
 

 

 

 

 

 

 
 
 

 
Energy Efficiency through Virtual Machine Redistribution in 

Telecommunication Infrastructure Nodes 
 

 

 
 

 

 
 

 

 

 
 

 
Miraj Hasnaine Tafsir 
University of Helsinki  
Faculty of Science 
Department of Computer Science 
Networking and Services 
Master´s Thesis  
September 2013 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/17169375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 
 

i

HELSINGIN YLIOPISTO − HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI 
Tiedekunta – Fakultet – Faculty 
 
Faculty of Science 

Laitos – Institution – Department 
 
Department of Computer Science 

Tekijä – Författare – Author 
Miraj Hasnaine Tafsir 
Työn nimi – Arbetets titel – Title 
Energy Efficiency through Virtual Machine Redistribution in Telecommunication Infrastructure 
Nodes 
Oppiaine – Läroämne – Subject 
Networking and Services 
Työn laji – Arbetets art – Level 
M. Sc. Thesis 

Aika – Datum – Month and year 
22.09.2013 

Sivumäärä – Sidoantal – Number of pages 
69 

Tiivistelmä – Referat – Abstract 
 
Energy efficiency is one of the key factors impacting the green behavior and operational 
expenses of telecommunication core network operations. This thesis study is aimed for finding 
out possible technique to reduce energy consumption in telecommunication infrastructure nodes. 
The study concentrates on traffic management operation (e.g. media stream control, ATM 

adaptation) within network processors [LeJ03], categorized as control plane. 
The control plane of the telecommunication infrastructure node is a custom built high 
performance cluster which consists of multiple GPPs (General Purpose Processor) interconnected 
by high-speed and low-latency network. Due to application configurations in particular GPP unit 
and redundancy issues, energy usage is not optimal. 
In this thesis, our approach is to gain elastic capacity within the control plane cluster to reduce 
power consumption. This scales down and wakes up certain GPP units depending on traffic load 

situations. For elasticity, our study moves toward the virtual machine (VM) migration technique 
in the control plane cluster through system virtualization. The traffic load situation triggers VM 
migration on demand. Virtual machine live migration brings the benefit of enhanced 
performance and resiliency of the control plane cluster. We compare the state-of-the-art power 
aware computing resource scheduling in cluster-based nodes with VM migration technique. Our 
research does not propose any change in data plane architecture as we are mainly concentrating 
on the control plane. This study shows, VM migration can be an efficient approach to 
significantly reduce energy consumption in control plane of cluster-based telecommunication 

infrastructure nodes without interrupting performance/throughput, while guaranteeing full 
connectivity and maximum link utilization. 
 
 
ACM Computing Classification System (CCS): 
C.3 [Process Control Systems] 

Avainsanat – Nyckelord – Keywords 
GPP, Control plane, Control layer, Media plane, virtual machine monitor 
Säilytyspaikka – Förvaringställe – Where deposited 
Kumpula Science Library C- 
Muita tietoja – Övriga uppgifter – Additional information 



ii 

 
 

Table of contents 
1 Introduction 1 

1.1 Motivation of the study ...................................................................................... 1 

1.2 Research Focus ................................................................................................... 2 

1.3 Research Question .............................................................................................. 3 

1.4 Study methodology ............................................................................................. 3 

1.5 Layout of the thesis ............................................................................................ 6 

2 Theoretical background 7 

2.1 Mobile core network ........................................................................................... 7 

2.1.1 Core network infrastructure nodes .................................................... 9 

2.2 Traffic handling in infrastructure nodes ........................................................ 10 

2.2.1 Control plane ...................................................................................... 11 

2.2.2 Data plane .......................................................................................... 12 

2.2.3 Cluster based traffic operation ......................................................... 13 

3 Traffic load scheduling inside infrastructure node 15 

3.1 Green factors ..................................................................................................... 15 

3.2 Resource model of cluster based system ......................................................... 17 

3.3 Load scheduling in cluster based node ........................................................... 19 

4 Virtualization and energy efficiency 23 

4.1 Categories of virtual machines ........................................................................ 24 

4.2 Virtual machine migration .............................................................................. 25 

4.3 Live migration of virtual machine .................................................................. 26 

4.3.1 Post-copy migration ........................................................................... 28 

4.3.2 Pre-copy migration ............................................................................ 28 

4.4 Downtime during migration process ............................................................... 29 

4.5 Pre-copy VM migration in GPP cluster .......................................................... 30 

4.6 VM mobility to reduce energy consumption ................................................... 32 

5 Reducing energy usage in control plane 33 

5.1 Limitation of control plane load scheduling ................................................... 33 

5.2 Virtualization of cluster component ................................................................ 34 

5.2.1 Hypervisor and resource provisioning ............................................. 35 

5.3 Energy aware control plane architecture ....................................................... 36 

5.4 Data plane traffic processing ........................................................................... 37 

5.5 Scheduling technique among virtual machines ............................................. 39 

5.6 VM migration in GPP cluster .......................................................................... 40 



iii 

 
 

5.7 Optimization model of migration decision ...................................................... 42 

5.8 Algorithm for VM migration ............................................................................ 44 

5.9 Algorithm implementation .............................................................................. 46 

5.10 Summary ...................................................................................................... 49 

6 Discussions 50 

6.1 Possible alternatives to optimize energy usage ............................................. 52 

6.1.1 Distribution of control functionalities .............................................. 52 

6.1.2 Cloud-based traffic operation............................................................ 53 

6.1.3 Additional explorations ..................................................................... 54 

6.2 Summary ........................................................................................................... 55 

List of references 57 

Appendix - Virtual machine distribution algorithm 61 

A Fields and methods summary ......................................................................... 61 

B Code Implementation ....................................................................................... 63 

  



iv 

 
 

List of figures 
Figure 1.1: Traffic planes structure in cluster-based infrastructure node ....................... 2 

Figure 1.2: Control plane GPP cluster ................................................................................ 3 

Figure 1.3: Virtualization of GPP unit ................................................................................ 4 

Figure 1.4: Virtual machine migration in control plane cluster ........................................ 5 

Figure 2.1: Horizontally layered network architecture ...................................................... 8 

Figure 2.2: Basic connectivity layer structure represents core network .......................... 9 

Figure 2.3: Performance vs. flexibility concept of NPs (network processors). ................ 12 

Figure 2.4: Control plane cluster ....................................................................................... 14 

Figure 2.5: Basic power usage flow in multi-bade and multi-rack architecture ............ 14 

Figure 3.1: Resource control model in cluster-based node. .............................................. 18 

Figure 3.2: Resource usage model in cluster-based node ................................................. 19 

Figure 3.3: New resources activation ................................................................................ 21 

Figure 3.4: De-activating resources to power-save mode ................................................. 21 

Figure 4.1: Virtual machine configuration (system virtualization) ................................ 23 

Figure 4.2: Iterations in pre-copy live migration .............................................................. 31 

Figure 5.1: Energy-aware control plane system architecture.......................................... 36 

Figure 5.2: Data plane connection with virtualized GPP components ........................... 38 

Figure 5.3: Virtual machine migration approach ............................................................. 47 

Figure 6.1: Power-aware behavior hierarchy .................................................................... 51 

Figure 6.2: Distribution of traffic functionalities ............................................................. 53 

Figure 6.3: Separating control and data plane with different cloud deployment .......... 54 

Figure 6.4: Possible study exploration axes ...................................................................... 54 



1 

 
 

1 Introduction 

In the age of  technology blessed world global  warming is  an alarming problem. High 
energy consumption [Bos10] due to telecom and ICT activities is one of the significant 
reasons for global warming. Rapid growth of the telecommunication area is aimed to 
provide high processing capacity and throughput in server operations. This enhanced 
performance will effectively increase the energy usage by infrastructure equipment to 
perform core network operations (e.g. traffic handling). A number of axes (e.g. energy 
usage ratio, energy efficiency features and cooling requirement) need to be taken under 
extensive research effort to achieve the green behavior from telecommunication sector. 
Here the green behavior refers to minimizing energy consumption through use of 
energy efficient technologies in telecom activities [Kha12]. Following sections give the 
driving force behind the study, concrete research issue and methodology followed. 

1.1 Motivation of the study 

While approaching to minimize overall energy consumption it is better to look back 
why energy optimization is  a burning issue.  As for  example,  very few Facebook users 
are concerned about the amount of energy (i.e. electricity) being consumed. In fact, 
every Facebook operation is consuming some amount of electricity in the data center. 
Increasing amount of electricity consumption in turns results in increasing amount of 
CO2 emissions, which causes long-term environmental impact [KSK+12]. Here 
Facebook represents just an example of ICT applications. The similar scenario is also 
visible in the telecommunication sector. The end user never knows how the services are 
provided, or handled by core network operations. In wireless networking technologies, 
the telecom operators always show potential to provide enhanced services along with 
new application features to their subscribers. Emerging network performance needs 
enhanced traffic handling in telecommunication core networks. Intensive processing of 
various traffic-types (e.g. voice, video) entails extra traffic handling capacity and high 
power consumption by underlying network equipment. For any kind of traffic handling 
operation, network equipment essentially uses electricity and thus generates CO2 
emissions somewhere down the line, consequently causing harm to climate [KSK+12]. 
Moreover, excessive operation performed by traffic handling components produce huge 
amount of heat. Larger cooling systems with high cooling capacity are needed to chill 
the system environment. These cooling systems are also high energy grabber, which 
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result in the same curse to the climate. Consumable energy by network equipment may 
be capped at some point of time in future, whereas performance demand always has 
upward trend. Therefore reducing energy usage is critical, as we cannot compromise 
with performance for power optimization. 

1.2 Research Focus 

To facilitate the increasing traffic requirements over the wireless network, the 
telecommunication infrastructure nodes are being enhanced to serve high throughput 
and  performance.  So  traffic  planes  (for  managing  and  processing  traffic)  in  
telecommunication nodes are continuously being leveraged for handling and processing 
more  incoming  traffic.  This  traffic  operation  is  one  of  the  most  significant  energy  
candidates in telecommunication core network operations. Hence, this thesis focuses on 
power efficient traffic handling within the telecommunication infrastructure node. 

Figure 1.1 below shows the concept of telecommunication infrastructure node. For 
handling the traffic, typical node type contains two interdependent functional blocks 
noted  as  control  plane  and  data  plane.  Traffic  management  functionalities  on  the  
control plane executes on a centralized processor cluster. General purpose processors 
(GPP) interconnected by a high-speed and low-latency network are forming such a 
cluster. The data plane is built up of programmable reduced-function application-
specific network processors. But processing decisions are always made by control plane 
functionalities. And this thesis aims to achieve energy efficient behavior from high 
computing control plane GPP cluster (that performs traffic management operation). 

 

Figure 1.1: Traffic planes structure in cluster-based infrastructure node 

Significant  confronts  can  be  noted  from  GPP  cluster  in  control  plane.  GPPs  are  
configured according to control layer applications. In low traffic situation, shutting 
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down, or CPU throttling is not possible due to scattered software profiles among GPPs. 
Additionally there are resiliency issues for handling any crashing situation meaning 
that, data transmission may be interrupted if any corresponding serving GPP fails. To 
survive  from  this  kind  of  situation,  control  plane  architecture  provides  backup  GPP  
(always remains operational) to support when the primary one fails, consuming energy 
even in normal operational mode. 

1.3 Research Question 

The main research question of this thesis is: 

· How can energy efficiency be improved especially while controlling user 
sessions inside telecommunication infrastructure nodes? 

This question is narrowed down into another sub question based on research focus 
area. 

· How can energy consumption be reduced in control plane of cluster based 
telecommunication nodes? 

1.4 Study methodology 

This thesis is based on the theoretical investigation of several scientific approaches to 
achieve power efficiency in clusters and data centers. Investigation starts by analyzing 
the current technology for power-aware computing for resource scheduling in cluster 
based nodes. We investigate the current control plane (responsible for traffic 
management) architecture inside the cluster-based telecommunication infrastructure 
nodes.

 

Figure 1.2 above shows the architectural  view of  the control  plane cluster.  As a base 

Figure 1.2: Control plane GPP cluster 
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line of this thesis we also analyze the load based resource scheduling technique inside 
the infrastructure nodes. Methodology of this thesis is divided into two significant 
sequential study steps to achieve energy efficiency in traffic operations. Firstly we 
study the virtualization of general purpose processor. Secondly the study continues 
with the discussion of energy optimization through virtual machine migration. These 
are introduced in the following two sections. 

Virtualization of general purpose processor 

In traditional system environment, deploying multiple operating systems on a single 
set of hardware resources was not trivial. This is because of having difficulty in proper 
resource sharing among the operating systems as they would require dedicated 
hardware resources. Using a virtual machine actually resolves this problem, because 
this  technique  does  not  allow  the  system  and  applications  running  in  it  to  directly  
interact with underlying hardware resources. The virtual machine is essentially a 
software package that formulates an abstraction of the underlying hardware. 
Implementation of VM can provide a complete system platform to support execution of 
an entire operating system with all its applications. Virtual machine interacts with 
lower level hardware resources through virtual machine monitor (VMM). Virtual 
machine monitor makes abstraction of functionalities and OS from underlying 
hardware component through virtual machine. It is a control program that is 
accountable for proficiently congregating the virtual machines. If we consider privilege 
level  of  VMM  execution,  it  is  higher  than  that  of  operating  system  supervisor.  The  
Figure 1.3 below depicts the hypothetical concept of GPP virtualization. 

 

Virtual  machine  monitor  is  also  referred  as  the  Hypervisor.  This  hypervisor/VMM  
creates an abstraction layer over the physical hardware to form the virtualized 

Figure 1.3: Virtualization of GPP unit 
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environment in a particular physical general purpose processor cluster component. 
Applications (running inside the VMs) never see the interactions with physical 
hardware resources. The study proceeds with virtual machine based GPP cluster 
environment in the control plane. We went through several scientific articles about 
virtualization, hypervisor and live virtual machine migration to analyze the 
virtualization approach to be applied in the control plane GPP cluster. 

Energy optimization through VM migration 

Our study proceeded towards the live virtual machine migration process [JDW+09] 

[CFH+05], which can be a good approach for power-aware traffic management. Several 
points of VM migration are studied; such as live VM migration with minimal network 
overhead (due to migration process) and also less engagement of hypervisor (virtual 
machine monitor) in migration process. These are crucial because we can never 
compromise with the system performance (for traffic handling) due to energy efficient 
behavior.  Also resiliency situation is one more significant confront to overcome. In our 
proposed  study,  the  number  of  virtual  machines  is  kept  equal  to  the  number  of  GPP 
components in the cluster. As the research goes forward, we see the possible apt way of 
VM migration without any noticeable functional interruption. According to our 
hypothetical manner, the working methodology is conventional during the high-traffic 
situation as every virtual machine located on its original physical component. During 
low-traffic particular virtual machine residing on certain physical GPP component 
migrates to another and former GPP goes scaled down to reduce power. 

