

Energy Efficiency through Virtual Machine Redistribution in

Telecommunication Infrastructure Nodes

Miraj Hasnaine Tafsir
University of Helsinki
Faculty of Science
Department of Computer Science
Networking and Services
Master´s Thesis
September 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/17169375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

HELSINGIN YLIOPISTO − HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta – Fakultet – Faculty

Faculty of Science

Laitos – Institution – Department

Department of Computer Science

Tekijä – Författare – Author
Miraj Hasnaine Tafsir
Työn nimi – Arbetets titel – Title
Energy Efficiency through Virtual Machine Redistribution in Telecommunication Infrastructure
Nodes
Oppiaine – Läroämne – Subject
Networking and Services
Työn laji – Arbetets art – Level
M. Sc. Thesis

Aika – Datum – Month and year
22.09.2013

Sivumäärä – Sidoantal – Number of pages
69

Tiivistelmä – Referat – Abstract

Energy efficiency is one of the key factors impacting the green behavior and operational
expenses of telecommunication core network operations. This thesis study is aimed for finding
out possible technique to reduce energy consumption in telecommunication infrastructure nodes.
The study concentrates on traffic management operation (e.g. media stream control, ATM

adaptation) within network processors [LeJ03], categorized as control plane.
The control plane of the telecommunication infrastructure node is a custom built high
performance cluster which consists of multiple GPPs (General Purpose Processor) interconnected
by high-speed and low-latency network. Due to application configurations in particular GPP unit
and redundancy issues, energy usage is not optimal.
In this thesis, our approach is to gain elastic capacity within the control plane cluster to reduce
power consumption. This scales down and wakes up certain GPP units depending on traffic load

situations. For elasticity, our study moves toward the virtual machine (VM) migration technique
in the control plane cluster through system virtualization. The traffic load situation triggers VM
migration on demand. Virtual machine live migration brings the benefit of enhanced
performance and resiliency of the control plane cluster. We compare the state-of-the-art power
aware computing resource scheduling in cluster-based nodes with VM migration technique. Our
research does not propose any change in data plane architecture as we are mainly concentrating
on the control plane. This study shows, VM migration can be an efficient approach to
significantly reduce energy consumption in control plane of cluster-based telecommunication

infrastructure nodes without interrupting performance/throughput, while guaranteeing full
connectivity and maximum link utilization.

ACM Computing Classification System (CCS):
C.3 [Process Control Systems]

Avainsanat – Nyckelord – Keywords
GPP, Control plane, Control layer, Media plane, virtual machine monitor
Säilytyspaikka – Förvaringställe – Where deposited
Kumpula Science Library C-
Muita tietoja – Övriga uppgifter – Additional information

ii

Table of contents
1 Introduction 1

1.1 Motivation of the study .. 1

1.2 Research Focus ... 2

1.3 Research Question .. 3

1.4 Study methodology ... 3

1.5 Layout of the thesis .. 6

2 Theoretical background 7

2.1 Mobile core network ... 7

2.1.1 Core network infrastructure nodes .. 9

2.2 Traffic handling in infrastructure nodes .. 10

2.2.1 Control plane .. 11

2.2.2 Data plane .. 12

2.2.3 Cluster based traffic operation ... 13

3 Traffic load scheduling inside infrastructure node 15

3.1 Green factors ... 15

3.2 Resource model of cluster based system ... 17

3.3 Load scheduling in cluster based node ... 19

4 Virtualization and energy efficiency 23

4.1 Categories of virtual machines .. 24

4.2 Virtual machine migration .. 25

4.3 Live migration of virtual machine .. 26

4.3.1 Post-copy migration ... 28

4.3.2 Pre-copy migration .. 28

4.4 Downtime during migration process ... 29

4.5 Pre-copy VM migration in GPP cluster .. 30

4.6 VM mobility to reduce energy consumption ... 32

5 Reducing energy usage in control plane 33

5.1 Limitation of control plane load scheduling ... 33

5.2 Virtualization of cluster component .. 34

5.2.1 Hypervisor and resource provisioning ... 35

5.3 Energy aware control plane architecture ... 36

5.4 Data plane traffic processing ... 37

5.5 Scheduling technique among virtual machines ... 39

5.6 VM migration in GPP cluster .. 40

iii

5.7 Optimization model of migration decision .. 42

5.8 Algorithm for VM migration .. 44

5.9 Algorithm implementation .. 46

5.10 Summary .. 49

6 Discussions 50

6.1 Possible alternatives to optimize energy usage ... 52

6.1.1 Distribution of control functionalities .. 52

6.1.2 Cloud-based traffic operation.. 53

6.1.3 Additional explorations ... 54

6.2 Summary ... 55

List of references 57

Appendix - Virtual machine distribution algorithm 61

A Fields and methods summary ... 61

B Code Implementation ... 63

iv

List of figures
Figure 1.1: Traffic planes structure in cluster-based infrastructure node 2

Figure 1.2: Control plane GPP cluster .. 3

Figure 1.3: Virtualization of GPP unit .. 4

Figure 1.4: Virtual machine migration in control plane cluster .. 5

Figure 2.1: Horizontally layered network architecture .. 8

Figure 2.2: Basic connectivity layer structure represents core network 9

Figure 2.3: Performance vs. flexibility concept of NPs (network processors). 12

Figure 2.4: Control plane cluster ... 14

Figure 2.5: Basic power usage flow in multi-bade and multi-rack architecture 14

Figure 3.1: Resource control model in cluster-based node. .. 18

Figure 3.2: Resource usage model in cluster-based node ... 19

Figure 3.3: New resources activation .. 21

Figure 3.4: De-activating resources to power-save mode ... 21

Figure 4.1: Virtual machine configuration (system virtualization) 23

Figure 4.2: Iterations in pre-copy live migration .. 31

Figure 5.1: Energy-aware control plane system architecture.. 36

Figure 5.2: Data plane connection with virtualized GPP components 38

Figure 5.3: Virtual machine migration approach ... 47

Figure 6.1: Power-aware behavior hierarchy .. 51

Figure 6.2: Distribution of traffic functionalities ... 53

Figure 6.3: Separating control and data plane with different cloud deployment 54

Figure 6.4: Possible study exploration axes .. 54

1

1 Introduction

In the age of technology blessed world global warming is an alarming problem. High
energy consumption [Bos10] due to telecom and ICT activities is one of the significant
reasons for global warming. Rapid growth of the telecommunication area is aimed to
provide high processing capacity and throughput in server operations. This enhanced
performance will effectively increase the energy usage by infrastructure equipment to
perform core network operations (e.g. traffic handling). A number of axes (e.g. energy
usage ratio, energy efficiency features and cooling requirement) need to be taken under
extensive research effort to achieve the green behavior from telecommunication sector.
Here the green behavior refers to minimizing energy consumption through use of
energy efficient technologies in telecom activities [Kha12]. Following sections give the
driving force behind the study, concrete research issue and methodology followed.

1.1 Motivation of the study

While approaching to minimize overall energy consumption it is better to look back
why energy optimization is a burning issue. As for example, very few Facebook users
are concerned about the amount of energy (i.e. electricity) being consumed. In fact,
every Facebook operation is consuming some amount of electricity in the data center.
Increasing amount of electricity consumption in turns results in increasing amount of
CO2 emissions, which causes long-term environmental impact [KSK+12]. Here
Facebook represents just an example of ICT applications. The similar scenario is also
visible in the telecommunication sector. The end user never knows how the services are
provided, or handled by core network operations. In wireless networking technologies,
the telecom operators always show potential to provide enhanced services along with
new application features to their subscribers. Emerging network performance needs
enhanced traffic handling in telecommunication core networks. Intensive processing of
various traffic-types (e.g. voice, video) entails extra traffic handling capacity and high
power consumption by underlying network equipment. For any kind of traffic handling
operation, network equipment essentially uses electricity and thus generates CO2
emissions somewhere down the line, consequently causing harm to climate [KSK+12].
Moreover, excessive operation performed by traffic handling components produce huge
amount of heat. Larger cooling systems with high cooling capacity are needed to chill
the system environment. These cooling systems are also high energy grabber, which

2

result in the same curse to the climate. Consumable energy by network equipment may
be capped at some point of time in future, whereas performance demand always has
upward trend. Therefore reducing energy usage is critical, as we cannot compromise
with performance for power optimization.

1.2 Research Focus

To facilitate the increasing traffic requirements over the wireless network, the
telecommunication infrastructure nodes are being enhanced to serve high throughput
and performance. So traffic planes (for managing and processing traffic) in
telecommunication nodes are continuously being leveraged for handling and processing
more incoming traffic. This traffic operation is one of the most significant energy
candidates in telecommunication core network operations. Hence, this thesis focuses on
power efficient traffic handling within the telecommunication infrastructure node.

Figure 1.1 below shows the concept of telecommunication infrastructure node. For
handling the traffic, typical node type contains two interdependent functional blocks
noted as control plane and data plane. Traffic management functionalities on the
control plane executes on a centralized processor cluster. General purpose processors
(GPP) interconnected by a high-speed and low-latency network are forming such a
cluster. The data plane is built up of programmable reduced-function application-
specific network processors. But processing decisions are always made by control plane
functionalities. And this thesis aims to achieve energy efficient behavior from high
computing control plane GPP cluster (that performs traffic management operation).

Figure 1.1: Traffic planes structure in cluster-based infrastructure node

Significant confronts can be noted from GPP cluster in control plane. GPPs are
configured according to control layer applications. In low traffic situation, shutting

Control plane cluster Data plane

General Purpose Processor
(GPP) components

Reduced function
processor units

Telecommunication
infrastructure node

3

down, or CPU throttling is not possible due to scattered software profiles among GPPs.
Additionally there are resiliency issues for handling any crashing situation meaning
that, data transmission may be interrupted if any corresponding serving GPP fails. To
survive from this kind of situation, control plane architecture provides backup GPP
(always remains operational) to support when the primary one fails, consuming energy
even in normal operational mode.

1.3 Research Question

The main research question of this thesis is:

· How can energy efficiency be improved especially while controlling user
sessions inside telecommunication infrastructure nodes?

This question is narrowed down into another sub question based on research focus
area.

· How can energy consumption be reduced in control plane of cluster based
telecommunication nodes?

1.4 Study methodology

This thesis is based on the theoretical investigation of several scientific approaches to
achieve power efficiency in clusters and data centers. Investigation starts by analyzing
the current technology for power-aware computing for resource scheduling in cluster
based nodes. We investigate the current control plane (responsible for traffic
management) architecture inside the cluster-based telecommunication infrastructure
nodes.

Figure 1.2 above shows the architectural view of the control plane cluster. As a base

Figure 1.2: Control plane GPP cluster

Hardware

OS

Cluster manager

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Hardware

OS

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Identical cluster
component

Cluster
front-end Ap

pl
ic

at
io

n

4

line of this thesis we also analyze the load based resource scheduling technique inside
the infrastructure nodes. Methodology of this thesis is divided into two significant
sequential study steps to achieve energy efficiency in traffic operations. Firstly we
study the virtualization of general purpose processor. Secondly the study continues
with the discussion of energy optimization through virtual machine migration. These
are introduced in the following two sections.

Virtualization of general purpose processor

In traditional system environment, deploying multiple operating systems on a single
set of hardware resources was not trivial. This is because of having difficulty in proper
resource sharing among the operating systems as they would require dedicated
hardware resources. Using a virtual machine actually resolves this problem, because
this technique does not allow the system and applications running in it to directly
interact with underlying hardware resources. The virtual machine is essentially a
software package that formulates an abstraction of the underlying hardware.
Implementation of VM can provide a complete system platform to support execution of
an entire operating system with all its applications. Virtual machine interacts with
lower level hardware resources through virtual machine monitor (VMM). Virtual
machine monitor makes abstraction of functionalities and OS from underlying
hardware component through virtual machine. It is a control program that is
accountable for proficiently congregating the virtual machines. If we consider privilege
level of VMM execution, it is higher than that of operating system supervisor. The
Figure 1.3 below depicts the hypothetical concept of GPP virtualization.

Virtual machine monitor is also referred as the Hypervisor. This hypervisor/VMM
creates an abstraction layer over the physical hardware to form the virtualized

Figure 1.3: Virtualization of GPP unit

Hypervisor
(VMM)

Hardware

VM VM

Hardware

OS

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Single GPP unit in cluster
Virtualized GPP unit to
facilitate multiple VMs

5

environment in a particular physical general purpose processor cluster component.
Applications (running inside the VMs) never see the interactions with physical
hardware resources. The study proceeds with virtual machine based GPP cluster
environment in the control plane. We went through several scientific articles about
virtualization, hypervisor and live virtual machine migration to analyze the
virtualization approach to be applied in the control plane GPP cluster.

Energy optimization through VM migration

Our study proceeded towards the live virtual machine migration process [JDW+09]

[CFH+05], which can be a good approach for power-aware traffic management. Several
points of VM migration are studied; such as live VM migration with minimal network
overhead (due to migration process) and also less engagement of hypervisor (virtual
machine monitor) in migration process. These are crucial because we can never
compromise with the system performance (for traffic handling) due to energy efficient
behavior. Also resiliency situation is one more significant confront to overcome. In our
proposed study, the number of virtual machines is kept equal to the number of GPP
components in the cluster. As the research goes forward, we see the possible apt way of
VM migration without any noticeable functional interruption. According to our
hypothetical manner, the working methodology is conventional during the high-traffic
situation as every virtual machine located on its original physical component. During
low-traffic particular virtual machine residing on certain physical GPP component
migrates to another and former GPP goes scaled down to reduce power.

The achievable working tactic after employing virtual machine migration technique (in
low traffic situation) is depicted in the Figure 1.4 above. This ensures energy aware

Hypervisor
(VMM)

Hardware

VM VM

VM
Migration

Scaled down
cluster component

Hypervisor (VMM)

Hardware

VM VM VM

Hardware

OS

Elasticity
and load
manager

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Cluster front-end
Identical cluster component

Figure 1.4: Virtual machine migration in control plane cluster

6

traffic operation in control plane. Migration also depends on the work load situation of
the destination component. We theoretically explore possible performance and energy
usage of the infrastructure node to provide energy efficient traffic management.

1.5 Layout of the thesis

The layout of the thesis consists of six chapters. The thesis begins with the theoretical
discussions of mobile core network which is a part of the network connectivity layer of
horizontal telecommunication network architecture [Wit00]. Then we discuss the
ideology of cluster based telecommunication nodes followed by the discussion of
virtualization concept with a detail analysis of virtual machine types. Then it continues
to study elaborately the virtual machine migration, which is opted to follow as the
means of energy reduction.

As the thesis proceeds, after illustrating the theoretical concept, the study moves
forward to describe the possibility of using virtual machine migration technique in
control plane cluster. A mathematical model is shown followed by an algorithm that
can be used to make migration decision while squeezing and releasing the cluster size.
Apparently, this can achieve the elastic behavior by respectively switching/scaling
down and waking/powering up physical cluster components.

Thereafter some limitations and confronts are mentioned, regarding possible dynamic
energy efficient solution. As the thesis narrows down the study scope from vast
telecommunication network architecture to core infrastructure node, therefore we show
some additional possible research axes of power-aware traffic operations.

Lastly the thesis is concluded by summing up the study approach and discusses the
answers to the research questions.

7

2 Theoretical background

In horizontal layered telecommunication architecture, core network is one of the parts
of connectivity layer. In this chapter we will give brief illustration of
telecommunication layered network architecture concentrating on connectivity layer.
After that discussion will continue with the load based scheduling for gaining energy
efficiency inside cluster-based infrastructure nodes. As mentioned in introductory
chapter, these nodes have hierarchical structure of components to serve traffic demand
in the core network architecture. In later section, we will study possible green factors
due to core network functionalities. These analyses are significant for this study to
narrow down the study scope for focusing on efficient energy usage through traffic
plane virtualization inside telecommunication infrastructure nodes.

