Sources, consumer exposure and risks of organotin contamination in seafood

Final report of the European Commission Research Project "OT-SAFE" (QLK1-2001-01437)

Frank Willemsen, Jan-Willem Wegener, Roberto Morabito and Florence Pannier

W-04/26 December 2004 This report was commissioned by the European Commission, Research Project "OT-SAFE" (QLK1-2001-01437)

IVM

Institute for Environmental Studies Vrije Universiteit De Boelelaan 1087 1081 HV Amsterdam The Netherlands

Tel. ++31-20-5989 555 Fax. ++31-20-5989 553 E-mail: info@ivm.falw.vu.nl

Copyright © 2004, Institute for Environmental Studies

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder.

Contents

Abstract	iii
1. Introduction	1
2. Objectives	3
3. Outline	5
4. Collection of existing data	7
5. Collection of import and export data	9
6. Collection of consumption patterns	11
7. Selection of seafood species, locations and sampling moments	15
8. Sampling of seafood	17
9. Analysis of seafood samples	19
10. Collection of household seafood preparation ways	25
11. TBT breakdown during household seafood preparation	27
12. TBT breakdown during industrial seafood preparation	31
13. Collection of detailed consumption patterns	33
14. Other sources of TBT exposure	35
15. Risk assessment	37
16. Conclusions	43
17. Exploitation and dissemination of results	45
18. Policy related benefits	47
References	49
Annex I. Existing data on TBT (and other organotins) in seafood in Europe	51
Annex II. Species selection	57
Annex III. Data reporting sheets	59

Annex IV. Organtin results	61
Annex V. Analytical methods	119
Annex VI. Detailed consumption patterns	121
Annex VII. Figures	123
Annex VIII. Data used in calculations	133

Abstract

The aim of the OT-SAFE project (QLK1-CT-2001-01437) was to establish the risk of tributyltin (TBT) for the European seafood consumer. The organotin compound tributyltin is very effective as an anti-fouling agent, and has therefore been added to many ship-paint formulations to keep ship hulls free from algae, barnacles and other fouling organisms. Although its use is now restricted TBT can still be found in the environment and can also still be found in seafood.

To devise a sampling strategy, all principal partners and subcontractors selected the most important seafood species, based upon a ranking list in terms of consumed amounts, weighted by a factor related to the expected TBT levels. For the distribution of the total number of samples between the countries the national consumptions were taken into account: for countries with high seafood consumption more species were selected than for countries with low seafood consumption.

Following the species selection, all principal partners and subcontractors traced down the most important catching locations of the species selected. Finally, all principal partners and subcontractors have selected the number of sampling moments, based upon an equal distribution over the catching and collecting season. On the average, about three locations per sample were selected and about two sampling moments per location. Countries with high seafood consumption (southern Europe) had more samples selected than countries with low seafood consumption (northern and central Europe).

All principal partners have determined TBT in the selected species of their own country and of one or two of the countries of subcontractors. All partners have long-term experience in the field of analysis of marine organisms for organotin compounds. For quality control, a certified reference material BCR-477 (tin species in mussel tissue) was distributed by ENEA. To further assist in quality control, ultra-pure standards were made available by IVM. The analysis of blanks was set mandatory as well.

In order to be able to take into consideration the breakdown of TBT during cooking, ENEA had selected different representative ways of mussel preparation, and applied them to mussels collected from a highly contaminated location. Mussels with highexpected TBT levels were used in order to detect significant changes in concentration, which might not be possible if the levels were near or below the limit of quantification. A total of 15 kg of mussels was cleaned and randomly subdivided into four groups in order to ensure inter-sample homogeneity. Samples from one group were directly analysed for the determination of organotin concentration levels in raw mussels; samples from the other three groups have been cooked following different European cooking recipes. Ingredients without any presumable effect on TBT degradation, like garlic, onion, pepper, etc have not been considered in order to minimize the matrix problems. However, ingredients that could have some effect on the final TBT content of the cooked mussels by influencing the cooking temperature or by a potential extraction solvent effect, like oil and wine, were taken into consideration. TBT is never completely degraded after cooking and in some cases only a slight decrease of TBT concentration is observed. In particular, the TBT concentration in mussels cooked by microwave, steaming and boiling procedures was never lower than 70 % of the initial concentration. A significant TBT decrease, down to 40 % of the initial concentration, was observed only after cooking mussels in frying pan with wine or oil and when shelled, or when boiling the mussels for unrealistically long periods, e.g. 60 minutes. An industrial steaming process was also investigated, but this did not produce any significant breakdown of TBT.

Seafood consumption data have been compiled. Food consumption patterns however, are extremely difficult to capture. The most common type of survey that comes anywhere near recording consumption patterns is the food consumption survey. For reasons of practicality these surveys are usually conducted over a limited amount of time per subject, which results in (usually a large number of) snapshots of people's actual consumption. It is important to realise that food consumption surveys often do not focus on seafood at all, let alone individual species. For a number of countries no food consumption surveys were recovered at all. For these countries more crude data, such as import and export data, market data and catches and landings data were used. In the European setting, where it is unlikely that individuals catch considerable amounts of fish for their own consumption, all of these figures must be considered to produce overestimations of the actual average consumption.

Based on the analyses that had been performed and consumption data, intake levels were calculated and compared to the known tolerable daily intake (TDI).

In general it is fair to say that to be at risk of exceeding the TDI for TBT as a result of seafood consumption one has to be a high consumer of seafood *and* one has to consume seafood with a higher-than-average concentration. The average concentrations of TBT for the whole of set of European counties in the project or indeed for separate countries are such that most European consumers can consume their seafood without having to worry about TBT.

There is some concern however, about sardines in Greece, and molluscs are a cause for concern in Portugal and especially Italy. These cases need to be further investigated however, before there can be certainty about whether measures have to be taken and which measures are appropriate.