  

 

The achievable working tactic after employing virtual machine migration technique (in 
low  traffic  situation)  is  depicted  in  the  Figure  1.4  above.  This  ensures  energy  aware  
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traffic operation in control plane. Migration also depends on the work load situation of 
the destination component. We theoretically explore possible performance and energy 
usage of the infrastructure node to provide energy efficient traffic management. 

1.5 Layout of the thesis 

The layout of the thesis consists of six chapters. The thesis begins with the theoretical 
discussions of mobile core network which is a part of the network connectivity layer of 
horizontal telecommunication network architecture [Wit00].  Then we discuss the 
ideology of cluster based telecommunication nodes followed by the discussion of 
virtualization concept with a detail analysis of virtual machine types. Then it continues 
to study elaborately the virtual machine migration, which is opted to follow as the 
means of energy reduction. 

As the thesis proceeds, after illustrating the theoretical concept, the study moves 
forward to describe the possibility of using virtual machine migration technique in 
control  plane  cluster.  A  mathematical  model  is  shown followed  by  an  algorithm that  
can be used to make migration decision while squeezing and releasing the cluster size. 
Apparently, this can achieve the elastic behavior by respectively switching/scaling 
down and waking/powering up physical cluster components. 

Thereafter some limitations and confronts are mentioned, regarding possible dynamic 
energy efficient solution. As the thesis narrows down the study scope from vast 
telecommunication network architecture to core infrastructure node, therefore we show 
some additional possible research axes of power-aware traffic operations. 

Lastly  the  thesis  is  concluded  by  summing  up  the  study  approach  and  discusses  the  
answers to the research questions. 
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2 Theoretical background 

In horizontal layered telecommunication architecture, core network is one of the parts 
of connectivity layer. In this chapter we will give brief illustration of 
telecommunication layered network architecture concentrating on connectivity layer.  
After that discussion will continue with the load based scheduling for gaining energy 
efficiency inside cluster-based infrastructure nodes. As mentioned in introductory 
chapter, these nodes have hierarchical structure of components to serve traffic demand 
in the core network architecture. In later section, we will study possible green factors 
due to core network functionalities. These analyses are significant for this study to 
narrow  down  the  study  scope  for  focusing  on  efficient  energy  usage  through  traffic  
plane virtualization inside telecommunication infrastructure nodes. 

2.1 Mobile core network 

In telecommunication network, user session control and connectivity are separated into 
different layers. In traditional architectures, call control and connectivity were bundled 
in telecommunication architecture. Nodes and functionality are arranged in layers 
according to their specific areas of use in horizontal layered architecture [DRB03]. This 
separation  actually  brings  a  lot  of  advantages  to  the  network  architecture  as  the  
functions provided are now independent from each other from layer to layer. Several 
standardization  initiatives  such  as  Megaco  [RFC 3015]  in  the  IETF,  Tiphon  in  ETSI  
[ETSI  TS  101  329-2]  and  the  Multiservices  Switching  Forum  (MSF)  adopted  this  
separation principle of modern network. In universal mobile telecommunication system 
(UMTS) this horizontally layered architecture essentially divides the network into 
three different layers [Wit00]. 

- Application layer; 

- Network control layer; and 

- Common connectivity layer. 

The Figure 2.1 below illustrates this layered architecture [BBB07] [CGa04]. The end-
user applications reside in the application layer. Generally in modern networks, mobile 
terminals  and  dedicated  application  servers  are  the  places  in  the  network  where  
applications are implemented. In case of application servers, they are often 
complemented with content servers. Content servers further host service related 
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databases or libraries. Application layer interfaces with network control layer through 
application programming interfaces (APIs). These open APIs are used by application 
feature developers to implement new services and applications. 

 

Figure 2.1: Horizontally layered network architecture 

For providing seamless high-quality services across different types of networks, the 
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essentially made up of core and edge equipment. Core equipment is consists of 
backbone routers and backbone switches that handle traffic according to traffic 
engineering. Telecommunication operators predefine traffic route rules and traffic 
classification principles as traffic engineering. Core equipment transports and 
aggregates traffic streams between different terminal components at backbone edges. 
Edge equipment collects customer specific data and ensures QoS. The edge equipment 
is the telecommunication infrastructure nodes, the ultimate study focus of this thesis.  

 

Figure 2.2: Basic connectivity layer structure represents core network 
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supports  for  quality  of  service  and  traffic  engineering.  These  nodes  mainly  play  two  
important roles: Firstly, switch ATM or route IP traffic and also provide 
internetworking functions between ATP and IP. Secondly, process the media stream 
(depending upon the service request from end user) and provide interfaces to different 
transmission technologies (such as PSTN). Telecommunication infrastructure nodes 
usually have a multi-rack, multi-blade architecture usually with specialized blades 
that are tailored for various functions (such as digital signal processing, packet 
handling, control software etc.). In practice these nodes usually contain tens to 
hundreds of processors of various types with thousands of cores interconnected using 
multiple networks with various topologies. In fact, a telecommunication infrastructure 
node  is  a  computing  cluster  which  is  custom  built  to  fulfill  a  specialized  role.  From  
architectural perspective, telecommunication infrastructure nodes are often built as 
hierarchical systems, where higher level software components (executing on one set of 
processors) control and manage lower level components (usually executing on another 
set of processors). Lower level components are usually handled as pools of resources 
and  used  by  higher  level  components  to  full  fill  certain  tasks  (e.g.  processing  of  user  
session).  In  such  systems,  setup  of  a  user  session  normally  broken  down  to  smaller  
tasks handled by lower level software and hardware components. The hierarchical 
software architecture of the system also supports the non-uniform nature of the 
interconnected network between the cluster components. 

The  load  in  a  telecommunication  node  varies  greatly  over  time.  In  a  capital  city,  for  
example,  the  load  is  likely  to  be  the  highest  during  office  hours  (perhaps  peaking  at  
near  100%  of  maximum  capacity),  whereas  during  the  night  and  weekends  the  load  
becomes very low (well under 10% of maximum capacity); during long vacation periods 
the load can be even lower than that of peak hours. 

2.2 Traffic handling in infrastructure nodes 

As the telecommunication network has grown and advanced exponentially, the 
requirements of network interfaces have become more complex and diverse. These 
interfaces also serve complex purposes such as media processing, or any on-demand 
service. For serving various network applications and including multiple protocols 
requires highly intelligent and intensive traffic processing over the network. To keep 
up with current trends of emerging network applications, programmable 
microprocessors called network processors (NP) [LeJ03] are introduced in 
telecommunication core network interfaces to handle the demands of modern network 
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applications. For example, packet throughput of a 10Gbps link is 19.5 million packets 
per second,  assuming a stream of  minimum-sized packets of  64 bytes.  Given a single 
processor of 1 GHz clock frequency, it can execute only 51 instructions per one packet 
time [LeJ03]. It is worth to mention that one single processor is not enough to perform 
the processing at wire rate. Hence, concurrent traffic handling through a suitable 
resource model is required to carry the traffic load where a number of processing 
equipment  is  involved  (we  will  discuss  this  elaborately  in  chapter  3).  Energy  usage  
essentially increases while augments the number of processing components. This thesis 
is motivated to find the hypothetical way of possible energy optimization without 
compromising the network performance. There are two clear functional categorizations 
of NP applications in telecommunication nodes. These are two explicit traffic planes: 
control  plane  and  data  plane.  User  session  establishment  and  call  setup  can  be  
mentioned as the primary traffic generator activities in the core network. In principal, 
the control plane is responsible for managing traffic (e.g. call establishment, user data 
connection  settlement).  Data  plane  is  responsible  for  processing  the  traffic  as  per  
session, or connection demand which is accomplished by reduced function application 
specific networked processor. We will discuss more in detail in following sections. 

2.2.1 Control plane 

The control plane of an infrastructure node is basically the set of processors that 
executes the higher level software components of the node. The traffic control plane is 
usually a cluster of commodity General purpose processors that are connected to form a 
HPC (high performance cluster) cluster. GPPs (General Purpose Processors) are 
flexible to rapidly develop network applications and protocols. They do not provide 
enough performance to process data at wire rates [LeJ03]. Therefore to process the 
traffic GPPs are connected to lower level data plane processing equipment (discussed in 
following section). The control plane is responsible for controlling the user sessions 
management and setup/release of calls/sessions requested by end-users. From the 
software deployment perspective, cluster front-end is configured differently than the 
other cluster components with necessary cluster management functionalities (such as 
load scheduling and storage). The performance of a telecommunication infrastructure 
node is measured by control plane functionalities. A number of metrics can be used for 
measuring the performance like following: 

- Maximum number of simultaneous user sessions; this actually means the 
number of data connection e.g. in case of real time call conferencing. 
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- Maximum bandwidth; can be measured per user connection or in total.  
- Session setup/tear down rate; this means data connection per unit of time. 

The control plane is greatly responsible for fulfilling the above mentioned performance 
metrics in real time. Based on these metrics the network is pre-dimensioned to (i.e. the 
load threshold is  determined)  handle traffic.  It  is  also worth mentioning that,  traffic-
load  threshold  can  also  be  determined  by  calculating  the  traffic  handling  capacity  of  
control plane cluster components and traffic processing capacity of the lower level 
networked processors. If the load level is over threshold, then the control plane 
gracefully discards traffic that cannot be handled reliably but still maintains the QoS 
of user sessions. The traffic load is distributed among the cluster components by the 
application software (deployed inside cluster front-end) through load distribution 
algorithm. 

2.2.2 Data plane 

This  functional  block  is  also  known as  a  forwarding  plane.  The  principle  role  of  this  
functional block is to perform packet operations (e.g. forward data packets) and process 
the  traffic  at  wire  rate.  The  traffic  data  plane  consists  of  programmable  network  
processors, or dedicated ASICs (Application-Specific Integrated Circuit) [LeJ03]. These 
processors are reduced function processors tailored to perform traffic processing tasks 
(e.g. media stream dispensation). Control plane’s equipment actually directs the 
demanded traffic processing work to data plane based on the user session requirement. 

 

Figure 2.3: Performance vs. flexibility concept of NPs (network processors). 
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resources. The Figure 2.3 above represents a brief comparison between traffic plane 
processors in the telecommunication infrastructure node. The data plane actually 
performs  packet  processing  for  forwarding  functions  and  any  media  processing  on  
demand. Data plane functionality also includes traffic processing operations such as 
media transcoding and IP packet fragmentation. Media transcoding is a process of 
transforming media data object, e.g. conversion from one encoding to another. In case 
of packet fragmentation, data plane application splits IP packets into multiple 
fragments for which some header fields have to be adjusted and header checksum have 
to  be  computed.  Data  plane  application  also  handles  video  mixing  and  tone  handling  
for any video communication through mobile network. 

2.2.3 Cluster based traffic operation 

As discussed earlier, control plane is normally consists of commodity high performance 
general  purpose  processor  units  reside  in  a  cluster.   This  cluster  has  a  front-end  
(similar as other processor units within the cluster) which is different from rest of the 
processor units from system deployment perspective. Front-end processor units are 
deployed with all functionalities in the cluster with an extra functionality to manage 
cluster. In our system architecture, the front-end will also contain virtual machine 
management block. Every cluster component has its own embedded operating system 
running for traffic management activities and necessary protocol termination. Control 
plane cluster is different from any other cluster computing environment from both of 
the performance and operational perspectives. Every general purpose processing 
cluster component is connected with one or more application specific reduced function 
network processor(s). This cluster actually determines the node capacity of user session 
establishment rate. Every component establishes the user session by protocol 
termination and forward the data packet for processing toward data plane processing 
component. 

In telecommunication infrastructure nodes, within the general purpose processor 
cluster, only the front-end has redundant GPP component to support failure recovery 
mechanism. The reason is that, the cluster front-end has all necessary information and 
managerial functional blocks regarding cluster such as load situation of all cluster 
components and load distribution algorithm. This redundant GPP resides within the 
cluster and connected in the same manner as the primary front-end unit for rest of the 
units and remains in switched-on state. Figure 2.4 below depicts the concept of control 
plane cluster system showing the redundancy of cluster head. 
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Figure 2.4: Control plane cluster 

The Figure 2.5 below gives very basic energy usage scheme inside a telecommunication 
infrastructure node. It shows that, processing blades in different rack are the ones who 
are responsible for overall energy consumption by the whole node system. 

 

Figure 2.5: Basic power usage flow in multi-bade and multi-rack architecture 

These processor components are the parts of multi-blade architecture which further 
creates multi rack node system. The Figure 2.5 above shows the simplified concept of 
power provisioning to the rack level energy consumption containing a number of 
processor components. 
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3 Traffic load scheduling inside infrastructure node 

The  basic  idea  of  load  scheduling  in  telecommunication  infrastructure  node  is  to  
distribute overall load as evenly as possible among available resources. This essentially 
minimizes  the  impact  of  hardware  or  software  failures.  In  traditional  system,  for  
guaranteeing against hardware or software failures, all components were kept active 
all the time. This approach actually does not support power efficiency even at very low 
load levels. Energy-aware load scheduling allows loads to be concentrated to as few 
components as possible. This approach maintains the trade-off between in-service 
performance and energy saving. Switching off some resource components in low load 
level is the key for gaining energy efficiency. 

3.1 Green factors 

Both telecommunication network providers and operators are continuously making 
their effort to achieve green behavior from network activities. The goal is to establish 
efficient network to increase the overall carbon neutralization. Energy saving approach 
can be rooted into the operations performed by major network elements such as 
telecommunication infrastructure nodes. However huge amount of energy is used due 
to the operation of these infrastructure nodes in telecommunication network. The total 
amount of energy usage ramps up because of consuming energy in different levels of 
traffic  handling.  One  watt  possible  saving  by  end  level  traffic  operation  has  cascade  
effect on the overall node power consumption. In earlier discussions, we mentioned 
about the telecommunication nodes in mobile core network. In this section, we will 
study several green factors that can always influence telecommunication vendors to 
implement method to reduce power consumption inside those cluster-based nodes. The 
following four green factors for telecommunication infrastructure nodes are brought up 
in this study. 

- Energy efficiency ratios 
- Cooling requirements 
- Space foot print 
- Energy efficiency features 

Calculating the energy efficiency ratios is significant. Current telecommunication 
nodes are like multi-rack based complex switching device where multiple blades are 
placed tailored for various functions (control or forwarding). Large telecommunication 
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nodes contain hundreds of processors of various types interconnected with various 
topologies. Energy efficiency ratio can be calculated per rack and per unit amount of 
data processing. For example we assume a node with n racks and each rack having m 
working blades process certain amount traffic per unit time. We assume the energy 
consumption measurement in the node per unit of time like following: 

i  The index number of rack in multi-rack architecture. 
j  The index of blade in a particular rack. 
bij  

Amount of traffic per unit time. 
  
E ij< f ∋bij( ;

E t <∑
i<1

n

∑
j<1

m

E ij ;
 

(1) 
 
(2) 

  
Eij calculates the energy consumption in a particular blade for handling traffic per unit 
time. Et measures the total energy usage in the node. For energy optimization we need 
to minimize the value of Eij while bij is fluctuating depending on user demands. 