2.1 Mobile core network

In telecommunication network, user session control and connectivity are separated into
different layers. In traditional architectures, call control and connectivity were bundled
in telecommunication architecture. Nodes and functionality are arranged in layers
according to their specific areas of use in horizontal layered architecture [DRB03]. This
separation actually brings a lot of advantages to the network architecture as the
functions provided are now independent from each other from layer to layer. Several
standardization initiatives such as Megaco [RFC 3015] in the IETF, Tiphon in ETSI
[ETSI TS 101 329-2] and the Multiservices Switching Forum (MSF) adopted this
separation principle of modern network. In universal mobile telecommunication system
(UMTS) this horizontally layered architecture essentially divides the network into
three different layers [Wit00].

- Application layer;

- Network control layer; and

- Common connectivity layer.

The Figure 2.1 below illustrates this layered architecture [BBB07] [CGa04]. The end-
user applications reside in the application layer. Generally in modern networks, mobile
terminals and dedicated application servers are the places in the network where
applications are implemented. In case of application servers, they are often
complemented with content servers. Content servers further host service related

8

databases or libraries. Application layer interfaces with network control layer through
application programming interfaces (APIs). These open APIs are used by application
feature developers to implement new services and applications.

Figure 2.1: Horizontally layered network architecture

For providing seamless high-quality services across different types of networks, the
network control layer incorporates all the necessary functionalities. The network
control layer houses a number of control servers that provide user session control and
management functionalities. These control servers are also responsible for setting up
and taking down packet sessions. The control layer also contains information about
subscriber authentication, service authorization and localization.

We limit our discussion to the connectivity layer of layered network architecture. The
reason is that our point of interest core network is a part of connectivity layer. In
telecommunication network user session control and connectivity are separated into
different layers. Asynchronous transfer mode (ATM) and internet protocol (IP)
transmission are principle bases of connectivity layer. Connectivity layer is normally
divided into two parts: access network and core network. Interfaces to legacy networks,
such as the public switched telephone network (PSTN) are provided by connectivity
layer. The layered architecture is being deployed in third-generation mobile networks
that is, the universal mobile telecommunication system (UMTS).

Connectivity layer provides the transport mechanism for transporting any kind of
information through voice, data and multimedia streams. Backbone architecture is

Session Control Entities

External Services

Application Layer

Network Control
Layer

Connectivity layer

Content Servers Application Servers

Control Servers

Access
networks

ISDN, PSTN,
Internet

MGW, MRFP

Gateway Entities

Control Servers APIs

Mobile Terminals

9

essentially made up of core and edge equipment. Core equipment is consists of
backbone routers and backbone switches that handle traffic according to traffic
engineering. Telecommunication operators predefine traffic route rules and traffic
classification principles as traffic engineering. Core equipment transports and
aggregates traffic streams between different terminal components at backbone edges.
Edge equipment collects customer specific data and ensures QoS. The edge equipment
is the telecommunication infrastructure nodes, the ultimate study focus of this thesis.

Figure 2.2: Basic connectivity layer structure represents core network

These nodes run under the full control of control layer nodes. These infrastructure
nodes allows the processing of bit streams, and provide coding/decoding of speech
streams, cancelling echo, bridging multi party calls and converting between transport
protocols. Variety of services and applications executed by diverse network control
domains can be accomplished by means of connectivity layer due to this exertion of
control down to bit-stream level. Services and applications that are implemented and
provided are truly autonomous of the applied transport technology. However the idea is
that, this transport technology can vary over time due to evolving network but
applications and services are never impacted.

2.1.1 Core network infrastructure nodes

Infrastructure nodes work within the core network architecture which is a part of a
connectivity layer. They work as a bridge between different transmissions technologies
to add services to end-user connections. One significant place of telecommunication
nodes in the connectivity layer is at the bridging point between different networks.
These nodes are also used in all-IP networks that support real-time voice-over IP. It
can contain embedded real-time router [BLW99] and ATM/AAL2 switch with extensive

Control
server

Infrastructure

node

Infrastructure

node

PSTN/
INTERNET

(ATM/IP)

ACCESS
NETWORK
(ATM/IP)

CORE
NETWORK
(ATM/IP)

H.248 H.248

10

supports for quality of service and traffic engineering. These nodes mainly play two
important roles: Firstly, switch ATM or route IP traffic and also provide
internetworking functions between ATP and IP. Secondly, process the media stream
(depending upon the service request from end user) and provide interfaces to different
transmission technologies (such as PSTN). Telecommunication infrastructure nodes
usually have a multi-rack, multi-blade architecture usually with specialized blades
that are tailored for various functions (such as digital signal processing, packet
handling, control software etc.). In practice these nodes usually contain tens to
hundreds of processors of various types with thousands of cores interconnected using
multiple networks with various topologies. In fact, a telecommunication infrastructure
node is a computing cluster which is custom built to fulfill a specialized role. From
architectural perspective, telecommunication infrastructure nodes are often built as
hierarchical systems, where higher level software components (executing on one set of
processors) control and manage lower level components (usually executing on another
set of processors). Lower level components are usually handled as pools of resources
and used by higher level components to full fill certain tasks (e.g. processing of user
session). In such systems, setup of a user session normally broken down to smaller
tasks handled by lower level software and hardware components. The hierarchical
software architecture of the system also supports the non-uniform nature of the
interconnected network between the cluster components.

The load in a telecommunication node varies greatly over time. In a capital city, for
example, the load is likely to be the highest during office hours (perhaps peaking at
near 100% of maximum capacity), whereas during the night and weekends the load
becomes very low (well under 10% of maximum capacity); during long vacation periods
the load can be even lower than that of peak hours.

2.2 Traffic handling in infrastructure nodes

As the telecommunication network has grown and advanced exponentially, the
requirements of network interfaces have become more complex and diverse. These
interfaces also serve complex purposes such as media processing, or any on-demand
service. For serving various network applications and including multiple protocols
requires highly intelligent and intensive traffic processing over the network. To keep
up with current trends of emerging network applications, programmable
microprocessors called network processors (NP) [LeJ03] are introduced in
telecommunication core network interfaces to handle the demands of modern network

11

applications. For example, packet throughput of a 10Gbps link is 19.5 million packets
per second, assuming a stream of minimum-sized packets of 64 bytes. Given a single
processor of 1 GHz clock frequency, it can execute only 51 instructions per one packet
time [LeJ03]. It is worth to mention that one single processor is not enough to perform
the processing at wire rate. Hence, concurrent traffic handling through a suitable
resource model is required to carry the traffic load where a number of processing
equipment is involved (we will discuss this elaborately in chapter 3). Energy usage
essentially increases while augments the number of processing components. This thesis
is motivated to find the hypothetical way of possible energy optimization without
compromising the network performance. There are two clear functional categorizations
of NP applications in telecommunication nodes. These are two explicit traffic planes:
control plane and data plane. User session establishment and call setup can be
mentioned as the primary traffic generator activities in the core network. In principal,
the control plane is responsible for managing traffic (e.g. call establishment, user data
connection settlement). Data plane is responsible for processing the traffic as per
session, or connection demand which is accomplished by reduced function application
specific networked processor. We will discuss more in detail in following sections.

2.2.1 Control plane

The control plane of an infrastructure node is basically the set of processors that
executes the higher level software components of the node. The traffic control plane is
usually a cluster of commodity General purpose processors that are connected to form a
HPC (high performance cluster) cluster. GPPs (General Purpose Processors) are
flexible to rapidly develop network applications and protocols. They do not provide
enough performance to process data at wire rates [LeJ03]. Therefore to process the
traffic GPPs are connected to lower level data plane processing equipment (discussed in
following section). The control plane is responsible for controlling the user sessions
management and setup/release of calls/sessions requested by end-users. From the
software deployment perspective, cluster front-end is configured differently than the
other cluster components with necessary cluster management functionalities (such as
load scheduling and storage). The performance of a telecommunication infrastructure
node is measured by control plane functionalities. A number of metrics can be used for
measuring the performance like following:

- Maximum number of simultaneous user sessions; this actually means the
number of data connection e.g. in case of real time call conferencing.

12

- Maximum bandwidth; can be measured per user connection or in total.
- Session setup/tear down rate; this means data connection per unit of time.

The control plane is greatly responsible for fulfilling the above mentioned performance
metrics in real time. Based on these metrics the network is pre-dimensioned to (i.e. the
load threshold is determined) handle traffic. It is also worth mentioning that, traffic-
load threshold can also be determined by calculating the traffic handling capacity of
control plane cluster components and traffic processing capacity of the lower level
networked processors. If the load level is over threshold, then the control plane
gracefully discards traffic that cannot be handled reliably but still maintains the QoS
of user sessions. The traffic load is distributed among the cluster components by the
application software (deployed inside cluster front-end) through load distribution
algorithm.

2.2.2 Data plane

This functional block is also known as a forwarding plane. The principle role of this
functional block is to perform packet operations (e.g. forward data packets) and process
the traffic at wire rate. The traffic data plane consists of programmable network
processors, or dedicated ASICs (Application-Specific Integrated Circuit) [LeJ03]. These
processors are reduced function processors tailored to perform traffic processing tasks
(e.g. media stream dispensation). Control plane’s equipment actually directs the
demanded traffic processing work to data plane based on the user session requirement.

Figure 2.3: Performance vs. flexibility concept of NPs (network processors).

One or more data plane processing components can be connected to one control plane
general purpose processing element. While processing traffic, a group of data plane
processing components resides under a particular control plane component as a pool of

Pr
og

ra
m

m
ab

le
 (F

le
xi

bi
lit

y)
 General Purpose Processor

(control plane components)

Application Specific processor
(Data plane components)

Task specific (performance)

13

resources. The Figure 2.3 above represents a brief comparison between traffic plane
processors in the telecommunication infrastructure node. The data plane actually
performs packet processing for forwarding functions and any media processing on
demand. Data plane functionality also includes traffic processing operations such as
media transcoding and IP packet fragmentation. Media transcoding is a process of
transforming media data object, e.g. conversion from one encoding to another. In case
of packet fragmentation, data plane application splits IP packets into multiple
fragments for which some header fields have to be adjusted and header checksum have
to be computed. Data plane application also handles video mixing and tone handling
for any video communication through mobile network.

2.2.3 Cluster based traffic operation

As discussed earlier, control plane is normally consists of commodity high performance
general purpose processor units reside in a cluster. This cluster has a front-end
(similar as other processor units within the cluster) which is different from rest of the
processor units from system deployment perspective. Front-end processor units are
deployed with all functionalities in the cluster with an extra functionality to manage
cluster. In our system architecture, the front-end will also contain virtual machine
management block. Every cluster component has its own embedded operating system
running for traffic management activities and necessary protocol termination. Control
plane cluster is different from any other cluster computing environment from both of
the performance and operational perspectives. Every general purpose processing
cluster component is connected with one or more application specific reduced function
network processor(s). This cluster actually determines the node capacity of user session
establishment rate. Every component establishes the user session by protocol
termination and forward the data packet for processing toward data plane processing
component.

In telecommunication infrastructure nodes, within the general purpose processor
cluster, only the front-end has redundant GPP component to support failure recovery
mechanism. The reason is that, the cluster front-end has all necessary information and
managerial functional blocks regarding cluster such as load situation of all cluster
components and load distribution algorithm. This redundant GPP resides within the
cluster and connected in the same manner as the primary front-end unit for rest of the
units and remains in switched-on state. Figure 2.4 below depicts the concept of control
plane cluster system showing the redundancy of cluster head.

14

Figure 2.4: Control plane cluster

The Figure 2.5 below gives very basic energy usage scheme inside a telecommunication
infrastructure node. It shows that, processing blades in different rack are the ones who
are responsible for overall energy consumption by the whole node system.

Figure 2.5: Basic power usage flow in multi-bade and multi-rack architecture

These processor components are the parts of multi-blade architecture which further
creates multi rack node system. The Figure 2.5 above shows the simplified concept of
power provisioning to the rack level energy consumption containing a number of
processor components.

Cluster head

Request coming in
for user session
establishment

Commodity cluster components serving
for connection establishment and forward
to the lower level application specific
processors for traffic processing

GPP
Cluster

Lower level networked
processor in Data plane

Redundant cluster front-
end for failure recovery

Processor blades
in racks

Rack architecture of a
telecommunication node

Main power supply

15

3 Traffic load scheduling inside infrastructure node

The basic idea of load scheduling in telecommunication infrastructure node is to
distribute overall load as evenly as possible among available resources. This essentially
minimizes the impact of hardware or software failures. In traditional system, for
guaranteeing against hardware or software failures, all components were kept active
all the time. This approach actually does not support power efficiency even at very low
load levels. Energy-aware load scheduling allows loads to be concentrated to as few
components as possible. This approach maintains the trade-off between in-service
performance and energy saving. Switching off some resource components in low load
level is the key for gaining energy efficiency.

3.1 Green factors

Both telecommunication network providers and operators are continuously making
their effort to achieve green behavior from network activities. The goal is to establish
efficient network to increase the overall carbon neutralization. Energy saving approach
can be rooted into the operations performed by major network elements such as
telecommunication infrastructure nodes. However huge amount of energy is used due
to the operation of these infrastructure nodes in telecommunication network. The total
amount of energy usage ramps up because of consuming energy in different levels of
traffic handling. One watt possible saving by end level traffic operation has cascade
effect on the overall node power consumption. In earlier discussions, we mentioned
about the telecommunication nodes in mobile core network. In this section, we will
study several green factors that can always influence telecommunication vendors to
implement method to reduce power consumption inside those cluster-based nodes. The
following four green factors for telecommunication infrastructure nodes are brought up
in this study.

- Energy efficiency ratios
- Cooling requirements
- Space foot print
- Energy efficiency features

Calculating the energy efficiency ratios is significant. Current telecommunication
nodes are like multi-rack based complex switching device where multiple blades are
placed tailored for various functions (control or forwarding). Large telecommunication

16

nodes contain hundreds of processors of various types interconnected with various
topologies. Energy efficiency ratio can be calculated per rack and per unit amount of
data processing. For example we assume a node with n racks and each rack having m
working blades process certain amount traffic per unit time. We assume the energy
consumption measurement in the node per unit of time like following:

i The index number of rack in multi-rack architecture.
j The index of blade in a particular rack.
bij

Amount of traffic per unit time.

E ij< f ∋bij(;

E t <∑
i<1

n

∑
j<1

m

E ij ;

(1)

(2)

Eij calculates the energy consumption in a particular blade for handling traffic per unit
time. Et measures the total energy usage in the node. For energy optimization we need
to minimize the value of Eij while bij is fluctuating depending on user demands.

Energy efficiency ratios directly related to the cooling requirements in the data center
where nodes are placed. As long as the energy consumption increased in the switching
node the heat production increased. Hence require a large number of cooling
equipment which further consumes intensive amount of energy. Less energy usage in
traffic operation will produce minimal heat from the nodes that reduce cooling
requirements. Therefore we see that the second factor is directly related to the first
one.

Now we move forward to mention briefly the factor concerning space foot print. This is
beyond our study scope but for the sake of study we discuss this factor in brief. This is
again related with the first one. If we develop the system in energy efficient manner
then it will ensure the utilization of optimal resource in the node which will reduce the
number of processing units due to possible optimization. Currently the
telecommunication vendors are mainly heading to develop high capacity
telecommunication nodes but they are a bit reluctant to look into the real optimal need
of resources to serve the capacity targeted. Operators are engaging more nodes for
escalating the core network capacity. As a result they are in need of more space
requirements in data center to facilitate more physical systems. Space foot print also
can involve new method of hardware design, which may ensure reduced amount of
energy usage. But still developers can implement efficient software system to reduce
energy usage [HJL+08] regardless of hardware design.

