Integrating ECMA/ISO PCTE and
OMG’s CORBA

A Thesis Submitted for the Degree of Master of Science

by

Patricia Tangney B.Sc.

School of Computer Applications,
Dublin City University,
Ireland.

August 1995

Supervisor: Dr. John Murphy

DECLARATION

| hereby certify that this material, which | now submit for assessment on the
programme of study leading to the award of Master of Science in Computer
Applications is entirely my own work and has not been taken from the work of others
save and to the extent that such work has been cited and acknowledged within the text

of my work.

Signed: Date:

Patricia Tangney

ACKNOWLEDGEMENTS

None of this would have been possible with the support and encouragement of my
parents, Kathleen and Noel Tangney, | am forever in their debt

I would like to express my sincere thanks to my supervisors John Murphy and Robert
Cochran for their guidance and advice throughout this work, and to the Centre for
Software Engineering, Dublin City University for sponsoring this research.

Many people have gracious with their time and help to me during the course of this
research, | would like to acknowledge them all, but especially Johnathan Jowett and

Ariela Stem for their patience and help.

Finally 1 would like to thank Patricia Magee and Denise Tangney for their help, and
especially for providing the entertainment,

Buiochas le Dia,
Go raibh maith agaibh go Iéir.

Patricia Tangney

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 RESEARCH PURPOSE
1.2PCTE and OMA Convergence
1.3 Background
1.3.1 OMG& CORBA
1.3.2 PCTE
1.4 Technical Issues
15 Overview

CHAPTER 2 PCTE

2.1 PCTE - The Standard
2.2 Architecture of PCTE-based SEEs
23 PCTE'sObject Management System
2.3.1 PCTE Objects
2.3.2 Links
2.3.3 PCTE Operations
2.3.4 PCTE TYPES
2.4 PCTE'sData Definition Language
2.4.1 TYPE IMPORTATION DECLARATION
2.4.2 Object type declaration
2.4.3 LINKTYPE DECLARATION
2.4.4 LINKTYPE EXTENSION
2.4.5 OBJECT TYPE EXTENSION
2.4.6 ATTRIBUTE TYPE DECLARATION
25 PCTE processes
2.5.1 INTERPROCESS COMMUNICATION
2.6 PCTE Activities
2.7 IMPLEMENTATIONS

2.8 Evaluation

CHAPTER 3 OMG CORBA

3.1 Distributed Computing

3.2 Object Management Group

3.3 Object Management Architecture
331 Object Services

3.4 CORBA

341 Structure of an Object request broker

34.2cCirient
343 Object implementations
344 Object Adapter
3.5 INTERFACE DEFINITION LANGUAGE
3.5.1 INTERFACE DEFINITION
3.5.2 OPERATION DEFINITION
3.5.3 ATTRIBUTE DEFINITION

© g ~NU NN

10

12
14
18
19
20
20
21
23
25
26
26
27
27
28
29
32
33
35
36

38

38
39
41
44
46
47
49
49
50
51
52
54
55

3.5.4 ENUM & TYPE DECLARATION 56

3.5.5 CONSTANT DEFINITION 56
3.5.6 EXCEPTION DECLARATION 57

3.6 IMPLEMENTATIONS & INDUSTRIAL RELEVANCE 57
3.7Conclusion 60
CHAPTER 4 INTEGRATING PCTE ANDCORBA 61
4.1 RELATIONSHIP OF PCTE AND OMA 62
4.1.1 PRIMARY FEATURES AND STRENGTHS OFPCTE 63
4.1.2 PRIMARY FEATURES AND STRENGTHS oF OMA 64
4.1.3 COMPLEMENTARY STANDARDS 65
4.2 INTEGRATION STRATEGIES 67
4.3 MAPPING DDL TO IDL 71
4.4 MAPPING IDL TO DDL 73
45 IDL INTERFACES FOR PCTE TOOLS 74
46Related Works 76
4.6.1 PCIS 76
4.6.2 COHESIONWORX/PCTE 78
4.6.3 00TIS TOOL INTECRATIONM odel 80

4.7 EVALUATION 81
CHAPTER 5 LIMITATIONS OF THE MAPPING OF DDL TO IDL 83
5.1 GENERAL MAPPING CONCEPTS 84
5.2 MAPPING DDL CONSTRUCTS TO IDL CONSTRUCTS 86
5.2.1 MAPPING TYPE IMPORTATION DECLARATIONS 87
5.2.2 MAPPING ATTRIBUTE TYPE DECLARATIONS 87
5.2.3 MAPPING OBJECT TYPE DECLARATIONS 89
5.2.4 MAPPING OBJECT TYPE EXTENSION DECLARATIONS 90
5.2.5 MAPPING LINK TYPE DECLARATIONS 91
5.2.6 MAPPING LINK TYPE EXTENSION DECLARATIONS 93

53 LIMITATIONS OF THE MAPPING 95
5.4 EXTENDING DDL FOR COMPATIBILITY WITH IDL 98
55 EVALUATION 100
CHAPTER 6 IDL INTERFACES FOR PCTE TOOLS 102
6.1 General Concepts 103
6.2 APCTE TOOL'SIDL INTERFACE 104
6.3 IMPLEMENTING APCTE TOOL’S IDL INTERFACE 106
6.3.1 ESH SCRIPTS 109

6.4 Tool Composition 111
6.5 Evaluation 112
CHAPTER 7 CONCLUSIONS 115
71 PCTE 116
117

12 CORBA

7.3 INTEGRATION STRATEGIES 118

7.3.1 DDL TO IDL 119
7.3.2 IDL TO DDL 120
7.3.3 IDL INTERFACES FORPCTE TOOLS 120
T4Future Work 121
7.5 OVERALL CONCLUSIONS 123
BIBLIOGRAPHY 125
APPENDIX A INTERFACE DEFINITION LANGUAGE (IDL) 131
APPENDIX B DATA DEFINITION LANGUAGE (DDL) 140
APPENDIX C C PROGSDS 148

APPENDIX D EXAMPLE IDL INTERFACE FOR PCTE TOOLS 167

Integrating ECMA/ISO PCTE and OMA
By
Patricia Tangney

Abstract

The relationship between the Portable Common Tool Environment (PCTE) and the
Object Management Group’s Object Management Architecture (OMA) including the
Common Object Request Broker Architecture (CORBA) specification can be viewed
as a complementary one. The PCTE specification addresses the area of large to
medium grain data integration for distributed Computer Aided Software Engineering
environments. OMA is a set of specifications designed to promote interoperability
between independently developed applications across distributed possibly
heterogeneous environments based on the object oriented paradigm. CORBA is the
communications heart of OMA. implicitly defining "distributed and secure execution
and interprocess communication services".

The current PCTE standard is largely object oriented. However it is not fully object
oriented because it does not define behaviour for PCTE objects. By using OMA to
provide object behaviour for PCTE objects as well as making them fully object
oriented greater control integration between PCTE objects could also be achieved.
PCTE’s Object Management System has a rich data modelling mechanism because it
was designed to integrate complex data and relationships, therefore being suitable for
use as a persistent store for OMA objects. Thu.s the convergence of PCTE and OMA
into a single standard is attractive; work is currently underway on this by the OMG

PCTE Special Interest Group.

However it will be sometime before a specification converging PCTE and CORBA is
available. The purpose of this thesis is to find an interim integration strategy which can
be used while waiting for their eventual convergence, since both specifications have
much to offer each other. This thesis discusses the language mapping of DDL to DDL
(and vice versa) and the definition of IDL interfaces for PCTE tools as strategies for
the interim integration of PCTE and CORBA.

CHAPTER 1 INTRODUCTION

Recent trends in the computer industry have motivated the research which is the
subject of this thesis. These trends include the shift away from mainframe systems to
distributed computing, the popularity of the object oriented approach to software
construction, strides towards the automation of software construction (Computer-
Aided Software Engineering) or at least particular aspects of the software
development process (e.g. coding or design tools), and the demand for greater
software interoperability. The focus of this thesis is on the integration of two
standards, Object Management Group’s Object Management Architecture (OMA) and

the Portable Common Tool Environment (PCTE), both of which have emerged

because of these trends.

OMA is a set of specifications (including the Common Object Request Broker
Architecture, CORBA) that are designed to “enable distributed integrated applications
using an object oriented approach” [5]. The PCTE specification is primarily designed
to address the integration of distributed CASE environments. Because
OMA/CORBA and PCTE take different approaches to achieving integration, instead
of overlapping, we discover they complement each other. Much work is being done
by the OMG PCTE SIG (Special Interest Group) on the long term merging of both of
these specification; currently specifications for a PCTE specification incorporating
CORBA are being drafted. However the convergence of PCTE and OMA into a
single standard is sometime in future. We believe the benefits of their integration are
such that they warrant the development of a strategy which would allow the
complementary integration of the current PCTE and OMA specifications, to be used
while waiting for their eventual convergence into a single standard. Therefore the
objective of this thesis is to achieve a short term integration of the current
specifications of PCTE and OMA so that they may be used together now in a

mutually beneficial manner.

1.1 Research Purpose

A wide range of Computer-Aided Software Engineering (CASE) tools are now
available on the market, the purpose of which is to automate the aspects of the
software development process. Until recently software has been developed
predominantly on large centralised computer systems using a collection of tools
bearing little or no relationship to one another. Although such isolated CASE tools
did have the potential to reduce the production cost of software systems, “the true
power of CASE tools only becomes apparent when they are all able to work together
as a tool set” [6, 12]. The development of Software Engineering Environments
(SEEs) has been the focal point of much research in the area of Software Engineering.
A SEE can be defined as a collection of computer-based facilities to support the
activities of programmers, software engineers, system designers, project managers etc.
to achieve higher productivity and higher product quality [12]. A SEE is more than
just a collection of tools in that it supports information passing between tools [13], and
so offers to enlarge the choice for software developers of which tool sets (supporting
methods and languages) to use in a given organisation or for a given development.
It is recognised that the availability of such integrated environments is crucial for
improving the productivity of the software industry. Integration is usually considered
under three categories, presentation, control and data integration. Presentation
integration is the “provision of a common user interface for the tools in an
environment” [6]. Control integration is “the capacity to request operations from
other tools in the system” while data integration is “the sharing and manipulation of
information on which the various tools perform operations to satisfy requests”[43].
Most of the existing SEEs are based on at least two fundamental concepts of

integration: control and data integration. It is these aspects of integration that

concerns this thesis.

PCTE, Portable Common Tool Environment, provides standard services to support
integration and portability of a SEE. PCTE is to a large extent object oriented, but the
objects which it defines are data objects and do not have behaviour. These data
objects however do provide data integration, information sharing for the tools,
particularly suited to CASE tools. However due to this lack of behaviour, the amount
of control integration or tool co-ordination within a SEE based on PCTE is limited. It
is to address this limited control integration that we wish to integrate PCTE with
Object Management Architecture (OMA), in particular the Common Object Broker
Architecture, CORBA (the name given to the architecture of the Object Request
Broker, ORB, component of OMA) the communications heart of the OMA
specifications. Because the OMA specifications are specifically designed to promote
development of integrated distributed systems using the object oriented paradigm, it
makes sense to introduce OMA as an integration technology for PCTE, allowing
PCTE to reap the benefits of being truly object oriented and increasing control

integration between PCTE tools.

The integration could be beneficial from the OMA point of view, since the PCTE
repository or object base could also be used as a persistent store for OMA objects.
The Object Services component of the OMA which provides basic operations for the
logical modelling and physical storage of objects, has not yet been fully specified and
no implementations for it are available. Because the emphasis was on data integration
within the PCTE specification, it, of necessity, developed a semantically rich data
modelling mechanism, the Object Management System. Thus the Object Services
component of the OMA would benefit from an integration of PCTE into OMA. These

benefits all suggest that their convergence into a single standard is inevitable [5] and

very attractive.

A considerable effort is being made by Object Management Group’s PCTE SIG
(Special Interest Group) to converge the PCTE and OMA specifications, see Section

1.2. However the purpose of this thesis is to provide an integration strategy for the

current PCTE and OMA’s CORBA specifications, to their mutual advantage, while

waiting for their convergence into a single specification.

The initial integration approach taken during this research was that of a direct language
mapping between PCTE’s Data Definition Language and CORBA’s Interface
Definition Language- such a mapping was sought because it would be a direct
integration without altering the specification of either standard. However this
approach proved unfeasible, for reasons discussed later in Chapter 5, and another
integration strategy was sought, the same criterion being applied (no alteration to

either the PCTE or CORBA specifications).

1.2 PCTE and OMA Convergence

In 1994 the Object Management Group formed the Portable Common Tool
Environment Special Interest Group (PCTE SIG). The mission of the PCTE SIG is to
provide support and requirements to OMG task forces for the convergence and
interoperability of OMG’s OMA and PCTE, specifically fostering PCTE compliance
with OMA,; to identify requirements for, and foster convergence of, interoperable

CASE environments and fine grain repository tools for the evolution of PCTE [42].

The PCTE SIG now works with users, vendors, academia, government and provide
technical liaison staff to work with relevant consortia and accredited standards
organisations, to assure consistent requirements for the evolution of PCTE to OMA
compliance, object orientation and fine granularity [42]. Substantial work towards the
merging of PCTE and OMA has already been achieved. Work is currently in progress
by OMG PCTE SIG on proposals for the object oriented extensions to the PCTE
Standard (ISO/IEC -13719) which incorporate CORBA [49].

1.3 Background

Before we go any further, let us examine the importance of computer industry
standards such as OMA and PCTE. Standards can have a profound impact on the way
companies conduct their business. Consider the benefits already gained from the
standardisation of such common languages as COBOL, C and SQL which enable the
development of applications that are portable across heterogeneous platforms. When
a standard is adopted and accepted, the direction of the industries that fostered the
standard can be shaped for the better [40]. Take for example the popularity of
Relational Data Base Management Systems (RDBMS) as opposed to Object Oriented
Data Base Management Systems (OODBMS). Much of the success of RDBMSs
comes from the standardisation that they offer, along with the simplicity and usability
of the model. The acceptance of SQL standard allows a high degree of portability and
interoperability between systems, simplifies learning new RDBMSs and represents a

wide endorsement of the relational approach [41].

The software development industry is standing at a critical juncture where standards
for the use of separate control and data integration strategies are beginning to emerge
just as the benefits of the powerful new technological wave of software composition
technology are becoming clear. Software composition is an approach to the creation
of software by composing existing and new elements to form larger structures, writing
a minimum amount of algorithmic code to do so. Composition technologies
significantly reduce the effort required to build large software systems. For example,
the developer of a chip-design package that integrates logical design, physical
packaging and timing simulation does so by separately constructing the logical design
component, the physical packaging component and the timing simulation component
and then composing these into a complete tool [44]. Object technology greatly lends
itself to the production of integrated software systems and software composition. This
is why the members of OMG believed that the object-oriented approach to software

construction best supported their goals of “developing and using integrated software

systems”[29]. While not necessarily promoting faster programming, object technology
allows you to construct more with less code, partly due to the naturalness of the

approach and also to its rigorous requirement for interface specification.

Tool composition refers to the software composition of tools, and in this thesis, CASE
tools in particular. In order to enable such compositions, a tool integration model
must permit the composer to chose a binding that is either high performance with tight
coupling or lower performance with looser coupling. The difference is called the
granularity of the composition. In general, small elements (fine-grained) require more
frequent interaction and a consequent tighter coupling [44]. Platforms like PCTE are
generally called coarse-grained because the intrinsic modelling and interpretative
overheads and the implications of security and locking on an object-by-object basis
limits its potential performance to coarse-grained interaction i.e. less frequent

interaction and looser coupling.

The way in which standards relate to and are compatible with each other is also of
importance to their success and acceptance. This thesis concentrates on the drawing
together, in terms of an interim integration strategy, of two complementary standards
within the computer industry namely OMG’s OMA and ECMA/ISO PCTE in order
provide a mutually beneficial integration. They are complementary in the fact that
PCTE relies heavily on the data integration provided by its data modelling mechanism
as a means of allowing tools to share common data, but an even tighter integration of

tools- tool co-ordination is desirable, which can be provided by OMA’s CORBA.

1.31 OMG&CORBA

In 1989 the Object Management Group (OMG) was established to simplify and
reduce costs of software design and development and encourage the use of the object-
oriented paradigm. To achieve this end OMG set down guidelines and object
management specifications for a common framework, Object Management
Architecture, of which CORBA (Common Object Request Broker Architecture) is
the specification for the communications component of OMA. OMA is a set of
specifications designed to support applications that are collections of interoperating,
co-operating distributed objects. Following industry’s adoption of these specifications,
they will be instrumental in the standardisation of the object technology and make it
“possible to develop heterogeneous applications environment across all major
hardware and operating systems”[42]. Since OMG is an open consortium, with over
500 members world wide, the specifications are set by industry itself, thus ensuring
their relevance and the dedication of the computer industry to their acceptance.

Chapter 3 contains a description of OMG’s CORBA and its place within the broader

Object Management Architecture.

1.3.2 PCTE

Of the considerable variety of CASE tools now available on the market, very few of
them can be easily integrated for example, coding, design and testing tools which
support only isolated aspects of the software process. Tools which can only work in
isolation are useful to a point, but do not fulfil the potential of a SEE. A SEE can be
described as in [6] as consisting of four layers : Platform, Public Tool Interface,
Framework and Environment (See Section 2.2). One approach to the efficient
integration of software engineering tool sets is to factor out those common features
required by most tools for information management and interaction with the tool users.

It is therefore an efficient way forward to define a domain in which these common

needs are satisfied, whilst leaving the tools themselves to carry out the specific tasks
and offer their specific facilities. Out of this realisation has come the concept of the
Public Tool Interface. The Public Tool Interface (PTI) is the layer which provides

standard services to support integration and portability [12].

Portable Common Tool Environment (PCTE) is an example of one such PTI for an
open repository. It defines a set of public and standard services designed to support
portable and well-integrated CASE tools. A repository is a place for storing all the
information that is required in a software engineering environment, for example tools,
software products and documents. The Object Management System (OMS) within
PCTE provides the functions used to access the repository. PCTE provides a public
schema mechanism that allows independently sourced tools to access and manipulate
information in the repository [6]. The repository approach to data integration has been
the main focus of the IRDS (Information Resource Dictionary Systems) and PCTE
efforts. The IRDS advocates have strived for nearly a decade towards the illusive
goal of acceptance within the standards community [40], compared with PCTE which
could be viewed as the leading repository standard, having gained ISO standardisation
in 1994. Control Integration for CASE tools has been pursued via a standardised
message (structure and semantics) as promoted by the CASE Interoperability Alliance
(CIA) and CASE Communiqué industry groups and recently X3H6 [5]. Chapter 2
describes the PCTE standard in detail.

1.4 Technicalissues

This thesis explores the very real alternative of using the distributed object approach
(i.,e. CORBA) to provide control and data integration for the general problem of
integrating CASE tools in a SEE, using a single paradigm (Since CORBA objects have

both state and behaviour as opposed to PCTE objects which have only state).

PCTE and OMA specifications are both concerned with the integration of distributed
applications. OMA applications are collections of interoperating co-operating
distributed objects (data and methods) ranging from large to fme-grain objects. OMA
is suitable for a wide range of domains including CASE [5], which encompasses the

focus of PCTE, the area of data integration for distributed CASE environments.

The major technical issue that is solved by layering CORBA on top of PCTE is
concerned with the fact that CORBA implicitly defines “distributed and secure
execution and interprocess communication services” [5]. Thus the introduction of
CORBA as one of the integration technologies of a PCTE SEE is beneficial from the
perspective of the tool integrator and the framework builder, in that CORBA supports
tool composition, and therefore will provide greater control integration between PCTE
tools. It will also allow the definition of tool interfaces so that they can make their

services available to the rest of the environment, while hiding the implementation

details [43].

The support of tool composition, as discussed in Section 1.3, is an important part of
tool integration for CASE. The ambitious goal of tool composition is to allow
construction by assembly of separate pieces of systems that have the usability, and
almost the performance, of hand-crafted monolithic systems. The advantages of
composition are ease of construction, reuse of components and ease of extensions and
maintenance. The challenge is to maintain usability and performance. Fine grained
composition in which components can interact tightly and frequently and can share
small granules of data is essential to meeting this challenge. PCTE and CORBA both
contribute in largely complementary ways to supporting composition, and so their

integration into a single platform is attractive [44].

From the OMA/CORBA point of view the PCTE repository could be used as a
persistent store for OMA objects, thus permitting the state as well as the methods of
OMA objects to be stored. The persistent storage of objects is a part of the Object

Services component of the OMA which has not been fully specified yet (see Section

3.3.1).

The implementation of PCTE used during this research was GIE Emeraude PCTE
Environment V12 and the implementation of CORBA used was IONA Technology’s

ORBIX Version 1.1.

1.5 Overview

The remainder of this thesis is structured as follows. Chapter 2 contains details of the
PCTE standard, including its Object Management System and Data Definition
language. It also contains a description of the typical structure of SEEs based on
PCTE and a discussion on the industrial relevance of the PCTE standard and its
currently available implementations. Chapter 3 contains a description of OMG’s
CORBA, its place within the broader Object Management Architecture, its Interface
Definition Language (IDL), the role of OMA within the computer industry and the
availability of CORBA implementations and CORBA-compliant products. Chapter 4
examines the complementary relationship that exists between PCTE and OMA. It
discusses the approaches to integration researched in this thesis while looking for an
interim solution to the integration of PCTE and OMG CORBA, and the benefits that
would hope to be achieved by such an interim integration. Chapter 4 also contains
details of related work in the area of the integration of PCTE and OMA/CORBA and

discusses where the research contained in this thesis fits in relation to this work.

As will be discussed in Chapter 4 the most obvious choice for an interim integration
strategy is that of a direct language mapping between DDL and IDL (and vice versa).
Much of the work of this research was to prove that such a mapping will not be
possible until the specification for DDL (in particular) has been extended. The fact
that this thesis proves that a mapping between DDL and IDL is not currently possible
is a valuable contribution in itself. Chapter 5 outlines the nature of a DDL to IDL
mapping given the current specifications and discusses why such a mapping is proven
to be not viable as an interim strategy for PCTE and CORBA. Chapter 5 also contains
a description of the extension DDL would require for compatibility with IDL, in order

to make such a strategy viable for future integration.

Chapter 6 describes the definition of IDL interfaces for PCTE tools as an alternate
approach to the interim integration of the two standards, and discusses the benefits of
this strategy. Chapter 6 contains a demonstration of how the definition of IDL
interfaces for PCTE tools may be used to increase control integration between tools in
a PCTE repository (in the demonstration Emeraude PCTE V12), to support tool
composition for PCTE tools, and to enhance PCTE objects to full object orientation.
Chapter 7 concludes by providing a summary, evaluating the usefulness of the

integration strategies researched in this thesis, and how future work can build upon this

research.

11

CHAPTER 2 PCTE

This chapter introduces the history and concepts behind PCTE, particular attention is
being given to areas of the standard which are deemed important in context of this
thesis. Section 2.2 contains an introduction to the architecture of PCTE-based
Software Engineering Environments (SEEs). The PCTE repository or object base and
OMS (Object Management System) are described in Section 2.3. Section 2.4
describes the Data Definition Language (DDL) which is PCTE’s data modelling and
integration mechanism. PCTE processes are introduced in Section 2.5, and a
description is given of the way in which they are used as mechanisms by which the
PCTE repository is interrogated and modified. Section 2.6 describes PCTE activities
and how they are used to ensure the consistency of the PCTE repository. Section 2.7
describes the implementations of PCTE available on the market and discusses the

industrial relevance of the PCTE standard.

2.1 PCTE . The Standard

As already mentioned in the introduction, a variety of CASE (Computer-Aided
Software Engineering) tools now exist, the function of which is to automate aspects of
the construction of software itself. Until the advent of integration standards such as
PCTE, software was developed predominantly on large centralised computer systems
using a collection of tools, with minimal data integration at file level. These tools
supported isolated aspects of the software process, and bore little or no relationship to
one another- e.g. coding, design, testing tools respectively supporting only the coding,
design and testing stages of process development. Although such isolated CASE tools
did have the potential to reduce the production cost of software systems, the full
potential of CASE tools is only apparent when they are able to co-operate together as
part of a tool set. Therefore the basis of any CASE environment must be a flexible
framework which offers a "cost-effective tool integration mechanism, encourages
portable tools, and facilitates the exchange of development information”[25].