Energy efficiency ratios directly related to the cooling requirements in the data center 
where nodes are placed. As long as the energy consumption increased in the switching 
node the heat production increased. Hence require a large number of cooling 
equipment which further consumes intensive amount of energy. Less energy usage in 
traffic operation will produce minimal heat from the nodes that reduce cooling 
requirements. Therefore we see that the second factor is directly related to the first 
one. 

Now we move forward to mention briefly the factor concerning space foot print. This is 
beyond our study scope but for the sake of study we discuss this factor in brief. This is 
again related with the first one. If we develop the system in energy efficient manner 
then it will ensure the utilization of optimal resource in the node which will reduce the 
number of processing units due to possible optimization. Currently the 
telecommunication vendors are mainly heading to develop high capacity 
telecommunication nodes but they are a bit reluctant to look into the real optimal need 
of resources to serve the capacity targeted. Operators are engaging more nodes for 
escalating  the  core  network  capacity.  As  a  result  they  are  in  need  of  more  space  
requirements in data center to facilitate more physical systems. Space foot print also 
can involve new method of hardware design, which may ensure reduced amount of 
energy usage. But still developers can implement efficient software system to reduce 
energy usage [HJL+08] regardless of hardware design. 
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The last factor mentioned, actually regarding the features that can be implemented 
inside the traffic processing, or handling components to optimize the system not 
compromising with the capacity requirement but minimize the energy usage within 
that particular component. These features will make the system power-proportional 
[LWA+11].  Energy efficiency features will enable the whole system to behave 
seamlessly in elastic mood by dynamically scaling/shutting down some processing 
components.  We  see  again  this  factor  also  has  direct  relation  with  the  first  one.  The  
processor components of the control plane cluster are placed as means of processing 
blades  in  racks.  Dynamic  frequency  scaling  [TJL+08]  is  a  good  example  of  energy  
efficient behavior that can be deployed in embedded operating system environment. As 
we are concerned about the control plane cluster component for gaining energy efficient 
behavior, therefore elastic nature can be developed in system design to work inside 
every control plane cluster component (responsible ones for energy consumption ratio 
per  rack).  Elastic  nature  will  put  some  blades  in  dormant  mood  which  further  
minimizes the energy amount Eij, that eventually affects the total energy amount Et 
consumed within the whole node system. 

3.2 Resource model of cluster based system 

Energy aware load-based scheduling method follows an abstract resource model. This 
resource model further divided into two significant model parts. Controlling resources 
at  different levels  is  defined by resource control model and another one describes the 
responsible component that use particular resource named as resource usage model. 

Resource control model: This model actually structures the computational cluster into 
hierarchical  arrangement  like  tree.  In  a  tree  structure,  two  types  of  nodes  are  
available, terminal and non-terminal node. Terminal nodes are the leaves whereas 
non-terminal nodes can have terminal nodes, or further non-terminal nodes under 
their possession. Now we will continue discussion about these two node types in case of 
resource control model. 

In resource control model, terminal nodes are resources that essentially do not contain 
any other resources. Terminal nodes are processors, or processor cores that perform 
end  traffic  operations.  These  processors  are  able  to  work  in  energy  saving  mode  that  
can be implemented in their operations. Non-terminal nodes are the owner of terminal 
resource components. In resource model structure, non-terminal resource components 
create  sub-trees.  This  is  typically  a  software  component  that  can  be  co-located  with  
other software components and also can be executed on a particular processor 
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component (e.g. GPP) as well.  In cluster based infrastructure node, non-terminal node 
typically resides on the same processor component along with sub-tree. Hence, non-
terminal nodes are called resource owners that manage lower level nodes. A resource 
owner contains the resource pool, which consists of non-terminal nodes. The upper 
most level in the tree structure contains redundant resource components. Redundant 
resource component is used to provide functional capabilities for having fault tolerant 
traffic operation inside the infrastructure node. Figure below gives general idea of this 
hierarchical structure with four levels of resources. 

 

Figure 3.1: Resource control model in cluster-based node. 

Terminal resource nodes are hierarchically managed. In the Figure 3.1 above, dark 
colored nodes are in active mode, whereas others are inactive and hence in power-save 
mode. Power-save mode encompasses several key rules to ensure energy efficient load 
scheduling. In operational state, at any particular time only active resources are used 
for processing. If the head node of any sub-tree is inactive, then all the nodes at lower 
levels  are  powered  down  for  reducing  energy  usage.  Lastly,  in  any  situation,  active  
status of a non-terminal node means that, at least one node (terminal or non-terminal) 
is active in the sub-tree. Non-terminal and terminal nodes are not always identical. 
Different resource pools can have different restrictions in processing. 
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Figure 3.2: Resource usage model in cluster-based node 

Resource usage model: This depicts the usage of resources. The ideology of resource 
usage model is similar but a bit different from resource control model. Two principle 
key points can be mentioned about resource usage model. Firstly, for any sub-tree 
there is a single access point to lower level resources, which is the non-terminal 
resource owner at the tree head. Secondly, any non-terminal resources at level n can 
use any non-terminal resources at level n-1 (pools of resources). This ensures that pools 
of resources can be used from anywhere in the system at any particular time. 

3.3 Load scheduling in cluster based node 

Load  scheduling  method  is  a  straight  forward  process,  as  it  adjusts  the  amount  of  
active resources online, subject to load situation of the system. To make this happen 
scheduling procedure relies on three significant metrics: 

- highLoad 
- lowLoad and, 
- activeStep. 

Firstly, highLoad is meant for the load level of the system when most of the resources 
are activated. According to observed load situation of the system highLoad parameter 
is pre-determined to serve the increasing load. lowLoad level determines that, some of 
the active resources can be turned into inactive state at certain point of time. Third 
metric activeStep is the crucial one, because it makes the system reliable by avoiding 
bouncing between low and high load states.  To make the system reliable activeStep is 
calculated as the amount of resources (as absolute value, or as percentage of total 
capacity) and this is maintained while increasing/decreasing a pool of resources. This 
metric does not let the system to switch between low and high load states for arbitrary 
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set of active resources. 

In the resource model (as discussed in earlier sections), every resource owner 
essentially has two sets of resources for making a resource pool. These are a set of 
active resources and a set of inactive resources. The first set is actually used for traffic 
operations.  Later  one  consists  of  powered  down  resources.  At  the  beginning  of  
operation, activeStep amount (as mentioned above) of resources remains in active 
mode, keeping all other resources in the pool inactive. 

Any resource owner at level n is responsible to manage the pool of resources at level n-

1. Lower level active resources report their load situations (e.g. usage percentage) to 
their respective resource owners. Every resource owner uses the metric aggregated 

load, which is simply the average of load reported by the resources in the pool. With N 
number of resources in the pool the aggregated load is calculated as follows, 

Aggregated load = ∑ (Resource Load) / N 

Load scheduling process works entirely on four different scenarios, where three of them 
are based on aggregated load and the last one is actually a decision making, impacted 
by three others. 

- Aggregated load is between lowLoad and highLoad (normal operating mode). 
- Aggregated load is over highLoad. 

- Aggregated load is below lowLoad. 

- Deactivating a complete pool of resources. 
In normal operating mode, each of the active resources (terminal or non-terminal) 
always reports its current load status (for any particular load situation) to both owner 
and user of that resource. From this status report, resource owner knows about the 
resources (under its control) that are residing in active pool. When traffic operation 
continues, load status continually changes inside both of the terminal and non-terminal 

resources.  In  terminal  resources,  load  situation  changes  due  to  new  tasks,  task  
completion, or any computational changes of ongoing tasks. For non-terminal 
resources, changes in load levels occur due to changed load status of lower level 
resources in active pool under its possession. Depending upon the load status report 
from lower level resources non-terminal resources calculate the aggregated load which 
is arithmetical average of loads reported by resources in its active pool. 

Secondly, powered down inactive resources are activated and added to the active pool 
of a certain resource owner when the aggregated load crosses the higLoad threshold. A 
significant role is played by maintaining the activeStep amount of resources to prevent 
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bouncing situation as mentioned earlier. According to the activeStep measurement, 
when the aggregated load exceeds the threshold new additional resources are added in 
the  pool.  It  is  worth  to  mention  that,  if  the  resource  pool  is  fully  utilized  by  active  
resources (meaning that, no inactive set of resources found) then crossing the threshold 
does not trigger any action to add new resources. Activation of new resources can be 
depicted through the steps in the Figure 3.3 below. 

 

Figure 3.3: New resources activation 

Resource owner selects any arbitrary resources from the pool depending on the load 
demand.  For  simplicity  of  the  scheduling  process,  the  way  of  switching  on  new  
resources is not discussed here. After the completion of steps mentioned in the Figure 
3.3 above, resource owner reports new load level by calculating aggregated load and 
also measures the percentage of active resources in its resource pool. 

 

Figure 3.4: De-activating resources to power-save mode 
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by switching off resources. Like the previous step activeStep amount of resources is 
also maintained here. When the aggregated load is below the lowLoad threshold 
parameter, some resources are deactivated from the active pool. Two significant 
concerns are here: selecting deactivation candidates and handling the ongoing tasks in 
the selected resources. In the above Figure 3.4, we sketched the idea for resource 
selection and task handling progression while taking active resources to power-save 
mode. Selection process is done by resource owner. Two options are there for selecting 
active resources. According to load reports from lower level resources, resource owner 
can target the lowest loaded resources. The nature of tasks also impacts the selection 
decision. Along with the load reports, the resource owner also monitors the nature of 
tasks [SKV+12] that are ongoing in lower level resources. Sometimes it is beneficial to 
select resources where ongoing tasks are probable to be concluded faster comparing to 
tasks  in  lowest  loaded  resources.  In  both  of  the  cases,  de-activation  is  done  after  the  
normal completion of ongoing tasks. Once the selection is done, handling the ongoing 
task becomes the focal point. Firstly, the possibility of task migration is investigated so 
that, ongoing tasks can be migrated from selected resource to another active resource 
in the pool and original resource goes to power-save mode. In some situations, 
migration  is  not  possible  due  to  the  nature  of  task  e.g.  user  session  would  be  
terminated  if  migrated.  In  such  cases,  system  waits  until  the  ongoing  task  is  
terminated bounded by certain time and if time limit exceeds task is forcefully 
concluded. 

Last scenario of load scheduling method is the decision by particular resource owner at 
a  certain  point  of  time,  that  it  wants  to  de-activate  a  resource  under  its  possession  
which itself is another resource owner. In this situation, request propagated down the 
resource management sub-tree owned by the targeted non-terminal resource. Upon 
getting the de-activation request it orders all non-terminal and terminal resources 
below to deactivate themselves. Whole deactivation process is done within a certain 
time period, if the time limit exceeds, forceful termination is done by principal decision 
making resource owner. Then lastly, resource-owner deactivates itself by reporting its 
users that, resource is no longer available to process traffic. Task migration does not 
take place in case of complete pool deactivation due to large number of processing task 
up to leaf non-terminal resources in the tree structure. After completion or termination 
of tasks, all non-terminal resources go to power save mode and propagate the load-
report to upper level. Finally pool owner itself goes to power-save mode. 
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4 Virtualization and energy efficiency 

Virtualization is an efficient method for taking advantage of modern computing 
hardware [ASR+10]. This actually improves the efficiency and availability of physical 
resources and applications by abstracting computing resources. This decouples system 
software from hardware resources. Virtualization technique can be divided into several 
categories depending on resource utilization demands, such as server/system 
virtualization, network virtualization, desktop virtualization, application 
virtualization. Virtualization technique provides significant benefit for resource 
utilization. In our discussion we will concentrate mainly on system virtualization 
technique. This effectively creates a new layer of software over underlying physical 
hardware called hypervisor (or virtual machine monitor). Hypervisor actually 
facilitates virtual machines to run with their operating and application services. This 
thesis study shows the possibility of deploying live migration technique (discussed 
later) of VMs to reduce energy usage especially in cluster-based telecommunication 
infrastructure nodes. 

 

Figure 4.1: Virtual machine configuration (system virtualization) 

The Figure 4.1 above depicts the general concept of system virtualization [VNE+08] as 
well as the virtualization of GPP components. Virtualization will assist control plane 
GPP cluster to run multiple VM instances in every single cluster component in low 
traffic situation through migration (discussed later). Virtualization of physical 
resources through VMM (virtual machine monitor) ensures better utilization of 
resources of a single cluster component up to its threshold processing capacity. System 
virtualization is gaining continuous research interest among operating system 
researchers worldwide. 
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4.1 Categories of virtual machines 

A virtual machine is considered to be an efficient, isolated replica of the real machine 
because  this  has  all  the  functionality  of  a  physical  machine  with  several  significant  
properties. VM deployment leverages efficiency of the system as the unprivileged 
instructions are executed directly by the host processor, hence resource controlling 
becomes  efficient.  An  application  running  in  a  VM  cannot  affect  its  own  resource  
allowance without going through virtual machine monitor. There is actually no 
difference between the scenarios where a particular process ‘executes inside a VM’, or 
‘runs on real hardware’. Only exceptions are in case of timing and physical resource 
availability. In general, virtual machine monitor traps all instructions coming from 
applications that read, or write global machine state. This actually fools the application 
inside the VM believing that it alone controls the machine. Virtual machine discussion 
can be divided into several basic types. 

System virtual machines:  This  can  also  be  called  as  platform  virtual  machines.  
Hardware virtualization technique is used to create system virtual machines. Using 
this technique, in the same physical machine multiple OS environments can be co-
allocated in strong isolation. Operating systems do not know about the proceedings 
running inside others. Virtual machine monitor hides the physical characteristics of a 
computing platform. System virtual machines are significant for providing several 
crucial properties to the whole system such as application provisioning, maintenance, 
high availability and disaster recovery. Application provisioning to users becomes 
easier due to system virtual machine deployment. As the application does not interact 
directly with the underlying hardware structure, hence execution of a particular 
application on heterogeneous platform becomes possible. As the unprivileged 
instructions can be executed so processes running inside VM do not see any difficulty 
while continuing operation. 

In system virtualization technique, multiple virtual machines can run their own 
operating system which can be used in server consolidation. The idea of server 
consolidation is that, different services running in separate virtual machines on same 
physical machine avoiding intervention. System virtual machine concept leverages the 
facility to  run different category operating systems on a single machine.  Hence using 
virtual machine concept to support multiple guest operating systems is trendy in 
embedded system research. 

Process virtual machines:  In  our  thesis  we  opt  not  to  study  process  VMs  which  are  
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called as application virtual machine. Inside host operating system this runs as normal 
application  and  supports  single  process.  One  example  of  this  type  VM is  java  virtual  
machine. These actually exist when the specific process started and dismissed after the 
process termination. 

Pure virtual machines:  The concept of pure virtual machine comes from the fact that, 
these virtual machines imitate the underlying hardware and also with the privileged 
executable instruction set. 

