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Big Data is today both an emerging research area and a real present and
future  demand.  High  Performance  Computing  (HPC)  Centers  cannot
neglect this fact and have to be reshaped to fulfill this need. In this paper
we share  our  experience  of  upgrading  a  HPC Center  at  Politecnico  di
Torino,  originally  designed  and deployed in  2010.  We believe  that  this
issue could be common to some other existing “general  purpose” HPC
centers  where,  at  least  in  the  short  term,  the  possibility  to  start  from
scratch a new Big Data HPC center cannot be afforded but a balanced
upgrade of the existing system has to be preferred. 

Keywords:  Big Data, High Performance Computing, HPC, MapReduce, Hadoop, Parallel
Systems, Academia.

1. Introduction 

 A possible solution to survive the economic crisis and keep the global competition in all
fields,  is to  develop large-scale projects.  From crash simulation to disaster  and climate
modeling, from ethical clinical trials to drug discovery, from Graphene to The Brain Project,
from nano-technologies to smart cities. All these studies share commonalities: the demand
for fast, complex computation and the need to analyze huge datasets. 

So  far,  these  two  aspects  have  been  treated  separately,  leading  both  to  the
development of  parallel  algorithms running on supercomputers,  and to the birth of  data
mining which exploits large DBMS. Today we need instead a greater integration between
the  tools  for  processing  massive  amounts  of  data  and  the  supporting  underlying
computation architecture. The key to this breakthrough has a name: Big Data. Differences
are more and more emerging between large amounts of data and Big Data, both in terms of
correlation with physical or natural events that generate them, and also for the semantics
that are assigned to them: it is a complete reversal of perspective. In other words, the first
has  a  background  model,  while  the  second  is  assumed  to  be  able  to  derive  different
models, even in many different fields [Kindratenko & Trancoso, 2011].

Dealing  with  Big  Data  has  therefore  become  a  stimulating  challenge  for  many
small-to-medium sized supercomputing centers, also in Academia. For three years our High
Performance Computing  (HPC)  center  at  Politecnico  di  Torino has provided support  to
research groups by means of a standard cluster widely described in [Della Croce et al. 2011]
[Nepote et al. 2013]. So far, the demands focused on rough computing power rather than Big
Data analysis, but now the time has come to take up the challenge.

We have taken this new demand both as a challenge and as an opportunity, and 6+
months ago have started a project of upgrading our HPC center to efficiently run also tasks
massively using Big Data. 
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At the beginning we figured out that this request could be addressed by installing some
new packages  followed by  proper  tuning  of  some parameters.  The  results  of  this  first
experimental phase have been very negative but have stimulated us to explore further and
think at more structural solutions, by entering each specific problem with the aim to find
feasible solutions besides the trivial one to start from scratch a completely new Big Data
HPC center.

Today we can proudly say that, given the small resources available, we have not only
met our goals, but also obtained a set of specifications for future balanced upgrades of our
HPC. As we believe that this issue could be common especially nowadays as Big Data is
emerging  as  a new and real  requirement,  we have decided to  share  our  choices and
experience with other Readers both to get their feedback and to transmit what we have
learned during this enhancement of our HPC system.   

In the following sections we outline the steps taken to make our HPC system able to run
MapReduce [Dean & Ghemawat, 2008] tasks using Apache Hadoop, the results obtained, and
the considerations that have followed.

2. The CASPER cluster at PoliTO 
With  HPC@POLITO we  refer  to  the  initiative  boosted  in  2010  to  start  a

“supercomputing”  center  at  Politecnico  di  Torino,  and  aimed at  providing  computational
resources and technical support to both academic research and university teaching. Over
the years, the computing center has set up a general-purpose and campus-wide available
and dynamically evolving cluster called CASPER (Cluster Appliance for Scientific Parallel
Execution  and  Rendering),  now  serving  several  research  groups  operating  in  different
areas [Della Croce et al. 2011] [Nepote et al. 2013].

