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Summary 

The main aim of this study is to provide a large dataset showing the possible changes in climate that 

can be expected in Ethiopia and Kenya during the 21st Century. This dataset can be used with and by 

regional and local stakeholders in the assessment of adaptation requirements and possible adaptation 

strategies. The research goals are: (a) to provide maps and graphs showing the possible short and 

medium-term changes in annual and monthly precipitation and temperature in the study region; (b) to 

assess the possible impacts of climate change on the occurrence of drought events, and the incidence 

of high temperatures; and (c) to assess the effects of these climate changes on the discharge of the 

Omo River. 

The results of two General Circulation Models (GCMs) (HADCM3 and ECHAM5) are downscaled 

to a resolution suitable for regional climate impact assessment (10’ x 10’). Downscaled climate data 

are provided for a number of future greenhouse gas emission scenarios (B1, A2, A1B), and for two 

time horizons, namely 2006-2035 (short-term) and 2036-2065 (medium-term). A hydrological model 

(STREAM) is used to simulate the monthly discharge of the Omo River; the model is driven by the 

downscaled climate data from both the HADCM3 and ECHAM5 models. 

In the appendices, large datasets are provided showing the downscaled results of these models for the 

study region. Maps are provided showing the change in mean annual precipitation and temperature 

over the entire study region (Ethiopia and Kenya), and graphs are shown giving more detailed as-

sessments of the change in mean monthly and annual precipitation and temperature for 10 case study 

locations, namely Moyale, Mandera, Marsabit, Maralal, Isiolo, Nairobi, Awasa, Kelem, Asayita, and 

Addis Ababa. 

There are a number of similarities and differences in the climate results of the two GCMs. Firstly, the 

expected changes in the temperature regimes across the region are very similar according to both 

HADCM3 and ECHAM5. Both models show very clear trends at all locations towards warmer con-

ditions in the future, with greater increases in mean temperature by 2050 compared to 2020, and 

greater increases for the ‘A’ scenarios compared to the B1 scenario. 

In terms of the variability of annual rainfall totals, the results of the two GCMs are also in good 

agreement. Both show that in general there will be no significant increase in the variability of annual 

rainfall, between the baseline period and the future scenarios. Exceptions are noted in the northern 

half of the study area for both GCMs. A large increase in the variability of annual rainfall is simu-

lated for the most northerly location of Asayita by both models. Increases in variability are also noted 

in both models for the northern locations of Addis Ababa and Awasa under some combinations of 

scenario and/or time period, though the trend is less clear than for Asayita. 

However, in terms of mean annual precipitation, the results of the two GCMs show numerous differ-

ences. In general, the ECHAM5 model shows a trend towards wetter annual conditions over most 

parts of Ethiopia and Kenya. Though this is also the case for large parts of northern Ethiopia accord-

ing to HADCM3, the latter model simulates generally drier conditions over large parts of southern 

Kenya, especially in the south-western section. Furthermore, changes in the monthly rainfall regime 

were not consistent between the two models. The results of HADCM3 suggest that those areas af-
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fected by a main rainy season from March to May will experience an increase in precipitation in 

March and April, but a decrease in May. Furthermore, these locations will experience a decrease in 

precipitation during their secondary precipitation peak in October-November. This pattern is not re-

produced by ECHAM5, which shows overall a more general tendency towards wetter conditions 

throughout the year, with relatively large positive anomalies in the second half of the year (especially 

during the rainy season of October-November). 

Datasets and assessment are also given of changes in the frequency of dry months, and for changes in 

the frequency of months with high temperatures. For the future scenarios, both models simulate large 

increases in mean annual temperature and the frequency of very warm months (indicative of in-

creased heat stress) for the entire region, including those areas already affected by adverse heat 

waves in the current period. Even in the short-term, and under the most optimistic of the emission 

scenarios used (B1), the increase is very large, and suggests that increased heat wave frequency and 

heat stress will become a much more severe problem than at present in the near future. The clear sig-

nal presented by both models, for all scenarios and locations, suggests that urgent measures may be 

needed to ensure that various activities and sectors (e.g. crop growth, livestock rearing, health care, 

irrigation, energy supply) can adapt to these changes. Changes in the number of dry months can be 

indicative of changes in the occurrence of dry (or drought) periods. However, the signals of change 

associated with the two GCMs are not in agreement.  

The river discharge results for the Omo River show little coherency between the two GCMs in terms 

of changes in the annual hydrograph. The HADCM3-driven model shows very little change in dis-

charge during the long dry season (December-June), followed by a decrease in discharge during the 

main discharge period between July and November. In contrast, the ECHAM5-driven model shows a 

large increase in discharge during the first months of the year (especially January to March), and a 

further large increase during the peak of the high discharge season (August-September).  

This study provides a large dataset of downscaled climate data for temperature and precipitation in 

the region, in both the short and medium-term. Thus, the data presented in this report can assist local 

stakeholders and decision-makers in assessing the expected physical effects of climate change, and 

therefore the need (or otherwise) for adaptive measures. Whilst this study does not provide an as-

sessment of the impacts of these changes in various sectors (e.g. agriculture, health, energy), it does 

provide a wealth of climate data tailored to the regional situation which can subsequently be used as 

input into specific impact models for those sectors, or to develop short and medium-term plans via 

expert judgement and stakeholder dialogue. 

There are large discrepancies between the results of the two models for the future scenarios in terms 

of changes in mean precipitation and the frequency of droughts and intense wet months. Clearly, the 

signal of change in future precipitation is very uncertain. This has a number of implications. The first 

implications are with regards to the methods used to predict future changes in precipitation. It is well 

known that precipitation is much more difficult to simulate than temperature. At present, GCMs can-

not accurately represent all of the physical atmospheric processes involved in the generation of pre-

cipitation. A larger number of GCMs could be used in order to compare their results for the future. 

However, there is no way to assess in advance which of the models will perform most accurately for 

the future period. Using a larger number of GCMs would also mean using models which have been 

proven to perform less well for the study region during the baseline period. A second implication  
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related to the use of climate models is the need for more regional climate model (RCM) simulation 

results for the study region. Such models are capable of resolving regional climatology more accu-

rately than GCMs, but are computationally very demanding. Nevertheless, the development of 

RCMs, or making public the results of existing RCMs, could lead to a decrease in the uncertainty in 

predictions of future precipitation, and could therefore assist greatly in climate impact assessment. 

A further implication of the high uncertainty of the precipitation data, is with regards to the response 

of stakeholders and decision-makers to that uncertainty. A possible reaction to the existing uncer-

tainty is the tendency to ‘wait and see’, in which stakeholders and decision-makers delay developing 

plans until more clear information is available. However, the possible impacts associated with the po-

tential changes in climate (e.g. increased droughts, flash floods, etc.) are so detrimental that early 

planning is still preferable under the precautionary principle. Furthermore, adaptation measures can 

be sought which provide benefits under a wide range of future scenarios. For example, more efficient 

irrigation techniques to reduce evaporative water losses may be essential if the frequency of droughts 

increases in areas such as the southern Ethiopian lowlands. However, such schemes can be designed 

in ways that they also provide benefits even if such an increase in drought frequency should not ma-

terialise (e.g. more availability of water for drinking, increased yields, reduced water costs, etc.). 

Therefore, the results of this study show that stakeholders and decision-makers need to consider ro-

bust management options to tackle both increasing drought frequency, and an increasing frequency 

of high rainfall events. 

Given the uncertainties surrounding the changes in precipitation, a useful recommendation for re-

gional adaptation is to provide long-range seasonal weather forecasts, and to promote the dissemina-

tion of such information. A long-range seasonal weather forecast allows farmers to make informed 

decisions on which crops and/or species to plant in the forthcoming growing season, and can allow 

health sector workers to anticipate climate-related health problems (and therefore the treatments re-

quired) prior to onset of problems. Furthermore, medium-term river discharge projections could then 

be made which would allow for early warning systems in the event of flooding, and better forward 

planning of reservoir levels for electricity generation. 
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1. Introduction 

1.1 Background 

Climate change is expected to have major impacts on semi-arid areas around the world and on the 

people living in these areas. Their livelihoods are strongly connected to the climatic conditions, and 

especially to the amount of precipitation received during the rainy seasons. In East Africa, Cordaid is 

active in trying to improve people’s livelihoods and make them less vulnerable to variations in pre-

cipitation, through drought management projects. Currently, Cordaid is evaluating its activities and 

projects in preparation for drafting a strategy for the region for the period 2010-2015. Part of this 

evaluation is to assess the potential impacts of climate change on their projects and to develop, if 

necessary, adaptive measures. At the same time, IVM is involved in a case study on climate change 

impacts in Ethiopia, and on which adaptation measures are possible in water management, as part of 

the ADAPTS project.  

Together, Cordaid and IVM decided to start a project on assessing the impacts of climate change on 

Ethiopia and Kenya. The major activity is to downscale information from global climate models to 

regional information and to assess the changes in temperature and precipitation for some areas. It is 

necessary to first have insights in the predicted changes in the area, before adaptive measures can be 

developed. The information becoming available through this project will be used by Cordaid for the 

development of their strategy and by IVM for the ADAPTS project. The information will also be 

shared with several partners from the region. 

It is a first activity for both institutes to assess climate change on development projects, and one of 

the goals is to see whether the information from climate models is relevant for development NGOs 

like Cordaid.  

1.2 Regional setting 

The project covers Kenya and Ethiopia, with special focus on southern Ethiopia and northern Kenya 

(see Figure 1.1). This area was chosen because Cordaid is working with local NGOs (AfD, PISP, 

CISP, etc) in these areas. The areas are fairly similar; they are semi-arid lowlands with two rainy pe-

riods, from March to May and from September to November. The region is hit by droughts once 

every 5 years on average. The region has a semi-arid savannah landscape. The landscape exists of 

gently sloping lowlands and floodplains vegetated predominantly with grass and bush land. The ge-

ology is composed of a crystalline basement with overlying sedimentary and volcanic deposits. There 

are no perennial rivers and rainfall varies highly, both spatially and temporally. People are predomi-

nantly involved in small-scale subsistence agriculture production and livestock husbandry (Lasage 

and de Vries, 2008). To assess the impacts on river discharge and water availability, we chose the 

Omo River as a case study. This is the nearest perennial river in a comparable climatic region.  
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Figure 1.1  Map of Kenya and Ethiopia, showing the elevation (m.a.s.l.), the locations used in this 

study, and the discharge measuring station of the Blue Nile at Khartoum (Sudan). 

1.3 Aims and objectives 

The main aim of this study is to provide a large dataset showing the possible changes in climate that 

can be expected in Ethiopia and Kenya during the 21st Century. This dataset can be used with and by 

regional and local stakeholders in the assessment of adaptation requirements and possible adaptation 

strategies. This main aim is subdivided into the following objectives: 

• To provide maps and graphs showing the possible short and medium-term changes in annual 

and monthly precipitation and temperature in the study region; 

• To assess the possible impacts of climate change on the occurrence of drought events, and the 

incidence of high temperatures; 

• To assess the effects of these climate changes on the discharge of the Omo River. 
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1.4 Structure of this report 

The remainder of this report is set up as follows. In Section 2, the methods and models used to assess 

the changes in climate and discharge are thoroughly described and discussed. In Section 3, the main 

results are described. The results are firstly described for the region as a whole, with reference to the 

large datasets (maps, graphs, tables) on regional and local climate change which can be found in the 

appendices. Then, the results are described in more detail for the case study location of Moyale, and 

for the Omo River. The results are summarised, together with a concise outline of implications, in 

Section 4. The main corpus of data can be found in the appendices. 
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2. Methods 

In order to assess the possible changes in regional climate in the 21st Century we used the results of 

two GCMs (HADCM3 and ECHAM5). The GCM results were first statistically downscaled so as to 

increase the spatial resolution, thus making the data more appropriate for a regional assessment. The 

downscaled data were then analysed to assess how precipitation and temperature are projected to 

change under a number of future scenarios, compared to the baseline period 1961-1990. These down-

scaled climate data were then used as input in a hydrological model, in order to simulate changes in 

the discharge of the Omo River in the 21st Century in response to the modelled changes in climate. In 

this section we describe the climate data and scenarios used, the methods used to downscale the data 

to the regional level, and the methods and data used to simulate changes in the discharge of the Omo 

River. 

2.1 Climate change scenarios 

The climate change scenario data used in this study are based on simulations carried out using Gen-

eral Circulation Models (GCMs) for the Fourth Assessment Report (AR4) of the Intergovernmental 

Panel on Climate Change (IPCC, 2007). For our assessment we used simulations of monthly tem-

perature and precipitation over the period 1901-2100 carried using the climate models ECHAM51 

and HADCM31,2. These models were selected since they have the highest ‘skill scores’ for both pre-

cipitation and temperature of all the models used for the AR4 in the region of study (Cai et al, 2009). 

The raw data were downloaded from the website of IPCC Data Distribution Centre 

(http://www.mad.zmaw.de/IPCC_DDC/html/SRES_AR4/index.html). 

In order to analyse the changes in climate simulated by these models, we compared the simulated 

values for the baseline period 1961-1990 with the values for two dates in the future: 2020 and 2050 

AD. We used these to correspond to short-term and medium-term climate change respectively. Note 

that in keeping with standard methods in climatological studies, these two dates are defined as the 

means of 30-yr periods, so that 2020 refers to the period 2006-2035, and 2050 refers to the period 

2036-2065. Also note that since the modelled baseline data for the period 1961-1990 are derived 

from two different climate models, the baselines differ between the HADCM3 and ECHAM5 results. 

For the 20th Century we used simulations forced using the scenario 20C3M, which prescribes green-

house gases and aerosols on an annual basis according to observed values throughout the 20th Cen-

tury. For the 21st Century we used simulation results forced using SRES scenarios B1, A1B, and A2 

                                                   
1  We acknowledge the international modelling groups for providing their data for analysis, the Program for 

Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data, the 

JSC/CLIVAR Working Group on Coupled Modelling (WGCM) and their Coupled Model Intercomparison 

Project (CMIP) and Climate Simulation Panel for organising the model data analysis activity, and the 

IPCC WG1 TSU for technical support. This work, including access to the data and technical assistance, is 

provided by the Model and Data Group (M&D) at the Max-Planck-Institute for Meteorology, with funding 

from the Federal Ministry for Education and Research and by the German Climate Computing Centre 

(DKRZ). 
2  © Crown copyright 2005, Data provided by the Met Office Hadley Centre. 
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(IPCC, 2000), and non-SRES scenario COMMIT. These scenarios are described in the following 

paragraphs.  

SRES Scenarios B1, A1B, and A2 

These scenarios were developed for and described in the IPCC Special Report on Emission Scenarios 

(SRES) (IPCC, 2000). The SRES describes 40 different emission scenarios, each making different 

assumptions about future emissions of greenhouse gases, land use, and other driving forces. The B1, 

A1B, and A2 scenarios lie towards the lower, middle, and upper section of the full spectrum of IPCC 

scenarios respectively (in terms of projected temperature change by the end of the 21st Century), and 

can therefore be used to assess climate change under a broad range of possible futures. 