12

Tool integration is defined as a property of a tool’s relationship with other elements of
the environment, chiefly other tools, the platform and a process [26]. The complexity
and interrelation of CASE components require an environment supported by
comprehensive standards that allow a range of tools and techniques to work properly
together[27]. The highest degree of CASE integration is achieved through the use of a
standard model for tools. Such a standard defines what mechanism a Software
Engineering Environment (SEE) or tool developer has to use for tool communication,
the representation of the user interface, and the data model within the Repository.
PCTE, the Portable Common Tool Environment, is such a standard for "a public tool
interface for an open repository”[6]. A Public Tool Interface (PTI) is defined as a set
of program libraries that grants access to facilities and services needed by tool writers
and environment builders[28]. In order to support a high degree of integration as well
as portability of CASE tools, PCTE defines a set of public and standard services and
uses the PCTE repository to store the necessary information associated with a
Software Engineering Environment The information stored in the repository may
include documents, source and compiled code for the products under development, as
well as the CASE tools themselves.

Before we examine the role of PCTE within a Software Engineering Environment let
us turn briefly to the origins of the PCTE standard. PCTE was initiated in 1983 by the
European Strategic Programme for Research and Development in Information
Technology (ESPRIT) as a project called "A Basis for a Portable Common Tool
Environment”. That project partially funded by the Commission of the European
Communities, produced a specification for a tool interface, an initial implementation,
and some tools on that implementation. The objective of this interface was to allow
the building of SEEs and promote their implementation on different hardware and
operating systems. Following the acceptance of the first edition as an ECMA standard
in December 1991, review by international experts has led to the production of a
second edition taking into account review comments relating to this standard. This
edition was accepted as an ECMA Standard by the General Assembly of June 1993
[1], In 1994 PCTE became an international standard, as ISO/IEC 13719.

13

2.2 Architecture of PCTE-based SEEs

The architecture of PCTE-based Software Engineering Environments are described in
this section according to the following four layers : platform, the public tool interface,
framework and environment Such a description of a SEE is based on concepts
originally described in the PCIS Technical Study paper [24].

The platform consists of the hardware of a machine and the operating system needed
to use it. Essential to Software Engineering Environments is portability, the capability
of using the same software on different platforms. Portability is important because the
users of an environment want to make use of their favourite tools regardless of the
platform on which the environment is based, this being part of the overall current trend
towards “"plug 'n' play” tools (i.e. tools which can be slotted into an environment with
ease regardless of their vendor). In the classic "Non-Open™ model, interfaces between
tools have to be modified each time a new tool is introduced. This prevents the plug
and unplug replacement of tools and means the user is restricted to a particular tool
vendor. The portability of software can be reduced due to a number of factors
including differences between machines (software developed for a given machine
architecture utilises specific features of that architecture making it unportable for
other architecture types) and differences between operating systems (programs which
contain operating system calls may not be portable). The PCTE Public Tool Interface
is designed to increase the portability of tools.

The Public Tool Interface (PTI) hides the platform and provides a uniform base on
which software can be developed [6]. PCTE is an example of such an interface for an
open repository, as it is designed to shield applications from the variances among
differing platforms. The PTI defines a set of interfaces, these usually being
implemented as a set of operations on a given platform. In the case of a PCTE-based
SEE these operations are obviously PCTE operations (See Tables 2.1 and 2.2 for
example). The Public Tool Interface is a non proprietary, public and widely available
standard to which all tools in an environment should conform. Tools which are in
exact conformance with the PTI are portable to all platforms on which the PTI is

implemented.

14

The framework incorporates the Public Tool Interface along with general purpose
horizontal services and tools whose functionality is generic to all stages of software
development and maintenance e.g. repository browser and querying tools,
configuration management tools, communication and documentation support tools.
One such PCTE framework, Emeraude V12 is described in diagram 2.2. Emeraude
V12 includes PCTE libraries implementing the PCTE interface and builds on these
common services for the management of metadata, data query, version and
configuration management It provides a number of horizontal tools, including some
basic PCTE tools (e.g. to create objects and links, set attributes) and encapsulation of

UNIX tools[6].

15

It is the framework layer which provides support for data, control and presentation
integration within the complete environment, and it is this integration which sets apart
the SEE from a set of independent tools executing on an operating system.

Ajoint development by ECMA and NIST addressing the area of SEEs, particularly the
services that are expected to be useful in an environment framework, has provided a
reference model [21]. The reference model puts the framework services into a
number of groups, which are commonly represented by a diagram often referred to as
the "toaster model™" see [6, 20]. Figure 2.3 shows how a PCTE-based SEE would be
represented using the this model.

16

The Environment includes specialised vertical tools to support the life cycle, along
with the other layers outlined previously. These tools extend the basic capabilities of
the framework to application-specific domains (e.g. CASE, CAD (Computer Aided
Design)). PCTE addresses the CASE domain in particular. Each of the vertical tools
are designed for use in a particular phase of the software development process. These
phases may occur sequentially, as described in [3], or as a cascade, the so-called
waterfall processes, as described in [4]. In an extendible SEE, its set of horizontal and
vertical tools may evolve due to the altered requirements of an organisation or the
availability of newer and better tools. To enforce a higher level of integration, the
environment may enforce the use of common services for all tools, this however
being at the cost of restricted usability of imported and foreign tools.

Repository

Emeraude Components

Object Base/Repository
Object Management Services (OMS)
Emeraude VCM
Emeraude PCTE Tools & Services

(inc. OMS browser.

Text Editor,

Schema Editor,

OMS Utilities)
Communication Services

Partially provided by Emeraude PCTE

User Interface Sen/ice
CASE Tools

Figure 2.3 PCTE-based SEE using the toaster model

Having seen in this section the role of PCTE within a SEE, sections 2.3 and 2.4
examine how this role is fulfilled by PCTE OMS (Object Management System) and

Data Definition Language.

2.3 PCTE's Object Management System

Central to the process of constructing and integrating portable tools by PCTE is the
provision of the object base and a set of functions to manipulate the various objects in
it. “The object base is the repository of data used by the tools of a PCTE installation,
and the Object Management System or OMS of PCTE provides the functions used to
access the object base" [1]. The OMS can be seen as an evolution from a traditional
File Management System (e.g. the hierarchic structure of UNIX) to a structure that
can be adapted to the needs of different environments [13, 14]. The OMS is designed
to enable the transparent distribution of the object base over a local area network.

PCTE makes use of database system technology and a complex object model as well as
semantic data model theories (see [18, 23]) to overcome the shortfalls of applying
traditional database systems to a SEE repository [12, 16]. The object base, a relational
database, is the repository of persistent information that is employed by software tools
[17]. The object base or repository is required to store and manage very complex data
and relationships across the whole software life cycle- not only finished products of the
software process (e.g. designs, functional specifications, alpha, beta and fully tested
versions of code, fault reports, change requests) but also the intermediary and
supporting data that accumulates along the way (e.g. project history, test results,
memos and reports) [6]. The basic OMS model is derived from the Entity Relationship
data model and defines objects and links as being the basic items of a PCTE object
base [1, 12, 15]. The object base can be viewed as a directed graph, in which the
objects are nodes, and the links are arcs of the graph. This network of objects,
connected by links, allows a large number of complex relationships to be modelled in
an intuitive way, see figure 2.4 for example.

2.3.1 PCTE Objects

PCTE objects are entities which can be designated, and can optionally have :

e contents a storage of data representing the traditional file
concept.

* attributes primitive values representing the specific properties of
an object which can be named individually.

o links representations of association between objects. Links

may have attributes, which may be used to describe
properties of the associations or as keys to
distinguish between links of the same type of object

Designation of links is the basis for the designation of objects: the principal means for

accessing objects in most OMS operations is to navigate the object base by traversing
a sequence of links [1].

19

2.3.2 Links

Links represent the relationship between PCTE objects, which (the relationships) can
be uni- or bi-directional. However each link has only a single direction. Bi-directional
relationships are described using reverse links, whereby two links with opposite
direction join the objects, each of which is called the reverse of the other. As stated
above, links (similar to objects) may have attributes. Object attributes record a
specific piece of information about an object, whereas link attributes record something

about the relationship between two objects.

2.3.3 PCTE Ogperations

The OMS supplies link and object operations for the basic manipulations such as
creation, deletion and the setting of a value for an attribute. In addition it has a set of
operations that give access to contents (files, pipes, devices) of an object. However,
the OMS cannot decipher these contents, its meaning being left to the software tool[2,

17].

Layered on top of the OMS are various services covering execution (process
management), interprocess communication, activities (transaction management),
distribution, discretionary and mandatory security, notification, accounting and object
contents operations. Many of these services are modelled as objects in the OMS. For
example, processes are modelled as objects and the properties of a process are
expressed in terms of object attributes and links. This approach allows uniform

information access [5].

In the PCTE specifications [1], the abstract operations and their bindings are
categorised by function in a number of separate but often related clauses [6]. The main

functional areas are summarised below to indicate the scope of the PCTE interface:

20

Object management & schema management

operations to define and manage, in a general way, all the instances and typing

information in an object base (objects, links and attributes).

Object contents

operations to manipulate the data stored in the contents of objects.

Process execution, message queues & notification

operations to manage the execution of programs and their communication

Concurrency and integrity control

operations to prevent loss of data integrity by locking and transactions.

Discretionary security, mandatory security & auditing

operations to enforce security policy and to audit object base accesses.

Volumes, devices, archives and replication

operations to manage the distribution of data, to represent physical devices and

to make archive copies of objects.

Network connection
operations to manage the configuration of workstations.

Accounting
operations to monitor resource use.

234 PCTE Types

An essential principle of the OMS is that of schema. The schema is a means of
integrating tools around commonly accessed data structures [13]. Rarely is it
convenient or useful to model an entire environment as a single system. It is important
that the SEE framework supports the break down of the object base into sets of data
that model different aspects of the environment and development process. In PCTE,
this functionality is provided using the working schema mechanism. Each working

schema represents a specific view (e.g. tool's, user's or project's view) of the object
base. Central to the understanding of schema is the PCTE notion of types.

A type "captures the essential characteristics of like entities from the same domain,
abstracting their common properties"[6]. For example all sources contain text, all
programs contain executable binary code. We can identify many classes of objects that
share common characteristics, for example, the relationships that a class of objects may
have with other classes of objects, or the kind of attributes that are relevant. PCTE
represents these characteristics with types, each of which is a data definition for a
particular class of object. A type may be defined for each class of similar objects
within the repository- take for example a type defined for specification documents,
design documents or source code objects. ADA source, C source and FORTRAN
source are each a specialisation of the general source type with their own particular
characteristics in addition to the general ones.

When any object base entity is created, it assumes the characteristics defined by the
type; these characteristics can govern, for instance, the number of links of a type that
can leave an object or the reverse link of a link. The type definitions making up the
overall OMS schemas are organised into a collection of small sets of definitions called
Schema Definition Sets (SDSs) [13]. When part of the OMS schema must be visible
for a particular purpose, a SDS is used to represent this partial view of the OMS. An
SDS defines both the visible characteristics of the basic entities (objects, links,
attributes) and how they can be related to each other; a link of this type can have this
object type as its origin, and that type as its destination; this attribute type is applied to
this object or link type. For example a project scheduling tool might use a set of
related types representing projects, milestones, start dates and estimated duration of
project tasks. Each PCTE process (see Section 2.5) has a working schema, a
mechanism by which sub-schemas represented by SDSs can be used by processes, and
therefore the means by which running tools are presented with the schema representing
their data models. A working schema is a linear collection of SDSs and all
environment referencing is done through the working schema [12]. A tool’s view of
the repository is through its working schema. Thus only the types belonging to the
SDSs contained in its working schema’s list of SDSs will be visible to any tool.

This typing mechanism is fundamental to the data integration of tools within PCTE, by
allowing tools from different vendors to have their own names for common classes of
objects. The data model of a tool can be compared with those of other tools and, by
identifying the common data entities, the models can be integrated with each other and
implemented as common types. In the PCTE typing model, when new types are
defined they must be integrated with the existing types of the environment (every
PCTE based environment pre-defines the same four SDSs system, metasds, security
and accounting, these being necessary to support the operation of the interface). The
separation of a tool’s data model from its code, as provided by SDSs, greatly facilitates

data integration.
2.4 PCTE's Data Definition Language

The PCTE Data Definition Language (DDL) is a formal notation for defining types
[6], and a schema definition formalism [141 for SDSs. It is a convenient textual (as
opposed to graphical or functional) notation. The syntax of DDL can be found in
Appendix B of this thesis. This section gives a brief introduction to the semantics of
the language. To illustrate these semantics the c_prog SDS will be used, see Appendix
C for its complete DDL listing. DDL is normally divided into SDS sections. SDS
sections group together type definitions, each DDL type being declared within a SDS

section.

The DDL declaration of a type includes both the type and the type-in-SDS properties
for the current SDS. As stated in the previous section each newly defined type must
be integrated with the existing types of the environment (the pre-defined types within
the system, metasds, security and accounting SDSs). The type-in-SDS properties
exist to represent the properties of object, link, attribute and enumeration item types
as they are used within a particular SDS. Remember that each SDS is a view of part of
the whole OMS schema; a part must be visible for a particular purpose. For example
the c_prog SDS is used to model an environment for the C programming language,
that is an environment which can describe, for example, the relationship between C
source code files, object code, libraries and header files. Therefore the c_prog SDS
defines only the type objects which would be of interest while programming in C, and
leaves the remainder of the object base hidden (for example any FORTRAN source
files would be hidden). The SDS definition for ¢_prog first imports types which are

23

intrinsic, and then applies specific properties to them which are necessary to describe

the C programming environment

Some properties of PCTE types are intrinsic, for example, the kind of contents an
object of a particular type can have, or the value type and initial value that the attribute
type can have. They are intrinsic in the sense that they are assigned when the type is
created, are unchangeable, and are therefore the same in all SDSs in which the type
subsequently appears. Even if an SDS applies other properties to the type (these
applied types are the type-in-SDSs), the intrinsic properties cannot be changed.
Applied properties include the attributes of an object or link type and set of link types
leaving the an object type. We will take as an example the definition of the program

type from the ¢_prog SDS:
import pact_joftware as program;

defines the pre-defined type pact_software (defined in the pact_sds) for use within the
c_prog SDS; within this SDS the type will be renamed as program.

extend program

with

attribute version',
edition;
system;
systemjrelease;
target;
variant;

link deliverable;
sub;
inc;
build;
tests;
exec;
subprog;
a,
out;

end program;

24

Program is then extended to define properties which will apply to this type (program'’s
type-in-SDS) within the c_prog SDS. As the DDL listing above illustrates, these
applied properties are to include new attributes, namely: version, edition, system,
systemjrelease, target and variant which will apply to program within the c_prog
SDS. Furthermore, program is restricted so that only links of the following type are
allowed to leave a program object: deliverable, sub, inc, build, tests, exec, subprog, a

and out.

Data schemas are explicitly represented in PCTE by data instances referred to as the
metabase. The metabase deliberately distinguishes the intrinsic properties of a type
from those applied to it within the context of a specific SDS. It contains a set of
objects (so called types-in-SDS) which represents the specific properties that a type
holds within a given SDS. The distinction between intrinsic and applied properties is
important to the understanding of schema installation and evolution strategies. SDSs
are primarily sets of types with applied properties and can be managed as such [23].

Within an SDS section, the types are defined in a relatively free order and flexible way.
Because of this flexibility there are often two or more equivalent constructions to
declare the same types [6]. Types can be defined in either single or compound
declarations with related types. All DDL types (Object, link, attribute and enumeration
item types) can be imported from other SDSs or declared within a SDS; object types
can be declared within a SDS as descendants of existing or previously imported types,
the method by which they are imported is the DDL Type Importation declaration. In
the following Sections 2.4.1 -2.4.6 the SDS section in which a clause occurs, and the
SDS to which it contributes, are called the current SDS section and SDS respectively.
The examples used in these sections illustrate the language constructs provided by

DDL for defining types.

24.1 Type Importation Declaration

A type importation declaration defines a type in SDS in the current SDS. This type in
SDS is a copy of the type in the SDS from which it is being imported. For example the
following DDL type importation declaration, taken from the ¢c_prog SDS:

25

import object type pact-env as env (usage navigate; export protected);

imports the object type env from the pact SDS; this imported object type will also be
known as env within the current SDS. Navigate and protected are the usage and
export type modes which govern how the type may be used within the SDS
(PROTECTED, READ, WRITE, DELETE, CREATE, NAVIGATE) or if it may in

turn be exported from the current SDS.

2.4.2 Object Type Declaration

An object type declaration always specifies the parent type(s), and may also name or
declare the applied attribute types and out-going link types. Only the basic pre-defined
child types of object can include a contents type specification. The following example

is taken from the pre-defined system SDS, and is the DDL definition of the file type

object:

fileichild type of object with
contents file;

attribute
contents_size: (read) natural;

positioning;
endfile;

This DDL object type declaration specifies the type object to be the parent of the file
type, to have contents (file) and attributes called contents_size and positioning. In
turn the file object type may be the parent type of another object.

2.4.3 Link Type Declaration

There are several ways to specify a link type and its application in DDL. A link type
can be named or declared, and applied to its origin and destination types, within an

object type declaration; this is the case in the program object declaration given earlier

in this section. Alternatively a link type and its destination type can be declared

together. The definition of the link tests in the c_prog SDS illustrates this type of link

declaration:
tests: composition link to testset;
This DDL definition states the object type testset to be the destination of links of the

type tests.

2.4.4 Link Type Extension

An existing or imported link type can be applied to new destination types in a link type

extension. Take for example the following DDL link type extension declaration:

extend link type tool to sctx
with
attribute

user : string ;

end tool ;

Here the link type tool is given a further outgoing destination type and attribute type,

sctx and user, respectively.

Also an existing or imported link type can be applied to new origin types in an object

type extension, as shown in the next section.

2.4.5 Object Type Extension

An object type extension extends the object type-in-SDS in the current SDS, by adding
further outgoing link types, attribute types, component object types. For instance in
the object type extension of testset within the c_prog SDS (shown below), tst and

theme are declared to be further outgoing links for the object type testset.

extend testset

27

with

attribute nature;
link tst;
theme;

end testset

2.4.6 Attribute Type Declaration

There are also several ways to specify an attribute type and its application in DDL.
An attribute type can be declared independently, without any applications. Take for

example the DDL attribute declaration of version within the c¢,,prog SDS:

version : integer := 1;

An attribute type can be declared (if it has not already been declared elsewhere) and
applied to an object or link type within an object or link type declaration or extension,
as the version attribute was applied to the object type program shown earlier. An
existing or attribute type can be applied to new object or link types within an object or
link type declaration or extension [6. Enumeration Item can either be defined

independently or within an enumeration attribute type declaration.

As can be seen from the above sections, PCTE has an inheritance mechanism for
object types. A child type inherits the properties of its parent type(s). In addition it
may have properties of its own such as link types, attribute types, contents and
components [1]. It is important to note however that, although PCTE supplies the
concept of inheritance, it is not a truly object-oriented environment The reason for
this observation is that PCTE's DDL does not have a mechanism to attach methods to

object types. Such a mechanism is expected from a truly object-oriented environment

[121.

At this point, we have seen how portability and integration are supported by PCTE.
The portability of PCTE tools to other platforms, where PCTE is implemented, is
guaranteed by the conformance to the interface provided by the Object Management

System. Integration for tools is provided through a data integration mechanism

28

available in the form of DDL definitions for a tool’s working schema. We will now
examine the nature of PCTE tools, which are the mechanism by which the repository is

interrogated and modified.

2.5 PCTEprocesses

A PCTE process is the execution of a program, whether this is a software engineering
tool or general tool, a target application, or one of the components of the PCTE
implementation [a (PCTE tool, or tool, may be used to mean PCTE process).
Program code for these PCTE tools is stored in static context objects in the object
base. A static context (short for static context of a program) is an executable or
interpretable program in a static form that can be run by a process. An executable
static context can be loaded directly and then executed. An interpretable static
context is a program that can be run by a process but it first requires the running of
another static context as an interpreter. A static context may be run either by a PCTE
implementation or by a foreign system [1]. A foreign system can be a foreign
development system, a target system running a real-time operating system, or even a

PCTE workstation in another PCTE installation.

A PCTE process is a dynamic entity which has a temporary object base representation;
an active process has a dynamic context which is the collection of all its properties;
including its data and code images in memory, working schema, reference objects,
named variables [a. A PCTE process can be looked upon as a means of running a
static context i.e. a dynamic context is a running static context. One property of the
dynamic context of a process is its parent process, i.e. each process must have a parent
process. The first process created to realise a PCTE environment on a given
workstation is the PCTE initialisation process, and from this initial process a tree
descends. A child process can be executed on a different site from its parent; therefore
a process tree starting on one workstation often becomes distributed over several

workstations of a PCTE-based environment.

Processes are created and started in two separate steps:

e When a process is created, so is the process object and many of its links. At this
stage, the instances in the object base represent how the dynamic context will be
initialised. It is possible for the new process, or another one, to change many of
the properties to suit the static context that is to be run (e.g. defining the working
schema with which the program is to work and setting referenced objects to
designate the objects to be processed). For example a browsing tool may change
the working schema and set new reference objects at the user’s request. The
processing of most of the PCTE operations depends on the dynamic context of the
calling PCTE process (for example, security checks performed by an operation
depend on the discretionary and mandatory context of the calling process; visibility

checks are done on the basis of the current working schema of the calling process

etc.) [a.

* When the process is started, additional links are created and attributes initialised.

At this second stage, the instances in the object base represent the dynamic context

itself.

The success or failure of a process is determined by the static context that it is running.
Upon process termination, a program defined result and termination status becomes

available from the object base to other related processes. The result indicates

30

successful exit or abnormal termination. The termination status indicates whether the
object base instances will be deleted when the process terminates and that termination
is acknowledged by its parent. Figure 2.5 shows the process execution schema.
Schema diagrams are a frequently used graphical method of illustrating actual or
example types and their relationships. The conventions used for schema diagrams are
outlined in Appendix B of [6. Table 2.1 lists some of the operations provided by

PCTE for managing processes.

The tools in a SEE may be composed of several more rudimentary tools, each running
its own process. The rudimentary communication of results from a child process to its
parent is not sufficient for the co-operation and synchronisation that is needed between
the components of a tool, which may quite possible be running in unrelated processes.
PCTE also provides basic facilities for interprocess communication in such an event,

such facilities amounting to the only control integration facilities provided by PCTE.

PCTE Process Operations

PROCESS_CREATE Creates a process ready to run a static
context, as the child of the parent
process.

PROCESS_START Starts the execution of a created process.

PROCESS_SET_REFERENCED_OBJECT Sets areferenced object of a process to a

PROCESS_UNSET_REFERENCED_OBJECT specified object, and unsets a referenced

objectrespectively.
PROCESS_SET_WORKING_SCHEMA Sets the working schema of a process to
a set of SDSs.
PROCESS WAIT_FOR_CHILD Makes the calling process wait for a
child process.

PROCESS_SUSPEND suspends a running or waiting process.

PROCESS RESUME Resumes a suspended process

31

PROCESS_INTERRUPT_OPERATION Interrupts a process executing aPCTE

operation.
PROCESS_TERMINATE Terminates, and in some cases deletes, a
process.
Table 2.1 Some ofthe PCTE Process Operations

2.5.1 Interprocess Communication

PCTE provides message queues and pipes as low level means for processes to
communicate with each other. Message queues are objects which provide an
independent place in an object base to store messages from a process, which can be
accessed by other processes. The contents of message queue objects are a sequence
of individual messages; the meaning of the message text is understood by the posting
and receiving tools, which therefore must be designed to co-operate. Notification does
allow limited co-ordinated use of tools which have been independently developed. A
notifier is an association between a process and another object that allows the process
to watch for access events on the object. Various kinds of access can be monitored-

for example the modification of an object in any way, its removal to another volume or

its deletion [6.

Message queues provide for a structured communication between processes.
Sometimes a simple transfer of information, perhaps in large volumes, is what is
required. A pipe is an object whose purpose is to have sequential data written to it and

then read from it by processes [a. However data can be read from a pipe only once,

after which it is no longer accessible.