CASPER is a Linux-based MIMD distributed shared memory InfiniBand heterogeneous
cluster, reaching 1.3 TFLOPS with its 136 cores and 632 GB of overall main memory. As the
majority of clusters, in 2010 CASPER was designed to focus more on the need to perform
several computations on relatively small amount of data possibly stored together with the
Operating  System,  inside  a  small  local  hard  disk  of  each  computational  node  of  the
architecture. The role of shared resource to store all experimental data, especially when it
was too much large for the local disks, was played by a Network Attached Storage (NAS).

Over the years, this initial configuration (Figure 1)  has mostly evolved towards the
increasing of  the local  node computational  power,  as the applications used were more
computation-intensive than data-intensive, i.e. they were very rarely were using big amount
of data.

In Figure 1 it  is depicted the current structure of CASPER when observed from the
viewpoint of the general job scheduler. It can be noted that the frontend node provides all
the storage, as local disks are only used to maintain cache and temporary files. In CASPER
communications occur under the umbrella of InfiniBand connection, which is fast and with
low latency  linking  all  the  nodes in  the  cluster  as  well  as coexisting with  the  Ethernet
network.  To  run  custom  code  or  third-party  software,  including  also  the  widely  used
Message  Passing  Interface (MPI)  libraries,  CASPER is  normally  operated  through  the
industry standard job scheduler and resource manager Oracle GridEngine (formerly known
as Sun GridEngine).

Several research activities have been supported by HPC@POLITO, where, during the
past  three  years  30+  research  projects  and  20+  scientific  papers  have  benefited  of
CASPER computational resources.

 

http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.infinibandta.org/
http://hpc.polito.it/
http://hadoop.apache.org/
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Figure 1: The CASPER cluster configuration (mid 2013) from SGE's point of view.

3. Addressing the BigData problem 
3.1 Motivation and our choice

During the last academic year, we have experienced the starting of a new need: the
capability to perform analysis of  large amounts of data has been more and more often
required by CASPER users.  Due to budget restrictions, we have immediately discarded the
option  of  a  complete  rejuvenation  and/or  replacement  of  our  cluster  with  another  one
specifically designed for Big Data. Therefore, we have decided to study the feasibility of
“upgrading” the current configuration to tackle also Big Data. We have started by verifying if
an implementation of  a framework for Big Data processing would perform well  inside a
general  purpose  HPC  system  like  CASPER  and,  if  so,  what  changes  to  the  general
architecture would have been necessary to achieve better performances. We believe that
this issue could be common and therefore we are here to share our choices and experience
with other Readers both to get their feedback and to transmit what we have learned.  

After  long  discussions,  some  pre-tests  and  a  deep  analysis  of
advantages/drawbacks/tradeoffs/costs, we have converged to a first-experimental solution
adopting  the Apache  Hadoop open  source  framework,  which  exploits  the  well  known
MapReduce  [Dean  &  Ghemawat,  2008] paradigm  for  the  efficient  implementation  of
data-intensive distributed applications. Besides these characteristics, Hadoop is also well
known to:  run very well  on large clusters of commodity hardware, provide a framework
possibly  minimizing  the  impact  of  hardware  failures  and  exploit  local  computation  and
storage.

3.2 General Remarks
Before  starting  the  deployment,  we  spent  some  more  time  to  analyze  the  current

configuration  of  the  cluster  to  identify  and possibly  quickly  address  critical  issues  of  a
straight  implementation of  Hadoop on CASPER. We focused our  attention on the main
components, i.e. storage, CPU & Memory, and Network. In the following we have listed our
main findings and issues.
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• Storage 

Fact: Hadoop accesses memory by using its own distributed file system, called
HDFS.  To  prevent  storage  from  becoming  the  bottleneck,  it  is  necessary  to
properly  harmonize the configuration of  the physical  storage and the way it  is
accessed by the software. 

