
Politecnico di Torino

Porto Institutional Repository

[Proceeding] Thinking BigData: Motivation, Results and a Few Recipes for a
Balanced Growth of High Performance Computing in Academia

Original Citation:
Paolo Margara, Nicolò Nepote, Elio Piccolo, Claudio Demartini, Paolo Montuschi (2013). Thinking
BigData: Motivation, Results and a Few Recipes for a Balanced Growth of High Performance
Computing in Academia. In: Congresso Nazionale AICA 2013, Fisciano (SA), 18-20 September
2013. pp. 694-703

Availability:
This version is available at : http://porto.polito.it/2515677/ since: September 2013

Publisher:
AICA

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/17052308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://porto.polito.it/2515677/
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=2515677

Thinking BigData: Motivation, Results and a Few Recipes for a Balanced Growth of HPC in Academia

Thinking BigData: Motivation, Results and a
Few Recipes for a Balanced Growth of High

Performance Computing in Academia

P. Margara, N. Nepote, E. Piccolo, C. G. Demartini and P. Montuschi
Department of Control and Computer Engineering - Politecnico di Torino

C.so Duca Degli Abruzzi 24, 10129 Torino (TO)
[paolo.margara, nicolo.nepote, elio.piccolo, claudio.demartini, paolo.montuschi]@polito.it

Big Data is today both an emerging research area and a real present and
future demand. High Performance Computing (HPC) Centers cannot
neglect this fact and have to be reshaped to fulfill this need. In this paper
we share our experience of upgrading a HPC Center at Politecnico di
Torino, originally designed and deployed in 2010. We believe that this
issue could be common to some other existing “general purpose” HPC
centers where, at least in the short term, the possibility to start from
scratch a new Big Data HPC center cannot be afforded but a balanced
upgrade of the existing system has to be preferred.

Keywords: Big Data, High Performance Computing, HPC, MapReduce, Hadoop, Parallel
Systems, Academia.

1. Introduction

 A possible solution to survive the economic crisis and keep the global competition in all
fields, is to develop large-scale projects. From crash simulation to disaster and climate
modeling, from ethical clinical trials to drug discovery, from Graphene to The Brain Project,
from nano-technologies to smart cities. All these studies share commonalities: the demand
for fast, complex computation and the need to analyze huge datasets.

So far, these two aspects have been treated separately, leading both to the
development of parallel algorithms running on supercomputers, and to the birth of data
mining which exploits large DBMS. Today we need instead a greater integration between
the tools for processing massive amounts of data and the supporting underlying
computation architecture. The key to this breakthrough has a name: Big Data. Differences
are more and more emerging between large amounts of data and Big Data, both in terms of
correlation with physical or natural events that generate them, and also for the semantics
that are assigned to them: it is a complete reversal of perspective. In other words, the first
has a background model, while the second is assumed to be able to derive different
models, even in many different fields [Kindratenko & Trancoso, 2011].

Dealing with Big Data has therefore become a stimulating challenge for many
small-to-medium sized supercomputing centers, also in Academia. For three years our High
Performance Computing (HPC) center at Politecnico di Torino has provided support to
research groups by means of a standard cluster widely described in [Della Croce et al. 2011]
[Nepote et al. 2013]. So far, the demands focused on rough computing power rather than Big
Data analysis, but now the time has come to take up the challenge.

We have taken this new demand both as a challenge and as an opportunity, and 6+
months ago have started a project of upgrading our HPC center to efficiently run also tasks
massively using Big Data.

AICA 2013

http://www.polito.it/
http://www.humanbrainproject.eu/
http://www.graphene-flagship.eu/GF/index.php

AICA 2013

At the beginning we figured out that this request could be addressed by installing some
new packages followed by proper tuning of some parameters. The results of this first
experimental phase have been very negative but have stimulated us to explore further and
think at more structural solutions, by entering each specific problem with the aim to find
feasible solutions besides the trivial one to start from scratch a completely new Big Data
HPC center.

Today we can proudly say that, given the small resources available, we have not only
met our goals, but also obtained a set of specifications for future balanced upgrades of our
HPC. As we believe that this issue could be common especially nowadays as Big Data is
emerging as a new and real requirement, we have decided to share our choices and
experience with other Readers both to get their feedback and to transmit what we have
learned during this enhancement of our HPC system.

