√
n
(
qn(β)− Eqn(β)

)∣∣∣2]
= E

[∣∣∣∣√n((qn(α)− Eqn(α)
)
−
(
qn(β)− Eqn(β)

))∣∣∣∣2
]

= E

n ∣∣∣∣∣
(

1
n

n∑
i=1

Hi ◦ q(α)− φ ◦ q(α)
)
−

(
1
n

n∑
i=1

Hi ◦ q(β)− φ ◦ q(β)
)∣∣∣∣∣

2


= E

n ∣∣∣∣∣ 1n
n∑
i=1

(Hi − φ) ◦
(
q(α)− q(β)

)∣∣∣∣∣
2


≤ C1C2 |α− β|2 ,

if assumptions 1 and 2 are satisfied.

Proof of Proposition 3.1. The proof is a direct application of the following theorems
of strong consistency and asymptotic normality for quantile estimators. See Serfling
[87] or David and Nagaraja [28] for its proofs.

Theorem (Strong consistency of quantile estimator). If the αth population
quantile, q(α), is the unique solution of F (x−) ≤ α ≤ F (x), then q̂m(α) a.s.−−→ q(α) as
soon as m→∞.

Therefore q̂i,m(α) a.s.−−→ qi(α) as m→∞ for i = 1, . . . , n.

Theorem (Asymptotic normality of order statistics). For a fixed 0 < α <
1, assume F is continuously differentiable at the αth population quantile, q(α),
f
(
q(α)

)
> 0, and m−1/2(j/m − α) = o(1). Then

√
m
(
Xj:m − q(α)

) D−→ N (0, α(1 −
α)/f 2(q(α))

)
as m → ∞, where Xj:m = X[αm]+1 is the j th sample quantile, and

[αm] denotes the greatest integer less or equal than αm.

In consequence we have for i = 1, . . . , n

√
m
(
Xi,j:m − qi(α)

) D−−−→
m→∞

N

(
0, α(1− α)
f 2
i

(
qi(α)

)) ,
that conditioned to a fixed Hi implies

√
m
(
Xi,j:m−Hi ◦q(α)

) D−−−→
m→∞

N

0, α(1− α)(
f ◦H−1

i

(
Hi ◦ q(α)

)
·
(
H−1
i

)′(
Hi ◦ q(α)

))2

 ,
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Statistical properties of quantile normalization method for density curve alignment

where
(
H−1
i

)′
(z) = dH−1

i (z)/dz =
{
H
′
i ◦H−1

i (z)
}−1

.

The moments of order statistics are hard to compute for many distributions so
these can be approximated reasonably using a linear Taylor series expansion of the

relation Xi,j:m
d= F−1

i (Ui,j:m) around the point E(Ui,j:m) = αj = j/(m + 1), where
Ui,j:m denotes the jth order statistic in a sample of size m from the uniform (0, 1)
distribution. The approximated means, variances and covariances of order statistics
for i = 1, . . . , n are given by (see, for instance, David and Nagaraja [28] or Arnold
et al. [2])

E
(
Xi,j:m

∣∣Hi

)
= qi,j + αj(1− αj)

2(m+ 2) q
′′

i,j

+ αj(1− αj)
(m+ 2)2

[
1
3
(
(1− αj)− αj

)
q
′′′

i,j + 1
8αj(1− αj)q

(4)
i,j

]
+O

(
1
m2

)
,

(3.7)

Var
(
Xi,j:m

∣∣Hi

)
= αj(1− αj)

m+ 2 q
′2
i,j + αj(1− αj)

(m+ 2)2

×
[
2
(
(1− αj)− αj

)
q
′

i,jq
′′

i,j + αj(1− αj)
(
q
′

i,jq
′′′

i,j + 1
2q
′′2
i,j

)]
+O

(
1
m2

) (3.8)

and

Cov
(
Xi,j:m, Xi,s:m

∣∣Hi

)
= αj(1− αs)

m+ 2 q
′

i,jq
′

i,s + αj(1− αs)
(m+ 2)2

×
[(

(1− αj)− αj
)
q
′′

i,jq
′

i,s +
(
(1− αs)− αs

)
q
′

i,jq
′′

i,s + 1
2αj(1− αj)q

′′′

i,jq
′

i,s

+ 1
2αs(1− αs)q

′

i,jq
′′′

i,s + 1
2αj(1− αs)q

′′

i,jq
′′

i,s

]
+O

(
1
m2

)
,

(3.9)

where, since αj = Fi(qi,j), we have

q
′

i,j = dqi,j
dαj

= 1
fi(qi,j)

<∞,

q
′′

i,j = − f
′
i (qi,j)
f 2
i (qi,j)

= −dfi(qi,j)
dqi,j

1
f 3
i (qi,j)

<∞, and so on,

where fi(qi,j) > C with C > 0 is the density-quantile function of X evaluated at
qi,j = qi(αj) = Hi◦F−1(αj) with αj = j/(m+1), j = 1, . . . ,m.

∣∣f ′i ∣∣ < M ,
∣∣f ′′i ∣∣ < M ,

and
∣∣f ′′′i ∣∣ < M .

This approximation method is due to David and Johnson [27], where (m+ 2)−3

order approximations are derived. The asymptotic means, variances, and covariances
correspond to the first terms of (3.7), (3.8) and (3.9), respectively (David and
Nagaraja [28]).

82



3.6. Application to identification of differentially expressed genes

Using the approximation in equation (3.7), the mean of q̂j is calculated as

E
(
q̂j

)
= E

[
E
(
q̂j
∣∣Hi

)]
= E

[
E

(
1
n

n∑
i=1

Xi,j:n
∣∣Hi

)]

= 1
n

n∑
i=1

E
[
E
(
Xi,j:m

∣∣Hi

)]
= 1
n

n∑
i=1

E
[
qi,j + αj(1− αj)

2(m+ 2) q
′′

i,j +O

(
1
m2

)]
= 1
n

n∑
i=1

[
E (qi,j) + αj(1− αj)

2(n+ 2) E
(
q
′′

i,j

)
+O

(
1
m2

)]
= 1
n

n∑
i=1

[
qSE(αj) + αj(1− αj)

2(m+ 2) E
(
−dfi(qi,j)

dqi,j
1

f 3
i (qi,j)

)
+O

(
1
m2

)]
= 1
n

n∑
i=1

[
qSE(αj) + 1

8(m+ 2)

(
−M
C3

)
+O

(
1
m2

)]
= qSE(αj) + 1

8(m+ 2)

(
−M
C3

)
+O

(
1
m2

)
,

where
∣∣dfi(qi,j)/dqi,j∣∣ < M and f 3

i (qi,j) > C.