The B1 scenario describes a convergent world with the same global population by 2100 AD (com-

pared to 1990 AD), peaking in the mid 21st Century and declining thereafter. The scenario assumes 

rapid change in economic structures towards a service and information economy, with reductions in 

material intensity and the introduction of clean and resource-efficient technologies. The emphasis is 

on global solutions to economic, social, and environmental sustainability, but without additional cli-

mate incentives. Compared to the baseline concentration of atmospheric CO2 in 1990 AD (ca. 367 

ppm), the B1 scenario prescribes an increase to ca. 540 ppm by 2100 AD (according to the Bern 

model). 

The A1B scenario describes a world of very rapid economic growth, global population that peaks in 

the mid 21st Century and declines thereafter, and the rapid introduction of new and more efficient 

technologies. The major underlying themes are convergence among regions, capacity building, and 

increased cultural and social interactions, with a substantial reduction in regional differences in per 

capita income. This scenario assumes a balance across fossil intensive and non-fossil energy sources. 

Compared to the baseline concentration of atmospheric CO2 in 1990 AD (ca. 367 ppm), the A1B 

scenario prescribes an increase to ca. 703 ppm in 2100 AD (according to the Bern model). 

The A2 scenario describes a very heterogeneous world. The underlying theme is one of self-reliance 

and the preservation of local identities. Fertility patterns across regions converge very slowly, result-

ing in continuously increasing population. Economic development is mainly regionally oriented, and 

per capita economic growth and technological change are more fragmented and slower than in other 

storylines and scenarios. Compared to the baseline concentration of atmospheric CO2 in 1990 AD 

(ca. 367 ppm), the A2 scenario prescribes an increase to ca. 836 ppm by 2100 AD (according to the 

Bern model). 

COMMIT scenario 

This scenario is not included in the SRES (IPCC, 2000), but was used in the AR4 (IPCC, 2007). It is 

an idealised scenario in which the atmospheric burdens of long-lived greenhouse gasses in the 20th 

Century are held fixed at the same levels as in 2000 AD. Hence, it can be used as a reference against 

which the effects of the SRES scenarios can be assessed. 

2.2 Climate change scenarios 

The raw data from the HADCM3 and ECHAM5 models were imported for the scenarios described 

above. HADCM3 has an equidistant grid with a spatial resolution of 3.75° in longitude and 2.5° in 
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latitude. ECHAM5 has a spatial resolution of 1.875° in longitude and ca. 1.875° in latitude. These 

resolutions are rather coarse for use in regional impact assessment studies (Arnell et al., 1996; Bou-

wer et al., 2004; Kleinn et al., 2005; Wood et al., 2002, 2004). Hence, the data were downscaled to a 

higher spatial resolution. Bouwer et al. (2004) identify two main approaches to downscale climate 

data for use in regional impact assessments: statistical methods which transform the data in such a 

way as to match the main statistical properties of modelled and observed climate data sets (e.g. Bou-

wer et al., 2004; Wilby and Wigley, 1997; Wilby et al., 1998; Wood et al., 2002); and dynamical ap-

proaches which use finer resolution regional circulation models (RCMs) nested within coarser GCMs 

(e.g. Cocke and LaRow, 2000; Kim et al., 2000; Murphy, 2000; Wood et al., 2002; Yarnal et al., 

2000). The results of these two approaches have been found to have similar levels of skill, with dif-

ferent methods performing better or worse dependent on the region of study (Wilby et al., 2000; 

Wood et al., 2004), but dynamical methods are computationally far more demanding (Bouwer et al., 

2004). Hence, in this study we chose to use a statistical downscaling technique. 

Statistical downscaling involves the use of correction factors (for temperature additive and for pre-

cipitation multiplicative) which are applied to the low resolution model data so as to preserve the sta-

tistical properties of a higher resolution observed (baseline) dataset. In this study the spatially explicit 

correction method based on monthly averages as described by Bouwer et al. (2004) was used. For the 

observed baseline datasets of precipitation and temperature, the Climate Research Unit (CRU) CL 

2.0 dataset (New et al., 2002) was used. This dataset shows climatology for the period 1961-1990 for 

the whole world with a spatial resolution of 10’ x 10’, and is available at 

http://www.cru.uea.ac.uk/cru/data/hrg.htm. No correction was made to preserve the variance of the 

downscaled data, since observed temperature and precipitation time-series data were not available at 

the 10’ x 10’ resolution. 

The downscaling involves two steps. The first step is a spatial downscaling procedure (Bouwer et al., 

2004), whereby the values from the low resolution GCM are simply resampled onto a grid of 10’ x 

10’; this resolution was selected as it is the same resolution as the CRU climate data. In the study re-

gion of this project, a resolution of 10’ x 10’ corresponds to ca. 18.4 km x 18.4 km. The spatially 

downscaled GCM data are then statistically downscaled using the following formulae: 














×=′

),GCM(

),CRU(

),GCM(),GCM(

im

im

imim
p

p
pp

 

(2.1) 

where ),GCM( imp′  is the statistically downscaled GCM precipitation for a particular month, m, and cell, 

i, ),GCM( imp is the spatially downscaled raw GCM precipitation data for a particular month, m, and cell, 

i, ),CRU( imp  is the observed (CRU) average monthly precipitation for a particular month, m, and cell, i, 

and ),GCM( imp is the spatially downscaled raw GCM mean monthly precipitation for a particular month, 

m, and cell, i. 

)( ),GCM(i),CRU(),GCM(),GCM( imimimim tttt −+=′
 (2.2) 

where ),GCM( imt′  is the statistically downscaled GCM temperature for a particular month, m, and cell, i, 

),GCM( imt  is the spatially downscaled raw GCM temperature for a particular month, m, and cell, i, 

),CRU( imt  is the observed (CRU) average monthly temperature for a particular month, m, and cell, i, 
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and ),GCM( imt is the spatially downscaled raw GCM mean monthly temperature for a particular month, 

m, and cell, i. 

2.3 Validation of downscaled climate data 

In order to validate the downscaled climate data, they were compared with observed climate data 

from weather stations. Comparisons were made for weather stations located in regions of Ethiopia 

and Kenya that were indicated as regions of interest by Cordaid. The weather station data were taken 

from the KNMI climate explorer (www.climexp.knmi.nl), which provides a repository of global cli-

mate data. 

Observed data were taken for the baseline period 1961-1990, and compared to the downscaled cli-

mate data for the same period. For precipitation, observed climate data were available for: Moyale 

(Kenya), Mandera (Kenya), and Addis Ababa (Ethiopia). 

In Figures 2.1a – 2.1f, the monthly observed precipitation values are compared to the downscaled 

GCM data. Also shown is the correlation of the monthly means between the two datasets; in all cases 

r2 is at least 0.98. In Table 2.1, mean annual observed and simulated precipitation are shown. Also 

shown are the results of the t-test to establish whether there is a statistical difference between the an-

nual means of the two datasets, and the F-test to establish whether there is a statistical difference be-

tween the variability of annual observed and modelled precipitation. For these locations there was no 

statistical difference between the mean or variability of the observed and simulated annual precipita-

tion datasets. 
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2.1a 

 

2.1b 

 

2.1c 

 

2.1d

 

2.1e 

 

2.1f 

Figure 2.1  Correlation between mean monthly observed and downscaled GCM data for precipita-

tion in the baseline period 1961-1990 at: (a) Moyale (HADCM3); (b) Moyale 

(ECHAM5); (c) Mandera (HADCM3); (d) Mandera (ECHAM5); (e) Addis Ababa 

(HADCM3); and (f) Addis Ababa (ECHAM5). 
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Table 2.1 Comparison of observed and downscaled-GCM precipitation data for the periods 1961-

1990. Also shown are the probabilities (p) associated with the t-test and F-test. In this 

case these tests show no statistically significant difference in mean or variance between 

the observed and modelled annual precipitation datasets (2-tailed test, α = 0.05). 

Station Mean annual observed 

precipitation (mm) 

Mean annual modelled 

precipitation (mm) 

t-test (p) F-test (p) 

HADCM3     

Moyale 735.0 650.6 0.234 0.249 

Mandera 257.5 290.4 0.163 0.351 

Addis Ababa 1185.7 1258.8 0.056 0.108 

     

ECHAM5     

Moyale 735.0 650.6 0.279 0.987 

Mandera 257.5 290.4 0.190 0.891 

Addis Ababa 1185.7 1258.8 0.063 0.581 

For temperature, the only station in the data repository is Nairobi, and hence this was used for valida-

tion. Reference to Figures 2.2a and 2.2b shows that the downscaled model data slightly overestimate 

the temperature in Nairobi. The observed temperature for the baseline period 1961-1990 is 18.97°C, 

compared to 17.82°C for the downscaled GCM data for both HADCM3 and ECHAM5. In both cases 

the difference is statistically significant (t-test, p < 0.001). However, this can be related to the size of 

the grid cells to which the downscaling takes place. The grid cells of the CRU data have a resolution 

of 10’ x 10’ (ca. 18.4 km x 18.4 km), whilst the observed temperature data refer to a specific point. 

This leads to an underestimation of temperature in Nairobi for two reasons. Firstly, the CRU grid cell 

which contains Nairobi city also includes the higher area to the west of the city (parts of the Ngong 

Hills), where temperature is lower due to altitudinal effects. Secondly, observed point temperature 

measurements in cities tend to be higher than surrounding areas, due to the so-called urban heat is-

land effect, whereby cities are generally warmer than the surrounding area. Reference to Figures 2.2a 

and 2.2b shows that the monthly pattern of temperature is very well represented between the ob-

served and model data (r2 > 0.99 in both cases). 
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2.2a 

 

2.2b

Figure 2.2  Correlation between mean monthly observed and downscaled GCM data for tempera-

ture in the baseline period 1961-1990 at Nairobi for: (a) HADCM3; and (b) 

ECHAM5. 

2.4 Hydrological modelling 

Following consultations with Cordaid, it was decided to simulate the effects of future climate change 

on the discharge regime of the Omo River, which has its source in the southern Ethiopian Highlands, 

and empties into Lake Turkana at the border between Ethiopia and Kenya. For this purpose we used 

the STREAM hydrological model to simulate changes in monthly discharge under the climate sce-

narios described above. 

STREAM is a grid-based spatially distributed water balance model that describes the hydrological 

cycle of a drainage basin as a series of storage compartments and flows (Aerts et al., 1999). It is 

based on the RHINEFLOW model of Kwadijk (1993), and uses a raster GIS database to calculate the 

water balance of each grid cell per month. The water balance is calculated using the Thornthwaite 

(1948) equations for potential evapotranspiration and the Thornthwaite and Mather (1957) equations 

for actual evapotranspiration; these equations use temperature and precipitation as the major input 

parameters. For each month, the model generates runoff, groundwater storage (shallow and deep), 

snow cover, and snow melt. The direction of water flow between cells is based on the steepest de-

scent for the eight surrounding grid cells on a digital elevation model (DEM). The main flows and 

storage compartments used to calculate water availability per cell are shown in Figure 2.3. In this 

study the model was set up at a resolution of 10’ x 10’, since this is the resolution of the climate input 

data.  
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Figure 2.3  Flowchart showing the main storage compartments and flows of the STREAM model 

(Aerts et al., 1999). 

STREAM (or its predecessor RHINEFLOW) has been successfully applied to numerous basins of 

varying sizes in different parts of the world for studies of the 20th and 21st Centuries, e.g. the Rhine in 

Europe (Van Deursen and Kwadijk, 1994a); the Ganges-Brahmaputra and Krishna in India (Bouwer 

et al., 2006; Van Deursen and Kwadijk, 1994b); the Yangtze in China (Van Deursen and Kwadijk, 

1994b); and the Perfume River in Vietnam (Aerts and Bouwer, 2002a). Moreover, Aerts et al. (2006) 

and Ward et al. (2007) applied the model to numerous large basins around the globe (including the 

Congo, Nile, Volta, and Zambezi in Africa) to simulate changes in discharge over periods of thou-

sands of years. 

2.4.1 Model input data 

To set up the model a GIS database of input maps was created, using the IDRISI Kilimanjaro soft-

ware. The various input data files are described in this section; all input maps have a spatial resolu-

tion of 10’ x 10’. 

Climate data 

Maps showing monthly precipitation (mm) and temperature (°C) were prepared for the entire study 

area (Ethiopia and Kenya) as described in Sections 2.1 to 2.3. 

Land use data 

For this study the land use map was taken from the USGS Earth Resources Observation and Science 

Center (EROS) Africa Land Cover Characteristic Database (http://edc2.usgs.gov/glcc/). We used the 

USGS Land Use/Land Cover System map. The data are available at a resolution of 1km x 1km, and 

were first reprojected onto the 10’ x 10’ grid used in this study. 

The land use classes were then reclassed into so-called crop factors (CropF). A crop factor map is 

used in STREAM to calculate potential evapotranspiration (PE). The crop factor is a dimensionless 

factor by which the reference PE is multiplied in order to account for the difference in PE over dif-

ferent land use types. The land use classes were reclassed to crop factors based on values in Kwadijk 

(1993) and Aerts and Bouwer (2002b), as shown in Table 2.2. 
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Table 2.2 Land use classes and their associated crop factors, reclassed according to values in 

Kwadijk (1993) and Aerts and Bouwer (2002b). 

Land use class Crop factor (CropF) 

Urban and built-up land 0.8 

Dryland cropland and pasture 1.0 

Cropland/grassland mosaic 0.9 

Cropland/woodland mosaic 1.0 

Grassland 0.8 

Shrubland 0.8 

Savannah 0.6 

Forest 1.1 

Water bodies 1.5 

Wetlands 1.1 

Barren or sparsely vegetated 0.5 

Soil water holding capacity (WHC) 

A map showing the maximum water holding capacity (WHC) of the soil (mm) is used in STREAM 

in the calculation of evapotranspiration, runoff, groundwater seepage, and base flow. For this project 

we used the Assessment of Water Holding Capacity of Soils Map of the United States Department of 

Agriculture (http://soils.usda.gov/use/worldsoils/mapindex/whc.html). The map is available at a spa-

tial resolution of 0.5° x 0.5°, and resampled to the resolution of our STREAM model. 

Digital Elevation Model (DEM) 

A DEM is used in STREAM to route the flow of water through the basin; the direction of water flow 

between grid cells is based on the steepest descent for the eight surrounding grid cells. For this study 

we used the USGS GTOPO30 DEM (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html. 

This DEM is available with a spatial resolution of 0.5° x 0.5°, and was taken for the area shown in 

Figure 1.1. The DEM was then resampled to the resolution of the STREAM model, and the drainage 

networks of East Africa were defined using the RUNOFF module of the IDRISI software. 

2.4.2 Calibration and validation of the hydrological model 

The STREAM model is calibrated by varying model parameters with the aim of reproducing annual 

and monthly discharge characteristics similar to those in the observed record. The parameters used 

for calibration are: CropF; WHC; HEAT (used in the Thornthwaite (1948) equation for calculating 

potential evapotranspiration); TOGW multiplier (determines the proportion of surplus water per grid 

cell that runs off directly or that seeps to the groundwater); and the C factor (determines the propor-

tion of groundwater that contributes to base flow). 

