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Few different approaches have been explored re-

cently. The first group of works (e.g. [1–3,6,29]) started

with the Reissner–Mindlin shell model (with three dis-

placements of the mid-surface and two rotation pa-

rameters of the shell director typically used for smooth

shells) enriching it further by a desired number of pa-

rameters to permit a reliable representation of through-

the-thickness stretching. Those parameters are either

independent kinematic variables, or strain variables

constructed in the framework of the enhanced assumed

strain (EAS) method, which are further eliminated at the

finite element level. Second group (e.g. [7,13,28]) went

along a similar path, but instead of describing shell di-

rector deformation with two rotation parameters they

rather used three components of so-called difference

vector. So-developed shell models posses no rotation

degrees of freedom. Final group to be mentioned (e.g.

see [15,21,27]) preferred to take a solid element as the

basis for their developments. They reduced the shell-like

features of the so-developed elements to special treat-

ment of shear deformation along with the modifications

for through-the-thickness stretching.

For any of the 3d shell models mentioned above the

use of the fully 3d constitutive equations should pref-

erably be accompanied by a linear variation of the

through-the-thickness deformation component. This

imposes two additional kinematic parameters for models

with rotations and one for models with displacements

only. One arrives at a 7-parameter shell theory. If one

intends to decrease the computational efficiency and,

more importantly, simplify the issues of the corre-

sponding boundary conditions, the method of incom-

patible modes (e.g. see [16,17,31]) ought to be employed

in order to reduce the number of parameters to 6.

We focus in this work on two questions. First, we

study the difference between a 7-parameter theory where

the exact expressions are used for the Green–Lagrange

strain measures versus the shell theory where the usual

simplifications (e.g. see [10,12]) are carried out by ne-

glecting certain terms. The former of these two models

can be developed without difficulty mostly for our use of

symbolic manipulation (see [22,24]). The second study is

oriented towards two possible implementations of the

method of incompatible modes: one with an additive

decomposition of strains (e.g. [16]) versus the other with

an additive decomposition of the deformation gradient

which leads to a multiplicative decomposition of strains

(e.g. [17]).

The outline of this paper is as follows. In Section 2

we lay the governing equations of the 7-parameter

shell model. Two different variants of the incompati-

ble mode methods are presented in Section 3. In Section

4 we provide some details of the numerical imple-

mentation. Several numerical examples are presented

in Section 5 and the concluding remarks are given in

Section 6.

2. Shell theory with 7 parameters

In this section we first elaborate upon a shell formu-

lation which employs the Reissner–Mindlin hypothesis

that a straight fiber remains straight, but with enhanced,

higher-order variation of the through-the-thickness dis-

placement components. We then move on to develop the

corresponding form of the Green–Lagrange strain mea-

sures. To complete the theory we deal with the simplest

set of hyperelastic constitutive equations: the St. Ve-

nant–Kirchhoff (SVK) and the neo-Hookean (NH) ma-

terials. Finally the equilibrium equations are presented in

their weak form along with their consistent linearization.

Contrary to the classical Reissner–Mindlin kinemat-

ics (incapable of accounting for through-the-thickness

deformation), we set to develop an enriched kinematic

field in order to extend the potential application domain

of the developed shell model. To that end, the shell

position vector from the initial configuration

xðn1; n2; fÞ ¼ u0ðn1; n2Þ þ f
h0
2
gðn1; n2Þ ð1Þ

with

kgk ¼ 1; ðn1; n2Þ � A � R2; f 2 ½�1; 1� ð2Þ
(where n1, n2 and f are natural or convected coordinates,

u0 is the position vector of the shell middle surface, h0 is
the initial constant shell thickness, A is the domain of

the shell middle surface parametrization, and g is the

initial unit normal or shell director) is transformed into

its counterpart at the deformed configuration as

xðn1; n2; fÞ ¼ uðn1; n2Þ þ f
hðn1; n2Þ

2
aðn1; n2Þ

þ f
hðn1; n2Þ

2

� �2eqqðn1; n2Þaðn1; n2Þ; ð3Þ

with

kak ¼ 1 ð4Þ
and

uðn1; n2Þ ¼ u0ðn1; n2Þ þ uðn1; n2Þ: ð5Þ
In (3) and (5) u is the displacement vector providing a

new position of the middle surface, h is the current shell

thickness, a is the current position of the shell director

and eqq is the hierarchical term introducing the displace-

ment quadratic variation in the through-the-thickness

direction. Considering that we allow for thickness

change in the direction of f coordinate 2 with

kðn1; n2Þ ¼ hðn1; n2Þ
h0

; ð6Þ

2 Note that f coordinate is not perpendicular to the middle

surface at the deformed configuration.



we may write (3) as

xðn1; n2; fÞ ¼ uðn1; n2Þ þ f
h0
2
kðn1; n2Þaðn1; n2Þ

þ f2
h20
4
qðn1; n2Þaðn1; n2Þ; ð7Þ

where

q ¼ keqq: ð8Þ
We note that the structure of the term for quadratic

variation of displacements in through-the-thickness di-

rection chosen in (7) is just one of the several possibili-

ties. To simplify the notation we further rewrite (7) as 3

xðn1; n2; fÞ ¼ uðn1; n2Þ þ fdðn1; n2Þ þ f2fðn1; n2Þ; ð9Þ
where

d ¼ h0
2
ka; f ¼ h20

4
qa: ð10Þ

The position of the shell director a is defined by two

rotational parameters, which are in this work two

components of the total material rotation vector #

a ¼ að#1; #2Þ ð11Þ
(e.g. see [10] or [11] for details).

The configuration space consistent with the choice of

kinematics indicated in (3) has 7 parameters

C ¼ U ¼ u; a; k; qð ÞjA ! R3 � S2 � Rþ � Rj
ujouA ¼ u; ajoaA ¼ a; kjokA ¼ k; qjoqA ¼ q

� �
;

ð12Þ
where ouA; . . . ; oqA are parts of the shell boundary

where the corresponding variable value is prescribed. In

(12), it is indicated that the unit vector a belongs to a

unit sphere manifold, which imposes a special treatment

of finite rotations (e.g. see [30] or [20]).