All accesses to, and modifications of, an object base are actually performed by PCTE
processes. However for concurrency and integrity control purposes, access is managed

in the context of activities.

32

2.6 PCTEActivities

PCTE is designed to ensure that the object base is never in an inconsistent state due to
the failure or partial failure of an operation. An activity is a way to manage a set of
processes that are performing actions related in some way. Concurrency and integrity
control of the object base is managed using activities. Operations (one or more) are
carried out within an activity using one or more PCTE processes. An activity can hold
locks on the entities that it is using to protect them from access attempts by other
activities. Transactions are the mechanism by which PCTE maintains consistency.
Because PCTE supports the nesting of transactions, it is possible to build tools from
existing tools or re-usable components without concern for individual error recovery
actions [a. Transactions are a special class of activity, which have the property of
atomicity (either all their constituent operations are committed to the object base or
none are). More information on PCTE processes and activities can be found in [a and

[1]. Table 2.2 on the following page lists some of the operations provided by PCTE

for managing activities.

33

PCTE Activity Operations
ACTIVITY_START

ACTIVITY_END

ACTIVITY_ABORT

LOCK_RESET_INTERNAL_\10DE

LOCK_SET_INTERNAL_MODE

LOCK_SET_OBJECT

Starts a new activity in the current

process

Ends the activity of the calling process,
committing any outstanding
modifications in the context of the

enclosing activities

Ends the current activity of the calling
process, discarding or committing any
outstanding modifications, in the context

of the enclosing activities.

Resets the internal mode of a lock to its

default value

Promotes the internal mode of a lock.

Establishes, or promotes, a lock with a

specified or default mode.

Table 2.2 Some ofthe PCTE Activity Operations

34

2.7 Implementations

The relevance or success of any standard depends to a large extent on the degree to
which it is accepted and conformed to by industry. In recent years it has become
evident that an open standard for integrating tools into SEEs is vital to the realisation

of the full potential of CASE. PCTE has emerged as the foremost specification in this

area.

The early use of PCTE has included the experimental demonstration and application of
the PCTE approach to environment building in major national and international
programs like the European Community's ESPRIT and, in the USA, the Department of
Defence's DARPA (Defence Advanced Research Projects Agency) STARS (Software
Technology for Adaptable Reliable Systems). The STARS programme was established
to demonstrate three integrated SEEs on three real applications, to evaluate the
benefits and using this evaluation, to increase software productivity, reliability and
quality by integrating process management and re-use technology in leading-edge
SEEs. STARS is based on industry standards (including POSIX, X Windows
System/Motif and ADA) and an open environment architecture. That two of the three
prime contractors (Boeing, IBM and Paramax) chose PCTE as their basis for their

SEEs demonstrates the strength of PCTE as a technology standard.

NATO's Nations Special Working Group on ADA programming Support
Environments used PCTE as the basis for their Portable Common Interface Set
(PCIS). See Section 4.6.1. PCTE is a core component of the DoD I-CASE
(Integrated Computer-Aided Software Engineering). Such was the interest in PCTE
that in 1992 a US government/industry forum, the North American PCTE Initiative
(NAPI), was established. NAPI was responsible for recommendations on extending
the standard, producing a publicly available implementation of PCTE, establishing a
PCTE validation capability for users by vendors and support for the acquisition of
PCTE implementations and PCTE-based products in the USA. Early in 1994, the
responsibilities of NAPI were taken over by the Object Management Group's PCTE
S1G (Special Interest Group) [8. It is already incorporated into the standards used by

many organisations.

35

The interest in PCTE is not limited to the military. It has also been used as the
foundation of commercially available SEEs from different vendors e.g. Emeraude
(TRANSTAR (previously GIE Emeraude), France) Portos (EDS Scicon), PCTE/6000
(IBM), HPCTE (University of Siegen in Germany), Heuristix PCTE (Heuristix India),
Verilog PCTE (Verilog France). Verilog PCTE, for instance, is a UNIX
implementation built on the Oracle distributed RDBMS. Emeraude provides a UNIX
and aWINDOWS implementation of PCTE. EAST (SFGL, France) and Enterprise Il
(Syseca, France) are integrated CASE environments which use the Emeraude
implementation of PCTE as their foundation. In June 1994 Groupe Bull and Syseca
(Thomson-CSFs ISV affiliate) announced a major consolidation of their application
development framework business with the launching of a software (CASE) joint

venture called TRANSTAR. TRANSTAR rely heavily upon the technology developed
by GIE Emeraude in France[7].

The major multinational platform vendors have announced their commitment to PCTE
in one way or another e.g. there has been work done at Digital to integrate PCTE into
Digital's existing COHESIONworX framework [10] for CASE and to achieve a high
level of interoperability with existing non-PCTE tools already integrated into the
framework [11]. In April 1994 ICL agreed to distribute the Emeraude PCTE
products; for example to vendors of commercial software tools, in order to assist
porting to PCTE and to academic users for teaching the principles of open software
engineering [8. In January 1994 VISTA technologies announced support for
ToolTalk in its product, PCTE Waorkbench; with ToolTalk extension, PCTE

Workbench combines the potential of the two open standards: ToolTalk and PCTE

[8]

2.8 Evaluation

PCTE has been very successful as a standard for a Public Tool Interface for integrated
SEEs, this being evident from the diversity of platforms for which PCTE
implementations are available, and the international support shown by its acceptance as
an 1SO standard in July 1994. This chapter has explored the concepts behind PCTE,
demonstrating its strength as a data integration technology (with very limited control

integration) suitable for portable CASE tools, while noting that, although it has a

36

strong object oriented flavour, itis not object oriented in the truest since it lacks a vital
object oriented mechanism which would allow operations or methods to be associated
with objects. It is with a view to enhancing its object orientation and the control

integration of a PCTE environment that we wish to integrate it with OMG’s Object

Management Architecture (OMA).

In Chapter 3 we tum our attention to the OMA and the role of the Common Object
Request Broker Architecture (CORBA) within this architecture, to explore the ideas
behind OMA before further discussion on an integration between the two

specifications.

37

CHAPTER 3 OMG CORBA

This chapter introduces the concepts behind the Object Management Group’s
specifications for the Object Management Architecture (OMA), and discusses why these
specifications will have an important role to play in the evolution of distributed software
technology. Section 3.2 outlines the goals which OMG hope to achieve. Section 3.3
gives an overall view of OMA and describes in detail the role of the Common Object
Request Broker Architecture within OMA. The CORBA specification is the part of OMA
in which we are most interested for the purpose of integration with PCTE. As a result it
will be the main focus of the following sections. The structure of CORBA is outlined in
Section 3.4, while the role of CORBA’s Interface Definition Language is described in
Section 3.5. The success of any standard depends on its industrial relevance and the
support it receives from industry, that is the extent to which it is adopted. In view of this
Section 3.6 analyses the support for OMA within the industry by outlining the available

implementations of CORBA and discussing how it relates to other standards.

3.1 Distributed Computing

Strides in the advancement of technology, especially in telecommunications and
workstation designs, and the advent of low priced personal computers are rapidly altering
the traditional face of the computer industry. The advances involve new technologies,
both in the way data is transmitted and in the way that communications are integrated with
data processing capability. Distribution can be viewed as the computing paradigm of the
future. This current drive towards distributed computing is prompted by the very real
corporate demand that, if information is distributed throughout the organisation, then

access to that information should also be distributed. The challenge for many

organisation today lies in the evolution from a centralised data processing architecture

(reliance on mainframes) to a distributed architecture.

As well as providing an information processing environment better matched to the
information needs of business, distributed systems are able to offer other advantages,
mainly the potential for “openness” [39], i.e. reducing the restrictiveness of being tied to
products of a particular manufacturer. However the price of this openness, and the
dispersing of processing away from the mainframe and into the personal computer and
workstation, is increased complexity. Also, since distributed systems typically evolve
through the federation of heterogeneous independent systems, this determines a need for
integration. Thus the primary evolution costs from centralised to distributed systems, as

already stated, are not those of hardware, but are related to the quality, cost and lack of

interoperability of software.

3.2 Object Management Group

The members of the Object Management Group (OMG), a consortium setting vendor-
independent specifications for the software industry, have a shared goal of developing and
using integrated software systems. The agreed criterion for a methodology for building
such systems include the support of modular software production; it must encourage
reuse of code; allow useful integration across lines of developers, operating systems and
hardware; and enhance the long-range maintenance of that code. Members of OMG

believe that the object-oriented approach to software construction best matches this

criteria.

39

A more indirect end-user benefit of object-oriented applications, provided that they co-
operate according to some standard, is that independently developed general purpose

applications can be combined in a user-specific way.

OMG was founded in 1989 to "realise interoperability between independently developed
applications across heterogeneous networks of computers, to help reduce complexity,
lower costs, and hasten the introduction of new software applications. OMG plans to
accomplish this through the introduction of an architectural framework with supporting
detailed interface specifications. These specifications will drive the industry towards

interoperable, reusable, portable software components based on standard object-oriented

interfaces™ [29].

OMG has defined an infrastructure for distributed computing called the Object
Management Architecture (OMA). While industry has worked hard to provide a
distributed model that allows users to be able to select their applications, networks,
systems and services, no such model has yet matured [34], The diversity of applications

and platforms are making such systems increasingly difficult and complex.

The most popular approach to distributed computing has been that of the client-server.
Client-server computing is a concept, about "breaking down large-scale system complexity
into small, manageable parts; the problem is making the parts communicate with a single
system view or interface" [34]. Distribution enabling technologies are often referred to as
middleware, since they reside between the operating system and applications. Remote
Procedure Calls, RPCs, are one such class of middleware. They function similar to normal
programming calls, completing a single processing chore in a series of steps undertaken by
a software program. RPCs separate the calling program and the called procedure into two

processes. The calling program is the client; the called process is the server. To

40

accomplish this, you need to make the call in one process, communicate the input
parameters to another process and get the procedure to execute in the remote process.
RPCs have been around for quite a while, but the desire to build distributed, client/server
applications in a networking environment has renewed the interest in them (RPCs).
However the mass appeal of RPCs has been limited somewhat, due to the fact that they
address only the communications aspect of distributed applications [58]. To address this
limitation the DCE Remote Procedure Call service, which is the communications layer of
the Open Software Foundation (OSF) Distributed Computing Environment (DCE), is
designed to provide an integrated solution to distributed applications [58]. The OMA also
addresses the whole area of distributed applications; however OMA/CORBA (the
communications component of the Object Management Architecture) goes well beyond

the RPC technique because it directly supports object oriented software [33].

3.3 Object ManagementArchitecture

OMG has defined common terms, interfaces and a framework for distributed computing in
the Object Management Architecture (OMA). In this framework, objects interact
through an Object Request Broker (ORB). The OM A specifies the basic mechanisms that
compliant applications must support to use an ORB, including how objects make requests

and get responses, basic services provided to all objects, and facilities that are useful in

many applications.

The Object Management Architecture has a broad notion of what constitutes an object
Objects are literally any element in the distributed system. An object can be an
application, process, class or instance of a class. The only requirement is that the object

supports an OMA-compliant interface. An object is referred to as an object

41

implementation in the OMA. The OMA specifies how these objects interact via an

ORB [32],

In OMA, client objects make a request of an object implementation. A request is the
invocation of an operation. The ORB then handles the request and any response to the
client object. This can include dispatch and delivery of the request, synchronisation and
delivery of any response or exception. Thus, the OMA is similar to the client/server
model. The key difference is that the “Client” and “object implementation” (server)
describe the roles that each object can exhibit However a given object can take on either

role for a particular interaction. The OMA is therefore more of a peer-to peer model [32].

Figure 3.1 OMA Reference Model (Seepage 55 0f[29])

42

Figure 3.1 shows the structure of the Object Management Architecture. The solid boxes
represent software with application programming interfaces, while the dashed boxes

represent categories of objects with object interfaces.

The Object Request Broker (ORB) enables objects to transparently make and receive

requests and responses in a distributed environment, i.e. it is the communications heart of

the OM A standard.

Object Services (0OS) is a collection of services and object interfaces that provide basic

functions for realising and maintaining objects (see Section 3.3.1).

Common Facilities (CF) is a collection of classes and objects that provide general

purpose capabilities that are useful in many applications.

Application Objects (AO) are objects specific to particular end-user applications.

In general terms, the Application Objects and Common Facilities have an application
orientation, while the Object Request Broker and Object Services are concerned more
with the "system" or infrastructure aspects of distributed object management. Common
facilities may, however, provide higher-level services- such as transactions and versioning-

that make use of primitives provided within Object Services.

The three categories (OS, CF and AQ) reflect a partitioning in terms of functionality,
from those basic to most applications (or common enough to broad classes of applications
to standardise) to those too application-specific or too standardised at this time. Common

Facilities exemplifies a key concept that the OMA promotes: class reusability. Thus, the

43

Object Request Broker, Object Services and Common Facilities will be the focus of OMG

standardisation efforts [29].

In general, Object Services. Common Facilities and Application Objects all
intercommunicate using the Object Request Broker. An ORB provides "the basic
mechanism for transparently making requests to - and receiving responses from - objects
located locally or remotely without the client needing to be aware of the mechanisms used
to communicate with, activate or store the objects™ [5]. As such it forms the basis for
building applications composed of distributed objects, and supporting interoperability
between applications in homogeneous and heterogeneous environments. The interfaces to
objects that communicate via the ORB are defined using the Interface Definition Language
(IDL) included in the CORBA specification (See Section 3.5). Adherence to the Object
Management Architecture will speed the design and delivery of robust applications that fit
into an object-oriented environment. Applications can be viewed as collections of building

blocks linked together atrun time to complete various tasks [37].

3.3.1 Object Services

This section outlines the Object Services (OS) component of OMA. OS provide basic
operations for the logical modelling and physical storage of objects [29], and as such it is
of interest in this thesis, because it is to provide at least part of such functionality that we
would wish to use the PCTE’s OMS, in an integration between PCTE and the OMA.
Object Services defines a set of intrinsic or root operations that all classes should
implement or inherit Objects do not have to use the implementation of basic operations
provided by OS nor do objects have to provide all basic operations. For example, an

object may provide its own data storage or an object that models a process may not

44

provide transactions. The operations provided by Object Services are made available
through the ORB; however, they may also be made available through other interfaces.
For example there may be additional interfaces that comply with non-OMG standards or

that are optimised for higher performance. The operations that Object Services can

provide include:

+ Class Management. The ability to create, modify, delete, copy, distribute,
describe and control the definitions of classes, the interfaces to classes, and the
relationships between class definitions.

« Instance Management. The ability to create, modify, delete, copy, move, invoke
and control objects and the relationships between objects.

- Storage. The provision of permanent or transient storage for large and small objects,
including their state and methods.

« Integrity. The ability to ensure the consistency and integrity of object state both
within single objects (e.g. through locks) and among objects (e.g. through
transactions).

« Security. The ability to provide (define and enforce) access constraints at an
appropriate level of granularity on objects and their components.

e Query. The ability to select objects or classes from implicitly or explicitly defined
collections based on a specified predicate.

« Versions. The ability to store, correlate and manage variants of objects

The types of sub-components that could be used to implement Object Services include

object oriented database management systems, or perhaps PCTE’s OMS.

It is important to note that applications need only provide or use OMA-compliant
interfaces (An OMA-compliant application consists of a set of inter-working classes and

instances that interact via the ORB) to participate in the Object Management

45

Architecture. They need not themselves be constructed using the object-oriented
paradigm. This is very useful when trying to integrate OMA with PCTE or when
migrating from traditional systems to Object Orientation. Basically it means that part of
your system may be implemented in a procedural language, but by “encapsulating” it in an
IDL interface, it may be accessed by other OMA objects. This also applies to the
provision of Object Services. For example, existing relational or object-oriented database

management systems could be used to provide some or all of the Object Services.

The OMA assumes that underlying services provided by a platform's operating system and
lower-level basic services, such as networking computing facilities, are available and
usable by OMA implementations. Specifically, the Object Management Architecture does
not address user interface support. The interfaces between applications and windowing
systems or other display support are the subjects of standardisation efforts outside the
OMG. Eventually, Common Facilities may provide standard user interface classes. In

addition, the Reference Model does not deal explicitly with the choice of possible binding

mechanisms [29],

34 CORBA

The Common Object Request Broker Architecture (CORBA) is the name given to the
specification of the ORB component, it is designed "to allow integration of a wide variety
of object systems” [30]. CORBA is a general solution to application integration, moving
away from the conventional point-to-point solution. Generality of the architecture is

provided by a high-level declarative language to describe objects, IDL (see Section 3.5).

46

The components of CORBA are clients, object implementations, the ORB and object
adapters. A client is an entity that wishes to perform an operation on the object; the
interface that the client can see is independent of where the object is located and what
programming language it is implemented in. An object implementation is the code and
data that actually implements the object, i.e. an object in itself. The ORB is responsible
for all of the mechanisms required to find the object implementation for the request, to
prepare the object implementation to receive the request, and to communicate the data
making up the request. An object adapter is the primary means for an object
implementation to access ORB services. Sections 3.4.1 - 3.4.4 describes these components

briefly, see [30] for greater detail.

3.4.1 Structure of an Object Request Broker

ORB-dependent interface Up-call
. . interface
There may be multiple object adapters
Normal

Interface identical for all ORB implementations .
call interface

There are stubs and skeletons tor each object type

figure 3.2 The Structure of ORB Interfaces [30]

4

Figure 3.2 shows the structure of an individual Object Request Broker (ORB). The client
performs a request by having access to an Object Reference for an object and knowing the
type of the object and the desired operation to be performed. Operations that an object
can provide are advertised to clients through the interface definition of an object.
Definitions of the interfaces to objects can be defined in two ways, statically using the
Interface Definition Language, IDL (see Section 3.5), or dynamically accessed by adding
interfaces to the Interface Repository. To make a request, the client can use the Dynamic
Invocation Interface or an IDL stub. When using the Dynamic Invocation Interface to
make a request the same interface is used regardless of the interface of the target object.
If an IDL stub is being used to make a request then a specific stub depending on the

interface of the target object must be used. The receiver of the message is indifferent to

which of these two methods is used.

The ORB locates the appropriate implementation code, transmits parameters and transfers
control to the Object Implementation code via an IDL skeleton. The ORB may provide
some services to the object implementation (through the object adapter during
performance of the request) and directly to the client [30]. The object implementation
receives a request as an up-call through the IDL generated skeleton. The ORB’s

functionality frees programmers from the details required by other application distribution

methods.

48

3.4.2 Client

A client of an object has an object reference that refers to the object, and invokes
operations on the object. A client is restricted to knowledge of the logical structure of the
object provided by its interface and experiences the behaviour of the object through
invocations. A clientis a program or process initiating requests on an object. However it
is important to remember that something is a client relative to a particular object, i.e. the
implementation of one object may be the client of other objects. Clients have no
knowledge of the implementation of the object, which object adapter is used by the

implementation, or which ORB is used to access it.

Clients access object-type-specific stubs as library routines in their program. The client
thus sees routines callable in the normal way in its programming language. All
implementations will provide a language specific data type to use to refer to objects, often
an opaque pointer. The client then passes the object reference to the stub routines to

initiate an invocation. The stubs have access to the object reference representation and

interact with the ORB to perform the invocation [30].

3.4.3 Object Implementations

An Object Implementation provides the actual state and behaviour of an object; figure 3.3

shows the structure of an object implementation.

49

An object implementation defines the following :

. methods for operations defined in the DDL interface; it also implements these
methods.

. procedures for object activation and deactivation (usually).

. controls access to the object

. deals with object state persistence by using object or non-object facilities.

3.4.4 Object Adapter

Object Adapters are "the primary way that object implementations access services
provided by the ORB"™ [30] and are built on a private ORB-dependent interface. Object

Adapters provide the following functionality ;

50

» generation and interpretation of object references

e method invocation

e security of interactions

e oObject and implementation activation and deactivation

* mapping object references to the corresponding object implementations.

» registration of implementations

It is difficult for the ORB to provide a single interface suitable for all objects due to the
large range of object properties (e.g. granularity, lifetimes, policies, implementation styles
etc.). Through Object Adapters the ORB targets groups of object implementations that

have similar requirements with interfaces tailored to them.

There are a variety of possible object adapters. However most object adapters are
designed to cover a wide range of object implementations. For example the Basic Object
Adapter (BOA), can be used for most ORB objects with conventional implementations.,
or the Object-Oriented Database Adapter(OODB) uses a connection to an object-oriented
database to provided access to the objects stored in it. Since the OODB provides methods

and persistent storage, objects may be registered implicitly and no state is required by the

Object Adapter [30].

3.5 Interface Definition Language

IDL (the Interface Definition Language) is the language "used to describe the interfaces
that client objects call and object implementations provide" [30]. The IDL, Interface

Definition Language, defines the types of objects by specifying their interfaces. An

51

interface consists of named operations and the parameters to those operations. IDL is the
means by which a particular object implementation tells its potential clients what
operations are available and how they should be invoked. Clients are not written in IDL,
which is a purely descriptive language, but in languages for which mappings from IDL
concepts have been defined. The mapping of an IDL concept to a client language will
depend on the facilities available in the client language [30]. From the IDL definitions, it

is possible to map CORBA objects into particular programming languages or object

systems.

IDL obeys the same lexical rules as C++, its grammar being a subset of ANSI C++ with
additional constructs to support the operation invocation mechanism. IDL is a declarative
language; it does not include any algorithmic structures or variables. The syntax for IDL
is described in Appendix A of this thesis [30]. IDL Bindings already exist for C, C++ and
ADA. An IDL specification consists of one or more type, constant, exception, interface
(see Sections 3.5.1 - 3.5.5) or module definitions; examples in the Sections 3.5.1 - 3.5.5
illustrate particular aspects of DDL that will be referred to later in this thesis (Chapter 4).
The module construct is used to scope IDL identifiers. It consists of the module keyword

and one or more type, constant, exception, interface or other module declarations.

3.5.1 Interface Definition

An interface can contain one or more of the following elements: constant, type, exception,
attribute or operation declarations (see following sections). An interface definition
provides the basic framework for describing the objects manipulated by the ORB; it is the
means by which a particular object implementation tells potential clients what operations

are available and how they can be invoked. Therefore the constant, type, exception, and

52

attribute declarations contained with an interface specify the constants, types, exception
structures and attributes exported by the interface. For example in the definition of the env
interface, (see below), the interface specifies a constant integer called export which has the

value of PROTECTED, a previously defined constant (defined using the pre-processor

#DEFINE).

Operation declarations specify the operations that the interface exports (or offers).
Operations declarations only take place within the context of an interface definition, and
are explained in greater detail in Section 3.5.2. IDL interfaces have an optional
inheritance mechanism whereby interfaces can be derived from other previously defined

interfaces. In the following example the interface env inherits from a previously defined

interface pact__env:

interface env :pactjenv {

const short int export = PROTECTED ;
const shortint usage = NAVIGATE ;

An interface which is derived from another interface may refer to elements of the base
interface as if they were its own elements, as long as references to base interfaces are not
ambiguous. A derived interface may also redefine any of the type, constant, operation,

attribute and exception names which have been inherited from its base interfaces [30].

53

3.5.2 Operation Definition

Operation declarations in IDL are similar to C function declarations. They describe the

services which an object implementation can provide through its interface to potential

clients. The following section explains the semantics behind the syntax of an IDL

operation definition, see Appendix A for the syntax of IDL.

An operation declaration consists of:

An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked.

The type of the operation's return result; the type may be any type which can be
defined in IDL; operations which don't return a type must specify the void type.

An identifier which names the operation in the scope of the interface in which it is
defined.

A parameter list which specifies zero or more parameter declarations for an operation.
A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which the
parameter is to be passed, these being in, out, inout which mean the parameter is
passed from client to server, from the server to the client, and in both directions
respectively.

An optional raises expression which indicates which exceptions may be realised as a

result of an invocation of this operation [30].

