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has potential to become a practical 
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ABSTRACT

Cracking and deterioration of concrete are the leading causes of a pre-

mature failing of reinforced concrete structures. To assess the condition

of concrete, a variety of destructive and non-destructive testing methods

have been developed. From these two methods, the non-destructive test-

ing (NDT) is a more favorable (albeit more challenging) option since the

tested target is left undamaged. The NDT modalities include acoustic,

electromagnetic and radiation based techniques. In this thesis, the fea-

sibility of electrical resistance tomography (ERT) for NDT of concrete is

studied. In ERT, electric currents are injected into the target through elec-

trodes that are are attached to the boundary of the target. The resulting

voltages between the electrodes are measured and this boundary voltage

data is then used to reconstruct the internal conductivity distribution of

the target. The reconstruction of the internal conductivity distribution of

concrete is expected to provide valuable information about the condition

of the structure so that appropriate repairs can be taken in time.

The difficulty in ERT, as is in any other diffuse tomography modality,

is that the problem has a nature of an ill-posed inverse problem. This im-

plies that the solutions of the problem are unstable and nonunique in the

classical sense. As a consequence, extra attention must be directed to the

mathematical modeling of the measurements as well as to the reconstruc-

tion methods. Furthermore, concrete is strongly heterogeneous material

composed of cement matrix, aggregate and different chemical compounds

that create a challenging target for electrical modalities.

Previous studies have shown that ERT is a potential tool for NDT

of concrete, but the quality of the reconstruction was not yet sufficient

for practical applications. In this thesis, especially localizing reinforcing

bars and crack identification are considered. To meet those aims, novel

computational methods for the image reconstruction are developed. For

the crack identification and localizing reinforcing bars, a novel adaptive

meshing approach was developed. In the new approach cracks and rein-

forcing bars are modeled as internal structures. The results show that by

employing accurate mathematical models and statistical inversion tech-

niques based on the Bayesian framework, ERT can become an applicable

tool for practical NDT of concrete.

Universal Decimal Classification: 537.311.6, 620.179.1, 620.19, 621.3.011.2,

621.317.33, 691.32
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1 Introduction

Concrete is the most used building material in the world [1]. In 2008, the

United States alone consumed 93.6 million tons of portland cement [2],

and around 10 billion tons of concrete are estimated to be made in the

world each year — that is over one cubic meter per every person on earth.

The current concrete infrastructure throughout the western world dates to

mid 50’s. As the deterioration rates of this infrastructure are increasing,

the pressure on civil engineering community in a form of structural evalu-

ation, repairs and retrofitting is significant. It is estimated that 35 % of the

work in building sector is directed to evaluation and repairs of damaged

structures, and the percentage continues to increase [3]. Therefore, the

development of new testing methods for faster and more reliable condi-

tion evaluation of concrete structures is critical. Techniques that provide

information on the location of the reinforcing bars, the degree of cracking

in the reinforced concrete, the distribution of chlorides in the matrix, the

humidity gradients in concrete, the state of corrosion, and the depth of

cover, are needed.

The testing methods for concrete can be divided in destructive and

non-destructive methods. The destructive methods are usually mechani-

cal and used for assessing the strength of concrete. Examples of destruc-

tive methods are core tests, pull-out test, pull-off tests and penetration re-

sistance tests [4]. The Core tests are the most reliable, but cause the biggest

damage for the inspected structure. In core tests, a sample (i.e. core) is

extracted from concrete by drilling and then analyzed in laboratory. The

pull-out and pull-off tests usually measure the force needed to remove dif-

ferent embedded or glued inserts from concrete. They can provide infor-

mation about the compressive strength (pull-out test) or tensile strength

(pull-off test) of concrete [4]. The penetration resistance tests (also known

as the Windsor probe tests) use powder-actuated tools to fire nails or probes

made of hardened steel alloys into the concrete. The strength of concrete

is determined from the depth of penetration. Although destructive testing

methods are reliable and easy to interpret, their biggest disadvantage is

that the tested material has to be repaired. Substantial amount of time

and money can be wasted in the repairs causing stress for the contractors

to finish their project in time. Due to the high costs, the measurements are

typically acquired from rather sparse coverage of the tested structures.

Non-destructive testing (NDT) methods are highly valuable for assess-

Dissertations in Forestry and Natural Sciences No 122 1
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ing the condition of concrete without further impairing the tested struc-

ture. As a consequence, the expenses of the repairs in time and money

can be avoided. The simplest, fastest and probably the most important

non-destructive test is visual inspection. A well trained eye can provide

valuable information from the types of cracking, spalling, colour changes

etc. However, the visual inspection method is limited to detection of flaws

on surfaces and, in the end, by the capabilities of human senses. Thus,

more sophisticated methods for NDT of concrete have been developed.

The NDT methods commonly in use are based on acoustical waves, elec-

tromagnetic techniques and different types of radiation, such as X-rays or

infrared light. A review of the NDT methods is given in Chapter 3.

In this thesis, non-destructive testing of concrete with electrical meth-

ods is considered. Numerous studies during the last few decades have

indicated that electrical methods are sensitive to various properties of con-

crete and are well suited for inspecting large concrete structures. Electrical

(AC) impedance spectroscopy (EIS) is one of the most employed electrical

methods. EIS has been applied for detection of cracks [5, 6], fiber dis-

tributions [7–9], fiber orientations [10], and corrosion rate of reinforcing

bars [11–14]. Furthermore, AC impedance measurements can yield infor-

mation about concrete humidity [15,16] and chloride distributions [17,18].

However, what EIS and most of the NDT methods are lacking, is realis-

tic modeling of measurements. For instance, often the geometry and the

inhomogeneities of the concrete properties within the target are not mod-

eled accurately. This can lead to unreliable estimates for the concrete

properties.

Electrical resistance tomography (ERT) [19–22] is a non-invasive imag-

ing modality in which the aforementioned issues can be taken into ac-

count. In ERT, a set of electrodes is attached to the surface of the target.

Electric current is applied through the electrodes, and the potential dif-

ferences produced on the surface are measured using several electrode

pairs. Based on these measurements, an estimate for the 3D distribution

of resistivity (or its reciprocal, conductivity) is computed. Previously, ERT

has been applied, for example, in process monitoring [23–26], biomedical

imaging [27–31], geology [32–34] and some NDT applications [35]. How-

ever, only few preliminary studies for applying ERT to non-destructive

testing of concrete or other cement based materials have been reported so

far [36–39].

The reconstruction of the conductivity distribution in ERT is an ill-

posed inverse problem [40, 41]. The practical definition of inverse ill-posed

problems is that they are drastically sensitive even to moderately small

2 Dissertations in Forestry and Natural Sciences No 122
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measurement and modeling errors. A powerful approach to ill-posed in-

verse problems is the Bayesian (statistical) framework [22, 40, 41]. In the

Bayesian formalism, the uncertainties and errors in the measurements and

models, as well as the properties of the primary unknown (conductivity)

distribution, are modeled explicitly using statistical models. The explicit

statistical models for the primary unknown are referred to as prior models

or priors. The selection of the prior model depends on the prior informa-

tion about the target and also on the tolerable complexity level of the

associated numerical scheme needed to solve the inverse problem. The

solution of the inverse problem can be obtained by combining the infor-

mation given by the measurements with the prior model and the statistical

measurement model.

In this thesis, the feasibility of ERT for 3D imaging of concrete is stud-

ied. Different geometries and internal structures are considered. The

challenge of imaging a material with highly complex heterogeneous in-

ternal structure is addressed by developing and employing state-of-the-art

computational models and inversion methods. The conducted numerical

and experimental studies demonstrate that accurate modeling of the mea-

surements and utilization of structural prior models with sophisticated

numerical techniques can yield feasible reconstructions of the concrete

conductivity as well as location and size of steel reinforcing bars (rebars)

and cracks in concrete.

Aims and contents of this thesis

The aims of this thesis are

1. To study the feasibility of ERT for imaging concrete. The feasibility

of the method is verified with experimental data. In the experiment,

concrete specimens with different embedded objects exhibiting re-

sistive and conductive characteristics are considered.

2. To investigate the applicability of ERT for detection of cracks in

concrete. Concrete beams and slabs, especially, are considered. In

these geometries, the measurements are acquired from one surface

only.

3. To take a novel computational approach to ERT to localize rebars

and to estimate their sizes. For the estimation, an accurate rebar

model and an adaptive meshing scheme are developed. The method

is verified by numerical simulations.

Dissertations in Forestry and Natural Sciences No 122 3
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4. To apply the adaptive meshing approach for crack identification.

Especially, the estimation of crack depth and orientation in mate-

rials with inhomogeneous background conductivity is considered.

The proposed approach is evaluated with numerical and experi-

mental data.

This thesis is organized as follows. In Chapter 2, the basic character-

istics of concrete in macroscopic and microscopic levels are discussed. In

addition, the electrical properties as well as degradation of concrete in-

frastructure are considered. In Chapter 3, the NDT-methods currently in

use for concrete are briefly reviewed. Chapter 4 describes the background

of ERT. The discussion covers the electrode model, typical measurement

techniques and outlines a reconstruction method that is based on Bayesian

framework. In Chapter 5, ERT imaging of concrete is discussed. The fea-

sibility of the method for imaging concrete as well as localizing rebars

and cracks is evaluated by experimental and simulational studies. The

conclusions are given in Chapter 6.

4 Dissertations in Forestry and Natural Sciences No 122



2 Concrete

The history of concrete construction is as old as 5600 years dating back to

early concrete-like structures found from former Yugoslavia. The first ma-

jor use of concrete was during the ancient Egyptian civilization, but what

is modernly understood as concrete construction was achieved by the Ro-

man empire over 2000 years ago. Perhaps the most famous example from

Roman era is the Pantheon and its large concrete dome. As the Roman

empire fell, the knowhow to build concrete structures was long forgot-

ten until rediscovered in around the first half of the nineteenth century in

England. Nowadays, concrete is the most extensively used construction

material in the world. The applications of concrete concerns structures

such as buildings, bridges, sewers and large pipes, dams etc.

In this chapter, the basic characteristics of concrete are reviewed to

provide information about the macroscopic and microscopic composition

of concrete as well as electrical properties that are largely determined by

the pore structure in the microstructural level of concrete. In addition,

reinforced concrete and the deterioration processes are also shortly con-

sidered. The discussion is mainly based on reference [1].

2.1 STRUCTURE OF CONCRETE

Concrete is a stone-like construction material mainly composed of cement,

coarse and fine aggregate (i.e. gravel or crushed rocks and sand), water

and some chemical admixtures. The fine and coarse aggregate form the

bulk of the concrete and they are bonded together by hardened cement

paste. The cement paste is a mix of cement and water which hardens

through a chemical reaction known as hydration. This is the key feature of

concrete; the newly mixed concrete is plastic and malleable, which enables

it to flow easily into preforms of various shapes, yet strong and durable

when hardened. In Figure 2.1, a cross section from concrete specimen

shows the two macroscopic phases that are the aggregate and the cement

paste. The Figure 2.1 shows also air voids that have been entrapped in the

concrete batch during casting.

The careful proportioning and mixing of the ingredients is essential

in achieving strong and durable concrete. The proportions should be de-

signed such that the concrete mixture retains the desired workability of

freshly mixed concrete and the required strength for the hardened con-

Dissertations in Forestry and Natural Sciences No 122 5



Kimmo Karhunen: ERT imaging of concrete

Air voids

Aggregate

Cement paste

Figure 2.1: Cross section from concrete specimen showing aggregates, cement paste and

air voids.

crete. Typically, a mix is about 60 − 75 % of aggregate, 10 − 15 % of

cement and 15 − 20 % of water by volume.

The typical measure of concrete strength is the compressive strength

(measured in MPa) that defines the concretes ability to resist compressive

stress. The main factor determining the strength of concrete is water-

cement ratio w/c, although other factors such as curing conditions, ag-

gregate sizes, admixture types, specimen geometry and moisture condi-

tions along with stress types and loading can also have an effect on the

strength. The types of concrete used in infrastructure are often divided

into three classes [1]: low strength concrete (less than 20 MPa), moderate

strength concrete (20-40 MPa) and high strength concrete (over 40 MPa).

The most used concrete class in normal structural work is the moderate

strength concrete, whereas the high-strength concrete has its applications

in more special constructions.

It is a well known fact that concrete is strong in compression but con-

siderably weaker in tension (the tensile strength of plain concrete is typ-

ically only about 10% of its compressive strength) and thus structures

made of plain concrete are vulnerable to shear stresses caused by wind,

earthquakes and other tensile forces. Therefore, virtually every modern

concrete building is reinforced to bear the tensile load. The reinforcement

types for concrete are reviewed in Section 2.3.

6 Dissertations in Forestry and Natural Sciences No 122



Concrete

2.1.1 Composition

The aggregate material occupies the largest portion of the concrete mix

volume and hence aggregates should be chosen carefully. The type and

size distribution of aggregate mixture depends on the required character-

istics and purpose of the final concrete product. In principle, the aggregate

can be any granular material that takes no action in the hydration pro-

cess and possess the required qualities in strength, density and durability.

Commonly, materials such as sand, gravel, crushed stone, crushed blast-

furnace slag, or construction and demolition waste are used for aggregate.

The term coarse aggregate refers to aggregate particles of size larger than

4.75 mm, whereas the fine aggregate contains particles smaller than 4.75

mm but larger than 75µm [1].

Cement is a dry powder substance that is used to bind the aggregate

materials of concrete. Cement alone is not a binder but upon the addi-

tion of water the binding property is developed as a result of hydration.

Cements that harden by reacting with water and form a stable product

that can resist wet weather or aqueous environments are called hydraulic

cements. The most commonly used hydraulic cement is portland cement.

The non-hydraulic cements (e.g. lime and gypsum plaster) are not stable

in water and must be kept dry in order to gain strength.

The mixing water has an important role in concrete mixing as it initi-

ates the hydration and controls the workability of concrete batch as well

as the strength of the end result. The amount of water is indicated by

a water-cement ratio w/c that is given as a mass ratio. A low w/c ratio

yields concrete that is strong and durable whereas high ratio results freer

flowing, malleable concrete with less strength. Typical w/c ratios are 0.7

for low strength concrete, 0.5 for moderate strength concrete and 0.35 for

high strength concrete [1]. The w/c ratio largely determines the porosity

of the hydrated cement paste, which is the key factor that contributes to

the strength of concrete. Depending on the porosity of the cement paste

and the environmental humidity, large amount of water in different forms

can exist in concrete. Although the amount of water decreases with drying

and progressing hydration, not all water is lost during aging or even on

extreme drying. A more detailed review of water in the microstructural

level of concrete is given in Section 2.1.2.

The chemical admixtures are added to the concrete batch at the time of

mixing to control various characteristics of concrete that are not achievable

with plain cement-water mixes. For example, the admixtures are often

used to improve the workability of fresh concrete or increase the density
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and strengthness, and enhance the durability of hardened concrete. In

cold environments, air entrainment admixtures are valued by their ability

to increase the porosity of concrete which results in concrete that is highly

resistant to freezing and thawing cycles.

Concrete gains most of its strength during the first few days and

weeks after it has been placed. During this period, it is critical to maintain

proper conditions for concrete to harden fully. This maintenance is known

as curing. The main aim in curing is to keep the temperature and moist-

ness high enough that the hydration happens effectively. Improper curing

would essentially lead to reduced strength of concrete. Excessive prema-

ture drying, especially, can yield shrinkage cracking when water evaporates

from the pores thus causing internal stresses that concrete cannot with-

stand in its early stage of hardening.

2.1.2 Microstructure of concrete

Concrete has a highly heterogeneous and complex microstructure that

comprises three major components, namely, hydrated cement paste, ag-

gregate and the transition zone between cement paste and aggregate [1].

Regarding an electrical NDT of concrete, the cement paste and the transi-

tion zone, and the pore water within, are the most important. Hence, only

these two components are covered in the following discussion. The forms

in which water exists in the pore structure at the microstructural level of

the cement paste are also considered. The electrical properties of concrete

are discussed in Section 2.2.