While through equation (3.9), the covariance between of q̂jk and q̂jk′ for k 6= k′

k = 1, . . . , K is given by

Cov
(
q̂jk , q̂jk′

)
= Cov

(
1
n

n∑
i=1

Xi,jk:m,
1
n

n∑
i=1

Xi,jk′ :m

)

= 1
n2

n∑
i=1

Cov
(
Xi,jk:m, Xi,jk′ :m

)
= 1
n2

n∑
i=1

{
E
[
Cov

(
Xi,jk:m, Xi,jk′ :m

∣∣Hi

)]
+ Cov

[
E
(
Xi,jk:m

∣∣Hi

)
,E
(
Xi,jk′ :m

∣∣Hi

)]}
= 1
n2

n∑
i=1

{
E
[
αjk(1− αjk′ )

m+ 2 q
′

i,jk
q
′

i,jk′
+O

(
1
m2

)]
+ Cov

[
qi,jk + αjk(1− αjk)

2(m+ 2) q
′′

i,jk
+O

(
1
m2

)
, qi,jk′ +

αjk′ (1− αjk′ )
2(m+ 2) q

′′

i,jk′
+O

(
1
m2

)]}
...
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= 1
n2

n∑
i=1

{
E
[
αjk(1− αjk′ )

m+ 2
1

f 2
i (q(αjk))

1
f 2
i (q(αjk′ ))

+O

(
1
m2

)]
+ Cov

[
Hi(q(αjk)) + αjk(1− αjk)

2(m+ 2)

(
−dfi(qi,jk)

dqi,jk
1

f 3
i (qi,jk)

)
+O

(
1
m2

)
,

Hi(q(αjk′ )) +
αjk′ (1− αjk′ )

2(m+ 2)

(
−

dfi(qi,jk′ )
dqi,jk′

1
f 3
i (qi,jk′ )

)
+O

(
1
m2

)]}
= 1
n2

n∑
i=1

{
E
[

1
4(m+ 2)

1
C2

1
C2 +O

(
1
m2

)]
+ Cov

[
Hi(q(αjk)) + 1

8(m+ 2)

(
−M
C3

)
+O

(
1
m2

)
,

Hi(q(αjk′ )) + 1
8(m+ 2)

(
−M
C3

)
+O

(
1
m2

)]}
= 1
n

[
1

4(m+ 2)
1
C4 +O

(
1
m2

)]
+ 1
n2

n∑
i=1

Cov
[
Hi(q(αjk)), Hi(q(αjk′ ))

]
= 1
n

[
1

4(m+ 2)
1
C4 +O

(
1
m2

)]
+ 1
n
ϑ
(
q(αjk), q(αjk′ )

)
,

for all (αk, αk′) ∈ [0, 1]2 with αk < αk′ .

From above equations we have that

E
(
q̂j
)
−−−→
m→∞

qSE(αj)

and

Cov
(
q̂jk , q̂jk′

)
−−−→
m→∞

1
n
ϑ
(
q(αjk), q(αjk′ )

)
.

Proof of Theorem 3.2. The almost sure convergence of q̂j is established applying

the results of strong consistency of qn(α) and q̂i,m(α) from Theorem 3.1 and
Proposition 3.1, respectively.

The asymptotic normality of q̂j is obtained as follows

√
n

(
q̂j − qSE(αj)

)
√
ϑ
(
q(αj)

) =
√
n

(
1
n

n∑
i=1

Xi,j:m − qSE(αj)
)

√
ϑ
(
q(αj)

)
=

√
n

(
1
n

n∑
i=1

(
Xi,j:m − E (Xi,j:m)

))
√
ϑ
(
q(αj)

) +

√
n

(
1
n

n∑
i=1

E (Xi,j:m)− qSE(αj)
)

√
ϑ
(
q(αj)

)
...
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=

(
n∑
i=1

(
Xi,j:m − E (Xi,j:m)

))√
1
n

n∑
i=1

Var (Xi,j:m)√
n∑
i=1

Var (Xi,j:m)
√
ϑ
(
q(αj)

) +

√
n

(
1
n

n∑
i=1

E (Xi,j:m)− qSE(αj)
)

√
ϑ
(
q(αj)

)

=

(
n∑
i=1

Xi,j:m −
n∑
i=1

E (Xi,j:m)
)

√
n∑
i=1

Var (Xi,j:m)

√
1
n

n∑
i=1

Var (Xi,j:m)√
ϑ
(
q(αj)

) +

√
n
(

1
8(m+2)

(−M
C3

)
+O

( 1
m2

))√
ϑ
(
q(αj)

) .

Given that Var (Xi,j:m) −→ ϑ
(
q(αj)

)
as m → ∞, and under the assumption√

n/m → 0 we obtain, by the Lindeberg-Feller’s central limit theorem for
independent but not identically distributed random variables to independent random
variables X1,j:m, . . . , Xn,j:m, that

√
n

(
q̂j − qSE(αj)

)
√
ϑ
(
q(αj)

) D−−−−→
n,m→∞

N (0, 1) .

In multivariate terms it is expressed as

√
n

 q̂j1 − qSE(α1)
...

q̂jK − qSE(αK)

 D−−−−→
n,m→∞

NK (0,Σ) ,

where (α1, . . . , αK) ∈ [0, 1]K and the (k, k′)-element of Σ is given by Σk,k′ =
ϑ
(
q(αjk), q(αjk′ )

)
.

The Lindeberg-Feller’s central limit theorem holds if the Lyapunov’s condition

1(√
n∑
i=1

Var (Xi,j:m)
)2+δ

n∑
i=1

E |Xi,j:m − E (Xi,j:m)|2+δ −−−−→
n,m→∞

0

is satisfied for some δ > 0. Indeed for δ = 1 and under the compactly central data
hypothesis, |Xi,j:m − E (Xi,j:m)| ≤ L <∞ for all i and j, we have

1(√
n∑
i=1

Var (Xi,j:m)
)2+1

n∑
i=1

E |Xi,j:m − E (Xi,j:m)|2+1

≤ L(√
n∑
i=1

Var (Xi,j:m)
)2+1

n∑
i=1

E |Xi,j:m − E (Xi,j:m)|2

...
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= L(√
n∑
i=1

Var (Xi,j:m)
)2+1

n∑
i=1

Var (Xi,j:m)

= L(√
n∑
i=1

Var (Xi,j:m)
) −−−−→

n,m→∞
0,

given that Var (Xi,j:m) −→ ϑ
(
q(αj)

)
as m→∞.

Therefore the Lyapunov’s condition is satisfied.

Appendix B

This R code is based on a slight modification of the normalizeQuantiles function
in the package limma intended to normalize single channel microarray intensities
between arrays, allowing for missing values and treating ties carefully. The code also
depends on the functions given in the Appendix B to Chapter 2.

# Manifold normalization

normanif <- function(X, ties = TRUE) {

n <- dim(X)

if (is.null(n))

return(X)

if (n[2] == 1)

return(X)

O <- S <- array(, n)

nobs <- rep(n[1], n[2])

i <- (0:(n[1] - 1))/(n[1] - 1)

for (j in 1:n[2]) {

Si <- sort(X[, j], method = "quick", index.return = TRUE)

nobsj <- length(Si$x)

if (nobsj < n[1]) {

nobs[j] <- nobsj

isna <- is.na(X[, j])

S[, j] <- approx((0:(nobsj - 1))/(nobsj - 1), Si$x, i,

ties = "ordered")$y

O[!isna, j] <- ((1:n[1])[!isna])[Si$ix]

}

else {

S[, j] <- Si$x

O[, j] <- Si$ix
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}

}

m <- S[, imean(t(S), 2)]

for (j in 1:n[2]) {

if (ties)

r <- rank(X[, j])

if (nobs[j] < n[1]) {

isna <- is.na(X[, j])

if (ties)

X[!isna, j] <- approx(i, m, (r[!isna] - 1)/(nobs[j] -

1), ties="ordered")$y

else

X[O[!isna,j], j] <- approx(i, m, (0:(nobs[j]-1))/

(nobs[j]-1), ties="ordered")$y

}

else {

if (ties)