1. Introduction

TBT

The organotin compound tributyltin (TBT) is very effective as an anti-fouling agent, and has therefore been added to many ship-paint formulations to keep ship hulls free from algae, barnacles and other fouling organisms. In the late 1970s, the compound was shown to have distinct adverse effects on the farming of oysters. This and other adverse effects on aquatic ecosystems, such as imposex in marine snail species (the development of male sexual organs in female specimens), resulted in a ban on the application of TBT on small ships (smaller than 25 m) in many EU countries and North America. In Japan the use of TBT-based ship paints was recently banned completely. Notwithstanding this (partial) ban, TBT can still be encountered in the environment, because of its continued use on larger ships, its slow degradation and strong sorption to suspended matter and sediment (Fent, 1996). Relatively high levels can be found in areas with high shipping densities, such as commercial harbours, waterways and busy shipping lanes (Fent, 1996; Ten Hallers-Tjabbes et al., 1994). TBT also accumulates through the food chain, resulting in the occurrence of this compound as well as its breakdown products in fish, squid, shellfish and in top predators as whales, dolphins, seals and fish-eating birds (Kannan & Falandysz, 1997; Madhusree et al., 1997; Tanabe et al., 1998).

Banning the use of TBT on small ships and cleaner drydock practices have reduced the input in some areas, but as a result of very slow degradation of historic pollution in sediment (Fent, 1996), the environmental burden is likely to remain high for many years. In areas mainly affected by TBT from larger vessels no substantial changes in environmental levels are expected. This implies that TBT will continue to accumulate through the food chain and reach seafood products intended for human consumption.

Tolerable Daily Intake of TBT

The tolerable daily intake (TDI) for TBT is 0.25 μ g per kg body weight per day (Penninks, 1993) and is widely accepted among researchers from industries, academia, and regulatory agencies. This value is based on the observed effect of TBT on the immune function in rats. Because of uncertainties in human-rat toxicity extrapolation, human-rat kinetics extrapolation, and inter-individual differences for both toxicity and kinetics, a safety factor of 100 was used for the final calculation of the TDI. For the breakdown product DBT no TDI has been derived, although there are indications that this compound is similar in toxicokinetics and –dynamics. Based on comparable effect levels for DBT and TBT and based on the same safety factors, an indicative TDI of 0.25 μ g DBT per kg bodyweight per day can be derived.

Fate of TBT during seafood preparation

It is known that organotin compounds such as TBT undergo slow degradation in sediment or biota samples when stored for longer periods at ambient temperatures or higher (Gomez-Ariza et al., 1999). However, the effect of short-term heating, for instance during cooking or frying, is not known. In Europe, most seafood (except maybe oysters) is consumed after some form of heat treatment, but it is unclear whether this would significantly reduce the actual exposure to TBT.

Risk of TBT in seafood

Consensus exists regarding the Tolerable Daily Intake (TDI) for TBT set at 0.25 μ g per kg bodyweight per day. The discussion on the risks of TBT is therefore not focussed on the TDI or effects, but on the exposure and the resulting risk for humans consuming seafood products. The onset to this discussion was given by Kannan and Falandysz (1997), who showed that organotin levels in muscle tissue of several fish species from the Baltic Sea intended for human consumption approached or exceeded the Tolerable Daily Intake (TDI) for humans. Based on these observations, the authors expressed their concern and the need for seafood consumption advisory guidelines. However, this conclusion was rejected by others (Keithly et al., 1997; Robinson et al., 1999). Based on fish samples from markets in eight countries around the world, these authors concluded that 'the data suggest that commercially marketed seafood caught from traditional fishery grounds poses negligible risk to the average consumer'.

This discussion prompted an extensive literature study (Belfroid et al., 2000) that revealed that for the majority of countries no data on TBT levels in seafood products are available and that therefore for these countries the claim has no scientific basis. Regarding the eight European countries for which (limited) information was available, the data showed that in the case of at least three countries one or more samples exceeded the level that is considered to pose no risk. In Italy, also the average TBT level in the seafood samples exceeded this level, implying that in this country the average consumer is exposed to TBT levels that are not considered safe. Several parameters were not taken into account in this study, such as statistical variation in consumer weight and seafood consumption, species preferences and import/export patterns.

In conclusion, since only few studies have been carried out on the occurrence of TBT in seafood and the implications for human health, it is still not clear whether the present TBT levels may pose a risk or not. It has not been possible to make a thorough risk assessment because of a lack of data on TBT in seafood and a lack of statistical information. This reports describes the results of a study aimed to fill this gap in knowledge.

2. Objectives

The overall goal of this project is to assess whether there is a reason for concern regarding human exposure to TBT through seafood from the European market. There are three major objectives:

- 1. To compile an EU-wide database on TBT levels in seafood from major fishing grounds and shellfish farms, identifying high-risk areas. Samples collected in 4-5 areas in 11 countries in different seasons will be analysed for TBT;
- 2. To determine the fate of TBT in seafood during preparation (e.g., cooking, baking, frying, etc.);
- 3. The results obtained in 1) and 2) and consumer statistics from the 11 countries involved will form the basis of a risk assessment. Maximum residue limits for TBT in seafood will be estimated, and consumer groups at risk will be identified taking into account the statistical variation in seafood consumption, species preferences, consumer weight and import/export patterns.

If found necessary, the results of this study will be used to assist authorities in drafting seafood advisory guidelines.

3. Outline

The project can be subdivided into the following items.