The hydration process in concrete is the reaction between water and

cement. The hydration reaction starts immediately upon the addition of

water. During this reaction, microscopic needle-like crystals, or nodes,

form on the surface of cement particles. As the nodes grow, they attach

to nearby aggregates, steel reinforcement or to nodes from other particles.

With the addition of water to concrete mix, the average distance between

particles increases and less linking between the nodes can happen. Thus,

the more water is used in the mixing, the less stronger, yet more workable,

hardened concrete will be, and vice versa. Most of the hardening takes

place within the first month of concrete’s lifetime, but in theory the hydra-

tion process continues for years (or even the entire lifetime of concrete).

The hydrated cement paste is a complicated compound containing

several solid phases. The most significant phases are the calcium silicate

hydrate gel (C-S-H phase) which provides the strength and calcium hy-

droxide crystals which contribute to alkalinity of cement [1]. The C-S-H
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phase (also known as C-S-H gel or cement gel) contains very small in-

terparticle space (gel pores) that are approximately from less than 1 nm

to 10 nm in size. The other voids that exist in hydrated cement paste are

capillary voids and air voids. The size of capillary voids can range approx-

imately from 5 nm to 5 µm depending on the w/c ratio and the degree

of hydration. Capillary voids are formed by the external water that is not

hydrated or absorbed by the gel pores. The formation of capillary voids

depends heavily on the water-cement ratio. With a water-cement ratio

less than 0.4 (approximately) the hydration process consumes most of the

excess water thus reducing the number of capillary voids close to zero.

The air voids generally differ from the irregular shaped capillary voids

and share a spherical shape [42]. They are formed by either small bub-

bles entrained on purpose or air that is entrapped in concrete mix during

casting. The size of entrained air voids range from 10 to 300 µm whereas

the larger entrapped air voids can have a maximum size of 3 mm. The

entrapped air voids usually exist near the surface because they are born

between concrete mix and formwork.

The pore structure in cement paste is one of most important char-

acteristics of concrete and strongly influences the strength and transport

mechanism of concrete. While the entrained air voids are often desired

because of their ability to compress and thus reduce external stress (for

example, due to freezing), the capillary voids can be harmful and usu-

ally are undesired. With the help of capillar suction, the capillaries form a

quick transit system for water and deleterious agents such as chloride and

sulfate ions into the concrete [43]. The deterioration processes in concrete

are briefly reviewed in Section 2.4.

The volume that exists between the large aggregates and the hydrated

cement paste is called interfacial transition zone (ITZ). The composition of

the ITZ is very similar to bulk cement paste, but it differs in microstruc-

ture and properties. In normal concrete, the porosity of the interfacial

transition zone is much higher than that of the bulk cement paste [44].

This owes to the fact that water films tend to form around large aggre-

gates (known as internal bleeding) increasing locally the water-cement ratio

leading to higher porosity. Because the ITZ is what serves as the bridge

between a coarse aggregate and the cement paste matrix, it is generally

considered as the weakest link of the concrete matrix. Thus, it is the tran-

sition zone phase that ultimately determines the strength of concrete.

Water can exist in the hydrated cement paste in many forms. The

categorization of different types is based on the degree of difficulty of

removing water from concrete. In empty or partially filled voids, water
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Figure 2.2: Schematic representation of partially water-filled void and the types of water

that exist in hydrated cement paste.

exists as water vapor in equilibrium with the environmental humidity. In

addition to vapor in voids, water is held in the hydrated cement paste

in the following forms [1]: Capillary water is present in voids larger than

about 5 nm. In large capillaries (> 50 nm), water exists as a free water

because its removal does not cause any volume change. In small capil-

laries (5 to 50 nm) the water is held by capillar tension and its removal

may cause shrinkage of the system. Adsorbed water is physically adsorbed

(as water molecules) to the solid surfaces in the C-S-H phase. Adsorbed

water can be removed when drying in around 30 % relative humidity

resulting in shrinkage of the hydrated cement paste. Interlayer water is as-

sociated with C-S-H structure as monomolecular layers between the layers

of C-S-H. Interlayer water is lost only on strong drying around 11 % RH

resulting considerably shrinkage of the C-S-H structure. Chemically com-

bined water is an integral part of various hydration products and it can be

removed only on decomposition during heating. The water types based

on the model proposed by Feldman and Sereda [45], associated with the

calcium silicate hydrate phase, are illustrated in Figure 2.2.

2.2 ELECTRICAL PROPERTIES OF CONCRETE

As explained in the previous section, concrete has a complex heteroge-

neous structure mainly composed of aggregate and cement paste. The

cement paste itself is also a complex composition of a network of cap-

illar cavities and C-S-H. The conduction of electric current through this

system can take several paths with different characteristics. Over a wide
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Table 2.1: Typical resistivities ρ and conductivities σ for concrete in different environments

at 20◦C and for aggregate commonly used in concrete.

Material/environment ρ (Ωm) σ (mS/cm)

C
o

n
cr

et
e1,

2 Wet 15 – 200 0.05 – 0.67

Outdoors (exposed) 100 – 400 0.025 – 0.1

Outdoors (sheltered) 200 – 500 0.02 – 0.05

Indoors (50% RH) > 3000 < 3 · 10−3

A
g

g
re

g
at

e3 Quartz 4 · 104 – 1 · 1012 1 · 10−11 – 2.5 · 10−4

Granite 5000 – 1 · 106 1 · 10−5 – 2 · 10−3

Sandstone 180 – 4000 2.5 · 10−3 – 0.056

Limestone 300 – 1500 0.007 – 0.033
1According to Polder [47]
2According to McCarter et al. [46].
3According to Whittington et al. [48].

Note: σ = ρ−1; 1 S/m = 10 mS/cm.

frequency range the complete electrical response of concrete is complex

valued and denoted by the impedance of concrete. Although impedance

modeling is needed to gain full understanding of the electrical response of

concrete, it is common to use approximative real valued resistivity mod-

els, especially, in the 0.01 – 1000 Hz frequency range, where plain concrete

acts as a pure resistor [12]. The resistivity of concrete is an important

parameter that can provide information about the strength, degree of hy-

dration and moisture content [46,47]. In addition, electrical measurements

can provide information about local parameters of concrete such as cracks

and location and corrosion of rebars. In the following, the electrical prop-

erties of concrete are briefly discussed.

Typical resistivities and conductivities of different concrete and aggre-

gate types are listed in Table 2.1. It can be seen that the resistivities of the

aggregates are several orders of magnitude higher than the resistivity of

concrete. Thus, the aggregates are considered inert, non-conducting parti-

cles in a conducting cement paste matrix, and the conduction of current is

largely determined by the hydrated cement paste and the randomly dis-

tributed, water-filled capillary pores within. The variation of the concrete

resistivity in each environment in Table 2.1 is caused by the variation of

w/c ratio and chemical composition of the hydrated cement paste [47].

The increase in w/c ratio shows up as decrease in resistivity. The re-

sistivity also decreases with increasing temperature [46–48]. Further, the

progressing hydration 1) chemically bonds more water 2) fills the capillar
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Figure 2.3: Resistivity ρc of young and moist concrete for different w/c-ratios as a func-

tion of fractional volume ϕ of the cement paste. The plots are based on an experimentally

determined equation ρc(ϕ) = 1.04ρp ϕ−1.2, where ρp is the resistivity of the paste with

the same w/c-ratio and at the same age as the concrete. The equation and the ρp data are

from [48].

pore space, thus blocking paths for electrical conduction. Hence, the re-

sistivity of concrete increases during the hydration process. As a result,

the resistivity (or conductivity) of concrete can be an indirect measure of

its strength in at particular point in time.

The resistivity of different concrete mixes have been studied, for ex-

ample, in [46, 48]. In these studies, it was found that the resistivity of

concrete depends on the resistivity and on the fractional volume ϕ of the

cement paste. The higher the fractional volume of the paste, the less resis-

tive the resulting concrete is. The resistivity of the cement paste is largely

dictated by the w/c-ratio. Approximative graphs for concrete resistivity

as a function of the fractional volume of the cement paste for different

w/c-ratios are given in Figure 2.3. However, it should be noted that en-

vironmental variables have a significant effect on the concrete resistivity

and the graphs presented in Figure 2.3 are approximative and applicable

only to concrete mixes cured in controlled and moist conditions.

It is speculated [15, 48] that the mechanism of conduction through

moist concrete is largely by means of ionic conduction in the evaporable

water in the cement paste and to a lesser extent by means of electronic

conduction through the cement compounds, such as the gel, gel-water
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Figure 2.4: Schematic representation of complex response for cementitious material. The

frequency increases from right to left in counterclockwise fashion.

and unreacted metallic compounds. However, it is noted that separation

of these two mechanisms is virtually impossible since the electric conduc-

tion depends on the composition and concentration of ions in the evap-

orable water and the composition and structure of the solid phase, which

are heavily linked to each other. In 1981, Whittington et al. [48] modeled

the conduction paths through concrete with conductive paths that can

have three possible paths, that is, through cement paste, through paste

and aggregate in series and through aggregate particles in contact. How-

ever, it is extremely unlikely that aggregate particles would be in contact

one by one with each other through the whole path. More recently, it

has been postulated that the conduction of current through concrete can

mainly take three paths forming continuously conducting paths (CCP),

discontinuously conducting paths (DCP) and insulating paths (ICP) [49].

The CCPs are the paths with least resistance combining a series of capil-

lary cavities that are connected by pore necks. Discontinuous paths (DCP)

are a series of micro-pores whose continuity is blocked by cement paste

layers. The insulating paths (ICP) are the paths through solid cement

paste/aggregate structure.

The frequency dependent impedance response of cementitious ma-

terials (i.e. cement-pastes, limes, mortars, etc.) and concrete have been

studied, for example, in [15,17,49–53]. It has been discovered that concrete
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also exhibits a capacitive nature and the corresponding impedance plots

are typically characterized by two semicircular arcs known as bulk arc and

electrode arc, see Figure 2.4. The development of the bulk arc (typically over

1 kHz [52]) is a result of the capacitive behaviour due to the polarization

effects in the pore structure of hardened concrete. It is the accumulation

of the ions at the constrictions in the discontinuous paths (DCP) and pore

necks that contribute to capacitive response. The development of the elec-

trode arc at lower frequencies (typically below 1 kHz [52]) is a result of

polarization effects in the measurement electrode and concrete interface.

The centers of the arcs are depressed below the real axis by an angle α

(here shown only for the bulk arc) because of the multiple relaxation fre-

quencies over a wide frequency range in the polarization processes [54].

The bulk resistance (denoted by R0) is determined by the point where the

real axis and the low frequency arc intersect. The maximum value of the

bulk arc on the imaginary axis occurs at the characteristic frequency fc

(typically in the MHz range [52, 55]). It is speculated, that the value of fc

and α could be related to the size and distribution of pores [54].

The addition of reinforcing material, such as steel rebars or fibers,

into concrete has a significant effect on the electrical properties. Thus, it

is often advised to localize the rebars first and then conduct the resistivity

measurements of concrete as far as possible from the rebars [47]. The

presence of steel rebars in concrete is observed as a local decrease in the

resistivity and, especially, as transitions in the phase response [11]. With

the addition of conductive fibers, the impedance plot shows two bulk arcs

instead of one for plain concrete. This well known behaviour is called

dual-arc behaviour and it occurs due to polarization effect on the conductive

fibers [8].

Another factor that has an effect on electrical properties of concrete is

the cracks. Almost all concrete have some form of cracking (see Section

2.4), which can be observed as a change in contrast of resistivity between

the crack and surrounding concrete. The cracks can be either conductive

(saturated with water) or insulating with respect to the concrete resistivity.

The first case would correspond to moist cracks and the latter one for dry

cracks. In the impedance plot (Figure 2.4) the cracks would locally change

the R0 point on the real axis.
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2.3 REINFORCEMENT FOR CONCRETE

Although plain concrete itself is sometimes used in foundations, pave-

ments, basement walls and even large scale structures such as dams and

canal linings, the introduction of reinforced concrete have made possible

most of modern concrete structures. The most common reinforcement

material is steel, but other materials such as fiber-reinforced polymer (FRP)

are also used [56]. An example of a reinforced concrete during construc-

tion is shown in Figure 2.5.

For increasing the tensile strength of concrete, two construction prin-

ciples are used: reinforced concrete and prestressed concrete. The design of

reinforced concrete is normally such that the concrete carries the compres-

sive forces while the added reinforcing material handles the tensile forces.

In prestressed concrete, the tensile stresses are reduced by introducing

internal stresses through tendons that are tensioned and anchored to the

concrete.

Steel is well suited for reinforcing concrete due to its high tensile

strength and good bonding capability to concrete. The steel reinforce-

ment is typically available as individual steel bars or as a rectangular

mesh of wires factory welded at their intersections. In Fiber-reinforced con-

crete (FRC), small (10 – 75 mm in length) discrete fibers made of materials

such as steel, glass, nylon, polyester, propylene and natural fibers are

mixed with concrete. Fibers are added to concrete, especially, to reduce

cracking due to plastic and drying shrinkage, that normal steel reinforce-

ment cannot prevent. However, fibers do not generally increase the tensile

strength of concrete. Fibers can also be used together with steel reinforc-

ing bars. [56]

Prestressing can be achieved either by pre-tensioning or post-tensioning.

In pre-tensioned concrete the steel tendons are tensioned before the con-

crete is placed and embedded into the concrete in their tensioned state.

When the concrete is settled, cured and reached the required strength,

the tensioned stresses are released. The disadvantage of pre-tensioning

is that the most of the concrete elements have to be prefabricated at the

factory, because strong anchoring points are needed during casting. Post-

tensioned concrete differs from the pre-tensioned concrete in that the ten-

dons are tensioned after the concrete has been placed. The prestressing

force is transferred to the concrete by using end anchorages. The main

benefit of post-tensioning over the pre-tensioning is that it can be per-

formed at the jobsite. [56]
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Figure 2.5: Placement and compaction of concrete around embedded steel reinforcement on

a rooftop in Helsinki, Finland.

2.4 DETERIORATION OF CONCRETE STRUCTURES

Deterioration and failure of reinforced concrete structures is a frequent

concern nowadays. The physical and chemical mechanisms of deterio-

ration can be divided in numerous sub-categories acting in macro- and

micro-levels. Often, these mechanisms are also superimposed on each

other and thus hard to separate. The mechanisms contributing to dete-

rioration of the reinforced concrete can be categorized, for example, as

follows [57, 58]:

• Incorrect selection of construction materials.
• Errors in design.
• Incorrect construction practices, inadequate quality control and su-

pervision.
• Chemical attacks such as corrosion, carbonation, alkali-silica reac-

tion and chloride, sulphate, salt and acid attacks.
• External physical and mechanical factors such as restraint against

moving, cracking, abrasion, fire resistance and freezing and thaw-

ing.

In the following, the most important mechanisms regarding the applica-

tions aimed at in this thesis are considered. For more information about

the subject, see the cited references above.

The most important single parameter that contributes to the degrada-

tion of concrete is water [1]. Water is able to penetrate deeply into the
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porous structure of concrete and thus capable of transporting dissolved

substances that are harmful to concrete. As a result, the strength and

durability of concrete decreases which is often observed as cracking and

reinforcement corrosion and, eventually, as a failure of the structure.

Cracking is one of the most fundamental reasons leading to prema-

ture failing of concrete structures. Cracking occurs due to mechanical

loading or environmental effects, and virtually all concrete cracks. Cracks

can be macrocracks which are observable by visual inspection, or micro-

cracks that form at coarse-aggregate boundaries and propagate through

the surrounding mortar in the microstructural level and consequently can

be detected only with microscopic techniques or by non-destructive test-

ing [59]. A significant parameter is the crack width. Large cracks (crack

width > 0.3 mm) that remain open under tensile load can accelerate the

corrosion of rebars because the harmful agents can easily penetrate the

protective concrete cover through the crack [60]. On the other hand, it has

been reported that crack widths under 0.3 mm have little impact on the

rebar corrosion, thus not all cracking is severely detrimental [60]. Uncon-

trolled cracking, however, is always of a serious concern. It is essential,

that the degree and nature of cracking are evaluated and proper repairs

are undertaken before serious damage can happen. In this thesis, the

detection of cracks using ERT is discussed in section 5.3.

