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ABSTRACT 

 

The spatial activity patterns of firms in a multi-regional system are closely connected 

with the structure and evolution of regional labour markets. Based on an extensive data set 

(cross-section) on commuting flows in Germany, this paper aims to identify the relationship 

between entrepreneurial activity and spatial labour markets, by employing in particular the 

concept of ‘entrepreneurial city’. A network connectivity model is adopted to assess 

connectivity patterns, using the power-law and exponential law as a statistical test framework, 

in order to detect the presence of economic activity hubs that may resemble the concept of 

entrepreneurial cities. Various results are presented and interpreted in the final part of the 

paper. 
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1. Scoping the Scene 
 

The emergence of regional (or urban) growth and development is critically dependent 

on prominent explanatory factors related to innovation and entrepreneurship. It is nowadays 

widely assumed that innovative activity of entrepreneurs forms the key for understanding 

spatial dynamics. Studies on entrepreneurship have gained much popularity in recent years, as 

the “entrepreneurial hero” is recognized as the key actor in an industrial system. In an ICT 

society, the radius of innovative firms may extend the global level, so that spatial (regional, 

urban) networks become the playground for many modern entrepreneurs. Consequently, the 

geography of innovation does not only have a local dimension, but, through the existence of 

networks, also has a wide geographical coverage. This observation is also clearly reflected in 

the new economic geography as well as in the principles of the learning economy. Spatial 

dynamics, modern network configurations and innovative entrepreneurial activity are clearly 

interrelated phenomena that form the foundations of economic growth and development, both 

nationally and regionally. 

Successful entrepreneurship is reflected in above-average economic growth. Strong 

economic growth is a key ingredient for national and regional welfare. In fact, high economic 

growth and the ensuing high rates of job creation are instrumental for sustaining low 

unemployment rates. Economic growth is not, however, emerging in a wonderland of no 

geographical dimensions, but is clearly mapped out in a space-time framework. The 

geographical development of business activity and of regional labour markets are two closely 

intertwined phenomena. 

Several empirical illustrations may clarify the above premise. For example, strong 

economic growth in the US has often been attributed to technological progress in the ICT 

industries which has lowered the price of ICT capital, thus favouring investment and capital 

accumulation in ICT-user industries (Jorgenson and Stiroh 2000; Jorgenson et al. 2003). 

In the economics literature, technological innovation is often claimed to be a critical 

success factor for economic growth, but it is by no means a sufficient factor. Besides 

technological progress in the ICT industries, investments in human and physical capital – 

supported by pro-competitive macroeconomic policies – have also been proven to be 

important sources of growth (OECD 2003). In fact, it has been found that the entry of 

innovative firms is a particularly important source of productivity growth (OECD 2003). 

Growth is partly the result of efficiency increases of incumbent firms in a competitive 

economy, and partly the result of new entrants challenging the established firms. The entry of 

new firms, known as ‘start-ups’, is intimately linked to innovative entrepreneurial activity. 

The link between entry rates and economic growth is usually very robust, and it can be found 

at various levels of analysis (firm, region, and nation). At the firm level, young firms, small 



 2 

firms and new firms – the result of entrepreneurial activity – positively affect economic 

growth, since they all have higher growth rates than old firms, large firms and incumbent 

firms, respectively; however, young firms are less likely to survive than large firms 

(Audretsch 1995; Caves 1998; Sutton 1997). 

Moreover, high entry rates of new firms have a positive impact on economic growth at 

the regional level, albeit with a considerable time lag (Audretsch and Fritsch 2002; van Stel 

and Diephuis 2004). Interestingly, among German regions, the link between entrepreneurial 

activity and regional economic growth emerged only during the 1990s, as a consequence of 

the surge in international outsourcing of large German manufacturing firms, spurred by 

globalization (Audretsch and Fritsch 2003).  

Finally, entry rates of new and innovative firms – the consequence of entrepreneurial 

activity – are also found to have a positive impact on aggregate economic growth and a 

negative impact on unemployment (Audretsch and Thurik 2001; Carree and Thurik 2002; 

OECD 2003; van Stel and Diephuis 2004). The entrepreneur turns out to be a central actor in 

economic growth strategies. 

Because new entrepreneurial activity (start-ups) and economic growth are firmly 

interlocked, we observe in the US a renewed interest in the role of the entrepreneur and in 

policy measures designed to stimulate entrepreneurship (Reynolds 1999). This issue is an 

important one, because, in fact, the presence of various types of externalities implies that 

economic systems as such would rarely produce the optimal level of entrepreneurial activity. 

However, the selection of a correct mix of policies can effectively foster entrepreneurial 

activity. Policy intervention is fraught with dangers: the selection of a poor policy mix can 

seriously curb the degree of entrepreneurial activity (Davidsson and Henrekson 2002). 

The justification for (careful) policy intervention results from the presence of market 

failures in four distinct areas: a) network externalities; b) knowledge externalities; c) failure 

externalities; and d) learning externalities (Audretsch 2004). All four externalities are 

conducive to spatial agglomeration: 

a) the first externality refers to the proximity of complementary firms or 

individuals; 

b) the second externality refers to knowledge spillovers, since firms benefit from 

the proximity of similar firms from which they can learn; 

c) the third externality refers to the economic value created for third parties by 

new firms going out of business. Ideas and projects pursued by non-successful 

firms are often subsequently incorporated in the products and projects of 

successful firms; 
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d) the fourth externality refers to demonstration and imitation, as potential 

entrepreneurs observe the activity – and the results from entrepreneurial 

activity – and this may spur them into action, thus generating new waves of 

innovating firms. 