- Collection of existing data on TBT in seafood, from scientific literature and reports not made public, to identify species with high TBT levels, to assist in species selection;
- Collection of seafood import and export data to identify the most important seafood species in terms of amounts, to assist in species selection;
- Collection of consumption patterns, to identify the most important seafood species in terms of amounts, to assist in species selection;
- Selection of seafood species, based upon high consumption levels and high potential TBT levels, with sampling locations, based upon importance for consumption, and number of sampling moments for each species, as to allow for seasonal influences;
- Sampling of the selected seafood species at the selected locations and moments, for analysis on TBT;
- Analysis of the samples seafood species on TBT, to be taken as input for the risk assessment;
- Collection of household seafood preparation ways, to identify the most important preparation ways in terms of occurrence, to be applied during the study of TBT breakdown during seafood preparation;
- Study of TBT breakdown during household seafood preparation, to be taken into consideration at the risk assessment;
- Study of TBT breakdown during industrial seafood preparation, to be taken into consideration at the risk assessment;
- Collection of detailed consumption patterns, to identify groups with high seafood consumption and/or high vulnerability for exposure to TBT (e.g., children), to be taken into consideration at the risk assessment;
- Collection of data on other sources of TBT exposure, to be taken into consideration at the risk assessment;
- Risk assessment for TBT and seafood consumers, based upon TBT levels in collected seafood samples, TBT breakdown during seafood preparation, seafood consumption, the established tolerable daily intake, body weight and other TBT exposure sources, to identify possible consumer groups at risk and to advise maximum residue levels.

The work has been performed by a consortium of principal partners and subcontractors. The principal partners include:

- Institute for Environmental Studies Vrije Universiteit Amsterdam Vereniging voor Christelijk Wetenschappelijk Onderwijs, Amsterdam, The Netherlands (IVM);
- Italian Agency for New Technology, Energy and the Environment, Roma, Italy (ENEA);
- Université de Pau et des Pays de l'Adour, Pau, France (UPPA);
- GALAB Technologies GmbH, Geesthacht, Germany (GALABr);
- Universidad de Huelva, Huelva, Spain (UHCR);

- The Minister of Agriculture, Fisheries and Food, London, United Kingdom (CEFAS);
- Centre National de la Recherche Scientifique, Paris, France (CNRS).

The subcontractors include:

- Minister of the Flemish Community, Centre for Agricultural Research, Ostende, Belgium;
- Umeå University, Umeå, Sweden;
- University of the Aegean, Mytilene, Greece;
- Faculdade de Ciências Universidade do Porto, Porto, Portugal;
- Szent István University, Budapest, Hungary;
- Association pour le développement de l'enseignement et des recherches auprès des universités, des centres de recherche es entreprises d'Aquitaine, Pessac, France.

4. Collection of existing data

Scope

To identify species with high TBT levels, to assist in species selection.

Methods

All principal partners and subcontractors are experts in the field of TBT analysis and have an up-to-date record of their scientific publications. For unpublished reports, all have contacted national fisheries and public health institutes. The information is collected by UPPA and IVM in the form of an Excel-file and made public on the project website. Only non-confidential information is taken into consideration.

Results

Data turned out to be very scanty. Only in France, Italy, Spain, Portugal, Germany and the United Kingdom data could be retrieved. It should be noted that only non-confidential data have been included. IVM has collected the data and published them in the form of an Excel-based database on the project website. An overview of the results is given in Annex I.

Conclusions

The data collected was insufficient to allow for any detail with regard to species or location within Europe in the process of species selection. The data was only used to provide estimates of the expected TBT concentration per taxonomic group (see Table 4.1).

Taxonomic group	Average concentration (ng/g TBT/net weight)	Range (ng/g TBT/net weight)
Molluses	228	1816-1
Fish	20	56-2
Cephalopods	354	655-8
Crustaceans	8	14-3

 Table 1
 Estimated expected TBT concentrations for European seafood.

5. Collection of import and export data

Scope

To identify the most important seafood species in terms of amounts, to assist in species selection.

Methods

All principal partners and subcontractors collected information on import and export of seafood.

Results

Import and export data have been compiled by IVM. The most extensive database however, is the FISHSTAT PLUS database made publicly available by the FAO, which can be downloaded from the FAO website (http://www.fao.org/fi/statist/FISOFT/ FISHPLUS.asp, 2004). Incorporation of this data into the project database turned out not to be feasible. For that, import and export streams are far too complex. In most countries, import and export streams mask the national consumption making it very difficult to derive useful information with regard to actual seafood consumption from these data.

Conclusions

Import and export streams often mask the actual national consumption, the import and export data could only to a limited extent be used to assist in the selection of the most important species. Some import/export data has been used to support assumptions as to where certain parts of a country's consumption were coming from.

6. Collection of consumption patterns

Scope

To identify the most important seafood species in terms of amounts, to assist in species selection.

Methods

All principal partners and subcontractors have collected information from their national food consumption pattern programs or, if unavailable, from their national market, and/or landings data recorded by the national fisheries or food institutes. The information is collected by the responsible partner in the form of a report and made public on the project website.

Results

Seafood consumption data have been compiled by IVM and published in the form of a report on the project website. Food consumption patterns however, are extremely difficult to capture. The most common type of survey that comes anywhere near recording consumption patterns is the food consumption survey. For reasons of practicality these surveys are usually conducted over a limited amount of time per subject, which results in (usually a large number of) snapshots of people's actual consumption.

In the early stages of the OT-SAFE project the choice was made to try and identify people's seafood consumption per species. Although this choice is justifiable, it is important to realise that food consumption surveys often do not focus on seafood at all, let alone individual species eaten as seafood. Aggregated categories with names such as "white fish", "fish, moderately fat", etcetera were the rule rather than the exception and were as such often of limited use for the OT-SAFE project.

For a number of countries no food consumption surveys were recovered at all. For these countries more crude data, such as import and export data, market data and catches and landings data were used. In the European setting, where it is unlikely that individuals catch considerable amounts of fish for their own consumption, all of these figures must be considered to produce overestimations of the actual average consumption.

No data was found on consumer weight, sex or age that could be linked in a useful way to seafood consumption. Especially in the case of children this is unfortunate, as they are known to be capable of eating relatively large amounts of food in relation to their bodyweight.

Conclusions

The ideal of having per country per species lists of consumption figures that could then be combined with the new measured values for TBT could not be achieved. The lack of reliable consumption data, that the consortium had not foreseen, forced us to take a significantly more limited approach, whereby only taxonomic groups were distinguished. An overview of these data is given in Table 6.1.