17

The last factor mentioned, actually regarding the features that can be implemented
inside the traffic processing, or handling components to optimize the system not
compromising with the capacity requirement but minimize the energy usage within
that particular component. These features will make the system power-proportional
[LWA+11]. Energy efficiency features will enable the whole system to behave
seamlessly in elastic mood by dynamically scaling/shutting down some processing
components. We see again this factor also has direct relation with the first one. The
processor components of the control plane cluster are placed as means of processing
blades in racks. Dynamic frequency scaling [TJL+08] is a good example of energy
efficient behavior that can be deployed in embedded operating system environment. As
we are concerned about the control plane cluster component for gaining energy efficient
behavior, therefore elastic nature can be developed in system design to work inside
every control plane cluster component (responsible ones for energy consumption ratio
per rack). Elastic nature will put some blades in dormant mood which further
minimizes the energy amount Eij, that eventually affects the total energy amount Et
consumed within the whole node system.

3.2 Resource model of cluster based system

Energy aware load-based scheduling method follows an abstract resource model. This
resource model further divided into two significant model parts. Controlling resources
at different levels is defined by resource control model and another one describes the
responsible component that use particular resource named as resource usage model.

Resource control model: This model actually structures the computational cluster into
hierarchical arrangement like tree. In a tree structure, two types of nodes are
available, terminal and non-terminal node. Terminal nodes are the leaves whereas
non-terminal nodes can have terminal nodes, or further non-terminal nodes under
their possession. Now we will continue discussion about these two node types in case of
resource control model.

In resource control model, terminal nodes are resources that essentially do not contain
any other resources. Terminal nodes are processors, or processor cores that perform
end traffic operations. These processors are able to work in energy saving mode that
can be implemented in their operations. Non-terminal nodes are the owner of terminal
resource components. In resource model structure, non-terminal resource components
create sub-trees. This is typically a software component that can be co-located with
other software components and also can be executed on a particular processor

18

component (e.g. GPP) as well. In cluster based infrastructure node, non-terminal node
typically resides on the same processor component along with sub-tree. Hence, non-
terminal nodes are called resource owners that manage lower level nodes. A resource
owner contains the resource pool, which consists of non-terminal nodes. The upper
most level in the tree structure contains redundant resource components. Redundant
resource component is used to provide functional capabilities for having fault tolerant
traffic operation inside the infrastructure node. Figure below gives general idea of this
hierarchical structure with four levels of resources.

Figure 3.1: Resource control model in cluster-based node.

Terminal resource nodes are hierarchically managed. In the Figure 3.1 above, dark
colored nodes are in active mode, whereas others are inactive and hence in power-save
mode. Power-save mode encompasses several key rules to ensure energy efficient load
scheduling. In operational state, at any particular time only active resources are used
for processing. If the head node of any sub-tree is inactive, then all the nodes at lower
levels are powered down for reducing energy usage. Lastly, in any situation, active
status of a non-terminal node means that, at least one node (terminal or non-terminal)
is active in the sub-tree. Non-terminal and terminal nodes are not always identical.
Different resource pools can have different restrictions in processing.

Level 3 & above: Redundancy and managing
the resource pool.

Level 2 components: The users of the
services provided by level 1 resources, but
each component on level 1 is controlled by
only one level 2 components

Level 0 resources: Each one is
controlled by single level 1 component

Level 1 components: Everyone is the
owner of level 0 components and
provides services to upper levels

19

Figure 3.2: Resource usage model in cluster-based node

Resource usage model: This depicts the usage of resources. The ideology of resource
usage model is similar but a bit different from resource control model. Two principle
key points can be mentioned about resource usage model. Firstly, for any sub-tree
there is a single access point to lower level resources, which is the non-terminal
resource owner at the tree head. Secondly, any non-terminal resources at level n can
use any non-terminal resources at level n-1 (pools of resources). This ensures that pools
of resources can be used from anywhere in the system at any particular time.

3.3 Load scheduling in cluster based node

Load scheduling method is a straight forward process, as it adjusts the amount of
active resources online, subject to load situation of the system. To make this happen
scheduling procedure relies on three significant metrics:

- highLoad
- lowLoad and,
- activeStep.

Firstly, highLoad is meant for the load level of the system when most of the resources
are activated. According to observed load situation of the system highLoad parameter
is pre-determined to serve the increasing load. lowLoad level determines that, some of
the active resources can be turned into inactive state at certain point of time. Third
metric activeStep is the crucial one, because it makes the system reliable by avoiding
bouncing between low and high load states. To make the system reliable activeStep is
calculated as the amount of resources (as absolute value, or as percentage of total
capacity) and this is maintained while increasing/decreasing a pool of resources. This
metric does not let the system to switch between low and high load states for arbitrary

Level 3 & above: Redundancy and use
resources from pool.

Level 2 components: The users of the
services provided by level 1 resources, but
each component on level 1 is controlled by
only one level 2 components

Level 0 resources: Each one is
controlled by single level 1 component

Level 1 components: Everyone is the
owner of level 0 components and
provides services to upper levels

20

set of active resources.

In the resource model (as discussed in earlier sections), every resource owner
essentially has two sets of resources for making a resource pool. These are a set of
active resources and a set of inactive resources. The first set is actually used for traffic
operations. Later one consists of powered down resources. At the beginning of
operation, activeStep amount (as mentioned above) of resources remains in active
mode, keeping all other resources in the pool inactive.

Any resource owner at level n is responsible to manage the pool of resources at level n-

1. Lower level active resources report their load situations (e.g. usage percentage) to
their respective resource owners. Every resource owner uses the metric aggregated

load, which is simply the average of load reported by the resources in the pool. With N
number of resources in the pool the aggregated load is calculated as follows,

Aggregated load = ∑ (Resource Load) / N

Load scheduling process works entirely on four different scenarios, where three of them
are based on aggregated load and the last one is actually a decision making, impacted
by three others.

- Aggregated load is between lowLoad and highLoad (normal operating mode).
- Aggregated load is over highLoad.

- Aggregated load is below lowLoad.

- Deactivating a complete pool of resources.
In normal operating mode, each of the active resources (terminal or non-terminal)
always reports its current load status (for any particular load situation) to both owner
and user of that resource. From this status report, resource owner knows about the
resources (under its control) that are residing in active pool. When traffic operation
continues, load status continually changes inside both of the terminal and non-terminal

resources. In terminal resources, load situation changes due to new tasks, task
completion, or any computational changes of ongoing tasks. For non-terminal
resources, changes in load levels occur due to changed load status of lower level
resources in active pool under its possession. Depending upon the load status report
from lower level resources non-terminal resources calculate the aggregated load which
is arithmetical average of loads reported by resources in its active pool.

Secondly, powered down inactive resources are activated and added to the active pool
of a certain resource owner when the aggregated load crosses the higLoad threshold. A
significant role is played by maintaining the activeStep amount of resources to prevent

21

bouncing situation as mentioned earlier. According to the activeStep measurement,
when the aggregated load exceeds the threshold new additional resources are added in
the pool. It is worth to mention that, if the resource pool is fully utilized by active
resources (meaning that, no inactive set of resources found) then crossing the threshold
does not trigger any action to add new resources. Activation of new resources can be
depicted through the steps in the Figure 3.3 below.

Figure 3.3: New resources activation

Resource owner selects any arbitrary resources from the pool depending on the load
demand. For simplicity of the scheduling process, the way of switching on new
resources is not discussed here. After the completion of steps mentioned in the Figure
3.3 above, resource owner reports new load level by calculating aggregated load and
also measures the percentage of active resources in its resource pool.

Figure 3.4: De-activating resources to power-save mode

Third case of load scheduling procedure is essentially to reduce the power consumption

Resource owner
selects new resource

Activated resources
restored to

operational state

New resources
added to active pool

Activation initiates by switching
from power save mode to active

mode (switching on depends on HW
system, OS support etc.)

Activated resources turned into
fully functional ones that may take

some amount of time

Resources inform
resource owner
that, they are

ready to be used

Newly added resources in the
active pool starts operation by

receiving tasks

Resources selection

Ongoing tasks
handling

Resources that
possibly concluding

tasks fastest

Task migration

Lowest loaded
resources

Waiting for task
completion

22

by switching off resources. Like the previous step activeStep amount of resources is
also maintained here. When the aggregated load is below the lowLoad threshold
parameter, some resources are deactivated from the active pool. Two significant
concerns are here: selecting deactivation candidates and handling the ongoing tasks in
the selected resources. In the above Figure 3.4, we sketched the idea for resource
selection and task handling progression while taking active resources to power-save
mode. Selection process is done by resource owner. Two options are there for selecting
active resources. According to load reports from lower level resources, resource owner
can target the lowest loaded resources. The nature of tasks also impacts the selection
decision. Along with the load reports, the resource owner also monitors the nature of
tasks [SKV+12] that are ongoing in lower level resources. Sometimes it is beneficial to
select resources where ongoing tasks are probable to be concluded faster comparing to
tasks in lowest loaded resources. In both of the cases, de-activation is done after the
normal completion of ongoing tasks. Once the selection is done, handling the ongoing
task becomes the focal point. Firstly, the possibility of task migration is investigated so
that, ongoing tasks can be migrated from selected resource to another active resource
in the pool and original resource goes to power-save mode. In some situations,
migration is not possible due to the nature of task e.g. user session would be
terminated if migrated. In such cases, system waits until the ongoing task is
terminated bounded by certain time and if time limit exceeds task is forcefully
concluded.

Last scenario of load scheduling method is the decision by particular resource owner at
a certain point of time, that it wants to de-activate a resource under its possession
which itself is another resource owner. In this situation, request propagated down the
resource management sub-tree owned by the targeted non-terminal resource. Upon
getting the de-activation request it orders all non-terminal and terminal resources
below to deactivate themselves. Whole deactivation process is done within a certain
time period, if the time limit exceeds, forceful termination is done by principal decision
making resource owner. Then lastly, resource-owner deactivates itself by reporting its
users that, resource is no longer available to process traffic. Task migration does not
take place in case of complete pool deactivation due to large number of processing task
up to leaf non-terminal resources in the tree structure. After completion or termination
of tasks, all non-terminal resources go to power save mode and propagate the load-
report to upper level. Finally pool owner itself goes to power-save mode.

23

4 Virtualization and energy efficiency

Virtualization is an efficient method for taking advantage of modern computing
hardware [ASR+10]. This actually improves the efficiency and availability of physical
resources and applications by abstracting computing resources. This decouples system
software from hardware resources. Virtualization technique can be divided into several
categories depending on resource utilization demands, such as server/system
virtualization, network virtualization, desktop virtualization, application
virtualization. Virtualization technique provides significant benefit for resource
utilization. In our discussion we will concentrate mainly on system virtualization
technique. This effectively creates a new layer of software over underlying physical
hardware called hypervisor (or virtual machine monitor). Hypervisor actually
facilitates virtual machines to run with their operating and application services. This
thesis study shows the possibility of deploying live migration technique (discussed
later) of VMs to reduce energy usage especially in cluster-based telecommunication
infrastructure nodes.

Figure 4.1: Virtual machine configuration (system virtualization)

The Figure 4.1 above depicts the general concept of system virtualization [VNE+08] as
well as the virtualization of GPP components. Virtualization will assist control plane
GPP cluster to run multiple VM instances in every single cluster component in low
traffic situation through migration (discussed later). Virtualization of physical
resources through VMM (virtual machine monitor) ensures better utilization of
resources of a single cluster component up to its threshold processing capacity. System
virtualization is gaining continuous research interest among operating system
researchers worldwide.

App App App

Without VMs: Single OS owns
all hardware resources

With VMs: Multiple OSes
share hardware resources

A new
layer of
software …

… …
App

App

App

App

App

App

Operating System

VM VM

Guest OS Guest OS

Resources Resources

Physical Host
Hardware

Physical Host Hardware

Virtual Machine Monitor (VMM)

24

4.1 Categories of virtual machines

A virtual machine is considered to be an efficient, isolated replica of the real machine
because this has all the functionality of a physical machine with several significant
properties. VM deployment leverages efficiency of the system as the unprivileged
instructions are executed directly by the host processor, hence resource controlling
becomes efficient. An application running in a VM cannot affect its own resource
allowance without going through virtual machine monitor. There is actually no
difference between the scenarios where a particular process ‘executes inside a VM’, or
‘runs on real hardware’. Only exceptions are in case of timing and physical resource
availability. In general, virtual machine monitor traps all instructions coming from
applications that read, or write global machine state. This actually fools the application
inside the VM believing that it alone controls the machine. Virtual machine discussion
can be divided into several basic types.

System virtual machines: This can also be called as platform virtual machines.
Hardware virtualization technique is used to create system virtual machines. Using
this technique, in the same physical machine multiple OS environments can be co-
allocated in strong isolation. Operating systems do not know about the proceedings
running inside others. Virtual machine monitor hides the physical characteristics of a
computing platform. System virtual machines are significant for providing several
crucial properties to the whole system such as application provisioning, maintenance,
high availability and disaster recovery. Application provisioning to users becomes
easier due to system virtual machine deployment. As the application does not interact
directly with the underlying hardware structure, hence execution of a particular
application on heterogeneous platform becomes possible. As the unprivileged
instructions can be executed so processes running inside VM do not see any difficulty
while continuing operation.

In system virtualization technique, multiple virtual machines can run their own
operating system which can be used in server consolidation. The idea of server
consolidation is that, different services running in separate virtual machines on same
physical machine avoiding intervention. System virtual machine concept leverages the
facility to run different category operating systems on a single machine. Hence using
virtual machine concept to support multiple guest operating systems is trendy in
embedded system research.

Process virtual machines: In our thesis we opt not to study process VMs which are

25

called as application virtual machine. Inside host operating system this runs as normal
application and supports single process. One example of this type VM is java virtual
machine. These actually exist when the specific process started and dismissed after the
process termination.

Pure virtual machines: The concept of pure virtual machine comes from the fact that,
these virtual machines imitate the underlying hardware and also with the privileged
executable instruction set.

When a machine is shared by several processes, it is important that proper nesting is
observed. If a process is allowed to modify global state, such as the global interrupt
disable flag, or the page table base register, this may affect how other processes
execute, and may violate overall system integrity.

4.2 Virtual machine migration

This thesis focuses on the system virtualization concept (as discussed in earlier section)
for operating traffic in the control plane cluster. In system virtualization technologies,
VM migration is a key feature which is actually significant for increasing system’s
operational reliability from several perspectives such as failure recovery, resource
availability etc. We have come across several research activities concentrating in this
area [JDW+09] [CFH+05] [HiG09] [LJL+09]. The key concept behind virtual machine
migration is that, this technique works by repositioning the memory and device state of
virtual machine from one physical machine to another. Virtual machine mobility
technique proffers motivating advantages for cluster computing environment that are
serving applications through VM deployment. As the application running in the cluster
component does not have direct physical resource utilization within a particular
component, therefore several significant benefits can be seen by migration feature
[LJL+09].

- Online load balancing
- Energy efficiency
- Transparent infrastructure maintenance

Online load balancing: We call it online because whenever any new request is coming
in then proper load balancing among the components is necessary. To offer optimal
handling of computing resources, virtual machines can be dynamically migrated to new
physical machine.

Energy efficiency: VM mobility can reduce significant amount of energy in cluster

26

computing environment. Whole system can be squeezed depending on the load
situation by consolidating to small number of physical machines. This behavior sets
aside some cluster components by shutting/scaling down to reduce energy consumption
in whole clustered system. Intensive research activities are underway to ensure most
advantageous resource usage in data centers [LWA+11] to make the system energy
proportional.

Transparent infrastructure maintenance: In a large cluster computing environment
maintenance is obvious to ensure continuous reliability of the whole system. Moreover
service interruption is not trivial, therefore system administrators can reposition
virtual machine to other cluster components without any noticeable interruption of
time critical [XHG+06] services. This benefit is not aligned with our study as we are
not dealing with infrastructure maintenance. Still it is necessary to mention here as
one of the significant advantages of migration.