Corrosion problems arise, for example, if structures are exposed to

high concentrations of chlorides or reinforcements are misplaced due ei-

ther to inadequate design or to incorrect construction practices. Misplace-

ment of reinforcing steel may reduce the protective concrete cover, which

results in an early initiation of the corrosion processes. The rebar cor-

rosion can lead to serious cracking due to expanding corrosion products

that increase internal stresses in concrete. Severe cracking reduces the

structural capacity and in turn exposes the rebars for more rapid corro-

sion. Eventually, the badly corroded rebars cannot provide the additional

strength needed to handle the tensile stresses and the reinforced concrete

structure fails. Thus, the condition evaluation and localization of rebars

is important. The localization of rebars using ERT is discussed in section

5.4.
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3 Non-destructive testing of concrete

As discussed in previous chapter, concrete structures deteriorate in many

ways. Hence, the condition assessment includes several testing problems

such as crack identification, rebar corrosion and misplacement detection,

determination of compressive strength, thickness measurements, assess-

ment of delaminations and localization of grouting faults.

The testing of concrete structures can be conducted with numerous

methods ranging from visual inspections and tapping/listening tests to

highly developed three dimensional tomographic modalities. The testing

methods can be destructive or non-destructive in nature, but the latter are

preferred because of their cost-effectiveness, easiness of use and ability to

leave the target undamaged.

The pool of non-destructive methods for concrete is rich, although the

most advanced NDT-methods are still in development. Currently, there

is no one all-purpose NDT-tool for concrete, but the modality has to be

selected according to the application.

The aim of this chapter is to give a short introduction to the most

prominent non-destructive modalities for concrete. The chapter is divided

in three sections according the underlying physics of the methods: acous-

tic methods, methods that are based on radiation and electromagnetic

methods. The discussion is mainly based on reviews [61–64]. For further

reading, see e.g. [65–67].

3.1 ACOUSTIC TECHNIQUES

In this section, methods based on elastic wave propagation in solids,

caused by acoustical or mechanical excitation are considered. The sim-

plest form of testing in this category is the so-called “coin tap” test in

which the wall is tapped with a lightweight hammer and the produced

echo is observed by human ear for signs of imperfections inside the struc-

ture. A more sophisticated version of the tapping technique is a Schmidt

hammer or a rebound hammer test, in which a spring loaded mass is

impacted against concrete surface at defined energy and the rebound of

the spring-mass system is measured [4]. Schmidt hammers provide qual-

itative measures of the surface condition of concrete. By calibrating the

rebound measurements with core tests, the Schmidt hammers can be used

to determine the approximate compressive strength of concrete.
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Although the tapping and rebound tests are as simple techniques

widely in use and are effective in detecting delaminations, debonds and

uniformity of concrete, the methods are highly operator dependent and

typically provide information only qualitative in nature. For quantita-

tive and more accurate inspection, more sophisticated methods have been

developed. The acoustical techniques can be divided in various sub-

categories. Below, the following methods are briefly reviewed: ultra-

sonic/ultrasonic pulse-echo, impact-echo and acoustic emission.

In ultrasonic techniques [68–71], the propagation and dispersion of

high frequency (over 20 kHz) sonic waves are exploited in the inves-

tigation of the target. The ultrasonic waves are produced using ultra-

sonic transducers. Ultrasonic measurement systems can be divided in

two main groups [72]: Transmission and pulse-echo systems. In trans-

mission systems the source and receiving transducers are placed on the

opposite surfaces of the tested target, whereas pulse-echo systems can be

used for test subjects allowing only one-sided access to the target. Typical

applications are localization of rebars and tendon ducts, fault detection

and thickness measurements. Currently, ultrasonic techniques are among

those few methods capable for producing 3D images of concrete and more

or less the only technique that is applicable for on-site characterization

of cracks [73–77]. A commercial version for 3D imaging is available as

“Mira- ultrasonic concrete tomographer” [78]. Ultrasonic techniques usu-

ally have an excellent resolution. However, the dispersion of the waves

from the heterogeneous structures of concrete limit the effective imaging

depth of the ultrasonic methods.

Impact-echo (IE) method [61, 62, 79, 80] works similarly to pulse-echo

methods, but instead of using ultrasonic transducers for excitation, a me-

chanical impact is produced by tapping a small steel sphere against the

concrete surface. The mechanical impact induces elastic waves which

are reflected from internal flaws and/or external surfaces. The reflected

waves are then observed by accelerometers, displacement sensors or other

sensors capable of measuring vibrations. In contrast to ultrasonic tech-

niques, the mechanical impact creates waves with higher amplitudes thus

allowing deeper penetration into concrete. However, the frequency range

in impact-echo is low which results weaker resolution. Impact-echo method

is useful for quick survey of the inspected area and the typical applica-

tions include thickness measurements, detection of flaws such as voids

and delaminations in plate-like structures (bridge decks, slabs, walls, etc.)

or concrete beams and columns. IE-method is well suited for inspecting

reinforced concrete structures because of the long wavelength content of
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the stress waves (typically between 50 mm – 2000 mm) that are weakly

attenuated by the heterogeneous structure.

Acoustic emission (AE) [81, 82] is a monitoring technique that, as op-

posed to other acoustic methods, does not use controlled excitation to

produce elastic waves into the material but instead passively monitors the

local and rapid changes in elastic strain energy that show up as stress

waves (i.e. acoustic emissions) in the material. The acoustic emissions

can be generated by deformations and fractures and thus AE technique

is suitable for continuous condition assessment of a structures. For ex-

ample, AE has been used estimating the damage in reinforced concrete

structures [83].

3.2 METHODS BASED ON RADIATION

Radiation can be either ionizing (e.g. X-rays) or non-ionizing (e.g. in-

frared waves). In NDT-methods that exploit ionizing radiation, the atten-

uated radiation is detected as the rays pass through the object. From this

attenuation data, an image of the internal structure of an object is formed

either directly as in radiography or through cross-sectional images as in

computerized tomography (CT). Methods exploiting non-ionizing radia-

tion, such as infrared thermography, use the part of the electromagnetic

spectrum corresponding energies that are not high enough to ionize an

atom. Normally these methods detect the radiation emanating from visi-

ble surfaces directly.

Typical NDT-modalities based on the ionizing radiation are radiogra-

phy (X-ray, gamma-ray) [84], neutron radiography or tomography [85–87]

and computerized tomography (CT) [88, 89]. In addition, backscattering

techniques have been used [90]. Radiography is typically used for de-

tecting porosity, air voids and other inclusions that differ in density and

thickness influencing in the absorption of radiation. Neutron radiogra-

phy has been studied for detection of cracks and microcracking in con-

crete. Computerized tomography uses either X-rays or γ-rays to form

three dimensional images of the target and has its main applications in

crack detection and inspection of embedded rebars. The spatial resolu-

tion is commonly superior to other tomographic modalities. However,

the use of ionizing radiation always involves health hazard to personnel.

This is especially a concern with concrete as high doses of radiation are

needed to penetrate the target effectively. As a consequence, the use of

X-rays is often impractical at the job site. For example, X-ray imaging of
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a concrete bridge may require a zone radius to 1000 m cleared of humans

and cattle, when high dosage X-ray instruments are used [61]. The safety

precautions and the money spent in instruments capable of producing

high energy radiation makes methods using ionizing radiation expensive.

Neutron radiography and CT-imaging are mostly limited to small scale

measurements in laboratory [61, 62, 87].

Infrared (IR) thermography [61, 62, 91, 92] methods are used to detect

the energy that is emitted as radiation in infrared region of the electro-

magnetic spectrum. The applications include detection of defects and

finding heat losses. The principle in IR thermography imaging of flaws in

concrete is that the defects such as delaminations and cracks increase the

absorption of thermal energy on the surface which can be observed in the

emitted IR-image as hot spots. The heat loss inspections of buildings can

be conducted either as interior or exterior surveys. Usually, the interior

scans are preferred because the warm air mass does not always escape

through the walls in a straight line but moves in the open cavities of the

wall structure before getting out. In such cases, exterior surveys can give

misleading results. Also, the interior scans are not affected by weather

variations. Infrared thermography is a fast, non-contacting modality and

it does not require any health safety precautions. However, factors such

as solar radiation, surface emissivity and weather variations complicate

the quantitative assessment. Moreover, IR thermography surveys cannot

provide information about the depth of the defects.

3.3 ELECTRICAL AND ELECTROMAGNETIC METHODS

This section covers the most common NDT methods that use electrical

or electromagnetic excitation to gather data from the inspected structure.

This discussion concerns the radar methods, electromagnetic covermeters,

conductivity and resistivity measurements and half-cell potential mea-

surements.

The most common use of electromagnetic methods is in determining

the thickness of concrete cover over the rebars and the localization of re-

bars [93]. These methods are based on the fact that (embedded) metals

placed in external electromagnetic field induce a change in that EM-field,

which can be measured. The change in EM-field depends on the size,

composition of metal and the thickness (cover) of the medium between

the metal and the instrument. The commercial instruments based on these

applications are known as covermeters [61]. Covermeters are sensitive to
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conductivity variations in concrete and may loose accuracy when anoma-

lous conductivities exist near the rebars (e.g. due to saline water penetra-

tion). Usually, covermeters do not need direct contact to the surface of the

medium.

Ground penetrating radar (GPR, also known as sub-surface radar)

[94, 95] is a powerful method that has been previously used extensively

in geophysical applications. GPR exploits electromagnetic waves that

are emitted through an antenna into the investigated structure and the

reflected energy is recorded and analyzed. The data collection is non-

contacting and can be performed by sliding the antenna over the target

surface. As a consequence, GPR is a relatively fast modality and large ar-

eas can be measured in reasonable time. Typical applications of GPR are

determining the element thickness or defects such as cracks and delam-

inations, moisture detection, detection of concrete cover and localization

of reinforcement and tendon ducts [63, 94]. A drawback of GPR method

is that due to the nature of electromagnetic waves the radar cannot pen-

etrate metals. In addition, the data produced by GPR can be difficult to

interpret and usually an experienced user is needed for analysis.

The resistivity (or conductivity) measurements of concrete have been

conducted using both electrical direct current (DC) and alternating cur-

rent (AC) measurements. Because of the electrode polarization, the DC

measurements are usually carried out using a Wenner-array electrode con-

figuration. The Wenner electrode array consist of four equally spaced

electrodes in a line where the outer electrodes are used to inject current

and the resulting voltages are measured between the inner electrodes. In

the AC measurements, by contrast, only two electrodes are required. The

basic idea of the electrical resistivity measurements is to map the local re-

sistivity of concrete from the surface measurements. For inspecting large

areas, the surface has to be scanned with the electrode array. Applications

of the resistivity measurements are, for example, evaluation of rebar cor-

rosion [96, 97], moisture content and salt content [17, 98]. Further, Lataste

et al. have applied electrical resistivity measurements for localization of

cracks [5] and characterizing steel fiber distributions [99]. McCarter et

al. applied electrical AC measurements for monitoring water penetration,

ionic ingress and moisture movement in cover zone concrete [100].

Perhaps the most widely studied electrical method is the electrical im-

pedance spectroscopy (EIS). The basic operation of EIS is similar to elec-

trical AC measurements with the exception that the measurements are

acquired using wide frequency range instead of a single frequency. EIS

have been used in concrete resistivity assessment [47], chloride monitor-
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ing [18], evaluating reinforcing bar corrosion [11–14, 101], assessment of

moisture and drying in cover zone concrete [16, 54] and fiber dispersion

assessment [6, 8, 9]. Although electrical resistivity and impedance spec-

troscopy measurements have been proven effective in determining vari-

ous properties of concrete, the drawback is that the methods are sensitive

to uncertainties and inaccuracies of the models. Especially, the geometry

of the target often cannot be modeled accurately. Moreover, the models

in impedance spectroscopy do not take into account spatial variations of

concrete conductivity.

Tomographic modalities based on electrical measurements are emerg-

ing methods for NDT of concrete. One potential modality is electrical

resistance tomography (ERT), in which the objective is to reconstruct the

internal 3D resistivity (or its reciprocal, conductivity) map from boundary

voltage measurements. In 1994, Daily et. al. [36] applied ERT to image re-

inforced concrete. However, the quality of the reconstructions was not suf-

ficient for practical applications. Buettner et. al. [37, 38] performed water

infiltration tests, which demonstrated that ERT can be used for monitor-

ing the temporal evolution of moisture distribution in concrete structures.

More recently, Hou and Lynch [39] showed that ERT is applicable for de-

tection of cracks in fiber-reinforced cement composites. In the paper by

Hou and Lynch, the results were computed using a reference conductivity

map of an intact sample before cracking. This approach was adopted to

remove inhomogeneities from the reconstructions. However, when imag-

ing existing concrete structures, the reference conductivity map of the

pre-cracked target is usually not available, and hence the reconstructions

should be solely based on the measurements acquired after a (possible)

damage. A more detailed discussion on the method is given in Chapter 4.

The feasibility of the method for imaging concrete, localizing rebars and

detecting cracks is discussed in Chapter 5.
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Electrical resistance tomography (ERT) is an imaging modality in which

the internal conductivity (or resistivity) distribution of the target is recon-

structed on the basis of boundary voltage measurements. The challenge of

image reconstruction in ERT is that the problem is an ill-posed inverse prob-

lem. This means that the solution is non-unique and extremely sensitive

to measurement noise and modeling errors. As a consequence, accurate

measurements and mathematical models as well as additional information

about the target are needed in order to solve the problem. In this chapter,

the practical aspects of ERT such as data acquisition, the computational

models and the image reconstruction based on Bayesian framework are

reviewed.

4.1 BACKGROUND

Electrical resistance tomography (ERT) is a noninvasive imaging method

used in medical, geophysical and industrial applications. The history of

ERT closely links back to the initiation of electrical impedance tomog-

raphy (EIT)1 in 1978 when two papers considering an “impedance cam-

era” were published independently by Henderson and Webster [102] for

medical imaging and by Lytle and Dines [103] for geophysical imaging.

The research in both the theoretical and practical aspects of ERT started

in 1980 when Calderón formulated the mathematical problem of recov-

ering the internal conductivity distribution from boundary voltage mea-

surements [104]. The most well known works in the theoretical field are

the solution to the Calderón’s problem in dimension three and higher

for smooth conductivities by Sylvester and Uhlmann [105] and in dimen-

sion two for conductivities with two derivatives by Nachman [106]. The

Calderón’s original conjecture in dimension two was proved by Astala

and Päivärinta in 2003 [107]. The first practical application of medi-

cal ERT was presented four years after the Calderón’s original paper by

Barber and Brown [108]. The potential applications of ERT are numer-

ous. For example, the technique has been applied in biomedicine [27–31],

1The term EIT refers to imaging of the complex valued admittivity distribution

based on full amplitude/phase angle data. However, it has been common to

(slightly misleadingly) use the term EIT also when using the amplitude data only.
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Figure 4.1: Voltage measurements in ERT corresponding to two current injections.

geology [32–34, 109], industrial process monitoring [110–114] and non-

destructive testing [35,39]. In NDT, the potential applications include, for

example, monitoring of water movement and temporal evolution of mois-

ture distributions in concrete structures [37, 38, 115] and in identification

of cracks [116, 117]. For general reviews on ERT, see [21, 118].

In ERT, electrical surface measurements are used to reconstruct the

three-dimensional distribution of resistivity (or its reciprocal, conductiv-

ity) inside the target. An array of electrodes is attached on the surface and

low frequency alternating currents are injected into the target through the

electrodes. The resulting voltages are measured between several electrode

pairs. The internal conductivity distribution is computed based on a set

of voltage measurements corresponding to various current injection pat-

terns. An example of the measurement strategy in ERT is shown in Figure

4.1.