Departing from the classical exposition on the subject

(e.g. [26]), which reduces the shell theory to a 2d setting,

we keep herein the fully 3d picture. Consequently, the

choice of the coordinates in the shell-deformed config-

uration leads to the following vector basis:

aa ¼ ox
ona

¼ u;a þ fd;a þ f2f;a ;

a3 ¼ ox
of

¼ dþ 2ff;
ð13Þ

where ð�Þ;a ¼ ðoð�Þ=onaÞ; a ¼ 1; 2 and

d;a ¼ h0
2
ðk;aaþ ka;aÞ; f;a ¼ h20

4
ðq;aaþ qa;aÞ: ð14Þ

The Green–Lagrange strains may be written as

E ¼ 1
2
FTF
� � 1

� ¼ 1
2
ðC� 1Þ ¼ Eijg

i � gj; ð15Þ
where F is the deformation gradient, 1 is the unit tensor,

C is the right Cauchy–Green stretch tensor and gi are
contravariant base vectors of the initial configuration,

defined as gi � gj ¼ dji , where dji is Kronecker delta sym-

bol. Base vectors gi follow from (1) as

ga ¼
oX
ona

¼ u0;a þ f
h0
2
g;a;

g3 ¼
oX
of

¼ h0
2
g:

ð16Þ

Note that g3 ¼ ð2=h0Þg. Strains in that basis are defined

as (F ¼ ai � gi and 1 ¼ gi � gjgi � gj)

Eij ¼ 1
2
ðai � aj � gi � gjÞ

¼ Hij þ fKij þ f2Lij þ f3Mij þ f4Nij;
ð17Þ

with their explicit forms 4 obtained by using (13) and

(14)

Hab ¼ 1
2
ðu;a � u;b � u0;a � u0;bÞ;

Ha3 ¼ 1

2
u;a � d

0
B@ � h0

2
u0;a � g|fflfflffl{zfflfflffl}

0

1
CA;

H33 ¼ 1

2
d � d

	
� h20

4



;

ð18Þ

Kab ¼ 1

2
u;a � d;b

	
þ u;b � d;a �

h0
2
u0;a � g;b �

h0
2
u0;b � g;a



;

Ka3 ¼ 1

2
d;a � d

0
B@ þ 2u;a � f �

h20
4
g;a � g|fflffl{zfflffl}

0

1
CA;

K33 ¼ 1
2
ð4f � dÞ;

ð19Þ

Lab ¼ 1

2
d;a � d;b

	
þ u;a � f;b þ u;b � f;a �

h20
4
g;a � g;b



;

La3 ¼ 1
2
ð2d;a � f þ f;a � dÞ;

L33 ¼ 1
2
ð4f � fÞ;

ð20Þ

Mab ¼ 1
2
ðd;a � f;b þ d;b � f;aÞ;

Ma3 ¼ 1
2
ð2f;a � fÞ;

M33 ¼ 0;

ð21Þ

3 Eq. (9) can be regarded as a two-term approximation of

x ¼ uþP1
n¼1 f

ndn given by Naghdi [26, p. 466] to derive a shell

theory from the 3d solid; see also [25].

4 The through-the-thickness coordinate in shell theories is

usually defined as n ¼ fðh0=2Þ having ð�Þ3 ¼ oð�Þ=on. Since we

work here with f coordinate and ð�Þ3 ¼ oð�Þ=of, we obtain for

strains an additional term of h0=2 for each subscript 3.



Nab ¼ 1
2
f;a � f;b
� �

;

Na3 ¼ 0;

N33 ¼ 0:

ð22Þ

From the above expressions it can be seen that the in-

plane shell strains are of fourth order with respect to f
coordinate, while the transverse shear strains and the

transverse normal strain vary cubicly and quadratically,

respectively.

Usual simplification carried out in the shell theory

developments (see e.g. [2,10,12,28]) is to truncate ex-

pression (17) after the linear term, so that

Eij ! Hij þ fKij: ð23Þ
In this work we will develop a model with exact ex-

pressions for strains and a simplified model with con-

stant and linear variation of strains through the

thickness.

Having defined the kinematics for the chosen 7-

parameter shell model, we proceed with the constitutive

equations. We will restrict ourself to a simplest set of

hyperelastic materials: the SVK and the NH. The stored

energy density function per unit initial volume of the

SVK material is defined as

W ðEÞ ¼ k
2
ðtrEÞ2 þ l trE2; ð24Þ

where

k ¼ Em
ð1þ mÞð1� 2mÞ and l ¼ E

2ð1þ mÞ
are Lam�ee coefficients, trð�Þ is trace of tensor ð�Þ, and E is

the Green–Lagrange strain tensor deduced above. The

stored energy density function for the NH material reads

as

W ðEÞ ¼ k
2
ðJ � 1Þ2 þ l

trC� 3

2

	
� ln J



; ð25Þ

where J ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
det½C�p

. No shear correction factors are used

in the constitutive models. Derivation of (24) and (25)

with respect to the strain tensor leads to expressions for

the second Piola–Kirchhoff stress tensor. We have

S ¼ oW
oE

¼ k trE1þ 2lE ¼ Sijgi � gj ð26Þ

for the SVK material and

S ¼ 2
oW
oC

¼ kðJ � 1ÞJC�1 þ lð1� C�1Þ
¼ Sijgi � gj ð27Þ

for the NH material. Derivation of stresses with respect

to strains gives the components of the constitutive tensor

C ¼ oS
oE

¼ o2W ðEÞ
oE2

¼ Cijklgi � gj � gk � gl: ð28Þ

We can thus write the total potential energy for the

present shell model in the same way as for the 3d solid

Pðu; a; k; qÞ ¼
Z
A

Z
h0

W ½Eðu; a; k; qÞ�dV þPextðuÞ;

ð29Þ

where A defines the shell middle surface and Pext is the

potential of the conservative external forces acting

on the middle surface 5 of the shell, which may be

written as

PextðuÞ ¼ �
Z
A
h0q0b � udA�

Z
A
p � udA�

Z
oA
t � uds:

ð30Þ

In (30) b, p and t are applied body forces, pressure

forces and forces acting on the edges of the shell middle-

surface, respectively, and q0 is the initial 3d mass den-

sity. Variation of (29) with respect to the independent

kinematic variables leads to the weak form of equilib-

rium equationsZ
A

Z
h0

oW ðEÞ
oE

dEdV ¼ DPextðuÞ � du; ð31Þ

where the variation of strains, dE ¼ DEðUÞ � dU, can be

obtained by varying (18)–(22). Linearization of (31)

gives the tangent operatorZ
A

Z
h0

½ðCDEÞdEþ SðDdEÞ�dV ; ð32Þ

where DE is the linearization of strains DE ¼
DEðUÞ � DU, and DdE is the linearization of the variation

of strains DdE ¼ D½dEðUÞ� � DU.