Load intensive systems in most of the time face varying workloads. For performance
reliability, a multi-processing-component based system works by keeping all the nodes
in working mode. In some situations, due to varying workloads arbitrary number of
nodes may be under-utilized, whereas others may be heavily-loaded. Therefore virtual
machine migration approach can be worthy in such situations to balance VM loads
among physical components of the system. Our study concerns with high performance
computational cluster system. Cluster front-end periodically collects the resource usage
statistics of cluster components. Based on this measurement some VMs are migrated to
lower loaded physical cluster nodes. Energy efficiency is a critical research concern in
modern multi-core, or multi-processor based computing systems. In these systems, by
consolidating virtual machines to fewer physical machines it is possible to power off
extra nodes to gain power efficiency.

4.3 Live migration of virtual machine

Successful live VM migration ensures that an application (that is running inside VM)
does not experience any noticeable downtime in practice. Live virtual migration process
can afford elastic way to use optimal power in high performance computing
environment [NaS07] [HLM+09] [HJL+08].

Generally, live migration of entire virtual machine means on-line mobility of
computational, or traffic processing server with minimal noticeable operational
downtime [CFH+05]. Efficient migration of entire virtual machine essentially moves

27

VM’s memory contents from source to destination physical host. Live migration is a
powerful tool for consolidating clustered components into a single consistent host.
Minimizing the perceptible operational interruption in live migration is possible based
on two significant metrics: downtime and total migration time. Downtime is the actual
service interruption time which means that control functionalities (in control plane
cluster) will be stopped as no VM is running. The total migration time is the sum of
downtime and actual migration time. The total migration time is the sum of downtime
and actual migration time. Actual migration time is the time period that is measured
from migration initiation to activation of VM in another physical machine. Any
computational overhead due to migration process increases the migration time which
impacts the total migration time. Moreover total migration time also increases with
longer Downtime. During this time period memory contents of particular VM is fully
transferred to another physical machine. The method of transferring VM’s memory
pages is the most significant concern in live virtual machine migration. Efficient
transferring method may ensure minimizing the above mentioned timing metrics.
Memory transfer method can be depicted by dividing into the following three steps
[CFH+05].

Push phase – During the migration process memory pages of running VM is pushed to
new destination. As the source VM keeps on executing all application services running,
so memory that are pushed to new destination may be dirtied during ongoing
migration process. These pages need to be pushed again, or re-sent to new destinations.

Stop-and-copy phase – In this step, VM on the source physical machine is clogged for a
while and pages are copied across to the destination VM. This can be considered as the
final step of migration process. After this phase source VM is terminated and new VM
starts serving. Service interruption occurs in this step. Time required in this phase is
essentially called the downtime seen by the ongoing functionalities inside VM.

Pull phase – This phase shows up just before the termination of source VM. After the
new VM starts execution, if it accesses a page that has not yet been copied then this
page is faulted in (pulled) across the network from the source VM. Once new VM
executes reliably with all functionalities, then old VM is terminated. Functional
verification of the migrated applications (that were running inside the source VM) is
not explored in this thesis and kept out scoped. It can be well assumed that, if pull
phase prolongs then total migration time may increase.

Several approaches of virtual machine migration are investigated by researchers
[PKC+09] [MoC10] [LJL+11] [HGW+11] [HiG09]. Post-copy [HiG09] and pre-copy

28

[CFH+05] are two significant migration techniques that are worth mentioning here. In
the following sections we will discuss these two types of live virtual machine migration
technique.

4.3.1 Post-copy migration

During the initiation of post-copy migration, virtual machine at the source physical
host is suspended. After the suspension of virtual machine, the smallest subset of the
execution state (such as CPU registers and non-pageable memory) of virtual machine is
migrated to the target physical host. When all necessary CPU states are transferred to
the destination physical host, then the new virtual machine is started on the
destination host even though major part of the memory state of the virtual machine
still resides at the source physical host. After that all memory pages are transferred
from source to destination using the push-phase. On a high-level, post-copy migration
defers the memory transfer phase until after the virtual machine’s CPU state has
already been transferred to the target and resumed there [HiG09]. At the target host,
virtual machine generates page-faults when it tries to access memory pages that are
not yet transferred. These faulted memory-pages are demand-paged over the network
from the source. In post-copy migration, this process ensures that each memory page is
transferred at most once. But on the other hand, because of redirecting each page fault
(of the running virtual machine) towards the source can mortify the performance of
application running inside the virtual machine. Pre-copy migration technique is free
from this performance bottleneck of the running application inside the virtual machine.
In the following sections we will discuss more in detail.

4.3.2 Pre-copy migration

Pre-copy approach uses iterative cloning of memory pages in rounds. In every second
round, the pages that are dirtied during previous copy round will be copied again to the
destination VM. This process continues up to finding a writable working set (WWS)
[MLL10]. Continuous cloning of VM’s memory pages results into small set of
application’s writable working set (WWS). Memory page dirty rate may not be the
same for all ongoing functionalities. Once the WWS is found, source VM is suspended
and all CPU states and remaining dirty pages are copied to destination. According to
several research studies [DYS+10] [HJL+08] [OSS+02], virtual machine migration
techniques mostly use pre-copy migration, as VM services are always available during
migration process except short stop-and-copy phase. But some crucial concerns can be

29

mentioned here. Additional computational [SZL+11] and network overhead [PiY10] can
be traced out due to iterative copy method. Maximum number of iterations can be set
to come up with writable working set. This is significant, because it might be the case
that we may never converge to a small set of idle memory pages due to continuous page
dirtying by different applications. Network overhead is another crucial concern.
Iterative cloning approach may acquire most of the bandwidth inside the cluster.
Therefore, pre-copy migration method is going under intensive research [LJL+11]
[MoC10] to show optimal performance.

In this thesis we opt to study the pre-copy virtual machine migration approach to
balance trade-offs among above mentioned constraints (such as computational
overhead, network overhead) and migration phases (e.g. writable working set). It
differs from post-copy process, as in this case CPU states are copied after copying all
memory pages to destination and then starts the destination VM.

4.4 Downtime during migration process

The downtime observed during the migration process essentially causes degraded
quality of services. Minimizing both the downtime and total migration time is always
challenging. Both downtime and total migration time are relative to the amount of
physical memory allocated to the VM. Efficient migration process needs to minimize
the both. Minimal downtime can impact on service interruption and also least possible
total migration time. In general, we need shortest possible stop-and-copy and pull
phases. The downtime is a period of time when no CPU cycle is engaged to serve any of
the applications that are facilitated by the source or destination VM. The downtime is
actually the sum of several different time slots [MLL10]: the time required for
suspending the source VM, transferring the VM state to the destination, loading the
VM state to the destination and activating the migrated VM on the remote physical
host. In pre-copy migration approach downtime is minimized due to iterative copy
operations, because cloning process continues up to finding out WWS. Iterative copying
technique can make stop-and-copy phase much shorter. Researchers showed that the
very straight-forward way of virtual machine migration is pure stop-and-copy approach
[WCS+04]. In this method, original VM halts and then entire memory is copied to the
destination. This essentially reduces the total migration time but higher down-time is
observed. Additionally another approach pure on-demand [Zay87] migration suffers
from high total migration time. Pre-copy migration [CFH+05] is free from these
problems as it iteratively copies the memory pages to destination host. And lastly faces

30

a very minimal stop-and-copy phase.

4.5 Pre-copy VM migration in GPP cluster

This thesis explores the possibility of applying pre-copy virtual machine migration
technique in control plane cluster environment. After virtualizing the identical general
purpose processor components, every cluster component contains one virtual machine
in it to perform traffic control functionalities. In this study we show that the pre-copy
migration approach can be applied to consolidate virtual machines in fewer physical
components in low traffic situation. This consolidation can help the system to power
down extra cluster components for reducing energy consumption. The core idea of this
method is that, upon the direction from migration daemon in the cluster front-end,
source and destination GPPs are determined. Then after that following stages [MLL10]
are performed for the completion of migration process:

- Initialization: This is the starting phase when migration starts up. Target GPP
is selected by migration daemon and both of the source and destination VMMs
are notified.

- Reservation: After getting the notification, destination VMM reserves sufficient
resources for incoming GPP virtual machine.

- Iterative pre-copy: This phase is actual live migration phase where memory
pages are iteratively copied to destination GPP.

- Stop-and-copy: After copying most of memory pages this is the final round to
stop the original VM and then rest of the pages are copied to the destination.

- Commitment: When the stop-and-copy phase is completed, the destination GPP
component acknowledges that it has received everything of the source VM.

- Activation: New VM is activated and continue the functionality and source VM
is terminated by hypervisor.

In our hypothetical system, we need to maintain at least the legacy throughput of the
control plane. Therefore it is also necessary to minimize the extra computational
overhead in cluster due to migration that may affect control plane performance. To
turn this into action, we need to consider the following:

Total-Migration-Time, t1; we need to minimize

Total-Down-Time, t2; we need to minimize, as this affects total migration time and also

31

during this time period user will face service outage.

t1 = Initialization + reservation + ∑pre-copy + stop-and-copy + commitment + activation

t2 = stop-and-copy + commitment + activation

Here we see that t1 and t2 do not have direct relationship with the energy usage in the
cluster. But to ensure successful virtual machine migration we need to calculate those.
These are significant because we opt for VM migration to gain energy efficiency and at
the same time we do not want to face any performance degradation due to virtual
machine migration, or energy optimization. The Figure 4.2 below shows the concept of
iterative pre-copy approach of migration [MLL10].

Figure 4.2: Iterations in pre-copy live migration

As we studied that the iterative copy approach in live migration works by copying
dirtied memory pages continuously to the destination [ASR+10], so one significant point
is to determine when to stop copying and proceed to final stop-and-copy phase.
Therefore the maximum number of repetitions of the copy process (in the iterative pre-
copy phase) needs to be decided dynamically or pre-determined. Stopping condition of
iterative copying approach can be determined by identifying a small writable working
set [CFH+05], or a preset number of iterations. We mentioned earlier that
telecommunication infrastructure nodes are the load intensive equipment in the core
network. So in this case WWS (writable working set) may not pledge to congregate
across successive iterations. Hence determining the maximum number of repetitions in
the iterative copy phase could be beneficial in this case. This means that we can have a
pre-defined number of iterations during the execution of the migration process.

 Frequently
updated pages

are transmitted
repeatedly

Dirty Page

Clean Page

VM

Source GPP Destination GPP

M
em

or
y

pa
ge

s M
em

ory pages

VM

32

4.6 VM mobility to reduce energy consumption

In this thesis we use the term “elasticity” for VM mobility as the process to obtain
energy efficiency in control plane cluster. VM movement actually gives the elastic
capability in cluster which reduces the cluster size in low load situation. Our study is
not concerned about cloud computing approach but still we are proceeding with very
basic thought of cloud computing i.e. virtualization. We are concerned about the system
virtualization of individual component rather than whole infrastructure virtualization.

We notice this elastic approach a bit differently from Amazon EC2 concept where the
technique is to provide supplementary elastic aptitude to the virtual infrastructure for
the augmented service demands, or to gratify climax demand periods. Our VM
migration technique will dynamically redistribute the virtual machines to fewer
physical hosts during the low load situation to power down some physical components
to reduce energy usage. This nature will shrink the cluster size in low traffic condition
and we call it ‘squeezing’ situation. Again during high load level in a single cluster
component some inactive physical hosts will be activated. VMs from highly loaded
hosts will move back to newly activated hosts and hence the cluster size will be
expanded which defines the ‘releasing’ situation. Literally ‘squeezing’ and ‘releasing’
behavior of the system (based on load situation) can be observed as elastic nature in
the control plane cluster. Therefore elasticity works for gaining energy efficiency
within the cluster. In the next chapter we will discuss more in detail about live virtual
machine mobility through migration technique.

33

5 Reducing energy usage in control plane

The aim of this thesis is to reduce energy consumption in traffic operations inside
telecommunication infrastructure nodes. The study of this thesis is mainly focused on
the possibility of reducing energy usage in the control plane (consists of clustered GPP
components) traffic operations. This chapter will discuss about the virtual machine
migration opportunity in high performance computational control plane cluster. We
will study the virtualization of clustered resource components, architecture of energy
awareness, virtualization scopes (in several sections), and finally depict an
optimization model of virtual machine mobility for gaining elasticity in the control
plane GPP cluster. We will discuss the overall possible design and working concept of
live virtual machine migration in the control plane cluster. We illustrate the
hypothetical way of squeezing and releasing the cluster size through VM migration that
can provide elasticity within the cluster. The study goal of this chapter is to show that
it is possible to reduce energy usage especially in low traffic situation and also to use
optimal energy during high traffic situation.

5.1 Limitation of control plane load scheduling

Studies and discussions in previous chapters and sections have depicted the resource
model architecture (discussed in chapter 3) for traffic operation in cluster-based
telecommunication infrastructure nodes. Traffic scheduling technique in cluster based
resource model is not sufficient to achieve energy efficiency from higher level general
purpose processors. Because they are connected to a number of application specific
network processors of data plane. Therefore energy consumption due to control plane
functionalities in infrastructure nodes currently is not optimal. According to this
scheduling technique, computing resources reside in a pool and from the pool optimal
number of processing components are waken up for traffic processing. A number of
resources can be powered down after a certain idle period of time that is pre-
determined depending on user session establishment request coming in with traffic
processing demands. The following discussion will highlight the significant points for
which the energy efficient resource scheduling is not optimal due to end level traffic
processing in data plane.

Power-aware resource scheduling mechanism cannot be used in control plane traffic
management. The reasons can be pointed out as follows:

34

- GPPs are connected to multiple ASPs in levels.
- Calculating idle time is not straightforward (may be problematic).

Firstly, multiple data plane application specific processors are connected to any
particular processor component of control plane cluster. As the control plane cluster is
made of higher level processor components in the resource model, therefore scale/shut
down the GPP components is not straight forward. The reason is that, non-terminal
GPP components are connected to another non-terminal components, or lower level
application specific processors in data planes. All the non-terminal higher level
processor components need to be in powered-on state up to the completion of processing
task by any single end level application specific processor component.

Secondly, if however GPP components are considered as a pool of processing
components it would be very troublesome to get any certain idle period for a particular
processor. This is because of having tree resource model with multiple levels. We
consider a situation when GPP components are not managing any traffic during low
load. But still non-terminal processing components could continue processing traffic of
previous user data connections. Therefore, as these resources are connected to higher
level GPPs, so in these cases GPPs cannot be powered down.

To achieve power-aware behavior in control plane traffic management we are
motivated to study the possibility of deploying virtual machines inside GPP
components through system virtualization technique. Hence the live virtual machine
migration process can be the doable solution to reduce energy consumption. VM
migration will facilitate the mobility of entire OS (running inside every control plane
cluster component) among GPPs that could keep lower level processing tasks
noticeably uninterrupted. Lower level terminal processing components in data plane do
not see any change happening in upper level GPPs and continue processing traffic alike
as before migration process. VM consolidation provides facility to switch off a
particular GPP component. After successful migration the source cluster component is
powered down.

5.2 Virtualization of cluster component

Typically virtualization process provides virtualized hardware interfaces to VMs
through a virtual machine monitor (VMM), also called hypervisor. Implementing VM
technology in control plane cluster allows running different guest VMs in a single GPP
component. Each guest (migrated in our case) VM runs its own operating system. But

35

still virtualization facing some challenges like computational overhead due to
virtualization. Memory consumption of the system is also significant for virtualization,
because this technique allows multiple virtual machines to use single physical
hardware. In the following section we study briefly about resource provisioning
through virtual machine monitor, or hypervisor.

5.2.1 Hypervisor and resource provisioning

In this subsection we study the possible new software layer of virtual machine monitor
or hypervisor in GPP components. The use of hypervisor provides the facility to deploy
application runtime environment on-demand over dynamic computing resources
[LHL+08]. We discuss about the hypervisor in system virtualization environment.
From the theoretical discussion in previous chapter we see that, hypervisor or VMM
directly resides on the physical hardware. Significant issues are there, as we are not
discussing about hosted virtualization. In hosted virtualization environment the
hypervisor is implemented under the hosted operating system. OS directly interacts
with underlying physical hardware and VMM interacts through the hosted OS. This
creates additional computational overhead due to extra layer of VMM on top of hosted
OS. Moreover in our hypothetical system structure we opt for switching off particular
cluster component for energy efficiency. If hosted virtualization is used, then it would
be challenging to squeeze the cluster size through migration. Because in that case,
hosted operating system may need to remain in running state always to make
interaction with VMM.