ERT belongs to the class of diffuse tomography modalities. In diffuse

tomography, the aim is to estimate the coefficients of a partial differen-

tial equation (PDE) based on noisy boundary measurements. ERT is a

diffusive modality, because if a current is injected into the target vol-

ume between any two points, the electric current (density) spreads into

the whole volume. As a consequence the image reconstruction is more

complicated than, for example, in X-ray tomography, in which the rays

travel in straight lines and one measurement carries information from a

very restricted subset of the target. The image reconstruction problem in

diffuse tomography has a nature of an ill-posed inverse problem. The practi-

cal definition of ill-posed inverse problems is that even moderately small
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measurement and modeling errors can cause large errors in the solution.

More precisely, the ill-posedness implies that classical (least squares (LS))

solutions are unstable and nonunique.

The first attempts to reconstruct an ERT image were based on the

filtered back projection method (FBP) [108,119]. The FBP method is based

on a coarse ad hoc -model of the electrical conduction in a medium. Thus,

the quality of reconstructions obtained with the FBP method is inferior

to those obtained with more sophisticated techniques. However, the FBP

method is relatively fast and, despite the low quality of reconstructions,

still widely in use.

A more versatile approach is to construct a “physically sound” model,

or an electrode model, for the observations. A few electrode models for

ERT exists, such as continuum model, gap model, shunt model and complete

electrode model [120, 121]. Although using an appropriate electrode model

is superior to FBP method, the drawback is that the inverse problem be-

comes more challenging. A traditional approach to solve the ERT inverse

problem based on an electrode model is the Tikhonov regularization [122].

In Tikhonov regularization the classical LS-problem is augmented with

a regularizing penalty functional. The idea of the regularizing penalty

functional is to stabilize the inverse problem by replacing the original ill-

posed problem by a well-posed approximation that (hopefully) is close to

the original one.

An alternative approach for treating the ERT inverse problem is statis-

tical (Bayesian) inversion [22, 41]. In the Bayesian approach, the problem

is to estimate the posterior probability density of the unknowns given the

measurement data and the additional a priori information about the un-

knowns. The a priori information is incorporated into a form of prior prob-

ability density that is based on statistical analysis of the characteristics of

the unknown quantities. The prior information improves the reliability of

the estimates and makes it possible to take uncertainties in the mathemat-

ical models into account. The reconstruction methods used in this thesis

are solely based on the Bayesian framework. The Bayesian approach for

ERT is briefly considered in Section 4.4.

4.2 DATA ACQUISITION IN ERT

The measurement setting in ERT is to place the electrodes, usually metal-

lic ones, on the boundary of the target. In the early era of ERT, when the

computational models were two dimensional, the electrodes were placed
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in one circular array around the target. In three dimensional ERT there

is more variation for electrode placement. Often, it is advisory to use the

electrodes to cover all accessible parts of the surface around the region

of interest. In this thesis, for example, ERT measurements were acquired

from (real world) 3D cases in slab-like geometries in which the opposite

surface is not always available for measurements. In such cases, the elec-

trodes have to be placed on one of the (planar) surfaces. In some cases,

the electrodes can also be placed inside the target [123, 124].

Most of the ERT systems are designed such that they inject currents

and measure voltages instead of applying voltages and measuring cur-

rents [125]. This is due to the fact that there always exists a contact

impedance between the electrode and the target complicating the ERT

measurements. The contact impedances have a negligible effect on the

voltage measurements when the current injection through the measure-

ment electrodes is off. On the other hand, the contact impedances have

their biggest effect on ERT reconstructions when the voltages are mea-

sured from current carrying electrodes. The traditional remedy has been

to discard these measurements. However, it has been shown in [126] that

the measurements from the current carrying electrodes have the best in-

formation content about the conductivity distribution. In this thesis, the

contact impedances are taken into account by estimating them simulta-

neously with the conductivity distribution. When the contact impedances

are known (estimated), the full voltage measurement data can be exploited

in the ERT reconstructions.

Several ERT measurement systems exist, see e.g. [114, 127–129]. A

typical ERT measurement device provides alternating currents between

1 − 100 kHz. The AC current injections are preferred over DC to pre-

vent the electrodes from polarizing. The currents are injected into the

target through the electrodes for a period that it takes to record the corre-

sponding (alternating) voltages. A normal procedure is to record only the

(RMS) amplitudes and leave the phase shift information out from the mea-

surement data. A standard method to collect the data is to measure the

electrode voltages with respect to some reference electrode. The reference

electrode can be either fixed or it can be changed for each measurement.

The current injection strategies in ERT can be divided in two main

classes, which are known as pair and multiple drive methods. In pair drive

methods the current is driven into the object through a pair of electrodes

and the voltages are measured using all the electrodes. The most widely

used selections for the pairwise current injection in circular geometry are

adjacent injection and opposite injection, see e.g. [130]. In the multiple drive
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methods, all electrodes can be used for simultaneous current injection.

As a drawback, an individual current generator is required for each elec-

trode increasing the complexity of the measurement system. However,

this method usually yields a more uniform current density within the ob-

ject, which often results in a better sensitivity [126]. For example, the

most widely used multiple drive current injection strategy that produces

a good overall sensitivity, is obtained by using the trigonometric current

patterns [131, 132]. For Bayesian approach to optimizing current patterns,

see [133, 134].

4.3 MEASUREMENT MODEL

The inverse problem of ERT is to reconstruct the internal conductivity

distribution given the boundary voltages. In order to solve the inverse

problem, a mathematical model (i.e. forward model) that describes the

measurements is needed. The most accurate model so far is known as

the complete electrode model (CEM).

4.3.1 Complete electrode model

The derivation of the CEM for ERT is based on the Maxwell’s equations

of electromagnetism in linear and isotropic continuous medium. With the

assumptions that the capacitive and magnetic effects can be neglected, the

Maxwell’s equations inside a domain Ω ⊂ R
3 yield to Poisson equation

[121]:

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω. (4.1)

In equation (4.1), x is a (three dimensional) position vector in the domain

Ω, the function σ(x) is the electrical conductivity of the medium and u(x)

is a (scalar) electric potential inside the domain. Generally, this approx-

imation is considered accurate enough when the frequency of the alter-

nating electric field is low. The equation (4.1) is known as the quasi-static

approximation.

The complete electrode model consists of the partial differential equa-
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tion equation (4.1) and the following boundary conditions

∫

eℓ

σ(x)
∂u(x)

∂n̄
dS = Iℓ, ℓ = 1, . . . , Nel (4.2)

u(x) + zℓσ(x)
∂u(x)

∂n̄
= Uℓ, x ∈ ∂Ω, ℓ = 1, . . . , Nel (4.3)

σ(x)
∂u(x)

∂n̄
= 0, x ∈ ∂Ω \

Nel
⋃

ℓ=1

eℓ (4.4)

where Uℓ is the (RMS) potential on ℓth electrode, Iℓ denotes the RMS of

the electric current applied through the electrode eℓ, zℓ is the contact im-

pedance (resistance) between the ℓth electrode and the domain Ω, and n̄ is

the unit normal pointing outward from the boundary ∂Ω. The boundary

conditions (4.2)–(4.4) can be interpreted as follows: The condition (4.2)

fixes the total current through ℓth electrode to the injected current Iℓ. The

condition (4.3) takes into account the constant potential on the electrodes

(i.e. shunting effect) and the contact impedance between the electrodes

and the medium. The last condition states that the current through the

electrode-free part of the boundary is zero. In addition to boundary con-

ditions (4.2) – (4.4), the charge conservation law has to be obeyed. Thus,

it is required that
Nel

∑
ℓ=1

Iℓ = 0, (4.5)

where ℓ = 1, . . . , Nel . Further, the potential reference level needs to be

fixed, for example, by writing

Nel

∑
ℓ=1

Uℓ = 0. (4.6)

This electrode model was first proposed in [120], and the existence and

uniqueness of the forward problem was discussed in [121].

4.3.2 Finite element approximation of CEM

The complete electrode model (4.1) – (4.4) relates the electrode potentials

Uℓ, the injected currents Iℓ and the conductivity distribution σ together.

The forward problem in ERT is to solve the internal electric potential u(x)

and the electrode potentials Uℓ, when the conductivity and the injected

currents are given. The analytical solution of the CEM is possible only for

very simplified cases due to the rather complicated boundary conditions.
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Therefore, one has to employ some numerical methods in order to tackle

the problem. In this section, a finite element approximation for the CEM is

briefly reviewed. For a more thorough derivation of the variational form,

see [121]. For the finite element formulation of the CEM in 2D and 3D,

see [135] and [136, 137], respectively.

In the finite element method (FEM), the domain Ω is divided into a

mesh of finite number of elements and the solution u(x) for the problem

(4.1) – (4.6) is approximated in this mesh as a finite dimensional approxi-

mation uh ≈ u(x) of the form

uh =
N

∑
i=1

ui ϕi(x), x ∈ Ω (4.7)

where N is the number of nodes in the finite element mesh. In this thesis,

the basis functions ϕi(x) are piecewise polynomial (first or higher order)

chosen such that the coefficients ui give the finite element solution uh in

the nodal points. For the electrode potentials Uℓ and internal conductivity

σ(x), the following approximations Uℓ ≈ Uh and σ(x) ≈ σh are chosen,

such that

Uh =
Nel−1

∑
j=1

ũjnj, nj ∈ R
Nel (4.8)

σh =
N

∑
j=1

σjφj(x), (4.9)

where nj are constant vectors chosen such that the condition (4.6) holds,

e.g. nj = (1, 0, . . . ,−1, 0, . . . , 0)T , where the (j + 1)th component is −1.

Further, ũj are the associated coefficients. In this thesis, the basis functions

φj(x) are piecewise first order polynomials and σj is the associated coeffi-

cient for the jth basis function φj. In the sequel, the conductivity distribu-

tion σ(x) is identified by the coefficient vector σ = (σ1, . . . , σN)
T ∈ R

N .

The finite element approximation of the CEM can be written as a ma-

trix equation

Aū = f , (4.10)

where A is the FEM system matrix [135], ūT = (ūT
1 , ūT

2 ) is the solution

vector that holds the coefficients of the equations (4.7) and (4.8) in the

vectors ū1 = (u1, . . . , uN)
T and ū2 = (ũ1, . . . , ũNel−1)

T . The data vector

f ∈ R
N+Nel is constructed such that

f =

(

0̄

CT I

)

,
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where 0̄ = (0, . . . , 0)T ∈ R
N , I ∈ R

Nel is the injected current and C =

(n1, . . . , nNel−1) ∈ R
Nel×Nel−1.

An approximative solution for the forward problem is obtained by

solving the equation (4.10) as ū = A−1 f . The potentials Uh on the elec-

trodes can be computed by using the equation (4.8), that is in the matrix

form as Uh = C ū2. Thus, the relation between the injected currents I and

the computed potentials on the electrodes can be written in the form

Uh = C ū2 = CR̃(σ, z)CT I = R(σ, z)I, (4.11)

where matrix R̃(σ, z) ∈ R
(N+Nel−1)×(N+Nel−1) is a bottom right block of

the inverse A−1 of the FEM system matrix A. The matrix R(σ, z) is re-

ferred to as the resistance matrix.

In practice, the actual measurements in ERT are voltages measured

between selected electrode pairs, that is Vi = Ul − Uk, i = 1, . . . , m, where

m is the number of measurements. For example, the voltage measurement

vector V may consist of potential differences V1 = U2 −U1, V2 = U3 −U2,

etc. In matrix form, the measurements can be written as

V = MUh

where M ∈ R
m×Nel is called the measurement matrix.

Next, consider an ERT measurement with multiple current injections

and assume that the ERT voltage measurements V are contamined with

additive noise e. Then the observations, the unknowns and the measure-

ment noise are tied together through an additive observation model of ERT

that is of the form







V(I1)
...

V(Ip)






=







MR(σ, z)I1
...

MR(σ, z)Ip






+







e1
...

ep






, (4.12)

where the observations are stacked for p current injections I1, I2, . . . , Ip.

Equation (4.12) can be written more shortly as

V = R(σ, z) + e, (4.13)

where V ∈ R
pNel corresponds now to a full ERT measurement with ob-

served voltages for p injected currents and e = (eT
1 , . . . , eT

p )
T . Note, how-

ever, that the disturbances in industry can have various different noise

characteristics and the additive noise model is not always adequate. More

complicated noise models are studied, for example, in [41].
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4.4 A BAYESIAN APPROACH TO ERT

In previous sections the forward problem in ERT was discussed. The

forward problem is to compute the electrode potentials when the conduc-

tivity distribution and the contact impedances are known. The inverse

problem, on the other hand, is to reconstruct the conductivity distribution

based on noisy electrode potential differences. The ERT inverse problem

is ill-posed and highly nonlinear and thus sophisticated inversion meth-

ods are needed in order to solve the problem. In this section, a statistical

approach based on the Bayesian framework for solving the ERT inverse

problem is briefly discussed. For a more comprehensive discussion on

this topic, see e.g. [22,40,41]. As a general reference to probability theory,

see e.g. [138].

In statistical inverse problems all variables are considered as random

variables. The randomness is thought to reflect our incomplete informa-

tion about the unknown variables. The information about the unknown

variables is expressed as probability densities called prior densities, e.g.

σ 7→ πpr(σ). As the name suggests, the prior density holds the informa-

tion we know about the parameter of interest prior to the measurement.

The complete solution of the inverse problem in Bayesian framework is

the posterior distribution π(σ, z|V), i.e. the conditional probability distribu-

tion of σ and z given the observations V.

The posterior density is given by the Bayes formula that can be written

for ERT as

π(σ, z|V) =
π(V|σ, z)πpr(σ, z)

π(V)
, (4.14)

where π(V|σ, z) is the likelihood density or likelihood model, π(V) is a marginal

density which mainly acts as normalization constant and πpr(σ, z) is the

joint prior density of conductivity σ and contact impedances z. The nor-

malization constant can often be neglected and the equation (4.14) simpli-

fies to the form

π(σ, z|V) ∝ π(V|σ, z)πpr(σ, z). (4.15)

The likelihood density is a conditional density of the observations

given the unknowns and thus describes their mutual relation based on

the observation model. If we assume that the unknowns (σ, z) and the

additive measurement noise in equation (4.13) are mutually independent,

the likelihood can be written as [139]:

π(V|σ, z) = πe(V − R(σ, z)), (4.16)
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where πe is the probability density of the noise e. Further, if the measure-

ment noise e is Gaussian distributed with zero mean and covariance Γe,

the likelihood takes the form

π(V|σ, z) ∝ exp

(

−
1

2
(V − R(σ, z))TΓ−1

e (V − R(σ, z))

)

. (4.17)

Furthermore, assume that σ and z are modelled as mutually independent,

that is πpr(σ, z) = π(σ)π(z). If the corresponding prior models are Gaus-

sian distributions, such that

π(σ) ∝ exp

(

−
1

2
(σ − σ∗)

TΓ−1
σ (σ − σ∗)

)

, (4.18)

π(z) ∝ exp

(

−
1

2
(z − z∗)

TΓ−1
z (z − z∗)

)

, (4.19)

where σ∗ and z∗ are the means of conductivity and contact impedances,

Γσ and Γz being the covariance matrices, then the posterior density (4.15)

can be written as [41, 140]

π(σ, z|V) ∝ exp

(

−
1

2
(V − R(σ, z))TΓ−1

e (V − R(σ, z))

−
1

2
(σ − σ∗)

TΓ−1
σ (σ − σ∗)

−
1

2
(z − z∗)

TΓ−1
z (z − z∗)

)

. (4.20)

Although the posterior density in equation (4.20) is formally the solution

of the statistical inverse problem, in high dimensional problems it alone

is impractical for direct interpretation and visualization of the solution.

Usually some point and interval or spread estimates are computed from the

posterior distribution.