In the following sections we outline the steps taken to make our HPC system able to run
MapReduce [Dean & Ghemawat, 2008] tasks using Apache Hadoop, the results obtained, and
the considerations that have followed.

2. The CASPER cluster at PoliTO
With HPC@POLITO we refer to the initiative boosted in 2010 to start a

“supercomputing” center at Politecnico di Torino, and aimed at providing computational
resources and technical support to both academic research and university teaching. Over
the years, the computing center has set up a general-purpose and campus-wide available
and dynamically evolving cluster called CASPER (Cluster Appliance for Scientific Parallel
Execution and Rendering), now serving several research groups operating in different
areas [Della Croce et al. 2011] [Nepote et al. 2013].

CASPER is a Linux-based MIMD distributed shared memory InfiniBand heterogeneous
cluster, reaching 1.3 TFLOPS with its 136 cores and 632 GB of overall main memory. As the
majority of clusters, in 2010 CASPER was designed to focus more on the need to perform
several computations on relatively small amount of data possibly stored together with the
Operating System, inside a small local hard disk of each computational node of the
architecture. The role of shared resource to store all experimental data, especially when it
was too much large for the local disks, was played by a Network Attached Storage (NAS).

Over the years, this initial configuration (Figure 1) has mostly evolved towards the
increasing of the local node computational power, as the applications used were more
computation-intensive than data-intensive, i.e. they were very rarely were using big amount
of data.

In Figure 1 it is depicted the current structure of CASPER when observed from the
viewpoint of the general job scheduler. It can be noted that the frontend node provides all
the storage, as local disks are only used to maintain cache and temporary files. In CASPER
communications occur under the umbrella of InfiniBand connection, which is fast and with
low latency linking all the nodes in the cluster as well as coexisting with the Ethernet
network. To run custom code or third-party software, including also the widely used
Message Passing Interface (MPI) libraries, CASPER is normally operated through the
industry standard job scheduler and resource manager Oracle GridEngine (formerly known
as Sun GridEngine).

Several research activities have been supported by HPC@POLITO, where, during the
past three years 30+ research projects and 20+ scientific papers have benefited of
CASPER computational resources.

http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.infinibandta.org/
http://hpc.polito.it/
http://hadoop.apache.org/

Thinking BigData: Motivation, Results and a Few Recipes for a Balanced Growth of HPC in Academia

Figure 1: The CASPER cluster configuration (mid 2013) from SGE's point of view.

3. Addressing the BigData problem
3.1 Motivation and our choice

During the last academic year, we have experienced the starting of a new need: the
capability to perform analysis of large amounts of data has been more and more often
required by CASPER users. Due to budget restrictions, we have immediately discarded the
option of a complete rejuvenation and/or replacement of our cluster with another one
specifically designed for Big Data. Therefore, we have decided to study the feasibility of
“upgrading” the current configuration to tackle also Big Data. We have started by verifying if
an implementation of a framework for Big Data processing would perform well inside a
general purpose HPC system like CASPER and, if so, what changes to the general
architecture would have been necessary to achieve better performances. We believe that
this issue could be common and therefore we are here to share our choices and experience
with other Readers both to get their feedback and to transmit what we have learned.

After long discussions, some pre-tests and a deep analysis of
advantages/drawbacks/tradeoffs/costs, we have converged to a first-experimental solution
adopting the Apache Hadoop open source framework, which exploits the well known
MapReduce [Dean & Ghemawat, 2008] paradigm for the efficient implementation of
data-intensive distributed applications. Besides these characteristics, Hadoop is also well
known to: run very well on large clusters of commodity hardware, provide a framework
possibly minimizing the impact of hardware failures and exploit local computation and
storage.

3.2 General Remarks
Before starting the deployment, we spent some more time to analyze the current

configuration of the cluster to identify and possibly quickly address critical issues of a
straight implementation of Hadoop on CASPER. We focused our attention on the main
components, i.e. storage, CPU & Memory, and Network. In the following we have listed our
main findings and issues.

AICA 2013

AICA 2013

• Storage

Fact: Hadoop accesses memory by using its own distributed file system, called
HDFS. To prevent storage from becoming the bottleneck, it is necessary to
properly harmonize the configuration of the physical storage and the way it is
accessed by the software.