Measured discharge data are not available for the Omo River. Hence, it was necessary to select a 

neighbouring basin with similar hydrological characteristics which could be used for establishing the 

parameter set. This parameter set was then transferred to the Omo basin. This method is known as 
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model calibration on ungauged river basins (e.g. Bárdossy, 2007). For this study the most representa-

tive basin for which observed discharge data were available is the Blue Nile. 

Observed discharge data for the Blue Nile (at Khartoum, Sudan, see Figure 1.1) were taken from the 

Global River Discharge database (RivDis) (Vörösmarty et al., 1998; 

http://daac.ornl.gov//RIVDIS/rivdis.html). Data are available for the period 1912-1982. Hence, two 

periods of 30-yr duration were chosen for calibration and validation. The calibration was carried out 

for the period 1951-1980, and the validation for the period 1921-1950. Calibration and validation 

were carried out separately for the models forced using each GCM (i.e. HADCM3 and ECHAM5). 

The downscaled GCM data were used as input for the calibration (as opposed to the CRU reanalysis 

(‘observed’) data, since the future runs were also carried out using downscaled GCM data. Hence, 

the simulated discharge time-series do not refer to specific months and years of the observed record. 

It was therefore only possible to compare the statistics of the simulated discharge time-series with the 

statistics of the observed discharge time-series over the calibration and validation periods, rather than 

comparing the paired values of individual months and years. 

The agreement of mean monthly discharge for the calibration and validation periods can be seen 

visually in Figure 2.4. The figures show that the STREAM models driven by both HADCM3 and 

ECHAM5 data simulate the annual hydrograph well. This is confirmed by a number of statistical 

analyses shown in Table 2.3. The agreement of mean annual discharge was assessed by expressing 

mean annual simulated discharge as a percentage of mean observed discharge (%). As can be seen in 

Table 2.3 this agreement is very good for the calibration period for both models, and good for the 

validation period. The results of the t-test (Table 2.3) show that there is no significant difference be-

tween mean annual simulated and observed discharge for the calibration and validation periods for 

either GCM (2 tail, n=60, α=0.05). The correlation of mean monthly discharges was assessed using 

the correlation coefficient, r, and the Nash and Sutcliffe (N&S) efficiency coefficient (Nash and Sut-

cliffe, 1970); for all cases the correlation was high (Table 2.3). 

However, the results of the F-test (Table 2.3) show that whilst there was no significant difference in 

the variance of annual discharge between the simulated and observed records for the STREAM 

model driven by downscaled HADCM3 data, there was a highly significant difference in variance for 

the model driven by downscaled ECHAM5 data for both the calibration and validation period. This 

can be explained by the fact that the variance of precipitation in the catchment area of the Blue Nile 

is greater in the downscaled ECHAM5 dataset than in reality. Hence, whilst the ECHAM5 data can 

be used to simulate changes in mean monthly and annual discharge, their application to changes in 

discharge variability is not reliable. 
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 2.5a      2.5b 

 

 2.5c      2.5d 

Figure 2.5  Hydrographs showing the agreement between mean monthly simulated and observed 

discharge at Khartoum (Blue Nile) for: (a) the validation period 1921-1950 

(HADCM3)(b); the calibration period 1951-1980 (HADCM3)(c); the validation period 

1921-1950 (EHCAM5); and (d) the calibration period 1951-1980 (ECHAM5). 

Table 2.3 Results of statistical analyses comparing the simulated discharge series with the ob-

served series. % refers to the annual mean simulated discharge as a percentage of the 

observed discharge. Also shown are the probabilities associated with the t-test and F-

test of annual discharge, and the correlation coefficient (r) and N&S correlation coeffi-

cient between the mean monthly simulated and observed discharges. 

Period % t-test (p) F-test (p) r N&S 

HADCM3      

1951-1980 99.9 0.998 0.414 0.991 0.979 

1921-1950 107.8 0.090 0.077 0.998 0.968 

ECHAM5      

1951-1980 100.4 0.972 <0.001 0.993 0.984 

1921-1950 102.0 0.835 <0.001 0.982 0.964 

In order to assess the skill of the hydrological models in simulating the frequency of high and low 

flow events, rather than just mean flows, we calculated the kth percentiles of monthly discharge for 

the calibration period 1951-1980 from both the simulated and observed discharge time-series. The 

results (Table 2.4) show that both high and low flow frequencies are better simulated by the 
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HADCM3-driven model than by the ECHAM5-driven model. Again, this is likely to be related to the 

fact that the variability of the precipitation data in the catchment area in the downscaled ECHAM5 

data is too high. For this reason, the analyses of changes in high and low flows will only be carried 

out for the HADCM3-driven model. 

Table 2.4  Magnitudes of kth percentiles of observed and simulated monthly discharge (Qk, k = 1, 5, 

10, 25, 75, 90, 95, and 99) at Khartoum (Blue Nile). 

Period Q1 Q5 Q10 Q25 Q75 Q90 Q95 Q99 

HADCM3         

1951-1980 (observed) 67.5 102.0 122.0 176.0 1913.5 5253.9 5864.8 7073.5 

1951-1980 (simulated) 80.0 98.4 120.0 194.1 1847.1 4612.5 5852.2 7918.7 

ECHAM5         

1951-1980 (observed) 67.5 102.0 122.0 176.0 1913.5 5253.9 5864.8 7073.5 

1951-1980 (simulated) 35.9 67.0 90.8 174.2 1712.2 4114.9 6054.5 10495.1 
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3. Results 

The main objectives of this study are to provide maps and graphs showing the possible short and me-

dium-term changes in annual and monthly precipitation and temperature in the study region; to assess 

the possible impacts of climate change on the occurrence of dry events and the incidence of high 

temperatures; and to assess the effects of these climate changes on the discharge of the Omo River. 

The main aim is to provide a large dataset showing the projected changes in climate, which can be 

used with and by regional and local stakeholders in the assessment of adaptation requirements and 

possible adaptation strategies. The most important results of the study are therefore the large dataset 

which can be found in the appendices. Based on these datasets, stakeholders and decision-makers in 

the region can make informed decisions on the need for adaptation measures to adapt to climate 

change. 

All results are given for the following 10 locations (see Figure 1.1): Moyale, Mandera, Marsabit, 

Maralal, Isiolo, Nairobi, Awasa, Kelem, Asayita, and Addis Ababa. For all of the graphical results 

relating to the SRES emission scenarios (Appendices 1–4), we have used the same colour coding as 

adopted in the Fourth Assessment Report (AR4) of the IPCC (IPCC, 2007), i.e. B1 in green, A1B in 

red, and A2 in yellow. This allows for direct and easy comparison with other results to be found in 

the AR4 (and related studies). 

The results section is set up as follows. In Section 3.1, a brief description is given of which results 

can be found in each appendix. In Section 3.2, a summary assessment is made of the regional pat-

terns that can be found in those results. In Section 3.3, further demonstrative assessments and analy-

ses are carried out for the case study location of Moyale. These relate specifically to changes in pre-

cipitation totals during the wet seasons, and changes in the frequency of months with very high tem-

peratures. In Section 3.4, results are shown of the effects of climate change on the discharge of the 

Omo River. 

3.1 Short guide to the datasets in the appendices 

Appendix 1:  

These maps show the spatial distribution of the mean annual values of the downscaled GCM data for 

precipitation (Appendix 1a) and temperature (Appendix 1b), at a spatial resolution of 10’ x 10’. On 

the upper half, the results are shown for HADCM3, and the results for ECHAM5 are shown on the 

lower half. The results are shown for 2020 (2006-2035) and 2050 (2036-2065) for scenarios 

COMMIT, B1, A1B, and A2. 

Appendix 2:  

These maps show the spatial distribution of the anomaly in the mean annual precipitation (Appendix 

2a) and temperature (Appendix 2b), between the future scenarios and the baseline period 1961-1990. 

The anomalies are calculated by subtracting the downscaled GCM data for the baseline period from 

the downscaled GCM data for the future scenarios. Hence, a positive anomaly means that precipita-

tion or temperature will be higher in the future scenario compared to the baseline period, and a nega-
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tive anomaly means that precipitation or temperature will be lower in the future scenario compared to 

the baseline period. The anomalies are shown at a spatial resolution of 10’ x 10’. On the upper half, 

the results are shown for HADCM3, and the results for ECHAM5 are shown on the lower half. The 

results are shown for 2020 (2006-2035) and 2050 (2036-2065) for scenarios COMMIT, B1, A1B, 

and A2. On the maps are clear large ‘blocks’, with abrupt change in anomalies along the edges of 

these blocks. These blocks result from the original grid cells of the GCMs. Since GCMs have a 

coarse resolution, there can be large differences in the change in mean values between the baseline 

and future scenarios for two adjoining grid cells (especially for precipitation) in the raw (non-

downscaled) data. For example, one GCM grid cell may show an increase in mean annual precipita-

tion of 50 mm, whilst the adjoining cell may show zero change. Let us then assume for the sake of il-

lustration that the correction factors used to downscale these two GCM grid cells to the higher reso-

lution grid cells are equal (since the values of the two original GCM grid cells were equal in the base-

line period, and both cells had the same climate in the observed dataset). Consequently, the down-

scaled anomaly values will show an abrupt change between the two GCM grid cells, since the anom-

aly of one cell will be 50 mm, whilst the anomaly of the other cell will be 0 mm. 

Appendix 3:  

Graphs are presented to show the changes in mean annual and monthly precipitation characteristics. 

For each location, the results of the two GCMs are shown on facing pages, to allow for easy com-

parison. For example, Appendix 3.1 shows the results for Moyale for the HADCM3 model, and Ap-

pendix 3.2 shows the results for Moyale for the ECHAM5 model. For each location and model the 

following graphs are shown: (a) mean monthly precipitation for 2020 (2006-2035) and the baseline 

period (1961-1990); (b) mean monthly precipitation for 2050 (2036-2065) and the baseline period 

(1961-1990); (c) mean monthly precipitation anomaly between the future scenarios in 2020 and the 

baseline period, calculated by subtracting the baseline period data from the scenario data; (d) mean 

monthly precipitation anomaly between the future scenarios in 2050 and the baseline period, calcu-

lated by subtracting the baseline period data from the scenario data; and (e) a graph showing the long 

term trends in mean annual precipitation (10-yr moving mean) between 1901 and 2100. The black 

line indicates the 20C3M scenario for the period 1901-2000, and the COMMIT scenario for the pe-

riod 2001-2100. It should be noted that the black line indicating the trends in long term 20th Century 

mean annual precipitation are based on the downscaled climate model results, and not observed val-

ues. Hence, the values shown here cannot be compared with the observed data on a year to year ba-

sis, as climate models do not simulate actual weather in an observed year, but rather the average cli-

mate over a longer time-period. Similarly, the values shown here differ between the two climate 

models used, because the models give different variations over short periods. However, the mean an-

nual values of precipitation for the period 1961-1990 are statistically similar, because observed data 

(CRU) for the period 1961-1990 were used to establish correction factors for the statistical down-

scaling of each of the climate models. Hence, the modelled and observed mean annual precipitation 

are statistically similar for that period (see Sections 2.2 and 2.3). 

Appendix 4:  

The same graphs are presented as in Appendix 3, but in this case for temperature. Again, it should be 

noted that the black line indicating the trends in long term 20th Century mean annual temperature are 

based on the downscaled climate model results, and not observed values. Hence, the values shown 
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here cannot be compared with the observed data on a year to year basis, as climate models do not 

simulate actual weather in an observed year, but rather the average climate over a longer time-period. 

Similarly, the values shown here differ between the two climate models used, because the models 

give different variations over short periods. However, the mean annual values of temperature for the 

period 1961-1990 are statistically similar, because observed data (CRU) for the period 1961-1990 

were used to establish correction factors for the statistical downscaling of each of the climate models. 

Hence, the modelled and observed mean annual temperature are statistically similar for that period 

(see Sections 2.2 and 2.3). 

Appendix 5:  

Tables showing the percentage of months in which precipitation or temperature are above or below 

given thresholds. Appendix 5.1 shows the percentage of months in which the precipitation is less 

than the thresholds listed in the first column. All values are derived from the downscaled HADCM3 

dataset, including those for 1961-1990 (i.e. the baseline period is the simulated data for 1961-1990, 

rather than the observed data). The use of different thresholds is useful since it allows local stake-

holders to assess the changes associated with the thresholds which are important for their own liveli-

hoods and activities. Appendix 5.2 is the same as Appendix 5.1, but refers to the ECHAM5 precipita-

tion data. In Appendices 5.3 and 5.4, the percentage of months with precipitation above given thresh-

olds (i.e. months with high rainfall) are shown for the HADCM3 and ECHAM5 data respectively. 

Finally, in Appendices 5.5 and 5.6, the percentage of months with temperature above given thresh-

olds (i.e. months with intense heat) are shown for the HADCM3 and ECHAM5 data respectively. 

3.2 Summary assessment of regional climate change results 

The main aim and strength of this study is to provide a large dataset showing the projected changes 

in climate, which can be used with and by regional and local stakeholders in the assessment of adap-

tation requirements and possible adaptation strategies. Hence, the appendices form the most impor-

tant part of the report, since the specific datasets can be referred to depending on the location of in-

terest, or the issue to be addressed (heat, drought, intense rainfall, etc.). However, a summary as-

sessment of the regional patterns that can be seen in the results provides added value, and is pre-

sented in the following sub-sections. 

3.2.1 Changes in the overall spatial patterns of mean precipitation and temperature 

Reference to the maps of spatially distributed mean annual precipitation (Appendix 1a) and mean an-

nual temperature (Appendix 1b) show that the overall regional climate pattern is largely similar be-

tween the various scenarios and GCMs. However, the maps showing the anomalies of mean annual 

precipitation (Appendix 2a) and mean temperature (Appendix 2b) show that there are large regional 

and localised differences, especially between the results of the two GCMs. 

Overall, the results of HADCM3 appear to show a tendency towards somewhat wetter conditions in 

large parts of the northern half of the study area (northern Ethiopia), but drier conditions in southern 

Kenya, especially in the south-western corner. Along the border region of Kenya and Ethiopia, there 

is no clear signal of change, with some periods or scenarios showing no or little change, and others 

showing either an increase or decrease in precipitation. In general the magnitude of change in this re-
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gion is small. The results of the ECHAM5 model do not show the same overall pattern. The latter 

model shows a more clear regional signal towards wetter conditions, with larger anomalies towards 

the western part of the region (especially western Ethiopia). An exception to this is in the south-

eastern tip of Kenya, where drier conditions are simulated by both GCMs (except HADCM3 for sce-

nario A1B). 

The regional anomaly pattern with regards to mean annual temperature is much more homogeneous. 

Positive anomalies (i.e. increased temperatures) are simulated for all parts of the region, and for all 

scenarios under both GCMs. As would be expected, the increases in temperature are clearly greater 

by 2050 than by 2020, and for the ‘A’ scenarios compared to the B1 scenario.  

3.2.2 Regional and local patterns in precipitation change 

A more detailed assessment of the regional and local changes in precipitation, with reference to the 

10 case study locations, shows more complex patterns of change than those outlined above. These are 

discussed in this subsection. 