When a machine is shared by several processes, it is important that proper nesting is 
observed.  If  a  process  is  allowed  to  modify  global  state,  such  as  the  global  interrupt  
disable  flag,  or  the  page  table  base  register,  this  may  affect  how  other  processes  
execute, and may violate overall system integrity. 

4.2 Virtual machine migration 

This thesis focuses on the system virtualization concept (as discussed in earlier section) 
for operating traffic in the control plane cluster. In system virtualization technologies, 
VM  migration  is  a  key  feature  which  is  actually  significant  for  increasing  system’s  
operational reliability from several perspectives such as failure recovery, resource 
availability etc. We have come across several research activities concentrating in this 
area [JDW+09] [CFH+05] [HiG09] [LJL+09]. The key concept behind virtual machine 
migration is that, this technique works by repositioning the memory and device state of 
virtual machine from one physical machine to another. Virtual machine mobility 
technique proffers motivating advantages for cluster computing environment that are 
serving applications through VM deployment. As the application running in the cluster 
component does not have direct physical resource utilization within a particular 
component, therefore several significant benefits can be seen by migration feature 
[LJL+09]. 

- Online load balancing 
- Energy efficiency 
- Transparent infrastructure maintenance 

Online load balancing: We call it online because whenever any new request is coming 
in then proper load balancing among the components is necessary. To offer optimal 
handling of computing resources, virtual machines can be dynamically migrated to new 
physical machine. 

Energy efficiency:  VM  mobility  can  reduce  significant  amount  of  energy  in  cluster  
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computing environment. Whole system can be squeezed depending on the load 
situation by consolidating to small number of physical machines. This behavior sets 
aside some cluster components by shutting/scaling down to reduce energy consumption 
in whole clustered system. Intensive research activities are underway to ensure most 
advantageous resource usage in data centers [LWA+11] to make the system energy 
proportional. 

Transparent infrastructure maintenance: In a large cluster computing environment 
maintenance is obvious to ensure continuous reliability of the whole system. Moreover 
service interruption is not trivial, therefore system administrators can reposition 
virtual machine to other cluster components without any noticeable interruption of 
time critical  [XHG+06] services.  This benefit  is  not  aligned with our study as we are 
not dealing with infrastructure maintenance. Still it is necessary to mention here as 
one of the significant advantages of migration. 

Load intensive systems in most of the time face varying workloads. For performance 
reliability, a multi-processing-component based system works by keeping all the nodes 
in  working  mode.  In  some  situations,  due  to  varying  workloads  arbitrary  number  of  
nodes may be under-utilized, whereas others may be heavily-loaded. Therefore virtual 
machine migration approach can be worthy in such situations to balance VM loads 
among physical components of the system. Our study concerns with high performance 
computational cluster system. Cluster front-end periodically collects the resource usage 
statistics of cluster components. Based on this measurement some VMs are migrated to 
lower loaded physical cluster nodes. Energy efficiency is a critical research concern in 
modern multi-core, or multi-processor based computing systems. In these systems, by 
consolidating virtual machines to fewer physical machines it is possible to power off 
extra nodes to gain power efficiency. 

4.3 Live migration of virtual machine 

Successful live VM migration ensures that an application (that is running inside VM) 
does not experience any noticeable downtime in practice. Live virtual migration process 
can  afford  elastic  way  to  use  optimal  power  in  high  performance  computing  
environment [NaS07] [HLM+09] [HJL+08]. 

Generally, live migration of entire virtual machine means on-line mobility of 
computational, or traffic processing server with minimal noticeable operational 
downtime [CFH+05]. Efficient migration of entire virtual machine essentially moves 
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VM’s  memory  contents  from  source  to  destination  physical  host.  Live  migration  is  a  
powerful tool for consolidating clustered components into a single consistent host. 
Minimizing the perceptible operational interruption in live migration is possible based 
on two significant metrics: downtime and total migration time. Downtime is the actual 
service interruption time which means that control functionalities (in control plane 
cluster)  will  be  stopped  as  no  VM is  running.  The  total migration time is  the  sum of  
downtime and actual migration time. The total migration time is the sum of downtime 
and actual migration time. Actual migration time is the time period that is measured 
from migration initiation to activation of VM in another physical machine. Any 
computational overhead due to migration process increases the migration time which 
impacts the total migration time. Moreover total migration time also increases with 
longer Downtime.  During  this  time  period  memory  contents  of  particular  VM is  fully  
transferred to another physical machine. The method of transferring VM’s memory 
pages is the most significant concern in live virtual machine migration. Efficient 
transferring method may ensure minimizing the above mentioned timing metrics. 
Memory transfer method can be depicted by dividing into the following three steps 
[CFH+05]. 

Push phase – During the migration process memory pages of running VM is pushed to 
new destination. As the source VM keeps on executing all application services running, 
so memory that are pushed to new destination may be dirtied during ongoing 
migration process. These pages need to be pushed again, or re-sent to new destinations. 

Stop-and-copy phase – In this step, VM on the source physical machine is clogged for a 
while and pages are copied across to the destination VM. This can be considered as the 
final step of migration process. After this phase source VM is terminated and new VM 
starts serving. Service interruption occurs in this step. Time required in this phase is 
essentially called the downtime seen by the ongoing functionalities inside VM. 

Pull phase – This phase shows up just before the termination of source VM. After the 
new VM starts execution,  if  it  accesses a page that has not yet  been copied then this  
page is faulted in (pulled) across the network from the source VM. Once new VM 
executes reliably with all functionalities, then old VM is terminated. Functional 
verification  of  the  migrated  applications  (that  were  running  inside  the  source  VM)  is  
not  explored  in  this  thesis  and  kept  out  scoped.  It  can  be  well  assumed  that,  if  pull  
phase prolongs then total migration time may increase. 

Several approaches of virtual machine migration are investigated by researchers 
[PKC+09] [MoC10] [LJL+11] [HGW+11] [HiG09]. Post-copy [HiG09] and pre-copy 
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[CFH+05] are two significant migration techniques that are worth mentioning here. In 
the following sections we will discuss these two types of live virtual machine migration 
technique. 

4.3.1 Post-copy migration 

During  the  initiation  of  post-copy  migration,  virtual  machine  at  the  source  physical  
host is suspended. After the suspension of virtual machine, the smallest subset of the 
execution state (such as CPU registers and non-pageable memory) of virtual machine is 
migrated to the target physical host. When all necessary CPU states are transferred to 
the destination physical host, then the new virtual machine is started on the 
destination host even though major part of the memory state of the virtual machine 
still  resides  at  the  source  physical  host.  After  that  all  memory  pages  are  transferred  
from source to destination using the push-phase. On a high-level, post-copy migration 
defers the memory transfer phase until after the virtual machine’s CPU state has 
already been transferred to the target and resumed there [HiG09]. At the target host, 
virtual  machine  generates  page-faults  when  it  tries  to  access  memory  pages  that  are  
not yet transferred. These faulted memory-pages are demand-paged over the network 
from the source. In post-copy migration, this process ensures that each memory page is 
transferred at most once. But on the other hand, because of redirecting each page fault 
(of the running virtual machine) towards the source can mortify the performance of 
application running inside the virtual machine. Pre-copy migration technique is free 
from this performance bottleneck of the running application inside the virtual machine. 
In the following sections we will discuss more in detail. 

4.3.2 Pre-copy migration 

Pre-copy approach uses iterative cloning of memory pages in rounds. In every second 
round, the pages that are dirtied during previous copy round will be copied again to the 
destination  VM.  This  process  continues  up  to  finding  a  writable  working  set  (WWS)  
[MLL10]. Continuous cloning of VM’s memory pages results into small set of 
application’s writable working set (WWS). Memory page dirty rate may not be the 
same for all ongoing functionalities. Once the WWS is found, source VM is suspended 
and all  CPU states and remaining dirty pages are copied to destination.  According to 
several research studies [DYS+10] [HJL+08] [OSS+02], virtual machine migration 
techniques mostly use pre-copy migration, as VM services are always available during 
migration process except short stop-and-copy phase. But some crucial concerns can be 
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mentioned here. Additional computational [SZL+11] and network overhead [PiY10] can 
be traced out due to iterative copy method. Maximum number of iterations can be set 
to come up with writable working set. This is significant, because it might be the case 
that we may never converge to a small set of idle memory pages due to continuous page 
dirtying by different applications. Network overhead is another crucial concern. 
Iterative cloning approach may acquire most of the bandwidth inside the cluster. 
Therefore, pre-copy migration method is going under intensive research [LJL+11] 
[MoC10] to show optimal performance. 

In this thesis we opt to study the pre-copy virtual machine migration approach to 
balance trade-offs among above mentioned constraints (such as computational 
overhead,  network  overhead)  and  migration  phases  (e.g.  writable  working  set).  It  
differs from post-copy process,  as in this  case CPU states are copied after copying all  
memory pages to destination and then starts the destination VM. 

4.4 Downtime during migration process 

The downtime observed during the migration process essentially causes degraded 
quality of services. Minimizing both the downtime and total migration time is always 
challenging. Both downtime and total migration time are relative to the amount of 
physical memory allocated to the VM. Efficient migration process needs to minimize 
the both. Minimal downtime can impact on service interruption and also least possible 
total migration time. In general, we need shortest possible stop-and-copy and pull 
phases. The downtime is a period of time when no CPU cycle is engaged to serve any of 
the applications that are facilitated by the source or destination VM. The downtime is 
actually  the  sum  of  several  different  time  slots  [MLL10]:  the  time  required  for  
suspending the source VM, transferring the VM state to the destination, loading the 
VM state to the destination and activating the migrated VM on the remote physical 
host. In pre-copy migration approach downtime is  minimized  due  to  iterative  copy  
operations, because cloning process continues up to finding out WWS. Iterative copying 
technique can make stop-and-copy phase much shorter. Researchers showed that the 
very straight-forward way of virtual machine migration is pure stop-and-copy approach 
[WCS+04]. In this method, original VM halts and then entire memory is copied to the 
destination. This essentially reduces the total migration time but higher down-time is 
observed. Additionally another approach pure on-demand [Zay87] migration suffers 
from high total migration time. Pre-copy migration [CFH+05] is free from these 
problems as it iteratively copies the memory pages to destination host. And lastly faces 
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a very minimal stop-and-copy phase. 

4.5 Pre-copy VM migration in GPP cluster 

This thesis explores the possibility of applying pre-copy virtual machine migration 
technique in control plane cluster environment. After virtualizing the identical general 
purpose processor components, every cluster component contains one virtual machine 
in it to perform traffic control functionalities. In this study we show that the pre-copy 
migration approach can be applied to consolidate virtual machines in fewer physical 
components in low traffic situation. This consolidation can help the system to power 
down extra cluster components for reducing energy consumption. The core idea of this 
method is that, upon the direction from migration daemon in the cluster front-end, 
source and destination GPPs are determined. Then after that following stages [MLL10] 
are performed for the completion of migration process: 

- Initialization: This is the starting phase when migration starts up. Target GPP 
is selected by migration daemon and both of the source and destination VMMs 
are notified. 

- Reservation: After getting the notification, destination VMM reserves sufficient 
resources for incoming GPP virtual machine. 

- Iterative pre-copy: This phase is actual live migration phase where memory 
pages are iteratively copied to destination GPP. 

- Stop-and-copy:  After  copying  most  of  memory  pages  this  is  the  final  round  to  
stop the original VM and then rest of the pages are copied to the destination. 

- Commitment: When the stop-and-copy phase is completed, the destination GPP 
component acknowledges that it has received everything of the source VM. 

- Activation: New VM is activated and continue the functionality and source VM 
is terminated by hypervisor. 

In our hypothetical system, we need to maintain at least the legacy throughput of the 
control plane. Therefore it is also necessary to minimize the extra computational 
overhead in cluster due to migration that may affect control plane performance. To 
turn this into action, we need to consider the following: 

Total-Migration-Time, t1; we need to minimize 

Total-Down-Time, t2; we need to minimize, as this affects total migration time and also 
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during this time period user will face service outage. 

t1 = Initialization + reservation + ∑pre-copy + stop-and-copy + commitment + activation 

t2 = stop-and-copy + commitment + activation 

Here we see that t1 and t2 do not have direct relationship with the energy usage in the 
cluster. But to ensure successful virtual machine migration we need to calculate those. 
These are significant because we opt for VM migration to gain energy efficiency and at 
the same time we do not want to face any performance degradation due to virtual 
machine migration, or energy optimization. The Figure 4.2 below shows the concept of 
iterative pre-copy approach of migration [MLL10]. 

 

Figure 4.2: Iterations in pre-copy live migration 

As  we  studied  that  the  iterative  copy  approach  in  live  migration  works  by  copying  
dirtied memory pages continuously to the destination [ASR+10], so one significant point 
is to determine when to stop copying and proceed to final stop-and-copy phase. 
Therefore the maximum number of repetitions of the copy process (in the iterative pre-
copy phase) needs to be decided dynamically or pre-determined. Stopping condition of 
iterative copying approach can be determined by identifying a small writable working 
set [CFH+05], or a preset number of iterations. We mentioned earlier that 
telecommunication infrastructure nodes are the load intensive equipment in the core 
network. So in this case WWS (writable working set) may not pledge to congregate 
across successive iterations. Hence determining the maximum number of repetitions in 
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4.6 VM mobility to reduce energy consumption 

In  this  thesis  we  use  the  term  “elasticity”  for  VM  mobility  as  the  process  to  obtain  
energy efficiency in control plane cluster. VM movement actually gives the elastic 
capability in cluster which reduces the cluster size in low load situation. Our study is 
not concerned about cloud computing approach but still we are proceeding with very 
basic thought of cloud computing i.e. virtualization. We are concerned about the system 
virtualization of individual component rather than whole infrastructure virtualization. 

We notice this elastic approach a bit differently from Amazon EC2 concept where the 
technique is to provide supplementary elastic aptitude to the virtual infrastructure for 
the  augmented  service  demands,  or  to  gratify  climax  demand  periods.  Our  VM  
migration technique will dynamically redistribute the virtual machines to fewer 
physical hosts during the low load situation to power down some physical components 
to reduce energy usage. This nature will shrink the cluster size in low traffic condition 
and we call it ‘squeezing’ situation. Again during high load level in a single cluster 
component some inactive physical hosts will be activated. VMs from highly loaded 
hosts  will  move  back  to  newly  activated  hosts  and  hence  the  cluster  size  will  be  
expanded which defines the ‘releasing’ situation. Literally ‘squeezing’ and ‘releasing’ 
behavior of the system (based on load situation) can be observed as elastic nature in 
the control plane cluster. Therefore elasticity works for gaining energy efficiency 
within the cluster. In the next chapter we will discuss more in detail about live virtual 
machine mobility through migration technique. 
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5 Reducing energy usage in control plane 

The aim of this thesis is to reduce energy consumption in traffic operations inside 
telecommunication infrastructure nodes. The study of this thesis is mainly focused on 
the possibility of reducing energy usage in the control plane (consists of clustered GPP 
components) traffic operations. This chapter will discuss about the virtual machine 
migration opportunity in high performance computational control plane cluster. We 
will study the virtualization of clustered resource components, architecture of energy 
awareness, virtualization scopes (in several sections), and finally depict an 
optimization model of virtual machine mobility for gaining elasticity in the control 
plane GPP cluster. We will discuss the overall possible design and working concept of 
live virtual machine migration in the control plane cluster. We illustrate the 
hypothetical way of squeezing and releasing the cluster size through VM migration that 
can provide elasticity within the cluster. The study goal of this chapter is to show that 
it is possible to reduce energy usage especially in low traffic situation and also to use 
optimal energy during high traffic situation. 