Problem: We observed that, being a distributed file system, HDFS uses the local
storage resources of the individual computational nodes. However, usually HPC
general purpose clusters (like CASPER), are based on centralized storage
systems (such as a NAS). In such cases, the computational nodes of the cluster
are equipped with low performance very basic local hard disks, very poorly
suitable to efficiently store and handle any big data. In Figure 2 we observe that in
CASPER the amount of local disk space available for each CPU has even
decreased during the years. Other HPC cluster configurations have even diskless
computational nodes bootstrapping from the network and using a small ramdisk for
local operations.

Our Solution: An easy way to workaround the problem before installing Hadoop, is
to add more local hard disks on each computational node for the exclusive use of
HDFS.

• CPU and memory

Fact: Hadoop exploits CPU and memory especially during the Map phase of the
MapReduce process. At this stage, many tasks are executed in parallel by all the
Mappers processes running on each computational node. For correct operation, all
CPUs in the cluster should have similar performances. If not, the slower ones
would represent a bottleneck. In other words the cluster should be as much
symmetric (or homogeneous) as possible.

Problem: The last nodes (from compute-0-6 to compute-0-9 in Figure 1) added to
the initial configuration of CASPER were acquired as part of "fellowship"
agreements [Della Croce et al. 2011] with some research groups. The needs of these
groups have therefore driven the growth of CASPER, basically towards three
different types of computational nodes (Figures 1 and 3), while at the same time
aiming the RAM/CPU ratio to the initially target value of 4 GB (Figure 2). The
outcome of this growth process is that the four most recent nodes are
characterized by more CPUs operating at lower frequencies than these of the first
five nodes, thus resulting into a current configuration of CASPER which is highly
heterogeneous.

Our Solution: This problem is difficult to solve without radically changing the
current configuration of the cluster. A quick, but limiting, workaround could be to
exclude the slower computational nodes from the pool used by Hadoop. We will
discuss more effective solutions in our “Recipe list” in section 3.5.

• Network

• Fact: HDFS commonly relies on IP for node-to-node communication. Much
attention should be paid while choosing the type of Layer 2 network on which IP
traffic flows, in order to ensure high performances of HDFS when transferring
blocks of data between nodes.

Thinking BigData: Motivation, Results and a Few Recipes for a Balanced Growth of HPC in Academia

Figure 2: Temporal evolution of some hardware features of the CASPER cluster

Problem: CASPER has a total of three Layer 2 networks carrying different
information. A InfiniBand DDR 20 Gb/s network carries all the MPI node-to-node
data transfer during standard jobs (i.e. not using Hadoop) execution. A dedicated
4x1 Gigabit Ethernet aggregate link connects the central NAS storage to the
nodes via NFS. Finally, a Gigabit Ethernet (Gbe) network still remains as a
supporting layer 2 for carrying the remaining IP traffic, usually related to system
management communications or data generated by monitoring tools.
Unfortunately HDFS traffic falls under the slower Gbe network.

AICA 2013

AICA 2013

Our Solution: The only possible solution that we have found to be effective in our
environment without doing a complete redesign of the cluster, is to implement an
aggregated link also on each slave node.

3.3 Hadoop deployment and tuning

The installation of Apache Hadoop [Garza et al. 2013] was made by trying to harmonize
its needs to those of our specific HPC system. From the operating system viewpoint,
CASPER is an installation of ROCKS Cluster Distribution 5.4.31. Therefore, to install
Hadoop 1.0.4 we used the packages from the EPEL repository for CentOS, as derived by
ROCKS. As it can be observed from Figure 3 , one of our main choices has been to use the
frontend node of the cluster as master node of Hadoop and the computation nodes as slave
nodes.

Targeting to performances improvements HDFS was configured with permissions
disabled, data block size set to 256MB and number of replicas per data block set to 2. On
the first five nodes of the cluster (from Slave 0 to Slave 4 in Figure 3), we added one single
1TB 7200 rpm Sata-3 local hard disks for the exclusive use of HDFS. On the remaining four
nodes (the most recent) this was not possible because of lack of physical space in the case
and therefore the available storage for HDFS is only 160GB.

We then configured Hadoop so as to meet the heterogeneous nature requirements of
CASPER. Specifically, the maximum number of mappers for each node was set equal to
the number of cores, while the maximum number of reducers was set to 4 for the five nodes
with a large and efficient 1TB local disk, and to 0 for the other four nodes, in order to
comply with potential decreases of the overall file system performances due to the slow

Figure 3: The CASPER cluster configuration (mid 2013) from Hadoop's point of view.

http://www.centos.org/

Thinking BigData: Motivation, Results and a Few Recipes for a Balanced Growth of HPC in Academia

efficiency and small size and their hard disks.

