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Abstract

In this paper we compare the predictive abilility of Stochastic Volatility (SV) models to that

of volatility forecasts implied by option prices. We develop an SV model with implied volatility

as an exogeneous variable in the variance equation which facilitates the use of statistical tests for

nested models; we refer to this model as the SVX model. The SVX model is then extended to a

volatility model with persistence adjustment term and this we call the SVX+ model. This class of

SV models can be estimated by quasi maximum likelihood methods but the main emphasis will

be on methods for exact maximum likelihood using Monte Carlo importance sampling methods.

The performance of the models is evaluated, both within sample and out-of-sample, for daily

returns on the Standard & Poor's 100 index. Similar studies have been undertaken with GARCH

models where �ndings were initially mixed but recent research has indicated that implied volatility

provides superior forecasts. We �nd that implied volatility outperforms historical returns in-sample

but that the latter contains incremental information in the form of stochastic shocks incorporated

in the SVX models. The out-of-sample volatility forecasts are evaluated against daily squared

returns and intradaily squared returns for forecasting horizons ranging from 1 to 10 days. For

the daily squared returns we obtain mixed results, but when we use intradaily squared returns

as a measure of realised volatility we �nd that the SVX+ model produces the most accurate

out-of-sample volatility forecasts and that the model that only utilises implied volatility performes

the worst as its volatility forecasts are upwardly biased.

KEYWORDS: Forecasting, Implied Volatility, Monte Carlo likelihood method, Stochastic

volatility, Stock indices.

1 Introduction

Forecasts of �nancial market volatility play a crucial role in �nancial decision making and the need for

accurate forecasts is apparent in a number of areas, such as option pricing, hedging strategies, portfolio

allocation and Value-at-Risk calculations. Unfortunately, it is notoriously di�cult to accurately predict

volatility and the problem is exacerbated by the fact that realised volatility has to be approximated

as it is inherently unobservable. Due to its critical role the topic of volatility forecasting has however

received much attention and the resulting literature is considerable.

One of the main sources of volatility forecasts are historical parameteric volatility models such as

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) and Stochastic Volatility (SV)

models. The parameters in these models are estimated with historical data and subsequently used

�Corresponding author: Siem Jan Koopman, Department of Econometrics, Free University, De Boelelaan 1105, NL-

1081 HV Amsterdam. Email s.j.koopman@econ.vu.nl.
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to construct out-of-sample volatility forecasts. The high degree of intertemporal volatility persistence

observed by these models suggests that the variability of stock index returns is highly predictable

and that past observations contain valuable information for the prediction of future volatility. Studies

comparing the forecasting abilities of the various volatility models have been undertaken for a number

of stock indices and the general consensus appears to be that those models that attribute more weight

to recent observations outperform others1. Little e�ort has however been made to compare ex-ante

volatility forecasts produced by GARCH models with those of SV models2.

An alternative information source for volatility prediction is found in implied volatility which is

calculated from option prices in combination with a certain option pricing model. Early empirical

studies by Latan�e and Rendelman (1976), Chiras and Manaster (1978) and Beckers (1981) have indi-

cated that implied volatility, when compared with historical standard deviations, can be regarded as

a good predictor of future volatility. Implied volatility is also often referred to as the market's volatil-

ity forecast and is forward looking, as opposed to historical based methods which are by de�nition

backward looking. Provided that the option market is e�cient and that the option pricing model has

been correctly speci�ed, the information content of implied volatility should therefore subsume that

of all other variables in the information set.

The question whether the most accurate volatility forecasts are produced by implied volatility,

rather than by the historically based volatility models, was �rst addressed by Day and Lewis (1992)

who developed a GARCH model with embedded implied volatility. Contrary to theory, their results

indicated that GARCH models provided better volatility forecasts than implied volatility but that the

latter might contain additional information as the best forecasts were obtained using both sources of

information. Canina and Figlewski (1993) even found "little or no correlation at all between implied

volatility and subsequent realized volatility" and favoured a simple historical volatility measure. Find-

ings in the early nineties were therefore mixed and the assumed comprehensive information content of

implied volatility appeared questionable as Lamoureux and Lastrapes (1993) were also unable to reject

the hypothesis that predictions based on GARCH models contained incremental information about

future volatility. Recent studies by Christensen and Prabhala (1998), Fleming (1998) and Blair, Poon

and Taylor (2000) are however much more supportive as all present evidence that the most accurate

volatility forecasts for returns on the Standard & Poor's 100 stock index are based on implied volatil-

ity. Moreover, their research strongly suggests that historical data contains little or no incremental

information about future volatility3.

Thusfar the issue of comparitive forecasting ability has however not been studied in the context

of SV models. In recent years this class of volatility model has received considerable attention in the

literature and it can now be regarded as a competitive alternative to GARCH models eventhough its

empirical application has been limited. In this paper we examine the predictive ability of the SV model

and compare its volatility forecasts with those of implied volatility. For this purpose we introduce an

SV model which incorporates implied volatility as an exogeneous variable in the variance equation.

This model, which we will refer to as the Stochastic Volatility with eXogeneous variables (SVX) model,

allows us to perform statistical tests for nested models. We evaluate the predictive performance for

daily returns on the Standard & Poor's 100 index and as a measure of implied volatility we use the

VIX index of the Chicago Board Options Exchange (CBOE). In addition, we compare the ex-ante

forecasting ability of the di�erent methods over a �ve year evaluation period for forecasting horizons

ranging from 1 to 10 trading days. As measures of realised volatility we consider both daily squared

returns and intradaily squared returns.

The SV class of models considered in this paper are estimated using exact maximum likelihood

1See e.g. Akgiray (1989), Dimson and Marsh (1990) and Walsh and Tsou (1998) for an overview.
2An exception is Heynen (1995) who examined a variety of international stock indices and found that SV models

produced more accurate volatility forecasts than GARCH models.
3It has been suggested, most notably by Blair et.al (2000), that the earlier �ndings are due to measurement errors in

the calculated implied volatility measure.
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methods which are based on Monte Carlo simulation techniques such as importance sampling and

antithetics. More accurate estimates of the likelihood function are obtained when the number of

simulations is increased. Therefore the estimates can be as accurate as desired at the cost of computer

time.

The remainder of this paper is structured as follows. In the next section we discuss the various

model speci�cations while in section 3 we present the relevant estimation methods. The data and

in-sample estimation results are presented in section 4. In section 5 we give details of our forecasting

methodology and the out-of-sample forecasting results are presented in section 6. In the �nal section

we conclude and provide a summary.

2 Model Speci�cations

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models have thusfar been the

most frequently applied class of time-varying volatility model. Since its introduction by Engle (1982)

and subsequent generalisation by Bollerslev (1986) this model has been extended in numerous ways

which usually involved alternative formulations for the volatility process4. Although the Stochastic

Volatility (SV) model has been recognised as a viable alternative to the GARCH model, the latter

is still the standard in empirical applications5. This is mainly due to the problems which arise as a

consequence of the intractability of the likelihood function of the SV model which prohibits its direct

evaluation. However, in recent years considerable progress has been made in this area which does

not only encourage further empirical research but also enables the development of various extensions

of the SV model. One of the possible extensions involves the inclusion of exogenous variables in the

variance equation which we will discuss in this paper; the resulting model we refer to as the SVX

model.