System virtualization technique is free from additional operational overhead as in this
case VMM resides on the physical hardware (as shown in the Figure 3.7). So if no
virtual machine running over it then it can be switched off, or scaled down. Hence,
system-level virtualization in GPP cluster can be used to provide a set of system
services, such as migration, suspension/resumption and also termination of running
virtual machines. These are necessary for our power-aware system structure. In
system level virtualization, hypervisor stores a large dataset in memory such as
memory map of virtual machines. Virtual machine monitor keeps a map of VM’s
memory spaces [CFH+05], or at least the page tables. Therefore VMM potentially can
have a large memory footprint. This has direct impact on VM migration time (will be
discussed in later section). As virtual machines are isolated from the physical platform;
hence in this case hypervisor can be used to take care of VM execution and termination
along with migration facilities. Hypervisor will work in connection with migration

36

daemon residing inside cluster head end and act upon migration decision made by
daemon.

Privileged operations from the guest VMs are trapped and processed by Virtual
machine monitor (VMM). Resources in every single GPP cluster component are
virtualized for being used by one or multiple virtual machines at any particular time.
While running multiple VMs, online allocation of computational resources is essential
to the application services when requested. We studied dynamic allocation as the
resource virtualization which is free from over-provisioning and under provisioning
[CLN10]. Dynamic allocation does not partition the underlying infrastructure
resources to specific application services running inside virtual machines. VMM simply
works as resource exposure to the virtual machines running on it through possible
VMM-bypass [HLA+06]. VMs are free to use the resources as much as needed up to the
overall threshold processing capacity of particular physical GPP component. We study
later that hypervisor can keep load statistics of its own GPP component to report to
cluster manger. If the load level is about to reach the threshold then hypervisor
informs the cluster manager for making migration decision.

5.3 Energy aware control plane architecture

In this section, we discuss the possible system architecture that can ensure energy
efficient behavior of control plane cluster. The Figure 5.1 below shows the possible
system structure having migration facility of VMs, where cluster front-end performs
the major role.

Figure 5.1: Energy-aware control plane system architecture

Target component

Cluster Front-end

Cluster
manager

Migration
daemon

Cluster Front-end
(Redundant)

Cluster
manager

Migration
daemon

Underlying hardware

VMM (VM monitor)

Source component

Underlying hardware

VMM (VM monitor)

Migration

Migration
decision

VM VM VM VM VM

37

In low traffic situation, migration decision is made by a software component
implemented inside the cluster front-end called migration daemon. When the
migration is done then the source component goes to sleep, or shut down. Every
physical cluster component always reports its load situation to cluster manger.
Operational loads of VMs are monitored by virtual machine monitor (VMM) in every
GPP component. Load statistics of virtual machines are used in redistribution of VMs
in fewer physical machines for switching off rest of the GPP components to reduce
energy consumption.

Power-aware behavior depends on two load states:

- High traffic load
- Low load situation

In our system, high traffic does not mean the overall load of physical components in the
cluster. There is a high load threshold pre-determined and same for every cluster
component. So whenever any particular cluster component is about to exceed the
threshold then cluster front-end (through migration daemon) initiate migration.
According to migration decision one, or more VMs (located on that physical GPP
component) are migrated to low loaded physical components. Here low loaded
component means also the newly waken up physical one which was previously shut
down. As the cluster front-end has the load statistics of all physical components, so it
selects the destination host which has sufficient physical resources to facilitate the
incoming VM(s) and directs migration daemon to perform migration. In case of having
multiple destination hosts possessing same capability, then selection can be random.
This random selection can be performed for both ways of elasticity i.e. squeezing and
releasing the cluster size. One significant point is that for squeezing the cluster, front-
end uses the load statistics of the whole cluster, so that redistribution of VMs can be
performed to minimal number of physical components as possible. On the other hand,
for releasing the cluster size load situation of particular component is considered. It is
worth mentioning that, initialization and reservation of resources to facilitate a VM in
the target component can be done instantly when selected. Then copying the memory
pages, CPU states, commitment and activation phases of VM migration are done.

5.4 Data plane traffic processing

According to the resource model of cluster based infrastructure node, non-terminal
GPP components are responsible for traffic management (e.g. user sessions, call
control) whereas lower level data plane processors perform the end level traffic

38

processing functions. In the resource model of cluster based infrastructure node, the
control plane GPP cluster components are the top level non-terminal nodes in the
structure. A non-terminal node can be connected to one, or more non-terminal, or
terminal nodes in lower levels. These lower level terminal nodes are essentially the
application specific reduced function processor of data plane.

Figure 5.2: Data plane connection with virtualized GPP components

The study of this thesis is concerned about the control plane traffic operations inside
the cluster-based telecommunication node. Data plane traffic processing operations are
out scoped in this study. But still the reason of mentioning data plane discussion here
is to confer the working concept in connection with VM based control plane cluster. In
current situation data plane processors have direct connection with control plane
processor components. In this possible new system architecture data plane processors
will be connected with VMs of clustered GPP components. Application specific
processors (in data plane) may not face any noticeable interruptions in their operations
due to the mobility of VMs among physical components. This can be achieved by
considering the complete application context [SZL+11] running on top of the VM when
choosing the appropriate general purpose processor component to host that virtual
machine. This will help to incorporate inter-VM dependencies and the underlying
network topology into VM migration decisions. The goal is, not to impact traffic
processing in data plane due to virtual machine migration process. The Figure 5.2
shown above makes it easier to understand the concept.

VM VM

VMM

Hardware

VM VM

VMM

Hardware

VM

VMM

Hardware

VM VM

VMM

Hardware

Data plane processing components Data plane processing components

Source Source Destination Destination

a) During migration b) After migration

39

5.5 Scheduling technique among virtual machines

We discuss possible scheduling technique in this thesis for distributing traffic among
the VMs of cluster components. In our system structure, scheduling process performed
by the cluster manger inside cluster front-end. Traffic scheduling occurs among woken
up and active physical components that are running one, or more virtual machines.
Scheduling algorithm works in connection with traffic load situation of cluster
components. Migration daemon inside the cluster front-end is mainly responsible for
initiating virtual machine migration. Optimal scheduling of traffic is significant to
achieve best possible migration performance. We outline following steps for traffic
scheduling in our hypothetical cluster system.

- High load threshold is maintained for every physical component. We use traditional
naming i.e. highLoad for this parameter. High load threshold value is same for
every component in the cluster.

- Cluster manger aware of resource usage of every GPP component. For a new user
session request coming in, cluster manger checks for particular GPP with available
resources. Cluster manager selects physical component based on pre-defined value
of highLoad parameter.

- Controlling service request goes to selected cluster component. Virtual machine
monitor receives the request. If multiple virtual machines running inside that
component, then hypervisor selects any of the VMs to serve. VMM can select based
on lowest loaded VM or any VM that running fastest completion possible tasks.

Cluster manager periodically gets load situation of particular cluster component. In our
system architecture cluster manager maintains a list of all virtual machines of cluster
components. This new scheduling process is different from the state-of-the-art
technology. Previously three parameters highLoad, lowLoad and aggregated load were
determined to ensure optimal scheduling among the resources in tree-based model.
Optimal resources were kept in active mode to gain energy efficiency, while keeping
rest of the resources inactive and powered down. In our cluster system, traffic
scheduling is necessary due to ensure efficient resource usage of GPP components. The
decision to power down a particular physical GPP component is made by virtual
machine migration process. Therefore lowLoad and aggregated load are not taken into
consideration for scheduling decision.

40

5.6 VM migration in GPP cluster

Control plane GPP cluster as mentioned earlier consists of commodity processing units
interconnected by high-speed and low-latency network. We can never compromise with
the cluster performance for reducing energy. So there is a trade-off between
maintaining in-service performance and energy saving within the cluster. In this
section we find out the appropriate live virtual machine migration technology for
control plane GPP cluster of a telecommunication node. To apply VM migration we
analyze two migration techniques. Stop-and-copy approach and iterative pre-copy
migration approach. First we analyze better possible pre-copy migration technique.
Then after that we analyze the suitable migration approach for the GPP control plane
cluster. VM migration in control plane GPP cluster is slightly different from traditional
approaches due to the number of virtual and physical machines. In traditional live VM
migration technique in most cases the number of VMs is larger than the number of
physical machines. This ensures better resource utilization by redistributing the
virtual machines. The basic difference in this high performance control plane cluster is
that, the numbers of virtual and physical machines are same. This means, always the
number of VMs remains static regardless of low, or high traffic situation. We opt for
incorporating VM migration to reduce energy usage in different load situations as we
don’t need all the physical machines to up and running in low traffic situation. So
according to our goal, in low traffic situation some VMs migrate from their original
physical host to new physical host within the cluster that has enough resource
available to facilitate them (migratory VMs). High load and low load thresholds are
determined according to SLA (Service Level Agreement). Load levels are calculated for
every physical host within the cluster by cluster front-end which is also consists of
same hardware but with different configuration.

To Migrate the VM in this high performance GPP cluster we take several metrics in
consideration. These are crucial for live VM migration in control plane cluster: Total

migration time, total data transmitted. The study of this thesis opts for reducing energy
usage through VM migration but in this case VM migration depends on these metrics
mainly because of high performance requirements in the cluster. Our study is based on
several existing research material in live VM migration area.

Every GPP components in the cluster will contain VM to serve traffic application in the
control plane. Live VM migration takes the running VM from a certain cluster
component and place it to another physical component and shut/scale down the first
one. Simultaneously while looking to optimize energy usage, we also need to maintain

41

good performance of VM migration technique. Following are the metrics that might
weigh successful VM migration in cluster.

Total migration time: Total time can be calculated which is required from initiating
migration to activation of new VM in another physical machine. Live migration itself
follows several steps to complete. Initialization, resource reservation, copying VM
memory pages, acknowledgement and activation of newly copied VM. Copying VM
memory pages is further divided in iterative copy process and final copy iteration.

Downtime: Actually this can be considered as a part of total migration time (mentioned
in section 3.4.3). During this time VM in the source cluster component stops, meaning
that no CPU cycle serves for occupier applications at source physical component. Then
VM states transfer to the targeted component and activation of new VM on the
targeted component is done. The downtime in total is the measurement of suspending
VM on the source component, transferring VM states to target physical component and
activating the new VM on the destination.

This study discusses the HPC (high performance computing) control plane cluster for
applying VM migration. So the probable computational overhead of VM migration is
crucial as it may affect the traffic management functionality by consuming link speed
and through processing overhead. If we opt for iterative memory copying approach
[PKC+09] [MoC10] [PiY10] [LJL+11] [SZL+11] to facilitate live migration we are likely
to face above mentioned overheads.

After having the method chosen for migration now we depict the possible way of
working for choosing particular virtual machine to migrate to a new physical host
within the cluster. In this hypothetical system, hypervisor knows which one is the
migrated OS as all the migrated ones are the guest OS in the destination machine.

In our study we discuss that migration can take place in both of the high and low
traffic situations. This makes the VM migration in this study different from any other
state-of-the-art VM migration technology research. As we gone through a number of
research articles of VM migration, we observed that the technology is not applied
particularly according to traffic load situation. Migration technique applied for proper
load balancing among physical hosts and maintenance of any particular cluster
component [NaS07]. These ideologies give some benefits to reduce energy usage
[HJL+08] but our strategy is truly targeted to energy optimization. At the same time
we investigate the better way for migrating VM, while minimizing the downtime due to
migration.

42

In managed migration all the memory pages are transferred to the destination VM. In
subsequent rounds it will send the pages that are dirtied during the 1st round and so
forth. So in this way all the memory pages would be transferred. As a whole in this
section, we study the apposite way of VM migration in this sort of high computing
cluster. For measuring the suitable migration technique, we need to do some
investigation work that fits the need. Now the goal is to find out the specific metrics for
proving appropriateness.

For successful VM migration we need to consider the compute cost in total:

We assume the cluster operation for a period of time T,

Energy used in normal operation without VM migration, E1

Total energy usage with VM migration, E2

Energy usage reduction = E1 (T) – E2 (T)

This is a very straight forward measurement of energy usage reduction. But this
entirely depends on the successful VM migration through optimized migration
decisions. In following sections we study the hypothetical way of decision making for
squeezing and releasing the cluster size.

5.7 Optimization model of migration decision

Ideology behind the power saving in a telecommunication infrastructure node
essentially is to balance overall load among fewer number of physical cluster nodes. As
discussed in chapter 3, energy efficiency can be gained by making a pool of lower level
resources in resource control model. This feature can reduce the energy usage in
network switching node. Our studied method is not following the strategy alike but the
same switching on/off technique. The hypothetical system will shut/scale down a
cluster component through virtual machine migration. This can be done by
redistributing the VMs (through live migration) among optimal number of physical
components. Redistribution through migration of virtual machine will free up certain
cluster component. That particular cluster component will shut/scale down. This
mechanism will apparently squeeze and release the system dynamically depending on
traffic load situation. Gaining energy reduction by switching off actually depends on
several metrics.

- Overall load situation of the cluster; essential for taking migration decision.
- Particular resource usage statistics of every physical component; whether it can

43

facilitate certain VM(s), or needs to offload VM(s).
- Load statistics of every single virtual machine.

Achieving optimal effect is quite straight forward. Firstly, calculate the overall load of
the system and being divided by the capacity of a single physical machine to get the
number of nodes which can handle the overall load. Secondly, transfer the scattered
load to the calculated minimal set of physical components by a sequence of live
migrations. The challenge is to obtain the optimal effect and also decrease the overhead
caused by VM migrations.

Optimal VM mobility among the physical machines apparently will ensure the reduced
energy usage in the cluster. Optimal mobility is significant to avoid extra
computational, or network overhead due to VM migration. We discuss potential energy
usage reduction through an optimization model of VM migration decision. For cluster
we assume a common threshold of processor capacity level of particular cluster
component for serving control plane functionality. Optimization problem is targeted to
determine the minimal number of physical cluster GPP components that are capable to
serve the current load situation of the cluster. To solve this problem we investigated
the multi-capacity bin packing problem [LKK99] and come up with the following
statement:

CT Threshold processing capacity of every physical GPP.
n Total number of virtual machines.
d Total number of physical machine working at migration startup.
C k Available capacity of physical GPP k at migration startup.
wi Processing capacity needed by virtual machine i.
B Minimal number of physical GPP required for facilitating n virtual machines.

We need to find minimal B in a form that B = {b1, b2, b3,…,bm} where each bj is the set
of VMs placed in a single GPP cluster component k and is subject to the following
constraints:

wi⩽C k
Ck⩾min ζw1 , w2 , ... ,wn|
i ∈ b j ; 1⩽ j⩽m , 1⩽i⩽n

∑
nk ∈ b J

wn , k⩽C k

d⩽n

; 1⩽k⩽d

(1)

(2)

(3)

(4)

(5)

44

We find it a bit different from the bin packing problem. In the multi-capacity bin
packing problem, we see number of bins with different capacities and items having
varying sizes to fit in every bin. In our problem scenario we have specified number of
physical GPP components with max processing capacity, CT. A list is created consists of
current resource usage statistics of VMs, wi. This list corresponds to the VMs that can
be distributed according to constraint (1). This means, resource usage statistics of a
migration possible VM needs to be less than, or equal to the available resources in any
of the physical component. Capacity Ck of physical GPPs are calculated by measuring
remaining processing capacity, that can be derived by deducting current resource
usage from threshold capacity CT. Constraint (2) shows that, for making the migration
happen, every destination physical component needs to have capacity to facilitate at
least the lowest loaded VM. Constraint (3) means, every virtual machine has to belong
to some physical cluster component. Second constraint actually creates the list of d
number of GPPs. During migration startup, if all GPPs report their available load
levels greater than the lowest loaded VM, then according to constraint (4) number of
possible destination hosts and number of VMs will be the same. The goal of this
modified VM packing problem is to find a minimal number B of physical GPPs that are
capable to serve the VMs. Actual number of VMs and GPPs are the same, i.e. n. Hence,
at migration startup according to constraint (5) number of destination physical
components d can be same, or less than n. Our goal is to minimize the number of active
GPPs facilitating all the VMs. During the model execution VMs are migrated from one
machine to another for getting the optimal number of active GPPs by switching off or
scaling down the source machine if it is empty.