X[, j] <- approx(i, m, (r - 1)/(n[1] - 1),

ties = "ordered")$y

else

X[O[, j], j] <- m

}

}

X

}
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Chapter 4

Functional calibration estimation
via the maximum entropy on the
mean principle

joint work with F. Gamboa∗ and J-M. Loubes†

Abstract: We extend the problem of obtaining an estimator for the
finite population mean parameter incorporating complete auxiliary in-
formation through calibration estimation in survey sampling but consid-
ering a functional data framework. The functional calibration sampling
weights of the estimator are obtained by matching the calibration esti-
mation problem with the maximum entropy on the mean principle. In
particular, the calibration estimation is viewed as an infinite-dimensional
linear inverse problem following the structure of the maximum entropy
on the mean approach. We give a precise theoretical setting and es-
timate the functional calibration weights assuming, as prior measures,
the centered Gaussian and compound Poisson random measures. Addi-
tionally, through a simple simulation study, we show that our functional
calibration estimator improves its accuracy compared with the Horvitz-
Thompson estimator.
Key Words: Auxiliary information; Functional calibration weights;
Functional data; Infinite-dimensional linear inverse problems; Maximum
entropy; Survey sampling.
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† Institut de Mathématiques de Toulouse, Université Paul Sabatier - Toulouse III, Toulouse, France.
E-mail: jean-michel.loubes@math.univ-toulouse.fr

89



Functional calibration estimation via the maximum entropy on the mean principle

4.1 Introduction

In survey sampling, the well-known calibration estimation method proposed by
Deville and Särndal [30] allows to construct an estimate for the finite population
total or mean of a survey variable by incorporating complete auxiliary information
on the study population in order to improve its efficiency. The main idea of the
calibration method consists in modifying the standard sampling design weights
di of the unbiased Horvitz-Thompson estimator (Horvitz and Thompson [52]) by
new weights wi close enough to di’s according to some distance function D(w, d),
while satisfying a linear calibration equation in which the auxiliary information is
taken into account. The sources of this information may come, for example, from
census data, administrative registers, and previous surveys (e.g., Deville and Särndal
[30], Särndal et al. [86], Montanari and Ranalli [72]). The estimator based on these
new calibration weights is asymptotically design unbiased and consistent with a
variance smaller than the Horvitz-Thompson one.

The idea of calibration has been extended to estimate other finite population
parameters, such as finite population variances, distribution functions and quantiles
(see, e.g., Rao et al. [80], Kovaĉević [63], Théberge [97], Singh [89], Wu and Sitter
[110], Wu [109], Harms and Duchesne [50], Rueda et al. [83], Särndal [85], and
references therein). Recent developments have also been conducted toward, for
example, the approach of (parametric and non-parametric) non-linear relationships
between the survey variable and the set of auxiliary variables for the underlying
assisting model, and a broad classes of conceivable calibration constraints functions
(Breidt and Opsomer [15], Wu and Sitter [110], Wu [109], Montanari and Ranalli
[72]).

One interesting extension emerges when both the survey and auxiliary variables
are considered as infinite-dimensional objects such as random functions. This
generalization relies on the fact that, due to improvements in data collection
technologies, large and complex databases are being registered frequently at very fine
time scales, regarded these as functional datasets. This kind of data are collected in
many scientific fields as molecular biology, astronomy, marketing, finance, economics,
among many other. A depth overview on functional data analysis can be found in
Ramsay and Silverman [78], Ramsay and Silverman [79] and Horváth and Kokoszka
[51]. Functional versions of the Horvitz-Thompson estimator have been proposed
recently by Cardot and Josserand [16] and Cardot et al. [17] for the cases of error
free and noisy functional data, respectively.

The purpose of the present chapter is to extend the problem of obtaining
calibration sampling weights using functional data. This is conducted through the
generalization of the work by Gamboa et al. [43], where the calibration estimation
problem, which is considered as a linear inverse problem following Théberge [97],
is matched with the maximum entropy on the mean approach under a finite
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dimensional setting. The maximum entropy on the mean principle applied to our goal
focuses on reconstructing a unique posterior measure ν∗ that maximizes the entropy
S(ν ‖ υ) between a feasible finite measure ν relative to a given prior measure υ
subject to a linear constraint. Finally, the functional calibration sampling weights
are defined as the mathematical expectation with respect to ν∗ of a random variable
with mean equal to the standard sampling design weights di. In this chapter, we
reconstruct ν∗ adopting the random measure approach by Gzyl and Velásquez [49]
under an infinite-dimensional context.

The maximum entropy method on the mean was introduced by Navaza [73, 74]
to solve an inverse problem in crystallography, and has been further investigated,
from a mathematical point of view, by Gamboa [40], Dacunha-Castelle and Gamboa
[26] and Gamboa and Gassiat [41]. Complementary references on the approach are
Mohammad-Djafari [71], Maréchal [69], Gzyl [48], Gzyl and Velásquez [49] and Golan
and Gzyl [46]. Maximum entropy solutions, as an alternative to the Tikhonov’s
regularization of ill-conditioned inverse problems, provide a very simple and natural
way to incorporate constraints on the support and the range of the solution (Gamboa
and Gassiat [41]), and its usefulness has been proven, e.g., in crystallography, seismic
tomography and image reconstruction.

The chapter is organized as follows. Section 4.2, presents the calibration
estimation framework for the functional finite population mean. In Section 4.3,
the connection between calibration and maximum entropy on the mean approaches
is established, and the functional calibration sampling weights are obtained assuming
two prior measures. In Section 4.4, the respective approximations of the functional
maximum entropy on the mean estimators are derived. The performance of the
estimator is studied through a simple simulation study in Section 4.5. Some
concluding remarks are given in Section 4.6. Finally, the proofs of the technical
results are gathered in the Appendix.

4.2 Calibration estimation for the functional fi-

nite population mean

Let UN = {1, . . . , N} be a finite survey population from which a realized sample a
is drawn with fixed-size sampling design pN(a) = P(A = a). Here a ∈ A, where
A is the collection of all subsets A of UN that contains all possible samples of nN
different elements randomly drawn from UN according to a given sampling selection
scheme, and P a probability measure on A. The first order inclusion probabilities,
πiN = P(i ∈ a) =

∑
a∈A(i) pN(a), where A(i) represents the set of samples that

contain the ith element, are assumed to be strictly positive for all i ∈ UN . See
Särndal et al. [86] and Fuller [38] for details about survey sampling.
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Associated with the ith element in UN there exists a unique functional random
variable Yi(t) with values in the space of all continuous real-valued functions defined
on [0, T ] with T < +∞, C([0, T ]). However, only the sample functional data, Yi(t),
i ∈ a are observed. Additionally, an auxiliary q-dimensional functional vector is
available for each i ∈ UN , X i(t) = (Xi1(t), . . . , Xiq(t))> ∈ C

(
[0, T ]q

)
with q ≥ 1. The

known functional finite population mean is denoted by µX(t) = N−1∑
i∈UN

X i(t).
The main goal is to obtain a design consistent estimator for the unknown

functional finite population mean, µY (t) = N−1∑
i∈UN

Yi(t), based on the calibration
method. The idea consists in modify the basic sampling design weights, di =
π−1
i , of the unbiased functional Horvitz-Thompson estimator defined by µ̂HT

Y (t) =
N−1∑

i∈a diYi(t), for new more efficient weights wi > 0 incorporating the auxiliary
information. These weights must to be sufficiently close to di’s according to some
dissimilarity distance function Da(w, d) on Rn

+, and satisfying the set of calibration
constraints

N−1
∑
i∈a

wiX i(t) = µX(t).

The functional estimator for µY (t) based on the calibration weights is expressed
by the linear weighted estimator µ̂Y (t) = N−1∑

i∈awiYi(t). Different calibration
estimators can be obtained depending on the chosen distance function (Deville and
Särndal [30]). However, it is well known that, in the finite dimensional setting, all
of calibration estimators are asymptotically equivalent to the one obtained through
the use of the popular chi-square distance function Da(w, d) =

∑
i∈a(wi−di)2/2diqi,

where qi is an individual given positive weight uncorrelated with di.