Volatility models are usually de�ned by their �rst two moments, the mean and the variance equa-

tion. The general notation for the mean equation of time-varying volatility models is given by

yt = �t + �t"t; "t � NID(0; 1); t = 1; : : : ; T; (1)

where yt denotes the return series of interest and �t its conditional mean6. The disturbance term

"t is assumed to be identically and independently distributed with zero mean and unit variance. In

addition, the assumption of normality is added. A common notation for the variance equation of the

SV class of volatility models is given by

�
2
t = �

�2 exp(ht); (2)

and it is therefore de�ned as the product of a positive scaling factor ��2 and the exponential of the

stochastic process ht. For the standard SV model this process is speci�ed as

ht = �ht�1 + ���t; �t � NID(0; 1); (3)

where the degree of volatility persistence is measured by the � parameter which is restricted to a

positive value smaller than one in order to ensure the stationarity of the volatility process, so 0 < � < 1.

Further, it is assumed that the disturbance term �t is mutually uncorrelated with the error term "t

4For surveys on GARCH models we refer to Bollerslev, Chou and Kroner (1992), Bera and Higgins (1993), Bollerslev,

Engle and Nelson (1994) and Diebold and Lopez (1995).
5SV models are reviewed in, for example, Taylor (1994), Ghysels, Harvey and Renault (1996) and Shephard (1996).
6For SV models the conditional mean is usually assumed to be equal to zero or is modelled prior to estimation of

the volatility process. Simultaneous estimation of the mean and variance equation has been undertaken in, for example,

Koopman and Hol Uspensky (2000).
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in the mean equation (1), both contemporaneously and at all lags. The SV model with embedded

implied volatility is labelled the SVX model and we could specify its stochastic process as

ht = �ht�1 + 
xt + ���t; �t � NID(0; 1); (4)

where xt denotes the contemporaneous implied volatility measure in logarithmic squared form, so

xt = ln�2IV;t. The value for � in the SVX model is restricted to be less than one in absolute values,

i.e. �1 < � < 1. The problem with this speci�cation is that it includes an entire lag structure

of the implied volatility measure which becomes apparent when we rewrite the volatility process in

logarithmic terms as

ln�2t = ln��2 + ht

= ln��2 + �ht�1 + 
xt + ���t

= (1� �) ln��2 + � ln�2t�1 + 
xt + ���t;

and if we repeatedly substitute for the lagged volatility process we observe that

ln�2t = ln��2 + 
xt + 


t�1X
i=1

�
i
xt�i + ��

t�1X
i=0

�
i
�t�i:

In comparison, the equivalent notation for the SV model, with ht as de�ned in equation (3), can be

written as

ln�2t = ln��2 + ��

t�1X
i=0

�
i
�t�i:

Inclusion of these multiple lagged implied volatility measures lead to a downwardly biased value for


 when � is positive. For a negative � parameter the estimate for 
 will be asymptotically upwardly

biased, as
P

1

i=1 �
i
< 0 for �1 < � < 0. Obviously, the size of this bias depends on the estimated value

for the persistence parameter �. If � is close to zero and insigni�cant, i.e. if all volatility information

is impounded in the implied volatility measure, 
 will only be marginally biased. For the GARCH

class of models the issue of a multiple lagged implied volatility structure was pointed out by Amin and

Ng (1997), who suggested a persistence adjustment term. A similar structure can be implemented for

the SVX model by de�ning ht as follows

ht = �ht�1 + 
(1� �L)xt + ���t; �t � NID(0; 1); (5)

which by recursive substitution of the logarithmic variance equation leads to

ln�2t = (1� �) ln��2 + � ln�2t�1 + 
(1� �L)xt + ���t;

= ln��2 + 
xt + ��

t�1X
i=0

�
i
�t�i;

and therefore omits the implied volatility lag structure. By de�ning ht as in equation (5) we therefore

obtain an alternative SVX model, which we will refer to hereafter as the SVX model with persistence

adjustment, or the SVX+ model.

Finally, we also consider a deterministic volatility model that only utilises implied volatility as a

source of volatility information. This model we obtain by imposing the restrictions � = 0 and �2� = 0

on equation (4) or (5), and therefore

ht = 
xt; (6)

with

ln�2t = ln��2 + 
xt:

This last of our four models we term the VX model as the volatility process does not have a separate

error term and is solely determined by exogeneous variables.
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3 Model Estimation

In this section we show how the parameters of the SVX class of models can be estimated by simulated

maximum likelihood using importance sampling. Further, we show how to compute the conditional

mean and variance of the volatility process ht. First we show that a quasi-maximum likelihood method

can also be used.

3.1 Quasi-maximum likelihood of SV and SVX models

Consider model (1), (2) and (3) which we can transform by taking logs of squared yt's, that is y
�
t = ln y2t ,

to obtain the model

y
�

t = 

� + ht + ut; 


� = ln��2; ut � ln�21;

with ht given by (3) for t = 1; : : : ; T . We take �t as zero, implying that the yt process remains

unmodelled. The resulting model is within the class of linear state space models; for an introduction

to state space models we refer to Harvey (1993, Chapter 4). Note that the disturbance term of

the model for y�t is non-Gaussian. Nevertheless, the Kalman �lter and the associated smoothing

algorithm produce the minimum mean square linear estimator for ht; see Harvey (1993, section 4.3).

By assuming that the disturbance ut is normally distributed with mean and variance set equal to the

mean and variance of a ln�21 variable, we obtain so-called quasi maximum likelihood estimates of the

unknown parameters �, �� and 

� when maximising the Gaussian likelihood function with respect to

these parameters. This estimation procedure is proposed by Harvey, Ruiz and Shephard (1994) and

is implemented in the computer package STAMP of Koopman et.al (2000).

The inclusion of explanatory variables in the log-volatility process does not complicate matters

further. The log-squared transformation does not a�ect the log-volatility processes of the SVX models

as de�ned in equations (4) and (5). Therefore the Kalman �lter can still be applied to the resulting

linear model. However the regression coe�cient 
 need to be estimated additionally.

In the following we will develop exact maximum likelihood methods for the estimation of the

parameters of SV and SVX models. Quasi-maximum likelihood methods will not be used in the

empirical studies of sections 4 and 6 since we prefer to use exact likelihood methods.

3.2 Exact maximum likelihood of SVX models using importance sampling

Let y = (y1; : : : ; yT )
0 and � = (�1; : : : ; �T )

0 where observation yt is modelled as (1) and its log-volatility

is given by

�
2
t = exp(�t); �t = 


� + ht;

with signal ht modelled as (3), (4) or (5), for t = 1; : : : ; T . Note that ��2 = exp(
�). Further we shall

collect the parameters which are not included in the state vector below in the parameter vector  .