5.8 Algorithm for VM migration

In this section, we will discuss the algorithm for the model described above. Basically
two steps are shown, squeezing the cluster size and releasing in heavy load situation.
We name one of the steps as releasing instead of ‘expanding’ because the number of
VMs always remains the same which is equal to the number of physical GPP
components. According to our energy-aware system architecture the virtual machine
monitor is always aware of processing capacity usage by VM(s) running on it. On the
other hand, migration daemon inside cluster front-end keeps track of load statistics of
every single GPP component in the cluster. Like state-of-the-art technique of load
scheduling, some metrics can be pre-determined to maintain always. This is
significant, because for avoiding unnecessary or arbitrary bouncing of VMs among

45

physical components. Several metrics [KXR+12] can be applied depending on load
levels of VMs, or physical components. Considering the ongoing critical user sessions is
also necessary. Migration overhead could cause computational overhead in the cluster.
In our study we kept this discussion limited, as our goal is to find out possible way of
energy reduction. In this optimization algorithm, we define the highLoad and lowLoad
terms like below:

Load level of overall control plane cluster is measured as lowLoad according to the pre-
defined low load threshold. Migration process triggered if the load level is equal or
under lowLoad.

In this algorithm, highLoad is meant for particular GPP component. It is worth
mentioning that in high load situation migration will be triggered in a particular GPP
component, if there are multiple VMs running in it. Otherwise that particular GPP will
continue operation rejecting any incoming request. The value of highLoad is same for
every GPP component as all are identical. Migration daemon checks these statistics
periodically for every physical component. Hence it knows the situation whether the
highLoad level is reached, or overall load level goes down to the lowLoad. Cluster
system is squeezed when the overall load is under, or equal to the lowLoad value and
released in single highLoad situation.

Squeezing situation happens by rearranging VMs to fewer physical components
through migration if possible. We depict the squeezing state with following steps.

- Migration daemon finds the overall load level of the cluster is equal/under lowLoad.
- Virtual machine monitors report to cluster front-end about the processing capacity

usage statistics of n VMs by making a list Wi. The list is sorted in increasing order.
- A list containing d number of GPP components is created by cluster front each

having Ck capacity according to constraint (1), where, CT is termed as highLoad.
The list mentions available capacity in every single physical component to facilitate
any virtual machine.

- Every VM Wi is checked starting at the lowest loaded one against every GPP
component Ck to check if constraint (3) is satisfied and migrates that VM to the
destination GPP. If the constraint is not fulfilled then VM remains in the same
GPP as previous.

- Once the migration is done and if no more VM running in the source GPP then it
goes to power-save mode, or switched off.

Releasing situation would happen, if highLoad limit is reached in any particular GPP

46

component. VM capacity usage statistics inside that cluster component is achieved
through virtual machine monitor and forwarded to migration daemon. Same procedure
can be followed like the squeezing situation to create the list Wi. Migration daemon also
creates the list of GPP according to constraint (1). If constraint (3) is satisfied while
checking each VM against every GPP in the list then it is migrated. If the GPP list is
empty then new physical component is waken up from inactive mode. As the number of
GPPs and number of VMs are the same, so it is obvious that every GPP will contain at
least one VM in normal operation or in highLoad situation.

5.9 Algorithm implementation

We presume a control plane cluster with ten physical general purpose processor
components excluding cluster front-end. In appendix, implementation snippet for the
squeezing situation is given which can demo virtual machine distribution in low load
situation. Result obtained by running the implementation is given in the Figure 5.3
below.

47

Figure 5.3: Virtual machine migration approach

In this implementation, random loads are considered for triggering the virtual machine
migration. Eighty percent of the total GPP load capacity usage is considered as
highLoad. Also maximum load that a particular VM would handle also considered as
the same. While calculating the aggregated load, forty percent of the GPP load is
considered as lowLoad. Virtual machine monitor and GPP cluster front-end would be
responsible for operating according to these statistics. Any possible factors (e.g. ongoing
user sessions, network overhead due to VM mobility, operational overhead etc.) that
might be worth considered (in real implementation) before triggering migration are left

GPP cluster component GPP loads (%)
VM load Statistics inside

GPP components

1 (powered down) 0 0

2 (VM-2) 57 57

3 (VM-3) 58 58

3 (powered down) 0 0

5 (VM-5) 44 44

6 (powered down) 0 0

7 (VM-7) 56 56

8 (VM-8) 79 79

9 (VM-9,VM-4,VM-1,VM-6) 68 [5, 3, 19, 41]

10 (VM-10) 45 45

highLoad = 80% of total available capacity of a single cluster component
lowLoad = 40% of total available capacity

a) Resource usage statistics reported by
virtual machine monitor

b) Current load usage statistics of GPP
components obtained from cluster front-end.

Virtual machine Current load (%)

1 19

2 57

3 58

4 3

5 44

6 41

7 56

8 79

9 5

10 45

GPP component Current load (%)

1 (VM-1) 19

2 (VM-2) 57

3 (VM-3) 58

4 (VM-4) 3

5 (VM-5) 44

6 (VM-6) 41

7 (VM-7) 56

8 (VM-8) 79

9 (VM-9) 5

10 (VM-10) 45

c) Distribution of virtual machines to fewer physical GPP components.

48

out of consideration for focusing mainly on the optimization model. Implemented codes
are thoroughly commented for ease of understanding.

Figure 5.3(a) shows the statistics of virtual machines that are running on General
Purpose Processors and corresponding current load (due to traffic operations). Virtual
Machine Monitor keeps track of these statistics. The loads shown in the list are
generated randomly (taken from 1-80 range) in the code for this demo implementation.

GPP load statistics are shown in figure 5.3(b). As we are studying efficient energy
usage through virtual machine migration among GPP cluster, so any particular GPP is
able to facilitate more than one virtual machine. In this case, cluster front-end keeps
the statistics of GPP loads (not related with VM load). We state these two different
loads below for the sake of simplicity:

- VM load – Load of a virtual machine due to traffic operation.

- GPP load – Processing capacity usage due to facilitate virtual machine(s).

Note that, in these two lists (VM and GPP) same load statistics are shown. We
presumed an initial situation when every GPP is facilitating one virtual machine each.
As every GPP is running one VM, therefore operational load of a particular virtual
machine is considered as GPP load. In real implementation, this might be different
because, facilitating even a free (no ongoing traffic operation) VM might have some
CPU usage of a particular GPP. In this implementation, that situation is kept out of
the scope.

In the figure 5.3 (c), sample migration result is depicted. According to the algorithm,
virtual machine monitor reports the VM statistics to the migration daemon. Migration
daemon gets the load statistics of GPP cluster as well and triggers the migration
process. According to our optimization model migration process is triggered
sequentially from lower loaded VMs to higher loaded ones. In short, this means lower
loaded VMs are migrated first. For example, VM-4 is migrated first, then VM-9 and so
forth. First column shows the situation (facilitated VM(s) by a particular GPP) of GPP
components inside the cluster after the migration process is completed. Load statistics
of GPPs after migration process are shown as percentage. Zero percentage means that,
corresponding GPP is powered, or scaled down to save energy consumption. Next
column shows corresponding VM loads facilitated by any single GPP component. When
migration process is done, VM load statistics are again collected by virtual machine
monitor and current/available load statistics of GPP components are gathered by
cluster front-end for further migration process.

49

5.10 Summary

In this chapter, we focused on the possible implementation of hypothetical approach
(squeezing situation) to reduce energy consumption in control plane cluster (inside a
telecommunication infrastructure node) of general purpose processors. The GPP
components initially have one virtual machine running on each to perform traffic
management activities (e.g. user sessions). In low loaded situation, (within control
plane) virtual machines are redistributed to minimal number of GPP components. The
rest of the GPP components are then powered down to save energy usage due to the
traffic control functionalities. One of the most significant ideas of this approach is to
keep the number virtual machines same as the number of host general purpose
components. The squeezing scenario depicted in this chapter (to impose elasticity
through the redistribution of virtual machines in low load situation), is able to reduce
30% of CPU power usage within control plane cluster as we shown that three out of ten
processor units are powered down after VM redistribution. Intensive research
investigation to measure the more exact percentage of energy reduction is out-scoped in
this study as this thesis is primarily targeted to discuss a possible approach to reduce
energy consumption.

50

6 Discussions

The point of interest of this thesis study was traffic management in the control plane
(consists of high performance general purpose processing components) inside cluster-
based telecommunication infrastructure nodes. We studied one possible way for
reducing energy usage in traffic control plane through virtual machine mobility within
the cluster. The idea behind this study can be applied to the future telecommunication
core network elements especially for traffic operation. There is a steep growth in traffic
demand in near future. Hence the interface nodes need to be more energy efficient to
achieve green telecommunication activities.

We studied several green factors for core network functionalities that can be optimized
to improve energy efficiency in connectivity layer. Several green factors were explored,
energy-efficiency-ratios, cooling-requirements, and the energy-efficiency-features.
Energy-efficiency-ratios and cooling-requirements were beyond our study scope as we
are not dealing with hardware optimization for energy efficiency. But still the second
factor can be achieved relatively from this study by energy-efficient control plane
operations. The telecommunication infrastructure nodes are multi-rack based complex
switching device. The GPP components are placed as blades in racks form the control
plane cluster. Control plane energy efficiency would reduce the energy usage per rack.
Hence optimized energy usage in racks apparently would produce comparatively less
amount of heat in the whole switching device. Therefore, would require less cooling
requirements. Discussion of green factors apparently answers the first research
question as mentioned in chapter one. And this was the origin of the motivation
towards our thesis study. Though this vary first question may lead to several directions
of research, but we considered the traffic planes as our goal.

After that our study moved forward to discuss the significance of getting energy aware
attitude from traffic operation in telecommunication core network. It is well assumed
from this thesis that energy consumption is one of the key factors impacting the
operational expenses (OPEX) related to telecommunication infrastructure. Therefore
power efficiency in infrastructure nodes and components have immediate impact on the
cost of telecommunication providers. We can sketch our reflection like the following
Figure 6.1.

51

Figure 6.1: Power-aware behavior hierarchy

According to the green factors for telecommunication core network, power-aware
behavior of traffic planes can impact the energy efficiency ratios of the equipment. This
in turn results into reduced power usage by telecommunication nodes. Therefore we
can clearly view the trend in the Figure 6.1 above that apparently converged to energy
efficiency in the connectivity layer of horizontally layered network architecture. And
we tried to achieve one of the several possible ways of reducing energy consumption
due to network operations.

The key driving force of this thesis was to dynamically reduce power usage through
software implementation. We studied the system virtualization concept which is the
basic of state-of-the-art cloud computing. This thesis did not involve the cloud
computing approach but took the virtualization concept. According to our study, system
virtualization in every cluster GPP component creates one virtual machine per cluster
component. Therefore we get equal number of VMs and physical machines. We studied
that the mobility of VMs among the physical GPP components in the control plane
cluster could reduce energy usage through elasticity of the active system. VM
migration technique could be used for getting mobility behavior. We discussed and
studied the pre-copy migration approach as the possible migration technique in control
plane cluster. Elastic behavior works by squeezing and releasing the system. In low
traffic situation VMs could be redistributed among fewer number of physical
components to keep rest of the GPPs switched off, or scaled down. On the other hand,
during high traffic situation in any particular physical component extra (if the
particular GPP contains more than one virtual machine) VM(s) would go back to
another, or newly waken up component. As all physical components are identical,
hence VM mobility could be implemented without considering underlying hardware.

The energy consumption of network is a major issue in the future network technologies

Traffic planes

Telecommunication
node

Core network

Connectivity
layer

 E
ne

rg
y

ef
fic

ie
nt

 b
eh

av
io

r

52

especially in telecommunication sectors due to excessive demand of traffic-grabber
services and applications. This thesis showed a possible way of energy efficiency in the
core telecommunication infrastructure node of horizontally layered network
architecture. Study focused mainly on traffic control plane of cluster-based
infrastructure node that may decrease the energy consumption to a great extent. In
following sections, we discuss about several other techniques that can be explored to
gain more energy reduction through power aware system implementation for handling
the traffic.

6.1 Possible alternatives to optimize energy usage

Energy efficiency in telecommunication core network is always a burning issue both at
present and in future telecommunication network technologies. The amount of power
usage due to telecommunication network activities and core network traffic
manipulation is increasing very rapidly. In horizontal network architecture,
telecommunication core network is a part of connectivity layer where traffic load due to
end user data connections is a critical point to deal with. Significant amount of energy
is consumed due to traffic handling and processing. Here the trade-off is, we can never
compromise the network traffic situation with system optimization but still we need to
find any holistic approach to minimize energy consumption. From the hardware point
of view, devices and processing components can always be designed and manufactured
to operate with less energy. But researchers also need to make efforts to reduce energy
usage dynamically through new system implementation for network traffic handling
and processing activities. However the trade-off between energy-usage and
performance requirements needs to be considered always while tailoring the system to
achieve energy optimization. In this chapter, discussion will go forward about several
further possibilities that might help to reduce energy usage in traffic operations inside
telecommunication infrastructure nodes.

6.1.1 Distribution of control functionalities

In the current telecommunication or mobile telephony, switches separate the
implementations of control plane functionalities from data plane traffic functions
(packet forwarding and processing). As we see in this sort of architecture control plane
functions are implemented in GPP components resides in a cluster. Every cluster
component connected to several network processors of data plane. In future,
telecommunication nodes can be designed to implement control plane functionality to

53

networked processors of data plane. This actually means control plane functions can be
distributed to data plane along with control elements for increased scalability. The
challenge in this sort of implementation can be, determining the control functions that
can be distributed and the data plane elements that can host these functions. The
possible hypothetical architecture is shown in the Figure 6.2 below with simple
diagram.

Figure 6.2: Distribution of traffic functionalities

If the distribution can be done to data plane processing components than the resiliency
and scalability issues may be significantly reduced due to distribution. Challenge may
arise for computational overhead to determine distribution candidate but that can be
also mitigate through comprehensive research. Proper work-load balancing and
functional distribution will apparently ensure more optimal energy usage of entire
infrastructure node.

6.1.2 Cloud-based traffic operation

In a mobile telephony switch, control plane and data plane are two traffic planes.
These traffic planes are actually doing traffic handling and traffic processing. Every
GPP in the control plane is tightly connected with one or more application specific
processor(s). The programmability and performance are totally different of a control
and forwarding element. Therefore researchers can give efforts to logically separate
their functionality. If the separation is deployed, then control plane elements can
always remain connected with any data plane element. Aggressive network,
application or energy optimization capability can be developed in separated
architecture. We show the Figure 6.3 below for the possible separation from functional
point of view.

Traffic applications
distributed on traffic plane

processing components

Current situation Possible distribution

54

Figure 6.3: Separating control and data plane with different cloud deployment

All the data plane network processors and control plane general purpose processors can
be resided in a cloud. Appropriate implementation of virtualization layer can be
imagined over all the physical traffic plane components. Any kind of user session
request coming in will be served from the virtualization layer by the cloud of control
functions. After data session establishment, for traffic processing system will
communicate with virtualized forwarding element which may serve the computation
and actual data movement. The communication between control plane cloud and data
plane cloud can be investigated through intensive research.