3. Shell theory with six parameters and method of

incompatible modes

The 7-parameter shell theory developed in the pre-

vious section is very much geared towards the applica-

tions of a shell-like structures, and it might be difficult to

use it as a part of the model of a complex system.

Therefore, we develop in this section an alternative im-

plementation of the shell theory with through-the-

thickness stretching where the number of parameters is

reduced to 6, which might be easier to combine with

solids. In order to accommodate the linear variation of

the through-the-thickness stretch we resort to the

method of incompatible modes. We obtain a shell finite

5 The potential of the conservative external forces can be

extended to the forces acting on the shell top and bottom

surfaces, i.e. Pext ¼ Pextðuþ fdþ f2fÞ, where f ¼ �1.



element with six nodal parameters, which possesses an

additional advantage of fitting easier into the standard

finite element software architecture.

Two possible implementations of the incompatible

mode method are considered: one with an additive de-

composition of strains and the other with an additive

decomposition of the deformation gradient, which leads

to a multiplicative decomposition of strains. The former

is simpler, but only acceptable for small strains, whereas

the latter, although more complex to handle, is also

applicable for large strains.

3.1. Incompatible modes based on an additive decompo-

sition of strains

If one wants to recover a 6-parameter 6 shell theory,

the through-the-thickness displacement variation ought

not be more than linear. This results in the following

deformed configuration position vector:

xðn1; n2; fÞ ¼ uðn1; n2Þ þ f
h0
2
kðn1; n2Þaðn1; n2Þ

¼ uðn1; n2Þ þ fdðn1; n2Þ;
ð33Þ

with d already defined in (10). The corresponding base

vectors are then

aa ¼ ox
ona

¼ u;a þ fd;a;

a3 ¼ ox
of

¼ d:

ð34Þ

The initial configuration position vector and its deriva-

tives remain the same as indicated in (1) and (16), re-

spectively.

The configuration space of the shell model consistent

with the choice of kinematics indicated in (33) has six

parameters: three displacements of the middle surface,

two rotation parameters defining the position of the

shell director a and one through-the-thickness stretching

parameter k. It can be written as

C ¼ U ¼ ðu; a; kÞjA ! R3 � S2 � Rþj;
ujouA ¼ u; ajoaA ¼ a; kjokA ¼ k:

� �
ð35Þ

The Green–Lagrange strains for the 6-parameter

model in the gi base are then

Eij ¼ 1
2
ai � aj
� � gi � gj

� ¼ Hij þ fKij þ f2Lij; ð36Þ

where

Hab ¼ 1
2
u;a � u;b

� � u0;a � u0;b

�
;

Ha3 ¼ 1
2
u;a � d
� �

;

H33 ¼ 1

2
d � d

	
� h20

4



;

ð37Þ

Kab ¼ 1

2
u;a � d;b

	
þ u;b � d;a �

h0
2
u0;a � g;b �

h0
2
u0;b � g;a



;

Ka3 ¼ 1
2
d;a � dð Þ;

K33 ¼ 0;

ð38Þ

Lab ¼ 1

2
d;a � d;b

	
� h20

4
g;a � g;b



;

La3 ¼ 0;

L33 ¼ 0:

ð39Þ

Through-the-thickness variation of the in-plane strains,

the transverse shear strains and the transverse normal

strain is quadratic, linear and constant, respectively. A

problem arises from the zero value of K33 in (38), which

implies a constant value of E33 strain. Namely, even for

the simplest stress state of pure bending (equivalent to

the patch test condition, e.g. see [33]) with the linear

variation of in-plane strain components in through-the-

thickness direction, the plane stress state can never be

reproduced for any non-zero value of Poisson’s ratio,

since

S33 ¼ C33ab Eab|{z}
linear in f

þC3333 E33|{z}
constant in f

: ð40Þ

This kind of problem is often referred as Poisson’s ratio

stiffening (see e.g. [8,13]).

If one would like to employ a 3d constitutive model

for shells and still avoid Poisson’s ratio stiffening, it is

indispensable to use a linear variation of the E33 strain

component, which can be introduced by the incompat-

ible mode method

Eij ! Eij þ eEEij; eEEij ¼
0; i; j ¼ 1 or 2;
0; i or j ¼ 3;
fA33; i; j ¼ 3:

8<
: ð41Þ

This modification can then be introduced into the

energy functional governing the shell problem according

to

P u; a; k|fflffl{zfflffl}
U

; eEEij; Sij

0
@

1
A

¼
Z
A

Z
h0

1

2
Eij

��
þ eEEij



Cijkl Ekl

�
þ eEEkl



� SijeEEij

�
dV

�PextðuÞ: ð42Þ

6 The same notation is used in Sections 2 and 3, although

some quantities of the 6-parameter shell theory (like x, ai, some

strains, etc.) are of different form than those of the 7-parameter

shell theory.



The second term in the integral in (42) represents the

Lagrange multiplier modification forcing the enhance-

ment eEE33 to disappear in the strong form of the problem.

The same does not happen in the weak form, which can

be written as

DPðU; eEEij; SijÞ � dU
¼

Z
A

Z
h0

dEijC
ijklðEkl þ eEEklÞdV � DPextðuÞ � du ¼ 0;

ð43Þ

DPðU; eEEij; SijÞ � deEEij

¼
Z
A

Z
h0

deEEij

h
� Sij þ CijklðEkl þ eEEklÞ

i
dV ¼ 0; ð44Þ

DPðU; eEEij; SijÞ � dSij ¼
Z
A

Z
h0

dSijeEEij dV ¼ 0: ð45Þ

Expressions (43)–(45) can be simplified by assuming

orthogonality of the chosen strain enhancement and the

stress field, making the first term in each of the last two

equations to disappear. Eq. (45) implies that one should

have

0 ¼
Z
A

Z
h0

S33eEE33 dV ¼
Z
A

Z
h0

S33ðfA33ÞdV ð46Þ

if S33 ¼ functðn1; n2Þ.
One has to ensure, however, that the constant

through-the-thickness stress field is contained in the

chosen stress variation thus ensuring the patch test

condition (e.g. [32]) in the following form:Z
�

Z 1

�1

eEE33 jdfdn
1 dn2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

dV

¼ 0; ð47Þ

where � is a bi-unit square and j is Jacobian of the

transformation from the initial shell finite element con-

figuration to a bi-unit cube ðj ¼ ðdet½gi � gj�Þ1=2Þ. Inter-
polation of A33 over the finite element may be chosen as