The SVX model (1), (2) and (4) in state space form is given by

p(yj�;  ) =
TY
t=1

N(0; �
2
t );

with �t = 0, �2t = exp(�t) = exp(
� + ht) = �
�2 exp(ht). The state vector collects the components

of the log-volatility and is given by �t = (
�; 
; ht)
0. The so-called transition equation for the state

vector is given by

�t+1 =

2
64 1 0 0

0 1 0

0 xt �

3
75�t +

0
B@ 0

0

��

1
CA �t;
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where disturbances �t are distributed as NID(0; 1). The initial state vector �1 is given by0
B@ 


�




h1

1
CA � N

8><
>:
0
B@ 0

0

0

1
CA ;
2
64 � 0 0

0 � 0

0 0 �
2
�=(1� �

2)

3
75
9>=
>; ;

for some arbitrary large value for �. Finally, the parameter vector  is given by

 =

0
B@ �

��

��

1
CA :

This completes the model speci�cation in state space form. It follows that

p(yj�;  ) =
TY
t=1

N(0; exp �t); �t = (1; 0; 1)�t:

This representation of SV and SVX models can be regarded as a nonlinear state space model.

The aim now is to estimate the parameter vector  by exact maximum likelihood. This requires

the evaluation of the loglikelihood function. A convenient expression for the loglikelihood is developed

below. In section 3.2.2 we provide some computational details required for estimation. The state

vector �t elements, which include the regression coe�cients 
� and 
 and the stochastic log-volatility

process ht, are estimated using signal extraction methods which are brie
y discussed in section 3.2.3.

3.2.1 Loglikelihood evaluation

The construction of the exact likelihood for the SV model using the Monte Carlo likelihood approach

of Shephard and Pitt (1997) and Durbin and Koopman (1997) can be modi�ed for the SVX model.

The nonlinear relation between the log-volatility ht and the observation equation is not altered in

the SVX case; only the speci�cation for ht is di�erent. Similar considerations are discussed by Chib,

Nardari and Shephard (1998) in a Bayesian context. The same modi�cation can be used for the SVX+

model since we merely replace the explanatory variable xt by (1� �L)xt.

The loglikelihood function for the SVX model can be computed via the Monte Carlo technique of

importance sampling. The likelihood function can be expressed as

L( ) = p(yj ) =

Z
p(y; �j )d� =

Z
p(yj�;  )p(�j )d�: (7)

An e�cient way of evaluating the likelihood is by using importance sampling; see Ripley (1987,

Chapter 5). We require a simulation device to sample from an importance density ~p(�jy;  ) which we

prefer to be as close as possible to the true densitity p(�jy;  ). An obvious choice for the importance

density is the conditional Gaussian density since in this case it is relatively straightforward to sample

from ~p(�jy;  ) = g(�jy;  ). An approximating Gaussian model for the SVX model is developed in

the appendix. The simulation smoother of de Jong and Shephard (1995) is used to sample from the

approximating Gaussian model g(�jy;  ).

The likelihood function (7) can be obtained by writing

L( ) =

Z
p(yj�;  )

p(�j )

g(�jy;  )
g(�jy;  )d� = ~Efp(yj�;  )

p(�j )

g(�jy;  )
g; (8)

where ~E denotes expectation with respect to the importance density g(�jy;  ). Expression (8) can

be simpli�ed following a suggestion of Durbin and Koopman (1997). The likelihood function of the

approximating Gaussian model is given by

Lg( ) = g(yj ) =
g(y; �j )

g(�jy;  )
=
g(yj�;  )p(�j )

g(�jy;  )
; (9)
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and it follows that
p(�j )

g(�jy;  )
=

Lg( )

g(yj�;  )
:

This ratio also appears in (8) and substitution leads to

L( ) = Lg( ) ~Ef
p(yj�;  )

g(yj�;  )
g; (10)

which is the convenient expression we will use in our calculations. The likelihood function of the

approximating Gaussian model Lg( ) can be calculated via the Kalman �lter. The conditional density

functions p(yj�;  ) and g(yj�;  ) are easily computed given values for � and  using (26). It follows that

the likelihood function of the SVX model is equivalent to the likelihood function of an approximating

Gaussian model, multiplied by a correction term. This correction term only needs to be evaluated via

simulation.

An obvious estimator for the likelihood of the SVX model is

L̂( ) = Lg( ) �w; (11)

where

�w =
1

M

MX
i=1

wi; wi =
p(yj�i;  )

g(yj�i;  )
; (12)

and �i denotes a draw from the importance density g(�jy;  ). The accuracy of this estimator solely

depends on M , that is the number of simulation samples. In practice, we usually work with the log

of the likelihood function to manage the magnitude of density values. The log transformation of L̂( )

introduces bias for which we can correct up to order O(M�3=2); see Shephard and Pitt (1997) and

Durbin and Koopman (1997). We obtain

ln L̂( ) = lnLg( ) + ln �w +
s
2
w

2M �w2
; (13)

with s2w = (M � 1)�1
PM

i=1(wi � �w)2.

3.2.2 Computational details

Given a particular vector for  = (�; ��; �")
0, we evaluate the loglikelihood function (13) for which we

use the approximating model (25) to generate simulation samples. To obtain a maximum likelihood

estimate for  , which we denote by  ̂, the loglikelihood is numerically maximised with respect to  in

a similar fashion as for Gaussian models; see Harvey (1989) and Koopman et.al (2000). The repeated

evaluation of the loglikelihood for di�erent  's during the search for  ̂ will be based on the same set

of random numbers used for simulation.

Although the approximating model is e�ective for simulation, we may wish to decrease the simula-

tion variance further using standard simulation techniques based on antithetics and control variables;

see Durbin and Koopman (1997). In our computations we have employed the standard antithetic

variable as given by ��
i
= 2�̂ � �

i where �i is a draw from the importance density g(�jy;  ) and where

�̂ = ~E(�) can be obtained using the Kalman �lter and smoother. Since ��
i
� �̂ = �(�i � �̂) and �i are

normally distributed, the two vectors �i and ��
i
are equi-probable.

The number of simulation samplesM is set prior to the estimation procedure. The choice ofM can

be determined by computing the error variance due to simulation; see Durbin and Koopman (1997).

It is shown by Sandmann and Koopman (1998) that M can be relatively small in the context of SV

models. Therefore, in this study we have set M equal to 100 times two antithetic variables, that is

M = 200.
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3.2.3 Signal extraction

The Monte Carlo importance sampling techniques, which we have used for likelihood evaluation, can

also be employed to compute the conditional mean and variance of the unobserved signal �t. The

same approximating Gaussian model can be used for this purpose. The details are given by Durbin

and Koopman (2000).