Problem: We observed that, being a distributed file system, HDFS uses the local
storage resources of the individual computational nodes.  However, usually HPC
general  purpose  clusters  (like  CASPER),  are  based  on  centralized  storage
systems (such as a NAS). In such cases, the computational nodes of the cluster
are  equipped  with  low  performance  very  basic  local  hard  disks,  very  poorly
suitable to efficiently store and handle any big data. In Figure 2 we observe that in
CASPER  the  amount  of  local  disk  space  available  for  each  CPU  has  even
decreased during the years. Other HPC cluster configurations have even diskless
computational nodes bootstrapping from the network and using a small ramdisk for
local operations. 

Our Solution: An easy way to workaround the problem before installing Hadoop, is
to add more local hard disks on each computational node for the exclusive use of
HDFS. 

• CPU and memory 

Fact: Hadoop exploits CPU and memory especially during the Map phase of the
MapReduce process. At this stage, many tasks are executed in parallel by all the
Mappers processes running on each computational node. For correct operation, all
CPUs in the cluster should have similar performances. If  not,  the slower ones
would  represent  a  bottleneck.  In  other  words  the  cluster  should  be  as  much
symmetric (or homogeneous) as possible.

Problem: The last nodes (from compute-0-6 to compute-0-9 in Figure 1) added to
the  initial  configuration  of  CASPER  were  acquired  as  part  of  "fellowship"
agreements [Della Croce et al. 2011] with some research groups. The needs of these
groups  have  therefore  driven  the  growth  of  CASPER,  basically  towards  three
different types of computational nodes (Figures 1 and 3), while at the same time
aiming the RAM/CPU ratio to the initially target value of  4 GB (Figure 2). The
outcome  of  this  growth  process  is  that  the  four  most  recent  nodes  are
characterized by more CPUs operating at lower frequencies than these of the first
five nodes, thus resulting into a current configuration of CASPER which is highly
heterogeneous.

Our  Solution: This  problem  is  difficult  to  solve  without  radically  changing  the
current configuration of the cluster. A quick, but limiting, workaround could be to
exclude the slower computational nodes from the pool used by Hadoop. We will
discuss more effective solutions in our “Recipe list” in section 3.5. 

• Network 

• Fact:   HDFS  commonly  relies  on  IP  for  node-to-node  communication.  Much
attention should be paid while choosing the type of Layer 2 network on which IP
traffic  flows,  in  order  to  ensure  high performances  of  HDFS when transferring
blocks of data between nodes.
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Figure 2: Temporal evolution of some hardware features of the CASPER cluster

Problem:  CASPER  has  a  total  of  three  Layer  2  networks  carrying  different
information. A InfiniBand DDR 20 Gb/s network carries all the MPI node-to-node
data transfer during standard jobs (i.e. not using Hadoop) execution. A dedicated
4x1  Gigabit  Ethernet  aggregate  link  connects  the  central  NAS storage  to  the
nodes  via  NFS.  Finally,  a  Gigabit  Ethernet  (Gbe)  network  still  remains  as  a
supporting layer 2 for carrying the remaining IP traffic, usually related to system
management  communications  or  data  generated  by  monitoring  tools.
Unfortunately HDFS traffic falls under the slower Gbe network.
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Our Solution: The only possible solution that we have found to be effective in our
environment without doing a complete redesign of the cluster, is to implement an
aggregated link also on each slave node.

3.3 Hadoop deployment and tuning

The installation of Apache Hadoop [Garza et al. 2013] was made by trying to harmonize
its  needs  to  those  of  our  specific  HPC system.  From the  operating  system viewpoint,
CASPER  is  an  installation  of  ROCKS  Cluster  Distribution  5.4.31.  Therefore,  to  install
Hadoop 1.0.4 we used the packages from the EPEL repository for CentOS, as derived by
ROCKS. As it can be observed from Figure 3 , one of our main choices has been to use the
frontend node of the cluster as master node of Hadoop and the computation nodes as slave
nodes. 