	Part of the population	Fish	Molluscs	Cephalo-	Crusta-
				pods	ceans
Belgium	Consumers	13.4	0.7	ncr	ncr
Belgium	High consumers >95%	47.7	0.7	ncr	ncr
France	Consumers	37.6	12.0	18.2	14.9
France	High consumers >95%	94.3	23.0	29.7	33.6
Germany	Consumers	36.6	18.4	ncr	11.6
Germany	High consumers >97.5%	157.7	125.0	ncr	38.4
Greece [#]	General population	35.6	6.0	6.0	6.0
Greece [#]	High consumers 95%	106.1	86.0	86.0	86.0
Hungary	General population; based on	3.1	0.0	ncr	ncr
	internal supply (uncorrected)				
Italy	Consumers	43.6	34.1	ncr	20.9
Italy	General population	23.5	6.2	ncr	1.4
Netherlands	General population	9.2	0.5	ncr	0.3
Netherlands	High population	16.0	0.6	ncr	0.6
Portugal	General population; based on	129.7	1.6	4.1	2.1
	internal supply (uncorrected)				
Spain	General population	59.8	19.6	5.9	3.2
Sweden	General population	30.5	2.8	ncr	ncr
United Kingdom [#]	General population	19.4	1.0	1.0	1.0

Table 6.1Estimates of European seafood consumption per taxonomic group
(gram/day); (ncr =no consumption recorded).

[#] For UK and GR the non-fish is reported together so these are the maximum possible values.

Although most of the figures presented have simply been copied from the original data (source given in Table 6.2), in some cases, some adjustments have been made. This was the case for Italy, Germany and Greece where the original data included more detailed categories of (high) *consumers* than our four taxonomic groups. The problem here is that when average consumption figures for (high) *consumers* are presented, it is unclear how many there are, and that one does not know how much overlap exists between groups of consumers. In other words: is someone who is counted in group A as a consumer the same person as the consumer in group B or is this a different person? In this case simply adding the figures of such more detailed categories would only represent the unlikely case that someone is a (high) consumer in *each* category. This would lead to an overestimation of consumption. The approach we chose for such occasions was as follows: for each sub-category we assumed that a high consumer in that sub-category would have the general mean consumption in all other relevant sub-categories. In the case of three sub-categories (e.g. fish A, B &C) that leads to three different estimates for the total in the overall category (fish). These were then averaged to come to one final figure.

Although various point of criticism can be made, this method has one pleasant advantage: It produces a figure higher than the average of the only the sub-category values (a clear underestimation, because this equates to taking the average of those high consumers in each sub-category that consume *no* food from another sub-category), whilst giving a figure below the sum of the (high) consumer figures of each category which would equate to people who are a (high) consumer in all categories.

	5 5
Belgium	SCOOP report (DG SANCO, 2003)
France	OFIMER report "Family consumption of aquatic products"
	(OFIMER, 2000) + SCOOP report (DG SANCO, 2003)
Germany	SCOOP report (DG SANCO, 2003)
Greece	Greek national household budget survey, conducted in 1998-1999
	(National statistical service of Greece, 1999)
Hungary	FAO data (FAO Database, 2001)
Italy	INN-CA Study 1994-1996 (Turrini et al., 2001)
Netherlands	Food consumption Survey 1997-1998 (Kistemaker et al., 1998)
Portugal	FAO data (FAO Database, 2001)
Spain	The Nutrition and Feeding National Study
	(Universidad Complutense de Madrid, 1991)
Sweden	Food intake survey, National Food Administration (Becker, 1989)
United Kingdom	FAO (FAO Database, 2001)

Table 6.2Sources of seafood data.

7. Selection of seafood species, locations and sampling moments

Scope

To select species at important sampling locations and moments, for field sampling.

Methods

At a first project meeting, all principal partners and subcontractors have selected the most important seafood species, based upon a ranking list in terms of consumed amounts, that is weighed by a factor related to the expected TBT levels. For the distribution of the total number of samples between the countries the national consumptions were taken into account: for countries with high seafood consumption more species were selected than for countries with low seafood consumption. Moreover, double sampling of species from approximately the same location at more than one country was avoided as much as possible (e.g., North Sea herring for the Dutch and German market).

Following the species selection, all principal partners and subcontractors have traced down the most important catch and breed locations of the species selected, based upon amounts. Finally, all principal partners and subcontractors have selected the number of sampling moments, based upon an equal distribution over the catching and collecting season, with a maximum period of one year.

Results

The results of the seafood species, sampling location and sampling moment selection are given in report compiled by UPPA (F. Pannier, Report on the selection of seafood species for TBT analysis in European countries – WP1 Building the database on TBT in seafood in Europe, May 2002). The report has been made available on the project website by IVM. Annex II summarises the results. Table 7.1 summarises the results in terms of number of species, locations and sampling moments per country.

On the average, about three locations per sample were selected and about two sampling moments per location. Countries with high seafood consumption (southern Europe) had more samples selected than countries with low seafood consumption (northern and central Europe).

Conclusions

Species selection was possible on the basis of the national consumption data and resulted in 25 species from 89 different locations, resulting in 170 samples. That is approximately 16 samples per country - however, for countries with high seafood consumption more samples were selected than for countries with low seafood consumption.

Country	Number of species	Number of locations	Number of samples
Belgium	3	3	6
France	3	8	16
Germany	3	3	6
Greece	5	9	17
Hungary	3	3	6
Italy	3	12	23
Netherlands	3	4	10
Portugal	10	13	19
Spain	7	19	38
Sweden	3	4	8
United Kingdom	5	11	21
All	25	89	170

Table 7.1Number of seafood species, locations and total samples selected per
country.

8. Sampling of seafood

Scope

Collection of samples to be analysed on TBT for risk assessment.

Methods

All principal partners and subcontractors have sampled the selected species at the selected locations and moments, following sampling guidelines based upon ICES guidelines (http://www.ices.dk/env/refcodes/guidelines.asp?topic=sample), of which were taken the following points: a) a sample should consist of 25 fish or large crustaceans such as crabs or lobsters, 50 mussels or other molluscs, or 100 small crustaceans such as shrimps; b) sampling should be conducted prior to spawning of the species concerned.