The conditional mean and variance of the signal �t are given by

E(�tjy;  ) = ��
(1)
t ; Var(�tjy;  ) = ��

(2)
t � [��

(1)
t ]2:

where we compute ��
(1)
t and ��

(2)
t by

��
(1)
t =

1

M

MX
i=1

wi�
i
t;

��
(2)
t =

1

M

MX
i=1

wi�
i2
t ;

with wi as de�ned in (12) and �it as the tth element of �i which is the ith draw from the importance

density g(�jy;  ). This device can be generalised to obtain the elements of conditional mean and

variance of the state vector �t.

In practice, the unknown parameter vector  is replaced by its Monte Carlo maximum likelihood

estimate  ̂. The uncertainty related to the estimate  ̂ can be also taken into account by similar

Monte Carlo simulation techniques; see Durbin and Koopman (2000). An alternative approach of

signal extraction for SV and SVX models is provided by the Bayesian Markov chain Monte Carlo

techniques; see, for example, Shephard and Pitt (1997) and Kim, Shephard and Chib (1998).

3.2.4 Numerical implementation of estimation procedure

The simulated Monte Carlo estimation procedure is implemented using the object-oriented matrix

programming language Ox 2.2 of Doornik (1998) using the library SsfPack 2.2 of Koopman, Shephard

and Doornik (1999). The relevant programs, including the one used for the empirical studies in

this paper, can be downloaded from the Internet at www.econ.vu.nl/koopman/sv/ and the program

documentation can be consulted on-line. The programs can be used in a more general context; they

can be modi�ed for other Monte Carlo studies and be applied to other data-sets.

3.3 Exact maximum likelihood of VX model

The VX model can be regarded as a simple regression model with heteroscedastic disturbances, that

is �2t = exp(
� + 
xt). The model can be estimated by maximum likelihood using standard methods;

for example, see Johnston and DiNardo (1997, Chapter 6). The �rst and second derivatives of the log-

likelihood with respect to the parameters 
� and 
 can be obtained analytically for the VX model and

this allows straightforward application of Newton's method for numerically maximising the likelihood

function.

4 Data Description and Empirical In-Sample Results

4.1 Data

The data we selected is the Standard & Poor's 100 stock index for the period 2 January 1986 to

31 December 1999 and was obtained from Datastream. After adjusting the series for holidays, our

sample consists of 3532 daily observations. The continuously compounded returns on the stock index

are expressed in percentage terms and are therefore given by Rt = 100(lnPt � lnPt�1) where Pt
denotes the closing price of the Standard & Poor's 100 index at time t. The accompanying implied

8



volatility index we use is the Chicago Board Options Exchange Market Volatility Index (VIX) which

was extracted from the CBOE on-line database7. The VIX is calculated as the weigthed average of

implied volatilities of eight near-the-money, nearby and second nearby call and put options on the

Standard & Poor's 100 index and represents the implied volatility of a hypothetical at-the-money

OEX option with twenty two trading days to expiry8. We use the daily closing level of the VIX index

and from the annualised VIX, which is expressed in terms of standard deviations, we calculate the

daily VIX variance at time t as �2IV;t = V IX
2
t =252. The main attraction of the VIX index is that it

mitigates many of the problems which lead to biased implied volatility values.

1986 1990 1994 1998
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Figure 1: Daily (i) returns and (ii) squared returns (truncated at 100) on the Standard & Poor's 100

index and (iii) the VIX index between 02/01/86 and 31/12/99

In �gure 1 we graph the daily return and the VIX series, together with the squared return series

which can be regarded as an approximation of realised volatility9. In addition we show the histogram

of the daily returns on the Standard & Poor's 100 index in the top right corner which shows that this

series is negatively skewed and exhibits leptokurtosis. As our full sample includes observations relating

to the October 1987 stock market crash, which might have a distorting in
uence on the estimation

results, we also consider a subsample that starts on 1 January 1988. Summary statistics for both

samples are given in table 1. The e�ects of the large outliers in the full sample are illustrated by the

very high values for the skewness and excess kurtosis coe�cients. When we compare the variances

of the two return series we observe a value of 1:211 for the full sample against 0:905 for the shorter

sample, which represent annual standard deviation values of 17:5% and 15:1%, respectively. The

7
www.cboe.com/tools/historical/vix.htm

8The construction of the VIX index is described in detail by Whaley (1993) and by Fleming, Ostdiek and Whaley

(1995) who regard it as a useful proxy for expected stock market volatility.
9Note that the graph of the squared return series is truncated at a value of 100 which only a�ects the observation of

19 October 1987 that has a value of 561:214.
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Table 1: Summary statistics of daily returns and squared returns on the S&P 100 Index and the VIX

index from 02/01/86 to 31/12/99 and from 04/01/88 to 31/12/99

Period 1986-1999 1988-1999

No. of Obs. T 3531 3027

Series S&P100 VIX S&P100 VIX

Rt R
2
t �

2
IV;t Rt R

2
t �

2
IV;t

Mean 0.058 1.215 1.858 0.063 0.909 1.639

Variance 1.211 99.934 7.850 0.905 6.576 1.307

Skewness -3.102 50.294 18.553 -0.471 12.791 2.226

Excess Kurtosis 66.847 2794.13 479.565 6.143 236.497 7.750

Maximum 8.539 561.214 89.521 5.606 58.438 9.668

Minimum -23.690 0.000 0.324 -7.644 0.000 0.324

�̂1 -0.021 0.163 0.789 -0.019 0.195 0.960

�̂2 -0.053 0.138 0.623 -0.019 0.087 0.933

�̂3 -0.039 0.071 0.622 -0.048 0.051 0.914

�̂4 -0.042 0.026 0.598 -0.019 0.114 0.899

�̂5 0.024 0.128 0.568 -0.034 0.139 0.875

Q(12) 29.644 253.45 10760 34.147 341.68 27065

�̂` is the sample autocorrelation coe�cient at lag ` with asymptotic standard error 1=
p
T and Q(`) is the Box-Ljung

portmanteau statistic based on ` squared autocorrelations. The critical value at the 1% signi�cance level for the Q(12)

statistic is 26.22.

decrease in volatility is also re
ected in the VIX series which has however much larger mean values

than the squared return series. When these VIX values are translated into annual standard deviations

these amount to 21:6% for the full sample and 15:8% for the post crash period which indicates that

the implied volatility measure tends to overestimate actual volatility. The graphs in �gure 1 show

that the VIX and the squared return series follow a very similar pattern although the VIX series is

much smoother, i.e. less volatile, which is con�rmed by their respective variance statistics in table

1. Further, the degree of autocorrelation is much higher for the VIX series than for the squared

return series, especially for the 1988{1999 sample where autocorrelation coe�cients for the VIX series

are comparable with the persistence parameter values generally found for SV and GARCH models.

The Q(12) statistics for the return series indicates that the null hypothesis of zero values for the

�rst twelve autocorrelation coe�cients has to be rejected at the 1% level for both samples. The �rst

order autocorrelation coe�cients are however not signi�cantly di�erent from zero eventhough this is

frequently observed for stock index series10. We therefore leave the conditional mean �t unmodelled,

i.e. we assume that in equation (1) �t = 0.