Take for example the interface compiler shown below: it includes the operation

declaration for compile, which advertises a compile operation available from the compiler

object to its potential clients: the object implementation for the compiler object will

provide an implementation for this operation. The operation declared within this interface

54

is to have two parameters dﬁlﬂﬂand FH&H both are strings to be passed from the

client to the server (notice the "in string”), specifying the object to be

compiled and FHa]Sspecifying the compiler parameters.

interface MH{
readonly attribute G:D\FHLERFE_UG’IGS

void @mmtring d.ﬁlrmm string LHH]S), h

3.5.3 Attribute Definition

An attribute declaration within an interface is logically equivalent to declaring a pair of
accessor functions, one to retrieve the value of the attribute and one to set the value of the
attribute. The optional readonly keyword indicates there is only one accessor function, i.e.

the retrieve value function. Take for example the attribute mUSWhich is declared in the

mhinterface in section 3.5.2; errors is declared here as a readonly attribute of the
enumerated type MEMWS implying that the implementation of this

interface will require a function of the same name as the attribute(i.e. m which will

return the value of this attribute EII’GS see Appendix D for the implementation code of

the compiler interface.

55

3.5.4 Enum & Type Declaration

IDL provides constructs for naming data types, i.e. C-like typedef declarations that
associate an identifier with a type. The basic types supported by IDL are float, double,

long, short, unsigned long, unsigned short, char, boolean, octet and any.

Enumerated types consist of ordered lists of identifiers, the identifier following the enum
keyword defining a new legal type, COMPILER_RESULT in the example shown below.

Enumerated types may also be named using a typedef declaration,

enum COMPILER_RESULT { COMPILERJAILED,
COMPILED]jOK,
COMPILED__WITH_ERRORS,
COMPILER_NOT_TRIED };

Refer to the example of the compiler interface in Section 3.5.2 to see how such an

enumerated type may be used.

3.5.5 Constant Definition

IDL provides a Constant Definition for associating a constant with an identifier. The
constant can be any of the following types: integer, char, floating point, boolean, string or

scoped name [30]. An example of this is shown in the interface env example in Section

3.5.1.

56

3.5.6 Exception Declaration

Exception declarations permit the declaration of struct-like data structures which may be
returned to indicate that an exceptional condition has occurred during the performance of
a request, basically a method of enror handling. Each exception is characterised by its IDL
identifier, an exception type identifier and the type of the associated return value [30]. If
an exception is returned as the outcome to a request then the value of the exception
identifier is accessible to the programmer for determining which particular exception was
raised. If no members are specified, no additional information is accessible when an
exception is raised [30]. In addition to a standard set of exceptions that may be signalled

by the ORB, operation specific exceptions can be specified using the raises expression.

3.6 Implementations & Industrial Relevance

The OMG does not unilaterally develop standards; its members agree to adopt
specifications and provide compliant products. The reliance on commercial technology
and the fact itis completely "open" (any company can join the OMG or submit technology
in the specification process) ensures the relevance of the standard and the capability to

quickly move the industry to acommon architecture for distributed computing [32].

Most of the major vendors now support CORBA or are CORBA-compliant,
demonstrating CORBA's growing strength in the market place- e.g. SunSoft provide a
CORBA implementation called Distributed Objects Everywhere (DOE) which is available
fully integrated for UNIX and Solaris 2.0. Hewlett Packard have developed their own

native CORBA implementation called ORB PLUS; their Distributed Smalltalk is also

57

CORBA compliant; both are available on UNIX platforms. AT&T’s Co-operative
Frameworks is a CORBA compliant ORB with some object services. DEC have
developed a CORBA implementation called ObjectBroker (formerly called ACAS);
ObjectBroker is available on MacOS, Windows, NT, UNIX and VMS platforms. An Irish
company called IONA Technology provided the first implementation of the CORBA
standard called ORBIX which is available for most major platforms, including Sun, HP
and Windows NT. This variety of implementations endorses the CORBA specification’s
place within the industry. The relationship between the OMA and other standards is an
important consideration for end users. The Object Management Group works with other

standard groups through common members and a liaison committee [31], including the

PCTE SIG (see section 1.2).

Another important consideration, when evaluating the place of a technology within the
industry, is to look at the strength of vying technologies. Until recently Microsoft had
been pushing OLE as the major competitor to CORBA. OLE (Object Linking and
Embedding) is an application integration framework that supports compound documents
and sharing of objects between applications. Distributed OLE provides these capabilities
across a network. However both OLE and Distributed OLE are still only available for PCs
(running Microsoft Windows) and Window’s Workgroups[36]. OLE and Distributed
OLE are based on the Component Object Model (COM) which has both significant
similarities and differences to the OMG Object Model. The most significant difference is
that COM provides for application integration through the definition of a binary format for
an object interface. Applications can interoperate as long as the objects adhere to this
format. In contrast, the OMA uses IDL as an intermediate language to describe the
interfaces that objects support; applications are integrated through the use of standard
interfaces and the ORB, and no restrictions are placed on implementation as is the case
with COM. Other differences include the fact that COM does not support inheritance

between object interfaces, and COM supports the notion of a guaranteed unique object

58

identifier (Guaranteed Unique Identification (GUID)). This assumption differs from the

OMG model where objects can have multiple object identifiers (O1Ds) [32].

An ObjectWorld conference opinion poll in 1994 [31] found CORBA to be the more
favoured model. These factors, and an industry demand for CORBA-compliant
applications, have precipitated a move towards joint interoperability of COM and
CORBA. This will be addressed in the next version of the CORBA specification (CORBA
2.0). OLE Interoperability will take the form of an OLE/CORBA object adapter which

will allow for Object references that are intrinsic to COM to be resolved and allow for

activation and execution of a CORBA object [35].

59

3.7 Conclusion

In this chapter we have seen the role of CORBA in OMA, which was designed to ease the
development of integrated software systems, and in particular the importance of IDL
within the CORBA structure in order to achieve this integration. Independently developed
applications which adhere to the OMA specification can be combined in user specific

ways. This is the beauty of OMA, itreduces the complexity of distributed systems.

The fact that OMG does not unilaterally develop standards (rather its members agree to
adopt specifications and provide compliant products), as well as its reliance on commercial
technology and the fact that any company can join the group or submit technology to the
specification process ensures, in my opinion, the relevance of the OMA specifications.
The number of CORBA implementations and compliant products readily available on the

market demonstrates the endorsement of the CORBA specification by the computer

industry.

Now that we have looked in detail at both the PCTE and Object Management
Architecture/CORBA specifications, we will examine the relationship between them in the
following chapter, as well as how they may be integrated and what the benefits of their

short term integration would be.

CHAPTER 4 INTEGRATING PCTE AND CORBA

This chapter outlines the different approaches to the short term integration of PCTE and
OMG CORBA taken during the research, and discusses why such an integration was
deemed attractive. As previously stated in Chapter 1 work on the integration of PCTE
and OMG CORBA into a single standard is already in progress. This convergence of
PCTE and CORBA may take a considerable amount of time. Meanwhile both
specifications could be used together to their mutual benefit. Substantial benefits can be
gained by integrating the current specifications so that they can be used together
immediately. The purpose of the integration strategies discussed in this chapter is to
provide a viable short term approach to the integration of PCTE and CORBA, without

altering either of the existing standards, prior to their convergence.

We begin by looking at the issues which make such an integration desirable. The
relationship between PCTE and OMG's CORBA is a potentially complementary one[l].
Section 4.1 examines the relationship between PCTE and OMA (of which CORBA is a
component), emphasising the areas in which they are potentially complementary, and
examines how these may be best harnessed to the advantage of each, without altering

either standard.

Given the complementary nature of the relationship between the two specifications, the
objectives for their integration are discussed in Section 4.2. The remainder of this chapter
contains an outline of the two different approaches taken during this research to finding a
short term solution to the convergence of PCTE and CORBA. Sections 4.3 and 4.4
introduce the language mapping of DDL to IDL (and vice versa) as an integration

strategy, which was the favoured initial approach to integration, but was deemed

61

unfeasible by research. This language mapping was the favoured approach because its
success would have ensured a direct translation from CORBA objects to PCTE objects.
Even though this thesis proves this approach unfeasible, we include it for the valuable
lesson of why such a mapping is unfeasible and its implications for the future convergence
of PCTE and OMA/CORBA. The alternate integration strategy, the definition of IDL
interfaces for PCTE tools, which demonstrates the considerable benefits of an interim
integration between CORBA and PCTE, is introduced in Section 4.5 and discussed in

greater detail in Chapter 6

4.1 Relationship of PCTE and OMA

This section reviews the information provided in Chapters 2 and 3, which is of particular
relevance to the compatibility of PCTE and OMA, in particular CORBA. It contains a
description of the features of each specification which may be used to complement each
other. The relationship between PCTE and OMA is discussed here as opposed to the
relationship between PCTE and CORBA, partly to give the more global picture, and partly
because the benefits of integrating PCTE and CORBA come from the fact that CORBA is
a component of OMA (See Section 3.3). Therefore what is said here of OMA applies

equally to CORBA.

In [1] the OMG PCTE SIG describe a number of possible relationships which may exist
between OMA and PCTE. The two specifications could be used together in a coexisting,
layered, or complementary manner. Since the interest of this thesis rests in their short
term integration, the emphasis in the remainder of this section will be placed on the

complementary nature of their relationship. Sections 4.1.1 and 4.1.2 outline the primary

features of both specifications, Section 4.1.3 goes on to discuss how these features may be

used for their complementary integration.

4.1.1 Primary Features and Strengths of PCTE

The following points summarise the primary features and particular strengths of the

Portable Common Tool Environment (PCTE) specification.

. Data integration for CASE environments in which tools (i.e. programs) create and
access shared data objects (repository).

. An Object Management System (OMS) providing transparent access to data

objects in a distributed standardised repository running over heterogeneous

platforms.
. Facilities for transparent process distribution (process modelled as objects).
. APIs for object and repository management functions.
. Supporting APIs for tool portability across operating systems [1].

Thus PCTE has a strong sense of data integration provided by its data modelling
mechanisms (data objects, links and attributes) and its Data Definition Language (DDL)
for schemas, see Section 2.4. PCTE provides multiple views of the object base using
dynamic working sets and decentralised distributed Schema Definition Sets (SDSs), see
Section 2.3. Its security model prevents unauthorised data access. PCTE provides a
nested transaction model, a mechanism for ensuring consistent data, as well as enforcing
integrity constraints. PCTE also provides a concurrency control model (locks) and

versioning facilities.

4.1.2 Primary Features and Strengths of OMA

The following points summarise the primary features and particular strengths of the Object
Management Architecture (OMA) specifications, of which the CORBA specification is a
component:

* Horizontal enabling technology with an extensible architecture supporting applications
that are collections of interoperating, co-operating distributed objects (data and
methods) [].].

« An Object Request Broker (ORB) "provides interoperability between applications on
different machines in heterogeneous distributed environments and seamlessly
interconnects multiple object systems” [a.

* A set of Object Services - basic services for creating and maintaining objects, this
being the framework on which application interoperability is based.

« A set of Common Facilities - this is a set of general purpose objects and classes that

may be useful in many applications

Thus the OMA specification supports full object orientation, operations on objects, i.e.
methods as well as a data interface to object "contents". It provides support for fine grain
objects, i.e. high-speed access plus low storage overhead. The overall performance of
OMA is high because of the following features: persistent object references, no built in
integrity constraints, fine grain execution management and local object optimisation.
OMA provides multiple object adapters which are specialised "drivers" for different

flavours of object implementations and object systems.

64

OMA also provides object services for distributed application portability and
interoperability. Common functionality in different applications (such as storage and
retrieval of objects, mailing of objects, printing of objects) [2] is realised by OMA's
Common Facilities which provide general purpose capabilities which are useful in many

applications.

4.1.3 Complementary Standards

Having reviewed their individual strengths, let us now discuss the integration of PCTE
and OMA, in a global sense, and how this integration can be of benefit to both
specifications. As we have seen in the previous sections there is overlap between PCTE
and OMA; the potential exists for their combined differing approaches to be

complementary in the following areas:

While PCTE, through its strong notion of data integration, does support the notion of
objects, it is not object oriented in the true sense, in that PCTE objects are data objects,
i.e. they have state but do not have behaviour. This lack of true object orientation and the
lack of support for low storage overhead/high speed access to fine-grain objects could be
addressed by integrating PCTE technology with OMA-based products or in the long term

evolving PCTE to become OMA conformant (i.e. the role of the OMG PCTE SIG).

As stated earlier, PCTE components are integrated using mainly data integration. OMA
could be also be used to provide tighter integration of the environment, by providing

improved control integration.

65

PCTE was especially designed to meet the needs of CASE environments by providing rich
data modelling facilities. To address the specific needs of CASE environments, OMA
specifications could be extended or added so as to incorporate PCTE functionality such as
data modelling, enforced integrity constraints and support for configuration management.
Part of the OMA’s Object Services specification is that of the provision of a persistent
store for OMA objects. The PCTE object base could be used to provide such a persistent
store as required by, but not yet available for, OMA object implementations [1]. At the
moment the only OMA component which is fully specified and implemented is the
CORBA component; yet PCTE and the concepts behind it could be very useful in the
development of the Object Services component of the OMA. The nature of the data and
the (inter-data) relationships in a CASE environment is very complex. The PCTE OMS
incorporates a complex object model, semantic data model theories (see [18],[23]), as well
as making use of database system technology, in order to allow these complex
relationships to be modelled in an intuitive way. Therefore using the semantically rich data
modelling provided by PCTE’s OMS to implement at least part of the Object Services

component of OMA could be very valuable.

PCTE and OMA have a complementary relationship and so their convergence is an
attractive proposition already undertaken by the OMG PCTE SIG. This thesis is
concerned with the provision of an integration strategy for PCTE and OMA (in particular
CORBA) which can be used in the interim until their eventual convergence, and it proves

that such short term integration has many benefits to offer particularly to PCTE.

4.2 INTEGRATION STRATEGIES

The integration strategies discussed in this chapter indicate ways in which PCTE and
CORBA might be used together in a mutually beneficial way without any specification
changes, based on the information contained in section 4.1. What we hope to achieve by

this research is a viable short term integration of PCTE and CORBA which would from a

PCTE developer’s point of view :

* Use CORBA (IDL and object requests) to enhance control integration between PCTE
tool components. PCTE normally relies on data integration; therefore CORBA could
be used for stronger integration between PCTE tool components, also facilitating the
composition of PCTE tools.

e Tool components would be encased in IDL interfaces. The tools themselves would
continue to store and share data in the PCTE repository but, by having an IDL
interface, would be able to interact with the ORB and avail of all OMA services and
other OMA compliant systems.

e Use CORBA to associate behaviour with PCTE purely data objects in order to make

PCTE objects object oriented in the fullest sense.
From a CORBA objectimplementor’s point of view, the integration would hope that:

e PCTE could be used as a persistent service to store the state of objects. The PCTE
APl would be used directly in the object implementation’s code and would not be

visible outside of the object itself [l].

As stated earlier, one of the prerequisites of these integration strategies was that they were
to require no changes to the existing specifications. We acknowledge the effectiveness of

the data integration facilities provided by SDSs (using DDL) for Computer-Aided

67

Software Engineering tools in a PCTE repository, and wish to combine this with control
integration which can be provided by CORBA, in order to arrive at a more fully integrated

Software Engineering Environment.

In brief, we wish an integration strategy to arrive at an IDL interface definition for a
PCTE tool, allowing the tool to become in effect an object which can avail of the ORB
and other OMA Object Services. A strategy should allow the PCTE tool to behave as ifit
were a CORBA application which is able to interoperate with other CORBA applications
on different machines and seamlessly interconnect with multiple object systems. In turn,
we wish to avail of the rich data modelling underlying the PCTE OMS in order to allow

the PCTE repository to be used as a persistent store for CORBA objects.

Two approaches to developing an interim integration strategy were explored during the
course of this research. The first approach taken was that of a direct language mapping
of PCTE's Data Definition Language, DDL, to OMG CORBA's Interface Definition
Language, IDL (and vice versa). This language mapping approach to integration was the
most attractive proposition because if it had been successful a simple translation tool
would have automatically generated IDL definitions from PCTE definitions, and allowed a
direct translation from CORBA objects to PCTE objects. The mapping of DDL to IDL
was envisaged as an approach to allow PCTE tools to be "encased"” in an IDL interface, so
that they could be viewed as OMA/CORBA objects with access to the ORB and other
OMA facilities, making them truly object oriented, while also increasing the control
integration between them and facilitating the development of composite PCTE tools, see
figure 4.1. Section 4.3 describes briefly the mapping of DDL to IDL, while Chapter 5
describes in greater detail how DDL language constructs may be mapped to IDL language
constructs. Chapter 5 also contains a discussion of how this thesis proved such a direct

language mapping, given the current specifications of DDL and IDL, was not feasible for

the short term integration of PCTE and CORBA, and what future extensions are required

to DDL in order to make such a mapping a feasible integration strategy.

IDL and object requests for ccontrol integration by PCTE tools

Figure 4.1 Mapping DDL to IDL

The reverse language mapping, that of mapping the IDL to DDL was initially seen as an
approach to allow OMA objects to be defined and exist in the PCTE repository, in this
way using the PCTE repository as a persistent store for OMA objects, see figure 4.2.
However preliminary research found the mapping of IDL to DDL to be unfeasible for a
number of reasons including incompatible scoping rules and the fact that DDL contains no
notion of the concept of operations attached to objects(i.e. PCTE objects are not

compatible with the definition of the OMG Object Model outlined in [2], see Section 4.4).

69

Having demonstrated that a direct language mapping was not possible given the current
specifications of DDL and IDL, another route to integration was sought. The second
approach to integration explored was the definition of IDL interfaces for PCTE tools.
PCTE tools are stored as static contexts objects within the repository, a static context
being an object which contains the program code of a PCTE tool. A language mapping of
DDL to IDL, if successful, would have provided an automatic integration of PCTE and

CORBA, allowing a direct translation from DDL to IDL.

Figure 2 Mapping IDL to DDL

The definition of IDL interfaces for PCTE tools does not provide such an “automatic”

integration, being more of a methodology for integration. This approach provides a

70

beneficial integration for PCTE. By employing this approach PCTE objects become fully
object oriented; they can be viewed as CORBA objects by wrapping them in an IDL
interface, thus allowing them access to the ORB and other OMA facilities. The definition
of IDL interfaces for PCTE tools facilitates greater control integration between PCTE
tools and the development of composite PCTE tools. This second approach is outlined in
Section 4.5 and is described in greater detail in Chapter 6 The syntax of the DDL and
IDL language constructs described in these sections are given in Appendix A ([5]) and

Appendix B ([3]) respectively.

Now that we have discussed what we wish an interim integration strategy to achieve, we

now turn our attention to how these aims are to be achieved.

4.3 Mapping DDL to IDL

This section describes the concepts involved in mapping PCTE's DDL to CORBA's IDL.
The motivation for such a mapping has already been discussed in Section 4.1. As stated
earlier in Chapter 2, DDL is a formal notation for defining types, and is used to define the
types in the four standard PCTE SDSs (Schema Definition Sets). Typing is a prominent
characteristic of the PCTE data model, such that every instance in the PCTE repository
belongs to a defined type. It places restrictions on the properties of PCTE entities which
are created and managed in terms of their specific type. Typing is the fundamental
element which allows the data integration of tools. The PCTE data definition language,

DDL, is a formal notation for defining these types[4].

This mapping aimed to provide an equivalent IDL definition for a DDL definition of a

tool’s working schema (i.e. the tool’s view of the repository). DDL definitions are

71

composed of sequences of SDSs. In the mapping DDL to DDL developed, each tool was
to have its own IDL interface. Each SDS in the tool's DDL definition would be mapped
onto a separate interface which may then be inherited by the tool’s IDL interface and
therefore accessed by it. Thus the mapping places a great deal of importance on the
inheritance mechanism for interfaces in IDL. DDL objects, links and attributes would be
mapped to IDL interfaces. There is a number of reasons for this, one of which is to
facilitate the importation of types from one SDS to another, allowed by DDL. Since DDL
objects, links and attributes can all be imported into other SDSs and used within the SDS
possibly to be extended with other properties, i.e. type-in-SDS, therefore, by defining IDL
interfaces for DDL objects, links and attributes, these IDL interfaces can be inherited by

the IDL interface mapping of any other SDS which imports them.

Another reason for the definition of IDL interfaces for attribute declarations is to facilitate
the fact that DDL attributes can be declared and then applied to an object or a link.
Interfaces which were mapped from DDL attribute type declarations will be inherited by
the interfaces representing objects or links to which the attributes apply. Each SDS
mapped onto an IDL interface will inherit from the following interfaces: any interface
which is a mapping of a type importation required by the SDS or a mapping of an object,

link or attribute declaration (or extension, in the case of object and link) contained in the

SDS.

Chapter 5 describes the language mapping in greater detail, describing how the DDL
language constructs- for example, type importation declarations, object declaration, link
declarations- are mapped into IDL. It also explains why the mapping of DDL to DDL is
fundamentally flawed by the fact that, since IDL interface definitions define operations
which an object’s implementation will provide to its clients, and DDL models only data

with no concept of behaviour or operation, the IDL interface mapped from DDL are

12

meaningless. However, by extending DDL, a meaningful mapping would be possible,

Chapter 5 also contains a description of the necessary extensions to DDL.

44 MAPPING IDL TO DDL

As stated earlier, the language mapping of IDL to DDL was initially seen as an approach
to allow OMA objects to be defined and exist in the PCTE repository, thus using the
PCTE object base as a persistent store for OMA objects. This proved unfeasible for two
very important reasons. PCTE objects are not compatible with the OMG Object Model,
outlined in [2], mainly because there is no mechanism for associating PCTE objects with
tools. Another reason for the unfeasibility of this approach is that IDL scoping rules are
incompatible with DDL scoping rules. IDL syntax allows for nested declarations of

interfaces. This characteristic is accomplished through the following rules taken from the

syntax given in [3]:

<definition> <type_dcl>
| <const_dcl>
I <except_dcl>
I <interface>

<module>

<module> ""module™ <identifier> "{"

<defmition>+ "}"

73

The rules shown above allow IDL modules and its interfaces to be nested within other
modules. In contrast, PCTE's SDSs are linear in nature[3], and therefore unable to model

the possibly nested IDL interfaces and modules.

This conflict in scoping rules makes a reverse mapping, the mapping of IDL to DDL,
impossible. Howeverin a mapping of DDL to IDL, this does not affect the mapping other
than the fact that the IDL nested scoping feature would not be utilised; linear PCTE SDSs

would be mapped onto IDL definitions, which are not nested.

Having briefly discussed the reasons why a language mapping approach to the integration
of PCTE and OMA cannot be successful until alterations have been made to the both
specifications (much of the work being done by the OMG PCTE SIG involves these very
alterations [12]), we see that an alternative approach to integration is necessary, since it
was a pre-requisite at the outset of this research to provide an interim integration which
will not necessitate changes to either specification, and so now we turn to the second

approach explored in this research, the definition of IDL interfaces for PCTE tools.

45 IDL Interfaces for PCTE Tools

This section outlines briefly the definition of IDL interfaces for PCTE tools as an
integration strategy. This strategy was explored after research had found that a mapping
of DDL to IDL would necessitate the altering of the PCTE standard, in particular DDL, in

order to make it feasible as an integration strategy.

14

To allow CORBA access to PCTE tools, they must have an IDL interface. This DDL
interface advertises the services its object implementation provides to potential clients (i.e.
CORBA objects which wish to avail of the services advertised). Therefore the object
implementation of an IDL interface advertising operations of PCTE tools must contain in
their object implementation some method of executing the PCTE tools within the object
base, see Figure 4.3. The method used in this research was to embed a PCTE shell script
(as opposed to a UNIX shell script) within the CORBA object implementation. The shell
script acts as a wrapper or buffer between the CORBA object implementation and the
PCTE tool. It also allows us to use the PCTE activity operations (See Section 2.6) as
provided by the PCTE API (Application Program Interface) to ensure that the object base
remains in a consistent state. Chapter 6describes the definition of IDL interfaces for

PCTE tools as an integration strategy in greater detail.

Figure 4.3 Defining IDL interfacesfor PCTE tools

75

This approach to the integration of PCTE and OMA is not a mutually beneficial
integration since it offers nothing to CORBA. The benefits of the integration are to PCTE
alone, since it does not allow the persistent storage of OMA objects in the PCTE
repository. However the benefits which this approach provides to PCTE makes such a
compromise acceptable, these benefits including increased control integration between the
tools in the PCTE repository, support for the full object orientation of PCTE objects (by
defining an IDL interface for a PCTE, the tool’s behaviour as well as its data can be
modelled), support for the composition of PCTE tools, and access to other OMA service
and other OMA compliant systems. Now that the approaches to integration taken during
research have been introduced, before we examine them in greater detail we will take a

look at some related works, and see where they fit in with this thesis.