Mean precipitation 

In the HADCM3 results, a number of clear regional patterns can be distinguished. For those basins in 

which the main rainy season occurs between March and May, with a second peak in October and 

November (i.e. Moyale, Mandera, Marsabit, Isiolo, Kelem, and Nairobi), some similarities in the 

change in the annual cycle can be seen. Firstly, these locations show a tendency towards more rain-

fall in the early part of the first (main) rainy season in March and April, but in contrast a decrease in 

precipitation towards the latter part of this season (May). These changes are the most pronounced and 

consistent in those locations in the central part of the study area (i.e. Moyale, Mandera, Marsabit), 

and also Isiolo. In Kelem, the increase in precipitation between March and April can also be seen, 

though it is much less pronounced than in the former locations. Moreover, the decrease in May is ab-

sent in Kelem, where very little change is simulated in this month. Precipitation in Nairobi, on the 

other hand, does show a decrease in May, but little change in March and April. The other main char-

acteristic change in this area of bi-annual rainfall maxima, is the decrease in total precipitation in the 

second rainy season, mainly in October, but to a lesser extent also in November. This change can be 

seen in all of the aforementioned locations, except for Kelem, where little or no change occurs in Oc-

tober, and a slight increase in November. 

For the other locations (Maralal, Awasa, Asayita, and Addis Ababa) increases in March precipitation 

can also be seen. Hence, this seems to be a characteristic of the entire region, except for the southern 

area (Nairobi), and to a lesser extent the far western area (Kelem). In Maralal, which is characterised 

in the baseline period by tri-annual rainfall maxima (main rainy season from March to May, second 

in October and November, and a third lower peak in July and August), a clear decrease can be seen in 

the precipitation in October (as was the case for most of the bi-annual rainfall locations discussed 

previously). 

To summarise, the main regional patterns that can be identified in the downscaled HADCM3 precipi-

tation data, are an increase in precipitation in March in a large part of the region. For those areas with 

two rainfall peaks whereby the main one occurs between March to May, and the second one in Octo-

ber and November, this is generally accompanied by increased precipitation in April, but decreased 
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precipitation in May, and a decrease in total precipitation in the second rainy season (October-

November). 

For the results of the downscaled ECHAM5 data, fewer clear regional changes in the monthly pre-

cipitation regime can be identified, although there is a more clear tendency to overall (annual) wetter 

conditions in general. One of the most striking changes is the relatively large increase in August pre-

cipitation in Moyale, Marsabit, and Nairobi, which causes a small precipitation peak in August that is 

not present in the baseline period. As a result, the overall annual patterns for these locations resemble 

that of Maralal (which also shows a large positive anomaly in August precipitation). Overall, the re-

sults for most stations tend to show wetter conditions in the second half of the year, causing in-

creased rainfall in the October-November rainy season in those locations where this is a characteris-

tic. 

Precipitation variability 

Climate change can also affect the variability of annual rainfall; often such changes are more difficult 

to cope with than changes in mean precipitation, since an increase in variability can cause less pre-

dictability in the climate. Hence, we assessed the change in the variability of annual precipitation by 

carrying out the statistical F-test (2-tailed, n=60, α=0.05) on the annual precipitation totals for the 

baseline period, compared to the future scenarios. The F-test assesses whether there is a significant 

difference in variance between two samples. The results of this analysis showed that for the vast ma-

jority of locations and scenarios, there is no significant change in the variability of annual precipita-

tion. The main exception is Asayita, where the results of both GCMs show a significant increase in 

the variability of annual precipitation under all SRES scenarios and for both periods 2020 and 2050. 

Significant increases in variability were also found for: Addis Ababa with the HADCM3 model for 

scenario A2 (2020 and 2050); and Awasa under the A2 scenario for 2020 (HADCM3 only) and 2050 

(HADCM3 and ECHAM5). Hence, the results of both models suggest that increased precipitation 

variability can be expected in the more northern regions of Ethiopia, with the clearest increase in the 

far northern area (Asayita). For the SRES scenarios, no other significant changes in variability were 

detected. 

Changes in the frequency of dry months 

The tables in Appendices 5.1 and 5.2, showing the change in the percentage of months with precipi-

tation below given thresholds (for HADCM3 and ECHAM5 respectively), also reveal a number of 

regional patterns, although again these are generally not consistent between the two GCMs. 

The downscaled HADCM3 data generally show a decrease in the percentage of months with low 

precipitation totals for the three case study locations with the most northern location (i.e. Asayita, 

Addis Ababa, and Awasa), as well as the location with the most westerly location (Kelem). This find-

ing is in line with the small increases in mean annual precipitation generally projected for these loca-

tions by HADCM3. On the other hand, the three most southern locations (Nairobi, Isiolo, and Mara-

lal) show a tendency towards an increase in the percentage of months with low precipitation totals. 

For the neighbouring locations of Marsabit and Moyale, there is no clear signal of change, with in-

creases in some scenarios and/or time periods, and decreases in others; in all cases the changes are 

relatively small for the latter locations. For Mandera, there appears to be an increase in the percent-
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age of months in which total precipitation is less than 1 mm, although the opposite is the case for 

months with total precipitation less than 5 mm or 10 mm; these changes are of a relatively small 

magnitude. 

For the downscaled ECHAM5 data the overall regional trend is towards a decrease in the number of 

dry months, which is in line with the previously mentioned regional trend towards wetter mean con-

ditions. The most clear change towards fewer dry months occurs in the central locations of Moyale, 

Marsabit, and Kelem, where a decrease in the percentage of months under all given thresholds is 

simulated under all three SRES scenarios and for both 2020 and 2050. Maralal also shows a tendency 

towards a decrease in the number of arid months, although small increases in the percentage of 

months with less than 5 and 10 mm precipitation are simulated in 2050 for this location. For the three 

most northerly locations (Asayita, Addis Ababa, and Awasa), as well as the most southerly location 

(Nairobi), no clear signal can be found between scenarios. The same is the case in Mandera for 2020, 

although a clear tendency towards a decrease in the number of dry months can be seen by 2050. 

A comparison of the results from the two models reveals a number of contrasting patterns. Whilst the 

northern region shows a general decrease in the number of dry months in HADCM3, no general pat-

tern can be found in ECHAM5. For the southern region, HADCM3 tends to suggest an increase in 

the number of dry months, whilst ECHAM5 suggests a general decrease in Isiolo and Maralal, with 

an increase in Nairobi by 2050. Moyale and Marsabit show increases in the frequency of the driest 

months (precipitation less than 1, 5, and 10 mm), whereas ECHAM5 shows the opposite. Of the dri-

est locations (Asayita, Kelem, and Mandera), the only one in which a clear signal can be noted is 

Kelem; for this location a decrease in the number of arid months is simulated under both models. 

Changes in the frequency of wet months 

Changes in the number of months with precipitation above a given threshold, in other words wet 

months, are also important when planning adaptation strategies. These changes are documented in 

the tables in Appendices 5.3 and 5.4. In the downscaled HADCM3 data, the three stations which are 

currently the most arid (Asayita, Kelem, and Mandera) show a general tendency towards an increase 

in the number of wet months. This is especially the case for Asayita, where no months received pre-

cipitation totals in excess of 200 mm for the baseline period, but all future scenarios returned months 

with precipitation in excess of 350 mm. For Kelem and Mandera, the increase was restricted to a 

fairly small increase in the number of months with precipitation in excess of 100 mm, whereas no 

months were simulated with precipitation in excess of 200 mm for Kelem, or 300 mm for Mandera, 

even under the future scenarios. Awasa also shows an increase in the number of months with precipi-

tation above 100 mm, but a monthly precipitation total in excess of 200 mm was simulated just once, 

namely for the A2 scenario in 2050. The opposite signal can be seen for Nairobi, Addis Ababa, and 

Maralal, where the simulated number of wet months in 2020 and 2050 is generally less than in the 

baseline period. For Marsabit and Moyale, the results of HADCM3 suggest that the number of wet 

months (precipitation in excess of 200, 300, and 350 mm) will decrease by 2020, but increase by 

2050. 

In line with the general regional increase in mean annual precipitation simulated by ECHAM5, the 

number of wet months tends to increase under the SRES scenarios for that model. For months with 

precipitation in excess of 200, 300, and 350 mm, there are only a few scenario/period combinations 

in which this is not the case, and for those cases there is either no change or only a minor decrease. 
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For ECHAM5 there is a clear tendency towards an increase in the number of wet months. For 

HADCM3 there is no single pattern over the entire region, although an increase in the number of wet 

months is expected for the three driest locations (Asayita, Kelem, and Mandera), as well as for 

Awasa and Isiolo. For Moyale and Marsabit an increase is also simulated by HADCM3 in 2050, 

though not in 2020. On the other hand, HADCM3 simulated decreases in the number of wet months 

for Addis Ababa, Maralal, and Nairobi. 

3.2.3 Regional and local patterns in temperature change 

Mean temperature 

The trend towards higher temperatures is clear for all parts of the study region and under all of the 

scenarios used. In all cases, the temperature increase by 2050 is greater than the increase by 2020. 

For the SRES scenarios, the increase in mean annual temperature by 2020 ranges amongst the 10 

case study locations between: 0.81°C-1.29°C (HADCM3, B1); 0.90°C-1.37°C (HADCM3, A1B); 

0.81°C-1.18°C (HADCM3, A2); 0.52°C-0.87°C (ECHAM5, B1); 0.84°C-1.17°C (ECHAM5, A1B); 

and 0.79°C-1.04°C (ECHAM5, A2). By 2050 mean annual temperature for the 10 case study loca-

tions ranges between: 1.53°C-1.99°C (HADCM3, B1); 2.04°C-2.65°C (HADCM3, A1B); 2.10°C-

2.82°C (HADCM3; A2); 1.44°C-1.83°C (ECHAM5, B1); 1.97°C-2.39°C (ECHAM5, A1B); and 

1.80°C-2.27°C (ECHAM5, A2). 

It is clear that in the medium term (2050) the expected increases in temperature under the ‘A’ scenar-

ios are greater than the increases under the B1 scenario. In the short term (2020), the increases in 

temperature are of a similar order of magnitude under all of the SRES scenarios. 

Changes in the frequency of very warm months 

An assessment was also carried out into the change in frequency of the percentage of months with 

temperatures above given thresholds (i.e. very warm months); the results can be found in Appendices 

5.5 and 5.6. All case study locations for which monthly temperatures occur above the minimum 

threshold shown here (27°C) show an increase in the number of months over that threshold. Clearly, 

both models show that the frequency of very warm months will increase greatly in the future, which 

is indicative of an increase in the occurrence of heat waves. The simulated increases by 2050 are 

greater than those by 2020. Moreover, the increases under the ‘A’ scenarios are generally speaking 

greater than those under the B1 scenario, which is in line with projections of global temperature 

change. Nevertheless, it is clear that the increases are very large even in the short term (2020), and 

for the most modest SRES scenario (B1). This suggests that strategies to adapt to heat stress should 

be considered and evaluated as a matter of urgency. 
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Changes in ‘drought’ occurrence 

In Moyale, there are two main rainy seasons. The main rainy season is from March to May inclusive, 

with a strong peak in April; the second is a smaller and shorter rainy season in October and Novem-

ber (see Appendix 3.1a, baseline). This pattern of bi-annual rainy seasons in these months can also be 

seen in the monthly precipitation regimes of Mandera, Marsabit, Isiolo, Kelem, and Nairobi. 

Droughts can occur when rainfall in these seasons fails, or where the rainfall total during the rainy 

season falls below given thresholds required for the growing of crops or the rearing of livestock. 

Such thresholds are not homogenous across regions, as they are dependent on numerous factors in-

cluding the type of agricultural activity (pastoral, arable, etc.), the type and/or species of crop or live-

stock, local soil characteristics, local relief, etc. Hence, local knowledge is essential in defining the 

minimum thresholds required to facilitate adequate productivity in a given region or locality. 

In order to account for this need, the results in Figures 3.1-3.4 are presented in such a way that the 

change in the frequency of rainy season precipitation under a given threshold can easily be calculated 

in a workshop setting for any required threshold. For example, Figure 3.1 shows the total precipita-

tion (in mm) during the main rainy season (March to May inclusive) for each year in the study pe-

riod, based on the downscaled HADCM3 data. In Figure 3.1a the results are given for the SRES sce-

narios for the period 2006-2035 (i.e. 2020), so that year 1 refers to 2006, year 2 to 2007 etc. Also 

shown are the annual values for the baseline period (1961-1990), whereby year 1 refers to 1961, and 

year 2 to 1962 etc. For each year and each scenario, the dot shows the total precipitation for that year 

during the main rainy season. Hence, it is possible to count the number of dots in each scenario for 

the 30-yr period, for any given precipitation threshold, removing the need to establish a priori 

thresholds which do not account for local conditions. It should be noted that dots are only shown for 

years in which the total precipitation in March to May was less than 350 mm. This value is approxi-

mately equal to the median annual main rainy season precipitation in the observed series for 1961-

1990 of 359 mm. Therefore, values above this total are not relevant for the assessment of changes in 

dry period frequency. 