3.4 Benchmarking the system

We run a set of experiments based on Hadoop to evaluate its performances and
scalability on CASPER, in order to possibly identify which upgrades could be useful for
CASPER to become an efficient system for Big Data. In particular, we run one of the most
widely used and available benchmarking tests to analyze efficiency and scalability on
Hadoop, i.e. the Hadoop-based implementation of TeraSort. For the purpose of running
TeraSort in different boundary conditions, we used two datasets of sizes 100GB and 200GB
respectively.

As it is well known that for Hadoop, asymmetry equals inefficiency, we decided to
evaluate TeraSort this two different configurations of CASPER:

• The SomeNodes test configuration is based solely on the 5 first nodes of the
cluster, labeled in Figure 3 as Slave 0 to Slave 4. It is the only possible
homogeneous configuration that we can build in CASPER using more than two
nodes. It relies on 5 Intel 3.2GHz nodes with 1TB of secondary memory per node,
accounting a total of 40 CPUs. The 1TB disk was added before deploying Hadoop
to possibly enhance HDFS performances.

• The AllCluster test configuration is basically an extension (or an enhanced
version) of SomeNodes exploiting all the resources of the cluster. It is designed to
squeeze every drop of power from CASPER, but it is also extremely
heterogeneous. It is based on 136 CPUs with different frequencies (3.2 GHz and
2.4 GHz) and local disks with size ranging from 160GB to 1TB. This configuration
has +240% more CPUs than SomeNodes, therefore the expected execution time
decrease when running TeraSort should be -58%.

The results reported in Table 2 show that TeraSort can process in less than 4 hours a
200GB dataset and that, even on a cluster that was not specifically designed for Hadoop, it
is possible to process files larger than those manageable by traditional parallel frameworks
like MPI [Garza et al. 2013].

However, the time scored by the SomeNodes configuration is only slightly worser than
the one scored by the AllCluster configuration. The AllCluster configuration decreases the
execution time by only -13% when the file size is 200GB and -31% when the file size is
100GB, thus showing that the extra 4 non-homogeneous nodes appear not to contribute in
a relevant way to the overall computations.

Name CPUs Tot. Memory Tot. HDFS size Mappers Reducers
SomeNodes 40 120 GB 1.6 TB 40 20

AllCluster 40+96 632 GB 5.64 TB 136 20

Table 1: Test configurations chosen for TeraSort

Dataset Test Configuration Execution Time
100 GB SomeNodes

AllCluster
1h23m2s
57m26s

200 GB SomeNodes
AllCluster

3h52m57s
3h21m49s

Table 2: TeraSort execution time on CASPER

AICA 2013

http://www.google.it/url?sa=t&rct=j&q=terasort&source=web&cd=1&cad=rja&ved=0CC8QFjAA&url=http://hadoop.apache.org/docs/current/api/org/apache/hadoop/examples/terasort/package-summary.html&ei=ljrtUYvJDumk4gSl24HYDA&usg=AFQjCNF7R1b7obfo9OoWeNA0dqOKqbRL1Q&bvm=bv.49478099,d.bGE

AICA 2013

We have identified some possible reasons for this result on the AllCluster configuration:

• Having set to zero the number of reducers on the most recent slaves without
additional 1TB disk, has allowed us to not degrade the performance of HDFS, but
at the same time has forced the same slaves to transfer all the data to the first 5
slaves having at least 4 reducers (see Figure 3) . This generates a quantity of
traffic on the Gigabit Ethernet network so high that the advantage given by having
more than double the mappers is almost completely zeroed.

• Although AllCluster involves several additional CPUs, their operating frequency is
too low: 2.4 Ghz versus 3.2 Ghz of the nodes of SomeNodes. This has the effect
of slowering the overall map() phase of the MapReduce paradigm, thus showing
that this configuration is probably too much heterogeneous.

3.5 Some recipes for a better Hadoop implementation on general
purpose HPC

Based on the results that we have obtained, it can be observed that a slightly
“upgraded” CASPER, and in general also possibly any similar general-purpose architecture,
can potentially be used to run also the new Hadoop-based applications. The key is what
and how to implement the slightly upgrading specially targeted to improve performances on
large datasets.