For large fish, 25 whole fish are replaced by 25 fillets, chunks, etc. The same principle is used in case of sampling cans from supermarkets: different supermarkets, different lots (if possible), coated/uncoated cans (if possible) are all purchased in the smallest units/portions possible, to arrive at a total of approximately 1-2 kg pooled sample.

All principal partners and subcontractors have prepared the samples by dissection of the edible parts that were homogenised and, in case of transportation to an external laboratory, freeze-dried. The water content was determined in the wet samples.

The subcontractors have sent their samples to the principal partners, with precautions to keep the sample at cold temperature, according to the following scheme: Belgian and Swedish samples were sent to CEFAS in the United Kingdom, Portuguese samples to GALAB in Germany, Hungarian samples to UHCR in Spain and Greek samples to IVM in The Netherlands.

The results for both the seafood sampling had to be reported on special sheets, to which also information concerning the chemical analyses had to be included (see Annex III).

Results

The actual sampling results followed the selected species, locations and moments closely. Deviations resulted from natural fluctuations in species occurrence at the selected locations and moments (whelk in the U.K.), earlier than anticipated end of catching seasons (Dutch herring), absence of catches due to oil spills (Northwest Spain), and so on. In many cases, alternatives could be sampled. Also, a considerable number of additional species were collected.

Annex IV contains the information on the species sampled and analysed, their sampling locations and sampling times. Table 8.1 gives an overview in terms of number of species, locations and sampling moments per country.

Country	Number of species	Number of locations	Number of samples
Belgium	3	4	11
France	3	8	16
Germany	4	9	24
Greece	7	15	24
Hungary	3	3	6
Italy	2	37	55
Netherlands	3	5	12
Portugal	11	17	25
Spain	7	19	32
Sweden	3	5	8
United Kingdom	5	13	22
All	25	135	235

Table 8.1Number of seafood species, locations and totals actually sampled per
country.

Conclusions

Actual sampling followed the planned sampling closely. Very few planned samples had to be cancelled or substituted for reasons beyond control. A relatively high number of extra samples were collected. Sampling followed the afore-set quality criteria.

9. Analysis of seafood samples

Scope

To generate TBT data, to be taken as input for the risk assessment.

Methods

All principal partners have determined TBT in the selected species of their own country and of one or two of the countries of subcontractors. All partners have long-term experience in the field of analysis of marine organisms for organotin compounds and have participated in several certification projects for reference materials (BCR-462, tin species in coastal sediment; BCR-477, tin species in mussel tissue; BCR-646, tin species in freshwater sediment). Annex V gives an overview of the analytical methods involved, which is summarised in Table 9.1. For quality control, a certified reference material BCR-477 (tin species in mussel tissue) was distributed by ENEA. All partners should be able to meet the following quality criteria for this reference material: accuracy 75 - 110% of the certified value, max. 15 % relative standard deviation of the reproducibility. To further assist in quality control, ultra-pure standards were made available by IVM. The analysis of blanks was set mandatory as well. The results for both the seafood samples and the quality control samples had to be reported on special sheets, to which also sampling information had to be included (see Annex III).

Partner	Derivatisation	Determination
CEFAS	Hydride	GC-FPD
ENEA	Pentyl	GS-MSD
GALAB	Ethyl	MIP-AES
IVM	Pentyl	GC-MSD
UHCR	Pentyl	GC-FPD
UPPA	Hydride/ethyl	QF-AAS/GC-FPD

Table 9.1 Summary of analytical methods.


Results

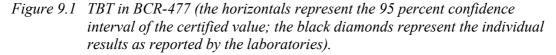

The results of the analysis of the samples seafood species on TBT are given in Annex VII. This annex also includes the results for the quality control samples. The latter are summarised in Table 9.2 and Figure 9.1. The quality criteria as formulated above are met.

Table 9.3 summarises the TBT concentrations in seafood. For each species, minimum, maximum, median and average values (with standard deviations) are given for each country and for all countries. These data are also given for different levels of aggregation, such as species families and classes. A graphical presentation of the results is displayed in Annex VII, Figures 9.2-9.11.

Table 9.2	Accuracy (expressed as percentages found of certified values) and
	reproducibility (expressed as relative standard deviation) for TBT in
	<i>BCR</i> -477.

Partner	Accuracy	Reproducibility
CEFAS	90	9
ENEA	97	8
GALAB	102	7
IVM	80	7
UHCR	81	1
UPPA	96	6

Average TBT levels over all species and countries increase in the order fish, crustaceans and mollusca. This is not surprising in view of the existing knowledge that fish are able to metabolise TBT and mollusca are not (knowledge about crustaceans was not existing).

Within the mollusca, high levels are found for bivalves only; cephalopods and gastropods have much lower values. For crustaceans, only shrimp were analysed. Within the fish category, the herring's family is clearly the most contaminated.

The high levels in the mollusca are more related to the country than to the species. Italian samples (mussels and clams, no cockles and oysters have been analysed) and, to a lesser extent, Portuguese samples (mussels, clams and cockles, no oysters have been analysed) are always high. Samples from other countries, Greece, Spain, France (mussels only) and the Netherlands and the United Kingdom (mussels and oysters) are always low.