Targeting  to  performances  improvements  HDFS  was  configured  with  permissions
disabled, data block size set to 256MB and number of replicas per data block set to 2. On
the first five nodes of the cluster (from Slave 0 to Slave 4 in Figure 3), we added one single
1TB 7200 rpm Sata-3 local hard disks for the exclusive use of HDFS. On the remaining four
nodes (the most recent) this was not possible because of lack of physical space in the case
and therefore the available storage for HDFS is only 160GB.

We then configured Hadoop so as to meet the heterogeneous nature requirements of
CASPER. Specifically, the maximum number of  mappers for each node was set equal to
the number of cores, while the maximum number of reducers was set to 4 for the five nodes
with a large and efficient  1TB local disk, and to 0 for the other four nodes, in order to
comply with potential decreases of the overall file system performances due to the slow

 

Figure 3: The CASPER cluster configuration (mid 2013) from Hadoop's point of view.

http://www.centos.org/


Thinking BigData: Motivation, Results and a Few Recipes for a Balanced Growth of HPC in Academia

efficiency and small size and their hard disks.

3.4 Benchmarking the system

We  run  a  set  of  experiments  based  on  Hadoop  to  evaluate  its  performances  and
scalability on CASPER, in order to possibly identify which upgrades could be useful for
CASPER to become an efficient system for Big Data. In particular, we run one of the most
widely  used  and  available  benchmarking  tests  to  analyze  efficiency  and  scalability  on
Hadoop, i.e. the Hadoop-based implementation of  TeraSort.  For the purpose of  running
TeraSort in different boundary conditions, we used two datasets of sizes 100GB and 200GB
respectively.

As  it  is  well  known  that  for  Hadoop,  asymmetry  equals  inefficiency,  we decided to
evaluate TeraSort this two different configurations of CASPER:

• The SomeNodes test configuration is based solely on the 5 first  nodes of the
cluster,  labeled  in  Figure  3  as  Slave  0 to  Slave  4.  It  is  the  only  possible
homogeneous configuration that we can build in CASPER using more than two
nodes. It relies on 5 Intel 3.2GHz nodes with 1TB of secondary memory per node,
accounting a total of 40 CPUs. The 1TB disk was added before deploying Hadoop
to possibly enhance HDFS performances.

• The  AllCluster test  configuration  is  basically  an  extension  (or  an  enhanced
version) of SomeNodes exploiting all the resources of the cluster. It is designed to
squeeze  every  drop  of  power  from  CASPER,  but  it  is  also  extremely
heterogeneous. It is based on 136 CPUs with different frequencies (3.2 GHz and
2.4 GHz) and local disks with size ranging from 160GB to 1TB. This configuration
has +240% more CPUs than SomeNodes, therefore the expected execution time
decrease when running TeraSort should be -58%. 

The results reported in Table 2 show that TeraSort can process in less than 4 hours a
200GB dataset and that, even on a cluster that was not specifically designed for Hadoop, it
is possible to process files larger than those manageable by traditional parallel frameworks
like MPI [Garza et al. 2013].

However, the time scored by the SomeNodes configuration is only slightly worser than
the one scored by the AllCluster configuration. The AllCluster configuration decreases the
execution time by only -13% when the file size is 200GB  and -31% when the file size is
100GB, thus showing that the extra  4 non-homogeneous nodes appear not to contribute in
a relevant way to the overall computations.  

Name CPUs Tot. Memory Tot. HDFS size Mappers Reducers
SomeNodes 40 120 GB 1.6 TB 40 20

AllCluster 40+96 632 GB 5.64 TB 136 20

Table 1: Test configurations chosen for TeraSort

Dataset Test Configuration Execution Time
100 GB SomeNodes

AllCluster
1h23m2s
57m26s

200 GB SomeNodes
AllCluster

3h52m57s
3h21m49s

Table 2: TeraSort execution time on CASPER
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We have identified some possible reasons for this result on the AllCluster configuration:

• Having set  to  zero the  number of  reducers on the most  recent  slaves  without
additional 1TB disk, has allowed us to not degrade the performance of HDFS, but
at the same time has forced the same slaves to transfer all the data to the first 5
slaves having at least 4  reducers  (see Figure 3) .  This generates a quantity of
traffic on the Gigabit Ethernet network so high that the advantage given by having
more than double the mappers is almost completely zeroed.