Assuming a point-wise multiple linear regression model (Ramsay and Silverman
[79]), Yi(t) = X i(t)>β(t) + εi(t), where εi(t) is the ith zero-mean measurement
functional error independent of X i(t) with variance structure given by a diagonal
matrix with elements 1/qi unrelated to di, then the estimator for µY (t) from the
restricted minimization problem can be expressed as

µ̂Y (t) = µ̂HT
Y (t) +

{
µX(t)− µ̂HT

X (t)
}>
β̂(t),

where µ̂HT
X (t) =

∑
i∈a diX i(t) denotes the Horvitz-Thompson estimator for the

functional vector X(t), and β̂(t) =
{∑

i∈a diqiX i(t)X i(t)>
}−1∑

i∈a diqiX i(t)Yi(t)
is the weighted estimator of the functional coefficient vector β(t), whose uniqueness
relies on the existence of the inverse of the matrix

∑
i∈a diqiX i(t)X i(t)> for all t.

The calibration weights can be generalized allowing functional calibration weights
wi(t) which can be obtained from the minimization of the generalized chi-square
distance D∗a(w, d), expressed below, subject to the functional calibration restriction

N−1
∑
i∈a

wi(t)X i(t) = µX(t). (4.1)
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The existence of functional calibration weights is stated in the next theorem,
which is a straightforward generalization of the finite dimensional results of Deville
and Särndal [30].

Theorem 4.1. Assume the existence of a functional vector w(t) = (w1(t), . . . , wn(t))>
such that (4.1) holds, and the inverse of the matrix

∑
i∈a diqi (t)X i(t)X i(t)>. Then,

for a fixed t ∈ [0, T ], ŵ(t) minimizes over C([0, T ]n) the generalized chi-square dis-
tance

D∗a(w, d) =
∑
i∈a

(
wi(t)− di

)2

2diqi(t)

subject to (4.1), where the functional calibration weight ŵi(t) for all i ∈ a is given
by

ŵi(t) = di

1 + qi(t)
{
µX(t)− µ̂HT

X (t)
}>{∑

i∈a

diqi(t)X i(t)X i(t)>
}−1

X i(t)

 .
Note that, for this generalized setting, the functional calibration estimator for

µY (t) is expressed by

µ̂Y (t) = N−1
∑
i∈a

ŵi(t)Yi(t) = µ̂HT
Y (t) +

{
µX(t)− µ̂HT

X (t)
}>
β̂(t),

where

β̂(t) =
{∑

i∈a

diqi(t)X i(t)X i(t)>
}−1∑

i∈a

diqi(t)X i(t)Yi(t),

provided the inverse of the matrix
∑

i∈a diqi(t)X i(t)X i(t)> exists for all t.

4.3 Maximum entropy on the mean for survey

sampling

Let (X̃ ,F) be an arbitrary measurable space over which we want to search for an
σ-finite positive measure µ. The maximum entropy on the mean principle provides
an efficient way of getting an estimator for some linear functional µỸ (t) =

∫
X̃ Ỹ (t)dµ

satisfying a known q-vector of functionals
∫
X̃ X̃(t)dµ = µX(t), where Ỹ (t) : X̃ →

C([0, T ]) and X̃(t) : X̃ → C([0, T ]q).
A natural unbiased and consistent estimator of µỸ (t) is the empirical functional

mean µ̂Ỹ (t) =
∫
χ
Ỹ (t)dµn = n−1∑

i∈a Ỹi(t), where µn = n−1∑
i∈a δTi

is the
corresponding empirical distribution with T1, . . . , Tn an observed random sample
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from µ. Despite properties of this estimator, it may not have the smallest variance
in this kind of framework. Therefore, incorporating prior functional auxiliary
information the variance of an asymptotically unbiased functional estimator can
be reduced applying the maximum entropy on the mean principle (Gamboa et al.
[43]).

The philosophy of the principle consists in to enhance µ̂Ỹ (t) considering the
maximum entropy on the mean functional estimator

µ̂MEM
Ỹ

(t) =
∫
χ

Ỹ (t)dµ̂MEM
n = n−1

∑
i∈a

p̂i(t)Ỹi(t), for all t ∈ [0, T ] ,

where µ̂MEM
n = n−1∑

i∈a p̂i(t)δTi
is a weighted version of the empirical distribution

µn, with p̂(t) = (p̂1(t), . . . , p̂n(t))> given by the expectation of the independent n-
dimensional stochastic process P (t) = (P1(t), . . . , Pn(t))> drawn from a posterior
finite distribution ν∗, p̂(t) = Eν∗ [P (t)] for all t ∈ [0, T ], where ν∗ must to be close
to a prior distribution υ, which transmits the information that µ̂MEM

n must to be
sufficiently close to µn.

Therefore, the maximum entropy on the mean principle focuses on reconstructing
the posterior measure ν∗ that maximizes the entropy, over the convex set of all
probability measures, S(ν ‖ υ) = −D(ν ‖ υ) subject to the linear functional
constraint holds in mean,

Eν∗
[
n−1

∑
i∈a

Pi(t)X̃ i(t)
]

= µX(t), ∀t ∈ [0, T ] .

We recall that D(ν ‖ υ) is the I-divergence or relative divergence or Kullback-
Leibler information divergence between a feasible finite measure ν with respect to a
given prior measure υ (see for details, e.g., Csiszár [24]) defined by

D(ν ‖ υ) =
{∫

Ω log
(

dν
dυ

)
dν − ν(Ω) + 1 if ν � υ

+∞ otherwise.

To establish the connection between calibration and maximum entropy on the
mean approaches the following notation, based on Gamboa et al. [43], is adopted

Ỹi(t) = N−1ndiYi(t), X̃ i(t) = N−1ndiX i(t) and pi(t) = πiwi(t), such that the
functional Horvitz-Thompson estimator of µY (t) and the functional calibration
constrain (4.1) can be, respectively, expressed as

µ̂HT
Y (t) = N−1

∑
i∈a

diYi(t) = n−1
∑
i∈a

Ỹi(t)

and
n−1

∑
i∈a

pi(t)X̃ i(t) = N−1
∑
i∈a

wi(t)X i(t) = µX(t), ∀t ∈ [0, T ] .
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4.3. Maximum entropy on the mean for survey sampling

Hence, the functional calibration estimation problem follows the structure of
the maximum entropy on the mean principle, where the corresponding estimator is
defined by

µ̂MEM
Y (t) = n−1

∑
i∈a

p̂i(t)Ỹi(t) = N−1
∑
i∈a

ŵi(t)Yi(t).

The functional calibration weighting vector p̂(t) with coordinates p̂i(t) = πiŵi(t)
for i ∈ a, is the expectation of the n-dimensional stochastic process P (t) with
coordinates Pi(t) = πiWi(t), drawn from ν∗,

p̂(t) = Eν∗
[
P (t)

]
, ∀t ∈ [0, T ] ,

where the posterior measure ν∗ = ⊗i∈aν∗i (by the independence of Pi’s) maximizes
the entropy S(· ‖ υ) subject to the calibration constraint is fulfilled in mean,

Eν∗
[
n−1

∑
i∈a

Pi(t)X̃ i(t)
]

= Eν∗
[
N−1

∑
i∈a

Wi(t)X i(t)
]

= µX(t), ∀t ∈ [0, T ] .

Note that as pi(t) = πiwi(t) and ŵi(t) must to be sufficiently close to di, then
the p̂i(t) must be close enough to 1 for each i ∈ a.