A33ðn1; n2Þ ¼ j0
j
ða1 þ a2n

1 þ a3n
2 þ a4n

1n2Þ

¼ j0
j
nTa ð48Þ

or otherwise with the bi-linear functions as

A33ðn1; n2Þ ¼ j0
j

baa1N1ðn1; n2Þ
� þ baa2N2ðn1; n2Þ

þ baa3N3ðn1; n2Þ þ baa4N4ðn1; n2Þ
�

¼ j0
j
bnnTbaa: ð49Þ

In (48) and (49) j0 is Jacobian at the center of the finite

element (at n1 ¼ n2 ¼ f ¼ 0), vector

a ¼ a1; a2; a3; a4f gT ð50Þ
is vector of four local element strain parameters 7 as-

sociated with interpolation of eEE33, and n is vector of

interpolation functions for a. Na (with a ¼ 1; 2; 3; 4)
are standard bi-linear interpolation functions for 4-

noded finite element (which is also a particular choice

for the implementation of the present shell theory; see

Section 4)

Na ¼ 1
4
ð1þ n1an

1Þð1þ n2an
2Þ;

n1a 2 ½�1; 1; 1;�1�; n2a 2 ½�1;�1; 1; 1�: ð51Þ
Eq. (46) can now be exactly verified for constant

S33 stress with respect to f coordinate, while from (47) it

follows

j0

Z
�
ndn1 dn2

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

Z 1

�1

fdf

	 

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

0

¼ 0: ð52Þ

The set of remaining equations in (45) is highly

nonlinear and ought to be handled by an iterative pro-

cedure. If the Newton method is used for such a pur-

pose, one employs constant linearization of (45). The

latter can easily be carried out by symbolic manipulation

(see [24]). Implementation of the theory presented above

in this section can be done by replacing the energy

functional governing the shell problem (42) with four

functionals, which have the following forms when de-

fined over the finite element domain:

P11ðUÞ ¼ 1
2

Z
�

Z 1

�1

EijC
ijklEkl jdfdn

1 dn2 �PextðuÞ; ð53Þ

P12ðU; aÞ ¼ 1
2

Z
�

Z 1

�1

EijC
ijkleEEkljdfdn

1 dn2; ð54Þ

P21ðU; aÞ ¼ 1
2

Z
�

Z 1

�1

eEEijC
ijklEkljdfdn

1 dn2; ð55Þ

P22ðaÞ ¼ 1

2

Z
�

Z 1

�1

eEEijC
ijkleEEkljdfdn

1 dn2: ð56Þ

Variation and linearization of (53)–(55) carried out

by symbolic manipulation with respect to the unknown

quantities U ¼ ðu; a; kÞ and a provide the following set

of linear equations:

dU
da

� �T
K effTeff eHH

� �
DU
Da

� �	
¼ eff

0

� �
� errehh
� �


; ð57Þ

7 In the following the procedures will be developed for a

parameters although they are also valid for baa parameters.



where dð�Þ are admissible variations, Dð�Þ are linearized

quantities, while matrices and vectors in (57) follow

from the variation and linearization of (53)–(56). The

subsequent solution procedure follows along with the

lines traced by Ibrahimbegovi�cc and Wilson [16].

3.2. Incompatible modes based on a multiplicative decom-

position of strains

An alternative manner to introduce the incompatible

modes is at the level of an additive decomposition of the

deformation gradient, which would result in the corre-

sponding multiplicative decomposition of strains (e.g.

see [17]). In the present case the incompatible modes

choice is dictated by the goal to achieve a linear varia-

tion in the through-the-thickness direction.

We replace the base vector a3 of the 6-parameter shell

model––defined in the previous section in (34)––by a

base vector a3 of the following form:

a3ðn1; n2; fÞ ¼ dðn1; n2Þ|fflfflfflfflffl{zfflfflfflfflffl}
a3ðn1 ;n2Þ

þebbðn1; n2; fÞ; ð58Þ

where the vector ebb varies linearly in through-the-thick-

ness direction such thatebbðn1; n2; fÞ ¼ fbðn1; n2Þ: ð59Þ
Note that b in (59) is still undefined. The enhancement

(58) allows us to write the deformation gradient as

F ¼ aa � ga þ a3 � g3

¼ ox
on

� �	
þ eHH


oX
on

� ��1

¼ ðJþ eHHÞJ�1
0

¼ Fþ eFF ¼ ai � gi þ ebb � g3:

ð60Þ

In (60) the natural coordinates are regrouped in a vector

n ¼ fn1; n2; fgT, F is the deformation gradient of the 6-

parameter theory described in the previous section andeFF is an enhanced part of the deformation gradient due to

an enhancement of the base vector. To simplify the

notation we collected in (60) the base vectors of de-

formed and initial configurations into the following

matrices: 8

J ¼ ½a1; a2; a3�; eHH ¼ ½0; 0; ebb�;
J0 ¼ ½g1; g2; g3�; J�T

0 ¼ ½g1; g2; g3�:
ð61Þ

Note that ai for the 6-parameter theory are defined in

(34), while gi are given in (16). The right Cauchy–Green

stretch tensor

C ¼ F
T
F ¼ J�T

0 ðJþ eHHÞTðJþ eHHÞJ�1
0 ð62Þ

leads to the Green–Lagrange strains in gi base E ¼
1
2
ðC� 1Þ ¼ Eijg

i � gj according to

Eab ¼ 1
2
ðaa � ab � ga � gbÞ;

Ea3 ¼ 1
2
aa � ðd

2
4 þ ebbÞ � ga � g3|fflffl{zfflffl}

0

3
5 ¼ 1

2
aa � dþ 1

2
aa � ebb;

E33 ¼ 1
2
½ðdþ ebbÞ � ðdþ ebbÞ � g3 � g3�

¼ 1
2
ðd � d� g3 � g3Þ þ 1

2
ð2d � ebb þ ebb � ebbÞ:

ð63Þ

We can conclude from (63) that

Eij ¼ Hij þ fKij þ f2Lij; ð64Þ
where Hij, Kab and Lab strains are the same as those al-

ready given in ()()()(37)–(39), respectively, while other

strains of the 6-parameter model from Section 3.1 are

modified to be

Ka3 ¼ 1
2
ðd;a � dþ u;a � bÞ;

K33 ¼ 1
2
ð2d � bÞ; ð65Þ

La3 ¼ 1
2
ðd;a � bÞ;

L33 ¼ 1
2
ðb � bÞ: ð66Þ

Through-the-thickness variation of all strains is qua-

dratic.