• Although AllCluster involves several additional CPUs, their operating frequency is
too low: 2.4 Ghz versus 3.2 Ghz of the nodes of SomeNodes. This has the effect
of slowering the overall  map() phase of the MapReduce paradigm, thus showing
that this configuration is probably too much heterogeneous.

3.5  Some  recipes  for  a  better  Hadoop  implementation  on  general
purpose HPC

Based  on  the  results  that  we  have  obtained,  it  can  be  observed  that  a  slightly
“upgraded” CASPER, and in general also possibly any similar general-purpose architecture,
can potentially be used to run also the new Hadoop-based applications. The key is what
and how to implement the slightly upgrading specially targeted to improve performances on
large datasets.

While  integrating  Hadoop  within  a  general  purpose  HPC  cluster  as  CASPER  we
identified and set  up some possible  recommendations to achieve integration with  good
performance at the same avoiding the need to change the architecture of the cluster itself.
In  particular,  we have  observed  that  the  main  ingredients  are,  as  expected,  Network,
Distributed Storage and Computational Power. Clearly, their combination, interoperability
and configuration can really make the difference.  Here below our  “recipes”,  i.e.  how to
weight, size and combine the different ingredients.

• Network: Communication in Hadoop suggest a Gigabit Ethernet connection for
the slave nodes, and a faster connection for the master node, such as: 

- An aggregate of several 1 Gigabit Ethernet links. Incidentally, this has been
proven to be working well with the current configuration of CASPER.

- The combination of a faster 10 Gigabit Ethernet link on the master node and
some aggregate links on the slaves.

-  An  InfiniBand  link,  if  already  available  in  the  cluster,  implementing  the
IP-over-InfiniBand stack, which unfortunately  implies a complete redesign of
the cluster.  

• Distributed  storage: The  distributed  storage  in  a  Hadoop  based  cluster  is
managed  through  HDFS,  which  has  a  master/slave  architecture.  In  HDFS,  a
cluster consists of: at least one NameNode, a master server that manages the file
system  namespace  and  controls  access  to  files  by  clients,  and  several
DataNodes, usually one per node in the cluster, each one managing their local
node storage. Under this premise, our thoughts are: 

- We strongly advise to setup a RAID on the NameNode, since it contains all
the metadata needed by HDFS to ensure data consistency. On the contrary,
no RAID configuration is required on DataNodes, as HDFS already operates
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with intrinsic internal data redundancy.

-  Regarding  the  number  of  disks  on  the  slave  nodes,  we  would  like  to
recommend a configuration with 2 disks, one for the exclusive use of HDFS
and another one for storing temporary files needed for processing the tasks
that will  be assigned to the computational nodes. As in a general  purpose
HPC cluster the computational nodes could also be diskless, it could be likely
that often it is not possible to add more than 1 or 2 additional disks per node
due to  physical  limitations of  the individual  nodes.  In general,  in  a  cluster
specifically designed for Hadoop the number of disks recommended for node
usually  ranges  from  2  to  a  number  depending  by  the  number  of  cores
available on the node and the physical space needed/available. In our case
we have tested CASPER to exhibit good performances with one additional 1
TeraByte disk, as we did not have more physical space to install more disks.

- As the frequency of  communication between  NameNode and  DataNodes
increases together with the fragmentation of the data (i.e. when several small
files  are  often  exchanged),  in  order  to  reduce  the  negative  impact  of  a
possibly slow NameNode, it is highly recommended to equip the master node
with both enough RAM memory and computing power. A fine tuning on “how
much”, depends on  number and size of files that will be likely stored into
HDFS, and can be done by running some practical experiments. 