One of the most employed statistical point estimates is the maximum a

posteriori (MAP) estimate

(σ, z)MAP = arg max
(σ,z)

π(σ, z|V), (4.21)

which gives the maximum point of the posterior density. With the as-

sumptions give above, the computation of the MAP-estimate yields the

minimization of the (negative) exponent in (4.20), that is

(σ, z)MAP = arg min
(σ,z)

F(σ, z; V), (4.22)
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where the functional F(σ, z; V) is of the form

F(σ, z; V) = (V − R(σ, z))TΓ−1
e (V − R(σ, z))

+ (σ − σ∗)
TΓ−1

σ (σ − σ∗) + (z − z∗)
TΓ−1

z (z − z∗)

= ‖Le(V − R(σ, z))‖2

+ ‖Lσ(σ − σ∗)‖
2 + ‖Lz(z − z∗)‖

2 (4.23)

and where Le, Lσ and Lz are the Cholesky factors of covariance matrices

such that

Γ−1
e = LT

e Le, Γ−1
σ = LT

σ Lσ and Γ−1
z = LT

z Lz. (4.24)

An interesting property of the MAP-estimate is that with the Gaussian as-

sumptions given above about the unknowns (σ, z) and measurement noise

e, the functional (4.23) is equivalent to classical (generalized) Tikhonov reg-

ularized functional [122]. Tikhonov regularization has been widely used

in inverse problems. Note, however, that in Tikhonov regularization the

interpretation of the functional (4.23) and construction of Lσ and Lz are

totally different from those in statistical inversion.

Since the functional (4.23) is nonlinear, the computation of the MAP-

estimate (4.22) leads to nonlinear minimization problem. The minimizer is

typically found using gradient based iterative techniques such as Gauss-

Newton (GN) method [141, 142]. Consider next a GN iteration step, in

which a parenthesized super-index is used to refer an iteration number,

and let ξ = (σT , zT)T be a vector that denotes the unknowns. Now, in

the case of problem (4.22) with the initial value ξ0 fixed, the iteration step

ξ(i+1), i ≥ 0 is computed as follows

ξ(i+1) = ξ(i) + λ(i)δ
(i)
ξ , (4.25)

where the parameter λ(i) controls the step size in the search direction δ
(i)
ξ ,

which in turn is given by the formula [139]

δ
(i)
ξ =

(

(J(i))TΓ−1
e J(i) + Γ−1

ξ

)−1

·
(

(J(i))TΓ−1
e (V − R(ξ(i)))− Γ−1

ξ (ξ(i) − ξ∗)
)

, (4.26)

where Γξ = diag(Γσ, Γz) is the block diagonal covariance matrix of the

(total) unknown vector ξ and ξ∗ = (σT
∗ , zT

∗ )
T is the mean. Often, the initial

value is set as ξ0 = ξ∗. In equation (4.26), the term J(i) is the Jacobian
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matrix of the forward mapping ξ(i) 7→ R(ξ(i)) expressed in a form of a

block matrix, such that J(i) = (Jσ, Jz), where the block matrices are

Jσ =
∂R(σ, z)

∂σ

∣

∣

∣

∣

(σ(i),z(i))
, Jz =

∂R(σ, z)

∂z

∣

∣

∣

∣

(σ(i),z(i))
,

where σ(i) and z(i) are defined as (σ(i)T
, z(i)

T
)T = ξ(i). The computation of

the Jacobian blocks Jσ and Jz are presented in references [137] and [143],

respectively. In this thesis, all the results were obtained by computing the

MAP-estimate using the Gauss-Newton (GN) method equipped with a

line search and positivity constraints. For more details on the applied GN-

method and other optimization methods in ERT, see for example [137].

The MAP-estimate is often the best choice when aiming at computa-

tionally effective methods. There exists also other popular point estimates,

such as conditional mean (CM) estimate and maximum likelihood (ML) esti-

mate. The computation of the CM-estimate is a (high dimensional) in-

tegration problem and often Markov chain Monte Carlo (MCMC) tech-

niques have to be used, which are computationally demanding. The ML-

estimate gives the maximum point of the likelihood density, and it corre-

sponds to the solution of non-regularized inverse problem. Thus, in the

case of ill-posed inverse problems the ML-estimate is unstable. For more

information on point estimates in statistical inversion, see e.g. [22,41,140].

In the Bayesian framework, the most crucial step is the selection of the

prior density. For the prior models, there are several possibilities, such as

the classical white noise model, (improper) smoothness priors [144], proper

smoothness priors [41], inhomogeneous and anisotropic (structural) smoothness

priors [145], total variation priors [22, 146], L1 (impulse) priors [22, 147], and

Besov priors [148]. The selection of the prior model is based on the prior in-

formation and the assumptions on the target as well as the required com-

putational complexity of the method. For example, targets that are results

of diffusion processes, are usually modeled as (homogeneous) smoothness

processes, while targets, which have small objects embedded in relatively

homogeneous background, might be modeled with an L1 prior model.

The most common prior models in ERT are the smoothness priors

[149–152], which favor (spatially) smooth solutions. In these cases, the

Cholesky factor of the prior covariance (see eq. (4.24)) is typically a dis-

crete approximation of some differential operator. A more versatile prior

can be obtained by employing the (inhomogeneous) anisotropic smoothness

prior [145]. In this prior, uneven smoothness assumption in different di-

rections can be taken into account. Anisotropic smoothness prior is a

versatile concept that can be used in many cases in which we have prior
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information about the orientation of internal structures. In this thesis, for

example, the anisotropic smoothness prior was exploited in most of the

cases considering rebars and cracks in concrete.
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5 ERT imaging of concrete

In this chapter, the feasibility of electrical resistance tomography for imag-

ing concrete is discussed and the results obtained in Publications I – IV

are outlined.

The discussion begins in Section 5.1 with a brief review of the em-

ployed measurement systems and strategies in this thesis. The feasibility

of ERT for imaging various embedded targets in concrete was studied in

I, and the main findings are presented in Section 5.2. The applicability of

ERT to identification of cracks in concrete was studied in II. In IV, a novel

computational method was developed for more accurate crack identifica-

tion. The publications II and IV are reviewed in Section 5.3. In section

5.4, the localization of rebars using a novel numerical scheme for ERT is

discussed based on III.

5.1 INSTRUMENTATION

In this thesis, two instruments for ERT measurements were mainly used:

Kuopio impedance tomography (KIT4) device developed in University

of Eastern Finland in Kuopio [114], and Radic Research SIPFIN instru-

ment.1 Both instruments are capable of injecting alternating currents and

measuring the resulting alternating voltage data. In this thesis the phase

information was neglected and only the (RMS) amplitude of the voltage

data was used. The measurement frequencies were largely dictated by the

measurement devices and varied between 1 Hz to 1 kHz. Thus, the mea-

surements were operated within the pure resistive region of the concrete

(see Section 2.2).

In electrical measurements of concrete, obtaining a good contact with

the concrete surface is important. In this thesis, two different electrode

types were considered, namely, wet electrodes and gel electrodes. In I, wet

electrodes were developed for ERT imaging of concrete. The wet elec-

trodes are copper-copper sulphate (Cu-CuSO4) electrodes, with similar

construction to those described by Monteiro et al. [11]. With Cu-CuSO4

electrodes, the electrical contact is obtained by attaching a wet sponge to

1SIPFIN is based on a Radic Research SIP256 instrument with slight mod-

ifications to concrete ERT. For more information on SIP256, see http://www.

radic-research.de
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the concrete surface. The sponge is wetted with copper sulphate solu-

tion, which is stored inside a hollow copper cylinder covered by a plastic

casing. The current and voltage leads to ERT instrument are connected

to the copper cylinders. The electrodes are pushed towards the concrete

surface with springs. The advantages of using Cu-CuSO4 electrodes are:

(1) the wet sponge ensures a sufficient electrical contact to concrete, and

(2) the polarization between copper and copper sulphate is low. One of

the electrodes is shown in publication I, Figure 3a.

When using wet Cu-CuSO4 electrodes for measuring concrete, the

copper sulphate solution is absorbed through the concrete surface. When

imaging dry concrete, the continuous absorption of the solution can cause

ERT measurements to become less sensitive to concrete properties be-

cause: 1) the contact impedances between the electrodes and concrete may

change during the measurements; and 2) if the electrode array is small,

the absorbed solution may form conductive paths between the neighbor-

ing electrodes.

The gel electrodes employed in publication II were steel electrodes

with non-polarizing electrode gel used between the steel and concrete.

The gel electrodes were found to be more stable than Cu-CuSO4 electrodes

because by using gel electrodes most of the absorption problems with

wet electrodes can be avoided. Hence, the gel electrodes were preferred

over the wet electrodes in later experiments, even though the contact is

sometimes slightly worse than with the wet electrodes.

5.2 FEASIBILITY OF ERT FOR IMAGING CONCRETE

The feasibility of ERT to 3D imaging of concrete was studied in I. Several

specimens with different types of inclusions were prepared. In reality,

the electrical conductivity distribution of concrete is not characterized by

a uniform background conductivity and the embedded inclusions alone,

but moisture and chloride gradients, for example, also induce a significant

conductivity gradient. Furthermore, as pointed out in Chapter 2, concrete

is a highly heterogeneous material containing large and small aggregate

particles, hardened cement paste and air voids. In this feasibility assess-

ment, however, the investigation concerns only on how well structural

inhomogeneities such as rebars and cracks can be detected from a more

or less uniformly conducting background.
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5.2.1 Experimental results

Short cylindrical specimens were cast (15 cm in diameter, 3 cm high).

Concrete had the following mixture proportion: aggregates (83 %), Port-

land cement (15 %), and fly ash (2 %) by mass. The maximum size of

the aggregate was 8 mm and the w/c ratio of 0.8 was used, resulting in a

compressive strength of 20-25 MPa. The following cases are considered:

Case 1: Concrete specimen with resistive inclusion (block) made of poly-

urethane foam.

Case 2: Concrete specimen with conductive steel bars.

Case 3: Specimens with different crack sizes.

The measurements were carried out using KIT4 instrument nine days af-

ter the concrete specimens were casted. In all cases, the MAP-estimate

(4.21) with anisotropic smoothness prior model was computed following

the scheme described in Section 4. The reconstruction software (including

the FE package for forward computations) is an adaption of the imple-

mentations described in [136, 143, 145, 153, 154]. For further information

about the specimens, measurements and reconstruction techniques, see

publication I.

The results are shown in Figures 5.1– 5.3. The first specimen with an

embedded polyurethane block and a surface plot of the corresponding

conductivity reconstruction are shown in Figure 5.1. The block was po-

sitioned off-center in the horizontal plane, and placed vertically through

the concrete cylinder. The conductivity reconstruction shows clearly an

insulating region at the location of the polyurethane block. Because the

insulating polyurethane block corresponds closely to a large air void, the

imaging of such resistive voids could be possible.

In Figure 5.2, the specimens with embedded steel bars (case 2) are

shown. The first specimen contains a vertically oriented steel bar (diame-

ter 3 cm) approximately in the same location as that of the polyurethane

block in case 1. The second specimen contains a horizontally oriented steel

bar (diameter 1 cm, length 7 cm) that is not visible from outside. In the re-

constructions, anisotropic smoothness prior with logarithmic parametriza-

tion was used. This prior yields conductivity distributions that are smooth

in the logarithmic scale and thus allow for variations of several orders of

magnitude for the conductivity [155, 156]. In the first case, no assump-

tions about the orientation of the steel bar were made and the smoothness

was set equal to every direction. In the second case, the orientation of

the bar was assumed to be approximately known. Thus, the anisotropic
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Figure 5.1: Results for the experimental case 1: a specimen with embedded polyurethane

block (left) and the corresponding conductivity reconstruction (right).

smoothness prior was employed with high smoothness in the direction

of the steel bar. In both cases, the contrast between the reconstructed

conductivities of the steel and concrete is high.

The results for the specimens with cracks (case 3) are shown in Figure

5.3. In the first two of these experiments, thin transparent sheets (widths

6 cm and 3 cm) were cast inside the concrete specimens to simulate non-

conductive cracks with different sizes. The difference between the crack

sizes in the reconstructed images is clear. Further, the orientation and the

actual size of both cracks are quite well reconstructed. In both cases the

reconstructed conductivity of the transparencies was close to zero, which

was to be expected because the transparencies acted as insulators.

In addition to specimens with plastic sheets, a cylindrical specimen

with a real crack was studied in the conference paper [157]. The specimen

was cast using the same concrete batch as in the previous experiment

and measured four months later. During this period, the specimen was

covered in plastic to prevent excessive drying. The specimen was broken

with a hammer and then measured with KIT4 instrument using metallic

gel electrodes. The employed reconstruction software was same as in the

previous cases. The specimen and the corresponding conductivity recon-

struction are shown at the bottom row in Figure 5.3. The reconstruction

clearly reveals the three main cracks in the specimen.

5.2.2 Discussion

The reconstructions in Figures 5.1– 5.3 show that ERT is applicable for

imaging concrete. The experiments verify that it is possible to detect dif-

ferent resistive and conductive objects inside cylindrical concrete speci-

mens. The reconstructed background conductivities, i.e. the conductivity

42 Dissertations in Forestry and Natural Sciences No 122



ERT imaging of concrete

Figure 5.2: Results for the experimental case 2. Top row: vertical steel bar in concrete

(left) and the corresponding conductivity reconstruction (right). Bottom row: embedded

(hidden) horizontal steel bar in the location indicated by red marks on the surface (left) and

the corresponding reconstruction (right).

of concrete, varies between 0.1 and 0.44 mS/cm, depending on the case.

These values are within the range of conductivity of wet concrete as in-

dicated in Table 2.1. The measured specimens were covered with plastic

after casting and were thus relatively moist.

The conductivity reconstruction of the specimen with the polyurethane

block correctly reveals an insulating region at the location of the block

(Figure 5.1). However, the reconstruction of the background conductiv-

ity is not very homogeneous. The same feature is also noticeable in the

case 3 for the specimens with transparencies (Figure 5.3, top and middle

rows). Some of the inhomogeneities in the reconstruction may be imag-

ing artefacts due to measurement and modeling errors; while others are

related to the samples itself. The conductivity of concrete is never ho-

mogeneous: concrete is a mix of resistive aggregate particles in hydrated

cement matrix, in which the free water in the porous system contributes

for the conductivity of concrete. The main reason for the background con-

ductivity variations here, however, is the fact the copper sulphate solution

was absorbed by concrete from the wet electrodes. That is the reason for
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Figure 5.3: Results for the experimental case 3. Top row: small plastic sheet embedded in

concrete (left) and the corresponding conductivity reconstruction (right). Middle row: big

plastic sheet embedded in concrete (left) and the reconstruction (right). Bottom row: the

cracked concrete specimen (left) and the reconstruction (right).

high conductivities on the measurement surface. This was verified by car-

rying out consecutive measurements cycles which showed an increase in

the conductivities under the electrodes when more and more copper sul-

phate was absorbed. In the real crack case (Figure 5.3, bottom row), the

high conductive areas in the neighborhood of the electrodes are not so

frequently present. This is because of the use of gel electrodes. Although

the gel (moistness) is also absorbed by concrete, the absorption is weaker

than with the Cu-CuSO4 electrodes.
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In the case 2 (Figure 5.2), the steel bars are accurately localized with

good contrast. Note, however, that the vertical coordinates of the hor-

izontal bar (Figure 5.2, bottom row) cannot be localized using the data

acquired in this experiment, because all the electrodes were placed on a

single layer (x1x2-plane) and the measurement geometry thus is symmet-

rical with respect to this plane. The reconstructed concrete conductivity

varies between 0.2 mS/cm and 0.6 mS/cm and appears more smooth than

in the previous cases. This is because of the high contrast in conductivity

between concrete and steel. Note, however, that the conductivity of the

steel is in the range of 1 · 105 S/cm, which is significantly higher than the

peak values 1.5 mS/cm and 10 mS/cm in Figure 5.2. The fact that con-

ductivities of the steel bars are highly underestimated is a result of two

effects: 1) the potential drop between the steel-concrete interface due to

the contact impedance is not taken into account. 2) The boundary voltage

measurements are not sensitive to conductivity contrast above some limit.

This means that in a background of 0.2 mS/cm we are not necessarily

able to distinguish between 2 mS/cm and 20 mS/cm inclusions. We are,

however, able to detect a 20 mS/cm inclusion in a 2 mS/cm background.