4.6 Related Works

In order to evaluate where the research presented in this thesis fits in relation to other
research in the field, it is necessary to look at how it differs from other related works:
PCIS (Portable Common Interface Set), COHESIONworX/PCTE (Digital) and OOTIS

(IBM AIX-CASE). These are described in the following sections.

4.6.1 PCIS

PCIS was founded by the NATO Special Working Group on ADA Programming Support
Environments in 1991. The project’s goal was to identify a SEE framework based on

PCTE (see [1], [2]), Syseca’s Enterprise-11 environment [21] and other available

76

standards. The PCIS projectis introduced and specified in [45] and [46] respectively. As
stated previously PCIS is based on the PCTE model, its architecture being the same as a
PCTE one. Based on analysis and evaluation of IRAC’s Object Management System
requirements [48] and the NIST/ECMA Reference Model object management services
[21], PCIS is designed to enhance PCTE. Among the framework services areas that
would supplement PCTE, as identified by [16] and [47], are object oriented services, fine-
grained management of data, user-managed data, trigger services, life cycle process

services and tool integration and co-ordination [12]

In contrast to PCTE which supports medium and large grain data, PCIS also supports fine
grained data. PCIS provides a new definition language, PCIS Interface Definition
Language, (PIDL) in order to support fine granularity and further object orientation,
openness, integration and co-operation among tools [12]. These requirements of fine
granularity, openness, improved integration etc. demanded a framework that supports not
only the data sharing provided by PCTE but also behaviour sharing among tools [16].

PCIS fulfils these requirements.

PCTE’s inheritance and object identity facilities encouraged the PCIS project members to
use object oriented database answers to accomplish the behaviour sharing facilities which
are missing in PCTE. PIDL language is based on both PCTE’s Data Definition Language(
See Section 2.4) and the interface definition language defined by CORBA (see Section
3.5) [12]. It is this fact that PCIS is basically a hybrid of PCTE and CORBA as well as
other technologies that differentiates it from the research contained in this thesis, where

both specifications are used unaltered.

1

4.6.2 COHESIONworX/PCTE

This section describes work done at Digital in order to provide an implementation of
CORBA based on the PCTE standard, the objective of which was to enhance the usability
of PCTE through the addition of a high level object oriented interface [49]. This work
has provided a partial implementation of CORBA (only the dynamic interfaces), which is
based on the ECMA PCTE standard. The project relied purely on ECMA PCTE
facilities for OMS access, process start-up and interprocess communication; so this
implementation respects ECMA PCTE semantics of the dynamic context for child
processes, guaranteeing that CORBA servers conform to PCTE security and activity
semantics. This was made possible by using Digital’s implementation of CORBA, ACAS
[50] and exploiting the two tier architecture of ACAS: there is an upper layer that
implements the CORBA semantics and a lower layer that interacts with the OS and the
network. The lower layer was re-implemented using PCTE facilities and supporting the
upper layer for process execution, data access security, distribution and interprocess
communication. The CORBA specification does not place any restrictions on how it is to
be implemented and so, because the COHESIONworX/PCTE approach to integrating
PCTE and CORBA exploits a particular aspect of the ACAS implementation of CORBA,

we cannot assume that this approach would work for all CORBA implementations.

The CORBA implementation delegates the process activation and deactivation to PCTE
and all CORBA server objects are activated by means of PCTE primitives, thus respecting
the semantics of the dynamic context for child processes (e.g. activities and security) see
Section 2.5. The use of PCTE for process distribution supports application start-up
anywhere in a PCTE distributed environment. Communication between CORBA objects

relies exclusively on PCTE messages queues, as this ensures a transparent and secure

78

exchange of data between CORBA applications running in a distributed PCTE

environment.

Digital have also worked on a project to integrate PCTE into Digital’s existing
COHESIONworX Framework for CASE and to achieve a high level of interoperability
with existing non-PCTE tools already integrated into the framework [11].
COHESIONworX is an open framework that offers a distributed software development
environment based on: distributed control services, a graphical desktop environment, and
a set of integrated development tools [11]. The control integration aspect of this project
is based on the CORBA implementation using PCTE services. The introduction of
CORBA as one of the integration technologies of an SEE, such as COHESIONworX,
achieves two important results from the perspective of the tool integrator and framework
builder. It ensures semantic integrity among PCTE SDSs, and it allows the definition of
tool interfaces, so that they can make their services available to the rest of the

environment, while hiding the implementation details.

Work is currently in progress to engineer a full-compliant CORBA/PCTE implementation
based on the new Digital’s product ObjectBroker 2.5 that implements OMG’s ORB. This
version will also allow integration with Microsoft OLE 2 via the COM protocol [52], The
success of these projects have proved that the ECMA PCTE is indeed the right base on
which to build 0-0 extensions. Further research at Digital[51] confirms that PCTE and
CORBA set the stage for the addition of other services needed by the CASE framework
provider and tool integrator-for example ATIS (A Tool Integration Standard) version and
configuration management services- in order to achieve a robust and flexible framework

for CASE tool integration.

19

4.6.3 OOTIS Tool Integration Model

Object Oriented Tool Integration Services (OOTIS) Tool Integration Model is an
architecture for a CASE Tool Integration platform addressing both data and control
integration and covering the performance spectrum from coarse to fine grained
integration. It integrates an Object Oriented control sharing model with an extended
PCTE data sharing model [53]. OOTIS extends PCTE in two ways. It provides, first of

all, support for object oriented control integration and, secondly, support for fine-grained

objects.

OOTIS permits the definition of operations applicable to object types. These definitions
specify interfaces (signatures) only [54]. OOTIS also permits the definition of tools that
provide implementations of operations, and mappings that specify which implementations
are to be used in which circumstances. Programs can invoke operations on specific
objects in either of the two convenient ways specified by the OMG CORBA. A

dispatcher generated by OOTIS from the tool definitions will route each invocation to the

appropriate implementation(s).

The details of the tool definitions are such that they can be combined using composition
operators, allowing separately-written tools to be composed easily. The OOTIS control
integration support thus introduces CORBA-compliant object oriented method resolution
and tool composition into PCTE. OOTIS control integration is modelled by three SDSs.
One extends the pre-defined PCTE SDS, metasds, with interface definitions, consisting
of operation type definitions and associations of interfaces with object types. The other
two SDSs model tools, consisting of implementations and mappings. Therefore the

OOTIS approach to control integration also involves changes to the PCTE specification.

80

4.7 Evaluation

All of the related works described in the previous section had been undertaken before the
formation of the OMG PCTE SIG and the commitment to the convergence of PCTE and
OMA. The PCIS and OOTIS projects both require alterations to the PCTE specification,
while the success of the COHESIONworX/PCTE project highlights the benefits of
utilising the complementary nature of the relationship between CORBA and PCTE.
However, as pointed out earlier, it relies heavily on a particular implementation of
CORBA. We are interested in an integration strategy for CORBA which is independent of

implementation.

The OMG PCTE SIG is committed to the convergence of PCTE into the OMA/CORBA
specifications. The purpose of this thesis was to find an integration strategy which can be
used in the interim to support this convergence, since both specifications have much to
offer each other. For instance, part of OMA, the Object Services specification, which is
not yet complete, is the specification of a persistent store for OMA objects; the PCTE
repository could be used as such a store. The PCTE OMS is suitable for such a purpose
because the focus of the PCTE specification is on data integration and as such it provides
an elegant and powerful data modelling system. Even though specifically designed for
CASE environments, the complexity of the relationships in such environments means that
the PCTE OMS has evolved to a position where it can model complex data and
relationships for other environments. Likewise, CORBA could be used, as described
earlier, to enhance PCTE to full object orientation, increasing the control integration
between PCTE tools, and to facilitate tool composition. For these reasons a language
mapping between PCTE’s DDL and CORBA’s IDL appeared very attractive, as it would

have allowed the direct mapping of PCTE objects to OMA/CORBA objects. However,

81

the research in this thesis shows that such a language mapping is not possible without

altering the specification of DDL. The extensions which DDL would require in order to be

compatible with IDL are described in Section 5.4.

Having demonstrated that such a mapping is unfeasible, the definition of IDL interfaces for
PCTE tools was explored as an integration strategy which aimed to improve control
integration between PCTE tools and enhance PCTE objects to full object orientation.
However this strategy does not cater for the mapping of CORBA objects to the PCTE
repository. Thus the definition of IDL interfaces for PCTE tools is a much weaker
integration strategy than would have been provided by the mapping of DDL to IDL (and

vice versa), had such a language mapping been successful.

However, apart for compromising the benefits of a mutual integration, it does achieve the
other objectives for an interim integration strategy. This approach increases the control
integration between PCTE tools. If the IDL interface is used to access the tool then, to all
clients, the tool seem truly object oriented because the object implementation of the
interface encompasses both the tool’s data and the static context (executing tool), its
behaviour. Also this approach facilitates the development of composite PCTE tools.
Therefore it has much to offer PCTE as an integration strategy while waiting for the

convergence of the two specifications.

In Chapter 6 we will examine the strategy for defining IDL interfaces for PCTE tools in
greater detail. First, in Chapter 5, we discuss the language mapping of DDL to IDL and

why it was proven by this thesis to be unfeasible as an integration strategy.

82

CHAPTER 5 LIMITATIONS OF THE MAPPING OF
DDL TO IDL

This thesis proves that the mapping of PCTE’s Data Definition Language (DDL) to
CORBA’s Interface Definition Language is unsuccessful as an integration strategy for the
current specifications of DDL and IDL as they stand, and therefore it is unsuitable as an
interim integration strategy which requires the unaltered specifications for both PCTE and
CORBA to be used. In order to understand the limitations of the mapping, let us first
look at the motivation and general concepts behind the development of such a mapping,
and in turn the form that this mapping would take. Section 5.1 outlines the basic ideas
involved in the mapping of DDL to IDL, while the details of how DDL language

constructs are mapped to IDL language constructs are described in Section 5.2.

Initially this mapping of DDL to IDL appeared to be the most attractive integration
strategy, because it would allow the automatic generation of an IDL interface from a DDL
definition via a simple language translation. By generating such IDL interfaces from the
DDL definitions, it was hoped that these IDL interfaces would “encase” PCTE tools, and
integrate them with the OMA structure, allowing them to avail of the ORB in order to
increase the control integration between the tools in the PCTE repository. However the
mapping proved to be unfeasible for this purpose. Section 5.3 discusses why this thesis
proved this approach not viable as an interim integration strategy. DDL must be extended
for compatibility with IDL, in order to facilitate meaningful mappings between these two

languages, a description of the necessary extension to DDL being contained in Section

Before looking at the precise details of how DDL language constructs can be mapped to

DDL, we will begin by looking at the general concepts behind the mapping.

5.1 GENERAL MAPPING CONCEPTS

As stated earlier in Chapter 2, DDL is a formal notation for defining types, and is used to
define the types in the four standard PCTE SDSs (Schema Definition Sets). Typing is a
prominent characteristic of the PCTE data model, such that every instance in the PCTE
repository belongs to a defined type. It places restrictions on the properties of PCTE
entities, which are created and managed in terms of their specific type. Typing is the

fundamental element which allows the data integration of tools. The PCTE data definition

language, DDL, is a formal notation for defining these types[4].

This mapping aimed to provide an IDL definition for DDL definition of a tool. DDL
definitions are composed of sequences of SDSs. In mapping DDL to IDL, each tool has
its own IDL interface, and each SDS in the tool's DDL definition is mapped onto a
separate interface which may then be inherited and therefore accessed by the tool's IDL
interface. Take for example a PCTE tool, a C compiler we will call ccomp, whose
working schema consists of the sys, env, ¢_prog and pact SDSs. Then the inheritance

specification for the IDL interface of this tool will contain at least sys, env, c¢c_prog and

pact as its base interface as shown below.

interface ccomp : sys, env, c_prog, pact {

b

This mapping places great importance on the inheritance of interfaces. DDL objects,

links and attributes are mapped to IDL interfaces within the mapping, since it must be

84

possible to import all three into other SDSs, i.e. allow their IDL interfaces to be inherited
by other interfaces. Interfaces which are mapped from DDL attribute type declarations
are inherited by the interfaces representing objects or links to which the attributes apply.
Take for example the IDL interface name as given in Section 5.2.2, and the following link

type declaration taken from the ¢_prog SDSs, see Appendix C.

h : composition link (name, subname)

to includejile;

The inheritance specification for the IDL interface of the link type, h, would be as

follows:

interfaceh name {

i

Each SDS mapped onto an IDL interface, inherits from the following interfaces: any
interface which is amapping of a type importation required by the SDS or a mapping of an
object, link or attribute declaration (or extension in the case of object and link) contained

in the SDS.

Because we treat links as objects (since we allow the definition of IDL interfaces for links)
for the mapping, we need to address the existence of links with cardinality greater than
one. This means that references need to be materialised either to the link in its complete
plurality, enabling access to all of the instances of the link, or a single instance of the link.
The concept of the link as a plurality, or set of link references, is inherent in the notion of
links that anchor relationships that are not one to one relationships. Although link is a
simple name it potentially refers to many instances of the same type, a set of link

instances[6]. The DDL to IDL mapping handles the notion of sets of link instances by

85

allowing multiple associations to be stored by link and object type interfaces as arrays of
pointers to objects which satisfy the associated interface types. In the case of object type
interfaces, this means an array of pointers to object types which will satisfy each of the
interface types, an array for each link type. In the case of link type interfaces, it means
arrays of pointers to objects which will satisfy the appropriate object interface types, an

array for each PCTE object type.

Each DDL data type (boolean, natural, integer, float etc.) is mapped onto an IDL data
type. Constants such as WRITE, READ, PROTECTED, NAVIGATE etc. will be defined
as symbolic constants in IDL. Sections 5.2.1 - 5.2.6 describe the language mapping in
greater detail, describing how the DDL language constructs such as type importation
declarations etc. are mapped into IDL. The examples attached to each section are taken in
part from [13] but they have been altered to show how additional features of each
construct are mapped. The syntax of the DDL and IDL language constructs described in

these sections are given in Appendix A ([5]) and Appendix B ([3]) respectively.

5.2 MAPPING DDL CONSTRUCTS TO IDL
CONSTRUCTS

This section describes how the DDL language constructs- i.e. type importation, attribute
type, link type, object type, link type extension and object type extension declarations- are

mapped onto IDL language constructs.

5.2.1 Mapping Type Importation Declarations

A type importation declaration in DDL (see Section 2.4.1) is mapped onto an IDL
interface declaration where the interface's inheritance specification contains the name of
the type to be imported, and the interfaces identifier is the type’s local name within the
SDS to which it is being imported. The type mode declaration (which shows how the type
may be used, e.g. navigated or read, and if it can be exported from the current SDS) is
represented as a constant declaration of identifiers called export and usage set to the
appropriate value (PROTECTED, READ, WRITE, DELETE, CREATE, NAVIGATE)
within the interface definition. This interface is then included in the inheritance
specification of the IDL interface of SDS for which the type is being imported. Take for

example the DDL type importation declaration shown below (explained in Section 2.4.1).
import object type FHI'HVas env (usage navigate ; export protected);
This can be mapped to the following IDL interface :

interface env pact_env {

const shortint Bmt_ FR]E]E)
const short int UE@ NVGXIE}

5.2.2 Mapping Attribute Type Declarations

A DDL attribute type declaration (see Section 2.4.6) is mapped to an IDL interface, since
it must be possible to import attributes into other SDS, i.e. in terms of the mapping, to
allow SDS interfaces to inherit them. The type mode declaration would be mapped in the

same fashion as described in Section 5.2.1. The interface contains a constant declaration

87

of type boolean identified by 'non_duplicated' which is set to TRUE or FALSE depending

on whether the DDL keyword non_duplicated is present in the attribute type declaration

or not.

The DDL value type indication clause is represented as attribute type declaration of an
identifier named 'value' within the interface. The DDL initial value clause (indicating the
initial value of the attribute), if present, is mapped onto a constant declaration, identified

by initial__value. Take for example the following DDL attribute type declaration:

name : (usage create ; export protected) non_duplicated string := "John Smith"-,
This can be mapped to the following IDL interface.

interface name {

const shortint export = PROTECTED ;
const short int usage = CREATE ;

const boolean non_duplicated = TRUE;
const string initial_value = "John Smith";

attribute string value;

Note : An attribute definition in IDL is logically equivalent to declaring a pair of accessor

functions, one to retrieve the value of an attribute and one to set the value of the attribute.

5.2.3 Mapping Object Type Declarations

A DDL object type declaration (see Section 2.4.2) is mapped to an IDL interface
declaration. The IDL interface inheritance specification of an object declaration which
contains a child type of clause (i.e. a declaration of a PCTE object which is derived from
the objects specified after the child type clause) will specify the parent interfaces from
which the object is to inherit. The IDL interface definitions of any attributes that the DDL

object type contains will also be included in the inheritance specification.

The type mode declaration (see Section 5.2.1) of the object type is represented as a
constant declaration of export and usage modes set to the appropriate values
(PROTECTED or CREATE) within the IDL interface definition. The contents clause of
the object type declaration is mapped as a type definition for a void pointer called
"contents” within the interface declaration; this pointer can later, in the implementation of
the interface, be set to an object of an appropriate type depending on the contents type,

e.g. file, pipe, device, audit_file or an accounting_log.

The DDL component clause of the object type declaration (groups together objects which
are related to each other) is represented as an array of pointers to objects, objects which
satisfy the IDL link interface types mapped from DDL link types specified in the clause.
An array exists for each link type in the clause, the MAX_SIZE of the arrays defined to be
the maximum number of links allowable. If the component indication list of the
component clause contains a link type declaration, the link type declaration is mapped to
another interface (handled similar to the attribute type declaration within the link type
extension in Section 5.2.6), and an array of object pointers is set up to hold references to

all links of this type. Take for example the following DDL object type declaration:

89

c_source : child type of sourceJile with
contents file ;

attribute name ;

link tool ;

end c_source ;

This can be mapped to the following IDL interface :

interface cjsource : sourceJile, name {
void * contents ;

tool links_1[MAX_SIZE\ ;

5.2.4 Mapping Object Type Extension Declarations

A DDL object type extension (see Section 2.4.5) is mapped to an IDL interface definition
where the IDL interface inheritance specification of the object type extension will specify
the interface of the object being extended, as an interface from which to inherit. The
interface declarations of any attributes that the object extension contains will also be
included in the inheritance specification. The link and component clauses will be mapped
in the same way as those within an object type declaration mapping (See Section 5.2.3).

Take for example the following DDL object type extension declaration:

extend object type project with

attribute name;

90

link product ;
component current_projects ;

end project ;

This can be mapped to the following IDL interface :

interface Xproject : project, name {
product link_I[MAXSIZE];
current_projects component_I[MAX_SIZE)\;

5.2.5 Mapping Link Type Declarations

A DDL Link type declaration (see Section 2.4.3) is mapped to an IDL interface
declaration, where the interface’s inheritance specification will contain the interface

mapping of any attributes which apply to the link.

The type mode declaration (see Section 5.2.1) of a link is represented as a constant
declaration of export and usage modes set to the appropriate value (PROTECTED,
NAVIGATE, DELETE, CREATE) within the IDL interface definition. The interface
contains a constant declaration of type boolean identified by ‘exclusive' which is set to

TRUE or False depending on whether the DDL keyword exclusive is present in the

definition or not.

91

The interface contains a constant declaration of type boolean identified by 'non_duplicated’
which is set to TRUE or FALSE, depending on whether the DDL keyword
non_ duplicated is present in the DDL definition or not. The interface contains a constant
declaration of type short int identified by stability which is set to an appropriate value
(ATOMIC, COMPOSITE or NONE) depending on whether the link is defined as being of
atomic or composite stability or unstable. A link is stable if its designation object cannot
be modified or deleted as long as this link exists. The interface contains a constant
declaration of type short int identified by category_name which is set to an appropriate
value (COMPOSITION, EXISTENCE, REFERENCE, IMPLICIT or DESIGNATION)
depending on whether the link is defined as being of link type composition (defining the
destination object of the link as a component of the origin object), existence (keeps the
destination object in existence as long as the link exists), referential (guarantees the
existence of an object that can be referred to by a path name), implicit (used to reverse
links of the other link categories when the reverse part of a relationship does not need to
express any particular properties) or designation (relevant only to the origin object, they

represent dynamic relationships) link.

If the DDL link type declaration contains a cardinality clause then two constant
declarations of type short int, identified by upperJbound and lowerjbound and set to take
on the upper_bound and lower_bound cardinality of the link, are made within the IDL
interface. The DDL key list clause is mapped to the IDL interface as an array of object
pointers to objects which satisfy the IDL interfaces, mapped from the attributes which
make up the key. A reverse link clause within a link declaration is mapped onto a link

type name pointer declared within the IDL interface.

The “to” clause of the link declaration is mapped as an array of pointers to objects which

satisfy the IDL interfaces of objects to which the link may point (an array exists for each

92

object type in the clause). The MAX_SIZE of the arrays is defined to be the maximum

number of links allowable. Take for example the following DDL link type declaration :

subprog : (usage navigate ; export protected) exclusive
non_duplicated
composition link (name, subname) to program
with
attribute name ;

end subprog ;

This can be mapped to the following IDL interface :

interface subprog : name {
const short int usage = NAVIGATE ;
const shortint export= PROTECTED ;
const boolean exclusive = TRUE ;
const boolean non_duplicated = TRUE ;
const shortint category_name = COMPOSITION;
program to_I[MAX_SIZE]\

5.2.6 Mapping Link Type Extension Declarations

A DDL link type extension (see Section 2.4.4) is mapped to an IDL interface definition
where the IDL interface inheritance specification will specify the IDL interface of the link

being extended, as an interface from which to inherit. The interface declarations of any

93

attributes that the DDL link type extension contains will also be included in the inheritance

specification.

The “to” clause is mapped in the same way as the “to” clause in a link type declaration is
mapped (See Section 5.2.5). Take for example the following DDL link type extension

declaration :

extend link type tool to sctx
with
attribute

user : string ;

end tool ;

This can be mapped to the following IDL interfaces: an interface for the link type
extension and an interface for the attribute type declaration sub-component. The attribute

type declaration is mapped to the following IDL interface :
interface user {

const boolean non_duplicated = FALSE ;

attribute string value ;

The DDL link type extension is then mapped to the following IDL interface :

interface Xjtool : tool, user {
sctx to J [MAX_SIZE];

94

5.3 LIMITATIONS OF THE MAPPING

Having examined the form that a mapping of DDL to IDL takes, let us now discuss why
the usefulness of the mapping described in the previous sections is limited and unfeasible

as an interim integration strategy.

As stated earlier, the purpose of generating an IDL interface from DDL definitions is to
encase or wrap PCTE tools in an IDL interface, which would integrate them into the
OMA structure allowing them to avail of the ORB in order to increase the control
integration between the tools in the PCTE repository, to become full object oriented
having both behaviour and state, and to allow PCTE tools to be activated using CORBA.
In CORBA an IDL definition of an object defines the operations which the object can
provide, the purpose of IDL being to provide a definition of objects based on the services
or functions these objects can provide to their clients. In IDL operation declarations (see
Section 3.5.2) are used to advertise to clients the services which the object can provide,

and so the presence of operation declarations in an IDL interface definition is necessary to

define the behaviour of the object.

From the description of the mapping in Section 5.2, we see that none of the DDL
language constructs can be mapped to an IDL operation declaration. Also, looking
closely at the examples of IDL interfaces generated from DDL SDSs in Sections 5.2.1 -
5.2.6, we notice a distinct absence of operation declarations in these interfaces. Even
though the interfaces in these examples are all legal IDL syntax, their usefulness or

meaning is limited, somewhat like a function definition which contains only variable

95

declarations. This is illustrated further below, where we demonstrate that, when each of
the DDL language constructs (one of each type is taken as an example) used in the
c_prog SDS are mapped to IDL. the resulting interface for the c_prog SDS contains no

operation declaration. For a complete listing of the c_prog SDS, see Appendix C.

sds C__prog:

import sys-name as name,

release: integer = 1 ;
c_source : subtype of file ;
tests composition link

to testests ;

end c_prog ;

Using the mapping described in Section 5.2 we would get the following IDL definitions:

interface release {
int initial_value := 1; h

interface c¢_source file {3},

interfaces/e : sys-file {};

interface tests {

const short int category_name = COMPOSITION ;
testsets to_] [MAX_SIZE\;

96

interface cjprog :file, c_source, tests, release {}

We saw in Chapter 2 that the entire PCTE repository, including the static context object
which contain the PCTE tools (in either source code or executable form) is defined using
DDL SDSs. Therefore from the above example we can see that the mapping of an SDS
which defines a PCTE tool will also resultin an IDL interface which contains no operation
declarations, and therefore, while such an interface may be a valid IDL interface, it cannot

advertise the functions or operations provided by this tool.