While integrating Hadoop within a general purpose HPC cluster as CASPER we
identified and set up some possible recommendations to achieve integration with good
performance at the same avoiding the need to change the architecture of the cluster itself.
In particular, we have observed that the main ingredients are, as expected, Network,
Distributed Storage and Computational Power. Clearly, their combination, interoperability
and configuration can really make the difference. Here below our “recipes”, i.e. how to
weight, size and combine the different ingredients.

• Network: Communication in Hadoop suggest a Gigabit Ethernet connection for
the slave nodes, and a faster connection for the master node, such as:

- An aggregate of several 1 Gigabit Ethernet links. Incidentally, this has been
proven to be working well with the current configuration of CASPER.

- The combination of a faster 10 Gigabit Ethernet link on the master node and
some aggregate links on the slaves.

- An InfiniBand link, if already available in the cluster, implementing the
IP-over-InfiniBand stack, which unfortunately implies a complete redesign of
the cluster.

• Distributed storage: The distributed storage in a Hadoop based cluster is
managed through HDFS, which has a master/slave architecture. In HDFS, a
cluster consists of: at least one NameNode, a master server that manages the file
system namespace and controls access to files by clients, and several
DataNodes, usually one per node in the cluster, each one managing their local
node storage. Under this premise, our thoughts are:

- We strongly advise to setup a RAID on the NameNode, since it contains all
the metadata needed by HDFS to ensure data consistency. On the contrary,
no RAID configuration is required on DataNodes, as HDFS already operates

Thinking BigData: Motivation, Results and a Few Recipes for a Balanced Growth of HPC in Academia

with intrinsic internal data redundancy.

- Regarding the number of disks on the slave nodes, we would like to
recommend a configuration with 2 disks, one for the exclusive use of HDFS
and another one for storing temporary files needed for processing the tasks
that will be assigned to the computational nodes. As in a general purpose
HPC cluster the computational nodes could also be diskless, it could be likely
that often it is not possible to add more than 1 or 2 additional disks per node
due to physical limitations of the individual nodes. In general, in a cluster
specifically designed for Hadoop the number of disks recommended for node
usually ranges from 2 to a number depending by the number of cores
available on the node and the physical space needed/available. In our case
we have tested CASPER to exhibit good performances with one additional 1
TeraByte disk, as we did not have more physical space to install more disks.

- As the frequency of communication between NameNode and DataNodes
increases together with the fragmentation of the data (i.e. when several small
files are often exchanged), in order to reduce the negative impact of a
possibly slow NameNode, it is highly recommended to equip the master node
with both enough RAM memory and computing power. A fine tuning on “how
much”, depends on number and size of files that will be likely stored into
HDFS, and can be done by running some practical experiments.

• Computational power: Into a Hadoop cluster the jobs are submitted to the
MapReduce framework consisting of a single master JobTracker and one slave
TaskTracker per slave node. The master is responsible for: scheduling the tasks of
each job on the slaves, monitoring them and re-executing the failed tasks.

- For the master node we have not identified additional relevant constraints
besides these outlined in the previous points.

- On the other hand, slave nodes require a sufficiently large memory size to
keep the processor busy without frequently swapping. Although this is highly
dependent on the type of job that will run on the cluster, we have found that
satisfactory performances for basic configuration are obtained with slave
nodes equipped with 8 cores and 24GB of RAM.

- As we have seen in the previous sections, good performances require a
homogeneous system with at least the same choice of hardware for the slave
nodes both in the number of cores and in the frequencies of the processors.
In CASPER we have experienced that any asymmetry between the individual
nodes can cause re-schedule of tasks and long waiting times between the
operations of map() and reduce(), due to the different execution times of
similar tasks scheduled on differently equipped nodes. Unfortunately, in our
case these issues should have been addressed both in the design phase of
the initial configuration (i.e. when CASPER was designed in 2010) and in its
following upgrades, as later (i.e. today) there is no way to make such changes
without full replacing at least some of the computational nodes.

Additional points that, based on our experience, we recommend to observe are:

• Future upgrades of the system should comply with scalability and keep the system
as most homogeneous as possible.

• Based on our tests, Hadoop seems to achieve better results when the nodes have
sufficiently large and efficient local disks. In other words, the choice of the disk's

AICA 2013

AICA 2013

size and type will be in a trade-off between performances and total size of the
distributed file system, based on the footprint that experimental data will have at
runtime (i.e. considering intermediate writes).

