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On composite shell models with a piecewise linear warping function

BoStjan Brank

Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000 Ljubljana, Slovenia

Abstract

A multilayered shell model accounting for a piecewise linear (i.e. zig-zag) distribution of displacements through the
laminate thickness is discussed. The model has seven unknown kinematic variables: three displacements of the middle
surface, two rotations of the shell director and two displacements associated with the wrinkling of the laminate cross-
sections. The initial transverse shear stress field is introduced, and the constitutive relations are then relaxed in the
framework of the variational principle. Finite element solutions obtained with this kind of model are compared with
the analytical solutions for the case of cylindrical shell bending.

Keywords: Composite shell; Finite element; Zig-zag function; Interlaminar continuity

1. Introduction

Many theories for laminated composite plates and
shells can be found in the composite mechanics litera-
ture. They are usually classified into three groups: (i)
classical theories based on the Kirchhoff kinematic hy-
pothesis (e.g. [17]), (ii) first-order shear deformation
theories based on the Mindlin kinematic hypothesis (e.g.
[17]) and (iii) higher-order theories with refined through-
the-thickness variation of displacements (see e.g. review
of Noor etal. [16]). Two different approaches have been
basically explored for the higher-order theories: one
based on an equivalent single-layer model and the other
one on a layerwise model.

This work is restricted to a single-layer shell model,
which basic characteristic is a piecewise linear warping
function. The plate model with such zig-zag displace-
ment function was introduced by Di Scuva (e.g. [19])
and was later examined and modified by many oth-
ers, e.g. Murakami [15], Toledano and Murakami
[20], Carrera [9], among others. Some researchers ex-
ploited the idea also to cylindrical shell problems: e.g.
[2,11,14,18]. Both the plate and the cylindrical shell so-
lutions were typically obtained in an analytic manner by
using Fourier series. In contrast to the analytical ap-

proach the finite element implementation has been
mainly restricted to the plate formulations (e.g.
[8,10,13]) and only very few examples of general shell
elements can be found in the literature ([5,12]). This can
be due to a relatively complicated finite element imple-
mentation procedure.

It is an aim of this paper to revisit the theoretical
formulation for multilayered composite shells and pre-
sent it in a very clear form in order to provide a basis for
different possible finite element implementations. We
focus on a formulation which assumes: (i) a zig-zag
distribution of displacements through the laminate
thickness and (ii) a layerwise independent quadratic
distribution of transverse shear stressesin the frame-
work of Reissner's functional. The pertinent features of
this kind of shell model are:

e the number of unknown kinematic variables is inde-
pendenton a number of layers,

e the transverse shear stresses and stress resultants are
obtained from the constitutive equations and not
from a post-processing,

e a sharp change of displacementslope at layer inter-
faces (the fact known from the 3-d analytical solu-
tions of composite plates and shells) is taken into
account,

e equilibrium conditions are satisfied at layer inter-
faces,

e thereis no need to use shear correction factors.



2. Higher-order theory for multilayered shells with seven
parameters

This section firstly elaborates upon a hypothesis
which refines through-the-thickness variation of dis-
placements by using a piecewise linear warping function,
the so-called zig-zag function. We then develop the
corresponding Green—Lagrange strain measures and
the stress resultants. Finally, a trial distribution of the
transverse shear stresses through a laminate thickness is
introduced, and the variational principle is used to relax
the constitutive equations and satisfy the interlaminar
equilibrium constraints.

2.1. Assumed displacements

An enriched kinematic field is developed with respect
to the Reissner—-Mindlin kinematics in order to better
predict through-the-thickness variation of displacements
in laminated shells. To that end, the position vector
from the initial configuration

X(¢,&,¢) =X(¢, &) +¢1(e, &) (1)

is transformed into its counterpart at the deformed
configuration as

x(¢',&,8) =x°(e, &) +a(e, &) + f(ow(E, &)
(2)

where the last term introduces a zig-zag variation of the
displacements through-the-laminate thickness. In (1)
and (2) (¢',&) € o are the curvilinear coordinates, .o/
is the domain of the shell middle surface parametri-
zation, ¢ € [—h/2,h/2] is the through-the-thickness co-
ordinate, % is the shell thickness, X’ and x° are the
middle surface position vectors, T and t are the shell
directors, and w is the displacement vector related to the
wrinkling of the laminate cross-sections. We assume the
shell director vector to be of unit length

IT] = [t =1 (3)

and perpendicular to the middle surface at the initial
configuration. Its motion can be then completely defined
by two rotations o' and o? (see e.g. [4] for different
possible choices) so that we can write

t=t(o,0?) (4)

Function f(¢) in (2) is a zig-zag (piecewise linear)
function which is at layer K € [1,N] (N is the total
number of layers) given as

! The zig-zag function defined in (5) is in general having different
slope at different layers depending on the layer’s height. It is also
possible to define zig-zag function with slopes remaining the same in all
layers (see e.g. [11]).