Note that one cannot use any more an additive split

of the total strain, as in the previously described im-

plementation. However, the admissible variations of the

Green–Lagrange strains (64) can still be written in terms

of an additive decomposition as

dEij þ deEEij; ð67Þ

where

dEij ¼ 1
2
ðdai � aj þ ai � dajÞ ð68Þ

and

deEEij ¼
0; i; j ¼ 1 or 2;
1
2
ðdaa � ebb þ aa � debbÞ; i or j ¼ 3;

dd � ebb þ debb � dþ debb � ebb; i; j ¼ 3:

8<
: ð69Þ

The corresponding variational formulation can be

obtained by generalizing the incompatible mode method

of Ibrahimbegovi�cc and Frey [19] from membranes to

shells. To that end, two equations governing equilibrium

can be written as

DP u; a; k|fflffl{zfflffl}
U

; eHH j
i ; P

j
i

0
@

1
A � dU

¼
Z
A

Z
h0

dEijSij dV � DPextðuÞ � du ¼ 0; ð70Þ

8 The usual simplifications carried out in the shell theory

developments include also setting f ¼ 0 when evaluating J0 (i.e.
neglecting variation of metrics trough the shell thickness in the

initial configuration), which is not done in the present work.



for the corresponding variation of the compatible dis-

placement field and

DP U; eHH j
i ; P

j
i

� 

� d eHH j

i ¼
Z
A

Z
h0

deEEijSij dV ¼ 0; ð71Þ

for the incompatible mode variations. In (70) and (71)

we compute the second Piola–Kirchhoff stress from the

constitutive equations for the first Piola-Kirchhoff stress,

Pj
i ¼ oW =oF j

i , along with the geometric transformation

connecting the two kinds of Piola–Kirchhoff stresses,

S ¼ F�1P. The last two equations have to be accompa-

nied by an additional expression which guaranties the

convergence of the incompatible mode method in the

sense of the patch test, which can be written asZ
A

Z
h0

eHH j
i dV ¼ 0: ð72Þ

In the finite element implementation we choose b, see
(59), to be

b ¼ A33d; ð73Þ

where d is the extensible shell director already expressed

in (10). From (58) and (59) follows that the enhanced

base vector at the deformed configuration is of the form

a3 ¼ ð1þ fA33Þd: ð74Þ

An interpolation of A33 over the finite element may be

chosen again either by (48) or by standard bi-linear in-

terpolation functions (49). With this choice of interpo-

lation, the patch test is naturally satisfied, which can be

proved in the same manner as already shown in (47) and

(52).

4. Interpolation and FE implementation

Finite element approximation of the shell models

developed in the above sections is based on finite ele-

ments with four nodes on the middle surface. Convective

coordinates n1 and n2 from previous sections are now

replaced with isoparametric coordinates of a shell finite

element. According to the isoparametric concept we use

standard bi-linear interpolation functions to define

middle surface geometry within one element as

u0 ¼
Xnen
a¼1

Naðn1; n2Þðu0Þa; u ¼
Xnen
a¼1

Naðn1; n2Þua; ð75Þ

where the number of element nodes nen ¼ 4, Na : � ! R

are the corresponding shape functions already given in

(51), whereas ð�Þa are the corresponding nodal values.

Through-the-thickness kinematic variables are interpo-

lated in the same manner

ekk ¼
Xnen
a¼1

Na
ekka; ekk ¼ 1� k; ð76Þ

q ¼
Xnen
a¼1

Naqa: ð77Þ

It is indicated in (76) that rather than the thickness-

change variable k we interpolate ekk in order to have

zero values of all unknown kinematic variables at the

initial configuration. Current thickness is then expressed

as

h ¼ h0ð1� ekkÞ; ekk6 1: ð78Þ

Approximation of the shell director requires special

attention in order to obtain good numerical perfor-

mance of the 6- and the 7-parameter models for very

thin shells. Very often parasitic through-the-thickness

strains are induced through a simple interpolation of the

shell director, especially in formulations where rotations

are avoided by introducing the so-called difference vec-

tor (e.g. [13,29]). In some works the effect of artificial

thickness strains is avoided by assumed strain approxi-

mation of E33 (e.g. [5]). To avoid this approximation in

the present work, the shell director is normalized over an

element in order to always remain exactly of a unit

length at the integration points

a ¼ baa
kbaak ; baa ¼

Xnen
a¼1

Naaa; ð79Þ

g ¼ bgg
kbggk ; bgg ¼

Xnen
a¼1

Naga: ð80Þ

The nodal shell director in a deformed configuration is

given as a function of the total nodal material rotation

vector #a ¼ f#1
a; #

2
agT with (see [10])

aa ¼ K0a cos#af0; 0; 1gT
	

þ sin#a

#a
f#2

a;� #1
a; 0gT



;

ð81Þ

where #a ¼ k#ak is the Euclidean norm of the nodal

rotation vector and K0a ¼ ½e1a; e2a; ga� is the initial nodal
rotation matrix providing orientation for the nodal

rotation parameters #1
a and #2

a. Vectors e1a, e2a and ga
define Cartesian basis at node a.

The virtual and the incremental quantities are inter-

polated as

du ¼
Xnen
a¼1

Nadua; dekk ¼
Xnen
a¼1

Nadekka;

dq ¼
Xnen
a¼1

Nadqa; ð82Þ



da ¼ 1

kbaak ðI� a� aÞdbaa; dbaa ¼
Xnen
a¼1

Nadaa: ð83Þ

Derivatives of the interpolated quantities with respect to

na coordinates can be obtained trivially except for a;a
and da;a. Linearized quantities Dda and Dda;a have even
more complicated forms and can be mainly obtained by

using symbolic manipulations.