4.3.1 Reconstruction of the measure ν∗

For simplicity and without loss generality we assume that T = 1. The posterior
distribution ν∗ can be reconstructed adopting the random measure approach for
infinite-dimensional inverse problems explained in detail by Gzyl and Velásquez [49].
To do this, we express the calibration constraint (4.1) as an infinite-dimensional
linear inverse problem writing wi(t) as

wi(t) =
∫ 1

0
K(s, t)$i (s) ds+ di for each i ∈ a,

where K(s, t) is a known continuous, real-valued and bounded kernel function and
$i = Eν [Wi (s)], whereW is a stochastic process. Note that, as pi(t) = πiwi(t) then

pi(t) = πi
∫ 1

0 K(s, t)$i (s) ds+ 1.

Hence, the infinite-dimensional inverse problem, which takes the form of a
Fredholm integral equation of the first kind, is

Eν [KW ] = Eν

{∑
i∈a

[∫ 1

0
K(s, t)dWi (s) + di

]
X i(t)

}

=
∫ 1

0

∑
i∈a

K(s, t)X i(t)$i (s) ds+
∑
i∈a

diX i(t)

= NµX(t), t ∈ [0, 1] .

(4.2)
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To obtain the functions $∗i (s) that solve the integral equation Eν [KW ] =
NµX(t), the random measure approach adopted considers $i (s) as a density of
a measure $i (s) ds, i ∈ a. Under this setting, we define the random measure
Wi (a, b] = Wi(b) −Wi(a) for (a, b] ⊂ [0, 1] such that dEν {Wi (0, s]} = $i(s)ds for
each i ∈ a. The next theorem ensures the existence of the posterior distribution ν∗

to obtain the functions $∗i (s) depending on the assumed prior distribution υ.

Theorem 4.2. Let υ be a prior positive probability measure, λ = λ(t) a
measure in the class of continuous measures on [0, 1], M (C [0, 1]q), and V =
{ν � υ : Zυ(λ) < +∞} a nonempty open class, where Zυ(λ) = Eυ [exp {〈λ,KW〉}],
with

〈λ,KW〉 =
∫ 1

0
λ>(dt)

(∫ 1

0

∑
i∈a

K(s, t)X i(t)dWi(s) +
∑
i∈a

diX i(t)
)
. (4.3)

Then there exists a unique probability measure

ν∗ = arg max
ν∈V

S(ν ‖ υ),

subject to Eν [KW ] = NµX(t), which is achieved at

dν∗/dυ = Z−1
υ (λ∗) exp {〈λ∗,KW〉} ,

where λ∗(t) minimizes the functional

Hυ(λ) = logZυ(λ)− 〈λ, NµX〉.

Based on the Theorem 4.2, we will carry out the reconstruction of ν, assuming
the centered Gaussian and compound Poisson random measures as prior measures,
in order to estimate the respective functional calibration weights ŵi(t), i ∈ a. The
estimates are given by the following two Lemmas.

Lemma 4.1. Let υ be a prior centered stationary Gaussian measure on the
measurable space

(
C([0, 1]),B(C([0, 1]))

)
, and λ = λ(t) ∈ M (C [0, 1]q). Then,

ŵi(t) =
∫ 1

0 K(s, t)$∗(s)ds+ di i ∈ a, where

$∗(s) =
∑
i′∈a

∫ 1

0
K(s, t′)X>i′ (t′)λ∗(dt′).

Lemma 4.2. Let Wi(s) =
∑N(s)

k=1 ξik be a compound Poisson process, where N(s)
is a homogeneous Poisson process on [0, 1] with intensity parameter γ > 0, and ξik,
k ≥ 1 are independent and identically distributed real-valued random variables for
each i ∈ a with distribution u on R satisfying u({0}) = 0, and independent of N(s).

Then, ŵi(t) =
∫ 1

0 K(s, t)$∗i (s)ds+ di i ∈ a, where

$∗i (s) =
∫
R
ξi exp

{∑
i∈a

∫ 1

0
K(s, t)ξiX>i (t)λ∗(dt)

}
u (dξi) .
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4.4 Approximation of the maximum entropy on

the mean functional estimator

To approximate the functional calibration weights and the functional maximum
entropy on the mean estimator for the finite population mean of Y (t) with the
assumed prior measure, an Euler discretization scheme is used. Consider a partition
of (s, t) ∈ [0, 1]2 in J and L equidistant fixed points, (j − 1)/J < sj ≤ j/J ,
j = 1, . . . , J , (l − 1)/L < tl ≤ l/L, l = 1, . . . , L, respectively. For the corresponding
prior measures, the approximations for functions Zυ(λ), Hυ(λ) and λ∗(t) are based
on the respective results found in the Appendix.

4.4.1 Centered Gaussian measure

For a prior centered Gaussian measure, the approximations of the linear moment
calibration constraint (4.2) and the inner product 〈λ,KW〉 are, respectively, given
by

Eν

[
J∑
j=1

∑
i∈a

K(sj, tl)∆Wi(sj)X i(tl) +
∑
i∈a

diX i(tl)
]

= NµX(tl)

and

1
L

L∑
l=1

λ>(tl)
J∑
j=1

∑
i∈a

K(sj, tl)∆Wi(sj)X i(tl) + 1
L

L∑
l=1

λ>(tl)
∑
i∈a

diX i(tl)

= 1
L

J∑
j=1

∑
i∈a

L∑
l=1

K(sj, tl)∆Wi(sj)λ>(tl)X i(tl) + 1
L

∑
i∈a

di

L∑
l=1

λ>(tl)X i(tl),

where ∆Wi(sj) =Wi(sj)−Wi(sj−1) is the discrete version of dWi(s) for i ∈ a.

Therefore, we have that Zυ(λ) is approximated at the grid (see equation (4.6) of
the proof of Lemma 1 in the Appendix) by

Eυ

[
exp

{
1
L

∑
i∈a

di

L∑
l=1

λ>(tl)X i(tl) + 1
L

J∑
j=1

∑
i∈a

L∑
l=1

K(sj, tl)λ>(tl)X i(tl)∆Wi(sj)
}]

= exp

 1
L

∑
i∈a

di

L∑
l=1

λ>(tl)X i(tl) +
J∑
j=1

1
2J

(
1
L

∑
i∈a

L∑
l=1

K(sj, tl)λ>(tl)X i(tl)
)2


= exp
{

1
L

∑
i∈a

di

L∑
l=1

λ>(tl)X i(tl)
}

J∏
j=1

exp
{

1
2J
∑
i∈a

∑
i′∈a

hi(sj)hi′(sj)
}

= exp
{

1
L

∑
i∈a

di

L∑
l=1

λ>(tl)X i(tl)
}

J∏
j=1

zi (hi(sj)) ,
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where hi(sj) = L−1∑L
l=1 K(sj, tl)λ>(tl)X i(tl), i ∈ a, j = 1, . . . J , and l = 1, . . . L.

Now, the finite dimensional maxentropic solution for $i(sj) for each i ∈ a is
approximated by (see Gzyl and Velásquez [49])

$∗i (sj) = d log zi (hi(sj))
d(2J)−1hi(sj)

∣∣∣∣
hi(sj)=Kλ∗

=
∑
i′∈a

hi′(sj)

∣∣∣∣∣
hi(sj)=Kλ∗

= 1
L

L∑
l=1

∑
i′∈a

K(sj, t′l)λ∗>(t′l)X i′(t′l),

(4.4)

where the finite dimensional version of λ∗(t′l), (l − 1)/L < tl ≤ l/L, l = 1, . . . , L,
is the minimizer of Hυ(λ), whose approximation (see equation (4.7) of the proof of
Lemma 1 in the Appendix) is

1
2

L∑
l=1

L∑
l=1

λ>(tl)
(

1
JL2

J∑
j=1

K(sj, tl)K(sj, t′l)
∑
i∈a

∑
i′∈a

X i(tl)X>i′ (t′l)
)
λ(t′l)

+ 1
L

L∑
l=1

(∑
i∈a

diX
>
i (tl)−Nµ>X(tl)

)
λ(tl).