In other words, the entrepreneur is the key agent who realizes knowledge spillovers 

from the source to final users (consumers, investment, and export goods), and to others who 

may use them as intermediate products (Audretsch and Thurik 2001). 

The relationship between growth and space deserves some more attention. Space – or 

distance – can act as an impediment to growth, but may also function as a factor accelerating 

economic development. Spatial concentration of economic activity has often been observed in 

the empirical literature as the result of economies of density or agglomeration advantages 

(Glaeser 1998). In this process, cities act as catalysts for entrepreneurial activity, because 

entrepreneurial activity does not take place in a vacuum. In fact, besides the proximity of 

other fellow entrepreneurs, entrepreneurs in the knowledge economy need a large array of 

complementary services such as: financial services, a highly educated workforce, sources of 

knowledge (universities and research centers), logistic services, etc. There is an avalanche of 

recent studies that confirm the above premises. 

This space-time growth process is particularly evident in Germany where cities (and 

the surrounding districts) compete actively with one another for new business by using a 

portfolio of policy measures to create a business-friendly environment (Panebianco 2005). 

The special focus on Germany is – apart from its socio-political dynamics - warranted by its 

pro-active policy making at both regional and city (district) level (Panebianco et al. 2005). 

Our study aims to identify the central role of major employment centers in Germany. 

We will consider German cities (as major cities in a labour market district) as central 

nodes in a socio-economic network. The agglomeration externalities then work towards the 

formation of hubs, which may be called ‘preferential nodes’. New entrepreneurs benefit by 

locating near hubs (attraction nodes) because these are the places where new opportunities 

emerge. In addition, from the hubs outwards, innovation may quickly reach dispersed and 

remote cities. This connectivity feature of city networks can be interpreted as a ‘scale-free 

network’ (Gorman 2005; and see Section 3). 

The process of agglomeration through the economics of density is further reinforced 

by the fact that many German firms, especially small and medium enterprises (as a result of 

new  entrepreneurial activity) arose out of regional networks where local banks, state and city 

governments played an important role (Kogut and Walker 2001). 

We may therefore, argue that, if cities and districts act as hubs for entrepreneurial 

activity (because of the range of opportunities they offer), they should attract considerable 
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labour inputs from outside, and possibly from quite far away. Against this backdrop, the aim 

of this paper is to explore the presence of hubs in the German system of regional market 

centers, by investigating the connectivity structure of the network itself. 

The structure of the present paper is as follows. Section 2 introduces the characteristics 

of network connectivity models. Next, Section 3 presents the results of the empirical analysis, 

while Section 4 concludes the paper with interpretations and reflections on future research. 

 

2. Network Models and Connectivity: A Brief Review 

 

In recent years, great interest has arisen in the interdisciplinary study of complex 

networks, and in particular in the relevance of the interconnectivity structures.  The strength 

of (dynamic) interactions and the form of the connectivity systems seem to be critical to 

identify the network properties and related complex dynamics (Reggiani and Nijkamp 2004). 

In this framework, the concept of Scale-Free (SF) networks – originally introduced by 

(Barabási and Albert 1999) – has gained a great deal of attention, essentially for its interesting 

characteristic of exhibiting power-law distributions in the connectivity structures of a 

network. SF models have been embraced as generic, yet universal models of network 

topologies, and thus been suggested as representative models of complex systems, ranging 

from the social sciences to molecular biology, or to the internet (Alderson et al. 2004). Clear 

real-world examples of SF models have also been proven to exist in spatial-economic 

systems, such as in the telecommunication, transport and peer-to-peer networks (Gorman 

2005, Gorman et al. 2005, Schintler et al. 2005). 

The most prominent feature of SF networks – beyond exhibiting a power-law rank-

size distribution – is the presence of highly connected nodes (hubs), as outlined by (Barabási 

and Oltvai (2004, p.104): “Networks that are characterized by a power-law degree 

distribution are highly non-uniform, most of the nodes have only a few links. A few nodes with 

a very large number of links, which are often called hubs, hold these nodes together. 

Networks with a power degree distribution are called scale-free, a name that is rooted in 

statistical physics literature. It indicates the absence of a typical node in the network (one that 

could be used to characterize the rest of the nodes). This is in strong contrast to random 

networks, for which the degree of all nodes is in the vicinity of the average degree, which 

could be considered as typical.” 

This last sentence by Barabási and Oltvai summarizes the critical difference between 

SF and another common network model, i.e. the Random Network (RN). RN model – 

originally introduced by Erdos and Rényi (1959) – consists of nodes with randomly placed 

connections. In such a network, a plot of the distribution of node linkages follows a Poisson 
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distribution (bell-shaped curve), which shows that most nodes have approximately the same 

number of links (i.e. the network average degree <k>). The tail of the degree distribution 

decreases exponentially, which shows that nodes that significantly deviate from the average 

<k> are very rare. Currently, there is a great deal of discussion on the precise definitions, 

rigorous proof of properties, and ubiquity of SF networks (Alderson et al. 2004). We will not 

engage here in such a debate, but rather start from a heuristic perspective by addressing a 

practical approach, i.e. the exploration of the type of connectivity structure of the commuting 

network in Germany. From this perspective, we will examine the possibility of a power-law 

degree distribution vs. an exponential-law distribution. 

The exponential distribution is a rather simple function which has often emerged in the 

spatial economics literature. In the context of network analysis, the exponential distribution 

may be considered to belong to the class of RN models, since it suggests – with respect to the 

power-law distribution – that a multiplicity of nodes with a few links does not exist: in other 

words, the network is rather homogeneous and does not present a ‘hub’ structure. This latter 

structure might then show a spatially-equilibrated pattern with an exponential deterrence 

function. In other words, in the context of commuting it means an underrepresentation of 

commuters on long distances, and hence we might conjecture ‘slow diffusion dynamics’ in 

the peripheries for entrepreneurial start-ups. On the other hand, the power-law might show the 

existence of hubs, i.e. the relative irrelevance of distance, and thus ‘fast diffusion dynamics’, 

in the entrepreneurship process.  