In order to eliminate the shear locking effect, the

transverse shear strains are interpolated over a parent

element by using the assumed natural strain (ANS)

concept of Bathe and Dvorkin [4] according to

bEE13 ¼ 1
2
ð1� � n2ÞEB

13 þ ð1þ n2ÞED
13

�
;bEE23 ¼ 1

2
ð1� � n1ÞEA

23 þ ð1þ n1ÞEC
23

�
:

ð84Þ

Strains Eð�Þ
i3 are evaluated at the mid-side point ð�Þ in

accordance with the expressions derived in the previous

sections. Linear and higher-order terms of Eð�Þ
i3 are au-

tomatically neglected by choosing the shear interpola-

tion points A, B, C and D on the middle surface of the

shell finite element corresponding to f ¼ 0. Positions of

those points are uL
0 ¼ 1

2
½ðu0ÞM þ ðu0ÞN �, where ðL;M ;

NÞ 2 fðA; 1; 2Þ; ðB; 2; 3Þ; ðC; 3; 4Þ; ðD; 1; 4Þg. Finite ele-

ment approximation of the transverse shear strains

across the thickness of the shell element is therefore

assumed to be constant.

Numerical integration is performed at 2� 2� 2

Gauss integration points. At each integration point a

local Cartesian basis ei is introduced in such a way that

the third base vector is identical to the initial shell di-

rector and the other two are perpendicular to it

e3 ¼ g; e1 ? e2; e1 � E2 ¼ E3: ð85Þ
Having defined the current and the initial position

vectors over a finite element domain, we may obtain the

deformation gradient at an integration point as

F ¼ ox
oX

¼ ox
on

� �
oX
on

� ��1

¼ JJ�1
0 ; ð86Þ

where J and J0 are defined in (61). The right Cauchy–

Green stretch tensor can be computed from the defor-

mation gradient 9 as

C ¼ FTF ¼ J�T
0 ðJTJÞJ�1

0 ¼ Cijg
i � gj; ð87Þ

where the corresponding components in the gi basis are
Cij ¼ ai � aj ¼ JTJ. The transformation of Cij compo-

nents to the C	
ij components, which are defined with

respect to the ei basis (85), can be performed according

to

C	
ij

h i
¼ e1; e2; g½ �TJ�T

0 ½Cij�J�1
0 ½e1; e2; g� ¼ T½Cij�TT; ð88Þ

where the transformation matrix has the following form:

T ¼
g1 � e1 g2 � e1 0
g1 � e2 g2 � e2 0
0 0 2=h0

2
4

3
5: ð89Þ

Strains in the local Cartesian frame (85) can then be

calculated as

E	
ij ¼ 1

2
C	

ij

�
� dij



: ð90Þ

The transformation of the transverse shear strains from

the n coordinates to the local Cartesian coordinates

defined with basis ei (85) is performed as (e.g. see [9,18])

E	
13

E	
23

� �
¼ g1 � e1 g1 � e2

g2 � e1 g2 � e2
� ��1

2

h0

bEE13bEE23

� �
; ð91Þ

where an additional term 2=h0 appears due to the defi-

nition of f coordinate which leads to the base vectors

g3 ¼ ðh0=2Þg and g3 ¼ ð2=h0Þg.
With (90) and (91) we can define the potential energy

of the shell in terms of E	
ij strains. Symbolic manipula-

tion (see [22,24]) is further used to obtain its first and

second derivative with respect to the nodal unknown

kinematic variables leading to residuals and stiffness

matrix. When internal variables are present, the final

form of the stiffness matrix is obtained by the procedure

of static condensation.

5. Numerical examples

In this section we present some results of numerical

simulations. The computations were carried out by a

research version of the computer program AceGen (see

[23]). We have implemented 4-noded finite elements lis-

ted in Table 1: five for the SVK material and four for the

NH material with a strain energy function of the form

(25). For the 5-parameter SVK element we condensed 3d

constitutive relations by using the condition S33 ¼ 0. In

all examples we used 2� 2� 2 Gaussian integration

rule. A tolerance of 10�9 for the Euclidean norm of it-

erative nodal values was employed in the Newton iter-

ation scheme for each of the examples. In Appendices A

and B we present an input for symbolic manipulations

using AceGen program which produce the 7E element.

5.1. Bending of cantilever beam by end force

This example demonstrates the ability of finite ele-

ments based on non-standard theories to recover 2d

shell behavior in the thin shell limit. It was considered

e.g. by Simo et al. [29], B€uuchter et al. [13], Parisch [27],

Abbasi and Meguid [1]; however, the data in those

9 We note again that the deformation gradient is enriched for

the method described in Section 3.2, see (60). In that case we use

Eq. (62) instead of Eq. (87).



references vary. We consider a beam of length L ¼ 10,

width B ¼ 1 and thickness h0, which is clamped at

one end and subjected to two point forces F ¼ F1 ¼
40� 103 � h30 acting on the middle surface of the free

end (see Fig. 1). Four different values (2; 1; 0:1; 0:01) are
used for thickness producing length-to-thickness ratios

to be 5, 10, 100 and 1000. Material parameters are

E ¼ 10� 106, m ¼ 0:3. A mesh of 10� 1 element is used.

We present results of the nonlinear analyses. Beam end

deflections produced by different elements are given in

Tables 2 and 3. In order to compare our results with

those obtained by Simo et al. [29] (who used 5-parameter

stress resultant element and 6-parameter stress resultant

element with plain stress formulation for the bending

part of constitutive equations) we also present beam end

deflections for F ¼ F2 ¼ 50� 103 � h30 in Table 4. It can

be observed from Tables 2–4 that in the thin shell limit

(L=h0 ¼ 1000) the elements 5E, 6AD and 6MD produce

identical results, which indicates that formulations based

on incompatible modes recover the thin shell solution,

while elements based on the 7-parameter theory (7E and

7R) produce approximately 99% of the 5E element re-

sults. It can be also observed that the difference between

the 7E and the 7R solutions increases with decreasing

L=h0 ratio, which suggests that the higher-order strain

terms are more important for thicker shells. The same is

valid for incompatible mode formulations: the difference

in results increases with increase of thickness. In Table 5

we collect maximum values of ekk at the points with

maximum curvatures. Those values are small: maximum

thickness change is around 3% for beams with L=h0 ¼ 5.Fig. 1. Bending of beam by end force: mesh and loading.