Figure 3.2 is as per Figure 3.1, but refers to the downscaled ECHAM5 data. Figures 3.3 and 3.4 show 

the yearly precipitation totals during the second rainy season in October and November for 

HADCM3 and ECHAM5 respectively. Note that in these figures the yearly values (dots) are only 

shown for those years in which the total simulated precipitation in October and November is less 

than 180 mm. This value is approximately equal to the median annual second rainy season precipita-

tion in the observed series for 1961-1990 of 186 mm. 
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3.1a 

 

3.1b 

Figure3.1  Scatter plots showing the total precipitation (mm) between March and May (MAM) in-

clusive based on the downscaled HADCM3 data. Fig. 6a shows the values for the period 

2006-2035, and Fig. 6b shows the values for the period 2036-2065. The points show the 

total MAM precipitation per year, for each year in the 30-yr period (e.g. for the baseline 

period year 1 refers to 1961, and year 30 to 1990; and for the period 2020, year 1 refers 

to 2006, and year 30 to 2035, etc.). Scatter points are only shown for the years in which 

total MAM precipitation is less than 350 mm (which is approximately equal to the me-

dian precipitation of 359 mm in the observed records for the period 1961-1990). 
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3.2a 

 

3.2b 

Figure 3.2   Scatter plots showing the total precipitation (mm) between March and May (MAM) in-

clusive based on the downscaled ECHAM5 data. Fig. 7a shows the values for the period 

2006-2035, and Fig. 7b shows the values for the period 2036-2065. The points show the 

total MAM precipitation per year, for each year in the 30-yr period (e.g. for the baseline 

period year 1 refers to 1961, and year 30 to 1990; and for the period 2020, year 1 refers 

to 2006, and year 30 to 2035, etc.). Scatter points are only shown for the years in which 

total MAM precipitation is less than 350 mm (which is approximately equal to the me-

dian precipitation of 359 mm in the observed records for the period 1961-1990). 
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3.3a 

 

3.3b 

Figure 3.3  Scatter plots showing the total precipitation (mm) in October and November (Oct-Nov) 

inclusive based on the downscaled HADCM3 data. Fig. 8a shows the values for the pe-

riod 2006-2035, and Fig. 8b shows the values for the period 2036-2065. The points show 

the total Oct-Nov precipitation per year, for each year in the 30-yr period (e.g. for the 

baseline period year 1 refers to 1961, and year 30 to 1990; and for the period 2020, year 

1 refers to 2006, and year 30 to 2035, etc.). Scatter points are only shown for the years 

in which total Oct-Nov precipitation is less than 180 mm (which is approximately equal 

to the median Oct-Nov precipitation of 186 mm in the observed records for the period 

1961-1990). 
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3.4a 

 

3.4b 

Figure 3.4  Scatter plots showing the total precipitation (mm) in October and November (Oct-Nov) 

inclusive based on the downscaled ECHAM5 data. Fig. 9a shows the values for the pe-

riod 2006-2035, and Fig. 9b shows the values for the period 2036-2065. The points show 

the total Oct-Nov precipitation per year, for each year in the 30-yr period (e.g. for the 

baseline period year 1 refers to 1961, and year 30 to 1990; and for the period 2020, year 

1 refers to 2006, and year 30 to 2035, etc.). Scatter points are only shown for the years 

in which total Oct-Nov precipitation is less than 180 mm (which is approximately equal 

to the median Oct-Nov precipitation of 186 mm in the observed records for the period 

1961-1990). 
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Although the main strength of the scatter plots in Figures 6-9 is that they can be used to assess 

changes in the occurrence of rainy season drought condition under any given threshold, an example 

is given in Table 5 for illustrative purposes. Here, the number of years is given in which the simu-

lated precipitation during the rainy seasons is below the 10th percentile of the observed rainy season 

rainfall (based on the observed record for the period 1961-1990). For the main rainy season from 

March to May, ECHAM5 shows a clear increase in the number of years with precipitation above this 

threshold, thus indicating more rainfall in this growing season, and a lower incidence of drought con-

ditions. For HADCM3 the results are not so clear cut. For SRES scenarios B1 and A2, decreases in 

the frequency of dry conditions are simulated for both 2020 and 2050, whilst the A1B scenario shows 

a small increase in the frequency of dry conditions. For the second rainy season (October and No-

vember), the results of the two GCMs clearly indicate the opposite signal of change. The results of 

HADCM3 suggest that low rainfall totals will occur more often during this rainy season in the future 

compared to the baseline period, whilst the results of ECHAM5 suggest that relatively dry rainy sea-

sons will become less common. 

Table 3.1 The number of years in which simulated wet season rainfall is below the 10th percentile 

of observed wet season rainfall (based on the observed record for Moyale for the period 

1961-1990). On the left are shown the number of years in which simulated precipitation 

between March and May inclusive is below the observed 10th percentile for those months 

(253.4 mm). On the right are shown the number of years in which simulated precipita-

tion in October and November is below the observed 10th percentile for those months 

(63.2 mm). 

 Number of years with March-May pre-

cipitation < 253.4 mm 

Number of years with October-

November precipitation < 63.2 mm 

Scenario HADCM3 ECHAM5 HADCM3 ECHAM5 

20C3M (1961-1990) 7 6 1 5 

COMMIT (2020) 8 9 3 1 

B1 (2020) 6 10 3 2 

A1B (2020) 8 10 2 4 

A2 (2020) 3 9 6 1 

COMMIT (2050) 6 12 4 2 

B1 (2050) 6 6 2 3 

A1B (2050) 8 8 2 3 

A2 (2050) 5 9 6 1 

Changes in the frequency of high temperatures 

As discussed in Section 3.2.3, both the mean temperature and the frequency of months in which high 

temperatures occur are expected to increase in the future under all SRES scenarios according to the 

results of both GCMs. Such changes are important when considering the strategies required to adapt 

to climate change, since an increase in the number of very warm months may be indicative of an in-

crease in heat wave occurrence. The increase in the number of months with very high temperatures at 

Moyale is large. Reference to 3.5 shows large increases in the number of months with temperatures 

over all of the given temperature thresholds according to both models, with huge increases in relative 

terms by 2050. For example, very hot months with an average temperature above 28°C are almost 
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non-existent in the simulation results for the baseline period. However, under the SRES scenarios for 

2050, mean monthly temperatures of 28°C or more will occur between 12.5% and 21.1% of the time 

according to the HADCM3 model, and between 8.3% and 14.7% of the time according to the 

ECHAM5 model. Even in the short term (2020), the results of the two models agree that large in-

creases in the number of very warm months will occur. Hence, it appears that urgent assessments are 

needed of the vulnerability of present-day systems to increased heat stress occurrence, as well as as-

sessments of the adaption options available and their effectiveness in the local setting. 
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3.5a  

3.5b  

3.5c  

3.5d  

Figure 3.5: Percentage of months with temperature above given thresholds (x-axis) for: (a) 

HADCM3 - 2020, (b) HADCM3 - 2050; (c) ECHAM5 - 2020; and (d) ECHAM5 - 2050. 
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3.4 Case study Omo River: changes in river discharge 

Climate is one of the principal driving forces of hydrological systems, and even modest climate 

changes have the potential to causes significant changes in hydrological processes. Hence, a hydro-

logical model (STREAM) was set up to examine the effects of climate change on the discharge of the 

Omo River. The setup and calibration of the model is described in Section 2.4. As discussed in Sec-

tion 2.5, the model was calibrated twice, once for each GCM (i.e. separately for HADCM3 and 

ECHAM5). It was found that both STREAM models simulated mean annual and monthly discharge 

well in both the calibration and validation periods, but that the model forced using the downscaled 

ECHAM5 data led to significant differences in variability compared to the observed record. As a re-

sult, the results of both models are used in the assessment of changes in mean monthly discharge, but 

for the assessment of changes in high and low flows, only the results of the HADCM3-driven model 

are shown. 

Changes in mean monthly discharge 

Figure 3.6 shows the mean annual and monthly simulated discharge of the Omo River at Kelem 

(Figure 1) for the baseline period and the future scenarios. The hydrographs show that during the 

baseline period, monthly discharge is very low between January and June, before increasing to a peak 

in the months of August and September. This peak is followed by a fairly rapid recession in the 

months of October, November, and December. 

Clear differences in the discharge anomalies associated with the two GCMs can be seen with refer-

ence to both Figures 3.6 and 3.7. According to the results of the HADCM3-driven model, discharge 

in the long dry season (December to June) remains very low. However, there is a negative discharge 

anomaly (i.e. lower discharge) in the period July to November. This pattern is not reproduced in the 

ECHAM5-driven model. In the latter, a large increase in discharge is simulated during the main dis-

charge season (August-September), as well as early in the low discharge season (especially January 

to March). These changes are clear responses to simulated changes in precipitation in the South Omo 

region. With regards to the increase in discharge in the ECHAM5 model for the period January-

March, this is related to a large precipitation anomaly in that model for the South Omo region in 

January and February. 



Downscaled climate change data  

 

 

37 

 

 

3.6a  

3.6b  

3.6c  

3.6d  

Figure 3.6 Hydrographs showing the mean monthly discharge of the Omo River (near Kelem) for : 

(a) HADCM3 - 2020; (b) HADCM3 - 2050; (c) ECHAM5 - 2020; and (d) ECHAM5 - 

2050. 
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3.7a  

3.7b  

3.7c  

3.7d  

Figure 3.7 Mean monthly discharge anomalies of the Omo River (near Kelem) for : (a) HADCM3 – 

2020; (b) HADCM3 - 2050; (c) ECHAM5 - 2020; and (d) ECHAM5 - 2050. The anoma-

lies are calculated by subtracting the simulated values for the period 1961-1990 from the 

simulated values for the future scenario periods (i.e. scenario minus baseline). 
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In terms of the effects of the simulated climate changes on low flows, the graphs in Figure 3.8 show 

large increases in the percentage of months with mean discharge below the given thresholds for both 

2020 and 2050, according to the results of the HADCM3-driven model. These changes are certainly 

not trivial, and are large even in the short term. For example, the percentage of months in which dis-

charge falls below the very low level of 2 m3s-1, increases from just 3.3% in the baseline period to be-

tween 7.8 and 14.4% by 2020, and to between 11.7 and 19.7% by 2050 (dependent upon SRES sce-

nario). These represent very large increases in the amount of time in which flows are extremely low. 

If these climate change driven changes do occur, effective adaptation measures will be essential, es-

pecially if water demand also increases in the future due to factors such as increased population, de-

velopment, etc. 

3.8a  

3.8b  

Figure 3.8  Percentage of months with discharge below given thresholds (x-axis) for:  

(a) HADCM3 – 2020; and (b) HADCM3 – 2050. 

Although the results of the HADCM3-driven STREAM model suggest that the frequency of months 

in which moderately high discharges (e.g. > 150 m3s-1, > 200 m3s-1, and > 350 m3s-1) occur may de-

crease in the future (Figure 14), an increase in the frequency of months with very high mean dis-

charges (> 400 m3s-1) can be seen, especially by 2050. In many basins, mean monthly discharge 

shows a strong correlation with the magnitude of the maximum daily discharge in that month (e.g. 

Kwadijk, 1993). In such cases, an increase in the number of months with high discharges can be in-

dicative of an increase in the frequency of high-flow events (i.e. floods). Unfortunately, since no ob-

served data of Omo discharge are available, it is not possible to establish whether there is a correla-

tion between mean monthly discharge and the magnitude of the maximum daily discharge in that 

month. However, the results displayed in 3.9 suggest that this is a real possibility, and hence precau-

tionary measures should be considered to adapt to this future scenario. 
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3.9a  

3.9b  

Figure 3.9  Percentage of months with discharge above given thresholds (x-axis) for:  

(a) HADCM3 - 2020; and (b) HADCM3 – 2050. 
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4. Summary, implications, and recommendations 

The main aim of this study was to provide a large dataset showing the possible changes in climate 

that can be expected in Ethiopia and Kenya during the 21st Century. This dataset can be used with 

and by regional and local stakeholders in the assessment of adaptation requirements and possible ad-

aptation strategies. This main aim was subdivided into the following objectives: 

• To provide maps and graphs showing the possible short and medium-term changes in annual 

and monthly precipitation and temperature in the study region; 

• To assess the possible impacts of climate change on the occurrence of drought events, and the 

incidence of high temperatures; 

• To assess the effects of these climate changes on the discharge of the Omo River. 

In this section a synthesis is provided of the results relating to these objectives. In addition, a short 

discussion is provided of some of the key implications of the results for climate change adaptation in 

Ethiopia and Kenya. 

4.1 Dataset showing maps and graphs of possible short and medium-term 

changes in annual and monthly precipitation and temperature 

The results of two GCMs (HADCM3 and ECHAM5) have been downscaled to a resolution suitable 

for regional climate impact assessment (10’ x 10’). These models were chosen as they have the high-

est ‘skill scores’ for both precipitation and temperature of all the models used for the AR4 of the 

IPCC in the study region (Cai et al., 2009). In the appendices, a large dataset is provided showing the 

downscaled results of these models for the study region. Maps are provided in Appendices 1 and 2 

showing the change in mean annual precipitation and temperature over the entire study region 

(Ethiopia and Kenya). Furthermore, the graphs in Appendices 3 and 4 show more detailed assess-

ments of the change in mean monthly and annual precipitation and temperature for 10 case study lo-

cations, namely Moyale, Mandera, Marsabit, Maralal, Isiolo, Nairobi, Awasa, Kelem, Asayita, and 

Addis Ababa. 

These datasets provide information than can be used by local and regional stakeholders to assess how 

climate is expected to change in the region in the short and medium-term (2020 and 2050 respec-

tively). Moreover, based on this data, informed decisions can be made on the necessity for adaption 

to climate change, and the effectiveness of various adaptation strategies. 

It should be noted that there are a number of similarities and differences in the results of the two 

GCMs. Firstly, the expected changes in the temperature regimes across the region are very similar 

according to both HADCM3 and ECHAM5. Both models show very clear trends at all locations to-

wards warmer conditions in the future, with greater increases in mean temperature by 2050 compared 

to 2020, and greater increases for the ‘A’ scenarios compared to the B1 scenario. 

In terms of the variability of annual rainfall totals, the results of the two GCMs are also in good 

agreement. Both show that in general there will be no significant increase in the variability of annual 

rainfall, between the baseline period and the future scenarios. Exceptions were noted in the northern 

half of the study area for both GCMs. A large increase in the variability of annual rainfall is simu-
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lated for the most northerly location of Asayita by both HADCM3 and ECHAM5. Increases in vari-

ability were also noted in both models for the northern locations of Addis Ababa and Awasa under 

some combinations of scenario and/or time period, though the trend is less clear cut than for Asayita. 

However, in terms of mean annual precipitation, the results of the two GCMs show numerous differ-

ences. In general, the ECHAM5 model shows a trend towards wetter annual conditions over most 

parts of Ethiopia and Kenya. Though this is also the case for large parts of northern Ethiopia accord-

ing to HADCM3, the latter model simulates generally drier conditions over large parts of southern 

Kenya, especially in the south-western section. Furthermore, changes in the monthly rainfall regime 

were not consistent between the two models. The results of HADCM3 suggest that those areas af-

fected by a main rainy season from March to May will experience an increase in precipitation in 

March and April, but a decrease in May. Furthermore, these locations will experience a decrease in 

precipitation during their secondary precipitation peak in October-November. This pattern is not re-

produced by ECHAM5, which shows overall a more general tendency towards wetter conditions 

throughout the year, with relatively large positive anomalies in the second half of the year (especially 

during the rainy season of October-November). 

4.2 Impacts of climate change on the occurrence of drought events, and high 

temperatures 

Datasets are also provided for the assessment of changes in the frequency of dry months, and for 

changes in the frequency of months with high temperatures; these can be found in Appendix 5. 

For the entire region, and for both models, there is a clear increase in the number of months with very 

high temperatures. The increase is greater for the ‘A’ scenarios than for the B1 scenario, and is 

greater by 2050 than by 2020. An increase in the number of months with very high temperatures is 

indicative that there may be an increase in heat stress in the region. In the short term (2020), the in-

creases in the number of very warm days are large even for the most optimistic B1 scenario. This 

suggests that increased heat stress and adaptation strategies available to cope with this, need to be 

addressed as a matter of urgency (see Section 4.4). 

Changes in the number of dry months (i.e. months with rainfall totals less than low threshold levels) 

can be indicative of changes in the occurrence of dry (or drought) periods. However, as with mean 

precipitation, the signals of change associated with the two GCMs are not in agreement. For exam-

ple, HADCM3 shows a change towards fewer dry months in the northern part of the study region, but 

no such change is simulated by ECHAM5. Furthermore, HADCM3 simulates an increase in the fre-

quency of dry months in the southern region, whilst ECHAM5 shows an increase in Isiolo and Mara-

lal. Interestingly, neither model predicts an increase in the frequency of dry months for the three most 

arid locations (Asayita, Kelem, and Mandera); both models actually suggest a decrease in the number 

of dry months in Kelem. 