5.1 Limitation of control plane load scheduling 

Studies and discussions in previous chapters and sections have depicted the resource 
model architecture (discussed in chapter 3) for traffic operation in cluster-based 
telecommunication infrastructure nodes. Traffic scheduling technique in cluster based 
resource model is not sufficient to achieve energy efficiency from higher level general 
purpose processors. Because they are connected to a number of application specific 
network processors of data plane. Therefore energy consumption due to control plane 
functionalities in infrastructure nodes currently is not optimal. According to this 
scheduling technique, computing resources reside in a pool and from the pool optimal 
number  of  processing  components  are  waken  up  for  traffic  processing.  A  number  of  
resources  can  be  powered  down  after  a  certain  idle  period  of  time  that  is  pre-
determined depending on user session establishment request coming in with traffic 
processing demands. The following discussion will highlight the significant points for 
which  the  energy  efficient  resource  scheduling  is  not  optimal  due  to  end  level  traffic  
processing in data plane. 

Power-aware resource scheduling mechanism cannot be used in control plane traffic 
management. The reasons can be pointed out as follows: 
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- GPPs are connected to multiple ASPs in levels. 
- Calculating idle time is not straightforward (may be problematic). 

Firstly, multiple data plane application specific processors are connected to any 
particular processor component of control plane cluster. As the control plane cluster is 
made of higher level processor components in the resource model, therefore scale/shut 
down the GPP components is not straight forward. The reason is that, non-terminal 
GPP components are connected to another non-terminal components, or lower level 
application specific processors in data planes. All the non-terminal higher level 
processor components need to be in powered-on state up to the completion of processing 
task by any single end level application specific processor component. 

Secondly, if however GPP components are considered as a pool of processing 
components it would be very troublesome to get any certain idle period for a particular 
processor. This is because of having tree resource model with multiple levels. We 
consider a situation when GPP components are not managing any traffic during low 
load.  But still non-terminal processing components could continue processing traffic of 
previous user data connections. Therefore, as these resources are connected to higher 
level GPPs, so in these cases GPPs cannot be powered down. 

To achieve power-aware behavior in control plane traffic management we are 
motivated to study the possibility of deploying virtual machines inside GPP 
components through system virtualization technique. Hence the live virtual machine 
migration process can be the doable solution to reduce energy consumption. VM 
migration will facilitate the mobility of entire OS (running inside every control plane 
cluster component) among GPPs that could keep lower level processing tasks 
noticeably uninterrupted. Lower level terminal processing components in data plane do 
not see any change happening in upper level GPPs and continue processing traffic alike 
as before migration process. VM consolidation provides facility to switch off a 
particular GPP component. After successful migration the source cluster component is 
powered down. 

5.2 Virtualization of cluster component 

Typically virtualization process provides virtualized hardware interfaces to VMs 
through a virtual  machine monitor (VMM),  also called hypervisor.  Implementing VM 
technology in control plane cluster allows running different guest VMs in a single GPP 
component. Each guest (migrated in our case) VM runs its own operating system. But 
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still virtualization facing some challenges like computational overhead due to 
virtualization. Memory consumption of the system is also significant for virtualization, 
because this technique allows multiple virtual machines to use single physical 
hardware. In the following section we study briefly about resource provisioning 
through virtual machine monitor, or hypervisor. 

5.2.1 Hypervisor and resource provisioning 

In this subsection we study the possible new software layer of virtual machine monitor 
or hypervisor in GPP components. The use of hypervisor provides the facility to deploy 
application runtime environment on-demand over dynamic computing resources 
[LHL+08]. We discuss about the hypervisor in system virtualization environment. 
From the  theoretical  discussion  in  previous  chapter  we  see  that,  hypervisor  or  VMM 
directly resides on the physical hardware. Significant issues are there, as we are not 
discussing about hosted virtualization. In hosted virtualization environment the 
hypervisor is implemented under the hosted operating system. OS directly interacts 
with underlying physical hardware and VMM interacts through the hosted OS. This 
creates additional computational overhead due to extra layer of VMM on top of hosted 
OS. Moreover in our hypothetical system structure we opt for switching off particular 
cluster component for energy efficiency. If hosted virtualization is used, then it would 
be  challenging  to  squeeze  the  cluster  size  through  migration.  Because  in  that  case,  
hosted operating system may need to remain in running state always to make 
interaction with VMM. 

System virtualization technique is free from additional operational overhead as in this 
case  VMM  resides  on  the  physical  hardware  (as  shown  in  the  Figure  3.7).  So  if  no  
virtual machine running over it then it can be switched off, or scaled down. Hence, 
system-level virtualization in GPP cluster can be used to provide a set of system 
services, such as migration, suspension/resumption and also termination of running 
virtual machines. These are necessary for our power-aware system structure. In 
system  level  virtualization,  hypervisor  stores  a  large  dataset  in  memory  such  as  
memory  map  of  virtual  machines.  Virtual  machine  monitor  keeps  a  map  of  VM’s  
memory spaces [CFH+05], or at least the page tables. Therefore VMM potentially can 
have a large memory footprint. This has direct impact on VM migration time (will be 
discussed in later section). As virtual machines are isolated from the physical platform; 
hence in this case hypervisor can be used to take care of VM execution and termination 
along with migration facilities. Hypervisor will work in connection with migration 
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daemon residing inside cluster head end and act upon migration decision made by 
daemon. 

Privileged  operations  from  the  guest  VMs  are  trapped  and  processed  by  Virtual  
machine monitor (VMM). Resources in every single GPP cluster component are 
virtualized for being used by one or multiple virtual machines at any particular time. 
While running multiple VMs, online allocation of computational resources is essential 
to the application services when requested. We studied dynamic allocation as the 
resource virtualization which is free from over-provisioning and under provisioning 
[CLN10]. Dynamic allocation does not partition the underlying infrastructure 
resources to specific application services running inside virtual machines. VMM simply 
works  as  resource  exposure  to  the  virtual  machines  running  on  it  through  possible  
VMM-bypass [HLA+06]. VMs are free to use the resources as much as needed up to the 
overall threshold processing capacity of particular physical GPP component. We study 
later that hypervisor can keep load statistics of its own GPP component to report to 
cluster manger. If the load level is about to reach the threshold then hypervisor 
informs the cluster manager for making migration decision. 

5.3 Energy aware control plane architecture 

In this section, we discuss the possible system architecture that can ensure energy 
efficient behavior of control plane cluster. The Figure 5.1 below shows the possible 
system structure having migration facility of VMs, where cluster front-end performs 
the major role. 

 

Figure 5.1: Energy-aware control plane system architecture 
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In  low  traffic  situation,  migration  decision  is  made  by  a  software  component  
implemented inside the cluster front-end called migration daemon. When the 
migration is done then the source component goes to sleep, or shut down. Every 
physical cluster component always reports its load situation to cluster manger. 
Operational  loads  of  VMs are  monitored  by  virtual  machine  monitor  (VMM)  in  every  
GPP component. Load statistics of virtual machines are used in redistribution of VMs 
in fewer physical machines for switching off rest of the GPP components to reduce 
energy consumption. 

Power-aware behavior depends on two load states: 

- High traffic load 
- Low load situation 

In our system, high traffic does not mean the overall load of physical components in the 
cluster.  There  is  a  high  load  threshold  pre-determined  and  same  for  every  cluster  
component. So whenever any particular cluster component is about to exceed the 
threshold then cluster front-end (through migration daemon) initiate migration. 
According to migration decision one, or more VMs (located on that physical GPP 
component) are migrated to low loaded physical components. Here low loaded 
component means also the newly waken up physical one which was previously shut 
down. As the cluster front-end has the load statistics of all physical components, so it 
selects the destination host which has sufficient physical resources to facilitate the 
incoming VM(s) and directs migration daemon to perform migration. In case of having 
multiple destination hosts possessing same capability, then selection can be random. 
This random selection can be performed for both ways of elasticity i.e. squeezing and 
releasing the cluster size. One significant point is that for squeezing the cluster, front-
end uses the load statistics  of  the whole cluster,  so that redistribution of  VMs can be 
performed to minimal number of physical components as possible. On the other hand, 
for releasing the cluster size load situation of particular component is considered. It is 
worth mentioning that, initialization and reservation of resources to facilitate a VM in 
the target component can be done instantly when selected. Then copying the memory 
pages, CPU states, commitment and activation phases of VM migration are done. 

5.4 Data plane traffic processing 

According to the resource model of cluster based infrastructure node, non-terminal 
GPP components are responsible for traffic management (e.g. user sessions, call 
control) whereas lower level data plane processors perform the end level traffic 
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processing functions. In the resource model of cluster based infrastructure node, the 
control plane GPP cluster components are the top level non-terminal nodes in the 
structure. A non-terminal node can be connected to one, or more non-terminal, or 
terminal nodes in lower levels. These lower level terminal nodes are essentially the 
application specific reduced function processor of data plane. 

 

Figure 5.2: Data plane connection with virtualized GPP components 
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5.5 Scheduling technique among virtual machines 

We discuss possible scheduling technique in this  thesis  for  distributing traffic  among 
the VMs of cluster components. In our system structure, scheduling process performed 
by the cluster manger inside cluster front-end. Traffic scheduling occurs among woken 
up and active physical components that are running one, or more virtual machines. 
Scheduling algorithm works in connection with traffic load situation of cluster 
components.  Migration  daemon  inside  the  cluster  front-end  is  mainly  responsible  for  
initiating virtual machine migration. Optimal scheduling of traffic is significant to 
achieve best possible migration performance. We outline following steps for traffic 
scheduling in our hypothetical cluster system. 

- High load threshold is maintained for every physical component. We use traditional 
naming i.e. highLoad for this parameter. High load threshold value is same for 
every component in the cluster. 

- Cluster manger aware of resource usage of every GPP component. For a new user 
session request coming in, cluster manger checks for particular GPP with available 
resources. Cluster manager selects physical component based on pre-defined value 
of highLoad parameter. 

- Controlling service request goes to selected cluster component. Virtual machine 
monitor receives the request. If multiple virtual machines running inside that 
component, then hypervisor selects any of the VMs to serve. VMM can select based 
on lowest loaded VM or any VM that running fastest completion possible tasks. 

Cluster manager periodically gets load situation of particular cluster component. In our 
system architecture cluster manager maintains a list of all virtual machines of cluster 
components. This new scheduling process is different from the state-of-the-art 
technology. Previously three parameters highLoad, lowLoad and aggregated load were 
determined to ensure optimal scheduling among the resources in tree-based model. 
Optimal resources were kept in active mode to gain energy efficiency, while keeping 
rest of the resources inactive and powered down. In our cluster system, traffic 
scheduling is necessary due to ensure efficient resource usage of GPP components. The 
decision  to  power  down  a  particular  physical  GPP  component  is  made  by  virtual  
machine migration process. Therefore lowLoad and aggregated load are not taken into 
consideration for scheduling decision. 
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5.6 VM migration in GPP cluster 

Control plane GPP cluster as mentioned earlier consists of commodity processing units 
interconnected by high-speed and low-latency network. We can never compromise with 
the cluster performance for reducing energy. So there is a trade-off between 
maintaining in-service performance and energy saving within the cluster. In this 
section we find out the appropriate live virtual machine migration technology for 
control  plane  GPP  cluster  of  a  telecommunication  node.  To  apply  VM  migration  we  
analyze two migration techniques. Stop-and-copy approach and iterative pre-copy 
migration approach. First we analyze better possible pre-copy migration technique. 
Then after that we analyze the suitable migration approach for the GPP control plane 
cluster. VM migration in control plane GPP cluster is slightly different from traditional 
approaches due to the number of virtual and physical machines. In traditional live VM 
migration  technique  in  most  cases  the  number  of  VMs  is  larger  than  the  number  of  
physical machines. This ensures better resource utilization by redistributing the 
virtual machines. The basic difference in this high performance control plane cluster is 
that, the numbers of virtual and physical machines are same. This means, always the 
number  of  VMs remains  static  regardless  of  low,  or  high  traffic  situation.  We  opt  for  
incorporating VM migration to reduce energy usage in different load situations as we 
don’t  need  all  the  physical  machines  to  up  and  running  in  low  traffic  situation.  So  
according  to  our  goal,  in  low  traffic  situation  some  VMs  migrate  from  their  original  
physical host to new physical host within the cluster that has enough resource 
available  to  facilitate  them  (migratory  VMs).  High  load  and  low  load  thresholds  are  
determined according to SLA (Service Level Agreement). Load levels are calculated for 
every  physical  host  within  the  cluster  by  cluster  front-end  which  is  also  consists  of  
same hardware but with different configuration. 

To  Migrate  the  VM in  this  high  performance  GPP cluster  we  take  several  metrics  in  
consideration. These are crucial for live VM migration in control plane cluster: Total 

migration time, total data transmitted. The study of this thesis opts for reducing energy 
usage through VM migration but in this case VM migration depends on these metrics 
mainly because of high performance requirements in the cluster. Our study is based on 
several existing research material in live VM migration area. 

Every GPP components in the cluster will contain VM to serve traffic application in the 
control plane. Live VM migration takes the running VM from a certain cluster 
component and place it to another physical component and shut/scale down the first 
one. Simultaneously while looking to optimize energy usage, we also need to maintain 
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good performance of VM migration technique. Following are the metrics that might 
weigh successful VM migration in cluster. 

Total migration time: Total time can be calculated which is required from initiating 
migration to activation of new VM in another physical machine. Live migration itself 
follows several steps to complete. Initialization, resource reservation, copying VM 
memory pages, acknowledgement and activation of newly copied VM. Copying VM 
memory pages is further divided in iterative copy process and final copy iteration. 

Downtime: Actually this can be considered as a part of total migration time (mentioned 
in section 3.4.3). During this time VM in the source cluster component stops, meaning 
that no CPU cycle serves for occupier applications at source physical component. Then 
VM states transfer to the targeted component and activation of new VM on the 
targeted component is done. The downtime in total is the measurement of suspending 
VM on the source component, transferring VM states to target physical component and 
activating the new VM on the destination. 