Therefore the IDL interfaces generated by the mapping of DDL to IDL described in earlier
sections of this chapter cannot be used to increase control integration among PCTE tools
or to activate PCTE tools using CORBA because these IDL interface do not advertise any
operations or service for potential clients of these objects to avail of. Remember control

integration is “the capacity to request operations from other tools in the system” [43].

Having ascertained that, while it is possible to map DDL language constructs to IDL, the
resulting IDL interfaces are meaningless because none of these interfaces contain any IDL
operation declarations. In order to understand why this incompatibility exists between
DDL and IDL, we must remember that IDL models the behaviour of objects. This is its
primary purpose, it does not model the data on which the object “behave”. In direct
contrast to this, PCTE’s DDL is a data definition language used to define data types,
which does not include any concept of function/operation or the behaviour of these
strictly data objects. The lack of a mechanism for defining behaviour for DDL objects is
the reason that DDL and IDL are incompatible, and therefore the reason why a mapping

of DDL to IDL as an interim integration strategy is fundamentally flawed.

97

To overcome this incompatibility DDL must be extended to incorporate behaviour for
PCTE objects. Because this would require changes to the PCTE specification it is
unsuitable for the purpose of this thesis; however a future a mapping between the two
languages is still attractive for integration purposes. It would however be incorrect to
assume that the extensions to DDL, to be described in Section 5.4, would make DDL and
IDL equivalent. The IDL interfaces mapped from an extended DDL would not be able to
capture all the semantic richness of the data modelling provided by DDL. This is because
DDL’s data modelling relies heavily on the notion of types (object, link and attribute
types), while CORBA has no notion of type, and so some of the semantic richness would
be lost in the translation. The following section discusses the additional constructs that
DDL would require in order to facilitate a complete mapping of DDL to IDL, and outlines

some of the work already being carried out in this area.

5.4 EXTENDING DDL FOR COMPATIBILITY WITH IDL

This section describes the extensions that DDL would require before a useful mapping to
IDL would be possible. In order to accomplish such a mapping DDL must be augmented
with additional features which allow it to describe behaviour for data objects. This could
be achieved by adding a mechanism for defining interfaces and operation signatures within
DDL, as well as a mechanism for attaching or associating these interfaces with PCTE
objects. As this would require changes to the PCTE specification, it is beyond the scope

of this project. However let us look briefly at some of the progress being made in this

area.

As already mentioned the PCIS project (described in Section 4.6.1) is based on the PCTE

model. Therefore its architecture is the same as the PCTE one. However, the members of

98

the PCIS group analysed and evaluated IRAC's Object Management System requirements
(see [8), as well as the Object Management System services in the NIST/ECMA
Reference Model (see [9]). This resulted in framework services supplements to the
existing PCTE ones. One of these was the provision of a new definition language, PIDL.
PIDL, PCIS Interface Definition Language, was needed for more integration and co-
operation among tools than was provided by PCTE. These needs, as [10] states,
demanded a framework that supports not only data sharing but also behaviour sharing
among tools. PIDL is a language mutually based on PCTE's DDL and CORBA's IDL,
incorporating features from each: as such, it is of significant interest when deciding what

additional features DDL require in order to make it compatible with IDL.

The PIDL designers had to augment four DDL rules to provide for the connection of
interfaces with object types in the Schema Definition Set, (SDS). For instance, the clause
category, which provides the fundamental components within a SDS, was enhanced to
allow a parameter type declarations[7]. In addition, the DDL's object type declaration and
object type extension categories were augmented with an interface indication list to
"associate a set of operation signatures with the object type in SDS"[10]. Lasdy, the
importation of parameter types from one SDS to another was accomplished through the

expansion of DDL's category import type with parameter types and constants. An example

can be found in [10_|

The current work described in (Section 1.2) by the OMG PCTE SIG [12] involves the
definition of these extensions to DDL and the wider effect of this on the PCTE standard.
The OMG PCTE SIG regard the following areas as those necessary for consideration

when extending DDL for compatibility with IDL, as included in their work to extend

PCTE for complete object orientation.

99

» Interface Representation, where the description of how the interface hierarchy is
represented in the metabase, i.e. which part is described in SDS and which at the
intrinsic level. It is important to observe that this part of the model is described as an
extension of the metasds, while the remaining two parts below are extensions of the
system SDS [49].

¢ Method Implementation Representation, where the description of how tools and the
methods they implement (static contexts, loadable modules or scripts) are represented
at the metalevel and how they can be represented at the application level.

* Method mapping to interfaces, which describes the general way in which interface

operations are mapped to implementations

Thus we see that extending DDL for compatibility with IDL is a viable proposition, and
that an extended DDL will be included in that future specifications of 00 PCTE [49].
However the purpose of this thesis is to find an integration strategy suitable for the current
specifications of CORBA and PCTE, and so we must abandon the idea of using a mapping

of DDL to IDL for the moment.

5.0 EVALUATION

In this chapter we have examined the concepts behind a mapping of PCTE Data Definition
Language (DDL) to CORBA’s Interface Definition Language (IDL). We have seen why
such an integration strategy was initially seen to be so attractive, because it would allow
the automatic generation of an IDL interface from a DDL definition via a simple language
translation. By generating such IDL interface from the DDL definitions, the aim was that

these IDL interface would “wrap” PCTE tools, and integrate them with the OMA

100

structure, allowing them to avail of the ORB in order to increase the control integration

between the tools in the PCTE repository.

This chapter also explained that the mapping proved to be unfeasible for this purpose,
given the currently specified DDL, even though it was possible to map from DDL
language constructs into IDL language constructs. The problem arose because none of
the DDL language constructs mapped to an operation declaration, arising from a basic
incompatibility between the PCTE object model and the OMA object model. Objects
modelled by DDL (i.e. PCTE objects) have no behaviour; therefore when these objects are
mapped onto IDL interfaces, the corresponding interface has no operations defined, this
defeating the purpose of defining and IDL interface. Much of the current work of the
OMG PCTE SIG is concerned with extending DDL so that it is compatible with IDL.
However until such extensions are made to DDL, the mapping of DDL to IDL cannot be

used as an integration strategy.

This research was committed to finding an integration approach which could be used with
the current specifications. Therefore having proven that the mapping of DDL to IDL is not
possible with the current specifications (a valuable lesson in itself), the language mapping
strategy to integration of PCTE and CORBA had to be abandoned in favour of an
alternate route, defining IDL interfaces for PCTE tools, which will be the focus of the

following chapter.

101

CHAPTER 6 IDL INTERFACES FOR PCTE TOOLS

As discussed in Chapters 4 and 5 the initial approach to integration for this research, that
of a language mapping for DDL to IDL, proved unfeasible as an interim integration
strategy because, in order to be successful, it would require alterations to the specification
of PCTE, to DDL in particular. Therefore in this chapter we turn our attention to another
approach to providing a strategy for the short term integration of PCTE and OMA’S
CORBA. This chapter describes such a strategy, the definition of IDL interfaces for
PCTE tools, illustrated by examples using the Emeraude PCTE V12 implementation and
IONA Technology’s ORBIX version 1.1 as the CORBA implementation. Some aspects of
this chapter are specific to these implementations, for instance the Emeraude shell script,
but there does exist an equivalent facility in other implementations (e.g. .bat files in
Windows or DOS environments); so this method is portable with minor adjustments to

other implementations and environments.

Section 6.1 outlines the general concepts behind the definition of IDL interfaces for PCTE
tools as an integration strategy. Section 6.2 demonstrates with an example how to define
an IDL interface for a PCTE tool. Section 6.3 describes how to implement such an IDL
using a PCTE tool and shell script, while Section 6.4 discusses how this strategy

facilitates the development of composite PCTE tools, and increases the amount of control

integration in aPCTE environment

102

6.1 General Concepts

An IDL interface must be defined for a PCTE tool to allow CORBA to access it, since it
is through defining an IDL interface for objects that they can advertise the services they
provide (see Section 3.5), thus making their services available to the whole environment,
see figure 6.1. IDL interfaces are completely independent of implementation, this being
the purpose of object implementations (Wherever object implementation is mentioned in
the remainder of this chapter it can be taken to mean a CORBA object implementation as
described in Section 3.4.3). In other words the IDL interface defines what services are

available and how they may be invoked, while the object implementation defines how

these are provided(i.e. the implementation details).

103

figure 6.1 IDL interfacefor PCTE tools

Therefore the object implementation of an IDL interface advertising the operations of
PCTE tools must contain some method of executing the PCTE tools which are stored
within the repository. The method used in this research was to embed a PCTE shell script
(as opposed to a UNIX shell script) within the CORBA object implementation, see
Section 6.3.1. The shell script acts as a wrapper or buffer between the CORBA object
implementation and the PCTE tool. The PCTE shell script also allows us to use the PCTE
activity operations (See Section 2.6) as provided by the PCTE API (Application Program

Interface) to ensure that the object base remains in a consistent state.

104

In this way PCTE tools are wrapped in CORBAIDL interfaces, so that they can advertise
their services which can be invoked by any other CORBA objects, while hiding the

implementation details. This facilitates the composition of tools as described in Section

6.2 A PCTE Tool's IDL interface

The IDL interface defined for a PCTE tool must contain an operation declaration for each
service provided by the tool and the parameters that are required in order to invoke each
operation. Sections 6.2 and 6.3 take a PCTE tool for editing C source code files as an
example to illustrate how an IDL interface would be defined and implemented for such a
PCTE tool; the full code for these examples can be found in Appendix D. The obj_edit
PCTE tool can be used for such a purpose as long as the c_prog SDS is included in its

working schema. The following is the IDL interface for this PCTE tool.

105

interface editor {
readonly attribute EDITORJRESULT changes ;

void edit_object(in string objectname, in string ejdisp);

Here the attribute changes is used to indicate if the file has been changed during the edit.
The edit_object operation declaration requires two parameters to be sent to the object
server (notice the in string), objectname and ejiisplay. The objectname parameter
specifies the name of the PCTE object to be edited, while e_disp specifies on what
terminal it is to be displayed (remember PCTE is a distributed environment). Once an
object implementation has been defined for this interface, by invoking editor's edit_object,
the obj_edit tool can be executed via CORBA to edit the C source file named as its

objectname parameter. We will now discuss how PCTE tools can be embedded in

CORBA object implementations.

6.3 Implementing a PCTE tool's IDL interface

As outlined in Section 6.1, it is the object implementation which will specify that it is a
PCTE tool which will provide the services advertised in the DDL interface. This section
discusses the implementation of PCTE tools’ IDL interfaces and the embedding of PCTE
tools in an object implementation using PCTE shell scripts. The object implementation of
the IDL interface of a PCTE tool is constructed as follows. An implementation class is
declared for the interface, which has a corresponding method for every operation defined
in the IDL interface, and a set and get function for each attribute of the IDL interface,

unless it is a readonly attribute, in which case only a get function is required (e.g. the

106

changes method defined below is the implementation of the editor interfaces changes

attribute).

Take for example the extract below taken from the declaration of the implementation
class, Editor_i, for the editor IDL interface, see Appendix D. The fact that the class
Editor_j inherits from the class editorBOAImpl indicates that it is the implementation class
for the editor IDL interface, notice also that the Environment & parameter indicates that

this method is an implementation of an operation defined in the IDL interface.

| B |
#include editor.idl.h"

Il class Editor_i, implementation class for the editor IDL interface

class Editor_i :public virtual editorBOAImpl {

protected:

EDITOR_RESULTchanges_i;

public:

/1 calls the edit esh wrapper to edit the PCTE C source file object
virtual void edit_object(char *objectname, char *e_disp, Environment &);
/1 returns value of changes_i, value depending on the file being edited has

/1 changed.
virtual EDITOR_RESULT c/iange.s(Environment &);

Note: EDITOR_RESULT is an enumerated IDL type defined in Appendix D.

107

Now that we have declared the object implementation class of the IDL interface for a
PCTE tool, we must embed the PCTE tool in the methods declared by this class to be
implementations of the operations in the IDL interface. This is done using PCTE shell
scripts in a UNIX environment, similar facilities exist in other environments- for example

in DOS, .batfiles could be used. Thus a PCTE shell scriptis used to invoke the tool from

the method. In the example given below, a further extract from Appendix D, the Ejlﬂ'l

method ajt_mw the implementation of the operation ajt_dmdefined in the &Zﬁﬂ‘

IDL interface. It has embedded in it an execution of the esh shell script &jt, which

handles the editing of the PCTE C source file objects.

void Eiu_lejt_dﬁi(dmrmhar %_dq:) Environment &)

{

if @ = fork()) { /] fork a process to execute the script

Wait(&al.S); IIParent process waits for completion
}
else{
. . ’

exectp(\fONBCEENEMRNodsaiaiadsed B Kt char +)0)

}

A shell is a command interpreter that provides a user interface to a particular software
environment; several shells are available to run on UNIX systems. These UNIX shells all
provide command processing facilities [56] but these will not necessarily be able to access
the PCTE object base. The Emeraude shell esh is specifically designed for exploring and
modifying the object base. The shell’s command interpreter has a number of facilities for

generating or constructing complex commands and to write S]’[ZB, Section 6.3.1

describes esh shell scripts in greater detail.

108

6.3.1 Esh Scripts

An esh shell script is an object (in the PCTE repository) containing a set of commands
that can be executed by entering the object’s path name. Each shell script is an
interpretable static context, where the interpreter is the shell (see Section 2.5). Scripts are
a convenient way of storing a set of commands to be run more than once. The commands
are put in an object of type sctx (static context), and can subsequently be executed in a

child shell process by typing the path name of the object[55].

Emeraude esh scripts are similar to UNIX shell scripts as described in [56]. The following

is the contents of the static context (called editor.tool) containing a script which activates

the obj_edit tool:

act start TR
obj_edit $!1

act_end

The $1 following the obj_edit indicates that the parameter telling obj_edit which PCTE
object to edit will be received as a parameter to the script. The fact that the PCTE
process or tool (in this example obj_edit) is managed by a transaction activity means that
the PCTE facilitates for concurrency and integrity control are utilised, and ensures the

repository is never leftin an inconsistent state (see Section 2.6).

In the above example of the editor IDL interface, the method defined for edit_object in the

object implementation calls an esh script which subsequently executes the editor.tool

109

script given above. An extract from the edit esh script demonstrating this is shown below,

the scriptis given fully in Appendix D. The edit script first adds ¢_prog and the pact SDS,

because the editor interface which we are implementing is for ¢ source files.

The

edit_object method implementation sets up the environment variables needed for the

script, i.e. OBJECTNAME (the name of the PCTE c_source object to be edited) and

BACKUPNAME (the name of a PCTE object where we can backup the source file before

changes are made). Once it has checked to ensure the object name exists (not shown in

the extract), it backs up the object before editing it using the editor.tool script shown

above. When the editing of the file has been completed it checks to see if the file was

changed and returns a value to the calling function accordingly.

Shell wrapper for editing c source files

#
required environment:

OBJECTNAME {file name = 'path/filename'}
BACKUPNAME {backup name = Ppath/backup.c’}

Add the c_prog and pact working schema to the current working schema

ws_add_sds c_prog

ws_add_sds pact
make a backup of file before edit begins

_/sun4.toolsets/user.tools/obj _copy %OBJECTNAME $BACKUPNAME

edit the object
_l.users/ptangney.usr/patricia.tools/editor.tool %OBJECTNAME

110

check if edited object was updated

_/sun4.toolsets/imported.tools/cmp -s %OBJECTNAME %BACKUPNAME

OBJECT_CHANGED=$"
Ono change, lif change, 2if error

delete the backup

_/sun4.toolsets/user.tools/link_delete $BACKUPNAME

exit %OBJECT_CHANGED

6.4 Tool Composition

This approach to the integration of PCTE and CORBA allows tool composition. As
stated earlier in Chapter 1, tool composition is an approach to the creation of software by
composing existing and new elements to form larger structures, writing a minimum
amount of algorithmic code to do so, thus significantly reducing the effort required to
build large software systems. For example, a complete PCTE tool for building C
programs may be composed from the editor IDL interface described previously in this
chapter and a compiler IDL interface developed in a similar manner. Such a “building”
tool would detect changes made to a C source file during an editing session, and would
then automatically re-compile the edited file, displaying any errors which occurred during

compilation. The IDL interface for such a composite tool is shown below, the complete

source code being included in Appendix D.

#include '@dl[[id"
#include ’ﬁ]’Ypih’.U"

interface h.l|d5l’ : m CD‘I[]IEF{
void b,lU in string dﬁﬂ’&ﬂ
in string OQIHH
in string QZHE[HHS
in string (Hj,

Although the compiler IDL interface described in Appendix D is implemented using
PCTE C compiler tools in the same fashion as was described earlier in the chapter for the
editor IDL interface, this need not necessarily be the case; PCTE tools may also be

integrated with non-PCTE tools using this approach, a very useful facility, see figure 5.1.

6.5 Evaluation

The previous section outlines how this integration strategy supports tool composition,
allowing new software tools to be composed from existing PCTE tools and non-PCTE
tools, writing a minimum amount of algorithmic code to do so. The advantage of this is a
significant reduction in the effort required to build large software systems. However the
tool integration model of the tool composition, provided by this strategy, does not permit
the composer to chose the granularity of the composition, i.e. no choice between bindings
that are either high performance with tight coupling or lower performance with lower
coupling are provided by this approach. By using such a method the binding will always

be medium to large grain. This is because there is still a dependency on PCTE to provide

112

the security and locking on an object-by-object basis, and thus all intrinsic modelling and
interpretative overheads of PCTE are still incurred. This is a drawback to the
effectiveness of tool composition using this approach, because it places limits on the
potential performance of such composite tools. Ideally tool composition should support
fine and coarse granularity. This limitation on performance and lack of support for fine
grained access to the repository is compensated by the fact that the rich semantic

modelling and security provided by PCTE remains intact.

While the integration strategy described in this chapter is illustrated in terms of a UNIX
environment implementation of PCTE, it is not restricted to such an environment, minor
adjustments making it portable to other environments, for example to DOS. This strategy
is beneficial to the existing PCTE specification because it increases the amount of control
integration within a PCTE environment, by allowing the co-ordination of PCTE tools via
their IDL interfaces and CORBA, so enabling a closer integration between tools in a
PCTE based SEE. In effect the definition of IDL interfaces for PCTE tools allows these
tools to become truly object oriented because they encapsulate both the tool (behaviour)
and the data objects (working schema) that the tool requires, whereas PCTE objects on
their own do not model behaviour. PCTE tools which have IDL interfaces defined for
them are OMA compliant; they can avail of the services of the ORB and other OMA

compliant systems. And so this strategy also allows PCTE tools to be integrated with

tools outside the PCTE repository.

Although the integration of this strategy is not at a fundamental level and offers no
benefits to the CORBA specification, importantly, it requires no alterations to be made to
either of the existing PCTE and CORBA specifications and so it can be used with the
existing specifications immediately. The integration strategy described in this chapter can

not be considered a mutually beneficial integration to both PCTE and CORBA. While it

113

offers increased control integration to PCTE, supports the composition of PCTE tools and
makes PCTE fully object oriented, it does not offer the persistent storage of OMA objects
originally envisaged as the benefit to CORBA of an integration between it and PCTE.
However, because it offers so much to the current specification, it is a worthwhile interim

integration strategy.

114

CHAPTER 7 CONCLUSIONS

This chapter begins by restating the objectives of the research contained in this thesis
before concluding by evaluating how and with what success these objectives were
achieved. Essentially, the objective for this research was that it would provide a short
term mutually beneficial integration for the PCTE and CORBA specifications, without
changing either of the current specifications (as described in Chapters 2 and 3
respectively), to be used while waiting for their eventual convergence. The benefits

sought by such an integration were that:

e PCTE tools would be “wrapped” in an IDL interface which would allow CORBA to
provide increased control integration between PCTE tools, and to make

PCTE objects fully object oriented.

e The PCTE object base could be used in turn by CORBA as a persistent store for OMA

objects, by availing of the rich data modelling provided by PCTE’s DDL.

The reason that such emphasis was placed on the objective of using the unaltered current
specifications of PCTE and CORBA was to avoid overlapping with the work of the OMG
PCTE SIG, the main concern of which is to converge the two standards. So the
usefulness of the research contained in this thesis is short term, for the benefits it can
provide to the current specifications. Sections 7.1- 7.2 describe more fully the objectives
of the integration from the PCTE and CORBA view points respectively. In Section 7.3

we discuss how and with what success these objectives were achieved.

115

11 PCTE

PCTE has become very successful as a standard for a Public Tool Interface (for an open
repository) for integrated SEEs. In my opinion, this is evident from the diversity of
platforms for which PCTE implementations are available, and the international support
shown for the PCTE specification by its acceptance as an ISO standard in July 1994.
PCTE’s main strength lies in its support for data integration (with very limited control
integration) and the portability of CASE tools. The importance of PCTE lies in its use as
a leading specification for an open standard for integrating tools into SEEs, because it has
become evident that such an open standard for integrating tools is vital to the realisation

of the full potential of CASE.

PCTE has a strong object oriented flavour, the PCTE repository (which can be
distributed) being composed of data objects with links showing the relationships between
objects. However it is not object oriented in the truest, since it lacks a vital object
oriented mechanism which would allow operations or methods to be associated with
PCTE’s purely data objects. Thus it was with a view to enhancing PCTE to object
orientation in its purest form, and to extending the integration between PCTE tools(which
is primarily based on data integration) to include a tighter control integration of a PCTE
environment, that this thesis set out to integrate it (PCTE) with the OM A specifications, in

particular the CORBA specification.

116

7.2 CORBA

The OMA specifications are defined by OMG as an infrastructure for distributed
computing. They are designed to ease the development of integrated software systems
across possibly heterogeneous platforms. The criterion agreed by OMG for the
specification of the Object Management Architecture included the support of modular
software production; that the specifications must encourage reuse of code; allow useful
integration across lines of developers, operating systems and hardware; and enhance the
long-range maintenance of that code. The object oriented approach to software
construction was seen as the best match to this criteria, and so all the OM A specifications

are to be based on this approach.

Independently developed applications which adhere to the OMA specification can be
combined seamlessly in user specific ways. This is the beauty of OMA; it reduces the
complexity of distributed systems. The CORBA specification forms the communication
heart of the OMA specifications, and is central to the integration of distributed software
systems by providing a “software bus” by which distributed OMA objects can
communicate. The Interface Definition Language (IDL) has a central role to play within
CORBA in order to facilitate integration. CORBA is evidently an ideal integration
technology to introduce into a PCTE environment in order to increase the weak control
integration or co-ordination between PCTE tools. By incorporating CORBA into the
PCTE environment, CORBA (in particular IDL) can be used to associate behaviour with

PCTE data objects, thus making them object oriented in the full sense.

The purpose of the OMA specifications is to “drive the industry towards interoperable,

reusable, portable software components based on standard object-oriented interfaces”

117

[29]. However, of the OMA specifications described in Section 3.2, only CORBA is fully
specified and has implementations available at the moment. The full specifications for the
Object Services and Common Facilities will become available in due course, in my
opinion, because of the growing popularity of distributed systems, and the importance of
compliance with standards such as OMA in order to integrate such distributed systems.
PCTE could be used to implement at least part of the Object Services specification, in that
the PCTE repository with its rich semantic modelling could be used to provide persistent
storage for OMA objects. For this reason it would be advantageous to OMA/CORBA to

integrate it with the PCTE specification.