4.3 Effects of climate change on the discharge of the Omo River 

The STREAM model was used to simulate the monthly discharge of the Omo River. Two STREAM 

models were set up; the first was driven by the downscaled HADCM3 climate data, and the second 

one was driven by the downscaled ECHAM5 data. Due to the lack of observed discharge data for the 



Downscaled climate change data  

 

 

43

Omo River, the set up, calibration, and validation of the model is difficult. The model was calibrated 

for the neighbouring Blue Nile, and the calibration parameters were then transferred to the Omo 

River. Hence, a direct validation of the results for the baseline period was not possible, and the re-

sults of the Omo hydrological model should be considered as tentative assessments of the possible 

changes in discharge which could occur. 

The discharge results show little coherency between the two GCMs in terms of changes in the annual 

hydrograph. The HADCM3-driven model shows very little change in discharge during the long dry 

season (December-June), followed by a decrease in discharge during the main discharge period be-

tween July and November. In contrast, the ECHAM5-driven model shows a large increase in dis-

charge during the first months of the year (especially January to March), and a further large increase 

during the peak of the high discharge season (August-September). 

4.4 Effects of climate change on over-water evaporation, water quality, and 

groundwater 

Changes in climate are expected to have further effects on a myriad of hydrological parameters 

around the world, including evaporation over water bodies, water quality, and groundwater levels. 

These parameters have not been studied in this research exercise. Given the importance of regional 

and local geography on them, it is therefore not possible to provide detailed assessments of the ef-

fects of climate change on them in this report. Further research would be required to quantify the ef-

fects of climate change on these parameters. However, in the following paragraphs a short summary 

is given of the main expected effects of climate change on these parameters at the global scale, as de-

scribed by the IPCC (2008). 

Evaporative demand, or ‘potential evaporation’, is projected to increase in most regions of the world 

where atmospheric temperature increases, as is projected for Kenya and Ethiopia. This is because the 

water-holding capacity of the atmosphere increases with higher temperatures, whilst relative humid-

ity is not projected to change markedly on a global scale (IPCC, 2008). As a result, the water vapour 

deficit of the atmosphere increases, as does the evaporation rate (Trenberth et al., 2003), and given a 

constant availability of water, actual evaporation over open water is also projected to increase (IPCC, 

2008). Since atmospheric temperature is projected to rise in the study area, an increase in open water 

evaporation may also occur in the region. However, more specific analyses for Ethiopia and Kenya 

would need to examine the projected impacts of climate change on parameters such as relative hu-

midity, wind speeds, and pressure in the region, which are also important factors in determining the 

rate of evaporation. 

Globally, higher water temperatures, increased precipitation intensity, and longer periods of low 

flows are projected to exacerbate many forms of water pollution, including an increased presence of 

sediments, nutrients, dissolved organic carbon, pathogens, pesticides, and salt, as well as thermal pol-

lution. Globally, higher temperatures are likely to lower water quality in lakes through increased 

thermal stability and altered mixing patterns, resulting in reduced oxygen concentrations and an in-

creased release of phosphorus from sediments. More intense rainfall could lead to an increase in sus-

pended solids in lakes and reservoirs due to fluvial soil erosion. Projected increases in precipitation 

intensity are expected to lead to deteriorations in water quality, as they result in the enhanced trans-
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port of pathogens and other dissolved pollutants to surface waters, which leads to the mobilisation of 

adsorbed pollutants. Increased occurrences of low flows may cause decreased contaminant dilution 

capacity, and thus higher pollutant concentrations. In areas with overall decreased runoff (such as is 

projected in many semi-arid areas), water quality deterioration may be even worse. In semi-arid and 

arid areas, climate change is likely to increase salinisation of shallow groundwater due to increased 

evapotranspiration. 

Climate change can affect groundwater recharge rates and depths of groundwater tables. However, to 

date knowledge of current recharge and levels is poor, and there has been very little research on the 

future impact of climate change on groundwater. As many ground waters both change into and are 

recharged from surface water, impacts of surface water flow regimes are expected to affect ground-

water. In semi-arid and arid areas, however, increased precipitation variability may increase ground-

water recharge, because only high-intensity rainfalls are able to infiltrate fast enough before evapo-

rating, and alluvial aquifers are recharged mainly by inundations due to floods (IPCC, 2008). 

4.5 Implications for adaptation and planning 

Whilst many activities are being carried out in the region to examine the need for measures to adapt 

to possible climate change, there are few recent assessments of how the climate is likely to change at 

the regional level. Results of GCM simulations are publicly available for the entire globe, but first 

need to be downscaled if they are to be of use for regional and local impact assessments. This study 

provides a large dataset of downscaled climate data for temperature and precipitation in the region, in 

both the short and medium-term. Thus, the data presented in this report can assist local stakeholders 

and decision-makers in assessing the expected physical effects of climate change, and therefore the 

need (or otherwise) for adaptive measures. Whilst this study does not provide an assessment of the 

impacts of these changes in various sectors (e.g. agriculture, health, energy), it does provide a wealth 

of climate data tailored to the regional situation which can subsequently be used as input into specific 

impact models for those sectors, or to develop short and medium-term plans via expert judgement 

and stakeholder dialogue. 

The two GCMs selected to carry out this research (HADCM3 and ECHAM5) were among the best 

two models for the study region among those used for the AR4 of IPCC, for both temperature and 

precipitation, according to the ‘skill-score’ maps for 1961-1990 of Cai et al. (2009). For the future 

scenarios, both models simulate large increases in mean annual temperature and the frequency of 

very warm months (indicative of increased heat stress) for the entire region, including those areas al-

ready affected by adverse heat waves in the current period. Even in the short term, and under the 

most optimistic of the emission scenarios used (B1), the increase is very large, and suggests that in-

creased heat wave frequency and heat stress will become a much more severe problem than at pre-

sent in the near future. The clear signal presented by both models, for all scenarios and locations, 

suggests that urgent measures may be needed to ensure that various activities and sectors (e.g. crop 

growth, livestock rearing, health care, irrigation, energy supply) can adapt to these changes. 

Despite the fact that both GCMs simulated past regional precipitation well, there are still large dis-

crepancies between the results of the two models for the future scenarios in terms of changes in mean 

precipitation and the frequency of droughts and intense wet months. Clearly, the signal of change in 
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future precipitation is very uncertain. This has a number of implications. The first implications are 

with regards to the methods used to predict future changes in precipitation. It is well known that pre-

cipitation is much more difficult to simulate than temperature. At present, GCMs cannot accurately 

represent all of the physical atmospheric processes involved in the generation of precipitation. A lar-

ger number of GCMs could be used in order to compare their results for the future. However, there is 

no way to assess in advance which of the models will perform most accurately for the future period. 

Using a larger number of GCMs would also mean using models which have been proven to perform 

less well for the study region during the period 1961-1990. A second implication related to the use of 

climate models is the need for more regional climate model (RCM) simulation results for the study 

region. Such models are capable of resolving regional climatology more accurately than GCMs, but 

are computationally very demanding. Nevertheless, the development of RCMs, or making public the 

results of existing RCMs, could lead to a decrease in the uncertainty in predictions of future precipi-

tation, and could therefore assist greatly in climate impact assessment. 

A further implication of the high uncertainty of the precipitation data, is with regards to the response 

of stakeholders and decision-makers to that uncertainty. A possible reaction to the existing uncer-

tainty is the tendency to ‘wait and see’, in which stakeholders and decision-makers delay developing 

plans until more clear information is available. However, the possible impacts associated with the po-

tential changes in climate (e.g. increased droughts, flash floods, etc.) are so detrimental that early 

planning is still preferable under the precautionary principle. Furthermore, adaptation measures can 

be sought which provide benefits under a wide range of future scenarios. For example, more efficient 

irrigation techniques to reduce evaporative water losses may be essential if the frequency of droughts 

increases in areas such as the southern Ethiopian lowlands. However, such schemes can be designed 

in ways that they also provide benefits even if such an increase in drought frequency should not ma-

terialise (e.g. more availability of water for drinking, increased yields, reduced water costs, etc.). 

Therefore, the results of this study show that stakeholders and decision-makers need to consider ro-

bust management options to tackle both increasing drought frequency, and an increasing frequency 

of high rainfall events. 

Anticipating the effects of climate change on the discharge of the Omo River is particularly difficult. 

This is firstly, due to the uncertain projections of changes in precipitation, but also due to the lack of 

observed discharge data for that river. The uncertain projections of future precipitation change, ren-

der projections of Omo river discharge highly uncertain. Nevertheless, despite the fact that 

HADCM3 simulates hardly any change in mean dry season discharge, and a large decrease in mean 

wet season discharge, the same model does suggest that there will be more months with both low and 

high flows. This suggests that the extremes of river discharge may increase, necessitating measures 

to preserve minimum flows in the dry season and protect against flooding during the wet season. 

Moreover, in order to monitor changes in the discharge of the river over time, and to provide data 

which can be used to set up and validate new hydrological models, discharge gauging stations need 

to be set up to measure long term patterns and changes in discharge. 

Finally, given the uncertainties surrounding the changes in precipitation, a useful recommendation 

for regional adaptation is to provide long-range seasonal weather forecasts, and to promote the dis-

semination of such information. A long-range seasonal weather forecast allows farmers to make in-

formed decisions on which crops and/or species to plant in the forthcoming growing season, and can 

allow health sector workers to anticipate climate-related health problems (and therefore the treat-
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ments required) prior to onset of problems. Furthermore, medium-term river discharge projections 

could then be made which would allow for early warning systems in the event of flooding, and better 

forward planning of reservoir levels for electricity generation.  
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Appendix 1: Maps showing mean annual precipitation and 

temperature for the periods 2020 and 2050 

Appendix 1a Spatially distributed mean annual precipitation (mm) 
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Appendix 1b Spatially distributed mean annual temperature (°C) 
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Appendix 2: Maps showing the spatial anomalies in mean annual 

precipitation and temperature between the baseline 

period, and the future scenarios  

(scenario - baseline) 

Appendix 2a Anomaly of mean annual precipitation (scenario - baseline period 1961-1990) 
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Appendix 2b Anomaly of mean annual temperature (scenario – baseline period 1961-1990) 

 
 

 



Downscaled climate change data  

 

 

57 

Appendix 3: Graphs showing change in precipitation between 

the baseline period, 2020, and 2050, and trends in 

precipitation over the period 1900-2100 
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Appendix 3.1  HADCM3 – Moyale - Precipitation 

 

3.1a Mean monthly precipitation 

- 2020 

 

3.1b Mean monthly precipitation 

- 2050 

 

 

3.1c Precipitation anomaly 

(2020 – baseline) 

 

3.1d Precipitation anomaly 

(2050 – baseline) 

 

 

3.1e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.2 ECHAM5 – Moyale - Precipitation 

 

3.2a Mean monthly precipitation 

- 2020 

 

3.2b Mean monthly precipitation 

- 2050 

 

 

3.2c Precipitation anomaly 

(2020 – baseline) 

 

3.2d Precipitation anomaly 

(2050 – baseline) 

 

 

3.2e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.3 HADCM3 – Mandera - Precipitation 

 

3.3a Mean monthly precipitation 

- 2020 

 

3.3b Mean monthly precipitation 

- 2050 

 

 

3.3c Precipitation anomaly 

(2020 – baseline) 

 

3.3d Precipitation anomaly 

(2050 – baseline) 

 

 

3.3e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.4 ECHAM5 – Mandera - Precipitation 

 

3.4a Mean monthly precipitation 

- 2020 

 

3.4b Mean monthly precipitation 

- 2050 

 

 

3.4c Precipitation anomaly 

(2020 – baseline) 

 

3.4d Precipitation anomaly 

(2050 – baseline) 

 

 

3.4e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.5 HADCM3 – Marsabit - Precipitation 

 

3.5a Mean monthly precipitation 

- 2020 

 

3.5b Mean monthly precipitation 

- 2050 

 

 

3.5c Precipitation anomaly 

(2020 – baseline) 

 

3.5d Precipitation anomaly 

(2050 – baseline) 

 

 

3.5e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.6 ECHAM5 – Marsabit - Precipitation 

 

3.6a Mean monthly precipitation 

- 2020 

 

3.6b Mean monthly precipitation 

- 2050 

 

 

3.6c Precipitation anomaly 

(2020 – baseline) 

 

3.6d Precipitation anomaly 

(2050 – baseline) 

 

 

3.6e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.7 HADCM3 – Maralal - Precipitation 

 

3.7a Mean monthly precipitation 

- 2020 

 

3.7b Mean monthly precipitation 

- 2050 

 

 

3.7c Precipitation anomaly 

(2020 – baseline) 

 

3.7d Precipitation anomaly 

(2050 – baseline) 

 

 

3.7e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.8 ECHAM5– Maralal - Precipitation 

 

3.8a Mean monthly precipitation 

- 2020 

 

3.8b Mean monthly precipitation 

- 2050 

 

 

3.8c Precipitation anomaly 

(2020 – baseline) 

 

3.8d Precipitation anomaly 

(2050 – baseline) 

 

 

3.8e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.9 HADCM3 – Isiolo - Precipitation 

 

3.9a Mean monthly precipitation 

- 2020 

 

3.9b Mean monthly precipitation 

- 2050 

 

 

3.9c Precipitation anomaly 

(2020 – baseline) 

 

3.9d Precipitation anomaly 

(2050 – baseline) 

 

 

3.9e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.1  ECHAM5– Isiolo - Precipitation 

 

3.10a Mean monthly precipitation 

- 2020 

 

3.10b Mean monthly precipitation 

- 2050 

 

 

3.10c Precipitation anomaly 

(2020 – baseline) 

 

3.10d Precipitation anomaly 

(2050 – baseline) 

 

 

3.10e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.11 HADCM3 – Nairobi - Precipitation 

 

3.11a Mean monthly precipitation 

- 2020 

 

3.11b Mean monthly precipitation 

- 2050 

 

 

3.11c Precipitation anomaly 

(2020 – baseline) 

 

3.11d Precipitation anomaly 

(2050 – baseline) 

 

 

3.11e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.12 ECHAM5– Nairobi - Precipitation 

 

3.12a Mean monthly precipitation 

- 2020 

 

3.12b Mean monthly precipitation 

- 2050 

 

 

3.12c Precipitation anomaly 

(2020 – baseline) 

 

3.12d) Precipitation anomaly 

(2050 – baseline) 

 

 

3.12e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.13 HADCM3 – Awasa - Precipitation 

 

3.13a Mean monthly precipitation 

- 2020 

 

3.13b Mean monthly precipitation 

- 2050 

 

 

3.13c Precipitation anomaly 

(2020 – baseline) 

 

3.13d Precipitation anomaly 

(2050 – baseline) 

 

 

3.13e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.14 ECHAM5– Awasa - Precipitation 

 

3.14a Mean monthly precipitation 

- 2020 

 

3.14b Mean monthly precipitation 

- 2050 

 

 

3.14c Precipitation anomaly 

(2020 – baseline) 

 

3.14d Precipitation anomaly 

(2050 – baseline) 

 

 

3.14e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.15 HADCM3 – Kelem - Precipitation 

 

3.15a Mean monthly precipitation 

- 2020 

 

3.15b Mean monthly precipitation 

- 2050 

 

 

3.15c Precipitation anomaly 

(2020 – baseline) 