The first order condition (see equation(4.8)) associated to this minimization
problem is

1
JL2

J∑
j=1

L∑
l=1

K(sj, tl)K(sj, t′l)
∑
i∈a

∑
i′∈a

X i(tl)X>i′ (t′l)λ∗(t′l)

+ 1
L

(
NµX(tl)−

∑
i∈a

diX i(tl)
)

= 0,

whose solution λ∗(t′l) is given by

λ∗(t′l) =
(

1
JL2

J∑
j=1

L∑
l=1

K(sj, tl)K(sj, t′l)
∑
i∈a

∑
i′∈a

X i(tl)X>i′ (t′l)
)−1

× 1
L

(
NµX(tl)−

∑
i∈a

diX i(tl)
)

= JL

(
J∑
j=1

L∑
l=1

K(sj, tl)K(sj, t′l)
∑
i∈a

∑
i′∈a

X i(tl)X>i′ (t′l)
)−1

×

(
NµX(tl)−

∑
i∈a

diX i(tl)
)
.
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Finally, the approximation of the finite dimensional solution of ŵi(t) is

ŵi(tl) = 1
J

J∑
j=1

K(sj, tl)$∗i (sj) + di,

where $∗i (sj) es given by the equation (4.4).

4.4.2 Compound Poisson measure

Based on equations (4.9) and (4.10) of the proof of Lemma 2 in the Appendix, the
approximation of Zυ(λ) is given by

Eυ

[
exp

{
〈g(sj), dWi〉+

〈
λ,
∑
i∈a

diX i(tl)
〉}]

= exp
{〈

λ,
∑
i∈a

diX i(tl)
〉}

Eυ [exp {〈g(sj), dWi〉}]

= exp
{〈

λ,
∑
i∈a

diX i(tl)
〉}

J∏
j=1

Eυ [exp {g (sj)mi ((sj−1, sj])}]

= exp
{〈

λ,
∑
i∈a

diX i(tl)
〉}

J∏
j=1

exp {Eυ [exp {g (sj) ξi}]}

= exp
{〈

λ,
∑
i∈a

diX i(tl)
〉}

J∏
j=1

exp
{
γ

J

∫
R

(exp {g (sj) ξi} − 1)u (dξi)
}

= exp
{〈

λ,
∑
i∈a

diX i(tl)
〉}

×
J∏
j=1

exp
{
γ

J

∫
R

(
exp

{
1
L

∑
i∈a

ξi

L∑
l=1

K(sj, tl)λ>(tl)X i(tl)
}
− 1
)
u (dξi)

}

= exp
{〈

λ,
∑
i∈a

diX i(tl)
〉}

J∏
j=1

exp
{
γ

J

∫
R

(
exp

{∑
i∈a

ξihi(sj)
}
− 1
)
u (dξi)

}

= exp
{〈

λ,
∑
i∈a

diX i(tl)
〉}

J∏
j=1

zi (hi(sj)) , i ∈ a,

where hi(sj) = L−1∑L
l=1K(sj, tl)λ>(tl)X i(t) for all i ∈ a and j = 1, . . . J , with〈

λ,
∑

i∈a diX i(tl)
〉

= L−1∑
i∈a di

∑L
l=1 λ

>(tl)X i(tl).
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The approximated maxentropic solution for $i(sj) for each i ∈ a is

$∗i (sj) = d log zi (hi(sj))
dhi(sj)

∣∣∣∣
hi(sj)=Kλ∗

= γ

J

∫
R
ξi exp

{∑
i∈a

ξihi(sj)
}
u (dξi)

∣∣∣∣∣
hi(sj)=Kλ∗

= γ

J

∫
R
ξi exp

{
1
L

∑
i∈a

L∑
l=1

K(sj, tl)ξiX>i (tl)λ∗(tl)
}
u (dξi) ,

(4.5)

where the finite dimensional version of λ∗(tl), is the minimizer of Hυ(λ), whose
approximation, by the equation (4.11) of the proof of Lemma 2 in the Appendix, is

Hυ(λ) = logZυ(λ)− 〈λ, NµX〉

= γ

J

J∑
j=1

∫
R

(
exp

{
1
L

∑
i∈a

L∑
l=1

K(sj, tl)ξiX>i (tl)λ(tl)
}
− 1
)
u (dξi)

+ 1
L

L∑
l=1

(∑
i∈a

diX
>
i (tl)−Nµ>X(tl)

)
λ(tl)

The corresponding equation for λ∗(tl) that minimizes Hυ(λ) is given by the
nonlinear system of equations (see equation (4.12) in the Appendix)

∑
i∈a

[
1
J

J∑
j=1

K(sj, tl)
(
γL

∫
R
ξi exp

{
1
L

∑
i∈a

L∑
l=1

K(sj, tl)ξiX>i (tl)λ∗(tl)
}
u (dξi)

)
+ di

]
×X i(tl) = NµX(tl).

Finally, as in the Gaussian measure case, the finite dimensional solution of ŵi(t)
is approximated by ŵi(tl) = J−1∑J

j=1K(sj, tl)$∗i (sj) + di with $∗i (sj) given by the
equation (4.5).

4.5 Simulation study

We shall illustrate through a simple simulation study the performance of results
obtained in the above section. Considering a finite population UN of size N = 1000,
we generate a functional random variable Yi(t) by the point-wise multiple linear
regression model (see for instance Ramsay and Silverman [79], Horváth and Kokoszka
[51] or Zhang and Chen [115])

Yi(t) = α(t) +X i(t)>β(t) + εi(t), i ∈ UN ,
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4.5. Simulation study

where α(t) = 1.2 + 2.3 cos (2πt) + 4.2 sin (2πt), β(t) = (β1(t), β2(t))> with
β1(t) = cos (10t) and β2(t) = t sin (15t), X i(t) = (Xi1(t), Xi2(t))>, and εi(t) ∼
N (0, σ2

ε(1 + t)) with σ2
ε = 0.1, and independent of X i(t). The auxiliary functional

covariates are defined by Xi1(t) = Ui1 + f1(t) with f1(t) = 3 sin(3πt + 3), and
Xi2(t) = Ui2 + f2(t) with f2(t) = − cos(πt), where Ui1 and Ui2 are independent and,
respectively, i.i.d. uniform random variables on the intervals [−1, 1.3] and [−0.5, 0.5].
The design time points for t ∈ [0, 1] and s ∈ [0, 1] are tj = j/J , j = 1, . . . , J and
sl = l/L, l = 1, . . . , L, with J = 50 and L = 80.

The Figures 4.1 and 4.2 show, respectively, the simulated finite population
auxiliary functional covariates and functional responses for each i ∈ UN , and
the respective finite population functional means, µX(t) = (µX1(t), µX2(t))> and
µY (t) = N−1∑

i∈UN
Yi(t). Assuming a uniform fixed-size sampling design we drawn

a sample a ∈ UN of n = 0.12N elements without replacement. For the kernel
function we assumed a Gaussian one, K(t, s) = exp

{
− |t− s|2 /2σ2} with σ2 = 0.5.