Spacios	Family	Class	Country	Min	Mov	Mad	Δ.,	Sd	Ν
Species	ranniy	Class	Country DE	Min	Max	Med 5	Av		
Herring				1	38		11	14	13
			HU	1	15	8	8	6	4
			NL	9	51	30	30	29	2
			SE	2	10	5	5	4	4
			All	1	51	5	11	14	23
Anchovy			ES	4	30	17	19	10	5
			GR	31	51	38	39	7	5
			All	4	51	31	29	14	10
Sardines			ES	18	35	32	29	7	6
			GR	46	491	86	208	246	3
			PT	13	30	18	20	7	4
			All	13	491	30	68	129	13
	Herrings			1	491	17	31	72	46
Plaice			BE	2	2	2	2	0	2
Sole			ES	1	11	1	3	4	5
	Flat-fish			1	11	1	3	4	7
Cod			РТ	2	2	2	2		1
			UK	4	4	4	4		1
			All	2	4	3	3	2	2
Hake			HU	1	1	1	1	0	2
			РТ	1	3	2	2	1	2
			All	1	3	1	1	1	4
Pollack			DE	1	2	1	1	0	4
Haddock			UK	2	2	2	2		1
Pouting			РТ	0	0	0	0	0	2
Whiting			ES	1	22	10	11	8	5
U			NL	2	4	4	3	1	3
			All	1	22	5	8	7	8
	Codfish			0	22	2	4	6	21
Mackerel			РТ	4	6	5	5	1	2
Tuna			DE	1	4	3	2	1	5
i unu	Scombridae		DL	1	6	3	3	2	7
Salmon	Scomoriado		BE	2	2	2	2	0	2
Sumon			DE	1	8	8	6	4	4
			FR	6	7	6	6	1	2
			SE	2	11	7	7	6	2
			All	2 1	11	6	6	3	10
Sea bream			GR	13	13	13	13	5	10
Sea bream Sea bass			GR	2	7	4	4	4	2
Sea Dass		Fich	UN						
Classing of		Fish	DE	$\frac{\theta}{12}$	491	5	17	52	94
Shrimp			BE	13	199	89	96 2	58	7
			ES	2	5	3	3	1	6
			PT	0	6	3	3	4	2
		C .	All	0	199	6	46	61	15
		Crustaceans		0	199	6	46	61	15
Muggal			ES	26	20	20	20		1
Mussels			ES	26	26	26	26		1

Table 9.3TBT levels in seafood, minimum and maximum values, medians and
averages (with standard deviations) in mg cation per g fresh weight.

Species	Family	Class	Country	Min	Max	Med	Av	Sd	Ν
			FR	5	64	13	24	24	6
			GR	8	30	12	14	7	9
			IT	32	751	144	202	181	36
			NL	5	20	16	14	6	6
			PT	70	100	85	85	21	2
			UK	6	52	9	16	14	10
			All	5	751	41	114	159	70
Clam			IT	15	289	197	175	79	19
			PT	33	275	154	154	171	2
			All	15	289	197	173	84	21
Oyster			FR	3	27	11	13	9	8
			UK	2	62	36	30	22	7
			All	2	62	15	21	18	15
Cockles			PT	64	240	152	152	124	2
	Bivalves			2	751	49	113	140	8
Squid			ES	4	24	12	13	10	4
			GR	1	4	3	3	2	2
			All	1	24	5	10	10	6
Octopus			GR	1	29	15	15	20	2
			PT	0	27	5	8	10	6
			All	0	29	5	10	12	8
	Cephalopods			0	29	5	10	10	14
Whelk			UK	2	18	2	7	9	3
	Gastropods			2	18	2	7	9	3
		Mollusca		0	751	35	99	135	125
All				0	751	15	63	112	234

Country codes: BE=Belgium, FR=France, DE=Germany, GR=Greece, HU=Hungary, IT=Italy, NL=Netherlands, PT=Portugal, ES=Spain, SE=Sweden, UK=United Kingdom.

The high average level for shrimp is caused by the Belgian shrimp only. Spanish and Portuguese shrimp show low levels. For the herrings, the high average level is caused by the Greek sardines only. Again, the Spanish and Portuguese samples show low levels (as do the other members of the herring family, anchovy (including the Greek samples) and herring).

In general, the conclusion is that Italian and Portuguese bivalves show high TBT levels as do Greek sardines and Belgian shrimp. For the Italian bivalves this conclusion is not very surprising in view of the general high contamination level of the Mediterranean near the coast of Italy as well as the afore-mentioned fact that bivalves are known to be unable to metabolise TBT. The Portuguese bivalves, however, are sampled in the presumably less contaminated Atlantic, so the results for these samples are somewhat surprising. Surprising too are the results for the Greek sardines and Belgian shrimp, because 1) these species show low levels when from other countries, 2) sardines are expected to metabolise TBT and 3) the Belgian location (North Sea) is not expected to be highly contaminated. Finally, it should be noted that this section deals with the results for all samples, including those that cannot be considered representative for consumer groups; the latter will not be included in risk assessment.

Conclusions

On average, the TBT levels found seem to follow the expected trends: low levels for fish and high levels for bivalves. Upon a closer look however, the geographical factor is as important: Italian and Portuguese bivalves, Belgian shrimp and Greek sardines show high levels were these species from other countries do not. Only in case of the Italian bivalves a satisfying explanation can be found: they come from a relatively highly contaminated Mediterranean location and cannot metabolise TBT.

10. Collection of household seafood preparation ways

Scope

To identify the most important preparation ways in terms of occurrence, to be applied during the study of TBT breakdown during seafood preparation.

Methods

All principal partners and subcontractors have typical national mussel recipes and submitted them to ENEA, the partners responsible for the TBT breakdown study during preparation.

Results

Recipes were received from Great Britain, The Netherlands, Portugal, Greece and Italy. From the recipes only the factors with a conceivable effect on TBT were taken into account. These factors were: 1) the way of heating the mussels: steaming, cooking, microwave and pan frying; and 2) the addition of substances that could have a solvent effect: frying oil and wine (because of its alcohol content).

Conclusions

The ways of preparing mussels in the different countries are –understandably- quite similar. There is usually a short period in which the mussels are heated to cook them be it by steam, (partly) submersed or by microwave, and then in some recipes after she short cooking period they are pan-fried. Long cooking periods are not common because this results in a rubbery texture, which makes the mussels difficult to eat.

11. TBT breakdown during household seafood preparation

Scope

TBT breakdown to be taken into consideration at the risk assessment.

Methods

ENEA has selected different and representative ways of mussel preparation, and applied them to mussels collected from a highly contaminated location. Mussels with highexpected TBT levels were used in order to detect significant changes in concentration, which might not be possible if the levels were near or below the limit of quantification.