On the basis of the previous considerations, in the next section we will present the 

results of our empirical analysis devoted to the exploration the connectivity structure of the 

commuting network in Germany. 

 

3. Empirical Analysis 

 

In this exploratory analysis we investigate whether the real (commuting) network 

formed by the nodal structure of German labour market districts can be identified as an SF 

model. The nodes of the network under analysis are the 439 economic districts in Germany 

(Figure 1). The links between the nodes are the commuting flows between any two districts – 

the data refer to the year 2002.1 The number of commuters on a given link will represent the 

strength of the link. Hence, a link of strength 1 connecting two districts implies that only one 

commuter travelled between the two districts during the year 2002. 

 

                                                
1 There is substantial commuting within districts. However, because the distribution of the distance travelled by 
commuters is not available, we have limited the analysis to commuting flows between districts. 
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FIGURE 1 ABOUT HERE 

 

Commuting flows are an interesting variable for network analysis, because they can be 

regarded as a synthetic measure of the overall level of economic exchange between regions. 

The data under analysis show a spatial interaction model structure; i.e. a negative relationship 

between the number of commuters and the distance travelled (see also Gorman et al. 2005). In 

particular, on short links we find many commuters (the strength of the link is highest on short 

links) while on long-distance links there are few commuters (long links are usually weak, 

because few commuters are prepared to travel very long distances). On the longest distance, 

only one or only a few commuters are found.  

It may be argued that a very low level of commuting flows, i.e. weak links, is not 

interesting from an economic point of view. However, since they are important for the test of 

SF theory, we decided to retain all links, even the weakest ones, i.e. those characterized by the 

strength of just one commuter. In fact, individuals may travel very long distances during a 

part of the year, while relocating their household. Nonetheless, we will check the robustness 

of our results vis-à-vis the exclusion of weak links. 

 We have ranked the German labour market districts by the number of incoming links 

(commuting flows; each incoming commuter flow represents a link with another district, i.e. 

the district where the flow of commuters originates). The highest rank is assigned to the 

district (positioned2 as 1st) with the highest number of links. 

The question whether a real-world network is a SF network boils down to the 

assessment of whether the relationship between the logarithm of the number of links and the 

rank of the district follows a power-law distribution rather than an exponential one (see Figure 

2). 

 

FIGURE 2 ABOUT HERE 

 

 To this end, we have run the following two regression analyses: 

 ln( )i i iN Rα β ε= + +  (1) 

 and 
 ln( ) ln( )i i iN R uδ γ= + + , (2) 

 
where Ni is the of number of commuting flows with destination district i, Ri is the 

corresponding district rank, α, β, δ and γ are parameters to be estimated, and εi and ui are two 

i.i.d. normally-distributed error components. Equation (1) derives from an exponential 

                                                
2 2 Ties are broken randomly. 
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relationship between N and R ( i iR
iN e e eβ εα= ), while equation (2) implies that the relationship 

between R and N can be described by a power-law ( iv
i iN e R eδ γ= ). 

The results of the estimation of these two models are presented in the upper panel of 

Table 1. 

 

TABLE 1 ABOUT HERE 

 

 The comparison of the R2s obtained from the two models shows that the exponential 

model performs better than the power-law model (in the sense that the exponential 

specification fits the data better than the power-law specification). However, this conclusion 

could be misleading. Because the power-law specification does not nest the exponential 

specification as a special case (and vice versa), the analysis of the R2 criterion alone is not 

sufficient to warrant the rejection the power-law specification in favour of the exponential 

specification (and vice versa).3 

The choice between non-nested competing models can be further highlighted by two 

statistical tests: the J test and an encompassing test (Davidson and MacKinnon 2004). These 

tests are presented in the lower panel in Table 1. The tests themselves are described in the 

statistical Annex A of the present paper.  

The J test shows that neither model specification satisfactorily fits the data. In fact, 

both model specifications are rejected. Thus, although the exponential model fits the data 

better than the power-law model, the exponential model is still mis-specified. This inference 

is also supported by the results of the Kolmogorov-Smirnov test. The Kolmogorov-Smirnov 

test verifies (and in this case rejects) the equality between distributions; here we test whether 

the distribution of ln(N) can be considered equal to the distribution of the predicted values 

obtained from the exponential model (ln(N)ex), and to the distribution of the predicted values 

obtained from the power-law specification (ln(N)pl). Despite the higher R2, it is quite difficult 

to argue that the relationship between the number of links and the district rank is captured by 

the exponential specification (as opposed to the power-law specification). 

One could argue that weak links (links carrying just a few commuters over the year) 

may actually not be important from an economic point of view (because the impact of 

measurement errors could be severe). To this end, we have checked the robustness of our 

results against measurement errors in the flows of commuters by excluding the weakest links. 
                                                
3 The comparison between the R2s can clarify the selection of competing nested models, but it cannot be used to 
make an inference about the functional form of the underlying true model (unless the R2 is equal to 1). In fact, 
the R2 is an indication of the significance of the parameters and the overall goodness of fit. To investigate the 
level of agreement between the functional form chosen and the data, a specification test, such as the Ramsey’s 
RESET test, ought to be used. 
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In other words, we have re-run the analysis considering only those links carrying more than 

10, 100, 1000, 5000, 10000, and 15000 commuters per year, respectively.4 The results are 

presented in Table 2. 