The last experiment (Figure 5.3) demonstrates that it is possible to es-

timate cracks and the depth of cracks in concrete using ERT. The sizes of

the two different transparencies are correctly identified in the reconstruc-

tions. In addition, the crack pattern in the broken specimen is reliably

reconstructed. Although the specimen was first broken in distinct pieces

(i.e. the most extreme form of cracking) and then assembled back together

for measurements, the results confirm that at least major real cracks can be

detected with ERT. All crack reconstructions here show resistive character-

istics. Note, however, that real cracks can be either resistive or conductive

depending on the moisture conditions [5].

5.3 CRACK DETECTION

In this section the detection of cracks in more realistic slab- and beam-like

geometries using ERT is discussed. The discussion is based on the pub-

lications II and IV. The key idea in the papers was to continue the work

started in I towards a crack detection in more realistic setup. In II, the

applicability of ERT for crack detection in concrete slab and beam geome-

tries was studied. The main findings of this study are reported in Section

5.3.1. In publication IV, the aim was to apply a novel computational ap-

proach for crack identification in solid materials. The results of this paper

Dissertations in Forestry and Natural Sciences No 122 45



Kimmo Karhunen: ERT imaging of concrete

are discussed in Section 5.3.2. The discussion on the results in II and IV

is given in Section 5.3.3.

5.3.1 Applicability of ERT for crack detection

In publication II, the main focus was on investigating the capability of

ERT for crack detection and characterization in slab and beam geometries

in which the electrode array is attached to one planar surface of concrete.

The geometries of that type are often more relevant in practice than the

cylindrical geometries which allow measurements around the target.

Specimens

The experiments were carried out with six specimens: three slabs and

three beams. With the slabs, the first aim was to investigate the ability of

ERT to distinguish between different crack depths. The second aim was to

study the feasibility of using ERT to detect laminar cracks. The feasibility

of ERT for detection of real cracks was tested with the concrete beams.

For this aim, the beams were cracked with three-point loading and the

ERT measurements were acquired after cracking.

Three slab specimens with dimensions 50 cm × 50 cm × 4 cm were

cast using concrete mix reported in Table 1, publication II. For each spec-

imen, thin plastic sheets were embedded inside to simulate cracks with

low conductivity. In the first two slabs, the plastic sheets were perpen-

dicular to the concrete surface. The size of the first sheet was 40 mm in

the depth direction whereas the corresponding size for the second sheet

was 25 mm. In the third slab, the plastic sheet was placed parallel to the

surface to model a case of laminar cracking (delamination). The sheet was

set 10 mm below the measurement surface. The measurement setup and

electrode configuration for the slabs are shown in II, Figures 2(a) and 3(a).

In the case of beam specimens, crack damages of three different mag-

nitudes were induced to the beams (beam dimensions 8.9 cm × 11.4 cm

× 40.6 cm): the first specimen was broken in two distinct pieces, the sec-

ond specimen was three-point loaded until clearly visible crack (width

300 ± 50 µm on the measurement surface) appeared and the third spec-

imen was three-point loaded until a very narrow crack (width 100 ± 50

µm) formed. The first specimen was also measured before cracking. The

measurement setup and electrode configuration for the beams are shown

in II, Figures 2(b) and 3(b). For more details on the concrete mixture
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proportions, specimen details and computational aspects such as finite

element discretizations and prior constructions, see II.

Results

The results for the slab specimens are shown in Figure 5.4. The location

and orientation of the plastic sheets are illustrated in the schematic figures

on the left column. To visualize the reconstructed conductivity distribu-

tions, 3D surface plots were drawn in which the domain is cut from plane

x1 = 26 cm (right column). These midplane cross-section views reveal the

volumes with low conductivity in the location of the plastic sheets. For the

first two slabs (first and second row in Figure 5.4) the reconstructed sizes

and shapes of the poorly conductive volumes match relatively well with

those of the plastic sheets in the corresponding specimens (left column in

Figure 5.4). The slab with a laminar plastic sheet and the corresponding

reconstruction are shown on the last row in Figure 5.4. The reconstruction

shows a large nonconductive sheet that is parallel with the top surface

of the slab, indicating that laminar nonconductive cracks can be detected

using ERT measurements from only one surface of the slab. However, the

dimensions of the nonconductive volume are not equal to the dimensions

of the plastic sheet. The dimensions of the nonconductive volume were

approximately 400 mm × 200 mm × 20 mm, whereas the true dimensions

of the plastic sheet were 190 mm × 140 mm × 2 mm as shown on bottom

left in Figure 5.4. This dissimilarity between the real and estimated crack

dimensions is discussed further in section 5.3.3.

Photographs and the conductivity reconstructions of the beam spec-

imens are shown in Figure 5.5. The reconstruction of each specimen is

illustrated with combined surface plots and cross section plots. All the

reconstructions are represented in the same color scale. The top row in

Figure 5.5 represent the first specimen before cracking and the second

row (from the top) shows the same specimen after cracking. The differ-

ence between the reconstructions is very clear: the conductivity of the

specimen before cracking is relatively homogeneous, whereas after crack-

ing, a nonconductive region emerges in the location of the crack. Note,

that both reconstructions were computed using exactly the same param-

eters. Note also, that the measurements obtained before crack were not

utilized in the reconstruction of the beam conductivity after cracking. In

the second specimen, an apparent crack induced in three-point loading

vertically reached approximately the middle section of the beam. On the

top surface, the width of the crack was approximately 300 µm (±50 µm).
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Figure 5.4: Slab specimens (schematic representation on the left column) and the corre-

sponding conductivity reconstructions (right column): 40 mm deep crack (top row), 25

mm deep crack (middle row) and laminar crack (bottom row).

The size of the crack was visually estimated from photographs. The re-

construction of the second specimen is depicted right on the third row

in Figure 5.5. The ERT reconstruction is in agreement with the visual in-

spection of the specimen; in the reconstruction, a nonconductive region

reaching from the top surface to middle of the beam was detected. The

left image on the bottom row in Figure 5.5 shows the top surface of the

third specimen with a very narrow crack. On the top surface, the width

of the crack was approximately 100 µm (±50 µm). The ERT reconstruc-

tion reveals a region with lower conductivity near to the beam surface.

However, in this case the reconstructed conductivity distribution has less

contrast between the background and crack area.
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Figure 5.5: Beam specimens (left column) and the corresponding conductivity reconstruc-

tions (right column): intact specimen (top row), the same specimen after major cracking

(second row), middle sized crack (third row) and a very narrow crack (bottom row).
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5.3.2 Crack identification with adaptive meshing approach

In this section, a novel computational approach developed in publication

IV for localizing cracks in solid materials is reviewed. The basic idea is

to modify the conventional forward problem of ERT such that the geo-

metrical model for the crack is explicitly written in the forward problem.

This is achieved by formulating the crack estimation problem as a bound-

ary estimation problem, in which the Neumann zero boundary condition

is imposed on the crack boundary. That is, the cracks are assumed to

be perfectly insulating. The similar crack identification problems (with

perfectly insulating or conducting cracks) were first studied by Friedman

and Vogelius in [116]. This work was further developed and analyzed

in [117, 158–160]. The crack identification based on the aforementioned

principles has also excited numerous other studies, see e.g. [161–172].

A more complete review on crack identification problems can be found

in [173]. These earlier studies have clearly demostrated the feasibility of

crack identification methods based on ERT, however, there still exist a few

challenges to be considered. For example, the conductivity distribution

is often assumed to be either known a priori or constant, or both. This is

a serious limitation when imaging heterogeneous materials such as con-

crete.

In this thesis, we further develop the crack identification approach for

more practical NDT applications. We aim to estimate the crack depth and

orientation simultaneously with inhomogeneous background conductiv-

ity in 3D planar geometries where only one surface is available for ERT

measurements. The crack model is obtained through some suitable low-

order parametrization and these model parameters are then estimated to-

gether with the background conductivity. Because the geometry of the

computational domain depends on the crack model, the finite element

mesh used to solve the forward problem changes every time the model

parameters of the crack are changed. This problem is tackled with a

FE-meshing scheme that adaptively adjusts to the changes of the crack

shape and location. This approach was presented for rebar localization

first in [124] and III. In IV the method was tailored for crack detection.

The approach is partly related to shape estimation problems that have

been previously considered in inverse problems, see e.g. [174–177]. Here,

the proposed approach is evaluated with simulated and real data.
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Crack modeling and estimation

Let Ωb ⊂ R
d, d = 2, 3, denote a bounded domain that represents a tar-

get that consists of two parts: the volume of the solid material Ω ⊂ Ωb

and the volume(s) of the crack(s) Ωc = Ωb \ Ω. Denote the bound-

aries of Ωb and Ωc by ∂Ωb and ∂Ωc, respectively. The boundary of the

solid material is ∂Ω = ∂Ω
′

b ∪ ∂Ω
′

c where ∂Ω
′

b = ∂Ωb \ (∂Ωb ∩ ∂Ωc) and

∂Ω
′

c = ∂Ωc \ (∂Ωb ∩ ∂Ωc). Note that with these notations ∂Ωb ∩ ∂Ωc 6= ∅

corresponds to a case of a surface-breaking crack. In ERT, the electrodes

eℓ, ℓ = 1, . . . , Nel are related to the boundary ∂Ω
′

b of the target domain Ω

such that the electrodes do not cover the crack opening in the case of sur-

face breaking crack. In order to estimate the position of the crack based on

ERT measurements, we write some (low order) parametric representation

for the crack. Denote the parameters defining the crack by θ ∈ R
L; then,

formally, Ωc = Ωc(θ), Ω = Ω(θ). An example of the target domain and

the crack parametrization is shown in Figure 5.6.

The formalism given above leads to a modification of the boundary

condition (4.4) of CEM (4.1) – (4.6), that is

σ(x)
∂u(x)

∂n̄
= 0,

{

x ∈ ∂Ω
′

b \
⋃Nel
ℓ=1 eℓ

x ∈ ∂Ω
′

c(θ)
(5.1)

thus resulting an observation model

V = R(σ, z, θ) + e, e ∼ N (e∗, Γe) (5.2)

which is similar to (4.13) with the exception of crack parametrization θ

that affects the boundary ∂Ω. As a consequence, the shape of the compu-

tational domain Ω and the Neumann boundary ∂Ω
′

c in the finite element

approximation for the CEM is linked to the parametrization θ. As in Sec-

tion 4.4, the measurement noise e is modeled as additive Gaussian noise

with mean e∗ and covariance Γe.

The boundary parameters θ of the crack are estimated simultaneously

with the discretized background conductivity distribution σ and the con-

tact impedances z by computing the MAP estimate as in Section 4.4:

ΦMAP = arg max
Φ

π(Φ|V) = arg min
Φ

F(Φ; V), (5.3)

where Φ = (σT , zT , θT)T is a stacked vector form of the unknowns. The

functional F(Φ; V) to be minimized is

F(Φ; V) = ‖Le(V − R(Φ))‖2 + ‖LΦ(Φ − Φ∗)‖
2, (5.4)

Dissertations in Forestry and Natural Sciences No 122 51



Kimmo Karhunen: ERT imaging of concrete

where Φ∗ = (σT
∗ , zT

∗ , θT
∗ )

T is the mean of Φ. In equation (5.4), Le and LΦ

are Cholesky factors of the inverses of the covariance matrices Γe (noise)

and ΓΦ (unknowns), such that LT
e Le = Γ−1

e and LT
ΦLΦ = Γ−1

Φ .

The MAP-estimate (5.3) is obtained through Gauss-Newton (GN) al-

gorithm equipped with a step-size line-search and positivity constraint for

σ and z. With this GN-method, the crack parametrization θ is estimated

by adaptively regenerating the finite element mesh along the iterative pro-

cess. The Gauss-Newton algorithm involves the computation of the Jaco-

bian matrix JΦ = (Jσ, Jz, Jθ) of the forward mapping with respect to the

unknowns. The differentiation with respect to conductivity σ and contact

impedances z have been previously discussed in [137] and [143], respec-

tively. In publication IV, the matrix block Jθ of the Jacobian was computed

by numerical “brute force” technique called perturbation method, such that

Ji
θk
=

∂R(σi, zi, θi)

∂θi
k

≈
R(σi, zi, θi

∆)− R(σi, zi, θi)

∆θi
k

, (5.5)

where σi, zi and θi are the estimates corresponding to ith iteration step,

∆θi
k is a small perturbation in kth component of θi and θi

∆ is the perturbed

parametrization vector with kth component updated as θi
∆k = θi

k + ∆θi
k.

Once the Jacobians are computed, the search direction of the current

GN-iteration step can be solved and the estimates are updated. The finite

element mesh is regenerated on the basis of every update to θi. For more

details on the adaptive meshing approach, refer to IV.

Results

In IV, numerical and experimental tests were performed in order to eval-

uate the performance of the adaptive meshing approach for crack identi-

fication. In the following, the main findings of these tests are discussed.

A simulational studies were conducted to test the adaptive meshing

approach for identifying cracks in materials with homogeneous and in-

homogeneous background conductivity. The crack was modeled as a

rectangular shaped cuboid in a three dimensional domain. The crack

was parametrized by the center point (xc
1, xc

2, xc
3) on the top of the crack,

the crack length lc, the crack depth dc and the angle β = β(b̄,−n̄c) be-

tween the downwards pointing vector b̄ = (0, 0,−1) and the negative

of the outwards pointing, top surface normal n̄c of the crack. Thus, the

parametrization in vectorized form is θ = (xc
1, xc

2, xc
3, lc, dc, β)T ∈ R

6. The

crack parametrization in beam geometry is shown in Figure 5.6.
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Figure 5.6: The parametrization θ of a crack crack domain Ωc(θ) and its boundary ∂Ωc(θ)

in target domain Ω (beam geometry).

To simulate the measurements, the crack parameters were set as θ =

(25 cm,10 cm,15 cm,10 cm,dc cm,β◦)T , where parameters dc and β varied

depending on the case. As for the measurement noise, we added Gaussian

random noise with standard deviation 0.05% of the difference between

maximum and minimum value of the simulated voltages to the data. The

selected noise level has been shown to represent well the noise level of

a modern EIT system [114]. For comparison, the reconstructions based

on the simulated data were also computed using the method described

previously in Section 5.3.1. In the following, these reconstructions are

referred as standard reconstructions. For more details, see publications II

and IV.

The crack estimation was first tested with different crack cases in uni-

form background conductivity. It was found, that the adaptive meshing

approach yields more accurate estimates for the crack depth and orienta-

tion than the standard method. Moreover, the adaptive meshing approach

was found robust in that sense that it did not produce false crack estimate

for an intact target. The results concerning the uniform background cases

can be found in publication IV.

A more challenging test case was created by setting an inhomoge-

neous background conductivity distribution σ = σ(x3) defined in Ω =

[0, 50]× [0, 20]× [0, 15] \ Ωc, such that

σ(x) =
0.09 mS/cm

15 cm
(15 cm − x3) + 0.01 mS/cm, x ∈ Ω.

The crack depth and angle were dc = 5 cm and β = 0◦, respectively. For
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the conductivity, an anisotropic smoothness prior was used for both the

standard method and for the adaptive meshing approach.

The results of the inhomogeneous case are shown in Figure 5.7 as

3D (left column) and cross-sectional representations (right column). The

true conductivity distribution and the crack location are shown on the top

row in Figure 5.7. The second row shows the reconstructed conductiv-

ity distribution corresponding to the standard method. On the third row,

a result for the adaptive meshing approach with assumption of constant

background conductivity is shown. The bottom row corresponds to the

results of the adaptive meshing approach. In the standard reconstruc-

tion, the crack is at least faintly visible but its size (depth and length) is

difficult to determine accurately from the reconstruction. The adaptive

meshing approach fails to estimate the correct crack position and orien-

tation when the background conductivity is forced to be constant. When

the inhomogeneity of the background conductivity is taken into account,

the crack estimate given by the adaptive meshing approach for the posi-

tion and depth of the crack is good, (xc
1, xc

2, xc
3) ≈ (24.7 cm, 9.9 cm, 14.9

cm) and dc ≈ 5.5 cm (see IV, Table I, Target 5). The estimated background

conductivity given by the adaptive meshing approach has a strong resem-

blance with the true background conductivity. The standard method is

clearly inferior in reconstructing the background conductivity.