 

3.15d Precipitation anomaly 

(2050 – baseline) 

 

 

3.15e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.16 ECHAM5 – Kelem - Precipitation 

 

3.16a Mean monthly precipitation 

- 2020 

 

3.16b Mean monthly precipitation 

- 2050 

 

 

3.16c Precipitation anomaly 

(2020 – baseline) 

 

3.16d Precipitation anomaly 

(2050 – baseline) 

 

 

3.16e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.17 HADCM3 – Asayita - Precipitation 

 

3.17a Mean monthly precipitation 

- 2020 

 

3.17b Mean monthly precipitation 

- 2050 

 

 

3.17c Precipitation anomaly 

(2020 – baseline) 

 

3.17d Precipitation anomaly 

(2050 – baseline) 

 

 

3.17e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.18 ECHAM5– Asayita - Precipitation 

 

3.18a Mean monthly precipitation 

- 2020 

 

3.18b Mean monthly precipitation 

- 2050 

 

 

3.18c Precipitation anomaly 

(2020 – baseline) 

 

3.18d  Precipitation anomaly 

(2050 – baseline) 

 

 

3.18e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.19 HADCM3 – Addis Ababa - Precipitation 

 

3.19a Mean monthly precipitation 

- 2020 

 

3.19b Mean monthly precipitation 

- 2050 

 

 

3.19c Precipitation anomaly 

(2020 – baseline) 

 

3.19d Precipitation anomaly 

(2050 – baseline) 

 

 

3.19e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 3.20 ECHAM5 – Addis Ababa - Precipitation 

 

3.20a Mean monthly precipitation 

- 2020 

 

3.20b Mean monthly precipitation 

- 2050 

 

 

3.20c Precipitation anomaly 

(2020 – baseline) 

 

3.20d Precipitation anomaly 

(2050 – baseline) 

 

 

3.20e Mean annual precipitation, 1901-2100 (10-yr running mean) 
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Appendix 4 Graphs showing change in temperature between the 

baseline period, 2020, and 2050, and trends in 

temperature over the period 1900-2100 
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Appendix 4.1 HADCM3 – Moyale - Temperature 

 

4.1a Mean monthly temperature 

- 2020 

 

4.1b Mean monthly temperature 

- 2050 

 

 

4.1c Temperature anomaly  

(2020 – baseline) 

 

4.1d Temperature anomaly 

(2050 – baseline) 

 

 

4.1e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.2 ECHAM5 – Moyale - Temperature 

 

4.2a Mean monthly temperature 

- 2020 

 

4.2 Mean monthly temperature 

- 2050 

 

 

4.2c Temperature anomaly 

(2020 – baseline) 

 

4.2d Temperature anomaly 

(2050 – baseline) 

 

 

4.2e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.3 HADCM3 – Mandera - Temperature 

 

4.3a Mean monthly temperature 

- 2020 

 

4.3b Mean monthly temperature 

- 2050 

 

 

4.3c Temperature anomaly 

(2020 – baseline) 

 

4.3d Temperature anomaly 

(2050 – baseline) 

 

 

4.3e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.4 ECHAM5 – Mandera - Temperature 

 

4.4a Mean monthly temperature 

- 2020 

 

4.4b Mean monthly temperature 

- 2050 

 

 

4.4c Temperature anomaly 

(2020 – baseline) 

 

4.4d Temperature anomaly 

(2050 – baseline) 

 

 

4.4e Mean annual temperature, 1901-2100 (10-yr running mean) 



Institute for Environmental Studies 84

Appendix 4.5 HADCM3 – Marsabit - Temperature 

 

4.5a Mean monthly temperature 

- 2020 

 

4.5b Mean monthly temperature 

- 2050 

 

 

4.5c Temperature anomaly 

(2020 – baseline) 

 

4.5d Temperature anomaly 

(2050 – baseline) 

 

 

4.5e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.6 ECHAM5 – Marsabit - Temperature 

 

4.6a Mean monthly temperature 

- 2020 

 

4.6b Mean monthly temperature 

- 2050 

 

 

4.6c Temperature anomaly 

(2020 – baseline) 

 

4.6d Temperature anomaly 

(2050 – baseline) 

 

 

4.6e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.7 HADCM3 – Maralal - Temperature 

 

4.7a Mean monthly temperature 

- 2020 

 

4.7b Mean monthly temperature 

- 2050 

 

 

4.7c Temperature anomaly 

(2020 – baseline) 

 

4.7d Temperature anomaly 

(2050 – baseline) 

 

 

4.7e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.8 ECHAM5– Maralal - Temperature 

 

4.8a Mean monthly temperature 

- 2020 

 

4.8b Mean monthly temperature 

- 2050 

 

 

4.8c Temperature anomaly 

(2020 – baseline) 

 

4.8d Temperature anomaly 

(2050 – baseline) 

 

 

4.8e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.9 HADCM3 – Isiolo - Temperature 

 

4.9a Mean monthly temperature 

- 2020 

 

4.9b Mean monthly temperature 

- 2050 

 

 

4.9c Temperature anomaly 

(2020 – baseline) 

 

4.9d Temperature anomaly 

(2050 – baseline) 

 

 

4.9e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.10 ECHAM5– Isiolo - Temperature 

 

4.10a Mean monthly temperature 

- 2020 

 

4.10b Mean monthly temperature 

- 2050 

 

 

4.10c Temperature anomaly 

(2020 – baseline) 

 

4.10d Temperature anomaly 

(2050 – baseline) 

 

 

4.10e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.11 HADCM3 – Nairobi - Temperature 

 

4.11a Mean monthly temperature 

- 2020 

 

4.11b Mean monthly temperature 

- 2050 

 

 

4.11c Temperature anomaly 

(2020 – baseline) 

 

4.11d Temperature anomaly 

(2050 – baseline) 

 

 

4.11e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.12 ECHAM5– Nairobi - Temperature 

 

4.12a Mean monthly temperature 

- 2020 

 

4.12b Mean monthly temperature 

- 2050 

 

 

4.12c Temperature anomaly 

(2020 – baseline) 

 

4.12d Temperature anomaly 

(2050 – baseline) 

 

 

4.12e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.13 HADCM3 – Awasa - Temperature 

 

4.13a Mean monthly temperature 

- 2020 

 

4.13b Mean monthly temperature 

- 2050 

 

 

4.13c Temperature anomaly 

(2020 – baseline) 

 

4.13d Temperature anomaly 

(2050 – baseline) 

 

 

4.13e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.14 ECHAM5– Awasa - Temperature 

 

4.14a Mean monthly temperature 

- 2020 

 

4.14b Mean monthly temperature 

- 2050 

 

 

4.14c Temperature anomaly 

(2020 – baseline) 

 

4.14d Temperature anomaly 

(2050 – baseline) 

 

 

4.14e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.15 HADCM3 – Kelem - Temperature 

 

4.15a Mean monthly temperature 

- 2020 

 

4.15b Mean monthly temperature 

- 2050 

 

 

4.15c Temperature anomaly 

(2020 – baseline) 

 

4.15d Temperature anomaly 

(2050 – baseline) 

 

 

4.15e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.16 ECHAM5 – Kelem - Temperature 

 

4.16a Mean monthly temperature 

- 2020 

 

4.16b Mean monthly temperature 

- 2050 

 

 

4.16c Temperature anomaly 

(2020 – baseline) 

 

4.16d Temperature anomaly 

(2050 – baseline) 

 

 

4.16e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.17 HADCM3 – Asayita - Temperature 

 

4.17a Mean monthly temperature 

- 2020 

 

4.17b Mean monthly temperature 

- 2050 

 

 

4.17c Temperature anomaly 

(2020 – baseline) 

 

4.17d Temperature anomaly 

(2050 – baseline) 

 

 

4.17e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.18 ECHAM5– Asayita - Temperature 

 

4.18a Mean monthly temperature 

- 2020 

 

4.18b Mean monthly temperature 

- 2050 

 

 

4.18c Temperature anomaly 

(2020 – baseline) 

 

4.18d Temperature anomaly 

(2050 – baseline) 

 

 

4.18e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.19 HADCM3 – Addis Ababa - Temperature 

 

4.19a Mean monthly temperature 

- 2020 

 

4.19b Mean monthly temperature 

- 2050 

 

 

4.19c Temperature anomaly 

(2020 – baseline) 

 

4.19d Temperature anomaly 

(2050 – baseline) 

 

 

4.19e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 4.20 ECHAM5 – Addis Ababa - Temperature 

 

4.20a Mean monthly temperature 

- 2020 

 

4.20b Mean monthly temperature 

- 2050 

 

 

4.20c Temperature anomaly 

(2020 – baseline) 

 

4.20d Temperature anomaly 

(2050 – baseline) 

 

 

4.20e Mean annual temperature, 1901-2100 (10-yr running mean) 
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Appendix 5 Tables showing the percentage of months 

above or below given thresholds for 

precipitation, and above given thresholds for 

temperature.  

For each parameter the data are shown for the following 10 locations indicated on the 

map in Figure 1.1: Moyale, Mandera, Marsabit, Maralal, Isiolo, Nairobi, Awasa, Kelem, 

Asayita, and Addis Ababa. 
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Appendix 5.1 Percentage of months in the downscaled HADCM3 climate data in which 

precipitation below the thresholds given in the first column. Note that the 

baseline data are derived from HADCM3, and are thus different to the 

baseline data for ECHAM5. 

Station 1961- 2020 2050 

Threshold (mm) 1990 COMMIT B1 A1B A2 COMMIT B1 A1B A2 

Moyale          

1 12.8 13.3 16.7 19.4 13.1 16.1 11.9 14.7 12.8 

5 24.2 26.1 29.2 31.9 23.9 29.2 25.8 25.0 25.3 

10 34.2 36.9 37.8 39.7 34.7 37.2 37.2 32.5 35.0 

20 50.0 46.9 49.4 50.6 49.2 49.4 48.1 47.2 46.9 

Mandera          

1 35.3 35.8 38.1 40.0 37.2 36.1 37.8 37.5 37.2 

5 53.3 51.4 53.1 51.4 51.1 50.6 51.4 51.9 49.7 

10 59.2 57.2 58.3 57.8 57.2 56.1 57.5 58.9 55.6 

20 65.3 65.8 66.1 66.1 65.3 65.6 66.4 68.1 65.8 

Marsabit          

1 14.4 16.1 18.6 21.9 14.2 19.2 14.2 16.1 15.3 

5 29.2 31.4 32.8 35.3 28.3 33.3 31.7 28.6 29.4 

10 39.7 39.7 40.3 42.8 37.8 40.6 39.2 37.2 38.9 

20 50.6 48.1 49.2 51.1 50.3 49.4 50.8 48.1 48.1 

Maralal          

1 0.3 0.0 1.1 1.1 0.3 0.3 1.4 1.1 0.8 

5 0.8 1.7 3.9 3.6 2.2 0.8 4.2 3.3 2.8 

10 1.7 6.4 8.3 5.3 5.3 1.1 7.2 6.7 6.7 

20 8.6 12.5 15.3 13.9 10.0 10.6 13.3 12.2 11.1 

Isiolo          

1 6.9 9.7 10.8 13.9 8.9 7.5 9.4 11.7 9.7 

5 17.5 21.4 23.9 24.4 21.7 21.4 21.1 22.2 23.1 

10 27.2 27.8 31.4 30.3 28.9 29.2 29.2 26.1 28.9 

20 36.1 38.6 38.3 38.1 35.8 37.2 38.6 35.6 35.8 

Nairobi          

1 9.7 10.3 13.1 13.1 12.5 12.2 13.1 13.6 12.8 

5 15.3 17.5 20.8 19.7 20.8 21.1 20.8 22.5 19.2 

10 20.3 21.7 25.6 26.1 23.9 25.0 24.2 27.5 24.2 

50 25.0 31.1 31.9 33.3 30.3 29.2 31.9 34.7 29.4 

Awasa          

1 8.1 6.7 4.4 7.2 7.2 4.2 4.2 9.2 6.7 

5 12.8 13.1 11.4 14.2 12.2 10.0 9.4 14.4 11.1 

10 18.6 19.2 17.2 18.1 17.2 15.0 16.9 18.3 15.0 

50 29.2 28.3 25.3 28.6 26.9 24.7 29.2 26.9 26.4 

Kelem          

1 1.4 0.8 0.3 0.6 0.8 0.8 0.3 1.1 0.8 

5 4.4 3.9 2.5 1.9 2.5 1.9 3.6 4.4 2.8 

10 8.6 6.7 5.3 5.8 5.3 4.2 7.8 6.7 5.0 

50 23.6 22.5 23.9 20.6 19.7 21.9 21.9 20.0 17.2 

Asayita          

1 35.8 35.3 35.8 34.4 34.7 31.1 35.6 34.2 35.8 

5 54.2 53.6 54.2 52.5 52.5 50.8 50.6 50.6 53.3 

10 65.8 61.7 63.3 60.8 63.6 65.3 61.9 60.8 64.2 

50 76.4 72.2 72.8 70.8 73.6 73.1 73.9 72.2 75.3 

Addis Ababa          

1 7.2 6.4 4.2 6.1 7.2 3.9 4.2 7.8 5.8 

5 11.7 12.2 10.3 12.5 11.4 6.9 8.9 14.2 10.8 

10 16.4 17.2 14.4 16.9 15.6 12.8 14.7 16.9 14.2 

50 
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Appendix 5.2 Percentage of months in the downscaled ECHAM5 climate data in 

which precipitation is below the thresholds given in the first column. 

Note that the baseline data are derived from ECHAM5, and are thus 

different to the baseline data for HADCM3. 