• Computational  power: Into  a  Hadoop  cluster  the  jobs  are  submitted  to  the
MapReduce framework consisting of a single master  JobTracker  and one slave
TaskTracker per slave node. The master is responsible for: scheduling the tasks of
each job on the slaves, monitoring them and re-executing the failed tasks. 

- For the master node we have not identified additional relevant constraints
besides these outlined in the previous points.

- On the other hand, slave nodes require a sufficiently large memory size to
keep the processor busy without frequently swapping. Although this is highly
dependent on the type of job that will run on the cluster, we have found that
satisfactory  performances  for  basic  configuration  are  obtained  with  slave
nodes equipped with 8 cores and 24GB of RAM.

- As we have seen in the previous sections,  good performances require a
homogeneous system with at least the same choice of hardware for the slave
nodes both in the number of cores and in the frequencies of the processors.
In CASPER we have experienced that any asymmetry between the individual
nodes can cause re-schedule of tasks and long waiting times between the
operations  of  map() and  reduce(),  due  to  the  different  execution  times  of
similar tasks scheduled on differently equipped nodes. Unfortunately, in our
case these issues should have been addressed both in the design phase of
the initial configuration (i.e. when CASPER was designed in 2010) and in its
following upgrades, as later (i.e. today) there is no way to make such changes
without full replacing at least some of the computational nodes.

Additional points that, based on our experience, we recommend to observe are:

• Future upgrades of the system should comply with scalability and keep the system
as most homogeneous as possible.

• Based on our tests, Hadoop seems to achieve better results when the nodes have
sufficiently large and efficient local disks. In other words, the choice of the disk's
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size and type will be in a trade-off between performances and total size of the
distributed file system, based on the footprint that experimental data will have at
runtime (i.e. considering intermediate writes).

• One way to avoid a problem of cluster-heterogeneity, like in CASPER, is to exploit
the  features  provided  by  the  general  scheduler  (see  Figure  1).  All  popular
schedulers  for  HPC  systems,  in  fact,  provide  the  ability  to  create  different
execution queues including homogeneous subsets  of  nodes, therefore creating
many “smaller”, more efficient Hadoop clusters.

4. Conclusions and Future Developments 
Big Data is an emerging issue and the need to rethink at High Performance Computing

to be able also to manage tasks with massive Big Data is not just a research topic, but a
real need. At Politecnico di Torino we have taken this new issue both as a challenge and as
an opportunity and have started a project of identifying the requirements for a balanced
upgrading of our HPC towards Big Data.  In this paper we have shared our experience
gained while designing and deploying this growth. In particular, we have briefly outlined the
steps that we have taken to make our HPC system able to run MapReduce tasks using
Hadoop,  the  results  obtained,  and  shared  a  set  of  possibly  useful  general
recommendations.

The plans for the close future of our HPC center include the expansion of CASPER up
to  296  CPUs,  1.3  TB  of  memory  and  60  TB  of  central  storage  by  September  2013.
Following the recipes in this paper, we have adopted some  measures: 

• The system will be kept as homogeneous as possible by adding computational
nodes similar to the current ones.

• Each new node will have 2 additional disks for the exclusive use of Hadoop.
• The master node will be connected with a 10 Gigabit Ethernet link.

Finally, although the primary goal is to have a stable and reasonably efficient system in
every field of HPC, it is our intention to follow the current trend of Big Data: not only "large
data-bases", but also new algorithms, computational models and applications, starting from
NoSQL DBMS  like  Apache  HBase.  This  will  bring the  computing  center  to  face  new
stimulating challenges such as: strengthening the Ethernet network with multiple switches,
optimizing the sharing of local resources between HBase and SGE, redounding the master
node to make the whole system more fault tolerant.
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