 

TABLE 2 ABOUT HERE 

 

The first important result is that as, the number of links included decreases (and the 

minimum strength of the link increases), the performance of the power-law model – at least in 

terms of R2 – appears to improve, in particular when only the links with more than 10000 

commuters per year are included in the analysis. However, despite the increases in the R2, the 

power-law model is not able to describe the data properly. The only exception to this remark 

arises when the analysis considers links with more than 5000 commuters per year; in this 

case, the power-law model appears to be superior to the exponential specification, and only 

the Kolmogorov-Smirnov test does not acknowledge this superiority. 

The superiority of the power-law model with respect to the exponential specification is 

not robust, however: as the number of commuters per year increases, the superiority of the 

power-law model vanishes and both model specifications are rejected. 

All in all, our results suggest that both the exponential and the power-law model 

specifications are not able to capture all salient features in the data. 

Next, an inspection of the distribution of the log number of links against the district 

rank shown in Figure 2 suggests that both model specifications could be improved by the 

addition of a quadratic term.5 Consequently, we have re-run the whole analysis using a 

quadratic specification6: 

 2
1 2ln( )i i i iN R Rα β β ε= + + +  (3) 

 and 
 2

1 2ln( ) ln( ) [ln( )]i i i iN R R vδ γ γ= + + + . (4) 

 
The results are presented in Table 3. 

 

TABLE 3 ABOUT HERE 

 
                                                
4 As the required minimum strength of the link increases, a few districts (nodes) drop out from the sample. 
5 A regression line through the distribution would overestimate the log number of links for low and high values 
of a city rank, and it would underestimate the log number of links for intermediate values of a city rank. 
6 The choice for the quadratic specification has been guided by the estimation of a Box-Cox transformation 

( ) 1district rank λ

λ
−

. If λ =0, then the logarithmic transformation of the regressor district rank should be used.  

In our case, λ =1.87, which is statistically different from 0, thus implying that the logarithmic transformation is 
to be rejected. A value of λ close to 2 suggests a quadratic specification, however. 



 9 

The quadratic specification significantly improves the fit of the model as shown by the 

comparison of the R2s in Tables 1 and 3. This procedure is correct, because both quadratic 

models in Table 3 nest the linear models in Table 1 as special cases (when the coefficient of 

the quadratic term is zero).7 

The comparison of the R2s in the upper panel in Table 3 suggests that the exponential 

specification fits the data better than the power-law specification. This inference is supported 

by the additional tests presented. The (quadratic) exponential specification clears two out of 

three specification tests (the J test and the Kolmogorov-Smirnov test). The exponential 

specification fails to clear the encompassing test, but so does the power-law specification (the 

test rejects both the exponential and the power-low specifications). The power-law 

specification is soundly rejected. On the contrary, the F statistic corresponding to the 

exponential specification is low, significantly different from zero but low. 

Table 4 shows that this result is again not very robust to the exclusion of the weakest 

links. As the required minimum strength of the link increases, the exponential specification 

ceases to be the preferred model specification. 

 

TABLE 4 ABOUT HERE 

 

All in all, neither the exponential nor the power-law specification can be regarded as 

superior. Moreover, in the absence of strong priors against the inclusion of all links 

(regardless of the strength of the link) and using a quadratic functional form, the (quadratic) 

exponential specification should be preferred to a (quadratic) power-law specification. 

The poor performance of both model specifications may be ascribed to the inability of 

the models to capture the sharp drop in the log number of links when the district rank is above 

403. Consequently, we reconsidered the performance of all four model specifications 

(exponential and power-law, linear and quadratic) when districts ranked above 403 are 

excluded from the analysis. The results of this final experiment are shown in Table 5. 

 

TABLE 5 ABOUT HERE 

 

                                                
7 It is well known that the significance of the quadratic term in the log-log model shown in equation (4) will be 
found significant even if Zipf’s law were to hold. By the same token, we are also aware that the use of OLS to 
estimate the parameters characterizing the power-law relationship between node rank and the corresponding 
number of links (Zipf’s law) introduces an upward bias in the estimated value of γ in equation (2). We show the 
results anyway, by way of illustration of the working of the encompassing tests. On the one hand, the assessment 
of the validity of Zipf’s law is a matter of estimation rather than testing (almost any specification, also the true 
one, will be rejected if the data points are sufficiently numerous); on the other hand, the decision between 
competing specifications must be guided by tests. 
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Although the observations in the right tails have not been included in the analysis, the 

linear exponential specification is by no means superior to the power-law specification. In 

addition, the comparison of the R2s shows that both quadratic specifications perform 

significantly better than the corresponding linear specifications. Furthermore, among the 

quadratic specifications, the specification tests suggest that the (quadratic) exponential 

specification (
2

1 2i i iR R
iN e e e eβ β εα= ) appears to be superior to the (quadratic power-law) 

specification (
2

21 (ln )i iR v
i iN e R e eγγδ= ). 

On the whole, our results suggest that commuting flows form a rather homogeneous 

and spatially-equilibrated network. In other words, the network does not seem to be 

dominated by a few hubs (districts) with many links. This network feature could be due to a 

rather balanced regional development.  

Finally, a caveat is in order.  There are many reasons why the commuting network 

may fail to show up as a SF. First, the links concerned might, in fact, be poor representations 

of network connectivity. If commuting flows are not reliable indicators of overall economic 

flows, then we may fail to detect important hubs, even though the German spatial-economic 

system might be dominated by hubs (which we were not able to detect). In this context, 

freight/trade flows, financial flows, and ICT flows might be more useful indicators to detect 

hubs in spatial entrepreneurial activities. 