6.1.3 Additional explorations

In addition to two significant possibilities of future research studies (mentioned in
sections 6.1.2 and 6.1.2) several more axes can be depicted briefly that can be elevated
from this thesis. We sketch the Figure 6.4 below to point out possible further studies.

Figure 6.4: Possible study exploration axes

In this thesis for rearranging virtual machine we mentioned multiple-bin-packing

Control plane

Current situation Possible separation

Data plane

Cloud traffic
planes

Cloud based traffic
operation

Distribution of control
functionalities

Performance prediction
of infrastructure nodes

Failover situation in
control plane cluster due

to virtualization

Efficient VM migration in
cluster, targeted for

telecommunication nodes

Redistribution of weighted
items within a list

Study of
energy

efficient core
network

55

problem. The problem scenario of VM distribution among fewer physical machines has
a list of GPP components with different amount of free resources. Whereas in bin-
packing problem, multiple empty bins with different capacities are item destinations.
More research efforts can be given to gain efficient rearrangement. Efficiency can be
measured by low migration time, less computational overhead, less impact on internal
network bandwidth, or lower service downtime due to migration.

Our study did not cover the failure situation handling in control plane cluster. Instead
we studied only the redundancy of cluster front-end. Failure situation can be observed
at any particular time which means any single physical GPP component can be crashed
or malfunctioning. This can be another axe that is open for study further.

This thesis illustrated pre-copy virtual machine migration in control plane cluster. Live
VM migration is an intensive area of research in system virtualization area. Efficiency
of successful migration depends on several metrics like total-migration-time, down-
time, ongoing application interruption, writable working set, network overhead, or
migration overhead. Especially for telecommunication infrastructure node these issues
can be explored in details to trace out the efficient way that is appropriate for mobile
core network infrastructure components. While applying multiple methods of VM
migration, the performance prediction is also significant to investigate. Prediction can
involve better performance in traffic-control such as user session establishment rate.
Optimal performance is always necessary because of the trade-off between the node
performance and energy reduction. All possible studies mentioned here are opt for
gaining energy efficiency by means of software system implementation. Energy
efficient hardware design may also reduce power usage but, in this thesis we out
scoped hardware related issues. The idea is that, whatever hardware is used system
can be optimized always.

6.2 Summary

In this thesis, we discussed about the possible approach that can be applied in control
plane traffic operations for gaining energy efficient behavior. We discussed power
aware architecture of the system which was significant, because for every possible
system implementation it is always crucial to give an overall working concept of the
system. The most worth mentioning point here is that, this system is not targeted for
any specific traffic situation of the overall network like peak, or off-peak hours. If
implemented it could show power aware behavior online with the varying traffic load
situation. We studied that for avoiding redundant computational overhead it would be

56

better to maintain a clock system for performing possible migration. Study discussed
that, this is necessary because at a certain time, control plane cluster may not have
any request to establish user session but still have traffic operation ongoing in lower
level ASPs (Application Specific Processor). Though our possible migration approach
does not show any noticeable interruption in operations running inside VM but, it is
better to wait for specific time period to check for migration. This waiting time could be
pre-determined according to SLA to avoid extra computational overhead due to
migration. Several measurement metrics such as the total migration, down time and
also computational overhead might have impact on operational performance of traffic
handling in the cluster. These are also noteworthy because migration of a particular
virtual machine from source to destination is not trivial while minimizing the
noticeable interruption of services running inside. Even though the control plane
cluster is a high performance cluster, but still the implementation of VM mobility
needs to be network-aware [PiY10], application aware [SZL+11] and also at the same
time needs to minimize the total migration time. All of these metrics may greatly
impact the energy efficient behavior of the control plane that can be achieved through
elasticity of the GPP cluster.

57

List of references

[ASR+10] Akoush, S., Sohan, R., Rice, A., Moore, A.W., Hopper, A., Predicting the
Performance of Virtual Machine Migration. Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS), 2010 IEEE
International Symposium on, Miami Beach, Florida, USA, Aug. 17-19, 2010
pages 37-46.

[BBB07] Bakmaz, B., BojkoviC, Z., Bakmaz, M., Internet Protocol Multimedia Subsystem
for Mobile Services. Systems, Signals and Image Processing, 2007 and 6th
EURASIP Conference focused on Speech and Image Processing, Multimedia
Communications and Services. 14th International Workshop on, 27-30 June
2007, pp.339,342

[BLW99] Bsrje, J., Lund, H-, Wirkestrand, A., Real-time routers for wireless networks.
Ericsson Review, Vol. 76(1999): 4, pages 190-197.

[Bos10] Bose, B.K., Global Warming: Energy, Environmental Pollution, and the Impact
of Power Electronics. Industrial Electronics Magazine, IEEE, March 2010, vol.4,
no.1, pp.6,17.

[CFH+05] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A., Live migration of virtual machines. 2nd Symposium on Networked
Systems Design and Implementation (NSDI’05), Boston, Massachusetts, USA,
May 2-4, 2005, pages 273–286.

[CGa04] Camarillo, G., García-Martín M-A., The 3G IP Multimedia Subsystem (IMS).
Merging the Internet and the Cellular Worlds, Chichester, West Sussex, UK,
Wiley, 2004.

[CLN10] Chaisiri, S., Lee, B.-S., Niyato, D., Robust cloud resource provisioning for cloud
computing environments. Service-Oriented Computing and Applications
(SOCA), 2010 IEEE International Conference on, Perth, Australia, Dec. 13-15,
2010, pages 1-8.

[DRB03] Drempetic, T., Rihtarec, T., Bakic, D., Next generation networks architecture
for multimedia applications. Video/Image Processing and Multimedia
Communications, 2003. 4th EURASIP Conference focused on, July 2003, vol.2,
pp.563,568.

[DYS+10] Du, Y., Yu, H., Shi, G., Chen, J., Zheng, W., Microwiper: Efficient Memory
Propagation in Live Migration of Virtual Machines. Parallel Processing (ICPP),
2010 39th International Conference on, San Diego, California, USA, Sept. 13-16,
2010, pages 141-149.

[FWB07] Fan, X., Weber, W.-D., Barroso, L. A., Power provisioning for a warehouse-sized
computer. In ISCA '07: Proc. of the 34th annual international symposium on
Computer architecture, New York, NY, USA, Jun. 2007, pages 13–23.

[HCZ10] Huan, Y., Changyun, M., Zhigang, W., The design of IP telephony media
gateway which is based on soft-switching technology. Computer Design and
Applications (ICCDA), 2010 International Conference on, Qinhuangdao, Hebei,
China, Jun. 25-27, 2010, pages V5-379 - V5-381.

[HGW+11] Huang, Q., Gao, F., Wang, R., Qi, Z., Power Consumption of Virtual Machine
Live Migration in Clouds. Communications and Mobile Computing (CMC), 2011
Third International Conference on, Qingdao, China, Apr. 18-20, 2011, pages
122-125.

58

[HiG09] Hines, M. R., Gopalan, K., Post-copy based live virtual machine migration using
adaptive pre-paging and dynamic self-ballooning. In Proc. of the ACM/Usenix
International Conference on Virtual Execution Environments (VEE’09),
Washington DC, Mar. 2009, pages 51-60.

[HJL+08] Hu, L., Jin, H., Liao, X., Xiong, X., Liu, H., Magnet: A novel scheduling policy
for power reduction in cluster with virtual machines. In Proc. of the IEEE
International Conference on Cluster Computing (Cluster’08), Tsukuba, Japan,
Sep. 29 – Oct. 1, 2008, pages 13–22.

[HLA+06] Huang, W., Liu, J., Abali, B., Panda, D. K., A case for high performance
computing with virtual machines. In Proc. of the 20th ACM International
Conference on Supercomputing (ICS’06), Cairns International Hotel,
Queensland Australia, Jun. 28 – Jul. 01, 2006, pages 125-134.

[HLM+09] Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., Lawall, J., Entropy: a
consolidation manager for clusters. In Proc. of the ACM/Usenix International
Conference on Virtual Execution Environments (VEE’09), Washington DC, Mar.
2009, pages 41–50.

[JDW+09] Jin, H., Deng, Li., Wu, S., Shi, X., Pan, X., Live virtual machine migration with
adaptive, memory compression. Cluster Computing and Workshops, 2009.
CLUSTER '09. IEEE International Conference on, New Orleans, Louisiana,
USA, Aug. 31 - Sept. 4, 2009, pages 1-10.

[Kha12] Kharitonov, D., Green telecom metrics in perspective. Communications (APCC),
2012. 18th Asia-Pacific Conference on, Oct. 15-17, 2012, pp.548, 553.

[KSK+12] Kuwashima, T., Sekimoto, K., Kawai, K., Iida, Y., Yokoyama, R., Takemoto, M.,
Fujioka, Y., Yoshida, Y., Neutralize CO2 emissions by Product Contributions.
Electronics Goes Green 2012+ (EGG), September 2012, pp.1,5, 9-12.

[KXR+12] Kejiang Ye, Xiaohong Jiang, Ran Ma, Fengxi Yan, VC-Migration: Live
Migration of Virtual Clusters in the Cloud. Grid Computing (GRID), 2012.
ACM/IEEE 13th International Conference on, Sept. 20-23, 2012, pp.209-218.

[LeJ03] Lee, B.K., John, L.K., NpBench: a benchmark suite for control plane and data
plane applications for network processors. Computer Design, 2003. Proceedings.
21st International Conference on, San Jose, California, Oct. 13-15, 2003, pages
226- 233.

[LHL+08] Li, Q., Huai, J., Li, J., Wo, T., Wen, M.; HyperMIP: Hypervisor Controlled
Mobile IP for Virtual Machine Live Migration across Networks. High Assurance
Systems Engineering, 2008 11th IEEE International Syposium on, Nanjing,
China, Dec. 3-5 2008, pages 80-88.

[LJL+09] Liu, H., Jin, H., Liao, X., Hu, L., Yu, C., Live migration of virtual machine based
on full system trace and replay. In Proc. of the 18th International Symposium on
High Performance Distributed Computing (HPDC’09), Garching near Munich,
Germany, Jun. 11-13, 2009, pages 101–110.

[LJL+11] Liu, H., Jin, H., Liao, X., Yu, C., Xu, C., Live Virtual Machine Migration via
Asynchronous Replication and State Synchronization. Parallel and Distributed
Systems, IEEE Transactions on, volume: 22, issue: 12 (Mar. 2011), pages 1986-
1999.

[LKK99] Leinberger, W., Karypis, G., Kumar, V., Multi-capacity bin packing algorithms
with applications to job scheduling under multiple constraints. In proc. of 1999
International Conference on Parallel Processing, Aizu-Wakamatsu City, Japan,
Sept. 21-24, 1999, pages 404-412.

[MLL10] Ma, F., Liu, F., Liu, Z., Live virtual machine migration based on improved pre-
copy approach. Software Engineering and Service Sciences (ICSESS), 2010

59

IEEE International Conference on, Beijing, China, Jul. 16-18, 2010, pages 230-
233.

[MoC10] Moghaddam, F.F., Cheriet, M., Decreasing live virtual machine migration
down-time using a memory page selection based on memory change PDF.
Networking, Sensing and Control (ICNSC), 2010 International Conference on,
Chicago, IL, USA, Apr. 10-13, 2010, pages 355-359.

[NaM07] Nam, D.-h., Min, H.-k., An Energy-Efficient Clustering Using a Round-Robin
Method in a Wireless Sensor Network. In Proc. of 5th ACIS International
Conference on Software Engineering Research, Management & Applications
(SERA2007), Aug. 20-22, 2007, pages 54-60.

[NaS07] Nathuji, R., Schwan, K., Virtual power: Coordinated power management in
virtualized enterprise systems. In Proc. of the 21st ACM Symposium on
Operating Systems Principles (SOSP’07), Stevenson, WA, USA, Oct. 2007, pages
265–278.

[PKC+09] Park, J.-G., Kim, J.-M., Choi, H., Woo, Y.-C., Virtual machine migration in self-
managing virtualized server environments. Advanced Communication
Technology, 2009, ICACT 2009, 11th International Conference on, Phoenix Park,
Korea, Feb. 15-18, 2009, vol.03, pages 2077-2083.

[PiY10] Piao, J.T., Yan, J., A Network-aware Virtual Machine Placement and Migration
Approach in Cloud Computing. Grid and Cooperative Computing (GCC), 2010
9th International Conference on, Nanjing, Jiangsu, China, Nov. 1-5, 2010, pages
87-92.

[OSS+02] Osman, S., Subhraveti, D., Su, G., Nieh, J., The design and implementation of
zap: A system for migrating computing environments. In Proc. of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI’02),
Boston, MA, Dec. 9-11, 2002, pages. 361–376.

[SKV+12] Shicong Meng, Kashyap, S.R., Venkatramani, C., Ling Liu, Resource-Aware
Application State Monitoring. Parallel and Distributed Systems, IEEE
Transactions on, vol.23, no.12, (Dec. 2012) pp.2315, 2329.

[SZL+11] Shrivastava, V., Zerfos, P., Lee, K., Jamjoom, H., Yew-Huey, Liu, Banerjee, S.,
Application-aware virtual machine migration in data centers. INFOCOM, 2011
Proceedings IEEE, Shanghai, China, Apr. 10-15, 2011, pages 66-70.

[SCP+02] Sapuntzakis, C. P., Chandra, R., Pfaff, B., Chow, J., Lam, M. S., Rosenblum, M.,
Optimizing the migration of virtual computers. In Proc. of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI’02),
Boston, MA, Dec. 9-11, 2002, pages 377–390.

[TJL+08] Tianzhou C., Jiangwei, H., Liangxiang, X., Zhenwei, Z., A Practical Dynamic
Frequency Scaling Scheduling Algorithm for General Purpose Embedded
Operating System. Future Generation Communication and Networking, 2008.
FGCN '08. Second International Conference on, Dec. 13-15, 2008, pages 213-216.

[WCS+04] Whitaker, A., Cox, R. S., Shaw, M., Grible, S. D., Constructing services with
interposable virtual hardware. In Proc. of USENIX Symposium on Networked
Systems Design and Implementation (NSDI’04), San Francisco, California, USA,
Mar. 29-31, 2004, pages 169-182.

[VNE+08] Vallee, G., Naughton, T., Engelmann, C., Ong, H., Scott, S.L., System-Level
Virtualization for High Performance Computing. In Proc. of the 16th Euromicro
Conference on Parallel, Distributed and Network-based Processing, Toulouse,
France, Feb. 13-15, 2008, pages 636-643.

[WCS+04] Whitaker A.; Cox R. S.; Shaw M.; Gribble S. D., Constructing services with
interposable virtual hardware. In Proc. of the 1st USENIX Symposium on

60

Networked Systems Design and Implementation (NSDI’04), San Francisco,
California, Mar. 29-31, 2004, pages 169–182.

[Wit00] Witzel, A., Control servers in core network. Ericsson Review, Vol. 77(2000): 4,
pages 234-243.

[WMS11] Wilcox, D., McNabb, A., Seppi, K., Solving virtual machine packing with a
Reordering Grouping Genetic Algorithm. Evolutionary Computation (CEC),
2011 IEEE Congress on, New Orleans, LA, USA, Jun. 5-8, 2011, pages 362-369.

[XHG+06] Xiaolong, Q., He, S., Guo, D., Jing, Y., On Time-Critical Data Transmission of
EtherNet/IP. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth
World Congress on, Dalian, China, Jun. 21-23, 2006, pages 4623-4625.

[Zay87] Zayas, E., Attacking the process migration bottleneck. In Proc. of the Eleventh
ACM Symposium on Operating System Principles, Austin, Texas, Nov. 8-11,
1987, pages 13–24.

61

Appendix - Virtual machine distribution algorithm

One significant part of this thesis was to write code for obtaining the result of virtual
machine distribution algorithm (mock implementation). In this implementation,
squeezing scenario within GPP cluster components (by migrating virtual machines) in
low load situation is depicted. Possible VM distribution result shown in the section 5.8
is taken by running this code block. The code is written in JAVA. Random load
statistics (for both GPPs and VMs) are taken into consideration while implementing
this code. The motivation behind this implementation was to show, how the VM
mobility could squeeze the GPP cluster.