The random variables ξi for the compound Poisson case are assumed i.i.d. uniform
on the interval [−1, 1], and γ = 1. To solve the nonlinear system of equations for
λ∗(tl) in the compound Poisson case, we used the R-package BB (see Varadhan [102]
and Varadhan and Gilbert [103]).
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Figure 4.1: Population auxiliary functional variables (gray lines), Xi1(t) (on left)
and Xi2(t) (on right). Functional finite population means, µX1(t) and µX2(t) (bold
solid line).

The graphical comparisons of the estimators for a random selected repetition
are illustrated in the Figure 4.2. The Figure shows, in general, a good performance,
specially for the estimator assuming the Gaussian measure. The principal differences
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Functional calibration estimation via the maximum entropy on the mean principle

with respect to the theoretical functional finite population mean are localized on the
edges, particularly on the left edge. The Horvitz-Thompson estimator, in both cases,
has a little departure localized around the deep valley. However our estimator has not
this departure. A nice feature of the functional calibration method is that permits
to check graphically how well the estimator satisfies the calibration constraints for
each covariate, N−1∑

i∈a ŵi(t)X i(t) = µX(t). This is illustrated in the Figure 4.3.
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0.0 0.2 0.4 0.6 0.8 1.0
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0

5

10

Compound Poisson measure

t

Figure 4.2: Population survey functions Yi(t) (gray lines), finite population
mean µY (t) (solid line), and the functional Horvitz-Thompson (dotted line) and
maxentropic (dashed line) functional estimators.

To evaluate the performance of the maximum entropic functional calibration
estimator, µ̂MEM

Y (t), assuming the Gaussian and compound Poisson prior measures,
we calculated its empirical bias–variance decomposition of the mean square errors
and compare it with the functional Horvitz-Thompson estimator µ̂HT

Y (t). The
simulation study was conducted with 100 repetitions. In Table 4.1 we can see that,
with respect to the Horvitz-Thompson estimator, the maximum entropic estimator
has smaller variance and mean square error for both prior measures, particularly
for the Gaussian prior. Although the Horvitz-Thompson estimator has smaller bias
squared, the differences are not significant. Also, the small value for the bias confirm
the unbiasedness of the functional maximum entropy on the mean and Horvitz-
Thompson estimators.
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Figure 4.3: Functional calibration constraint (4.1) for Gaussian (on left) and
compound Poisson (on right) measures. µX(t) (solid line), N−1∑

i∈a ŵi(t)Xi(t)
(dashed line).

Table 4.1: Bias-variance decomposition of MSE

Functional estimator MSE Bias2 Variance
Horvitz-Thompson 0.2391 0.0005 0.2386
Maximum entropy on the mean (Gaussian) 0.2001 0.0006 0.1995
Maximum entropy on the mean (Poisson) 0.2333 0.0084 0.2249

4.6 Concluding remarks

In this chapter we have proposed an extension to the problem of obtaining an
estimator for the finite population mean of a survey variable incorporating complete
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auxiliary information under an infinite-dimensional setting. Considering that both
the survey and the set of auxiliary variables are functions, the respective functional
calibration constraint is expressed as an infinite-dimensional linear inverse problem,
whose solution offers the functional survey weights of the calibration estimator.
The solution of the problem is conducted by mean the maximum entropy on the
mean principle, which is a powerful probabilistic-based regularization method to
solve constrained linear inverse problems. Here we assume a centered Gaussian
and compound Poisson random measures as prior measures to obtain the functional
calibration weights. However, other random measures can be considered also.

The simulations study results show that the proposed functional calibration
estimator improves its accuracy compared with the Horvitz-Thompson estimator. In
the simulations, both the functional survey and auxiliary variables where assumed
with amplitude variations (variation in the y-axis) only. More complex extensions
allowing both amplitude and phase (variation in the x-axis) variations are possible.

Finally, a further interesting extension of the functional calibration estimation
problem under the maximum entropy on the mean approach can be conducted
following the idea of model-calibration proposed by Wu and Sitter [110], Wu
[109] and Montanari and Ranalli [72]. This may be accomplished considering a
nonparametric functional regression Yi(t) = µ {X i(t)}+ εi(t), i ∈ UN , t ∈

(
[0, T ] to

model the relation between the functional survey variable and the set of functional
auxiliary covariates in order to allows a more effective use of the functional auxiliary
information.

Appendix

Proof of Theorem 4.1. The Lagrangian function associated to the restricted mini-
mization problem is

La(w,λ) = D∗a(w, d) + λ>(t)
(
µX(t)−N−1

∑
i∈a

wi(t)X i(t)
)
,

where λ(t) is the corresponding functional Lagrange multiplier vector. The first
order conditions are

wi(t)− di
diqi (t)

− λ(t)>X i(t) = 0, i ∈ a

which can be expressed as

wi(t) = di
[
1 + qi(t)λ(t)>X i(t)

]
, i ∈ a
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where, its uniqueness is guaranteed by the continuous differentiability of D∗a(w, d)
with respect to wi(t) for all i ∈ a, and by its strictly convexity.

From the functional calibration restriction (4.1) and by the existence assumption
on the inverse of the matrix

∑
i∈a diqi(t)X i(t)X i(t)> for all t, the Lagrange

functional multiplier vector is determined by

λ̂(t) =
(∑

i∈a

diqi(t)X i(t)X i(t)>
)−1 (

µX(t)− µ̂HT
X (t)

)
.

Finally, replacing λ̂(t) into the first order conditions, the calibration functional
estimator ŵi(t) of the Theorem is obtained.

Proof of Theorem 4.2. Csiszár [25, Theorem 3, page 775].

Proof of Lemma 4.1. According to Theorem 4.2, the maximum of the entropy S(ν ‖
υ) over the class V = {ν � υ : Zυ(λ) <∞} subject to the linear moment calibration
constraint Eυ [KW ] = NµX(t) is attained at dν∗/dυ = Z−1υ (λ∗) exp {〈λ∗,KW〉},
where

Zυ(λ) = exp
{
Eυ [〈λ,KW〉] + 1

2Varυ [〈λ,KW〉]
}

= exp

∑
i∈a

di

∫ 1

0
λ>(dt)X i(t) + 1

2

∫ 1

0

(∑
i∈a

∫ 1

0
K(s, t)λ>(dt)X i(t)

)2

ds

 ,

(4.6)

owing to that Eυ [dWi (s)] = 0, and Varυ [dWi (s)] = ds, i ∈ a.

Now we proceed with the problem of finding λ∗(dt) ∈ Mb (C [0, 1]q), where Mb

is the class of bounded continuous measures, such that minimizes

Hυ(λ) = 1
2

∫ 1

0

(∑
i∈a

∫ 1

0
K(s, t)λ>(dt)X i(t)

)(∑
i′∈a

∫ 1

0
K(s, t′)λ>(dt′)X i′(t′)

)
ds

+
∫ 1

0
λ>(dt)

(∑
i∈a

diX i(t)−NµX(t)
)

= 1
2
∑
i∈a

∑
i′∈a

∫ 1

0

∫ 1

0

∫ 1

0
K(s, t)K(s, t′)λ>(dt)X i(t)X>i′ (t′)λ(dt′)ds

+
∫ 1

0
λ>(dt)

(∑
i∈a

diX i(t)−NµX(t)
)
.

(4.7)
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The corresponding equation for λ∗(dt) that minimizes Hυ(λ) is given by

∑
i∈a

∑
i′∈a

∫ 1

0

∫ 1

0
K(s, t)K(s, t′)X i(t)X>i′ (t′)λ∗(dt′)ds+

∑
i∈a

diX i(t) = NµX(t), (4.8)

which can be rewritten as

∑
i∈a

[∫ 1

0
K(s, t)

(∑
i′∈a

∫ 1

0
K(s, t′)X>i′ (t′)λ∗(dt′)

)
ds+ di

]
X i(t) = NµX(t),

obtaining, by the moment calibration constraint (4.2), the Lemma’s result.