10See, e.g.: Campbell, Lo and MacKinlay (1997, Chapter 2).
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4.2 Empirical in-sample results

In this section we present the results obtained with the four models introduced in section 2, which

are the SV, the SVX, the SVX+ and the VX model. The general mean and variance equations are

de�ned in equations (1), with yt = Rt and �t = 0, and (2), respectively. The log processes for these

models are given by

SV Model: ht = �ht�1 + ���t

SVX Model: ht = �ht�1 + 
xt + ���t

SVX+ Model: ht = �ht�1 + 
(1� �L)xt + ���t

VX Model: ht = 
xt:

The SV model can be obtained by imposing the parameter restriction 
 = 0 in the ht de�nition of

either the SVX or the SVX+ model and when we impose � = �� = 0 for the SVX or the SVX+model

we obtain the VX model. For these combinations of models we can therefore apply statistical tests

for nested models.

In table 2 we present the parameter estimates and results for the tests of the presumed comprehen-

sive informational content of the VIX index relative to the SV model for daily returns on the Standard

& Poor's 100 index over the periods 1986{1999 and 1988{1999.

For the SV model we �nd that the estimated coe�cients for the persistence parameter � are close

to unity and statistically signi�cant for both samples. The fact that the shorter 1988{1999 sample

does not contain the large outlier of the longer sample is re
ected not only in the size of the � estimate,

but also in the estimated values for the scaling parameter ��2 and the variance of �t, as these are

both larger for the more volatile 1986{1999 sample. Of further interest are the statistics for "t, the

error term in the mean equation, which indicate that the assumption of zero serial correlation is not

violated by the SV model and that the SV model is capable of absorbing excess kurtosis found in the

underlying series.

The normality statistics are considerably worse for the deterministic VX model which is mainly

attributable to the fact that this model does not have an error term in the variance equation. The

values for 
 in this model are signi�cantly larger than unity for both samples and as they are combined

with relatively low estimates for ��2 this means that the volatility process of the VX model exhibits

more movement than the VIX index while at the same time it results in lower variances than the

implied volatility measure. This re
ects our observation in section 4.1 that the VIX index tends to

overstate the volatility process while at the same time it underestimates its degree of variation11. On

the basis of the maximum likelihood statistics we would have to favour the VX model to the SV model

although the former clearly violates the model assumptions with regard to "t.

The best maximum likelihood statistics for both periods are obtained with the SVX and the SVX+

model which combine the two sources of volatility information. We �nd that the 
 parameters in these

models are always statistically signi�cant which con�rms the earlier �ndings in the GARCH literature

that implied volatility contains crucial information about the volatility process. The estimates for

the � parameters in the SVX models are negative and statistically signi�cant implying that the 


parameter is upwardly biased. When we include the persistence adjustment term in the SVX+ model

� is still found to be negative but no longer signi�cant and the values for 
 move towards unity and

are close to be statistically equal to one. The values for 
 are now smaller than those of the VX model.

The extra movement in the volatility process is compensated by �t which has highly signi�cant values

11See Fleming (1998) who also observes that implied volatility, on average, exceeds realised volatility and is therefore

upwardly biased.
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for its variance where the increase in �
2
� relative to that of the SV model is due to the fact that

the level of the ht process is higher. The likelihood ratio statistics then indicate that we can never

reject the joint hypothesis that both � and �2� are statistically insigni�cant. The volatility process is

therefore best described by the SVX+ model, rather than the SVX model with its higher maximum

likelihood values as this model overestimates the value for 
 and therefore provides a biased estimate

of the volatility process. The SVX+ model is also to be preferred to the VX model which appears

to be mainly attributable to the omission of the stochastic component �t in the deterministic VX

model. Our overall conclusion is therefore that the in-sample volatility process is best described by a

volatility model which includes not only implied volatility but also a stochastic element, as shocks to

the volatility process are not su�ciently captured by the implied volatility measure alone.

5 Volatility Forecasting Methodology

We develop forecasts based on the rolling window principle where we initially estimate the parameters

over the period 2 January 1986 to 31 December 1994. This sample therefore spans a period of 9 years

and consists of 2270 observations. This leaves an evaluation period of 1261 observations covering �ve

years of data, i.e. from 3 January 1995 to 31 December 1999. Having calculated the volatility forecasts

based on the parameters of this initial sample we roll it forward by one trading day, thus keeping the

sample size constant at 2270 observations. We also construct volatility forecasts for 2, 3, 4, 5 and 10

day horizons. We obtain non-overlapping forecasts because we roll the estimation sample forward by

N observations, where N denotes the forecasting horizon in terms of trading days. This means that

we re-estimate the model parameters 1261 times for the one day ahead forecasts and 630, 420, 315,

252 and 126 times for the 2, 3, 4, 5 and 10 day forecasts, respectively.

5.1 Stochastic Volatility model forecasts

The one step ahead volatility forecast for the SV model, as de�ned in equations (1), (2) and (3), is

calculated as

E(�
2
T+1jT ) = exp(ln �̂�2 + hT+1jT + 0:5pT+1jT ); (14)

and the N step ahead volatility forecast is de�ned as

E(�
2
T+1;T+N jT ) =

NX
j=1

exp(ln �̂�2 + hT+jjT + 0:5pT+jjT )

= �̂
�2 exp(hT+1jT + 0:5pT+1jT ) +

�̂
�2

NX
j=2

exp

"
�̂
j�1

hT+1jT + 0:5

 
�̂
2(j�1)

pT+1jT +
N�2X
i=0

�̂
2i
�̂
2
�

!#
; (15)

where �̂�2, �̂ and �̂
2
� are the maximum likelihood estimates of ��2, � and �

2
�, respectively. The

estimator of hT+1 using all observations available at time T is denoted by hT+1jT with variance pT+1jT
and both are computed by simulation methods which are discussed in section 3. The quantities hT+1jT
and pT+1jT are computed using the methods of section 3.2.3. The multi-step forecasts are de�ned as

a summation of the N individual forecasts conditional on the information available at time T . As N

increases, the individual forecast E(�2T+N jT
) will converge to a constant which we call the individual

long-term volatility forecast and which is identical to the unconditional variance as given by

�̂
�2 exp

 
0:5

�̂
2
�

1 � �̂
2

!
:
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It is evident from equation (15) that the rate at which the individual forecasts move towards this value

is determined by the size of �̂; the smaller the volatility persistence estimate, the faster the individual

forecasts converge to the individual long-term volatility forecast value. In empirical applications for

daily stock returns the volatility persistence estimates are invariably found to be close to unity, which

means that for shorter forecasting horizons individual forecasts are almost solely determined by the

size of the short-term volatility, denoted by �̂�2 exp(hT+1jT + 0:5pT+1jT ).