The results for the experimental case are shown in Figure 5.8. The

specimens are the same used in Section 5.3.1 and publication II. The

left column in the figure shows schematic representations of two con-

crete slab specimens (dimensions 50 cm × 50 cm × 4 cm) with embedded

plastic sheets of different depth-size. The corresponding reconstructions

obtained with the adaptive meshing approach are shown on the right col-

umn. The top row in Figure 5.8 shows the specimen with plastic sheet of

size 155 mm × 40 mm × 2 mm (i.e. the crack was 4 cm deep) and the

reconstructed crack and background conductivity. On the bottom row,

the case with 2.5 cm deep crack is shown. In both cases, the estimated

crack boundaries are very similar to the synthetic cracks in the schematic

pictures. In addition, the reconstructed conductivity distributions clearly

show that the conductivity of concrete is nouniform. The estimated crack

parameters are listed in IV, Table 2.

54 Dissertations in Forestry and Natural Sciences No 122



ERT imaging of concrete

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 5.7: Crack reconstructions from the simulation with inhomogeneous conductivity

distribution. The true conductivity distribution is shown on top row. Second row: the

reconstructions using the standard (anisotropic) smoothness prior. Thrid row: the results

obtained using adaptive meshing algorithm with assumption of constant background. Bot-

tom row) adaptive meshing approach with assumption of inhomogeneous background. The

black line depicts the true crack and the white line is the estimated crack.
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5.3.3 Discussion

In II, plastic sheets were used for modeling cracks in the slab cases. This

was because the locations and sizes of the synthetic cracks (plastic sheets)

are easier to determine for validation of ERT reconstruction than those of

real cracks. The reconstructions clearly reveal the areas with low conduc-

tivity and the sizes and shapes of the sheets are relatively well recovered

(Figure 5.4). However, the widths of the poorly conductive areas were

over-estimated. This was expectable since ERT is not very sensitive to the

width of insulating crack. Moreover, smoothness prior was employed in

a relatively coarse FE-meshes which causes additional “blurring” of the

crack estimates. Because the aim in this experiment was mainly tracking

the depths of the cracks, the effect of mesh refinement on the thickness es-

timates was not studied. In the delamination case, the dimensions of the

plastic sheet were overestimated. This was for several reasons. First, in the

case of slab geometry, the ERT measurements carry information mostly on

the conductivity variations in the volume below the area covered by the

electrode array. In this experiment, the dimensions of the laminar plastic

were relatively large in comparison with the dimension of the electrode

array. Thus, the measurements were not very sensitive to conductivities

near the edges of the plate. Second, the ERT measurements are not sensi-

tive to conductivities below the top surface of the plastic sheet because the

insulating plastic parallel to the measurement surface blocks the current

thus “cloaking” the volume underneath. As a result the uncertainty of the

estimate is high at the edges and below the sheet (far from electrodes) and

the estimates mostly rely on the implemented priors in those volumes. In

this case, an anisotropic smoothness prior was used — a choice that favors

high smoothness horizontally. For more thorough discussion, see II.

In the experiment with real cracks, the reconstructions of the first

and second cases (the beam before cracking (intact) and after cracking

(cracked), shown on top and second row in Figure 5.5) reveal the differ-

ence between the intact and the cracked state well. In addition, the es-

timated background conductivities for each case are quite homogeneous

and close to each other; this is an appealing result since the same spec-

imen was used for both cases. Note, that although this specimen was

measured before and after cracking, the measurements acquired from the

intact state were not used in reconstructing the conductivity distribution

of the cracked state. Obtaining feasible reconstructions in both cases using

exactly same reconstructions parameters indicates that the prior models

used in the reconstructions were not too determinative. The reconstruc-
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Figure 5.8: Crack reconstructions from experimental data. On the left column schematic

drawings of the specimens are shown and the corresponding reconstructions are on the

right column. In the reconstructed images, both the crack (the light red area in the center)

and the conductivity distribution are visualized.

tion of the crack with crack opening of approximately 300 µm (third row

in Figure 5.5) shows a region of low conductivity around the visually

inspected crack. The conductivity under the region where the crack is vi-

sually observable is also lower than the background conductivity. This is

most likely due to the occurrence of microcracking in this domain. The re-

construction for the crack with opening of 100 µm (bottom row in Figure

5.5) is not as good as in the previous case.

Based on the results in IV, it is clear that the crack estimates are more

accurate when using the adaptive meshing approach than using the stan-

dard method. This is especially the case when the background conduc-

tivity is highly inhomogeneous (Figure 5.7). The results (Figure 5.7) show

that it is difficult to deduce the crack depth from the standard reconstruc-

tion whereas the adaptive meshing approach gives good results.

In Figure 5.8, corresponding to experimental study with slabs, the

reconstructed conductivity distributions reveal that the conductivity of

concrete is clearly non-uniform: the conductivity of concrete varies due

to different phases (cement paste, aggregate and air voids) and also due

to moisture gradients and various local chemical properties of the cement

paste. It should also be noted that some of the inhomogeneities may be
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artefacts resulting from modeling and measurement errors. Especially, in

this experiment the electrode contact impedances were observed to be un-

stable, i.e. the contact impedances varied during the set of measurements

collected for one ERT-reconstruction.

5.4 LOCALIZATION OF REBARS

One of the fundamental reasons leading to decreased structural capacity

of reinforced concrete is the corrosion of the steel reinforcement. The steel

rebars are vulnerable to corrosion, for example, because of misplacement

of the rebars during construction. Consequently, reliable testing methods

are needed for assessing the condition and location of the rebars. Tradi-

tionally, electrical methods have been found suitable for such work (see

section 3.3), however, most of the methods currently in use are based on

relatively simplistic models of electromagnetism that are not capable to

take full advantage what the electrical measurements can offer.

Furthermore, in previous works I and II, it was stated that rebars, be-

ing perfect conductors, have a high impact on electrical measurements. In

order to succeed in estimating any concrete property on the basis of ERT

measurements, the accurate modeling of the rebars is often a necessity.

In III, a new approach for ERT was developed which allows more accu-

rate modeling of the high conductivity of steel and the contact impedance

between the reinforcing steels and the concrete. The rebar localization

approach was tested with simulations.

When the target is not assumed to include internal metals, the elec-

trodes eℓ in CEM (equations (4.2) – (4.4)) consist of measuring electrodes

attached to the boundary of the target. This is the usual case in ERT imag-

ing. Heikkinen et al. [123] proposed a novel approach in which known in-

ternal metallic structures are taken into account in ERT reconstruction. In

the cited paper, the geometries of the internal metals were modeled, and

they were considered as additional electrodes. That is, in this approach

the total number of electrodes is Ntot = Nel + ND , where Nel is the num-

ber of boundary electrodes and ND is the number of internal metals. In

this section, the rebars are modeled as internal electrodes, whose positions

and sizes are estimated. For this reason, a new parametrization variable

is introduced, which includes rebar location parameters similarly to crack

parametrization in section 5.3.2. In addition, this formalism allows cur-

rent injection through the rebars, which can decrease the ill-posedness of

the problem.
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The discussion in this section based on publication III. The rebar lo-

calization method is based on the adaptive meshing scheme that was first

studied in [124]. In III, the method was further developed for accounting

multiple rebars and estimating their sizes. The theoretical part of III that

considers the Fréchet derivative of the forward operator with respect to

the location and shape of the rebars is omitted in this section. For details,

see III.

5.4.1 Forward model and estimation

Let Ω ⊂ R
d, d = 2, 3, be an open bounded object that is partially cov-

ered with electrodes eℓ ⊂ ∂Ω, ℓ = 1, . . . , Nel . All electrodes are used for

both current injection and voltage measurement, and the corresponding

electrode currents and potentials are denoted by Iℓ ∈ R and Uℓ ∈ R,

respectively. Furthermore, Ω is assumed to be contaminated by ideally

conducting and open inclusions Dl , l = 1, . . . , ND, for which Dl are mutu-

ally disjoint, have connected complements and lie within Ω. The union of

all the inclusions Dl is denoted by D and the corresponding inclusion po-

tentials by Wl ∈ R. In some cases, it is possible to inject currents through

these inclusions and measure the corresponding potentials. Here, the in-

clusion currents are denoted by Jl ∈ R which may be zero if the inclusion

Dl is not available for measurements.

In this thesis, the contact impedances zℓ, ℓ = 1, . . . , Nel of the bound-

ary electrodes and the contact impedances ζl , l = 1, . . . , ND of the em-

bedded inclusions are assumed to be real valued and positive, i.e. zℓ,

ζl ∈ R+. With this convention, the forward problem corresponding to the

CEM (4.1) – (4.4) takes the form

∇ · σ(x)∇u(x) = 0, x ∈ Ω \ D, (5.6)
∫

eℓ

σ(x)
∂u(x)

∂n̄
dS = Iℓ, ℓ = 1, . . . , Nel , (5.7)

∫

∂Dl

σ(x)
∂u(x)

∂n̄
dS = Jl , l = 1, . . . , ND, (5.8)

u(x) + zℓσ(x)
∂u(x)

∂n̄
= Uℓ, x ∈ eℓ, ℓ = 1, . . . , Nel , (5.9)

u(x) + ζlσ(x)
∂u(x)

∂n̄
= Wl , x ∈ ∂Dl , l = 1, . . . , ND, (5.10)

σ(x)
∂u(x)

∂n̄
= 0, x ∈ ∂Ω \

Nel
⋃

ℓ=1

eℓ, (5.11)
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where the equations (5.8) and (5.10) define the inclusion currents and po-

tentials, respectively. The total current vector is IT = (IT , JT) ∈ R
Nel+ND ,

where I = (I1, . . . , INel
)T and J = (J1, . . . , JND

)T . Equivalently to (4.5), it is

required that
Nel+ND

∑
k=1

Ik = 0,

and the reference level for the total potential vector UT = (U, W)T ∈
RNel+ND can be fixed accordingly to equation (4.6).

The boundaries ∂Dl , l = 1, . . . , ND of the inclusions are defined through

the parametrization θ ∈ R
n. Thus the observation model is

V = R(σ, z̄, θ) + e, e ∼ N (e∗, Γe), (5.12)

where z̄T = (zT , ζT) ∈ R
Nel+ND , z = (z1, . . . , zNel

)T and ζ = (ζ1, . . . , ζND
)T .

As previously, the measurement noise e is modeled as additive Gaussian

noise with mean e∗ = 0 and covariance Γe. The noise consisted of two

components, such that the standard deviation of the first component was

assumed to be 1% of the absolute noisy measurement voltage, and the

standard deviation of the second component was assumed to be 0.1%

of the absolute value of the difference between maximum and minimum

noisy voltages.

Correspondingly to Section 5.3.2, the boundary parametrization θ of

the inclusions (rebars) is estimated simultaneously with the discretized

conductivity distribution σ and the contact impedances z by computing

the MAP estimate ΦMAP = arg minΦ F(Φ; V) where Φ = (σT , z̄T , θT)T

is a stacked vector form of the unknowns. The MAP estimate ΦMAP is

computed by finding a minimizer of the functional F(Φ; V) iteratively

using the GN-method equipped with a step-size line search. On every

GN-iteration and every update to the parametrization θ the rebars move

and/or deform thus changing the computational mesh. The changes in

the mesh are handled by employing the adaptive meshing approach sim-

ilarly as in IV and Section 5.3.2. In this case, however, the Jacobian matrix

Ji
Φ (corresponding to the ith iteration) of the forward mapping Φi 7→ R(Φi)

with respect to the shape of the inclusion is computed (semi-) analyti-

cally using Corollary 3.3 in III instead of the equation (5.5) in the crack

estimation case. With this approach, the computational time needed to

compute the Jacobian matrix block Ji
θ can be decreased considerably. The

rebar boundaries need to be “sufficiently smooth” in order to satisfy the

assumptions of the approach. For details, see III and the Corollary 3.3

therein.
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5.4.2 Results

A series of simulations were conducted to test the proposed method. In

all test cases, Ω was a three-dimensional cylinder with radius 7.5 cm and

height 3 cm. The considered rebars were smaller cylinders with central

axes parallel to that of Ω and of the same height as Ω. The background

conductivity was chosen to represent typical conductivity of dry concrete

found indoors (see Table 2.1), that is σ = 5 · 10−3 mS/cm. In the simu-

lations, the aim was to estimate the locations of the rebars together with

the value of the constant background conductivity σ. In some test cases,

also the radii of the rebars were estimated. The contact impedances on the

electrodes and inclusions were assumed to be known. In the following,

the first and last simulational cases of publication III are considered. For

the details of the full simulational study, see III.

In the first simulational case, one inaccessible rebar with known ra-

dius was located close to the boundary ∂Ω. Here, the term “inaccessible”

means that the rebar cannot be used for measurements and it is not pos-

sible to inject current through it. The task is to find the location of the

rebar from boundary voltage measurements. The radius of the rebar was

assumed to be known. The results are shown in Figure 5.9: the top left

image illustrates the progress of the iterative algorithm for three initial

guesses. The estimated boundary of the rebar is indicated by solid line

and the central axis by ’+’. The true boundary is drawn by dashed line.

The “adaptation” of the finite element mesh to the rebar position estimate

is illustrated in the five other images in Figure 5.9. The mesh images cor-

respond to the “iteration path” drawn by a thick line in the top left image.

In this simple case, the algorithm converges reliably and the reconstruc-

tion does not depend much on the initial guess.

In the last simulation of III, two test cases were studied to evaluate

the method for estimating the locations and radii of two rebars inside

the concrete body. The results are shown in Figure 5.10: The left column

depicts the true targets with two rebars inside the concrete. The middle

column illustrate the progress of the iterative algorithm without current

injection through a rebar, and the right column shows the evolution of the

iterative progress when current is injected through the rebar. In all tests,

the same initial guess for the locations and radii of the rebars was used. In

the first case shown on the top row of Figure 5.10, the convergence is a bit

faster and the final reconstruction slightly better when current is injected

through the rebars. For the geometry considered in the bottom row, the

situation is more challenging. The accurate reconstruction in the bottom
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right image of Figure 5.10 is obtained after only a couple of iterations

while the one in the middle of the bottom row does not even coincide

with the true target geometry. In this case, it is evident that the use of the

rebars as internal electrodes improves the reconstructions significantly.

5.4.3 Discussion

The executed numerical tests with simulated noisy data demonstrate that

the proposed method reconstructs the sizes and locations of rebars rela-

tively well in most cases even if they are not used for current injection and

potential measurements. However, the accuracy of the reconstructions

and the rate of convergence is greatly increased if the rebars are used as

internal electrodes. This is intuitive since driving currents through the re-

bar forces higher current densities in the interior of the investigated body,

which should make the problem less illposed – especially, if the rebar

lies deep inside the object. This effect was well observed in the last test

case (see Figure 5.10, bottom row) where the smaller rebar is located at

the center of the object in the “shadow” of the larger rebar near the ob-

ject boundary. In this case the measurements carry very little information

about the location of the smaller rebar, if current is not driven through the

rebars.

The simultaneous estimation of rebar location and radius performs

relatively well with noisy data. However, by considering higher noise lev-

els, one would encounter situations where the estimates would be accu-

rate only if the rebar was used for measurements. When simultaneously

estimating the radius with the locations, the algorithm tends to shrink

the size of the rebar before the correct location is found. Intuitively, this

means that an estimate without a rebar gives a better fit than one with a

rebar far away from the true inhomogeneity.