Proof of Lemma 4.2. For each i ∈ a, define a random variable mi ((a, b]) for (a, b] ⊂
[0, 1],

mi ((a, b]) ,Wi(b)−Wi(a) =
N(b)∑

k=N(a)+1

ξik.

By the Lévy-Khintchine formula for Lévy processes, the moment generating
function of the n-dimensional compound Poisson processW(s) is given by

Eυ [exp {〈α,W(s)〉}] = exp
{
sγ

∫
Rn

(
e〈α,ξk〉 − 1

)
u (dξk)

}
, α ∈ Rn,

where ξk = (ξ1k, . . . , ξnk)>. This formula can be generalized for a continuous function

g(s) from [0, 1] to R and defining 〈g(s),Wi〉 =
∫ 1

0 g(s)dWi(s) for each i ∈ a, which

is approximated by
∑J

j=1 g (sj−1)mi ((sj−1, sj]), with sj = j/J , j = 1, . . . , J . Thus,
by the independence of mi ((a, b]), we have that for all i ∈ a

Eυ [exp {〈g(s), dWi〉}] = lim
J→∞

J∏
j=1

Eυ [exp {g (sj−1)mi ((sj−1, sj])}]

= lim
J→∞

J∏
j=1

exp {Eυ [exp {g (sj−1) ξi}]}

= lim
J→∞

J∏
j=1

exp
{
γ

J

∫
R

(exp {g (sj−1) ξi} − 1)u (dξi)
}

= exp
{
γ

∫ 1

0
ds
∫
R

(exp {g (s) ξi} − 1)u (dξi)
}
.

(4.9)

Now, by the Theorem 4.2, the maximum of the entropy S over the class V subject
to Eυ [KW ] = NµX(t) is achieved at dν∗/dυ = Z−1

υ (λ∗) exp {〈λ∗,KW〉} with
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〈λ,KW〉 =
∫ 1

0
λ>(dt)

∫ 1

0

∑
i∈a

K(s, t)X i(t)dWi(s) +
∫ 1

0
λ>(dt)

∑
i∈a

diX i(t)

= 〈g(s),Wi〉+
〈
λ,
∑
i∈a

diX i(t)
〉
,

where g(s) =
∫ 1

0 λ
>(dt)

∑
i∈aK(s, t)X i(t).

Therefore,

Zυ(λ) = exp
{
γ

∫ 1

0
ds
∫
R

(exp {g (s) ξi} − 1)u (dξi)
}

exp
{〈

λ,
∑
i∈a

diX i(t)
〉}

= exp
{
γ

∫ 1

0
ds
∫
R

(exp {g (s) ξi} − 1)u (dξi) +
〈
λ,
∑
i∈a

diX i(t)
〉}

(4.10)

Finally, as in the proof of Lemma 4.1, the problem is concentrated to find λ∗(t)
such that minimizes

Hυ(λ) = γ

∫ 1

0
ds
∫
R

(
exp

{∫ 1

0
λ>(dt)

∑
i∈a

K(s, t)ξiX i(t)
}
− 1
)
u (dξi)

+
∫ 1

0
λ>(dt)

(∑
i∈a

diX i(t)−NµX(t)
)
.

(4.11)

The corresponding equation for λ∗(dt) that minimizes Hυ(λ) is given by

∑
i∈a

[∫ 1

0
K(s, t)

(∫
R
ξi exp

{∑
i∈a

∫ 1

0
K(s, t)ξiX>i (t)λ∗(dt)

}
u (dξi)

)
ds+ di

]
×X i(t) = NµX(t),

(4.12)

obtaining, by the moment calibration constraint (4.2), the Lemma’s result.
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[68] S. López-Pintado and J. Romo. On the concept of depth for functional data.
Journal of the American Statistical Association, 104:718–734, 2009.
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Résumé

L’une des principales difficultés de l’analyse des données fonctionnelles consiste à extraire un motif
commun qui synthétise l’information contenue par toutes les fonctions de l’échantillon. Le Chapitre
2 examine le problème d’identification d’une fonction qui représente le motif commun en supposant
que les données appartiennent à une variété ou en sont suffisamment proches, d’une variété non
linéaire de basse dimension intrinsèque munie d’une structure géométrique inconnue et incluse dans
un espace de grande dimension. Sous cette hypothèse, un approximation de la distance géodésique
est proposé basé sur une version modifiée de l’algorithme Isomap. Cette approximation est utilisée
pour calculer la fonction médiane empirique de Fréchet correspondante. Cela fournit un estimateur
intrinsèque robuste de la forme commune.

Le Chapitre 3 étudie les propriétés asymptotiques de la méthode de normalisation quantile
développée par Bolstad, et al. (2003) qui est devenue l’une des méthodes les plus populaires pour
aligner des courbes de densité en analyse de données de microarrays en bioinformatique. Les
propriétés sont démontrées considérant la méthode comme un cas particulier de la procédure de la
moyenne structurelle pour l’alignement des courbes proposée par Dupuy, Loubes and Maza (2011).
Toutefois, la méthode échoue dans certains cas. Ainsi, nous proposons une nouvelle méthode, pour
faire face à ce problème. Cette méthode utilise l’algorithme développée dans le Chapitre 2.

Dans le Chapitre 4, nous étendons le problème d’estimation de calage pour la moyenne d’une
population finie de la variable de sondage dans un cadre de données fonctionnelles. Nous considérons
le problème de l’estimation des poids de sondage fonctionnel à travers le principe du maximum
d’entropie sur la moyenne -MEM-. En particulier, l’estimation par calage est considérée comme
un problème inverse linéaire de dimension infinie suivant la structure de l’approche du MEM.
Nous donnons un résultat précis d’estimation des poids de calage fonctionnels pour deux types de
mesures aléatoires a priori: la measure Gaussienne centrée et la measure de Poisson généralisée.

Abstract

One of the main difficulties in functional data analysis is the extraction of a meaningful common
pattern that summarizes the information conveyed by all functions in the sample. The problem
of finding a meaningful template function that represents this pattern is considered in Chapter 2
assuming that the functional data lie on an intrinsically low-dimensional smooth manifold with
an unknown underlying geometric structure embedding in a high-dimensional space. Under this
setting, an approximation of the geodesic distance is developed based on a robust version of the
Isomap algorithm. This approximation is used to compute the corresponding empirical Fréchet
median function, which provides a robust intrinsic estimator of the template.

The Chapter 3 investigates the asymptotic properties of the quantile normalization method
by Bolstad, et al. (2003) which is one of the most popular methods to align density curves in
microarray data analysis. The properties are proved by considering the method as a particular case
of the structural mean curve alignment procedure by Dupuy, Loubes and Maza (2011). However,
the method fails in some case of mixtures, and a new methodology to cope with this issue is
proposed via the algorithm developed in Chapter 2.

Finally, the problem of calibration estimation for the finite population mean of a survey variable
under a functional data framework is studied in Chapter 4. The functional calibration sampling
weights of the estimator are obtained by matching the calibration estimation problem with the
maximum entropy on the mean -MEM- principle. In particular, the calibration estimation is viewed
as an infinite-dimensional linear inverse problem following the structure of the MEM approach. A
precise theoretical setting is given and the estimation of functional calibration weights assuming,
as prior measures, the centered Gaussian and compound Poisson random measures is carried out.
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