Second, the concept of hubs may refer to firms rather than to districts. In this case, 

start-ups may benefit from setting up business relationships in the area concerned with well-

established key firms, that are very well connected with the rest of the economy (i.e. a nested 

hierarchical hub structure). 

 

4. Conclusions 

 

In the present analysis we have addressed the question whether a real spatial network – 

such as the one constituted by German labour market districts as nodes and commuting flows 

as links – can be identified as SF (scale-free). SF networks are dominated by a few important 

nodes (hubs) that could function as incubators for entrepreneurial activity. In addition, given 

the property that SF networks are ultra-small (Reuven and Shiomo 2003), innovation 

diffusion by entrepreneurship may reach remote nodes very rapidly, while hubs may also be 

able to attract workers from a considerable distance. In a SF network, the relationship 

between the logarithm of the number of links and the rank of the districts (in terms of the 

number of links) is best described by a power-law specification. Vice versa, in a 

homogeneous spatial structure where flows decay with distance, the relationship between the 
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logarithm of the number of links vs. the rank of the districts (in terms of the number of links) 

is better identified by an exponential distribution (where the tail approaches to zero). 

Given the economic relevance of flows related to long distances, we analysed the 

whole network, also including links with very few commuters. Our results indicate that, 

because the power-law specification is hardly ever superior to the exponential distribution, the 

German commuter network cannot be considered a SF network. The lack of particularly 

important hubs may be due to the relatively homogeneous distribution of highly industrialized 

districts. 

It goes without saying that the selection of the preferred specification depends on the 

network characteristics, which are in turn determined by the criteria used to select the links 

forming the network. Finally, our analysis also makes clear that the R2 alone is not a sufficient 

criterion to discriminate between competing model specifications, in particular when the 

competing hypotheses are non-nested. 

The analysis could be extended in many directions. For example, the analysis of the 

outgoing commuting flows could help unravel the characteristics of (technological) 

innovation diffusion processes. This interesting application is not pursued here and is left for 

future research. 

Future research efforts may also be directed – on the one hand – to the exploration of 

changes in the connectivity structure of commuting flows over time, by analyzing different 

time periods; on the other hand, they may also address the investigation of German networks 

that are more directly related to entrepreneurship features, such as ICT, telecommunication 

and/or freight/trade networks. 
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ANNEX A: Testing Non-nested Hypotheses 
 

 

The comparison between R2s can guide the researcher through the choice between 

competing nested models but it cannot be used to assess the validity of competing functional 

form. An example can clarify this point. 

Assume the data are generated by a quadratic data-generating process ( 2
i i iy xθ ς= + ). 

Assume further that we may choose to compare the following two models: model A: 

i iy α ε= + , and model B: i i iy xα β ε= + + . Clearly, R2
B>R2

A. However, it would be incorrect 

to conclude that the data-generating process is linear. Similarly, the R2 criterion cannot be 

used to choose between non-nested hypotheses. 

In traditional testing, the H0 can be expressed as a particular case of the more general 

H1 (the alternative hypothesis); in this sense the H0 is nested in the H1. When hypotheses are 

non-nested the H0 and H1 are on equal footing. The small sample and the asymptotic 

proprieties of the tests described here have received a thorough treatment in (Davidson and 

MacKinnon 2004, Greene 2003, Mizon and Richard 1986). 

There are two possible approaches to test non-nested hypotheses: a) the comprehensive 

approach (the J-test), and b) the encompassing approach. We begin with the former. 

 

a) The J-Test 

Suppose we have to decide between two rival models: 

 0 : 'i i iH y X vβ= +  (A1) 

and 
 1 : 'i iH y Z uγ= + , (A2) 

where β (p x 1) and γ (q x 1) are vectors of parameters to be estimated, X (p x n) and Z (q x n) 

matrices of exogenous variables, and u and v are two error terms that follow the usual 

assumptions. 

 We notice that the variables included in Z and X should be different and it should not 

be the case that X (Z) could be obtained as a special case of Z (X), i.e. setting some 

parameters to zero. 

 The J-test prescribes the following steps: 

1. estimate equation (A1) and obtain the predicted values 
ˆˆ 'Xy Xβ= ; 

2. estimate equation (A2) and obtain the predicted values ˆ ˆ 'Zy Zγ= ; 

3. estimate ˆ' z
i i i iy X y vβ δ= + + ; if δ=0, the model in equation (A1) cannot be 

rejected; if δ≠ 0, then the model in equation (A1) can be rejected (the Z variables 
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still incorporate some features that help improve on the performance of model 

(A1)); 

4. estimate ˆ' X
i i i iy X y uβ π= + + ; if π=0, the model in equation (A2) cannot be 

rejected; if π≠ 0, then the model in equation (A2) can be rejected (the X variables 

incorporate some features that help improve on the performance of model (A2)). 

In other words, the J-test boils down to a t-test on the additional variable represented 

by the predicted values of the rival model. The estimates of δ and π and their associated 

standard errors are reported in Tables 1 - 5. 

 

b) The Encompassing Test 

Suppose that, again, we have to decide between the two aforementioned models. The 

encompassing test prescribes that the variables be divided into three groups: the matrix W that 

contains the common regressors (i.e. regressors that belong to both Z and X); the matrix Zn 

that includes all exogenous variables present in the matrix Z but not in the matrix X; finally, 

the matrix Xn that includes all the regressors present in the matrix X but not in the matrix Z. 

Then the rival models can be combined into a super-model (a model that encompasses 

both sub-models as special cases): 

 ' ' 'n n
i i i i iy W X Z uα β γ= + + + , (A3) 

where α, β and γ are vectors of parameters to be estimated, and u is a random disturbance that 

follows the usual assumptions. 

The encompassing test prescribes that H1 is rejected if γ=0, and H0 is rejected if β=0. 