5.2 SVX+ model forecasts

The one step ahead forecasts for the SVX+ model, as de�ned in equations (1), (2) and (5) are obtained

in a similar manner as for the SV model in equation (14) and using the same methods. However, for

the SVX+ model one period ahead volatility forecast we require xT+1 and xT in order to calculate

the values for hT+1jT and pT+1jT . As xT+1 is not known at time T we choose to replace it by

xT , the last available implied volatility measure in the information set, but only for the purpose of

calculating hT+1jT and pT+1jT . The same problem occurs for volatility forecasts further into the future

and therefore we choose to de�ne the N step ahead volatility forecasts of the SVX+ model as an N

multiple of the one step ahead volatility forecast, so we de�ne these as

E(�
2
T+1;T+N jT ) = N�̂

�2 exp(hT+1jT + 0:5pT+1jT ): (16)

5.3 VX model forecasts

The implied volatility forecasts are based on the VX model which we de�ned in equations (1), (2) and

(6), so

ht = 
xt:

The one step ahead VX volatility forecast we calculate as

E(�
2
T+1jT ) = �̂

�2 exp(
̂xT + 0:5�̂2h); (17)

where �̂�2 and 
̂ are the maximum likelihood estimates of ��2 and 
. The sample prediction error

variance is denoted by �̂2h. Again we replace xT+1 with xT in the one period ahead forecasting equation

as the former is not yet known; the N step ahead forecasts are then given by

E(�
2
T+1;T+N jT ) = N�̂

�2 exp(
̂xT + 0:5�̂2h); (18)

and these are therefore also de�ned as a multiple of the one day ahead VX volatility forecast.

5.4 Measuring predictive forecasting ability

To evaluate the accuracy of variance forecasts they have to be compared with realised volatility, which

can not be observed. It is common practice in the literature to de�ne the actual or realised variance

as the squared observed returns, which for one day ahead volatility is equal to

R
2
T+1 = �

2
T+1"

2
T+1; (19)

However, the squared error "2T+1 will vary widely which implies that only a relatively small part is

attributable to �2T+1.

An alternative approach which addresses this problem has been suggested; see, for example, An-

dersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (1999), Barndor�-Nielsen and

Shephard (2001) and Andersen, Bollerslev, Diebold and Ebens (2000). In these studies intradaily re-

turn data is used to approximate ex-post volatility more accurately. Following these studies we de�ne
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intradaily squared returns as the sum of the squared �ve minute returns between 9.30 a.m. and 4.00

p.m. EST during the relevant trading day and to this we then add the overnight return, so

~�2T+1 =

(
mX
k=1

[100(lnPT+1;(k+1=m) � lnPT+1;(k=m))]
2

)
+ [100(lnPT+2;(1=m) � lnPT+1;(m=m))]

2
; (20)

where PT+1;(1=m) denotes the �rst price of the Standard & Poor's Index on day T + 1 at 9.30 a.m.

with m representing the number of observations during day T +1, which on a full trading day amount

to 79 observations. The price of the Standard & Poor's Index at 9.30 a.m. on the subsequent trading

day is then denoted by PT+2;(1=m).

The multiple-day values of the daily squared returns and the intradaily squared returns are obtained

by summing the realised volatility measures of equations (19) and (20) over the relevant forecasting

interval, so

R
2
T+1;T+N =

NX
i=1

R
2
T+i (21)

with

R
2
T+i = [100(lnPT+i � lnPT+i�1)]

2
;

where PT+i denotes the closing price of the Standard & Poor's Index at time T + i,

and

~�2T+1;T+N =
NX
i=1

~�2T+i; (22)

with

~�2T+i =

(
mX
k=1

[100(lnPT+i;(k+1=m) � lnPT+i;(k=m))]
2

)
+ [100(lnPT+i+1;(1=m) � lnPT+i;(m=m))]

2
:

In order to assess the predictive accuracy of the volatility forecasts we compare the goodness-of-�t

R
2 statistics, which are calculated from the regressions

R
2
T+1;T+N = a+ bE(�

2
T+1;T+N jT ) + �; (23)

and

~�2T+1;T+N = a+ bE(�
2
T+1;T+N jT ) + �; (24)

for the squared and the intradaily squared returns, respectively. If the relevant volatility forecast is

unbiased , then a = 0 and b = 1.

In addition to the regression based evaluation method we also report on a number of error statistics,

which are the mean squared error (MSE), the median squared error (MedSE) and the mean absolute

error (MAE) as these criteria are also frequently applied in the volatility forecasting literature.

6 Out-of-Sample Results

In this section we report on the out-of-sample forecasting results of the SV, the SVX+ and the VX

model over the evaluation period 1995 to 1999. Before we discuss these results in section 6:2 we will

examine the relationships between the various parameters in the SV model.
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6.1 The parameters estimates of the SV model

For the one day ahead SV volatility forecasts we had to estimate the SV model 1261 times which

resulted in an equal number of estimates for all the parameters in the model. This now allows us to

examine the dynamics of the SV model as the forecasting sample rolls forward by one observation at

the time. For this purpose we plot in �gure 2 the estimates of the persistence parameter �, the error

variance of the volatility process �2�, and the scaling parameter ��2. These estimates are based on the

previous 9 years of data and the sample variance of each of these data series is plotted in the same

�gure alongside those of the SV parameter estimates.

1995 1996 1997 1998 1999

.95

.97

.99

SV Model: persistence parameter

1995 1996 1997 1998 1999

.6

.8

1

1.2

1.4
Forecasting sample variance

1995 1996 1997 1998 1999
0

.02

.04

.06
SV Model: error variance

1995 1996 1997 1998 1999

.5

.6

.7

SV Model: scaling parameter

Figure 2: Parameter estimates of the SV model and forecasting sample variance based on the previous

9 years of data.

The graph for the �̂ parameter shows that volatility is highly persistent for all 1261 samples and

when we compare this time series with that of �̂2� we observe that these series move in opposite

directions during the entire period. The negative relationship between these two parameter estimates

indicates that large (unexpected) shocks to the volatility process have a downward e�ect on the �

estimate and that volatility persistence is higher when these shocks are more moderate in size, i.e.

when values for �̂2� are smaller. For the forecasting sample variance, depicted in the top right corner of

�gure 2, we see a sharp decrease after approximately two years when the observations relating to the

1987 stock market crash drop out of the forecasting sample. This decrease in volatility is also re
ected

in �̂2� and in the estimated value of the scaling parameter ��2 which displays a positive correlation

with the variance series of the forecasting samples over the full period. The relationship between the

scaling parameter and the other two SV parameters di�ers however across the sample which is to be

expected as they measure di�erent aspects of the volatility process: the estimate for ��2 re
ects the

level of volatility, �̂ measures the degree of volatility persistence and the value for �̂2� indicates the

amount of variation in the volatility process. This means that during times of persistent high volatility

we will observe high values for �̂�2 and �̂ but low values for �̂2� as there is relatively little movement in

the volatility process itself. However, the estimated value for the scaling parameter will still be large

when a high level of volatility is due to a few outliers, but the variation in the volatility process as

measured by �̂2� is going to be higher and will be accompanied by a smaller value for the volatility

persistence estimate �̂.