The estimate of the constant conductivity σ was also reliable and the

convergence relatively fast in all numerical cases (refer to Figure 4.3 in

III). In practice, however, the conductivity of concrete is often inhomoge-

neous due to distribution of moisture, chlorides, etc. In order to make

the described method useful from the practical point of view, the estima-

tion scheme needs to be tested with inhomogeneous conductivity distri-

butions. The modification of the method to estimation of inhomogeneous

conductivity distributions is straightforward.
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Figure 5.9: Localization of a rebar positioned close to boundary. The evolution of the

iterative progress for three initial guesses is shown on top left. The true position of the

rebar is drawn by dashed line and the rebar centers are marked with ’+’. The other images

demonstrate the adaptation of the FE-mesh to the position estimate of the rebar. The mesh

corresponds to the “iteration path” starting at coordinates (-4,-4) and drawn by thick line

on top left.
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Figure 5.10: Estimation of locations and radii for two rebars. Left column: the true

targets. Middle column: the evolution of the iterative progress without current injection

through rebars. Right column: the evolution with current injection through the rebars.

The rebar boundaries corresponding to the final estimates are drawn by solid line and the

true boundaries by dashed line. The rebar centers are marked with ’+’.

64 Dissertations in Forestry and Natural Sciences No 122



6 Summary and conclusions

The main emphasis of this thesis was to study the feasibility of ERT for

non-destructive testing of concrete. The evaluation of the condition of

concrete embodies various important factors. In this thesis, the imaging of

internal conductivity distribution of concrete, identification of cracks and

localization of reinforcing bars (i.e. rebars) were addressed. In order to

succeed in the aforementioned tasks, novel computational schemes were

developed for ERT and combined with state-of-the-art statistical inversion

methods.

The research of ERT for NDT of concrete has been low in civil en-

gineering community. The previous studies have reported the technique

promising but not yet ready for practical applications [37–39, 109, 115].

The potential applications of ERT in the construction industry include de-

tection of the thickness of the concrete cover on top of reinforcement bars

and estimation of crack depths and moisture distributions.

In Publication I, the feasibility of ERT for detection of different inclu-

sions in concrete was studied. This is the first paper in which ERT was

applied successfully for imaging of concrete without utilizing reference

data in the reconstructions. Concrete specimens cast with a polyuretane

block, steel bars and plastic sheets were measured using ERT. The results

indicate that different types of inclusions can be detected and localized

using this method. The experiments were carried out using young sam-

ples that were relatively conductive. However, the ERT imaging scheme is

not limited to conductive targets only: ERT has been successfully applied

to various geophysical problems in which the targets are highly resistive;

see for example [178–180]. In this series of experiments, all the samples

were short cylinders and measurements were acquired around the target.

In practice, most of the inspected targets share a beam or slab geometry

and the measurements cannot be always acquired around the target. Such

geometries were considered in the publications II and IV.

In Publication II, the feasibility of using ERT to localize and charac-

terize cracks in concrete was tested. In this series of experimental and

numerical tests, concrete slabs and beams were used, and the measure-

ments were acquired from one surface only. In the first part of this study,

slab specimens with plastic sheets were measured. The plastic sheets were

used for modeling the cracks to reliably verify the locations of noncon-

ductive regions. Sheets perpendicular to and parallel with the concrete
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surface were considered. The results indicate that both types of inhomo-

geneities can be detected using ERT. Furthermore, the dimensions of the

plastic sheets perpendicular to the concrete surface were estimated quite

reliably, suggesting that the detection of crack depths using ERT may be

possible. In the selected geometry, the depth resolution was on the or-

der of a few millimeters. The estimated dimensions of the plastic sheet

parallel to surface were not that accurate; this was the result of using a rel-

atively small electrode array in comparison with the size of the sheet. In

practice, however, the dimensions of large laminar cracks could be traced

by separate ERT measurements using different array positions on the con-

crete surface.

In II, the applicability of using ERT to localize and characterize cracks

was also tested using beam specimens with real cracks. These experiments

verify that cracks in concrete can be detected using ERT. The experiments

conducted on the beams support the results obtained in the previous ex-

periments with slabs: ERT is capable of distinguishing between cracks

of different depths. Further, this experiment gives an approximate esti-

mate of the sensitivity of the method: it can be concluded that at least 300

µm wide cracks can be clearly detected. Even a 100 µm wide crack was

detected, although the resolution was not as good as with larger crack

widths. The results suggest that ERT could be potential tool for determin-

ing the crack widths. However, before applying the method in practice,

the reliability of the modality for characterizing crack widths should be

studied with large numbers of specimens. Such a study should include

comparison of the ERT reconstructions with data provided by an alterna-

tive modality. In this study, the estimates of the real cracks were verified

only by a qualitative visual inspection. The experiments reported herein

were carried out using samples that were moist and therefore had a high

conductivity.

In Publication III, a novel computational method was developed for

estimating the locations and radii of rebars (inclusions) inside a body of

concrete with constant but unknown background conductivity. One of

the main aims was to develop a model for internal metals that have a

high impact on electrical measurements. Since the internal metals act as

electrodes, the traditional models based on continuous representation of

the conductivity distribution are flawed. In this work, the embedded re-

bars were considered as internal electrodes whose shape and locations

are unknown, but can be estimated on the basis of boundary voltage

measurements. A special characteristic of this measurement setting is

that in certain cases it is possible to use the rebars as electrodes for driv-
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ing currents and measuring the corresponding “inclusion potentials” even

though the locations of the rebars are not accurately known. For exam-

ple, some bridge structures contain an additional contact steel that is in

direct electrical contact with the embedded rebar mesh. The currents can

be driven to the rebars through this contact steel.

As the unknown internal electrodes were part of the computational

geometry, the conventional approaches for ERT could not be used. This

problem was sorted out by employing an adaptive meshing scheme that

iteratively adapts to the changes of the computational geometry. The

method was tested in dimension three with simulated noisy data. The

results show that the approach can be used for localizing rebars that are

either accessible or inaccessible for measurements and/or current injec-

tions. However, the reconstructions become notably more accurate and

the convergence of the algorithm significantly faster if current is injected

through the rebars. In III, the background conductivity was assumed ho-

mogeneous in all simulations. The extension of the method to consider

inhomogeneous conductivity distributions is, however, straightforward.

In IV, numerical and experimental tests were conducted in order to

evaluate the adaptive meshing scheme for crack detection. The key idea

was to model the crack detection problem as a boundary estimation prob-

lem, where Neumann zero boundary condition was imposed on the crack

boundary. The boundary estimation was carried out by employing the

adaptive meshing approach. The results show that the adaptive meshing

approach can distinguish different crack sizes in cases of homogeneous

and inhomogeneous background conductivities. In the case of inhomo-

geneous background, the method performs significantly better in crack

detection than the conventional approach, especially, when the contrast

between the lowest and the highest value of conductivity is high. The

standard method performs relatively well in imaging of the cracks in

low contrast inhomogeneous backgrounds, but poorly in reconstructing

the background conductivity distribution. Although the employed crack

model was relatively simple, the adaptive meshing approach is capable for

more complex boundary representations. In fact, one of the advantages of

the proposed approach is the freedom of choice for the parametrization.

In conclusions, this study has shown promise for ERT to become a

potential tool for NDT of concrete. The modality has been shown to be

applicable in estimating the location and size of cracks, localizing rebars

and simultaneously reconstructing the (inhomogeneous) background con-

ductivity of concrete. The 3D tomographic images reconstructed from an

ERT measurement are easy to interpret and provide information that is
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either impossible or hard to obtain when using other electrical methods.

Furthermore, ERT may have potential in detection of crack widths, rebar

corrosion and moisture and chloride distributions. Hence, by combining

ERT with other NDT modalities, a more thorough look into the condition

of concrete structures could be attained.

The biggest challenge in the ERT measurements of concrete arises

from the contact problems between the electrodes and the concrete sur-

face. The wet electrodes can provide a good contact to concrete but the

contact is not stable with respect to time as the electrolyte of the electrodes

is absorbed by the conrete specimen. Moreover, excessive absorbtion of

the electrolyte can create contact paths between neighboring electrodes.

The absorbtion problems are mostly avoided by using gel electrodes, how-

ever, the gel electrodes may have a slightly worse contact than that of wet

electrodes, especially, with very dry concrete. In crack detection, small

cracks with crack widths less than 100 µm cannot be reliably detected be-

cause after this limit the change in the electrical conductivity is no longer

detectable. Another limitation of the method is its poor spatial resolution,

especially, if compared to ultrasonic and radar methods. However, ERT

is very sensitive to conductivity changes. Also an advantage is that the

modality provides 3D reconstructions of the spatial conductivity distri-

bution of concrete and makes it possible to take model uncertainties into

account. With currently available electrical modalities this is not achiev-

able. Furthermore, the prior models in ERT can be developed to meet the

application specific needs.

In this thesis, pioneering work to study the feasibility of ERT in NDT

of concrete was performed. The proposed method was studied with lab-

oratory experiments and no field test were undertaken. Also, no quanti-

tative comparison to other NDT methods was yet performed. In future,

it is important to consider these two aspects in order to ERT to become a

potential tool in NDT of concrete.
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[92] C. Maierhofer, R. Arndt, M. Röllig, C. Rieck, A. Walther, H. Scheel,

and B. Hillemeier, “Application of impulse-thermography for non-

destructive assessment of concrete structures,” Cement and Concrete

Composites 28, 393–401 (2006).

[93] J. Alldred, J. Chua, and D. Chamberlain, “Determination of rein-

forcing bar diameter and cover by analysing traverse profiles from a

cover meter,” Non-Destructive Testing in Civil Engineering(NDT-CE).

1, 721–728 (1995).

[94] J. Bungey, “Sub-surface radar testing of concrete: a review,” Con-

struction and Building Materials 18, 1–8 (2004).

[95] S. Hubbard, J. Zhang, P. Monteiro, J. Peterson, and Y. Rubin, “Exper-

imental detection of reinforcing bar corrosion using nondestructive

geophysical techniques,” ACI Materials Journal 100 (2003).

[96] S. Millard and J. Harrison, “Measurement of the electrical resistiv-

ity of reinforced concrete structures for the assessment of corrosion

risk,” Brit. J. Nondestructive Testing 31, 617–621 (1989).

[97] S. Millard, M. Ghassemi, J. Bungey, and M. Jafar, “Assessing the

electrical resistivity of concrete structures for corrosion durability

studies,” Corrosion of reinforcement in concrete 303–313 (1990).

[98] M. Saleem, M. Shameem, S. Hussain, and M. Maslehuddin, “Effect

of moisture, chloride and sulphate contamination on the electrical

resistivity of Portland cement concrete,” Construction and Building

Materials 10, 209–214 (1996).

[99] J. Lataste, M. Behloul, and D. Breysse, “Characterisation of fibres

distribution in a steel fibre reinforced concrete with electrical resis-

tivity measurements,” NDT & E International 41, 638–647 (2008).

[100] W. McCarter, T. Chrisp, A. Butler, and P. Basheer, “Near-surface sen-

sors for condition monitoring of cover-zone concrete,” Construction

and Building Materials 15, 115–124 (2001).

[101] M. Mancio, M. Eng, J. Zhang, and P. Monteiro, “Nondestructive Sur-

face Measurement of Corrosion of Reinforcing Steel in Concrete,”

Canadian Civil Engineer 21, 12–14 (2004).

Dissertations in Forestry and Natural Sciences No 122 77



Kimmo Karhunen: ERT imaging of concrete

[102] R. Henderson and J. Webster, “An impedance camera for spatially

specific measurements of the thorax,” IEEE Transactions on Biomedi-

cal Engineering 250–254 (1978).

[103] R. Lytle and K. Dines, “Impedance camera: a system for determin-

ing the spatial variation of electrical conductivity,” (1978), Lawrence

Livermore National Laboratory UCRL-52413.

[104] A. Calderon, “On an inverse boundary value problem,” in Semi-

nar on Numerical Analysis and its Applications to Continuum Physics

(Brazilian Math. Society, Rio de Janeiro, 1980), pp. 65–73.

[105] J. Sylvester and G. Uhlmann, “A global uniqueness theorem for an

inverse boundary value problem,” Annals of Mathematics 125, 153–

169 (1987).

[106] A. Nachman, “Global uniqueness for a two-dimensional inverse

boundary value problem,” Annals of Mathematics 143, 71–96 (1996).
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and S. Siltanen, “Wavelet-based reconstruction for limited-angle X-

ray tomography,” Medical Imaging, IEEE Transactions on 25, 210–217

(2006).

[149] P. Hua, J. Webster, and W. Tompkins, “A regularised electrical im-

pedance tomography reconstruction algorithm,” Clinical Physics and

Physiological Measurement 9, 137 (1988).

Dissertations in Forestry and Natural Sciences No 122 81



Kimmo Karhunen: ERT imaging of concrete

[150] P. Hua, E. Woo, J. Webster, and W. Tompkins, “Iterative reconstruc-

tion methods using regularization and optimal current patterns

in electrical impedance tomography.,” IEEE transactions on medical

imaging 10, 621 (1991).

[151] A. Adler and R. Guardo, “Electrical impedance tomography: regu-

larized imaging and contrast detection.,” IEEE transactions on medi-

cal imaging 15, 170 (1996).

[152] P. Pinheiro, W. Loh, and F. Dickin, “Smoothness-constrained in-

version for two-dimensional electrical resistance tomography,” Mea-

surement Science and Technology 8, 293 (1997).

[153] M. Vauhkonen, D. Vadasz, P. Karjalainen, E. Somersalo, and J. Kai-

pio, “Tikhonov regularization and prior information in electrical

impedance tomography,” IEEE transactions on medical imaging 17,

285–293 (1998).

[154] M. Vauhkonen, W. Lionheart, L. Heikkinen, P. Vauhkonen, and

J. Kaipio, “A MATLAB package for the EIDORS project to recon-

struct two-dimensional EIT images,” Physiological Measurement 22,

107 (2001).

[155] V. Kolehmainen, J. Kaipio, and H. Orlande, “Reconstruction of ther-

mal conductivity and heat capacity using a tomographic approach,”

International Journal of Heat and Mass Transfer 50, 5150–5160 (2007).

[156] G. Steiner and D. Watzenig, “Logarithmic parameter reconstruc-

tion in electrical tomography,” COMPEL: The International Journal

for Computation and Mathematics in Electrical and Electronic Engineer-

ing 28, 879–891 (2009).

[157] K. Karhunen, A. Seppänen, A. Lehikoinen, and J. Kaipio, “Elec-

trical Impedance Tomography for Imaging Concrete,” in 10th Inter-

national Conference on Biomedical Applications of Electrical Impedance

Tomography (EIT 2009) combined with Workshop on Electromagnetic In-

verse Problems, School of Mathematics, University of Manchester, UK

(2009).

[158] F. Santosa and M. Vogelius, “A computational algorithm to deter-

mine cracks from electrostatic boundary measurements,” Interna-

tional journal of engineering science 29, 917–937 (1991).

[159] V. Liepa, F. Santosa, and M. Vogelius, “Crack determination

from boundary measurements—reconstruction using experimental

data,” Journal of Nondestructive Evaluation 12, 163–174 (1993).

82 Dissertations in Forestry and Natural Sciences No 122



Bibliography

[160] K. Bryan and M. Vogelius, “Reconstruction of multiple cracks from

experimental electrostatic boundary measurements,” Inverse Prob-

lems and Optimal Design in Industry 7, 147–167 (1993).

[161] F. Santosa, “A level-set approach for inverse problems involving

obstacles,” ESAIM: Control, Optimisation and Calculus of Variations 1,

17–33 (1996).

[162] F. Hettlich and W. Rundell, “The determination of a discontinuity

in a conductivity from a single boundary measurement,” Inverse

Problems 14, 67–82 (1998).
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Concrete is the most used building 

material in the world. As the concrete 

infrastructure is increasingly deterio-

rating, the need for advanced testing 

methods for concrete is imminent. In 

this thesis, the feasibility of electri-

cal resistance tomography (ERT) for 

non-destructive testing (NDT) of con-

crete is studied.  The thesis consid-

ers, especially, localization of cracks 

and reinforcing bars inside concrete 

targets using ERT. The results show 

that ERT can characterize several 

electrical properties of concrete and 

has potential to become a practical 

tool for NDT of concrete.
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