These restrictions can be tested by means of F-tests. Sometimes Zn or Xn are vectors (nx1), 

i.e. they just include one variable. In this case the F-test can be approximated by the squared 

value of the t-test obtained during the estimation of equation (A3). The values of the F-test (or 

the t-test when needed) and their relative p-values (or standard errors in the case of a t-test) 

are reported in Tables 1 - 5. 

 

Both the J-test and the encompassing test have four possible outcomes: 

1. Reject H0 and do not reject H1; 

2. Do not reject Ho and reject H1; 

3. Reject H0 and reject H1; 

4. Do not reject H0 and do not reject H1. 

In the first two cases, one of the two models ends up as the preferred model. In the 

third case, neither model is correctly specified. In the fourth case, both models are correctly 

specified. 
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Figure 1: The regional distribution of the 439 districts in Germany  
(Legend: 1. Central cities in regions with urban agglomerations; 2. Highly urbanized districts in regions with 
urban agglomerations; 3. Urbanized districts in regions with urban agglomerations; 4. Rural districts in 
regions with urban agglomerations; 5. Central cities in regions with tendencies towards agglomeration; 6. 
Highly urbanized districts in regions with tendencies towards agglomeration; 7. Rural districts in regions 
with tendencies towards agglomeration; 8. Urbanized districts in regions with rural features; 9. Rural 
districts in regions with rural features.) 
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Figure 2: The relationship between the logarithm of the number of links and the district rank 

– commuting network in Germany (in 2002) 
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Table 1: Regression analyses, linear model specifications in equation (1) and equation (2). 
The whole commuting network in Germany (standard errors in brackets and p-values 
in parenthesis. The test is significant at the 5% confidence level when the ratio of the 
coefficient to the standard error is larger than 1.96 and when the p-value is smaller 
than 0.05). 

 
 Exponential Power-Law     
         
Constant 6.211  6.976      
 [0.001]  [0.050]      
Ln District Rank   -0.254      
   [0.010]      
District Rank -0.002        
 [0.000]        
         

R2 0.941  0.616      
number of cases 439  439      
                  
Specification Tests        
         
J-Test         
H0   H1   T-Test Statistic  Result 
Power-Law Specification  Exponential Specification 1.268  Reject H0 
      [0.020]   
Exponential Specification  Power-Law Specification -0.377  Reject H0 
      [0.025]   
Encompassing Test        
H0   H1   T-Test Statistic  Result 
The Data Generating  The Data-Generating     
Process Follows   Process Follows  -0.003  Reject H0 
Power-Law   Exponential Specification [0.000]   
         
The Data-Generating  The Data-Generating  0.096  Reject H0 
Process Follows   Process Follows  [0.006]   
Exponential Specification  Power-Law     
         
Kolmogorov - Smirnov Test       
H0   H1   KS-Test Statistic  Result 
Cumulative   Cumulative     
Distribution of ln(N)  Distribution of ln(N)     
=   ≠   0.239  Reject H0 
Cumulative   Cumulative  (0.000)   

Distribution of ln(N)pl  Distribution of ln(N)pl     

       
H0   H1      
Cumulative   Cumulative     
Distribution of ln(N)  Distribution of ln(N)     
=   ≠   0.119  Reject H0 
Cumulative   Cumulative  (0.004)   

Distribution of ln(N)ex  Distribution of ln(N)ex    
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Table 2: Robustness of the two linear models to different network structures (standard errors in brackets and p-values in parenthesis. The test is significant at the 
5% confidence level when the ratio of the coefficient to the standard error is larger than 1.96 and when the p-value is smaller than 0.05). 

Minimum strength of the Link:       10       100     1000   

Regression             R2       R2       R2     
Exponential        0.816     0.969     0.894    
Power-Law        0.969     0.815     0.851    
Number of Cases             439       439       439     
Specification Tests                              
J-Test                         
H0   H1      T-Test Statistic  Result   T-Test Statistic  Result   T-Test Statistic  Result 
Power-Law Specification  Exponential Specification   0.186  Reject H0   0.186  Reject H0   0.625  Reject H0 
          [0.017]      [0.017]      [0.028]    
Exponential Specification  Power-Law Specification   0.851  Reject H0   0.851  Reject H0   0.437  Reject H0 
          [0.016]      [0.016]      [0.029]    
Encompassing Test                        
H0   H1      T-Test Statistic  Result   T-Test Statistic  Result   T-Test Statistic  Result 
The Data-Generating  The Data-Generating                     
Process Follows   Process Follows     -0.529  Reject H0   -0.529  Reject H0   -0.255  Reject H0 
Power-Law   Exponential Specification   [0.010]      [0.009]      [0.017]    
                          
The Data-Generating  The Data-Generating     -0.0008  Reject H0   -0.0008  Reject H0   -0.003  Reject H0 
Process Follows   Process Follows     [0.0001]      [0.0001]      [0.000]    
Exponential Specification  Power-Law                     
                          
Kolmogorov - Smirnov Test                  
H0   H1      KS-Test Statistic  Result   KS-Test Statistic  Result   KS-Test Statistic  Result 
Cumulative Distribution  Cumulative Distribution                   
of ln(N) =   of ln(N) ≠      0.118  Reject H0   0.118  Reject H0   0.223  Reject H0 
Cumulative Distrbution  Cumulative Distribution   (0.000)      (0.000)      (0.000)    

 of ln(N)pl     of ln(N)pl                             
                  
H0   H1                 
Cumulative Distribution  Cumulative Distribution                   
of ln(N) =   of ln(N) ≠      0.143  Reject H0   0.143  Reject H0   0.155  Reject H0 
Cumulative Distribution  Cumulative Distribution   (0.000)      (0.000)      (0.004)    

of ln(N)ex   of ln(N)ex                      
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Table 2: Continued 
 