A total of 15 kg of mussels was cleaned and randomly subdivided into four groups in order to ensure inter-sample homogeneity.

Samples from one group were directly analysed for the determination of organotin concentration levels in raw mussels; samples from the other three groups have been cooked following different European cooking recipes. Recipes from the United Kingdom, The Netherlands, Portugal, Greece and Italy have been considered. Cooking conditions have been chosen to represent the common elements in the different ways of cooking. Furthermore, ingredients without any presumable effect on TBT degradation, like garlic, onion, pepper, etc have not been considered in order to minimize the matrix problems. However, ingredients that could have some effect on the final TBT content of the cooked mussels by influencing the cooking temperature or by a potential extraction solvent effect, like oil and wine, have been taken into consideration. So, mussels were cooked in microwave, by steaming and in a frying pan with and without oil or wine. According to the different recipes, mussels were cooked for different time and with or without the shells. Finally, mussels were also boiled at increasing time, up to 60 minutes, in order to individuate an eventual kinetic of TBT degradation.

All the cooking experiments have been carried out in a dedicated food science laboratory of the Italian nutrition institute (Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione, INRAN).

The selected cooking conditions are reported in Table 11.1. The amount of each batch of mussels was around 250 grams. The temperature was measured just at the end of the cooking procedure for each trial by inserting a thermocouple in the edible part of the mussels.

After cooking the mussels were shelled, homogenized in a blender and stored at -20 °C until analysis. In case of cooking by microwave oven and frying pan procedures, a liquid fraction was present at the end of the cooking. In these cases the liquid fractions were separated from the cooked mussels and separately analysed.

Cooking procedure	Code	Time of cooking (min)	Seasoning
Microwave	MW-1	2	None
Microwave	MW-2	5	None
Frying pan	FP-1	5	None
Frying pan	FP-2	5	Oil
Frying pan	FP-3	5	Wine
Frying pan shelled mussels	FP-S1	5	Hot oil
Frying pan shelled mussels	FP-S2	7	Hot oil
Steamed	ST-1	Until shell opening	None
Steamed	ST-2	5 min after shell opening	None
Steamed	ST-3	10 min after shell opening	None
Boiled	K-5	5	None
Boiled	K-10	10	None
Boiled	K-20	20	None
Boiled	K-30	30	None
Boiled	K-60	60	None

Table 11.1 Selected home cooking conditions.

The same method as for the Italian seafood samples has been used (see Annex V) and the same quality control samples have been used (blanks and BCR-477). The quality criteria are given in Table 11.2.

	Accuracy in percentage of certified value	Relative standard deviation of the reproducibility
TBT	75 - 110	0 - 15
DBT	75 - 125	0 - 15
MBT	75 - 125	0 - 15

Table 11.2 Quality criteria for organotins in certified reference material BCR-477.

Results

Due to the progressive loss of water and mineral salts content during the cooking, particularly in microwave and vapour procedures, the butyltin concentrations on wet weight basis before and after cooking are not comparable. Hence, the absolute amount (nanograms) of analyte found before and after cooking must be considered. Furthermore, due to the slight variation in the initial weight of the different batches of mussels, a normalisation to a common initial batch of 250 grams has been done. The normalized organotin data are reported in Table 11.3.

Organotin compounds in the liquid fractions were always below the detection limit (from 7 ng.l⁻¹ to 16 ng.l⁻¹) indicating that no significant extraction of butyltins occurred during the cooking.

	products of TBT.				
Treatment	Collected	Temperature	TBT	DBT	MBT
code	liquid	measured	(microgram)	(microgram)	(microgram)
	(ml)	(°C)			
Untreated	-	-	14.0	9.8	2.2
MW-1	77	77	7.7	5.0	0.9
MW-2	36	87	11.2	6.2	0.9
FP-1	29	88	9.5	5.5	1.0
FP-2	40	85	7.3	4.6	1.1
FP-3	86	88	5.9	5.0	1.2
FP-S1	32	87	7.4	4.5	0.9
FP-S2	0	99	6.6	5.0	1.3
ST-1	-	76	10.2	6.6	1.6
ST-2	-	89	11.1	7.1	1.3
ST-3	-	91	11.0	7.7	1.7
K-5	-	89	12.1	7.3	1.6
K-10	-	93	13.4	8.8	1.8
K-20	-	89	11.6	8.1	1.8
K-30	-	88	11.8	7.7	1.8
K-60	-	92	8.2	5.0	1.2

Table 11.3Results from home cooking experiments: amount of liquid collected,
measured temperature and organotin concentrations (in microgram per
250 g fresh weight mussels) before and after different cooking
procedures. Dibutyltin (DBT) and monobutyltin (MBT) are degradation
products of TBT.

Table 11.4 presents the results for the certified reference material BCR-477. The quality criteria, as listed in Table 11.2 are met.

	Accuracy in percentage	Relative standard deviation
	of certified value	of the reproducibility
TBT	97	8
DBT	93	8
MBT	107	12

Table 11.4 Accuracy and reproducibility for organotins in BCR-477.

The data given in Table 11.3 are presented graphically in Annex VII, Figures 11.1-11.6 where a number of comparisons are made. In Figures 11.1-11.3, the comparison of the butyltin amounts in 250 grams of mussels before and after cooking in microwave, frying pan and by steaming, respectively, is reported. The same comparison for increasing boiling time is reported in Figure11.4. Figure 11.5 shows the comparison between the TBT amount in 250 grams of mussels before and after the different cooking procedures. Finally, the comparison between the total butyltin (sum of TBT, DBT and MBT) amount in 250 grams of mussels before and after the different cooking procedures is reported in Figure 11.6.

All the results are average of duplicate trials. The standard deviation of the reproducibility of each couple of replicates was almost always lower than 10 %. However, taking into account the existence of other eventual uncertainty sources, like for example the differences in the amount of edible part between the different batches of mussels, it has been arbitrarily decided, in a conservative manner, to consider a total uncertainty of 20 % for all the obtained results.