Sk
= (-1 5
F&0) = (-1 (5
where & € [—hg/2,hg/2] is a local through-the-thick-
ness coordinate and Ay is the layer’s thickness. Relation
between &y and & coordinates is

E= e+ " (6)

where X0 is the value of ¢ in the middle of the layer K
(i.e. at & = 0). We assume that layer 1 begins at ¢ =
—h/2.

The above concepts, which are illustrated in Fig. 1 for
a four-layered laminate, can be viewed as a direct re-
finement of the first-order shear-deformation theory as
shown by Brank and Carrera [6].

2.2. Strains

When defining strains it is suitable to locally replace
curvilinear coordinates &' and &, introduced in (1) and
(2), with Cartesian coordinates x; and x,. To that end we
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Fig. 1. Warping function and displacements w; and w,.



define on the middle surface point ? at the initial con-
figuration a local Cartesian basis e; such that

€; = T7 € 1 € (7)

Transformation from the curvilinear coordinates &' and
& to the local Cartesian ones has the following form (see

e.g. [3)
-1

& _ X?é‘ € X?@“‘ "€ % (8)

5 Xoer Xoe %
where (o) .. are partial derivatives with respect to the
coordinate &*. Note that x; = £.

The choice of displacements (2) leads, with transfor-
mation (8), to the following vector basis in the shell

deformed configuration

€ J_e3,

a, = X,oc = X?x =+ ét’a +fW1 (9)
a3 =t+gw

where (o) , = 9(0)/0%, and g is derivative of f, see (5),
with respect to the ¢ coordinate

g= j—é = for layer K we have gx = (=1)*2/hx  (10)

The base vectors at the initial configuration follow from
(1) as
=X, =X" 4+ ¢T,
g : PR (1)
g =T
The Green—Lagrange strains with respect to the local
Cartesian frame are then defined as
Ey=3(a -2, —g g) (12)
with their explicit forms given as
Eup=3x% x5 — X, XY) +2(x%, -t + X7 -t
=X Ty =X T,) + 3/ wy+ x5 w,)
(st =T Tp) +3E/ (W —t - W)

—|—%fzw,1-W,;; (13)
By = X, 64 50X W /Wt few, - w

+ 568t - W (14)
Ey; =gt -w+igdw-w (15)

The underlined terms in the above expressions are
nonlinear. In the following we will concentrate only on a
linear model, which is naturally based on linear strains.
It is therefore necessary to exclude all nonlinear strains
from (13)—(15).

To simplify the notation we define the following two
vectors

2 In the finite element implementation the local Cartesian frames
need only be constructed at the element nodes and at the numerical
integration points.

E, = [Eu,Ezz,zElz]T

16
E, = [2E:13,2Ex]" 1)
where each of them is composed as
E, = K
e+ i+ fx (17)

E =7y+gy

The vectors ¢ = [811,822,2812]T, K= [K117K22,2K12}T and
¥ = [y13,723)" collect the linear membrane, the linear
bending and the linear transverse shear strains of the
classical Reissner—Mindlin shell model, while the vectors
it = [R11, %2, 2%]" and 7 = [j5, 75" collect additional
linear strains due to enriched kinematics. Explicit strain
expressions follow directly from (13)—(15)

ey = 3(x%, - X7 = X, - XY)

o

K“ﬁ = %(X?a . tﬂﬁ + X?ﬂ . t,ﬁ — XO“ . T(y/g — Xoﬂ . T,(x) (18)
V3 = X?rx t
2 1(x0
Kup = 5(X, - W + Xy W)

’ 19
o oxd w (19)

It is further assumed that the refined displacement
vector w lies in a plane tangent to the middle surface,
which leads to

T -w=0 (20)

Introducing w; (components of w with respect to the
local Cartesian basis e;) and w; (their counterparts in the
global coordinate system), and noting from (20) and (7)
that w3 = 0, it can be concluded that the transformation
rule has a form

wp = Qizwm [Qloc] = [e17e2] (21)

Egs. (2), (4) and (21) indicate that the present model
has seven kinematic parameters: three displacements of
the middle surface (u’ = x° — X°) defined in the global
coordinate system, two rotations of the shell director *
(o', &%), and two displacements related to the warping of
the laminate cross-sections (wy,w,) defined in a local
coordinate system

T
u= [uo,dl7a2,wl,W2 (22)

We note again that this number is independent on the
total number of layers.