• One way to avoid a problem of cluster-heterogeneity, like in CASPER, is to exploit
the features provided by the general scheduler (see Figure 1). All popular
schedulers for HPC systems, in fact, provide the ability to create different
execution queues including homogeneous subsets of nodes, therefore creating
many “smaller”, more efficient Hadoop clusters.

4. Conclusions and Future Developments
Big Data is an emerging issue and the need to rethink at High Performance Computing

to be able also to manage tasks with massive Big Data is not just a research topic, but a
real need. At Politecnico di Torino we have taken this new issue both as a challenge and as
an opportunity and have started a project of identifying the requirements for a balanced
upgrading of our HPC towards Big Data. In this paper we have shared our experience
gained while designing and deploying this growth. In particular, we have briefly outlined the
steps that we have taken to make our HPC system able to run MapReduce tasks using
Hadoop, the results obtained, and shared a set of possibly useful general
recommendations.

The plans for the close future of our HPC center include the expansion of CASPER up
to 296 CPUs, 1.3 TB of memory and 60 TB of central storage by September 2013.
Following the recipes in this paper, we have adopted some measures:

• The system will be kept as homogeneous as possible by adding computational
nodes similar to the current ones.

• Each new node will have 2 additional disks for the exclusive use of Hadoop.
• The master node will be connected with a 10 Gigabit Ethernet link.

Finally, although the primary goal is to have a stable and reasonably efficient system in
every field of HPC, it is our intention to follow the current trend of Big Data: not only "large
data-bases", but also new algorithms, computational models and applications, starting from
NoSQL DBMS like Apache HBase. This will bring the computing center to face new
stimulating challenges such as: strengthening the Ethernet network with multiple switches,
optimizing the sharing of local resources between HBase and SGE, redounding the master
node to make the whole system more fault tolerant.

References
[Nepote et al. 2013] N. Nepote, E. Piccolo, C. G. Demartini, P. Montuschi, “Why and How Using

HPC in University Teaching? A Case Study at PoliTo”. Proc. of the DIDAMATICA 2013 conference,
Pisa, Italy, 2013.

[Garza et al. 2013] P. Garza, P. Margara, N. Nepote, L. Grimaudo, E. Piccolo, “Hadoop on a
Low-Budget General Purpose HPC Cluster in Academia”. Proc. of the ADBIS 2013 Conference -
Special Session on Big Data (in press), Geneva, Italy, 2013.

[Kindratenko & Trancoso, 2011] V. Kindratenko, P. Trancoso, “Trends in High-Performance
Computing”. In: IEEE Computing in Science & Engineering, vol. 13, n. 3, pp. 92-95, Sept. 2011.

[Della Croce et al. 2011] F. Della Croce, N. Nepote, E. Piccolo, “A Terascale Cost-Effective Open
Solution for Academic Computing: Early Experience of the DAUIN HPC Initiative”. Proc. of the 49th

AICA national conference on smart tech and smart innovation, Turin, Italy, 2011.
[Dean & Ghemawat, 2008] J. Dean and S. Ghemawat, “MapReduce: simplified data processing

on large clusters”. In: Commun. ACM, vol. 51, n. 1, pp. 107–113, 2008.

http://www.hpc.polito.it/papers/didamatica2013.pdf
http://www.hpc.polito.it/papers/didamatica2013.pdf
http://hbase.apache.org/
https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&ved=0CFwQFjAE&url=https://files.ifi.uzh.ch/dbtg/sdbs13/T10.0.pdf&ei=tjXtUdbyOqW64AS5tIDQCg&usg=AFQjCNEZg83JUm4_OKUOKYF1xz9lvM73xw&bvm=bv.49478099,d.bGE&cad=rja
https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&ved=0CFwQFjAE&url=https://files.ifi.uzh.ch/dbtg/sdbs13/T10.0.pdf&ei=tjXtUdbyOqW64AS5tIDQCg&usg=AFQjCNEZg83JUm4_OKUOKYF1xz9lvM73xw&bvm=bv.49478099,d.bGE&cad=rja
http://porto.polito.it/2487023/
http://porto.polito.it/2487023/
http://www.ic.unicamp.br/~cortes/mo601/artigos_referencias/Trends%20in%20HigH-Performance%20comPuTing.pdf
http://www.ic.unicamp.br/~cortes/mo601/artigos_referencias/Trends%20in%20HigH-Performance%20comPuTing.pdf