This study discusses the HPC (high performance computing) control plane cluster for 
applying VM migration. So the probable computational overhead of VM migration is 
crucial as it may affect the traffic management functionality by consuming link speed 
and through processing overhead. If we opt for iterative memory copying approach 
[PKC+09] [MoC10] [PiY10] [LJL+11] [SZL+11] to facilitate live migration we are likely 
to face above mentioned overheads. 

After  having  the  method  chosen  for  migration  now  we  depict  the  possible  way  of  
working for choosing particular virtual machine to migrate to a new physical host 
within the cluster. In this hypothetical system, hypervisor knows which one is the 
migrated OS as all the migrated ones are the guest OS in the destination machine. 

In  our  study  we  discuss  that  migration  can  take  place  in  both  of  the  high  and  low  
traffic situations. This makes the VM migration in this study different from any other 
state-of-the-art  VM  migration  technology  research.  As  we  gone  through  a  number  of  
research articles of VM migration, we observed that the technology is not applied 
particularly according to traffic load situation. Migration technique applied for proper 
load balancing among physical hosts and maintenance of any particular cluster 
component [NaS07]. These ideologies give some benefits to reduce energy usage 
[HJL+08] but our strategy is  truly targeted to energy optimization.  At the same time 
we investigate the better way for migrating VM, while minimizing the downtime due to 
migration. 
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In managed migration all the memory pages are transferred to the destination VM. In 
subsequent rounds it will send the pages that are dirtied during the 1st round and so 
forth.  So  in  this  way  all  the  memory  pages  would  be  transferred.  As  a  whole  in  this  
section,  we  study  the  apposite  way  of  VM  migration  in  this  sort  of  high  computing  
cluster. For measuring the suitable migration technique, we need to do some 
investigation work that fits the need. Now the goal is to find out the specific metrics for 
proving appropriateness. 

For successful VM migration we need to consider the compute cost in total: 

We assume the cluster operation for a period of time T, 

Energy used in normal operation without VM migration, E1 

Total energy usage with VM migration, E2 

Energy usage reduction = E1 (T) – E2 (T) 

This  is  a  very  straight  forward  measurement  of  energy  usage  reduction.  But  this  
entirely depends on the successful VM migration through optimized migration 
decisions. In following sections we study the hypothetical way of decision making for 
squeezing and releasing the cluster size. 

5.7 Optimization model of migration decision 

Ideology behind the power saving in a telecommunication infrastructure node 
essentially is to balance overall load among fewer number of physical cluster nodes. As 
discussed in chapter 3, energy efficiency can be gained by making a pool of lower level 
resources in resource control model. This feature can reduce the energy usage in 
network switching node. Our studied method is not following the strategy alike but the 
same switching on/off technique. The hypothetical system will shut/scale down a 
cluster component through virtual machine migration. This can be done by 
redistributing the VMs (through live migration) among optimal number of physical 
components. Redistribution through migration of virtual machine will free up certain 
cluster component. That particular cluster component will shut/scale down. This 
mechanism will apparently squeeze and release the system dynamically depending on 
traffic load situation. Gaining energy reduction by switching off actually depends on 
several metrics. 

- Overall load situation of the cluster; essential for taking migration decision. 
- Particular resource usage statistics of every physical component; whether it can 
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facilitate certain VM(s), or needs to offload VM(s). 
- Load statistics of every single virtual machine. 

Achieving optimal effect is quite straight forward. Firstly, calculate the overall load of 
the  system and  being  divided  by  the  capacity  of  a  single  physical  machine  to  get  the  
number of nodes which can handle the overall load. Secondly, transfer the scattered 
load  to  the  calculated  minimal  set  of  physical  components  by  a  sequence  of  live  
migrations. The challenge is to obtain the optimal effect and also decrease the overhead 
caused by VM migrations. 

Optimal VM mobility among the physical machines apparently will ensure the reduced 
energy  usage  in  the  cluster.  Optimal  mobility  is  significant  to  avoid  extra  
computational, or network overhead due to VM migration. We discuss potential energy 
usage reduction through an optimization model of VM migration decision. For cluster 
we assume a common threshold of processor capacity level of particular cluster 
component for serving control plane functionality. Optimization problem is targeted to 
determine the minimal number of physical cluster GPP components that are capable to 
serve the current load situation of the cluster. To solve this problem we investigated 
the  multi-capacity  bin  packing  problem  [LKK99]  and  come  up  with  the  following  
statement: 

CT  Threshold processing capacity of every physical GPP. 
n  Total number of virtual machines. 
d  Total number of physical machine working at migration startup. 
C k  Available capacity of physical GPP k at migration startup. 
wi  Processing capacity needed by virtual machine i. 
B  Minimal number of physical GPP required for facilitating n virtual machines. 

  
We need to find minimal B in a form that B = {b1, b2, b3,…,bm} where each bj is the set 
of  VMs  placed  in  a  single  GPP  cluster  component  k and is subject to the following 
constraints: 

wi⩽C k  
Ck⩾min ζw1 , w2 , ... ,wn|  
i ∈ b j ; 1⩽ j⩽m , 1⩽i⩽n  

∑
nk ∈ b J

wn , k⩽C k

 
d⩽n  

; 1⩽k⩽d

(1) 

(2) 

(3) 

(4) 

(5) 
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We find it a bit different from the bin packing problem. In the multi-capacity bin 
packing  problem,  we  see  number  of  bins  with  different  capacities  and  items  having  
varying sizes to fit in every bin.  In our problem scenario we have specified number of 
physical GPP components with max processing capacity, CT. A list is created consists of 
current resource usage statistics of VMs, wi. This list corresponds to the VMs that can 
be  distributed  according  to  constraint  (1).  This  means,  resource  usage  statistics  of  a  
migration possible VM needs to be less than, or equal to the available resources in any 
of the physical component. Capacity Ck of physical GPPs are calculated by measuring 
remaining processing capacity, that can be derived by deducting current resource 
usage from threshold capacity CT. Constraint (2) shows that, for making the migration 
happen, every destination physical component needs to have capacity to facilitate at 
least the lowest loaded VM. Constraint (3) means, every virtual machine has to belong 
to some physical cluster component. Second constraint actually creates the list of d 
number of GPPs. During migration startup, if all GPPs report their available load 
levels  greater than the lowest loaded VM, then according to constraint (4)  number of  
possible  destination  hosts  and  number  of  VMs  will  be  the  same.  The  goal  of  this  
modified VM packing problem is to find a minimal number B of physical GPPs that are 
capable to serve the VMs. Actual number of VMs and GPPs are the same, i.e. n. Hence, 
at migration startup according to constraint (5) number of destination physical 
components d can be same, or less than n. Our goal is to minimize the number of active 
GPPs facilitating all the VMs. During the model execution VMs are migrated from one 
machine to another for getting the optimal number of active GPPs by switching off or 
scaling down the source machine if it is empty. 

5.8 Algorithm for VM migration 

In this section, we will discuss the algorithm for the model described above. Basically 
two steps are shown, squeezing the cluster size and releasing in heavy load situation. 
We name one of the steps as releasing instead of ‘expanding’ because the number of 
VMs  always  remains  the  same  which  is  equal  to  the  number  of  physical  GPP  
components. According to our energy-aware system architecture the virtual machine 
monitor is always aware of processing capacity usage by VM(s) running on it. On the 
other hand, migration daemon inside cluster front-end keeps track of load statistics of 
every single GPP component in the cluster. Like state-of-the-art technique of load 
scheduling,  some  metrics  can  be  pre-determined  to  maintain  always.  This  is  
significant, because for avoiding unnecessary or arbitrary bouncing of VMs among 
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physical components. Several metrics [KXR+12] can be applied depending on load 
levels of VMs, or physical components. Considering the ongoing critical user sessions is 
also necessary. Migration overhead could cause computational overhead in the cluster. 
In our study we kept this discussion limited, as our goal is to find out possible way of 
energy reduction. In this optimization algorithm, we define the highLoad and lowLoad 
terms like below: 

Load level of overall control plane cluster is measured as lowLoad according to the pre-
defined low load threshold. Migration process triggered if the load level is equal or 
under lowLoad. 

In this algorithm, highLoad is  meant  for  particular  GPP  component.  It  is  worth  
mentioning that in high load situation migration will be triggered in a particular GPP 
component, if there are multiple VMs running in it. Otherwise that particular GPP will 
continue operation rejecting any incoming request. The value of highLoad is same for 
every GPP component as all are identical. Migration daemon checks these statistics 
periodically  for  every  physical  component.  Hence  it  knows  the  situation  whether  the  
highLoad level is reached, or overall load level goes down to the lowLoad. Cluster 
system is squeezed when the overall load is under, or equal to the lowLoad value and 
released in single highLoad situation. 

Squeezing situation  happens  by  rearranging  VMs  to  fewer  physical  components  
through migration if possible. We depict the squeezing state with following steps. 

- Migration daemon finds the overall load level of the cluster is equal/under lowLoad.  
- Virtual machine monitors report to cluster front-end about the processing capacity 

usage statistics of n VMs by making a list Wi. The list is sorted in increasing order. 
- A list containing d number  of  GPP  components  is  created  by  cluster  front  each  

having Ck capacity according to constraint (1), where, CT is termed as highLoad. 
The list mentions available capacity in every single physical component to facilitate 
any virtual machine. 

- Every VM Wi is  checked  starting  at  the  lowest  loaded  one  against  every  GPP  
component Ck to check if constraint (3) is satisfied and migrates that VM to the 
destination GPP. If the constraint is not fulfilled then VM remains in the same 
GPP as previous. 

- Once the migration is done and if no more VM running in the source GPP then it 
goes to power-save mode, or switched off. 

Releasing situation would happen, if highLoad limit is reached in any particular GPP 
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component. VM capacity usage statistics inside that cluster component is achieved 
through virtual machine monitor and forwarded to migration daemon. Same procedure 
can be followed like the squeezing situation to create the list Wi. Migration daemon also 
creates  the  list  of  GPP according  to  constraint  (1).  If  constraint  (3)  is  satisfied  while  
checking each VM against every GPP in the list then it is migrated. If the GPP list is 
empty then new physical component is waken up from inactive mode. As the number of 
GPPs and number of VMs are the same, so it is obvious that every GPP will contain at 
least one VM in normal operation or in highLoad situation. 

5.9 Algorithm implementation 

We presume a control plane cluster with ten physical general purpose processor 
components excluding cluster front-end. In appendix, implementation snippet for the 
squeezing situation is given which can demo virtual machine distribution in low load 
situation. Result obtained by running the implementation is given in the Figure 5.3 
below.  
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Figure 5.3: Virtual machine migration approach 

In this implementation, random loads are considered for triggering the virtual machine 
migration.  Eighty  percent  of  the  total  GPP  load  capacity  usage  is  considered  as  
highLoad.  Also maximum load that a particular VM would handle also considered as 
the same. While calculating the aggregated load,  forty  percent  of  the  GPP  load  is  
considered as lowLoad.  Virtual  machine monitor and GPP cluster front-end would be 
responsible for operating according to these statistics. Any possible factors (e.g. ongoing 
user sessions, network overhead due to VM mobility, operational overhead etc.) that 
might be worth considered (in real implementation) before triggering migration are left 

GPP cluster component GPP loads (%) 
VM load Statistics inside 

GPP components  

1 (powered down) 0 0 

2 (VM-2) 57 57 

3 (VM-3) 58 58 

3 (powered down) 0 0 

5 (VM-5) 44 44 

6 (powered down) 0 0 

7 (VM-7) 56 56 

8 (VM-8) 79 79 

9 (VM-9,VM-4,VM-1,VM-6) 68 [5, 3, 19, 41] 

10 (VM-10) 45 45 

 

highLoad = 80% of total available capacity of a single cluster component 
lowLoad = 40% of total available capacity  

a) Resource usage statistics reported by 
virtual machine monitor 

b) Current load usage statistics of GPP 
components obtained from cluster front-end. 
 

Virtual machine Current load (%) 

1 19 

2 57 

3 58 

4 3 

5 44 

6 41 

7 56 

8 79 

9 5 

10 45 

 

GPP component Current load (%) 

1 (VM-1) 19 

2 (VM-2) 57 

3 (VM-3) 58 

4 (VM-4) 3 

5 (VM-5) 44 

6 (VM-6) 41 

7 (VM-7) 56 

8 (VM-8) 79 

9 (VM-9) 5 

10 (VM-10) 45 

 

c) Distribution of virtual machines to fewer physical GPP components. 
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out of consideration for focusing mainly on the optimization model. Implemented codes 
are thoroughly commented for ease of understanding. 

Figure 5.3(a) shows the statistics of virtual machines that are running on General 
Purpose Processors and corresponding current load (due to traffic operations). Virtual 
Machine  Monitor  keeps  track  of  these  statistics.  The  loads  shown  in  the  list  are  
generated randomly (taken from 1-80 range) in the code for this demo implementation. 

GPP  load  statistics  are  shown  in  figure  5.3(b).  As  we  are  studying  efficient  energy  
usage through virtual machine migration among GPP cluster, so any particular GPP is 
able to facilitate more than one virtual machine. In this case, cluster front-end keeps 
the  statistics  of  GPP  loads  (not  related  with  VM  load).  We  state  these  two  different  
loads below for the sake of simplicity: 

- VM load – Load of a virtual machine due to traffic operation. 

- GPP load – Processing capacity usage due to facilitate virtual machine(s). 

Note  that,  in  these  two  lists  (VM  and  GPP)  same  load  statistics  are  shown.  We  
presumed an initial situation when every GPP is facilitating one virtual machine each. 
As  every  GPP  is  running  one  VM,  therefore  operational  load  of  a  particular  virtual  
machine  is  considered  as  GPP  load.  In  real  implementation,  this  might  be  different  
because, facilitating even a free (no ongoing traffic operation) VM might have some 
CPU usage of  a particular GPP. In this  implementation,  that situation is  kept out of  
the scope. 