2.3. Stress resultants and constitutive relations

Having defined strains of the chosen model we can
proceed with the constitutive relations. For that purpose
let us first collect stresses (defined with respect to the
local Cartesian basis) in two vectors as

3 Rotations are usually chosen such that they rotate around the
local e; and e, axes.



(23)

where the in-plane stresses are collected in 6,, and a;
contains the transverse shear stresses. In a layer K €
[1,N], which is made of an orthotropic material, we have
the following constitutive relations

o, — CKEH

. 24
6, = CLE (24)

where explicit expressions for matrices Cx and Cj can
be found in the textbooks or e.g. in Brank, Peri¢ and
Damjani¢ [3]. They depend on six independent material
constants and the transformation from the material to
the local Cartesian coordinates.

The internal virtual work

/2
oIl = / / (6, - OE, + o5 - 0Es)udédA

e
h/2
[ /e
+ 05 (8y + gdy)|udid4
_ /[(n-63+m-6x+q-6y)+(ﬁ1-6i&+(]-6?)]d14
A
(25)

- (0g + £ 0K + f OK)

where 8(o) = D(o) - du are variations of strains, provides
definition for the membrane, the bending and the
transverse shear forces. The differential element of the
shell volume, dV, is related to the differential element of
the shell middle surface, d4, as

4V = pdéda (26)
where u=./g/\/g’ with g=det[X, X; and
g" = det {X(’a . Xoﬁ} The following stress resultants are

identified as the membrane, the bending and the trans-
verse shear forces of the classical Reissner—Mindlin
model

N hi /2 N hi /2
n= Z / o,udéy, m= Z / o, ludéy
K=1 Y —hx/2 k=1 J—hg/2
N h )2
a=Y [ onde
k=1 7 —hg/2

(27)

while the enrichment of the kinematic field produces
additional stress resultants

N k)2 N k)2
=" [ ondie a=>" [ aands
K=1

—hg /2 —hg /2
(28)

Having defined stress resultants in (27) and (28), and
stress—strain relations in (24), we can proceed with de-

fining the laminate stiffness. It can be shown that the
following matrix relation can be obtained from (27),
(28), (24) and (17)

n C() C] 0 F]() 0 &
m C1 C2 0 F11 0 K
qr=10 0 7 0 Z [<y (29)
m F10 Fl 1 0 Foz 0 K
q 0 0 Z 0 Z | |7

The submatrices in (29) above are given as

Niay hi /2
=Y [
K=1 Y —hx/2
May /2 ‘ ,
z,=3 /  Chlan)nd
Niay hx /2
FU—Z/WCK«: (i) udée, J=0,1,2 1=0,1

(30)

where Fy;, Z, and Z, appear due to enriched kinematics.

2.4. Reissner’s functional

In order to improve an effect of the transverse shear
deformation, to satisfy the continuity of the transverse
shear stresses across the layer interfaces and to avoid
usage of the transverse shear correction factors, we use
the Reissner’s functional in the following form

SIIR (u,65;0u,da;)

:/ [Se-n-+ Sc-m+-67-q + 6k + 55 | dd

A

N chi /2
+/ / oo
—/ p’~8u|,h/2dA’—/ p+-8u|h/2dA+=0
A~ At
(31)

where we assume that the composite shell is pressured by
p~ on its inner surface A~ and by p* on its outer surface
A*. Matrix [C] " is part of the layer K compliance
matrix associated with the transverse shear defor-
mations.

- la] e (y+gki)}udc“K}dA

2.5. Transverse shear stresses

Functional (31) allows for an assumed distribution of
the transverse shear stresses through the laminate layers.
In this work we examine quadratic variation through
each layer, although other assumptions are also possible
(e.g. linear, qubic, etc.). The stress vector o, of layer
K € [1,N] is then defined as

05 = PKﬁI( (32)



where Py denotes a matrix of stress interpolation func-
tions

K 0 K 0 K 0

=lo m 0o R 0 A )
which are given as
F:—Z+%+ G
F = (IZZKCK) (34)
P

and B, is a vector of six unknown stress parameters

13t0p 23t0p pl3 pa3 13bot  -23bot T
By = Jox R Ry o 0k (35)

The subscripts ‘top’ and ‘bot’ in (35) refer to the top edge

(at & = hx/2) and the bottom edge (at & = —hg/2) of
layer K, respectively, and
Ik /2
= [ ot (36)
—hg /2

are the transverse shear resultants of layer K. Note that
nondimensional layer coordinate (x = &¢/(hx/2) €
[—1,1] was introduced in (34).