Table 2

Bending of beam by end force; end deflection at F ¼ F1

Element L=h0

5 10 100 1000

SVK material

5E 7.3492 7.1188 7.0477 7.0470

7E 7.3037 7.0568 6.9869 6.9874

7R 7.2624 7.0453 6.9868 6.9874

6EA 7.3797 7.1278 7.0477 7.0470

6EM 7.3867 7.1294 7.0478 7.0470

Table 3

Bending of beam by end force; end deflection at F ¼ F1

Element L=h0

5 10 100 1000

NH material

7E 7.3404 7.0691 6.9870 6.9874

7R 7.3083 7.0586 6.9869 6.9874

6EA 7.4146 7.1401 7.0479 7.0467

6EM 7.4184 7.1411 7.0479 7.0467

Table 4

Bending of beam by end force; end deflection at F ¼ F2

Element L=h0

10 1000

SVK material

5E 7.5178 7.4331

7E 7.4560 7.3751

7R 7.4435 7.3751

6EA 7.5276 7.4331

6EM 7.5294 7.4331

7R-condensed, Ref. [29] 7.3839 7.3053

5R, Ref. [29] 7.3849 7.3053

Table 1

Finite elements used in numerical examples

5E 5-parameter model with exact ðEÞ strains
7E 7-parameter model with exact ðEÞ strains; see (17)

7R 7-parameter model with reduced ðRÞ strains; see (23)
6EA 6-parameter model with exact ðEÞ strains and

incompatible mode based on an additive ðAÞ
decomposition of strains; interpolation (48)

6EM 6-parameter model with exact ðEÞ strains and
incompatible mode based on a multiplicative ðMÞ
decomposition of strains; interpolation (48)

Table 5

Bending of beam by end force; maximum values of ekk (at the

point of maximum curvature) multiplied by 100 at F ¼ F1

Element L=h0

5 10 1000

SVK material

7E 2.847 0.580 0.005

7R 3.626 0.790 0.007

6EA 3.154 0.772 0.008

6EM 2.389 0.804 0.008



Distribution of ekk through the beam length is shown in

Fig. 2, and a sequence of deformed configurations is

shown in Fig. 3. Table 6 presents the total number of

iterations when the forces F ¼ F1 are applied in five

equal increments. It is interesting to note that the

number of iterations depends only on the length-to-

thickness ratio.

5.2. Cylinder under line load

This example was considered by B€uuchter et al. [13] to
test the behavior of 3d shell formulations for thin and

thick shells. A cylinder of length L ¼ 30 cm, radius

R ¼ 9 cm and thickness h0 ¼ ð0:2 cm; 2 cmÞ is supported
and subjected to a line load p as shown in Fig. 4. Due to

symmetry conditions only one-quarter of the cylinder is

discretized by 16� 6 4-node finite elements. The pa-

rameters of the NH material are l ¼ 6000 kN/cm2,

k ¼ 24; 000 kN/cm2 or E ¼ 16; 800 kN/cm2, m ¼ 0:4: The
load, which is acting on the middle surface, was applied

in five equal steps. In Table 7 we compare our results

with those given by B€uuchter et al. [13] who used a mesh

of 16� 6 8-node elements with 2� 2� 3 Gauss inte-

gration points. Comparison is carried out for a total

load when the displacement of the point under the force

at the free edge (point A) equals 16 cm. The response Table 6

Bending of beam by end force; total number of iterations;

F ¼ F1

Element L=h0

5 10 100 1000

SVK material

5E 34 37 50 62

7E 34 37 50 63

7R 34 37 50 63

6EA 34 37 51 63

6EM 34 37 51 63

Fig. 3. Bending of beam by end force: sequence of deformed

meshes; final configuration corresponds to F ¼ 4F1; NH mate-

rial; 7R element; L=h0 ¼ 2.

Fig. 2. Bending of beam by end force: distribution of ekk
throughout the beam when F ¼ F1; SVK material; 7R element;

L=h0 ¼ 5. Fig. 4. Hyperelastic cylinder: support and loading conditions.



curves for all elements are very similar. This can be seen

from Fig. 5 where the total force P ¼ p 	 L is plotted

versus the displacement of point A. In Fig. 6 a sequence

of deformed meshes is presented and in Fig. 7 the dis-

tribution of thickness change is plotted. Maximum val-

ues of about 4% are at the free end of the shell (at the

region of maximum curvature) and at the point A. The

thickness stretch of the point A with respect to the total

load is presented in Figs. 8 and 9. We note that the

thickness at the first two increments was bigger than the

initial (i.e. ekk < 0). Evolution of q variable at the point A

is given in Fig. 10.

5.3. Clamped sphere under point load

The collapse of a thick clamped hemispherical shell

was analyzed in many papers. Among them we mention

Simo and co-workers [29,30] who also used elements

capable to account for through-the-thickness stretching,

and Eberlein and Wriggers [14] who used axisymmetrical

quasi-Kirchhoff element and compared its solution with

many others. With this problem we demonstrate the

very localized effect of the thickness change under con-

centrated force. The shell with radius R ¼ 26:3 mm and

thickness h0 ¼ 4:4 mm is clamped along the circumfer-

ence and subjected to a point load at the pole (Fig. 11).

The load is acting on the shell middle surface. Shell was

analyzed for the SVK material with the following

properties: E ¼ 4� 103 kN/m2 and m ¼ 0:49. Due to

symmetry conditions only one-quarter was analyzed by

using a mesh of 16� 16 elements. Displacement control

was used to drive the top (middle surface) point of the

hemisphere to the distance equal to the radius. 10 time-
Fig. 5. Hyperelastic cylinder: load versus displacement curves;

SVK material; h0 ¼ 2 cm.