A Fields and methods summary

Predefined values

MAX_LOAD_LEVEL: This is the maximum load level which is meant for the

processing capacity of any particular GPP in the cluster. Eighty percent is considered
as maximum.

LOW_LOAD_LEVEL: This is the pre-determined threshold lowLoad level which is

compared with the overall aggregated load of the cluster for taking migration decision.

NUMBER_OF_VM: Total number of GPP except the cluster front-end is presumed to
ten. Hence according to our study, total number of VM is also ten.

Fields used

staticGPPLoadStats: At the beginning of migration, this map contains overall load
situation of all the GPPs in cluster. Facilitator GPP(s) is (are) determined at the
migration startup meaning that, if any particular GPP has available load capacity to
facilitate additional virtual machine, or not. This list contains all active and inactive
(powered down) GPPs while storing ‘Zero’ load as powered down indication.

vmLocationList: This list is provided by virtual machine monitor that contains virtual
machine locations. As we have constant number (i.e. ten) of VMs running inside the
GPP components, so this list preserves the information about “which VM is running on
what number of GPP”.

overallGPPLoadStats: This Map contains the comprehensive list of GPP components
that shows the set of VMs running on a particular GPP component. This list only

62

contains the GPP that are in active mode meaning that, running at least one VM inside
a particular GPP component.

VMLoadStats: Load usage of every single virtual machine is stored in this Map. This
apparently helps in taking migration decision. If there is any heavily loaded VM, or
any one running very critical user sessions will not be migrated. In this
implementation we only considered heavily loaded situation.

Methods

getInitialVMStatistics(): For getting the load statistics and location list from virtual
machine monitor this method is used to initialize vmLocationList and VMLoadStats

migrationDecision(Map<Integer, Integer> , Map<Integer, Integer>)

This method is responsible for taking migration decision after comparing the cluster’s
load situations. Two different checks are performed:

- Checks the aggregated load level of the cluster is under lowLoad threshold.
This triggers squeeze operation if succeeds.

- Next check is performed to investigate the load level of any particular GPP
component. One helper method isHighLoadLimitExceeded(Map<Integer,

Integer>) is invoked which returns a Boolean value depending on whether the
load situation of any particular GPP component is reached to highLoad or not.
If so then it triggers the release operation.

- In case both of the checks fail then cluster operation continues as usual.

squeezeCluster (Map<Integer, Integer>, Map<Integer, Integer>)

This method is responsible for migration, or virtual machine distribution in low load
situation. This requires, VMLoadStats, staticGPPLoadStats as parameters. Several
methods are called from inside this:

- availableLoadList(Map<Integer, Integer>): This is intended to create an
intermediate list of GPPs with their corresponding available loads.

- Map sortByLoad(Map, boolean): According to our studied algorithm this method
sorts the lists of GPPs and VMs for impacting the migration decision.

releaseCluster(Map<Integer, Integer>, Map<Integer, List>, Map<Integer, Integer>))

This method is not implemented in this demo as we tried to depict only the squeeze
situation.

63

B Code Implementation

package control.plane.vm.migration;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Random;

@SuppressWarnings({ "rawtypes", "unchecked", "unused" })
public class MigrationOperation {

/** High Load threshold */
 public static final int MAX_LOAD_LEVEL = 80;

/** Low Load label */
 private static final int LOW_LOAD_LEVEL = 40;

/**
 * According to mentioned algorithm number of GPP and VM are the same It is
 * presumed here that, total 10 GPPs are in the GPP-Cluster, hence total
 * number of VM is also 10
 */
 public static final int NUMBER_OF_VM = 10;
 public static final int ZERO_LOAD = 0;

/**
 * This contains information about which VM resides in what numbered GPP
 * among the cluster
 */
 public static int[] vmLocationList = new int[11];

/** Always hold the statistics of all GPPs with their current load usage */
 public static Map<Integer, Integer> staticGPPLoadStats = new
HashMap<Integer, Integer>();

/**
 * Container map of GPP(s), who have VM(s) running in it. This map is
 * updated during migration and populates post migration statistics to
 * 'staticGPPLoadStats'
 */
 public static Map<Integer, List> overallGPPLoadStats = new
HashMap<Integer, List>();

/**
 * Static container of all VMs (number of VM = number of GPP) with their
 * current load usages
 */
 public static Map<Integer, Integer> VMLoadStats = new HashMap<Integer,
Integer>();

64

private static Object sumOfLoad;

 public static void main(String args[]) {

 getInitialVMStatistics();
 staticGPPLoadStats = getCurrentGPPLoadStatistics();

 migrationDecision(VMLoadStats, staticGPPLoadStats);

 System.out.format("VM No. | Load Usage (Unit)\n---------------\n");
 showLoadStatistics(VMLoadStats);
 System.out.format("GPP No. | Current Load (Unit)\n-------------\n");
 showLoadStatistics(staticGPPLoadStats);
 System.out.format("GPP No. | Loaded VMs\n----------------------\n");
 showLoadStatistics(overallGPPLoadStats);
 }

 private static void migrationDecision(Map<Integer, Integer> vmLoadStats,
 Map<Integer, Integer> staticGPPLoadStats) {

 if (getLoadLevel(staticGPPLoadStats) < getLowLoadLabel()) {
 squeezeCluster(vmLoadStats, staticGPPLoadStats);
 }
 else if(isHighLoadLimitExceeded(staticGPPLoadStats)) {
 releaseCluster(vmLoadStats, overallGPPLoadStats,
staticGPPLoadStats);
 }
 else {
 /** Continue normal operation */
 return;
 }
 }

 private static int getLoadLevel(Map<Integer, Integer>
staticGPPLoadStats) {
 double sumOfLoad = 0;
 Iterator iterator = staticGPPLoadStats.entrySet().iterator();
 while (iterator.hasNext()) {
 Map.Entry pairs = (Map.Entry) iterator.next();
 sumOfLoad += ((Integer) pairs.getValue()).doubleValue();
 }
 return (int)Math.ceil(sumOfLoad/staticGPPLoadStats.size());
 }

 private static void squeezeCluster(Map<Integer, Integer> vMLoadStats,
 Map<Integer, Integer> gppLoadStats) {

 Map<Integer, Integer> gppAvailableLoad = sortByLoad(
 availableLoadList(gppLoadStats), true);
 Map<Integer, Integer> vmLoads = sortByLoad(vMLoadStats, false);

 Iterator itVM = vmLoads.entrySet().iterator();
 while (itVM.hasNext()) {
 Map.Entry vmPairs = (Map.Entry) itVM.next();

 Iterator itGPP = gppAvailableLoad.entrySet().iterator();
 Iterator it = overallGPPLoadStats.entrySet().iterator();

65

 int vmLocation = vmLocationList[((Integer) vmPairs.getKey())
 .intValue()];

 Integer destGPPindex = new Integer(vmLocation);

/**
 * Skips the GPP that is already in Sleep/Scaled-down mode Or, if
 * the GPP that has already a list of VMs running in it
 */
 if (overallGPPLoadStats.get(destGPPindex) == null
 || overallGPPLoadStats.get(destGPPindex).size() > 1)
 continue;

 while (itGPP.hasNext()) {
 Map.Entry gppPairs = (Map.Entry) itGPP.next();

 int gppIndexValue = ((Integer)
gppPairs.getKey()).intValue();
 if (vmLocation == gppIndexValue)
 continue;

 if (checkAddVMLoad(gppPairs.getValue(), vmPairs.getValue()))
{
 List<Integer> loadList = new ArrayList<Integer>();
 loadList = overallGPPLoadStats.get(gppPairs.getKey());
 loadList.add((Integer) vmPairs.getValue());
 overallGPPLoadStats.put((Integer) gppPairs.getKey(),
 loadList);

 gppPairs.setValue(availableLoad(sumList(loadList)));

 Integer gppIndex = new Integer(
 vmLocationList[((Integer) vmPairs.getKey())
 .intValue()]);
/**
 * Condition below removes corresponding ITEM from
 * Facilitator-GPP map (lists available capacities) who does
 * not contain anymore VM, so the same indexed GPP can be
 * SCALED DOWN Facilitator-GPP map only contains those, who
 * have VM running in it and also has capacity available for
 * facilitating additional VM Facilitator-GPP map is an
 * intermediate list of GPP(s) used for migration operation.
 */
 if (((Integer)
sumList(overallGPPLoadStats.get(gppIndex)))
 .intValue()
 - ((Integer) vmPairs.getValue()).intValue() ==
0) {
 gppAvailableLoad.remove(gppIndex);
 }

 vmLocationList[((Integer) vmPairs.getKey()).intValue()]
= ((Integer) gppPairs
 .getKey()).intValue();

 /**
 * Scales down GPP in overallGPPLoadStats map.
 */

66

 overallGPPLoadStats.remove(vmLocation);
 break;
 }
 }
 }
/**
 * After migration completion final operational statistics is populated
 * to static 'staticGPPLoadStats' map (updates the current load usage)
 * Assigns 'ZERO_LOAD' to corresponding GPP(s) whose VM(s) are migrated
 * away meaning that, it went to Scaled-Down/Sleep state
 */
 Iterator it = staticGPPLoadStats.entrySet().iterator();
 while (it.hasNext()) {
 Map.Entry pairs = (Map.Entry) it.next();
 if (overallGPPLoadStats.get(pairs.getKey()) == null) {
 pairs.setValue(new Integer(ZERO_LOAD));
 continue;
 }

pairs.setValue(sumList(overallGPPLoadStats.get(pairs.getKey())));
 }
 // int i= 0;
 }

 private static boolean isHighLoadLimitExceeded(Map<Integer, Integer>
staticGPPLoadStats) {
 Iterator iterator = staticGPPLoadStats.entrySet().iterator();
 while (iterator.hasNext()) {
 Map.Entry pairs = (Map.Entry) iterator.next();
 if(((Integer)pairs.getValue()).intValue() >= MAX_LOAD_LEVEL) {
 return true;
 }
 }
 return false;
 }

 private static void releaseCluster(Map<Integer, Integer> vMLoadStats,
 Map<Integer, List> overallGPPLoadStats, Map<Integer, Integer>
gppLoadStats) {
 /** TODO: Functional block to Power up inactive VMs among
distribute VMs among them */
 }

 private static Object sumList(List<Integer> loadList) {
 Integer sum = 0;
 for (Integer i : loadList)
 sum = sum + i;
 return sum;
 }

/**
 * Initially we presume every GPP is serving at least one VM So at the
 * beginning we get the same list for GPPLoadList and VMLoadList
 *
 * @return
 */
 private static Map<Integer, Integer> getCurrentGPPLoadStatistics() {

67

 Iterator iterator = null;

/**
 * If any GPP currently facilitating at least one VM then, calculate
 * available capacity accordingly
 */
 if (staticGPPLoadStats.size() == 0)
 iterator = VMLoadStats.entrySet().iterator();
 else {
 updateOverallGPPStats(staticGPPLoadStats);
 return staticGPPLoadStats;
 }

 while (iterator.hasNext()) {
 Map.Entry pairs = (Map.Entry) iterator.next();
 staticGPPLoadStats.put(new Integer(pairs.getKey().toString()),
 new Integer(pairs.getValue().toString()));
 }
 updateOverallGPPStats(staticGPPLoadStats);
 return staticGPPLoadStats;
 }

 public static int getLowLoadLabel() {
 return LOW_LOAD_LEVEL;
 }

 private static void updateOverallGPPStats(
 Map<Integer, Integer> currentGPPLoadStats) {

 Iterator it = overallGPPLoadStats.entrySet().iterator();

 Iterator iterator = currentGPPLoadStats.entrySet().iterator();
 while (iterator.hasNext()) {
 Map.Entry pairs = (Map.Entry) iterator.next();

/**
 * If there is no load on any certain GPP, then operational GPP map
 * disregards that from facilitator list, because that GPP is
 * already in sleep/scaled-down mode.
 */
 if (((Integer) pairs.getValue()).intValue() == ZERO_LOAD)
 continue;

 List<Integer> vm = new ArrayList<Integer>();
 if (it.hasNext()) {
 Map.Entry entry = (Map.Entry) it.next();
 vm = (List<Integer>) entry.getValue();
 }
 vm.add(new Integer(pairs.getValue().toString()));
 overallGPPLoadStats.put(new Integer(pairs.getKey().toString()),
vm);
 }
 }

/**
 * This method is intended to get the load statistics of VMs from Virtual
 * machine manager In this demo implementation this just returns random load

68

 * statistics
 */
 public static void getInitialVMStatistics() {

 int load, index;
 for (index = 0; index < NUMBER_OF_VM; ++index) {
 load = (new Random()).nextInt(MAX_LOAD_LEVEL);
 VMLoadStats.put(new Integer(index + 1), new Integer(load));
 vmLocationList[index + 1] = index + 1;
 }
 }

 public static void showGPPVMLoads(int[] GPPLoadStats) {

 for (int index = 0; index < 5; ++index) {
 System.out.println("GPP No.: " + (index + 1) + " "
 + GPPLoadStats[index]);
 }
 }

 public static void showLoadStatistics(Map gppMap) {
 Iterator iterator = gppMap.entrySet().iterator();
 while (iterator.hasNext()) {
 Map.Entry pairs = (Map.Entry) iterator.next();
 /*
 * if(pairs.getValue() instanceof List) { continue; }
 */
 System.out.format("%4s | %s\n", pairs.getKey().toString(),
 pairs.getValue().toString());
 System.out.format("-----------------------------\n");
 iterator.remove();
 }
 System.out.format("\n");
 }

 public static boolean checkAddVMLoad(Object availableGPPLoad,
 Object extraVMLoad) {
 return Integer.parseInt(availableGPPLoad.toString()) >= Integer
 .parseInt(extraVMLoad.toString());
 }

/**
 * Computes remaining capacity of a particular GPP
 * @param currentGPPLoad
 * @return
 */
 public static int availableLoad(Object currentGPPLoad) {
 return MAX_LOAD_LEVEL - Integer.parseInt(currentGPPLoad.toString());
 }

 public static Map<Integer, Integer> availableLoadList(
 Map<Integer, Integer> gppMap) {

 Map<Integer, Integer> loadMap = new HashMap<Integer, Integer>();
 loadMap.putAll(gppMap);

 Iterator iterator = loadMap.entrySet().iterator();
 while (iterator.hasNext()) {

69

 Map.Entry pairs = (Map.Entry) iterator.next();

/**
 * Skips the Scaled-down/Slept GPP from the VM-facilitator GPP list
 */
 if (((Integer) pairs.getValue()).intValue() == ZERO_LOAD) {
 iterator.remove();
 continue;
 }
 pairs.setValue(availableLoad(pairs.getValue()));
 }
 return loadMap;
 }

 private static Map sortByLoad(Map map, final boolean descending) {

 Map loadList = new HashMap<Integer, Integer>();
 loadList.putAll(map);

 List list = new LinkedList(loadList.entrySet());

 Collections.sort(list, new Comparator() {
 public int compare(Object o1, Object o2) {
 if (descending)
 return ((Comparable) ((Map.Entry) (o2)).getValue())
 .compareTo(((Map.Entry) (o1)).getValue());

 return ((Comparable) ((Map.Entry) (o1)).getValue())
 .compareTo(((Map.Entry) (o2)).getValue());
 }
 });

/**
 * put sorted list into map again LinkedHashMap make sure order in which
 * keys were inserted
 */
 Map<Integer, Integer> sortedLoadList = new LinkedHashMap<Integer,
Integer>();
 for (Iterator it = list.iterator(); it.hasNext();) {
 Map.Entry entry = (Map.Entry) it.next();
 sortedLoadList.put(new Integer(entry.getKey().toString()),
 new Integer(entry.getValue().toString()));
 }
 return sortedLoadList;
 }
}