In the figure 5.3 (c),  sample migration result  is  depicted.  According to the algorithm, 
virtual machine monitor reports the VM statistics to the migration daemon. Migration 
daemon  gets  the  load  statistics  of  GPP  cluster  as  well  and  triggers  the  migration  
process. According to our optimization model migration process is triggered 
sequentially from lower loaded VMs to higher loaded ones. In short, this means lower 
loaded VMs are migrated first. For example, VM-4 is migrated first, then VM-9 and so 
forth. First column shows the situation (facilitated VM(s) by a particular GPP) of GPP 
components inside the cluster after the migration process is completed. Load statistics 
of GPPs after migration process are shown as percentage. Zero percentage means that, 
corresponding GPP is powered, or scaled down to save energy consumption. Next 
column shows corresponding VM loads facilitated by any single GPP component. When 
migration  process  is  done,  VM  load  statistics  are  again  collected  by  virtual  machine  
monitor  and  current/available  load  statistics  of  GPP  components  are  gathered  by  
cluster front-end for further migration process. 
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5.10 Summary 

In this chapter, we focused on the possible implementation of hypothetical approach 
(squeezing situation) to reduce energy consumption in control plane cluster (inside a 
telecommunication infrastructure node) of general purpose processors. The GPP 
components initially have one virtual machine running on each to perform traffic 
management activities (e.g. user sessions). In low loaded situation, (within control 
plane) virtual machines are redistributed to minimal number of GPP components. The 
rest of the GPP components are then powered down to save energy usage due to the 
traffic  control  functionalities.  One  of  the  most  significant  ideas  of  this  approach  is  to  
keep the number virtual machines same as the number of host general purpose 
components. The squeezing scenario depicted in this chapter (to impose elasticity 
through the redistribution of virtual machines in low load situation), is able to reduce 
30% of CPU power usage within control plane cluster as we shown that three out of ten 
processor units are powered down after VM redistribution. Intensive research 
investigation to measure the more exact percentage of energy reduction is out-scoped in 
this study as this thesis is primarily targeted to discuss a possible approach to reduce 
energy consumption. 
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6 Discussions 

The point of interest of this thesis study was traffic management in the control plane 
(consists of high performance general purpose processing components) inside cluster-
based telecommunication infrastructure nodes. We studied one possible way for 
reducing energy usage in traffic control plane through virtual machine mobility within 
the cluster. The idea behind this study can be applied to the future telecommunication 
core network elements especially for traffic operation. There is a steep growth in traffic 
demand in near future. Hence the interface nodes need to be more energy efficient to 
achieve green telecommunication activities. 

We studied several green factors for core network functionalities that can be optimized 
to improve energy efficiency in connectivity layer. Several green factors were explored, 
energy-efficiency-ratios, cooling-requirements, and the energy-efficiency-features. 
Energy-efficiency-ratios and cooling-requirements were beyond our study scope as we 
are not  dealing with hardware optimization for  energy efficiency.  But still  the second 
factor can be achieved relatively from this study by energy-efficient control plane 
operations. The telecommunication infrastructure nodes are multi-rack based complex 
switching device. The GPP components are placed as blades in racks form the control 
plane cluster. Control plane energy efficiency would reduce the energy usage per rack. 
Hence optimized energy usage in racks apparently would produce comparatively less 
amount of heat in the whole switching device. Therefore, would require less cooling 
requirements. Discussion of green factors apparently answers the first research 
question as mentioned in chapter one. And this was the origin of the motivation 
towards our thesis study. Though this vary first question may lead to several directions 
of research, but we considered the traffic planes as our goal. 

After that our study moved forward to discuss the significance of getting energy aware 
attitude from traffic operation in telecommunication core network. It is well assumed 
from this thesis that energy consumption is one of the key factors impacting the 
operational expenses (OPEX) related to telecommunication infrastructure. Therefore 
power efficiency in infrastructure nodes and components have immediate impact on the 
cost of telecommunication providers. We can sketch our reflection like the following 
Figure 6.1. 
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Figure 6.1: Power-aware behavior hierarchy 

According to the green factors for telecommunication core network, power-aware 
behavior of traffic planes can impact the energy efficiency ratios of the equipment. This 
in turn results into reduced power usage by telecommunication nodes. Therefore we 
can clearly view the trend in the Figure 6.1 above that apparently converged to energy 
efficiency in the connectivity layer of horizontally layered network architecture. And 
we tried to achieve one of the several possible ways of reducing energy consumption 
due to network operations. 

The  key  driving  force  of  this  thesis  was  to  dynamically  reduce  power  usage  through  
software implementation. We studied the system virtualization concept which is the 
basic of state-of-the-art cloud computing. This thesis did not involve the cloud 
computing approach but took the virtualization concept. According to our study, system 
virtualization in every cluster GPP component creates one virtual machine per cluster 
component. Therefore we get equal number of VMs and physical machines. We studied 
that  the  mobility  of  VMs  among  the  physical  GPP  components  in  the  control  plane  
cluster  could  reduce  energy  usage  through  elasticity  of  the  active  system.  VM  
migration technique could be used for getting mobility behavior. We discussed and 
studied the pre-copy migration approach as the possible migration technique in control 
plane cluster. Elastic behavior works by squeezing and releasing the system. In low 
traffic situation VMs could be redistributed among fewer number of physical 
components to keep rest of the GPPs switched off, or scaled down. On the other hand, 
during  high  traffic  situation  in  any  particular  physical  component  extra  (if  the  
particular  GPP  contains  more  than  one  virtual  machine)  VM(s)  would  go  back  to  
another, or newly waken up component. As all physical components are identical, 
hence VM mobility could be implemented without considering underlying hardware. 

The energy consumption of network is a major issue in the future network technologies 
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especially in telecommunication sectors due to excessive demand of traffic-grabber 
services and applications. This thesis showed a possible way of energy efficiency in the 
core telecommunication infrastructure node of horizontally layered network 
architecture. Study focused mainly on traffic control plane of cluster-based 
infrastructure node that may decrease the energy consumption to a great extent. In 
following sections, we discuss about several other techniques that can be explored to 
gain more energy reduction through power aware system implementation for handling 
the traffic. 

6.1 Possible alternatives to optimize energy usage 

Energy efficiency in telecommunication core network is always a burning issue both at 
present and in future telecommunication network technologies. The amount of power 
usage due to telecommunication network activities and core network traffic 
manipulation is increasing very rapidly. In horizontal network architecture, 
telecommunication core network is a part of connectivity layer where traffic load due to 
end user data connections is a critical point to deal with. Significant amount of energy 
is consumed due to traffic handling and processing. Here the trade-off is, we can never 
compromise the network traffic situation with system optimization but still we need to 
find any holistic approach to minimize energy consumption. From the hardware point 
of view, devices and processing components can always be designed and manufactured 
to operate with less energy. But researchers also need to make efforts to reduce energy 
usage dynamically through new system implementation for network traffic handling 
and processing activities. However the trade-off between energy-usage and 
performance requirements needs to be considered always while tailoring the system to 
achieve energy optimization. In this chapter, discussion will go forward about several 
further possibilities that might help to reduce energy usage in traffic operations inside 
telecommunication infrastructure nodes. 

6.1.1 Distribution of control functionalities 

In the current telecommunication or mobile telephony, switches separate the 
implementations of control plane functionalities from data plane traffic functions 
(packet forwarding and processing). As we see in this sort of architecture control plane 
functions  are  implemented  in  GPP  components  resides  in  a  cluster.  Every  cluster  
component connected to several network processors of data plane. In future, 
telecommunication nodes can be designed to implement control plane functionality to 
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networked processors of data plane. This actually means control plane functions can be 
distributed to data plane along with control elements for increased scalability. The 
challenge in this sort of implementation can be, determining the control functions that 
can be distributed and the data plane elements that can host these functions. The 
possible  hypothetical  architecture  is  shown  in  the  Figure  6.2  below  with  simple  
diagram. 

 

Figure 6.2: Distribution of traffic functionalities 

If the distribution can be done to data plane processing components than the resiliency 
and scalability issues may be significantly reduced due to distribution. Challenge may 
arise for computational overhead to determine distribution candidate but that can be 
also mitigate through comprehensive research. Proper work-load balancing and 
functional distribution will apparently ensure more optimal energy usage of entire 
infrastructure node. 

6.1.2 Cloud-based traffic operation 

In a mobile telephony switch, control plane and data plane are two traffic planes. 
These  traffic  planes  are  actually  doing  traffic  handling  and  traffic  processing.  Every  
GPP  in  the  control  plane  is  tightly  connected  with  one  or  more  application  specific  
processor(s). The programmability and performance are totally different of a control 
and forwarding element. Therefore researchers can give efforts to logically separate 
their functionality. If the separation is deployed, then control plane elements can 
always remain connected with any data plane element. Aggressive network, 
application or energy optimization capability can be developed in separated 
architecture. We show the Figure 6.3 below for the possible separation from functional 
point of view. 
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Figure 6.3: Separating control and data plane with different cloud deployment 

All the data plane network processors and control plane general purpose processors can 
be resided in a cloud. Appropriate implementation of virtualization layer can be 
imagined over all the physical traffic plane components. Any kind of user session 
request coming in will be served from the virtualization layer by the cloud of control 
functions. After data session establishment, for traffic processing system will 
communicate with virtualized forwarding element which may serve the computation 
and actual data movement. The communication between control plane cloud and data 
plane cloud can be investigated through intensive research. 

6.1.3 Additional explorations 

In addition to two significant possibilities of future research studies (mentioned in 
sections 6.1.2 and 6.1.2) several more axes can be depicted briefly that can be elevated 
from this thesis. We sketch the Figure 6.4 below to point out possible further studies. 

 

Figure 6.4: Possible study exploration axes 

In this thesis for rearranging virtual machine we mentioned multiple-bin-packing 
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problem. The problem scenario of VM distribution among fewer physical machines has 
a list of GPP components with different amount of free resources. Whereas in bin-
packing problem, multiple empty bins with different capacities are item destinations. 
More research efforts can be given to gain efficient rearrangement. Efficiency can be 
measured by low migration time, less computational overhead, less impact on internal 
network bandwidth, or lower service downtime due to migration. 

Our study did not cover the failure situation handling in control plane cluster. Instead 
we studied only the redundancy of cluster front-end. Failure situation can be observed 
at any particular time which means any single physical GPP component can be crashed 
or malfunctioning. This can be another axe that is open for study further. 

This thesis illustrated pre-copy virtual machine migration in control plane cluster. Live 
VM migration is an intensive area of research in system virtualization area. Efficiency 
of successful migration depends on several metrics like total-migration-time, down-
time, ongoing application interruption, writable working set, network overhead, or 
migration overhead. Especially for telecommunication infrastructure node these issues 
can be explored in details to trace out the efficient way that is appropriate for mobile 
core network infrastructure components. While applying multiple methods of VM 
migration, the performance prediction is also significant to investigate. Prediction can 
involve better performance in traffic-control such as user session establishment rate. 
Optimal performance is always necessary because of the trade-off between the node 
performance and energy reduction. All possible studies mentioned here are opt for 
gaining energy efficiency by means of software system implementation. Energy 
efficient hardware design may also reduce power usage but, in this thesis we out 
scoped hardware related issues. The idea is that, whatever hardware is used system 
can be optimized always. 

6.2 Summary 

In this thesis, we discussed about the possible approach that can be applied in control 
plane  traffic  operations  for  gaining  energy  efficient  behavior.  We  discussed  power  
aware architecture of the system which was significant, because for every possible 
system implementation  it  is  always  crucial  to  give  an  overall  working  concept  of  the  
system. The most worth mentioning point here is that, this system is not targeted for 
any specific traffic situation of the overall network like peak, or off-peak hours. If 
implemented it could show power aware behavior online with the varying traffic load 
situation. We studied that for avoiding redundant computational overhead it would be 
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better to maintain a clock system for performing possible migration. Study discussed 
that,  this  is  necessary  because  at  a  certain  time,  control  plane  cluster  may  not  have  
any request to establish user session but still have traffic operation ongoing in lower 
level ASPs (Application Specific Processor). Though our possible migration approach 
does not show any noticeable interruption in operations running inside VM but, it is 
better to wait for specific time period to check for migration. This waiting time could be 
pre-determined according to SLA to avoid extra computational overhead due to 
migration. Several measurement metrics such as the total migration, down time and 
also computational overhead might have impact on operational performance of traffic 
handling in the cluster. These are also noteworthy because migration of a particular 
virtual machine from source to destination is not trivial while minimizing the 
noticeable interruption of services running inside. Even though the control plane 
cluster is a high performance cluster, but still the implementation of VM mobility 
needs to be network-aware [PiY10], application aware [SZL+11] and also at the same 
time needs to minimize the total migration time.  All  of  these  metrics  may  greatly  
impact the energy efficient behavior of the control plane that can be achieved through 
elasticity of the GPP cluster. 
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Appendix - Virtual machine distribution algorithm 

One significant part of this thesis was to write code for obtaining the result of virtual 
machine distribution algorithm (mock implementation). In this implementation, 
squeezing scenario within GPP cluster components (by migrating virtual machines) in 
low load situation is depicted.  Possible VM distribution result shown in the section 5.8 
is  taken  by  running  this  code  block.  The  code  is  written  in  JAVA.  Random  load  
statistics (for both GPPs and VMs) are taken into consideration while implementing 
this  code.  The  motivation  behind  this  implementation  was  to  show,  how  the  VM  
mobility could squeeze the GPP cluster. 

A Fields and methods summary 

Predefined values 

MAX_LOAD_LEVEL: This is the maximum  load  level  which  is  meant  for  the  

processing capacity of any particular GPP in the cluster. Eighty percent is considered 
as maximum. 

LOW_LOAD_LEVEL: This is the pre-determined threshold lowLoad level which is 

compared with the overall aggregated load of the cluster for taking migration decision. 

NUMBER_OF_VM: Total  number of  GPP except the cluster front-end is  presumed to 
ten. Hence according to our study, total number of VM is also ten. 

Fields used 

staticGPPLoadStats: At  the  beginning  of  migration,  this  map  contains  overall  load  
situation  of  all  the  GPPs  in  cluster.  Facilitator  GPP(s)  is  (are)  determined  at  the  
migration startup meaning that, if any particular GPP has available load capacity to 
facilitate additional virtual machine, or not. This list contains all active and inactive 
(powered down) GPPs while storing ‘Zero’ load as powered down indication. 

vmLocationList: This list is provided by virtual machine monitor that contains virtual 
machine locations. As we have constant number (i.e. ten) of VMs running inside the 
GPP components, so this list preserves the information about “which VM is running on 
what number of GPP”. 

overallGPPLoadStats: This Map contains the comprehensive list of GPP components 
that shows the set of VMs running on a particular GPP component. This list only 
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contains the GPP that are in active mode meaning that, running at least one VM inside 
a particular GPP component.  

VMLoadStats: Load usage of  every single virtual  machine is  stored in this  Map.  This 
apparently  helps  in  taking  migration  decision.  If  there  is  any  heavily  loaded  VM,  or  
any one running very critical user sessions will not be migrated. In this 
implementation we only considered heavily loaded situation. 

Methods 

getInitialVMStatistics(): For getting the load statistics and location list from virtual 
machine monitor this method is used to initialize vmLocationList and VMLoadStats 

migrationDecision(Map<Integer, Integer> , Map<Integer, Integer>) 

This method is responsible for taking migration decision after comparing the cluster’s 
load situations. Two different checks are performed: 

- Checks the aggregated load level of the cluster is under lowLoad threshold. 
This triggers squeeze operation if succeeds. 

- Next  check  is  performed  to  investigate  the  load  level  of  any  particular  GPP  
component. One helper method isHighLoadLimitExceeded(Map<Integer, 

Integer>) is invoked which returns a Boolean value depending on whether the 
load situation of any particular GPP component is reached to highLoad or not. 
If so then it triggers the release operation. 

- In case both of the checks fail then cluster operation continues as usual. 

squeezeCluster (Map<Integer, Integer>, Map<Integer, Integer>) 

This method is responsible for migration, or virtual machine distribution in low load 
situation. This requires, VMLoadStats, staticGPPLoadStats as parameters. Several 
methods are called from inside this: 

- availableLoadList(Map<Integer, Integer>): This  is  intended  to  create  an  
intermediate list of GPPs with their corresponding available loads. 