Appendix 1961- 2020 2050 

Threshold (mm) 1990 COMMIT B1 A1B A2 COMMIT B1 A1B A2 

Moyale          

1 30.0 26.7 21.4 28.1 25.6 29.7 25.6 24.2 27.5 

5 40.6 36.1 33.9 37.2 35.6 37.2 34.2 32.8 36.1 

10 46.7 42.2 38.6 41.9 41.4 41.1 39.4 37.8 40.0 

20 52.5 49.7 45.6 47.5 47.8 48.3 45.0 45.6 45.6 

Mandera          

1 43.1 44.2 41.1 43.3 47.8 43.6 39.7 41.7 42.5 

5 53.6 54.2 53.6 55.6 55.6 55.0 50.6 54.2 52.2 

10 61.1 60.0 60.3 60.6 61.7 60.0 57.2 58.6 57.2 

20 67.5 67.8 67.2 64.4 66.1 65.8 64.4 66.1 63.9 

Marsabit          

1 31.4 27.5 24.4 30.6 27.5 31.1 26.7 25.6 29.4 

5 42.8 39.7 34.7 38.6 38.6 38.6 37.2 35.6 38.3 

10 49.2 43.6 40.0 42.8 43.1 43.6 40.8 41.4 41.9 

20 56.4 49.2 46.4 50.0 48.9 50.0 45.8 46.1 46.4 

Maralal          

1 8.9 4.7 6.1 6.7 6.4 9.2 6.9 6.9 8.1 

5 13.9 9.2 10.8 10.6 11.1 13.9 11.4 9.7 14.4 

10 16.4 11.9 13.1 15.3 14.4 16.7 13.9 13.9 18.1 

20 23.3 19.4 18.6 21.7 19.4 23.1 19.7 21.4 21.9 

Isiolo          

1 22.5 18.1 16.9 18.6 20.6 21.1 17.8 20.6 20.8 

5 32.8 26.4 27.2 29.4 29.7 31.7 26.7 31.1 32.2 

10 38.1 30.6 29.4 33.1 33.9 36.9 32.2 35.0 35.0 

20 41.9 35.8 36.9 38.3 37.8 41.1 35.8 37.5 38.3 

Nairobi          

1 2.5 2.8 2.2 3.3 3.6 2.5 2.8 3.1 4.4 

5 9.2 7.5 8.3 10.8 7.8 8.6 10.3 11.1 13.6 

10 16.1 13.6 13.3 15.8 12.5 15.6 15.6 16.9 19.2 

50 23.6 19.4 20.3 23.9 22.2 20.6 22.2 23.9 26.1 

Awasa          

1 14.2 14.4 12.8 14.4 13.9 15.8 13.3 14.7 14.2 

5 20.8 21.1 19.7 21.7 20.8 23.3 18.3 23.1 20.0 

10 25.6 26.1 26.1 25.8 28.1 26.9 26.1 28.3 24.2 

50 35.0 36.7 35.0 36.1 37.8 37.8 35.8 38.9 40.3 

Kelem          

1 15.6 10.6 10.8 15.6 13.9 15.8 13.1 10.8 11.4 

5 21.7 16.9 16.1 21.4 18.3 21.4 20.3 16.9 16.4 

10 28.3 21.1 20.3 26.7 23.6 27.5 23.9 23.3 21.9 

50 42.5 34.2 30.6 38.6 33.1 38.1 35.3 34.4 33.1 

Asayita          

1 48.1 53.6 45.8 49.7 51.1 48.3 45.6 53.9 47.5 

5 59.4 65.0 60.0 62.5 60.6 58.1 61.1 63.6 58.6 

10 65.0 73.1 67.2 70.6 66.9 66.7 67.5 71.1 64.7 

50 74.4 79.7 75.8 77.5 75.0 77.8 75.0 80.8 74.2 

Addis Ababa          

1 9.2 7.8 8.6 11.4 11.9 10.8 9.4 11.1 9.2 

5 16.1 14.4 13.6 17.5 14.7 15.6 15.0 16.4 15.0 

10 20.0 18.6 17.8 20.8 19.4 20.0 18.3 20.6 20.3 

50 25.8 25.3 23.3 25.8 28.3 26.7 25.8 27.8 25.3 
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Appendix 5.3 Percentages of months in the downscaled HADCM3 climate data in 

which precipitation is above the thresholds given in the first column. 

Note that the baseline data are derived from HADCM3, and are thus dif-

ferent to the baseline data for ECHAM5. 

Appendix 1961- 2020 2050 

Threshold (mm) 1990 COMMIT B1 A1B A2 COMMIT B1 A1B A2 

Moyale          

100 18.9 19.2 15.6 15.0 20.6 18.6 14.7 16.9 19.7 

200 5.3 5.0 4.4 3.6 5.0 6.4 6.9 3.9 7.2 

300 1.7 1.4 2.5 1.1 1.7 3.1 1.9 2.5 2.2 

350 0.8 1.1 1.1 0.3 0.6 1.7 1.1 1.1 1.1 

Mandera          

100 5.0 5.6 6.1 2.8 6.1 4.7 6.1 5.3 7.5 

200 1.1 0.8 1.1 0.3 0.3 1.9 0.3 0.6 1.1 

300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

350 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Marsabit          

100 19.4 19.4 16.7 16.7 21.1 19.7 17.2 18.9 21.7 

200 5.0 5.3 5.6 3.9 7.5 5.6 7.2 6.1 9.4 

300 2.5 2.8 2.8 1.9 2.5 3.9 3.1 3.1 3.6 

350 1.7 1.4 2.2 1.1 1.4 2.8 1.4 2.5 2.2 

Maralal          

100 32.8 35.3 28.6 29.2 31.4 28.3 26.9 27.2 28.3 

200 8.1 7.2 5.0 4.7 6.1 6.1 6.1 5.8 5.8 

300 1.4 1.4 1.4 0.3 1.1 1.1 1.4 0.3 0.8 

350 0.3 0.6 0.3 0.3 0.3 0.3 0.0 0.3 0.3 

Isiolo          

100 34.7 31.9 32.2 31.1 34.4 33.1 29.7 28.1 28.1 

200 17.8 14.2 13.3 12.5 16.7 15.3 12.8 14.7 18.3 

300 6.1 6.7 5.8 3.6 6.4 7.2 8.3 7.8 8.3 

350 3.9 4.2 4.2 2.5 3.9 4.4 4.7 4.7 5.8 

Nairobi          

100 28.9 28.1 23.9 23.1 28.6 27.8 24.2 24.2 30.6 

200 7.8 7.8 7.2 4.7 6.7 6.9 7.5 5.6 7.2 

300 4.7 3.9 4.2 2.2 1.7 4.7 3.9 0.8 3.3 

350 4.2 3.3 3.3 1.4 1.1 3.6 3.3 0.8 2.5 

Awasa          

100 15.6 16.7 18.6 16.7 16.7 17.2 16.4 16.9 18.3 

200 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.3 

300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

350 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Kelem          

100 3.9 5.8 6.1 3.9 4.4 6.1 5.3 5.8 4.2 

200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

350 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Asayita          

100 5.0 6.1 8.6 6.9 8.1 6.1 8.3 8.6 7.2 

200 0.6 0.8 2.8 3.3 3.1 1.9 3.1 3.9 2.8 

300 0.0 0.6 1.1 1.9 2.2 1.4 2.2 2.5 1.9 

350 0.0 0.3 0.6 0.6 1.9 0.8 1.1 2.2 1.4 

Addis Ababa          

100 41.4 45.0 45.8 43.9 42.8 47.8 40.8 43.6 44.4 

200 19.4 18.9 18.9 19.4 17.8 18.6 18.6 19.2 19.4 

300 5.6 3.1 5.3 3.6 5.0 2.5 4.4 3.9 3.6 

350 
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Appendix 5.4 Percentage of months in the downscaled ECHAM5 climate data in which 

precipitation is above the thresholds given in the first column. Note that 

the baseline data are derived from ECHAM5, and are thus different to 

the baseline data for HADCM3. 

Appendix 1961- 2020 2050 

Threshold (mm) 1990 COMMIT B1 A1B A2 COMMIT B1 A1B A2 

Moyale          

100 20.0 21.9 21.4 23.6 23.1 21.9 23.9 24.2 25.6 

200 7.2 8.6 8.1 8.6 10.8 8.1 10.8 7.8 10.0 

300 2.8 5.0 2.2 3.1 3.9 3.3 3.1 2.8 3.6 

350 0.8 1.9 1.1 1.1 1.1 1.9 2.2 0.6 1.9 

Mandera          

100 5.6 5.8 6.4 6.1 6.4 6.4 10.6 7.8 7.8 

200 0.8 0.8 0.6 0.6 1.4 1.9 0.3 0.8 1.1 

300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

350 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Marsabit          

100 20.6 23.9 24.4 22.5 26.4 22.5 26.4 25.6 25.6 

200 7.2 9.7 8.3 8.9 9.2 8.9 10.0 8.1 12.2 

300 2.2 3.3 2.8 1.9 4.4 3.3 3.3 2.5 3.6 

350 1.7 1.7 1.4 1.4 2.5 1.7 2.2 2.2 2.2 

Maralal          

100 34.2 38.3 41.1 38.6 38.6 37.2 40.0 36.1 36.1 

200 12.2 13.3 13.6 12.2 16.4 14.4 15.0 11.9 9.7 

300 3.6 5.8 4.7 3.9 6.9 4.2 5.0 3.9 3.9 

350 1.4 3.6 2.8 3.3 3.6 1.9 3.6 2.5 2.2 

Isiolo          

100 35.3 37.2 38.9 37.5 35.3 35.3 38.6 36.7 39.4 

200 18.1 19.2 22.8 19.4 21.4 21.1 21.4 20.8 20.8 

300 9.4 9.7 12.2 9.2 11.9 10.3 12.8 9.7 10.8 

350 6.1 6.4 7.2 6.1 7.8 6.9 8.1 6.9 6.9 

Nairobi          

100 33.1 37.2 35.6 32.5 32.8 34.4 35.8 33.9 34.4 

200 9.7 12.8 8.3 10.0 11.7 11.9 11.7 8.3 9.2 

300 5.0 4.4 3.3 3.9 5.6 3.9 5.0 3.6 3.1 

350 2.2 2.2 2.5 2.8 3.1 2.5 3.1 1.9 1.4 

Awasa          

100 18.3 18.9 17.5 19.7 16.9 17.2 20.0 16.7 17.2 

200 0.6 0.8 1.7 1.4 1.4 1.4 2.2 1.7 2.8 

300 0.0 0.0 0.0 0.0 0.6 0.3 0.3 0.0 0.6 

350 0.0 0.0 0.0 0.0 0.3 0.0 0.3 0.0 0.3 

Kelem          

100 7.2 9.2 10.6 10.0 10.0 9.7 12.2 11.4 11.1 

200 0.3 0.8 2.2 1.1 0.6 0.8 1.7 1.1 1.4 

300 0.0 0.0 0.3 0.0 0.0 0.0 0.6 0.3 0.6 

350 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 

Asayita          

100 5.0 5.0 8.3 6.1 7.2 7.2 6.1 8.6 6.1 

200 0.3 0.8 2.5 1.7 2.2 1.7 0.8 3.3 2.2 

300 0.0 0.3 1.7 0.6 0.3 0.0 0.6 1.4 0.6 

350 0.0 0.3 1.1 0.3 0.0 0.0 0.6 0.6 0.6 

Addis Ababa          

100 43.6 42.5 42.2 43.6 41.7 41.9 41.4 40.8 43.3 

200 17.5 18.6 21.1 20.8 21.1 18.6 18.9 19.4 21.1 

300 7.2 6.9 5.8 8.3 6.1 6.1 8.9 7.5 9.2 

350 2.2 2.5 2.8 3.3 2.5 1.9 4.2 3.1 5.3 
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Appendix 5.5 Percentage of months in the downscaled HADCM3 climate data in which 

temperature is above the thresholds given in the first column. Note that 

the baseline data are derived from HADCM3, and are thus different to 

the baseline data for ECHAM5. 

Appendix 1961- 2020 2050 

Threshold (°C) 1990 COMMIT B1 A1B A2 COMMIT B1 A1B A2 

Moyale          

27 6.4 10.8 15.8 18.3 16.4 10.8 25.8 37.8 37.2 

28 0.6 2.5 3.6 6.7 2.5 1.4 12.5 19.4 21.1 

29 0.0 0.0 0.6 1.1 0.0 0.0 4.4 5.0 9.4 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.6 2.8 

Mandera          

27 99.4 98.9 97.5 98.1 98.6 99.2 100.0 99.2 99.7 

28 84.4 93.6 94.4 93.3 93.6 90.6 99.7 98.9 99.2 

29 50.0 70.3 78.9 80.8 81.9 68.6 93.9 95.6 96.4 

30 22.8 35.6 48.9 53.6 48.6 36.1 74.7 82.2 83.3 

Marsabit          

27 6.9 20.3 27.5 34.7 25.0 20.0 47.8 60.6 53.9 

28 1.7 4.2 9.2 12.2 6.1 3.6 21.1 36.9 33.1 

29 0.3 0.0 1.4 2.2 0.6 0.0 6.7 11.7 17.8 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.6 2.2 3.3 

Maralal          

27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Isiolo          

27 0.3 0.0 1.4 1.4 0.0 0.0 3.1 6.9 9.2 

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.1 

29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Nairobi          

27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Awasa          

27 21.9 30.6 39.4 43.6 42.2 33.3 56.9 65.3 65.0 

28 10.3 13.6 18.3 21.1 20.0 13.3 31.1 43.9 43.6 

29 0.8 4.4 7.2 9.7 10.3 5.0 16.4 27.5 25.3 

30 0.0 0.0 1.4 1.4 1.4 0.0 7.8 13.9 11.4 

Kelem          

27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Asayita          

27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Addis Ababa          

27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Appendix 5.6 Percentage of months in the downscaled ECHAM5 climate data in which 

temperature is above the thresholds given in the first column. Note that 

the baseline data are derived from ECHAM5, and are thus different to 

the baseline data for HADCM3. 

Appendix 1961- 2020 2050 

Threshold (°C) 1990 COMMIT B1 A1B A2 COMMIT B1 A1B A2 

Moyale          

27 2.8 8.3 10.6 12.8 13.3 6.7 18.6 29.4 26.9 

28 0.3 0.6 1.1 2.8 2.5 0.8 8.3 14.7 11.7 

29 0.0 0.0 0.0 0.0 0.0 0.0 3.9 5.3 3.3 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.3 0.6 

Mandera          

27 97.2 99.4 99.2 100.0 100.0 99.7 100.0 99.7 99.7 

28 83.9 93.6 94.4 96.9 96.1 91.1 96.4 98.9 99.4 

29 55.8 74.7 73.3 79.7 80.0 68.1 87.8 95.3 95.6 

30 23.6 38.6 44.7 50.6 48.6 37.8 65.3 78.6 76.4 

Marsabit          

27 3.9 10.6 13.3 18.9 15.3 8.3 35.0 52.8 44.4 

28 0.6 0.8 1.7 3.9 4.4 1.1 11.9 26.7 18.1 

29 0.0 0.0 0.3 0.0 0.0 0.0 3.9 7.2 3.6 

30 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.8 0.6 

Maralal          

27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Isiolo          

27 0.0 0.0 0.0 0.0 0.0 0.0 2.5 3.3 1.4 

28 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.6 0.0 

29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Nairobi          

27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Awasa          

27 23.9 34.4 38.3 39.7 40.6 31.7 52.8 61.7 60.6 

28 10.0 17.8 19.7 23.9 25.0 17.5 32.5 45.0 43.1 

29 2.8 8.3 11.1 12.5 12.5 8.9 21.1 30.3 28.3 

30 1.4 4.4 5.6 5.6 6.4 2.8 10.3 17.2 16.1 

Kelem          

27 82.2 90.8 88.6 95.3 94.2 89.7 96.1 99.4 98.9 

28 53.9 64.2 68.9 76.4 81.9 68.9 88.3 94.2 93.6 

29 23.6 36.1 38.6 49.4 49.2 38.3 68.3 78.3 80.8 

30 5.8 14.7 19.7 24.7 20.6 12.2 39.2 54.7 57.8 

Asayita          

27 64.7 69.2 72.8 75.6 72.8 71.1 81.7 86.7 85.3 

28 54.2 60.6 63.3 65.3 63.1 60.3 73.1 76.9 73.1 

29 46.1 53.6 53.1 57.2 55.3 52.8 63.1 67.8 63.6 

30 34.4 44.4 42.5 48.1 43.1 41.1 53.6 56.9 53.3 

Addis Ababa          

27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

 