Minimum Strength of the Link:     5000     10000     15000   

Regression           R2       R2       R2     
Exponential       0.695     0.432     0.273    
Power-Law        0.909     0.814     0.694    
Number of Cases           439       418       377     
Specification Tests                              
J-Test                         
H0   H1      T-Test Statistic  Result   T-Test Statistic  Result   T-Test Statistic  Result 
Power-Law Specification Exponential Specification   -0.020  Do Not   -0.906  Reject H0   -1.779  Reject H0 
          [0.036]  Reject H0   [0.051]      [0.069]    
Exponential Specification Power-Law Specification   1.015  Reject H0   1.580  Reject H0   1.982  Reject H0 
          [0.032]      [0.037]      [0.043]    
Encompassing Test                        
H0   H1      T-Test Statistic  Result   T-Test Statistic  Result   T-Test Statistic  Result 
The Data-Generating  The Data-Generating                     
Process Follows  Process Follows     0.0001  Do Not   0.002  Reject H0   -0.003  Reject H0 
Power-Law   Exponential Specification   [0.0001]  Reject H0   [0.000]      [0.000]    
                          
The Data-Generating  The Data-Generating     -0.563  Reject H0   -0.567  Reject H0   -0.521  Reject H0 
Process Follows  Process Follows     [0.018]      [0.013]      [0.011]    
Exponential Specification Power-Law                      
                          
Kolmogorov - Smirnov Test                       
H0   H1      KS-Test Statistic  Result   KS-Test Statistic  Result   KS-Test Statistic  Result 
Cumulative Distribution  Cumulative Distribution                     
of ln(N) =   of ln(N) ≠      0.369  Reject H0   0.404  Reject H0   0.453  Reject H0 
Cumulative Distribution  Cumulative Distribution     (0.000)      (0.000)      (0.000)    

of ln(N)pl   of ln(N)pl                      
                          
H0   H1                      
Cumulative Distribution  Cumulative Distribution                     
of ln(N) =   of ln(N) ≠      0.362  Reject H0   0.500  Reject H0   0.567  Reject H0 
Cumulative Distrbution  Cumulative Distribution     (0.000)      (0.000)      (0.000)    

 of ln(N)ex     of ln(N)ex                             
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Table 3: Regression analyses, quadratic model specifications in equation (3) and equation (4). The whole 
commuting network in Germany (standard errors in brackets and p-values in parenthesis. The test is 
significant at the 5% confidence level when the ratio of the coefficient to the standard error is larger 
than 1.96 and when the p-value is smaller than 0.05). 

 
 Exponential  Power-Law      
          
Constant 6.062  5.368       
 [0.006]  [0.066]       
Ln District Rank   0.584       
   [0.031]       

(Ln District Rank)2  -0.099       
   [0.004]       
District Rank -0.0004         
 [0.0001]         

District Rank2 -0.00001         
 [0.0000001]         
          

R2 0.985  0.858       
Number of Cases 439  439       
                    
Specification Tests         
          
J-Test          
H0   H1   T-Test Statistic  Result  
Power-Law Specification  Exponential Specification 1.006  Reject H0  
      [0.016]    
Exponential Specification  Power-Law Specification -0.010  Do Not Reject H0 
      [0.032]    
Encompassing Test         
H0   H1   F-Test Statistic Result  
The Data-Generating  The Data-Generating      
Process Follows  Process Follows  2308.499  Reject H0  
Power-Law   Exponential Specification (0.000)    
          
The Data-Generating  The Data-Generating  48.741  Reject H0  
Process Follows  Process Follows  (0.000)    
Exponential Specification  Power-Law      
          
Kolmogorov - Smirnov Test        
          
H0   H1   KS-Test Statistic  Result  
Cumulative   Cumulative      
Distribution of ln(N)  Distribution of ln(N)      
=   ≠   0.132  Reject H0  
Cumulative   Cumulative  (0.001)    

Distribution of ln(N)pl  Distribution of ln(N)pl      
          
H0   H1       
Cumulative   Cumulative      
Distribution of ln(N)  Distribution of ln(N)      
=   ≠   0.068  Do Not Reject H0 
Cumulative   Cumulative  (0.257)    

Distribution of ln(N)ex  Distribution of ln(N)ex     
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Table 4: Robustness of the two quadratic models to different network structures (standard errors in brackets and p-values in parenthesis. The test is significant at 
the 5% confidence level when the ratio of the coefficient to the standard error is larger than 1.96 and when the p-value is smaller than 0.05). 

Minimum Strength of the Link:     10     100     1000   

Regression        R2     R2     R2    
Exponential        0.989     0.816     0.896    
Power-Law        0.985     0.957     0.920    
Number of Cases             439       439       439     
Specification Tests                              
                         
J-Test                         
H0   H1      T-Test Statistic  Result   T-Test Statistic  Result   T-Test Statistic  Result 
Power-Law Specification  Exponential Specification   1.391  Reject H0   -2.418  Reject H0   2.345  Reject H0 
         [0.098]      [0.200]      [0.121]    
Exponential Specification  Power-Law Specification   -0.763  Reject H0   1.851  Reject H0   -7.542  Reject H0 
         [0.155]      [0.087]      [0.545]    
Encompassing Test                        
H0   H1      F-Test Statistic  Result   F-Test Statistic  Result   F-Test Statistic  Result 
The Data-Generating  The Data-Generating                     
Process Follows   Process Follows     199.88  Reject H0   145.44  Reject H0   377.380  Reject H0 
Power-Law   Exponential Specification   (0.000)      (0.000)      (0.000)    
                         