Now assembling the unknown stress parameters
through a laminate thickness in a vector f

N

= Zﬁk (37)

K=1

ﬁ(éxN)

concluding that y = y(u) and 9 = $(u), and using the
underlined part of the functional (31) we may express
the stress parameters f as functions of the kinematic
parameters u

p — Reissner’s functional (31) — p(u) (38)

In this process the continuity of the interlaminar shear
stresses can naturally be satisfied by employing the fol-
lowing conditions

ol =o' if K e [1,N —1]

g = gt if K =1 (39)
o' P =g if K =N

where ¢t and *3'°P are applied stresses at the bottom

and at the top surface of the shell, respectively. We end
up with a vector f(u)

B(u) — Equations (39) — B(u) (40)

which has dimension of 6 + (N — 1) x 4. The transverse
shear stresses of a particular layer K

= PKﬁK(u) (41)

are then obtained by locating the corresponding stress
parameters in f(u)

layer K : a4(u)

B(u) — Identifying the terms related to layer
K — By (u) (42)

It can be shown (see [5]) that the integration of the
transverse shear stresses through a particular layer re-
sults in a sum of two parts

hi /2 hx /2 B
/ ooudéy = / Pib(wudée = Qly + QL

—hg /2 —hi /2
(43)

where Q?( and Q,l< are variationally obtained constitutive
matrices following from the Reissner’s functional. Now
a new form of submatrices in (29) relating the transverse
shear forces q and q with the transverse shear strains y
and y are defined as

N N N
zo:;Qz, leKZ;Q}(, ZZ:;gKQL (44)

Details of the procedure described in this section can be
found in [5].

2.6. Finite element interpolation and implementation

The above laminated shell model is transformed into
an isoparametric finite element in a usual way (see e.g.
[3]). Convective coordinates ¢' and & from the previous
sections are replaced with isoparametric coordinates of a
shell finite element. According to the isoparametric
concept, we use standard interpolation functions to de-
fine shell geometry within one element as

Nen Nen

=Y N(EA)X), T=D NJ(&, )T, (45)
a=1 a=1

where ng, 1s the number of element nodes, N, : (0 — R
are the corresponding shape functions, whereas (o), are
the corresponding nodal values. Displacements are in-
terpolated as

Nen Nen

llo :ZNg(él,fz)ug, WZZNa(élaéz)wa (46)
a=1 a=1

and the shell director at the deformed configuration is
given as

Nen

thN (&',

Virtual quantities are interpolated in the same way and
derivatives of the interpolated quantities with respect to
the & coordinates are obtained trivially. To avoid the
shear locking we use the assumed natural strain (ANS)
method as suggested by Bathe and Dvorkin [1]. Ac-
cordingly, the transverse shear strains for n., =4 are
interpolated in &l & ¢ coordinates as

s %) (47)



713 = 5[(1 = f?)?’ s+ (1 + f?)"/%] (48)
Yoy =31 =&+ (14+¢ )75
T3 =31 - EVt + (1+ &)

49
o =5[(1 = )VA 1+ fl)f’zcz] )

where the strains yB and ?S) are evaluated at the point

(o) in accordance with the expressions derived in the
previous sections. Positions of the mid-side points 4, B,
C, D are X" =1[X"4+X"V], where (L,M,N)€
{(4,1,2),(B,2,3), (C 3,4),(D,1,4)}.

3. Numerical examples

In this section numerical results obtained by the
above described finite element formulation are com-
pared with exact analytical solutions.

3.1. Cylindrical bending of a shell panel

Consider a simply supported, three-layered, crossply
[90°/0°/90°] laminated cylindrical panel of infinite
length, loaded by sinusoidally distributed pressure
g = gsin(na/b), where a € [0,b], over the top surface
(Fig. 2). The geometry is defined by R/b = 3 /=, where R
is radius of the panel and b is its arc length in the cir-
cumferential direction. The material properties are

E =250, E;=10, Gp=Gp;=0.5,
G23 = 02, Vip = 0.25 (50)

where 1 defines the fiber direction; 2 the transverse di-
rection; 3 the thickness direction and vy, the major
Poisson’s ratio. Analytical solution of this problem was
given by Ren [18].