16



6.2 Empirical out-of-sample forecasting results

The empirical out-of-sample forecasting results based on the methodology described in section 5 are

presented in tables 3 and 4.

In table 3 we evaluate the volatility forecasts obtained with the SV, SVX+ and VX model against

the squared returns over the full �ve year evaluation period. The goodness-of-�t R2 statistic for the

SVX+ and the VX model forecasts are higher than those of the SV model. However, the hypothesis

that a = 0 or b = 1 is least violated for the SV model volatility forecasts indicating that the SV model

forecasts exhibit the smallest degree of bias. When we evaluate the accuracy of the volatility forecasts

on the basis of error statistics a di�erent picture emerges. Although the SVX+ and VX model still

perform very well when we consider the MSE error statistic, we observe that the VX model fares

much worse in terms of the MedSE and the MAE statistics. For these error statistics the VX model

is not only outperformed by the SVX+ model but also frequently by the SV model. The results of

this evaluation are therefore mixed: the SV model produces volatility forecasts that have the smallest

degree of bias, the SVX+ and VX model have very similar goodness-of-�t and MSE values and the

SVX+ model produces the most accurate out-of-sample volatility forecasts in terms of the MedSE and

MAE error statistics.

In table 4 we present the forecasting evaluation results with realised returns de�ned in terms of

�ve minute squared returns. As this high frequency data series does not start until 6 January 1997,

our evaluation period consists of 3 years of data resulting in forecasting samples of 754, 377, 251, 188

and 75 observations for N = 1, 2, 3, 4, 5 and 10, respectively. We observe that the values for the R2

statistic increase considerably when we de�ne realised volatility in terms of �ve minute squared returns

and this degree of increase is conform earlier �ndings in the high frequency return literature. The

highest values for the goodness-of-�t statistic are almost always those of the VX model; its volatility

forecasts are however severely upwardly biased as the hypothesis that b = 1 has to be rejected at very

low signi�cance levels for values of b smaller than unity. The SVX+ model which has comparable

values for R2 produces volatility forecasts that are far less biased. The error statistics also favour this

model as the forecasts of the SVX+ model are, with the exception of two statistics for N = 10, always

the lowest of the three models. In addition, we observe that the VX model is almost consistently

the worst performing forecasting model in terms of error statistics. We therefore conclude that the

worst performing forecasting model is the VX model eventhough it has the highest R2 statistics. The

most accurate volatility forecasts are obtained with the SVX+ model which has goodness-of-�t values

similar to those of the VX model but combines this with the best error statistics and forecasts that

are less biased.

In �gure 3 we graph the one period ahead volatility forecasts of the SV, the SVX+ and the VX

model together with the two measures of realised volatility where the scale of the daily squared return

series di�ers from those of the other four series. However, it is obvious from the graphs that all �ve

series follow a very similar pattern and we can clearly distinguish two periods of increased volatility

which occur towards the end of 1997 and 1998. The SVX+ and VX forecasting series are near perfectly

correlated but forecasts of the VX model are on average 17% higher than those of the SVX+ model

which is favourable for the VX model when volatility is very high but leads to overestimation during

times of relative tranquility. In terms of sample moments the SVX+ model produces forecasts that are

very much alike those of the SV model eventhough it correlation coe�cient with the SV forecasting

series is lower at 83%. Although di�cult to discern from �gure 3 all forecasting series, on average,

overestimate realised volatility both in terms of daily squared and intradaily squared returns; this

problem is then most severe for the VX volatility forecasts.
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Table 3: Out-of-sample forecasting results evaluated against daily squared returns for the (i) SV

model, (ii) SVX+ model and the (iii) VX model based on the 1986{1999 sample and for the evaluation

period 3 January 1995 to 31 December 1999

1986{1999

Forecasting Model N = 1 N = 2 N = 3 N = 4 N = 5 N = 10

SV Model a 0:0365 0:2881 0:6118 0:8098 1:3221 2:4698
(0:268) (0:908) (1:207) (1:161) (1:410) (1:025)

b 1:1356 1:0221 0:9601 0:9671 0:9024 0:9519
(1:157) (0:161) (0:272) (0:215) (0:589) (0:210)

R
2 0:0694 0:0817 0:0929 0:1131 0:1061 0:1222

MSE 8:1406 21:462 35:785 49:878 70:705 190:76

MedSE 0:3517 0:9406 1:4160 2:0022 2:5819 7:3689

MAE 1:1171 1:8056 2:2633 2:8325 3:1066 5:4334

SVX+ Model a �0:1675 �0:0345 0:3600 0:3726 1:2079 2:9023
(1:313) (0:119) (0:787) (0:609) (1:392) (1:464)

b 1:3959 1:2330 1:0758 1:1219 0:9451 0:8992
(3:517) (1:871) (0:582) (0:921) (0:362) (0:578)

R
2 0:1130 0:1350 0:1404 0:1869 0:1347 0:1766

MSE 7:8423 20:378 34:023 46:074 68:578 179:39

MedSE 0:2991 0:7753 1:2804 1:6861 2:2644 6:5155

MAE 1:0682 1:6943 2:1192 2:5732 3:0286 5:2690

VX Model a �0:1357 0:0651 0:5011 0:6776 1:4608 3:3400
(1:100) (0:232) (1:130) (1:147) (1:729) (1:720)

b 1:1222 0:9702 0:8447 0:8526 0:7326 0:7031
(1:416) (0:307) (1:524) (1:440) (2:241) (2:134)

R
2 0:1185 0:1369 0:1411 0:1815 0:1309 0:1708

MSE 7:6897 20:073 33:829 45:895 69:284 182:69

MedSE 0:4436 1:0658 1:7170 2:1253 2:8655 8:2397

MAE 1:1430 1:8008 2:2585 2:7704 3:1914 5:7354

Parameter estimates and goodness-of-�t R2 statistics for the OLS regressions as de�ned in equation (23) with t-statistics

in parentheses testing for the null hypotheses a = 0 and b = 1. The highest values for R2 and the lowest error statistic

values are underlined.
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Table 4: Out-of-sample forecasting results evaluated against intradaily squared returns for the (i) SV

model, (ii) SVX+ model and the (iii) VX model based on the 1988{1999 sample and for the evaluation

period 6 January 1997 to 31 December 1999

1988{1999

Forecasting Model N = 1 N = 2 N = 3 N = 4 N = 5 N = 10

SV Model a 0:0585 0:2670 0:3966 0:6137 0:9790 3:0864
(0:807) (1:485) (1:275) (1:210) (1:402) (1:628)

b 0:9240 0:8712 0:8714 0:8757 0:8334 0:7428
(1:509) (2:033) (1:761) (1:330) (1:640) (1:836)

R
2 0:3091 0:3350 0:3639 0:3207 0:3126 0:2781

MSE 0:9803 2:8944 5:7255 9:6701 14:951 50:127

MedSE 0:1549 0:4704 1:0704 1:5317 2:6939 5:2282

MAE 0:5944 1:0395 1:4697 1:8761 2:3689 4:1301

SVX+ Model a �0:1130 �0:0036 0:3572 0:8304 1:0334 3:2963
(1:661) (0:022) (1:231) (1:978) (1:772) (2:153)

b 1:0472 0:9595 0:8579 0:7999 0:8021 0:6934
(1:011) (0:703) (2:168) (2:790) (2:475) (2:944)