- Map sortByLoad(Map, boolean): According to our studied algorithm this method 
sorts the lists of GPPs and VMs for impacting the migration decision. 

releaseCluster(Map<Integer, Integer>, Map<Integer, List>, Map<Integer, Integer>)) 

This method is not implemented in this demo as we tried to depict only the squeeze 
situation. 
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B Code Implementation 

package control.plane.vm.migration; 
 
import java.util.ArrayList; 
import java.util.Collections; 
import java.util.Comparator; 
import java.util.HashMap; 
import java.util.Iterator; 
import java.util.LinkedHashMap; 
import java.util.LinkedList; 
import java.util.List; 
import java.util.Map; 
import java.util.Random; 
 
@SuppressWarnings({ "rawtypes", "unchecked", "unused" }) 
public class MigrationOperation { 
 
/** High Load threshold */ 
    public static final int MAX_LOAD_LEVEL = 80; 
     
/** Low Load label */ 
    private static final int LOW_LOAD_LEVEL = 40; 
 
/** 
 * According to mentioned algorithm number of GPP and VM are the same It is 
 * presumed here that, total 10 GPPs are in the GPP-Cluster, hence total 
 * number of VM is also 10 
 */ 
    public static final int NUMBER_OF_VM = 10; 
    public static final int ZERO_LOAD = 0; 
 
/** 
 * This contains information about which VM resides in what numbered GPP 
 * among the cluster 
 */ 
    public static int[] vmLocationList = new int[11]; 
 
/** Always hold the statistics of all GPPs with their current load usage */ 
    public static Map<Integer, Integer> staticGPPLoadStats = new 
HashMap<Integer, Integer>(); 
 
/** 
 * Container map of GPP(s), who have VM(s) running in it. This map is 
 * updated during migration and populates post migration statistics to 
 * 'staticGPPLoadStats' 
 */ 
    public static Map<Integer, List> overallGPPLoadStats = new 
HashMap<Integer, List>(); 
 
/** 
 * Static container of all VMs (number of VM = number of GPP) with their 
 * current load usages 
 */ 
    public static Map<Integer, Integer> VMLoadStats = new HashMap<Integer, 
Integer>(); 
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private static Object sumOfLoad; 
 
    public static void main(String args[]) { 
 
        getInitialVMStatistics(); 
        staticGPPLoadStats = getCurrentGPPLoadStatistics(); 
 
        migrationDecision(VMLoadStats, staticGPPLoadStats); 
 
        System.out.format("VM No.  | Load Usage (Unit)\n---------------\n"); 
        showLoadStatistics(VMLoadStats); 
        System.out.format("GPP No. | Current Load (Unit)\n-------------\n"); 
        showLoadStatistics(staticGPPLoadStats); 
        System.out.format("GPP No. | Loaded VMs\n----------------------\n"); 
        showLoadStatistics(overallGPPLoadStats); 
    } 
 
    private static void migrationDecision(Map<Integer, Integer> vmLoadStats, 
   Map<Integer, Integer> staticGPPLoadStats) { 
      
  if (getLoadLevel(staticGPPLoadStats) < getLowLoadLabel()) { 
   squeezeCluster(vmLoadStats, staticGPPLoadStats); 
  } 
  else if(isHighLoadLimitExceeded(staticGPPLoadStats)) { 
   releaseCluster(vmLoadStats, overallGPPLoadStats, 
staticGPPLoadStats); 
  } 
  else { 
   /** Continue normal operation */ 
   return; 
  } 
 } 
 
 private static int getLoadLevel(Map<Integer, Integer> 
staticGPPLoadStats) { 
  double sumOfLoad = 0; 
  Iterator iterator = staticGPPLoadStats.entrySet().iterator(); 
        while (iterator.hasNext()) { 
            Map.Entry pairs = (Map.Entry) iterator.next(); 
            sumOfLoad += ((Integer) pairs.getValue()).doubleValue();  
        } 
  return (int)Math.ceil(sumOfLoad/staticGPPLoadStats.size()); 
 } 
 
 private static void squeezeCluster(Map<Integer, Integer> vMLoadStats, 
            Map<Integer, Integer> gppLoadStats) { 
 
        Map<Integer, Integer> gppAvailableLoad = sortByLoad( 
                availableLoadList(gppLoadStats), true); 
        Map<Integer, Integer> vmLoads = sortByLoad(vMLoadStats, false); 
 
        Iterator itVM = vmLoads.entrySet().iterator(); 
        while (itVM.hasNext()) { 
            Map.Entry vmPairs = (Map.Entry) itVM.next(); 
 
            Iterator itGPP = gppAvailableLoad.entrySet().iterator(); 
            Iterator it = overallGPPLoadStats.entrySet().iterator(); 
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            int vmLocation = vmLocationList[((Integer) vmPairs.getKey()) 
                    .intValue()]; 
 
            Integer destGPPindex = new Integer(vmLocation); 
 
/** 
 * Skips the GPP that is already in Sleep/Scaled-down mode Or, if 
 * the GPP that has already a list of VMs running in it 
 */ 
            if (overallGPPLoadStats.get(destGPPindex) == null 
                    || overallGPPLoadStats.get(destGPPindex).size() > 1) 
                continue; 
 
            while (itGPP.hasNext()) { 
                Map.Entry gppPairs = (Map.Entry) itGPP.next(); 
 
                int gppIndexValue = ((Integer) 
gppPairs.getKey()).intValue(); 
                if (vmLocation == gppIndexValue) 
                    continue; 
 
                if (checkAddVMLoad(gppPairs.getValue(), vmPairs.getValue())) 
{ 
                    List<Integer> loadList = new ArrayList<Integer>(); 
                    loadList = overallGPPLoadStats.get(gppPairs.getKey()); 
                    loadList.add((Integer) vmPairs.getValue()); 
                    overallGPPLoadStats.put((Integer) gppPairs.getKey(), 
                            loadList); 
 
                    gppPairs.setValue(availableLoad(sumList(loadList))); 
 
                    Integer gppIndex = new Integer( 
                            vmLocationList[((Integer) vmPairs.getKey()) 
                                    .intValue()]); 
/** 
 * Condition below removes corresponding ITEM from 
 * Facilitator-GPP map (lists available capacities) who does 
 * not contain anymore VM, so the same indexed GPP can be 
 * SCALED DOWN Facilitator-GPP map only contains those, who 
 * have VM running in it and also has capacity available for 
 * facilitating additional VM Facilitator-GPP map is an 
 * intermediate list of GPP(s) used for migration operation. 
 */ 
                    if (((Integer) 
sumList(overallGPPLoadStats.get(gppIndex))) 
                            .intValue() 
                            - ((Integer) vmPairs.getValue()).intValue() == 
0) { 
                        gppAvailableLoad.remove(gppIndex); 
                    } 
 
                    vmLocationList[((Integer) vmPairs.getKey()).intValue()] 
= ((Integer) gppPairs 
                            .getKey()).intValue(); 
 
                    /** 
                     * Scales down GPP in overallGPPLoadStats map. 
                     */ 
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                    overallGPPLoadStats.remove(vmLocation); 
                    break; 
                } 
            } 
        } 
/** 
 * After migration completion final operational statistics is populated 
 * to static 'staticGPPLoadStats' map (updates the current load usage) 
 * Assigns 'ZERO_LOAD' to corresponding GPP(s) whose VM(s) are migrated 
 * away meaning that, it went to Scaled-Down/Sleep state 
 */ 
        Iterator it = staticGPPLoadStats.entrySet().iterator(); 
        while (it.hasNext()) { 
            Map.Entry pairs = (Map.Entry) it.next(); 
            if (overallGPPLoadStats.get(pairs.getKey()) == null) { 
                pairs.setValue(new Integer(ZERO_LOAD)); 
                continue; 
            } 
            
pairs.setValue(sumList(overallGPPLoadStats.get(pairs.getKey()))); 
        } 
        // int i= 0; 
    } 
 
 
 private static boolean isHighLoadLimitExceeded(Map<Integer, Integer> 
staticGPPLoadStats) { 
  Iterator iterator = staticGPPLoadStats.entrySet().iterator(); 
        while (iterator.hasNext()) { 
            Map.Entry pairs = (Map.Entry) iterator.next(); 
            if(((Integer)pairs.getValue()).intValue() >= MAX_LOAD_LEVEL) { 
             return true; 
            } 
        } 
  return false; 
 } 
 
 private static void releaseCluster(Map<Integer, Integer> vMLoadStats, 
            Map<Integer, List> overallGPPLoadStats, Map<Integer, Integer> 
gppLoadStats) { 
  /** TODO: Functional block to Power up inactive VMs among 
distribute VMs among them */ 
 } 
 
    private static Object sumList(List<Integer> loadList) { 
        Integer sum = 0; 
        for (Integer i : loadList) 
            sum = sum + i; 
        return sum; 
    } 
 
/** 
 * Initially we presume every GPP is serving at least one VM So at the 
 * beginning we get the same list for GPPLoadList and VMLoadList 
 *  
 * @return 
 */ 
    private static Map<Integer, Integer> getCurrentGPPLoadStatistics() { 
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        Iterator iterator = null; 
 
/** 
 * If any GPP currently facilitating at least one VM then, calculate 
 * available capacity accordingly 
 */ 
        if (staticGPPLoadStats.size() == 0) 
            iterator = VMLoadStats.entrySet().iterator(); 
        else { 
            updateOverallGPPStats(staticGPPLoadStats); 
            return staticGPPLoadStats; 
        } 
 
        while (iterator.hasNext()) { 
            Map.Entry pairs = (Map.Entry) iterator.next(); 
            staticGPPLoadStats.put(new Integer(pairs.getKey().toString()), 
                    new Integer(pairs.getValue().toString())); 
        } 
        updateOverallGPPStats(staticGPPLoadStats); 
        return staticGPPLoadStats; 
    } 
 
    public static int getLowLoadLabel() { 
     return LOW_LOAD_LEVEL; 
    } 
 
 private static void updateOverallGPPStats( 
            Map<Integer, Integer> currentGPPLoadStats) { 
 
        Iterator it = overallGPPLoadStats.entrySet().iterator(); 
 
        Iterator iterator = currentGPPLoadStats.entrySet().iterator(); 
        while (iterator.hasNext()) { 
            Map.Entry pairs = (Map.Entry) iterator.next(); 
 
/** 
 * If there is no load on any certain GPP, then operational GPP map 
 * disregards that from facilitator list, because that GPP is 
 * already in sleep/scaled-down mode. 
 */ 
            if (((Integer) pairs.getValue()).intValue() == ZERO_LOAD) 
                continue; 
 
            List<Integer> vm = new ArrayList<Integer>(); 
            if (it.hasNext()) { 
                Map.Entry entry = (Map.Entry) it.next(); 
                vm = (List<Integer>) entry.getValue(); 
            } 
            vm.add(new Integer(pairs.getValue().toString())); 
            overallGPPLoadStats.put(new Integer(pairs.getKey().toString()), 
vm); 
        } 
    } 
 
/** 
 * This method is intended to get the load statistics of VMs from Virtual 
 * machine manager In this demo implementation this just returns random load 
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 * statistics 
 */ 
    public static void getInitialVMStatistics() { 
 
        int load, index; 
        for (index = 0; index < NUMBER_OF_VM; ++index) { 
            load = (new Random()).nextInt(MAX_LOAD_LEVEL); 
            VMLoadStats.put(new Integer(index + 1), new Integer(load)); 
            vmLocationList[index + 1] = index + 1; 
        } 
    } 
 
    public static void showGPPVMLoads(int[] GPPLoadStats) { 
 
        for (int index = 0; index < 5; ++index) { 
            System.out.println("GPP No.: " + (index + 1) + " " 
                    + GPPLoadStats[index]); 
        } 
    } 
 
    public static void showLoadStatistics(Map gppMap) { 
        Iterator iterator = gppMap.entrySet().iterator(); 
        while (iterator.hasNext()) { 
            Map.Entry pairs = (Map.Entry) iterator.next(); 
            /* 
             * if(pairs.getValue() instanceof List) { continue; } 
             */ 
            System.out.format("%4s    |  %s\n", pairs.getKey().toString(), 
                    pairs.getValue().toString()); 
            System.out.format("-----------------------------\n"); 
            iterator.remove(); 
        } 
        System.out.format("\n"); 
    } 
 
    public static boolean checkAddVMLoad(Object availableGPPLoad, 
            Object extraVMLoad) { 
        return Integer.parseInt(availableGPPLoad.toString()) >= Integer 
                .parseInt(extraVMLoad.toString()); 
    } 
 
/** 
 * Computes remaining capacity of a particular GPP 
 * @param currentGPPLoad 
 * @return 
 */ 
    public static int availableLoad(Object currentGPPLoad) { 
        return MAX_LOAD_LEVEL - Integer.parseInt(currentGPPLoad.toString()); 
    } 
 
    public static Map<Integer, Integer> availableLoadList( 
            Map<Integer, Integer> gppMap) { 
 
        Map<Integer, Integer> loadMap = new HashMap<Integer, Integer>(); 
        loadMap.putAll(gppMap); 
 
        Iterator iterator = loadMap.entrySet().iterator(); 
        while (iterator.hasNext()) { 
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            Map.Entry pairs = (Map.Entry) iterator.next(); 
 
/** 
 * Skips the Scaled-down/Slept GPP from the VM-facilitator GPP list 
 */ 
            if (((Integer) pairs.getValue()).intValue() == ZERO_LOAD) { 
                iterator.remove(); 
                continue; 
            } 
            pairs.setValue(availableLoad(pairs.getValue())); 
        } 
        return loadMap; 
    } 
 
    private static Map sortByLoad(Map map, final boolean descending) { 
 
        Map loadList = new HashMap<Integer, Integer>(); 
        loadList.putAll(map); 
 
        List list = new LinkedList(loadList.entrySet()); 
 
        Collections.sort(list, new Comparator() { 
            public int compare(Object o1, Object o2) { 
                if (descending) 
                    return ((Comparable) ((Map.Entry) (o2)).getValue()) 
                            .compareTo(((Map.Entry) (o1)).getValue()); 
 
                return ((Comparable) ((Map.Entry) (o1)).getValue()) 
                        .compareTo(((Map.Entry) (o2)).getValue()); 
            } 
        }); 
 
/** 
 * put sorted list into map again LinkedHashMap make sure order in which 
 * keys were inserted 
 */ 
        Map<Integer, Integer> sortedLoadList = new LinkedHashMap<Integer, 
Integer>(); 
        for (Iterator it = list.iterator(); it.hasNext();) { 
            Map.Entry entry = (Map.Entry) it.next(); 
            sortedLoadList.put(new Integer(entry.getKey().toString()), 
                    new Integer(entry.getValue().toString())); 
        } 
        return sortedLoadList; 
    } 
} 