7.3 INTEGRATION STRATEGIES

Having reviewed why an integration of CORBA and PCTE is desirable, this section
evaluates how successful the integration strategies explored were. In the initial stages of
the search for an integration strategy, the mapping of PCTE’s Data Definition Language
(DDL) to CORBA’s Interface Definition Language (IDL), seemed like an obvious
approach, since a direct language mapping between them would allow an automatic
translation of PCTE objects into CORBA objects and vice versa. This would have been
ideal, as a translation tool could have been built to translate between the two languages.
By mapping from IDL to DDL, CORBA/OMA objects could have been given a DDL
representation and the PCTE repository utilised as a persistent store for them. The
mapping of DDL to IDL would have facilitated the definition of PCTE objects as CORBA
objects, able to avail of the ORB for communication and control integration as well as the

other facilities provided by the OMA, including the benefits of object orientation (e.g.

code reuse, ease of maintenance).

118

Therefore, initially, it seemed that this language mapping would satisfy all the criteria set
for a mutually beneficial integration of the two specifications, including no alteration to
either specification. However further research found that this was not the case for reasons
that will be reiterated in Sections 7.3.1 and 7.3.2, and so a different approach was sought.
In this second approach, described in Chapter 6 the definition of IDL interfaces for PCTE
tools, it was obvious from the outset that the objective of using the PCTE object base as a
persistent store for CORBA objects would be sacrificed, and so this approach was not
going to provide a mutually beneficial integration of the two specifications. Such a
sacrifice was accepted in the hope of still attaining the goal of increased object orientation
and control integration between PCTE objects, Section 7.3.4 evaluates the extent to which

these goals were attained.

7.3.1 DDL TO IDL

In chapter 5 we saw that, even though DDL language constructs can be mapped into IDL
language constructs, the resulting interfaces are meaningless. This is because the objects
defined by DDL (i.e. PCTE objects) have no behaviour. Therefore, when these objects
are mapped onto IDL interfaces, the corresponding interface has no operations. The
purpose of defining an IDL interface for an object is to advertise the operations or
methods offered by that object to the rest of the environment. Therefore if none of the
IDL interfaces which result from a mapping from DDL have any operations defined for
them, the purpose of defining an IDL interface is defeated. In order to make DDL
compatible with IDL, it would be necessary to extend DDL to facilitate the association of
behaviour with PCTE objects. Much of the current work of the PCTE SIG is concerned
with extending DDL for this purpose. Until such extensions are made to DDL, this thesis

concludes the mapping of DDL to IDL is pointless as an integration strategy.

119

7.3.2 IDL TO DDL

As stated previously, initially, the language mapping of IDL to DDL was seen as an
approach which allow OMA objects to be defined and exist in the PCTE repository, thus
using the PCTE object base as a persistent store for OMA objects by using the PCTE’s
OMS to provide the persistent service which will form a part of future OMA Object
Services specifications. From very early on, the mapping of IDL to DDL proved
unfeasible for two very important reasons, PCTE objects are not compatible with the
OMG Object Model, mainly because there is no mechanism for associating PCTE objects
with tools, i.e. no behaviour is associated with PCTE objects. The second reason found
for this incompatibility is that IDL scoping rules are incompatible with DDL scoping rules,
because IDL syntax allows for the nested declaration of interfaces. In contrast, the PCTE
SDSs defined using DDL are Unear in nature, and therefore unable to model the possibly
nested IDL interfaces and modules. Therefore, similar to the reverse language mapping,

the mapping of IDL to DDL can not be achieved without extending DDL.

7.3.3 IDL interfaces for PCTE Tools

Once research proved that the language mapping of DDL to IDL (and vice versa) was not
going to be successful, it was obvious that some of the objectives of the integration would
not be met. Clearly the definition of IDL interfaces for PCTE tools, as described in
Chapter 6 was not going to facilitate the use of the PCTE repository by CORBA as a
persistent store. However it was decided that, if successful, the benefits that it would
provide to PCTE environments meant that it was worth pursuing, and so the goal of a

mutually beneficial integration (of PCTE and CORBA) was compromised. Instead of

120

working on extensions to DDL which would have paralleled the work being done by the

OMG PCTE SIG, an alternative route was taken.

The definition of IDL interfaces for PCTE tools did have some success. It increased the
amount of control integration within a PCTE environment, by allowing the co-ordination
of PCTE tools via their IDL interfaces and CORBA, which in turn facilitated tool
composition. In effect the DDL interfaces for PCTE tools allow these tools to become
truly object oriented because they encapsulate both the tool (behaviour) and the data
objects (working schema) that the tool requires. PCTE objects on their own do not model
behaviour. This strategy importantiy required no alterations to be made to either of the
existing PCTE and CORBA specifications, and it also allowed PCTE tools to be

integrated with tools outside the PCTE repository.

Because this integration strategy is on a superficial level, it does not provide support for
fine-grained access to the repository, thus placing limits on the overall potential
performance. However the rich semantic modelling and security provided by PCTE
remains intact. Improved performance and support for fine-grained access to the PCTE
repository is a primary consideration of the work described in [57] currently being carried

out by the OMG PCTE SIG.

14 Future Work

The OMG PCTE SIG is currently working on a proposal for PCTE OO extensions which
will integrate CORBA into the PCTE specification. The purpose of this proposal is to
provide support for fine-grained access to the PCTE repository, make PCTE fully object

oriented (methods will then be associated with PCTE objects), increase control integration

121

or co-ordination between PCTE tools, and make PCTE objects OMA compliant,
therefore allowing them access to other OMA services. The areas of the PCTE
specification extended (see [49]) and described below include: PCTE data modelling, the
execution model and method activation, context objects, scoping of operation requests,

implementation registration and server selection.

« PCTE data modelling The PCTE metabase and object base
is extended to accommodate Object Oriented services by extending the DDL syntax

(see Section 5.4), the metasds. the system SDS and providing additional SDSs.

+ Execution Model and Methods Activation The PCTE process model is extended

to support the use of the 0 0 execution model within PCTE.

« Context Objects In order to stay close to the CORBA
model for invocation, the extended PCTE must support context information for the
dispatching of operations. This context is intended in a broad sense to include both

PCTE dynamic context and CORBAIinvocation context [49].

« Scoping of operation requests The method mapping model will be
exploited to scope an operation request in order to obtain different results according

to the specific user/invocation context or working schema.

« Implementation registration and server selection An object implementation,
once started, registers with the underlying run-time system, which in turn might exploit

this information to select an already available implementation and/or share servers

between several users.

The work in this area is ongoing: the extension outlined above will be fully specified in the
future. We can see that the OMG PCTE SIG are committed to developing a more
powerful PCTE specification which will be integrated with OMA/CORBA. Once these
extensions have been made, particularly to the data modelling component of the PCTE
specification, PCTE can then in turn be of benefit to the OMA. PCTE OMS, as pointed

out earlier, provides semantically rich data modelling, because the object base or

repository is required to store and manage very complex data and relationships across the
whole software life cycle- not only finished products of the software process (e.g.
designs, functional specifications, alpha, beta and full tested versions of code, fault
reports, change requests) but also the intermediary and supporting data that accumulates
along the way (e.g. project history, test results, memos and reports) [6. Despite the fact
that PCTE was originally designed for CASE environments, many of the concepts that it
has developed can be utilised for different environments. PCTE OMS’s network of
objects and links allows complex relationships to be modelled in an intuitive way. Future
work on the Object Services component of the OMA could utilise the extended OO
PCTE’s OMS to provide basic operations for the logical modelling and physical storage of
objects, since the extended PCTE specification would not be limited by performance as it

will provide support for small grain/high speed access to the repository.

7.5 OVERALL CONCLUSIONS

The OMG PCTE SIG will provide a mutually beneficial merging of both PCTE and
CORBA standards sometime in the near future. Even when such a merging has been
specified, it will take even more time before an implementation is available. In the
meantime the integration strategy described for the definition of IDL interfaces for PCTE
tools can be used to increase the control integration between PCTE tools in a PCTE-based
SEE. By using such IDL interfaces to access PCTE tools, to all clients, the tool seems
truly object oriented because the object implementation of the interface encompasses both
the tool’s data and the static context (executing tool), its behaviour, while support for
composite tools is also provided (combinations of PCTE tools and non-PCTE tools are
possible). PCTE tools which are wrapped in an IDL interface can avail of the ORB and

other OMA services, including other OMA compliant systems. Therefore this thesis has

123

illustrated that there is much is to be gained by integrating the current PCTE specification

with CORBA prior to their convergence.

The mapping of DDL to IDL (and vice versa) would have provided a more beneficial and
fundamental integration of both PCTE and CORBA. However this thesis has proven that

such a mapping is not possible without altering the current specifications.

124

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

©

[7]
9

[9]

[10]

[11]

[12]

"Standard ECMA-149 Portable Common Tool Environment Abstract
Specification™, European Computer Manufacturers Association, 2nd Edition,

June 1993.

"Standard ECMA-149 Portable Common Tool Environment Abstract

Specification™, European Computer Manufacturers Association, December

1990.

"Software Engineering Economics”, Boehm B W., Prentice Hall, Englewood
Cliffs, 1981.

"A Spiral Model of Software Development and Enhancement”, Boehm B W.,
ACM SIGSOFT Software Engineering Notes, Volume 11, 1986.

"Relationship of PCTE to OMA", OMG TC Document 93.4.7, April
1993.

"PCTE The Standard for Open Repositories”, Lois Wakeman & Jonathan
Jowett, PIMB Association, 1993.

"News", PCTE Newsletter, No.17, PIMB, May 1994,
"News", PCTE Newsletter, No.16, PIMB, April 1994.

"SCM Vs CASE Frameworks and repositories”, Gene Forte, CASE Outlook,
Vol. 7 No. 2, 1993.

"Introduction to COHESIONworX 2.0 Linking Development Teams", Digital,
Byte Magazine, July 1994.

"COHESIONworXZPCTE: a Framework for PCTE Environments", Augusto
Argento, Chiara Bonferini, Fabrizio Dematte, Proceedings of the PCTE'94
Conference in San Francisco, USA, PIMB, 1994.

"Analyzing A Persistent Object Definition Language”, Ariela Stem, Arizona
State University, May 1994.

125

[13] "Developing & Integrating Tools In Eclipse/PCTE", Sean P. MacRoibeaird,
Dublin City University, May 1990.

[14] "PCTE Functional Specifications 1.4", Bull, GEC, ICL, Nixdorf, Olivetti,
Siemens, September 1986.

[15] "The Entity-Relationship Model: Towards a Unified View of Data"”, Chen P.
P., ACM Trans, on Database Systems, Vol. 1, No. 1, 1976.

[16] "PCIS Object Oriented Services", Timothy E. Lindquist, Proceedings of PCTE

'93 Conference in Paris, published by Syntagma Systems Literature on behalf

of the PIMB Association 1993.

[17] "The Object Management System of PCTE as a Software Engineering
Database Management System", Gallo, Ferdinando, Regis Minot and lan
Thomas, SIGPLAN Nonces, Vol. 22, No. 1, 1987.

[18] "Semantic Database Modelling : Survey, Application and Research Issues”,
Richard Hull & Roger King, ACM Computing Survey, Vol. 19, No. 3, 1987.

[19] "Managing the evolution of the data schemas of a PCTE-based Software
Engineering Environment”, John Cheesman, lan Simmonds (SFGL),
Proceedings of the PCTE'93 Conference in Paris, published by Syntagma
Systems on behalf of the PIMB Association 1993.

[20] "The Toaster Model", Tatge G,, 1989 cited in [a.

[21] "Reference Model for Frameworks of Software Engineering Environments",
European Computer Manufacturers Association, Technical Report ECMA

TR/55, 2nd Edition, December 1991.

[22] "Afully conformant ECMA PCTE Implementation™, Jean-Claude Grosselin,
Gerard Boudier, Proceedings of the PCTE'93 Conference in Paris
published by Syntagma Systems Literature on behalf of the PIMB

Associationl993.

[23] "Semantic Data Models”, Joan Peckham and Fred Maryanski, ACM
Computing Surveys, Vol. 20, No. 3, 1988.

126

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

"PCIS Technical Study 4 -Architectural Diagrams", Minot R, Bremeau C.,
PCIS/TS/S4, October 1991.

"Working Together To Integrate CASE™, Ronald J. Norman, Minden Chen,
IEEE Software, March 1992.

"Definitions of Tool Integration for Environments”, lan Thomas, Brian A.
Nejmeh, IEEE Software, March 1992.

"The Future for Open Standards in CASE", Richard Baker, CASE Outlook,
Vol. BNo. 2, March-April 1992.

"PCTE Interfaces : Supporting Tools in Software-Engineering
Environments”, lan Thomas , IEEE Software, November 1989,

“Object Management Architecture Guide”, Second Edition, OMG TC
Document 92.11.1, Richard Mark Soley (ed.), OMG, September 1992.

“The Common Object Request Broker: Architecture and Specification™,
Revision 1.1, OMG Document Number 91.12.1, OMG and X/Open, 1991.

“CORBA QUANDRY: Finding the Elusive Common Distributed Object”,
David S. Linthicum, Application Development Trends Vol. 1 No. 11, October

1994.

“Distributed Architecture is Mission of OMG\ Brad Kain, Application
Development Trends Vol. 1 No. 8August 1994.

“Make Wayfor Data". Paul Koreniowski, BY TE Vol. 18 No. 7, June 1993.

“Looking to Object Standards"”, Chris Stone, Information Week New York,
February 1994.

“Common Object Request Broker 2.0 And Component Object Model
Interoperability Request For Proposals”, OMG TC Draft Document 94.8.31,

1994,

127

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

4

[45]

“OLE to Gain Object Role", PC WEEK Medford Mass., March 1994.

“Programming in the OMG Environment’, Jon Siegel, RS/Magazine, March
1994,

"Microsoft's View : How OLE Fits", Gregory Leake, Applications
development Trends, Vol. 1 No. 11, October 1994.

“Distributed Systems Management”, Alwyn Langsford, Jonathan D. Moffett,
Data Communications and Networks Series, Addison-Wesley, July 1992.

“Unravelling the Standards”, Dana M. Marks, T. Moriarty, Database

Programming and Design, December 1993, Miller Freeman Publications.

“The Object Database Standard : ODMG - 93", R. G. G. Cattell, Tom
Atwood, Joshua Duhl. Guy Ferran, Mary Loomis, Drew Wade, Morgan

Kaufmann Publishers 1994.

“Object Management Group : OMG forms common facilities task force &
fast track adoption process. Forms Portable Common Tool Environment
SIG', EDGE :Work-Group Computing Report, January 1994,

“An ECMA PCTE Compliant Implementation Of CORBA Adding Control
Facilities To ECMA PCTE Environments”, Augusto Argento, Chiara
Bonferini, Fabrizio Dematte, Serena Manca (Digital Equipment Corporation,
Varese, Italy), Proceedings of the PCTE” 93 Conference in Paris, published by

Syntagma Systems on behalf of the PIMB Association1993.

“00775 Extending PCTE With Fine-Grained Tool Composition™, William

Harrison, Harold Ossher, Mansour Kavianpour, PCTE Newsletter No. 11,

December 1992.

“Portable Common Interface Set (PCIS) Architecture: Framework Abstract
Specification”, Version 1.0, Tri-Service Group on Communications and
Electronics, Special Working Group on Ada Programming Support

Environments, December 1993.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

“Portable Common Interface Set (PCIS) Architecture: Framework Definition
and Rational', Version 1.0, Tri-Service Group on Communications and
Electronics, Special Working Group on Ada Programming Support

Environments, December 1993.

“PCIS and the Evolution of PCTE', M. F. Boyer, Ada Yearbook C. Loftus

(Ed.) Amsterdam 1994.

“1RAC: International Requirements and Design Criteria for the Portable
Common Interface Set (PCIS)" , Version 1.0, Tri-Service Group on

Communication and Electronics, Special Working Group on Ada Programming

Support Environments, May 1992.

“00 (Object Oriented) Extensions to the PCTE Standard (ISO/IEC 13719)”,

Draft Version 3.0, Intended future publication of ECMA and OMG PCTE SIG,

March 1995.

“DEC ACA Services Reference Manual”, Digital Equipment Corporation,
April 1992.

“ECMA PCTE, CORBA and AIS”, A. Argento, C. Bonferini, F. Dematte, S.
Manca, PCTE Newsletter No. 10.

“DEC ObjectBroker 2.5 User Guide ”, Digital

“Object Oriented Tool Integration Services (OOTIS) OOTIS Integration
Model -IBM AIX-CASE proposal”, Wiliam Harrison, Harold Ossher, Mansour
Kavianpour, Working Draft Version, June 1992.

“PCTE SDSs for Modelling OOTIS Control Integration”, Wiliam Harrison,
Harold Ossher, Mansour Kavianpour, Eric Wong, Proceeding of the PCTE’93
Conference in Paris, published by Syntagma Systems Literature, on behalf of

the PIMB Association 1993.

129

[55]

[56]

[57]

[58]

Emeraude V12.3.1 Documentation, GIE Emeraude.

“The UNIX Programming Environment”, Brian W. Kemighan, Rob Pike,

Prentice-Hall Software Series, 1984.

"FG (Fine Grain Data) Extensions to the PCTE Standard (ECMA-149
ISO/1EC -13719)”, Draft Version 2.0, intended joint publication of ECMA and
OMG PCTE SIG, March 1995.

"Not Your Fathers RPC”, Jonathan Chinitz, SunExpert, Vol. 5, No.6 June
1994.

130

APPENDIX A Interface Definition Language

The following clauses define the EBNF for CORBA’s Intexface Definition Language:

(1) <specification> =

<definition>+

(D) <definition> -
<type_dcl>
<const_dcl>
<except_dcl>
<interface>

<module>

(3) <module> n=

“'module™ <identifier> <definition>+ "}"

(4) <inheritance> =
<nterface_dcl> |

<forward_dcl>

(5) <dnterface_dcl> n=

<interface_header> "{" <interface_body> "}"

(6 <forward_dcl> n=
"interface” <ddentifier>

(7) <interface_header> n=

"interface" [<inheritance_spec>]

(8 <interface_body>

<export>*

(9) <export>
<type_dcl>
<const_dcl> g
<except_dcl>
<attr_dcl>

<op_dcl>

(]Q <inheritance_spec> R

<scoped_name> { <scoped_name> }*

til) <scoped_name>
<identifier>
<ddentifier>

<scoped_name> <identifier>

(12) <const_dcl>

*'const™ <const_type> <identifier> "=" <const_exp>

(13) <const_type>
<integer_tye>
<char_type>
<boolean_type>
<floating_pt_type>
<string_type>

<scoped_name>

(14) <const_expr>

<or_expr>

132

(15) <or_expr>
<xor_expr>
<or_expr>

<XO0r_expr>

(16) <Xor_expr>
<and_expr>
<XO0r_expr>

(17) <and_expr>

<shift_expr>

<and_expr>

(18) <shift_expr>
<add_expr>
<shift,,expr>
<shift_expr>

(19) <add_expr>

<mult_expr>
<add_expr>
<add_expr>
(ZQ <mult_expr>
<unary_expr>

<mult_expr>

nyn

"A <and_expr>

<shift_expr>

<add_expr>

<add_expr>

<mult_expr> I

<mult_expr>

<unary_expr> |

<mult_expi> 7" <unary_expr> |

<mult_expr>

2l

<unary_expr>

<unary_operator>

<primary_expr>

<unary_expr>

<primary_expr>

133

<unary_operator>

<primary_expr> =
<scoped_name> I
<literal> I

"(" <const_expr>")"

<diteral> =
<integer_literal> |
<string_literal> |
<character_literal> I
<floating_pt_literal> |

<boolean_literal>

<boolean_literal>

"TRUE" | "FALSE"

<positive_int_const> n=

<const_exp>

<type_dcl> =
"typedef' <type_declarator> |
<struct_type> |
<union_type> I

<enumj;ype>

<type_declarator> =

<type_spec> <declarators>

(29) <type_spec> =
<simple_type_spec> |

<constr_type_spec>

(30) <simple_type_spec> n=
<base_type_spec> I
<template_type_spec> I

<scoped_name>

(31) <base_type_spec> =
<floating_pt_type> |
<integer__type> I
<char_type> I
<boolean_type> I
<octet_type> I

<any_type>

(32) <template, type_spec> n=
<sequence_type>

I <string_type>

(33) <constr_type_spec> R
<struct_type> |
<union_type> I

<enum_type>

(A <declarators> -

<declarator> { <declarator> }*

(35) <declarator> 7=
<simpie_declarator> I

<complex_declarator>

135

(36)

(87)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

<simple_declarator>

<identifier>

<complex_declarator>

<array_declarator>

<floating_pt_type>
"float™ |

""double™

cinteger_type>

<signed_int>

<unsigned_int>

<signed_int>

<signed_long_int>

<signed_short_int>

<signed_long_int>

<signed_short_int>

<unsigned_int>

<unsigned_long_int>

<unsigned_short_int>

<unsigned_long_int

<unsigned_short_int>

<char__type>

llla,.gllll

"'short"

""unsigned” *‘long"™

""unsigned"* "'short""

“'char"’

136

(47)

(48)

49

(50)

(51)

(52)

(53)

(54)

G3)

(56)

(57)

<boolean_type> "boolean™

<octet_type> = "octet"

<any_type> n= any"
<struct_type> =

"struct'™* <identifier> ”{* <member_list>"}"

<member_list> = <member>+

<member> o=

<type_specxdeclarators>

<union__type> o=

"union™ <identifiei> "'switch""(" <switch_type_spec> ")"

<switch_type_spee>
<integer_type>
<char_type>
<boolean_type>
<enum_type>

<scoped_name>

<switch_body> <case>+
<case>

<case_label> + <element_spec>
<case_label> v

"case" <eonst_exp>"":

default"

137

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(&

(67)

(68

<element_spec> n=

<type_spec> <declarator>

<enum_type> =

"enum™” <identifier> "{" <enumerator> <enumerator> } *}

<enumerator> = <identifier>

<sequence_type> =
'sequence' "<" <simple_jype_spec> <positive_int_const> ">*“ |
"'sequence™ "<" <simple_type_spec> ">"

<string_type> n=
'string™ "<" <postive_int_cosnt> ">"

<array_declarator> n=

<identifier> <fixed_array_size>+

<fixed_array_size> n=
"I <positive_mt_const> "]"
<attr_dcl> n=
["readonly™] "attribute™ <simple_type_spec> <declarators>
<except_dcl> n=

"exception" <ddentifier> "{" <member>*"}"

<op_dcl> S
[<op_attribute>] cop_type_spec> <identifier> <parameter_dcls>

[<raises_expi>] [<context_expr>]

<op_attribute> = "'oneway"'

138

(69)

(70)

(71)

(72)

(73)

(74)

<op_type_spec>
<simple_type_spec> I

"void"

<parameter_dcls> =

(" <param_dd> <param_dcl> }* e

<param_dcl>
<param_attribute> <simplentype_spec> <declarator>

iifii riyt

<param_attribute> n=
llinﬂ I
"out" |

"inout™

<raises_expr =

"raiSGS""(" <5C0ped_name> { <Scoped_name> }* u)n

<context_expr> =

"‘context""(" <string_literal> { <string_literal>}* ")"

139

Appendix B Data Definition Language (DDL)

This appendix contains the EBNF of PCTE’s Data Definition Language.