R
2 0:4006 0:4258 0:4079 0:4007 0:4046 0:3780

MSE 0:8508 2:4842 5:3923 8:8366 13:289 46:585

MedSE 0:1369 0:4193 0:8846 1:1947 2:1332 8:1839

MAE 0:5548 0:9981 1:4528 1:8032 2:2530 4:3358

VX Model a �0:0496 0:1182 0:5301 1:0793 1:2621 3:6432
(0:781) (0:754) (1:957) (2:684) (2:272) (2:462)

b 0:8204 0:7507 0:6686 0:6182 0:6303 0:5503
(5:097) (5:691) (6:716) (6:860) (5:985) (5:469)

R
2 0:4189 0:4392 0:4244 0:3988 0:4130 0:3802

MSE 0:9557 3:0408 7:0630 12:206 18:034 69:094

MedSE 0:2613 0:6934 1:8086 3:0596 3:6090 16:905

MAE 0:6681 1:2213 1:8188 2:2921 2:8458 5:9025

Parameter estimates and goodness-of-�t R2 statistics for the OLS regressions as de�ned in equation (24) with t-statistics

in parentheses testing for the null hypotheses a = 0 and b = 1. The highest values for R2 and the lowest error statistic

values are underlined.
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Figure 3: Daily squared and intradaily squared returns together with the one day ahead volatility

forecasts of the (i) SV, (ii) SVX+ and (iii) VX model for the Standard & Poor's 100 index over the

period 03/01/95 to 31/12/99 based on a 9 year rolling window sample.

7 Summary and Conclusions

In this paper we examine the predictive ability of Stochastic Volatility (SV) models and compare its

forecasts with the volatility forecasts implied by option prices for daily returns on the Standard &

Poor's 100 Stock Index. For this purpose we extend the SV model to a volatility model which allows for

the inclusion of implied volatility as an exogeneous variable in the variance equation. As the resulting

SVX model includes an entire lag structure of the implied volatility measure we extend the SVX model

further to adjust for this with a persistence adjustment term and thus obtain a second model which we

call the SVX+ model. In addition we de�ne a volatility model which only utilises implied volatility and

refer to it as the VX model. We have estimated the SV, SVX and SVX+ models successfully by exact

maximum likelihood using Monte Carlo importance sampling methods. Our in-sample results indicate

that historical returns are outperformed by implied volatility but that the former contains additional

information about the volatility process in the form of stochastic shocks that are incorporated in

the variance equation of the SVX type models. Our results do not contradict earlier �ndings in

the GARCH literature, where recent research has indicated that implied volatility provides the most

accurate volatility forecasts, as the GARCH class of model is by de�nition a deterministic model which

does not allow for a stochastic element in the variance equation. The out-of-sample volatility forecasts

are constructed for forecasting horizons ranging from 1 to 10 trading days and we approximate realised

volatility as daily squared returns and intradaily squared returns following research by, for example,

Andersen and Bollerslev (1998). The relative forecasting accuracy of the various volatility models is

evaluated using both regression based evaluation methods and error statistics. We obtain mixed results

when we de�ne realised volatility in terms of daily squared returns but when we use intradaily squared

20



returns for our forecasting evaluation we �nd that the most accurate ex-ante volatility forecasts are

obtained with the SVX+ model. Although the R2 statistics are the highest for the VX model we

�nd on closer examination that this model produces forecasts that are severely upwardly biased and

therefore conclude that this model is outperformed not only by the SVX+ but also by the SV model.
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Appendix: approximating model used for simulation

Consider the single density component pt = N(0; �2t ) with �
2
t = exp(�t) where �t is given in section 3.2.

Here we develop the approximating model based on a linear Gaussian model with mean E(yt) = �t+ct
and variance V(yt) = Ht, that is

yt = �t + ut; ut � N(ct;Ht); t = 1; : : : ; T; (25)

where ct and Ht are determined in such a way that the mean and variance of yt implied by the

approximating model (25) and by the true model (1) and (4) are as close as possible12.

We achieve this by equalising the �rst and second derivatives of p(yj�;  ) and g(yj�;  ) with respect

to � at �̂ = ~E(�) =
R
�g(�jy;  ). Note that p(�) refers to a density for the true model and g(�) refers to

a density for the approximating Gaussian model. Further, it follows that �̂ can simply be obtained via

the Kalman �lter and smoother applied to the approximating model (25). The conditional densities

are given by

p(yj�;  ) =
TY
t=1

pt; g(yj�;  ) =
TY
t=1

gt; (26)

with

pt = N(0; �t) = p(ytj�t;  ) = �0:5[ln 2� + �t + exp(��t)y
2
t ];

gt = N(ct + �t;Ht) = g(ytj�t;  ) = �0:5[ln 2� + lnHt +H
�1
t (yt � ct � �t)

2]:

Di�erentiating both densities twice with respect to �t gives

_pt = �0:5[1� exp(��t)y
2
t ];

�pt = �0:5 exp(��t)y
2
t ;

_gt = H
�1
t (yt � ct � �t);

�gt = �H
�1
t :

Equalising the �rst and second derivatives, that is _pt = _gt and �pt = �gt for t = 1; : : : ; T , leads to

ct = yt � �t + 0:5Ht � 1;

Ht = 2 exp(�t)=y
2
t :

For given values of �t = ~�t, the resulting model for ~yt = yt � ct is equivalent to

~yt = �t + ~ut; ~ut � N(0; ~Ht); t = 1; : : : ; T;

with

~yt = ~�t � 0:5 ~Ht + 1; ~Ht = 2 exp(~�t)=y
2
t :

It should be noted that Ht > 0 for any value of �t. We cannot solve out for ~yt and ~Ht at �̂t = ~E(�t)

because ~E refers to expectation with respect to the approximating model which depend on �t. However,

such complicated but linear system of equations is usually solved iteratively by starting with a trial

value �t = ~�t. Computing ~yt and ~Ht and applying the Kalman �lter smoother to model (25) leads to a

smoothed estimate for �t which can be used as a new trial value for �t. Recomputing ~yt and ~Ht based

on this new trial value leads to an iterative procedure which converges to �̂t. Note that the �rst and

second derivatives of the true and approximating densities are equal at �t = �̂t. More details are given

by Durbin and Koopman (1997). It is worth mentioning that �̂t is equal to the mode of p(�tjy;  )

which can be of interest.

12Note that the true model implies a nonlinear relationship between yt and �t; the approximating (linear) model is

e�ectively a second-order Taylor expansion of the true model around �t. Further, the multivariate Gaussian density

g(�jy;  ) can be regarded as a Laplace approximation to the true density p(�jy;  ); see Shephard and Pitt (1997).
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