The following nondimensional quantities are shown
in Figs. 3-13: normalized “in-plane” displacement v =
iy = uyEth*/(qa®) at a = 0, normalized transverse dis-
placement w = i3 = u310ETh*/(gR*) at a = b/2, nor-
malized circumferential stress S2 = 6*2 = ¢%2h*/(qR?) at
a=b/2 and normalized transverse shear stress S4 =
2 = 06”h/gR at a = 0. Finite element solutions (de-
noted as RMZC) are obtained with a mesh of 1 x 40
elements for one-half of the structure. Figs. 3 and 4

Fig. 2. Shell panel: geometry and loading.
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Fig. 3. Shell panel: convergence of displacements and stresses for
R/h=4.
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Fig. 4. Shell panel: convergence of displacements and stresses for
R/h = 100.

show a convergence of numerical results. Figs. 5-13
show through-the-thickness distribution of displace-
ments and stresses. The RMZC prediction of v and w
displacements is close to the analytical solutions. Figs. 7,
10 and 13 show the transverse shear stresses calculated
from the constitutive equations without using shear
correction factors. The agreement of RMZC results with
analytical solutions is reasonable.

3.2. Cylindrical shell

Ten-layered [90°/0°/90°/0°/90°]¢ cylindrical shell of
thickness % is defined by ratio a/R = 4, where a is the
length of the cylinder and R is its radius (Fig. 14).
Thickness of each layer is #/10. The 0° layer fibers are
parallel to the longitudinal coordinate x. The cylinder is
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Fig. 5. Shell panel: normalized through-the-thickness displacements in
the direction of the curvilinear coordinate a for R/h = 4.
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Fig. 6. Shell panel: normalized “in-plane’ stresses for R/h = 4.

supported by the shear diaphragms at both ends and
subjected to the transverse pressure ¢ distributed on the
shell internal surface as

E]:qsin% cos 40 (51)

where x € [0,4] and 0 € [0,2x]. Material characteristics
are

Ey/Er = 25.0,
GTT/ET = 02,

GLT/ET = 057
VT = 0.25 (52)

Analytical solution of this problem was given by Vara-
dan and Bhaskar [21].
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Fig. 7. Shell panel: normalized transverse shear stresses for R/h = 4.
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Fig. 8. Shell panel: normalized through-the-thickness displacements in
the direction of the curvilinear coordinate a for R/h = 10.

Due to the symmetry only one-cight of the cylinder
(0 € [0,7/2] and x € [0,a/2]) is discretized by finite ele-
ments. Discretization is done by 16 x 40 elements, where
40 elements are used in the circumferential direction.
Boundary conditions are u; # 0, u, = uz = 0, where u; is
longitudinal displacement, u, is circumferential dis-
placement and u; is transverse displacement.

Figs. 15 and 16 present nondimensional quantities
v=1u, = wl0E A’/ (qR?) at (x,0) = (a/2,7/8), and
S.» = 023 = 02310h/(¢R) at the closest integration point
to (x,0) = (a/2,n/8). The results obtained by the
RMZC finite elements are in reasonable agreement with
the analytical solution.
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Fig. 9. Shell panel: normalized “in-plane” stresses for R/h = 10.
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Fig. 11. Shell panel: normalized through-the-thickness displacements
in the direction of the curvilinear coordinate a for R/h = 50.
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Fig. 14. Cylindrical shell: geometry and loading.
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Fig. 16. Cylindrical shell: normalized transverse shear stresses for
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4. Conclusions

This work elaborated upon the composite shell for-
mulation with a zig-zag through-the-thickness distri-
bution of displacements and interlaminar continuity of
transverse shear stresses. First the theoretical issues were
clarified to provide a solid basis for the finite element
implementation. In numerical examples special attention
was given to comparison of the transverse shear stresses
calculated from the constitutive equations with the
available analytical solutions. A reasonable agreement
was found although the effect of through-the-thickness
deformation was not explicitly considered.

The model considered cannot predict without post-
processing neither the transverse normal stress nor an
unsymmetrical distribution of the transverse shear
stresses. It is believed, however, that by using recent

concepts of modern shell models (see e.g. [7]) the present
formulation can be extended to include an accurate
through-the-thickness description of both normal and
transverse stresses.
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