The Data-Generating  The Data-Generating     1308.56  Reject H0   1674.66  Reject H0   196.470  Reject H0 
Process Follows   Process Follows     (0.000)      (0.000)      (0.000)    
Exponential Specification  Power-Law                     
                         
Kolmogorov - Smirnov Test                       
H0   H1      KS-Test Statistic  Result   KS-Test Statistic  Result   KS-Test Statistic  Result 
Cumulative Distribution  Cumulative Distribution                   
of ln(N) =   of ln(N) ≠      0.062  Do Not   0.123  Reject H0   0.203  Reject H0 
Cumulative Distribution  Cumulative Distribution   (0.377)  Reject H0   (0.003)      (0.000)    

of ln(N)pl   of ln(N)pl                      
                          
H0   H1                      
Cumulative Distribution  Cumulative Distribution                   
of ln(N) =   of ln(N) ≠      0.052  Do Not   0.134  Reject H0   0.180  Reject H0 
Cumulative Distrbution  Cumulative Distribution   (0.583)  Reject H0   (0.001)      (0.000)    

 of ln(N)ex     of ln(N)ex                             
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Table 4: Continued 
Minimum Strength of the Link:   5000     10000     15000   

Regression       R2      R2       R2     
Exponential       0.912      0.861      0.866    
Power-Law       0.928      0.903      0.847    
Number of Cases           439       418       377     
Specification Tests                          
                          
J-Test                         
H0   H1      T-Test Statistic  Result   T-Test Statistic  Result   T-Test Statistic  Result 
Power-Law Specification Exponential Specification   1.208  Reject H0   0.826  Reject H0   0.480  Reject H0 
          [0.119]      [0.059]      [0.053]    
Exponential Specification Power-Law Specification   -0.361  Reject H0   0.245  Reject H0   0.625  Reject H0 
          [0.166]      [0.067]      [0.051]    
Encompassing Test                        
H0   H1      F-Test Statistic  Result   F-Test Statistic  Result   F-Test Statistic  Result 
The Data-Generating  The Data-Generating                     
Process Follows  Process Follows     102.981  Reject H0   197.903  Reject H0   82.313  Reject H0 
Power-Law  Exponential Specification   (0.000)      (0.000)      (0.000)    
                          
The Data-Generating  The Data-Generating     710.874  Reject H0   1043.513  Reject H0   1049.271  Reject H0 
Process Follows  Process Follows     (0.000)      (0.000)      (0.000)    
Exponential Specification Power-Law                     
                          
Kolmogorov - Smirnov Test                      
H0   H1      KS-Test Statistic  Result   KS-Test Statistic  Result   KS-Test Statistic  Result 
Cumulative Distribution Cumulative Distribution                   
of ln(N) =   of ln(N) ≠      0.353  Reject H0   0.426  Reject H0   0.528  Reject H0 
Cumulative Distribution Cumulative Distribution   (0.000)      (0.000)      (0.000)    

of ln(N)pl   of ln(N)pl                      
                          
H0   H1                      
Cumulative Distribution Cumulative Distribution                   
of ln(N) =   of ln(N) ≠      0.355  Reject H0   0.421  Reject H0   0.496  Reject H0 
Cumulative Distrbution  Cumulative Distribution   (0.000)      (0.000)      (0.000)    

 of ln(N)ex     of ln(N)ex                             
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Table 5: Robustness of all four model specifications to different network structures – district rank < 404 (standard errors in brackets and p-values in parenthesis. 
The test is significant at the 5% confidence level when the ratio of the coefficient to the standard error is larger than 1.96 and when the p-value is smaller 
than 0.05). 

Regressions         Linear: Exponential Power-Law Quadratic: Exponential   Power-Law 
Constant      6.176  6.811   6.086  5.547 
       [0.004]  [0.039]   [0.001]  [0.046] 
Ln District Rank        -0.214     0.459 
         [0.008]     [0.022] 

(Ln District Rank)2             -0.081 
              [0.003] 
District Rank      -0.002     -0.001    
       [0.000]     [0.000]    

District Rank2           -0.000003    
            [0.000000]    

R2      0.974  0.661   0.999  0.902 
Number of Cases           403   403   403   403 
Specification Tests              
J-Test               

H0     H1     T-Test Statistic   Result   T-Test Statistic   Result 
Power-Law Specification  Exponential Specification 1.217  Reject H0   0.996  Reject H0 
            [0.012]       [0.005]     
Exponential Specification  Power-Law Specification -0.299  Reject H0   -0.013  Do Not 
            [0.014]       [0.010]   Reject H0 

Encompassing Test              

H0     H1     T-Test Statistic   Result   F-Test Statistic   Result 
The Data-Generating Process The Data-Generating Process -0.003  Reject H0   21788.391  Reject H0 
Follows Power-Law   Follows Exponential [0.000]       (0.000)     
The Data-Generating Process The Data-Generating Process 0.064  Reject H0   64.111  Reject H0 
Follows Exponential   Follows Power-Law [0.003]       (0.000)     

Kolmogorov - Smirnov Test             

H0     H1     KS-Test Statistic   Result   KS-Test Statistic   Result 
Cumulative Distribution of ln(N) = Cumulative Distribution of ln(N) ≠ 0.241  Reject H0   0.141  Do Not 

Cumulative Distribution of ln(N)pl Cumulative Distribution of ln(N)pl (0.000)       (0.001)   Reject H0 
Cumulative Distribution of ln(N) = Cumulative Distribution of ln(N) ≠ 0.104  Reject H0   0.030  Reject H0 

Cumulative Distribution of ln(N)ex Cumulative Distribution of ln(N)ex (0.025)       (0.994)     
 