Table 7

Hyperelastic cylinder; total load [kN] when displacement of

point A is 16 cm; 16� 6 elements

Element, Material h0

0.2 cm 2 cm

5E, SVK 35.13 28961

7E, SVK 35.43 28561

7R, SVK 35.46 30027

6EA, SVK 35.12 28935

6EM, SVK 35.13 28706

7E, NH 35.47 29445

7R, NH 35.49 30805

6EA, NH 35.12 29731

6EM, NH 35.13 29530

5E, NH, Ref. [13] 34.71 28636

5R, NH, Ref. [13] 34.70 28428

6EA, NH, Ref. [13] 34.71 29984

6RA, NH, Ref. [13] 34.87 33680

Fig. 6. Hyperelastic cylinder: a sequence of deformed configu-

rations.



steps were used for the 5E element and 20 for all other

elements. Load versus deflection curves are presented in

Fig. 12 for the 7-parameter elements and in Fig. 13 for

the 6-parameter elements. All elements reached the final

configuration except the 6EM which diverged at u=R ¼
0:75, while the 7E element produced thickness changeekk > 1 (i.e. negative thickness) for u=R > 0:8. ‘‘Axy-mid’’

in Figs. 12 and 13 denotes curves obtained by a mesh

of 100� 20 axisymmetrical elements (see Fig. 14) of
Fig. 8. Hyperelastic cylinder: thickness stretch ekk at point A

versus total force; SVK material; h0 ¼ 2 cm.

Fig. 10. Hyperelastic cylinder: values of q at point A versus

total force; NH material; h0 ¼ 2 cm.

Fig. 7. Hyperelastic cylinder: distribution of thickness change ekk
at total force P ¼ 4� 7500 kN; SVK material; 6EA element.

Fig. 9. Hyperelastic cylinder: thickness stretch ekk at point A

versus total force; NH material; h0 ¼ 2 cm.



the NH material and with the load F distributed at the

middle surface over an interval of 0:01R. Note that the

7R and the axisymmetrical solutions are very close to

each other and that the 6EA and the 6EM solutions are

on one side of the 5E curve, while the 7E and the 7R
solutions are on the opposite side of that curve. This can

be due to very localized effect of thickness change which

can be observed from Fig. 15, where practically all sig-

nificant thickness stretch is restricted to one finite ele-

ment.

In Table 8 the thickness change at the loading point

is given for the last correctly converged solution. The 7E

and the 6AE elements predict that the thickness of the

final configuration would be 19% and 11%, respectively,

of the initial one. In Fig. 16 we present a distribution of

q over a sphere, which is very symmetric. Finally, Fig. 17

compares results obtained by the axisymmetrical ele-

ment (‘‘Axy-mid’’ refers to a case when force is applied

on the middle surface, and ‘‘Axy-top’’ refers to a case

when force is applied on the top surface) with the ex-

Fig. 11. Clamped sphere: mesh and loading.

Fig. 12. Clamped sphere: normalized load versus normalized

deflection curves for 7-parameter elements, 5E element and

axisymmetrical solution.

Fig. 13. Clamped sphere: normalized load versus normalized

deflection curves for 6-parameter elements, 5E element and

axisymmetrical solution.

Fig. 14. Clamped sphere: a mesh of axisymmetrical elements;

load is applied at the top surface.



perimental data taken from the work of Simo et al. [30]

and solution obtained by the same authors. They used 5-

parameter element and eliminated the transverse shear

deformations by multiplying the shear correction factor

by 100. Figs. 18 and 19 show the evolution of thickness

change and q variable under the concentrated load.

Solutions are quite different which can be again ex-

plained by very localized effect of the through-the-

thickness stretching. Figs. 20 and 21 show the final

Fig. 15. Clamped sphere: distribution of thickness change ekk for

7R element at u=R ¼ 1. Significant thickness change is very

localized.

Fig. 16. Clamped sphere: distribution of q variable over the

sphere for 7R element at u=R ¼ 0:3.

Fig. 17. Clamped sphere: comparison of axisymmetrical results

with those obtained by the experiment and by Simo et al. [30].

Table 8

Clamped sphere; values of ekk and q at the loading point for the

last correctly converged configuration

Element u=R ekk q

SVK material

5E 1.0 – –

7E 0.8 0.64 �0.021

7R 1.0 0.81 0.002

6EA 1.0 0.89 –

6EM 0.7 0.78 –

Fig. 18. Clamped sphere: thickness change ekk with respect to

normalized displacement at the node under the force.



configurations of axisymmetrical elements when the

force is applied on the top surface and the middle sur-

face, respectively. Significant difference in the deforma-

tion shape in the vicinity of the applied load can be

observed.

6. Conclusions

Three nonlinear shell formulations accounting for

through-the-thickness stretching were developed, one

leading to a 7-parameter theory and the other two to

theories with six parameters. All developed finite ele-

ments posses three displacement degrees of freedom and

two rotations, and each one is capable of representing a

linear variation of the through-the-thickness strain.

The 7-parameter shell theory is developed and tested

in its full generality before reducing it to the usual for-

mat where only linear through-the-thickness variations

of strain measures are kept. This kind of development is

relatively easy to handle by symbolic manipulation. An

incompatible mode method is used to reduce the 7-

parameter shell theory to the one with only six nodal

parameters, which is easier to implement within the

standard finite element computer program architec-

ture. The main advantage of all presented shell models

relates to a possibility to employ directly a 3d form of

constitutive equations with no presence of locking phe-

nomena. Additional cures for locking employed by the

derived elements include the assumed natural strain

(ANS) method for the transverse shear locking, and the

exact director vector interpolation for the curvature

locking.

In the thin shell limit the elements with incompatible

modes produce the same results as those obtained by the

classical shell elements based on the Reissner–Mindlin

kinematics (for the chosen numerical examples); i.e. the

enhancement on through-the-thickness strain is not ac-

tivated if not needed. The same is no longer true for the

7-parameter models which will not necessarily yield the

same results as the 5-parameter model. For thick shells,

the numerical results show that the influence of higher-

order strains (which are usually neglected in shell theo-

ries) increases. In the computed examples there were no

significant differences between two incompatible modes

methods (one with an additive decomposition of strains

and another with a multiplicative decomposition of

strains) if thickness change was not extremely signifi-

cant. The loading was applied at the shell middle surface

in all numerical examples, however, the results indicate

that the influence of the loading position to local results

is quite important.

Fig. 19. Clamped sphere: q variable with respect to normalized

displacement at the node under the force.

Fig. 20. Clamped sphere: axisymmetrical elements; top surface

load; u=R ¼ 1.

Fig. 21. Clamped sphere: axisymmetrical elements; middle

surface load; u=R ¼ 1.
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