(D DDL definition =

sds section, {sds section};

(2) sds section =
'sds’, sds name,
{clause,

‘end’, sds name,

(3) clause

type importation I object type declaration
object type extension | attribute type declaration
link type declaration | link type extension I

enumeration type declaration;

(4) type importation =
'import', import type, global name,['as’, local name],[type mode
declaration], {', global name, ['as’, local name],[type mode

declaration]};
(5) import type =

object’, type’ I ‘attribute’, type'

link', type';

140

(6 object type declaration =
local name, ';',[type mode declaration], ['child’,"type’,'of, object type
list], ['with’, [‘contents’, contents type indication, ":"],
[‘attribute’, attribute indication list, ";"],
[‘component’, component indication list,";"]

‘end’, local name];

(7) object type extension =
extend', object’, type', local name, withl
[‘attribute’ indication list,";"],
['link’, link indication list, ;']
[‘component’, component indication list, *;']

‘end’, local name;
(8 contents type indicatio =
file' | pipe’ | ‘device’ | Audit_file' |

accountingjog’;

(9) attribute indication list=

attribute indication list item {';', attribute indication list item};

(10 attribute indication list item =

attribute type name I attribute type declaration;

(1) linkindication list =

link indication listitem {';', link indication list item}

(12 link indication list item =

link type name | link type declaration ;

141

(13)

(14)

(15)

(16)

(17)

(18)

(19)

)

component indication list =

componentindication list item, { component indication listitem}

componentindication list

link type name I link type declaration;

attribute type declaration

local name. { local name}, V, [type mode
declaration],[non_duplicated], value type indication, [*:=', initial
value];

value type indication =
‘integer’ | ‘natural’ | 'boolean’ |
"time" | float' I string' |
‘enumeration’, enumeration type name I

enumeration type indication;

enumeration type indication =

‘enumeration’. ', basic enumeration, {V, basic enumeration},"’;

basic enumeration =

enumeration image I enumeration subrange ;

enumeration image =

identifier I ""»{character},"";
enumeration subrange =

attribute type name, ‘range', enumeration imange, enumeration

image;

142

2}

(22

(23)

(24)

(25)

(26)

(27)

initial value

[+ I digit, {digit} * Integer *)
I digit, {digit} * Natural *)
I 'true’ |1 ‘false’ (* Boolean *)
| year, month, day, ['T hour, minute, second], 'Z'
(* Time *)
! [>" I -"1, digit,{digit}, digit, {digit}], ['E\
[V I =, digit,{digit}] * Float *)

| {character},””
| enumeration image;

day
digit, digit;

month =
digit, digit;

year =
[digit digit] digit, digit;

hour =
digit, digit ;

minute =
digit, digit;

second =
digit, digit;

143

(28) link type declaration =

local name, [type mode declaration], [‘exclusive],
['non_duplicated'], [stability name], category name, link’, [cardinality
range], [key list], ['t0', object type list], ['reverse’, link type name],
['with’,

attribute’,

attribute indication list,

‘end’, local name];

(29) link type extension =
‘extend’, ‘link’, ‘type’, local name, ['t0", object type list],
[with,
‘attribute’
attribute indication list,

‘end’, local name];

(30) category name =

[composition] | existence' | ‘reference

implicit’ | designation’;

(31) cardinality range =

T, [lower bound],"..".[upper bound], T;

(32) lowerbound
digit, {digit];

(33) upperbound
digit, {digit};

(34) stability name =
atomic’, stable’ I composite’, stable';

144

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

key list

'(" attribute indication list,

enumeration type declaration =

localname,enumeration image, { enumeration image };

type mode declaration =

‘(" 'usage’, type mode,'export’, type mode,')’ I

(', ['usage', V, export'], type mode,)"

type mode

‘protected’
allowed access
read" |

‘delete’;

object type name

global name

object type list

I allowed access, {V, allowed access };

write' | 'navigate’ | ‘create’

| local name;

object type name, {V, object type name};

attribute type name

global name

attribute type list

I local name;

attribute type name, { attribute type name};

link type name

global name

I local name ;

145

(45) link type list =
link type name. {V, link type name }

(46) enumeration type name

global name | local name ;

(47) sds name =

identifier;

(48) local name =

identifier;

(49) global name =

sds name , local name;

(50) identifier =

letter, { letter | digit 1

(51) capital letter =

A1 B 1 G 1 D 1 Bl
oo G’ 1 H1 T 1 J 1
K 1 X' 1 M1 N1 0 1
PP 1 Q 1 R 1) 1 e
X 1 V- w1 X1 %f 1
nZ;

146

(52) small letter

Q' 1 b 1 c’ 1 d 1 el 1
f 1 g 1 = 1 T 1 i’ 1
k 1 T 1 m 1 n i 0 1
) 1 q | Y 1 's' 1 t 1
u 1 v 1 ‘w' 1 X’ 1 y i
Z,

(53) letter =
capital letter small letter ;

(54) digit =
o T 2 3 2

5 6 7 8 9,

(55) comment =

[character], newline;

147

Appendix C c_prog SDS

This section describes the ¢c_prog SDS which is used by programming tools within a

PCTE environment. It contains the following type definitions:

Object types archive_file
asm_source
c_source
dir
evolution
file
group
indude_file
includejibrary
lint_library
object
object_code
program
project
sctx
subset
subset_interface
test
testset
toolset

user

Attribute types cause

edition

148

name
nature
number
passed

release
subname
system
system_release
target

variant

version

Link and a
relationship types acts

build

c

debug

deliverable

derived_from <-> derived in

e

err

exec

h

i

ine

include <->includedJn

interface

In
modif

monitor

0]

out
output
product
prog

S

sub
subprog
testform
testin
testout
testref
tests
theme
tmp
tool

tst

\'

y

The following gives a brief description of the purpose of each of these object, attribute,

relationship and link types.

Object Types
archive_file This object type represents an archive file.
asm_source This object type represents an assembler source file.

150

c/\source This object type represents a file containing C language

compilable source code.

dir This object type represents a directory.

evolution This object type represents a deliverable that has evolved from a

stable deliverable.

file This object type represents a temporary file, an error file, a test

file, an output file, a debug file, an activities file or a yacc text file.

group This object type represents a group of users.

include_file This object type represents a C include file.

includejibrary This object type represents a library of include files.

lint_library This object type represents a lint library

object This object type is the common ancestor type of all otherobject
types.

object_code This object type represents a file containing object code.
program This object type represents a piece of software, and has been

imported from the pact SDS.

roject This object type represents a software development project,
proj
sctx This object type represents a static context,

subset This object type represents a subset of a program.

subset_interface This object type represents a description of a module’s interface

and will normally be used for documentation purposes.

test This object type represents a software test.

testset This object type represents a set of tests.

toolset This object type represents a collection of static contexts.

user This object type represents a user of the Emeraude environment

Attribute Types

cause This attribute type indicates the reason for an evolutionary

derivation of software.

edition This attribute type indicates the edition number of a piece of
software.
name This attribute type indicates the name of an object. It is

typically used as the key on a link to the objecL

nature This attribute type represents a short description of the sort of

change involved in an evolution, what is being tested and a summary of a test set

number This attribute type is used to distinguish between instances of

the same link type originating from the same object

152

passed This attribute type indicates whether or not a piece of software

has passed a quality test.

release This attribute type indicates the release number of a piece of software.

subname This attribute type indicates a secondary name of an object. It is

typically used with name as a key on a link to the object

system This attribute type indicates the name of the system under which

the software development is taking place.

system_release This attribute type indicates the release number of the system

under which the software development is taking place.

target This attribute type indicates the hardware on which the

developed software is designed to execute.

variant This attribute type indicates the variant name of a piece

of software.

version This attribute type indicates the version number of a

piece of software.

Link and Relationship Types

a This is a link to an archive file.

acts This is a link from a subset to a temporary file created and used

by the Unix yacc tool.

153

build This is a link from a piece of software to a collection of tools.

c Thisis a link from a subsetto a C compilable source file.

debug Thisis a link from a subset to a debug file, created and used by

the Unix yacc tool.

deliverable This is a link from a piece of software to a stable object

representing a deliverable program.

derived_from <-> derived__in This is a relationship between two objects, one

being a derivation of the other.

e This link type is provided to allow compatibility with Unix file systems.
err This is a link from a subsetto an object representing an error file.

exec This is alink from a piece of software to a static context that it requires
to execute.

h This is a link from an include library or a subset to an include file.

i This is link from a subset to a C source file, to hold output from the C

pre-processor.

inc This is a link from a piece of software to an include library.

include <->included_in This is a relationship between a stable include file and a

C compilable source file or another include file.

interface This is a link from a subset to its interface file (that holds a description

of the module subset).

154

1 This is a link from a subset to a temporary file, created and used by the

Unix tool lex.

In This is a link from a directory to a link library.

modif This is a link from any object to an evolution, representing a

modification to the software development

monitor This is a link from a test input file to the static context representing a

test monitor.

0 This is a link from a directory or a subset to a file containing object

code. Itenables binaries to be collected for any purpose.

out This is a link from a piece of software to a static context. It is the C

compiler default

output This is a link from a subset to an output file, created and used by the

Unix tool yacc.

product This is a link from a software development project to a piece of
software.

prog This is a link from a user or group to a piece of software.

S This is a link from a subset to an assembler source file.

sub This is a link from a piece of software to a subset or fromonesubset to
another.

155

subprog This is a link from one piece of software to another, and represents the

association between the two.

testform This is a link from a test to a file which holds a complete description of

atest The attribute type nature represents a brief description only.

testin This is a link from a test to a file containing commands to initialise a

debugging session.

testout This isalink from atestto a file containing the output of a test session.
testref This is alink from a test to a file containing reference output
tests This isa link from a program or subset to the set of tests to be applied

to that program or subset.

theme This is a link between two sets of tests and represents the association

between the two sets of tests.

tmp This is alink from a subset to a temporary file.

tool This isa link from a collection of tools to a static context.

tst This isalink from a set of tests to a test belonging to the set.

v This isa link from a user or a group to a piece of software.

y This isa link from a subset to an input text file fro the Unix compiler
yacc.

156

DDL listingfor the cjprog SDS

The following is the DDL listing for the c_prog SDS taken from the public types of

[58]:

newsds cjprogis

import

release

version

edition

system

systemjrelease

target

variant

number

passed

subname

nanire

Sys-name as name;

integer

integer

integer

string;

string;

string ;

string ;

integer

boolean ;

string ;

string ;

157

“bug” ;

cause string :=
import sys-object as object ;
import sys-file as file ;
import sys-dir as dir ;
import Sys-sctx as sctx
import env-group as group ;
import env-project as project;
import env-user as user ;
import env-toolset as toolset;
import pact-software as program
includeJibrary subtype of
includelJile subtype of
c_source subtype of
asm_source subtype of
object_code subtype of

archiveldile

subtype

of

object

file

file

file

file

file

lintjibrary

rest

testset

subset

subsetjnterface

evolution

prog

link

subtype of
subtype of
subtype of
subtype of
subtype of
subtype of
composition

to program

file

object

object

object

file

file

il

Ll

(name)

159

import env-tool as tool ;

extend tool to setc ;

import env-e as e

extend e to includedibrary

rst composition link (name, number)
to test ;

h composition link (name, subname)

to includelile

product composition link (name, release)

to stable program

deliverable reference link (number)

to stable object ;

sub composition link (name)
to subset ;
inc composition link (name)
to includeJibrary ;
build composition link to toolset ;
modif composition link (number)

to evolution

relationship (

derivedJrom reference link

to object ;

derivedjn : implicit link

to object)
c : composition link (name, subname)

to c_source

tests : composition link to testset
monitor : composition link to sctx ;
testin : composition link to file :
testref : composition link to file ;
testout : composition link to file ;
exec : composition link to sctx ;
interface : composition link to subsetjnteface
i : composition link (name, subname)

to C_source ;

a : composition link (name, subname)

to asmjsource ;

err : composition link (name, subname)

to file :

161

relationship (

include

includedjn

output

debug

acts

tmp

subprog

testform

reference link (name)
to stable includeJile ;
implicit link ()
to c_source, includedile)

composition link

to file ;

composition link

to file

composition link

to file

composition link

to file

composition link

to file

composition link

to file

composition link

to lintjibrary

composition link

to program

composition link

(name, subname)

(name, subname)

(name, subname)

(name, subname)

(name, subname)

(name, subname)

(name, subname)

(name, subname)

to file

theme

out

extend object

with

link modif

end object ;

extend dir
with
link In
a
e
0
end dir ;
extend group
with
link prog
\Y

end group ;

composition link

to testset ;

composition link

to object_code

composition link

to program

composition link

to sctx ;

(name)

(name, subname,)

9

(name,version)

9

(name, subname)

extend project

with

link product

end project;
extend program

with

attribute

link

end program

extend user

with

link prog

end user

version:
edition :
system :
system_release
target ;
variant;
deliverable
sub

inc

build

tests

exec
subprog

a ;

out

extend toolset
with
link tool

end toolset;

extend includeJibrary
with
link h
e

end includedibrary

extend test

with
attribute passed ;
nature ;
link monitor
testin
testref ;
testout ;
testform
end test
extend testset
with
attribute nature
link tst
theme

end testset ;

extend subset
with
link h
sub
interface

c

err

output
debug
acts
tmp

|

0

tests

end subset ;

extend evolution
with
attribute cause

nature

end evolution

end C_prog

Appendix D Example IDL interface for PCTE
tools

In this example, an IDL interface is defined for two PCTE tools, an Editor (obj_edit)
and a C compiler (ecc). This example also demonstrates tool composition: via
CORBA and their IDL interfaces, these tools were combined to form a builder tool,
which edits a C source code file, and if any changes are made to the file during the
editing session the file is recompiled automatically. This appendix contains the
complete souce code for this example. ORBIX Version 1.1 from IONA Technology is

the CORBA implementation and Emeraude PCTE V 12 is the PCTE implementation

used in this example.

The following is the IDL definition for the interface to the PCTE compiler, ecc,

compiler.idl:

enum COMPILER_RESULT {
COMPILERJAILED, /lcompiler could not be executed
COMPILEDJDK, /lcompiled with no erors
COMPILEDJWITH_ERRORS, /lcompiled with errors
COMPILERJ<!OTJTNED }¥; /lcompiler not invoked

interface compiler {
readonly attribute COMPILER_RESULT errors;

void compile(in string objectname,
in string execname,
in string parameters,

in string disp);

167

The following is the IDL interface definition for the PCTE tool editor, obj_edit,

editor, idi :

enum EDITOR_RESULT {
EDIT_FAILED,

FILEJCHANGED,
FILEJJNCHANGED};

interface editor {
readonly attribute EDITORJRESULT changes ;

void edit_object(in string objecmame,

in string e_disp);

The following is the IDL interface definition for the composite tool, builder.idi:

#include “editor.idl”

include “compiler.idF

interface builder: editor, compiler {
void build(in string objectname,
in string exechame,
in string cparameters,

in string disp);

168

The class EditorJ is the implementation class for the editor IDL interface. The class

declaration and definition for Editor_i is given below.

/! file name : editor_i.h

#include ““editor.idl.h”

I class Editor_i

I EditorJ interfaces to the Edit wrapper

dass EditorJ : public virtual editorBOAImpl {
protected:
char e_display[150]; Il holds the screen display
char pathname[150];
EDJTOR_RESULT changesJ
void set_changes(EDITOR_RESULT number);
private:
char * object_path{char *);
public:
EditorJO’,
virtual void edit_object(char *objectname,
char *e_disp,
Environment &);

virtual EDITOR_RESULT changes(Environment &);

169

/1 file name : editor_i.cc

#include <iostream.h>
#include <unistd.h>
#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>
#indude <string.h>
#indude “editorJ.h”

#indude “demo.h”

Il function definitions for the Editor_i class

extern char **environ; Il holds the environment variables used be execlp

EditorJ:: EditorjiQ

{
changes_i=0 ; /I initialise changes

strcpyipathnam e//intialise pathname

char * Editor_i::object_path(char *objectname)

{

/I truncate the file name from the end of the object name to

/I reveal the path name

0.
0.

char obj_name[\5Qi]’,

int i

int slen

char path[150];

strcpy(obj_name,objectname);

170

void

11

strcpyipath

slen = strlen(objectname)\

for (i=slen; obj_name[i]l="";
stmcpy(path,objectname,i);
strcat{path,”/backup, c”);

return(paili);

Editor_imedit_object(char *objectname,
char *e_disp,

Environment &)

int status ;
int pid ;
char ertv_im>2g[150] ;

char * dummy ;

set up the e/m'ronmentin which the child process is to execute

strcpy(e_display,e_disp);

e/m'ro«[0] = new char[150];

strcpy(env_string,”FILENAMES); Il setup FILENAME environment var
strcat(env_string, objectname);

strcpyienviron [G],env_string);

environ[1] = new char[150];
strcpy(env_string,”DISPLAY="); llset up DISPLAY environmentvariable

strcat(env_string,e_display);
strcpy(environ[l],env_string);

dummy=object_path{objectname);

environ[2] = new char[150];

171

strcpy (env_string,”BACKUPNAME=*); /I setup DISPLAY variable

strcat(env_string, dummy)’,

strcpy(environ[2],env_string);

if (pid =fork()) { /I Parent has non zero [True] pid

wait(&status); // Parent process waits for completion
switch(status) {
case CLEAN_VAL_1 RETURN:
set_changes(FILE_CHANGED);
break;
case CLEAN_VAL_O RETURN:
set_changes(FILE_UNCHANGED);

break;
default: set_changes(EDIT__FAILED);
break;}
}
else /I Child has zero [FALSE] pid
{

execlpi “/nome/cse/emerpcte/bin/tools/ewviron.tools/esh”,
“esh’Y ’edit”,
(char ©Q; /7 child

¥

void Editor_i::set_changes(EDITOR_RESULTnumber)

{

1 set changes to reflect if the file has been changed

number ;

changesj

172

EDITOR_RESULTEditor_i::changes(Environment &)

{

/l returns value of changes_i, value depends on the file being edited has changed.

retum(changes_i);

The following is the ESH script wrapper which interfaces between the PCTE tool

obj_edit, and the implementation of the editor interface.

Shell wrapper for PCTE edit tool
required environment :
FILENAME {file name = 'path/filename'}

BACKUPNAME {backup name = 'path/backup.c'}

Shell type : ESH

Add the c_prog and pact working schema to the current working schema

ws_add_sds cjprog

ws.addsds pact

set the home object

co ~ _/ users/ptangney.usr

check to see if object exists

els %OBJECTNAME Igrep -s “1.”
case $? in

0) ’

173

2) STATUS =3; exit $STATUS;; # system error
1) _l.users/ptangney.usr/patricia.tools/pcteOC.tool $OBJECTNAME

pete tool to create an object of type c_source

case $? in
O;; # object created ok, zero bytes long
*) echo “not created error3’;

exit 2;; # object not created due to error

esac

esac

make a backup of file before edit begins
_Isun4.toolsets/user.tools/obj_copy $OBJECTNAME $BACKUPNAME

edit the object

_l.users/ptangney.usr/patricia.tools/editor.tool $OBJECTNAME

check if edited object was updated

_Isun4.toolsets/imported.tools/cmp -s $OBJECTNAME $BACKUPNAME

Ono change,].if change, 2iferr0r

OBJECT_CHANGED=$?
delete the backup

_/sun4.toolsets/user.tools/link,,delete $SBACKUPNAME

exit SOBJECT_CHANGED

174

The class compiler_i is the implementation class for the compiler IDL interface.

class declaration and definition for compiler_i is given below.

/1 compiler_i.h

#include “compiler.idl.h”

class compilerj. : public virtual compilerBOA Impl

{
protected:

COMPILER RESULT error//errorstatus of last invocation
/Iset error to result of last compile
void Iy£f_g75v(COM PILER_RESULT result) {error_J =result;}
char c_display[150]; // holds screen display
public:
/lconstructor creates object and inits compiler error status
compiler_i() {error_i=COMPILER_NOT_TRIED;}
/lget last compile result
virtual COMPILER _RESULT errors(Environmem &)
{return(e/ror_0;}
virtual void compile(char *objectname,
char *execname,
char *parameters,
char *disp,

Environment &);

The

175

1l file name : compiler_i.cc

~include <iostream.h>
#include <unistd.h>
#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include “‘compilerd.h”

#include “demo.h”

extern char **environ

void compilerJ.::compile®

int status ;

int pid ;

; llenvironment info in this data struct used by “execlp”

char *filename,
char *execname,
char * parameters,
char *disp,

Environment &)

/] Status of child at termination

/1 pid = Ofor child, non-zero for parent

char env_string[150]; /I Unix environment values for child.

/1 set up unix environment for child processes

environ[0] =

new char[150];

strcpy(environ[0],” OBJECTNAME=");

strcat(environ [in lename);

environ[1] =

new char[150];

5/rc/7>(e/2Vi'ral2[l],” PARAM S=*);

strcat{environ[1] , parameters)’,

environ[2]

new char[150];

176

strcpy(env_string,”DISPLAY="); // setup DISPLAY env var

strcat(env_string,disp);

strcpy(environ[2],env_sTring);

environ[3]

= new char[150];

strcpy(env_string, "EXECNAME=");

strcat(env_string,execname);

strcpy(environ[3],env_string);

pid = fork()) Il Parent has non zero [True] pid

wait(ciistatus); 1l Parent process waits for completion

switchOtaiws)

{

}
}
else

{
execlp(

case CLEAN_VAL_O0 RETURN:
,se;_error(COMPILED_OK);

break;

case CLEAN_VAL_1 RETURN:

AU?rror(COMPILED_WITH_ERRORS);

break;

default: iei_grror(COMPILER_FAILED);

break;

/l Child has zero [FALSE] pid

“/home/cse/emerpcte/bin/tools/environ.tools/esh”,
77esh77,

»compile”,(char *)0: I*child *1

}

177

The following is the ESH script wrapper which interfaces between the PCTE tool ecc,

and the implementation of the compiler interface.

Required environment : OBJECTNAME, DISPLAY, EXECNAME

Shell type : ESH

Check if object exists if not then exit with error
setup PCTE working schema
ws_add_sds c_prog

ws_add_sds pact

els SOBJECTNAME Igrep -s “1..”
case $? in
Q ;; # object exists
*) STATUS=3; exit $STATUS ;; # system error

esac

Check if the execution object has been created

els SEXECNAME1grep -s “1..”

case $? in
O ;; #object exists
*) _/.users/ptangney.usr/patricia.tools/execOC.tool $SEXECNAME
case $? in
O;; # created ok

*) echo “ERROR: Unable to create execution object !";
STATUS=3; exit$STATUS;;
esac ;;

esac

Compile object with PCTE tools

178

Check whatparameters have been passed to the wrapper

p="

echo $PARAMS Igrep -s “NOLINK”

case$? in
1) P:“-C";;
*)

esac

echo $PARAMS Igrep -s “OPTIMISE”

case $? in
1) P:‘£_07’;;
*)

esac

echo $PARAMS Igrep -s “DEBUG”
case $? in

DP=“g";

i
esac

_Isun4.toolsets/imported.tools/ecc $P -0 $EXECNAME %OBJECTNAME

errorlist;
case $? in
0) STATUS=0; echo “compled ok.” ;;
1) STATUS=1; echo “errors during compilation”;;

esac

cat errorlist

exit $STATUS;

The class builderJ is the implementation class for the builder IDL interface.

class declaration and definition for builder_i is given below.

#include “builder.idl.h”
#include “editor_i.h”

#include “compilerJ.h™

/1 class builderJ

The

class builder_i : public virtual builderBOA Impl, public virtual Editor_i, public

virtual compiler_i {
public:
builderJ(); Il constructor
virtual void build(char *objectname,
char *execname,
char *parameters,
char *display,

Environment &);

/1 builder_i.cc

#include <iostreanuh>
#include <unistd.h>
#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include “builderJ.h”

180

#include “demo.h”

I function definitions for the builder i class

builderJ::builder_i{) {}

void builder_i::build{char *objectname*

compiler *
editor =*
int

Int

TRY {

CompilerPtr = compi7er::_bind(“*,”sonia” ,IT_X);

char *execname,
char *parameters,
char *display,

Environment &)

CompilerPtr',
EditorPtr;
number_changes;

number_errors;

} CATCHANY/{

cout «

“\n Error in binding to a compiler interface “ «

exit(D);

} ENDTRY

TRY {

EditorPtr - editor::_bind(*“,”sonia”,IT_X) ;

}CATCHANY/{

cout «

exit(l)

<n Errorin binding to an editor interface * «

IT_

IT_

X

X;

}ENDTRY

TRY {

EditorPtr->edit_object(objectname,display,I T_X);

}JCATCHANY{

cout « “\n Errorinvoking the Editor “ « IT_

exit(l);

}ENDTRY

TRY {
number_changes = EditorPtr->changes(1T_X);

}CATCHANY{

X;

cout « ‘An Error detecting Changes \n” « IT_X;

exit(l);

}ENDTRY

if (number_changes = FELE_CHANGED) {

TRY {

CompilerPtr->compile(objectname,execname,parameters,display, TT_X);

}CATCHANY{

cout« “\n Errorinvoking Compiler\n « IT_X";

exit(l);
}ENDTRY
TRY {
numberjerrors = CompilerPtr->errors(IT_X);
}JCATCHANY{
cout « “\n Error detecting compile errors \n “«
exit(l);

}ENDTRY

IT_X;

182