As can be seen from the figures, TBT is never completely degraded after cooking and in some case only a slight decrease of TBT concentration is observed. In particular, the TBT concentration in mussels cooked by microwave, steaming and boiling procedures was never lower than 70 % of the initial concentration. A significant TBT decrease, down to 40 % of the initial concentration, was observed after cooking mussels in frying pan with wine or oil and when shelled.

In general, the temperature reached in the edible part of mussels during the cooking procedures, was almost always ranging between 80 °C and 90 °C because of the high amount of water that the mussels release during the cooking. Only in case of shelled mussels cooked for 7 minutes in hot oil, the temperature goes slightly up, although still remaining under 100 °C.

The data obtained for DBT and MBT showed the same trend as for TBT (see Table 11.3). These trends could indicate a lack of TBT degradation products (DBT and MBT) accumulation even in presence of a small decrease of TBT content. This finding seems to be confirmed by considering the sum of all the butyltin compounds (see Figure 11.6) as the relative observed trend is very similar to the TBT ones.

The kinetic study, carried out by increasing the boiling time (see Figure 11.5 and Table 11.3), showed that no significant degradation of any butyltin compounds was observed for the first 30 minutes whereas a degradation of about 50 % for the three considered analytes was observed after 60 minutes of boiling.

Conclusions

There is no significant loss of TBT during common household mussel cooking procedures. Significant loss only occurs after prolonged heating, a procedure that is not common in most European countries and produces mussels that we expect most people would not want to eat.

12. TBT breakdown during industrial seafood preparation

Scope

TBT breakdown during industrial seafood preparation to be taken into consideration at the risk assessment.

Methods

IVM has selected representative ways of industrial mussel preparation, by enquiring at different processing plants, and applied these procedures to mussels collected by ENEA from a highly contaminated location. Mussels with high-expected TBT levels were used in order to detect significant changes in concentration, which might not be possible if the levels were near or below the limit of quantification. The actual cooking process was conducted at the mussel plant of Roem van Yerseke B.V. (Yerseke, The Netherlands), the subsequent pasteurisation steps and analyses at IVM.

Samples were divided into twelve subsamples of approximately equal size (ca. 800 grams each). Six subsamples (three for analysis of raw mussels and three for spare) were stored at -20 °C and six were combined to a single batch and steamed in the industrial mussel plant. This steaming process was extremely quick with a total exposure time of roughly 90 seconds.

After steaming, the sample was divided into six subsamples of approximately equal size. Three of the subsamples were analysed in singlefold for organotins content. The remaining three were put in a glass jar with vinegar (resulting pH=4,0-4,2) and pasteurised (30 minutes at 80 °C). After pasteurisation the subsamples were analysed in singlefold.

The same analytical method as for the Dutch seafood samples has been used (see Annex V) and the same quality control samples have been used (blanks and BCR-477). The quality criteria are the same as for the home cooking experiments, see Table 11.2. All subsamples were kept at -20 °C until the moment of analysis, and were analysed at the same time.

Results

Study of TBT breakdown during industrial seafood preparation.

Due to the progressive loss of water and mineral salts content during the storage and during the cooking procedure, the butyltin concentrations on wet weight basis before and after cooking are not comparable and the absolute amount (nanograms) of analyte found before and after cooking have been considered. Furthermore, as the initial weight of the different batches of shelled mussels differed slightly, normalization to a common initial batch of 80 grams of shelled mussels has been done.

The normalized organotin data are reported in Table 12.2. Table 12.3 presents the results for the certified reference material BCR-477. The quality criteria, as described in Table 11.2 are met.

Treatment	TBT	DBT	MBT
None (raw)	10.4	2.0	0.54
Steamed	9.9	2.0	0.41
Steamed and pasteurised in vinegar	7.9	1.7	0.49

 Table 12.1
 TBT, DBT and MBT concentrations (microgram cation per 80 g raw shelled mussels), raw, steamed and steamed and pasteurised mussels.

Table 12.2 Accuracy and reproducibility for organotins in BCR-477.

	Accuracy in percentage of certified value	Relative standard deviation of the reproducibility
TBT	80	7
DBT	84	11
MBT	90	11

All the results are average of triplicate trials. The standard deviation of the reproducibility of each triplicate trial was almost always lower than 13% (as in the case of home cooking). Taking into account the existence of other eventual uncertainty sources, it has been arbitrarily decided, in a conservative manner, to consider a total uncertainty of 20% for all the obtained results for tests for significance.

In Annex VII, Figure 12.1 the comparison of the butyltin amounts in 80 grams of shelled mussels before and after steaming and steaming plus pasteurization in vinegar is presented graphically. There is an insignificant decrease in TBT levels after steaming and a significant decrease of about 20 % of the initial TBT content after steaming and pasteurization in vinegar. In this last case the utilization of vinegar probably helps organotin extraction as this cooking method can be seen as a classical acidic extraction method.

The comparison between the total butyltin amount in 80 grams of shelled mussels before and after the different industrial cooking procedures is presented in Annex VII, Figure 12.2. The results are the same as for TBT alone: an insignificant decrease after steaming and a significant decrease of about 20 % after steaming and pasteurization in vinegar. These results confirm the hypothesis that extraction into vinegar is the main cause of the TBT reduction, and that degradation of TBT into DBT and MBT has no significant contribution during the short heating times related to industrial cooking.

Conclusions

There is no significant loss of TBT during industrial mussel cooking procedures.

13. Collection of detailed consumption patterns

Scope

To identify groups with high seafood consumption and/or high vulnerability for exposure to TBT (e.g., children), to be taken into consideration at the risk assessment.

Methods

During the project, all principal partners and subcontractors have searched for data of detailed consumption patterns, to improve upon the relatively crude data that was found used for the species selection.

Results

Only the Greek partner retrieved more detailed consumption data. This data is presented in Annex VI.

Conclusions

Detailed consumption data in a form that is suitable for making detailed exposure assessments is either non-existent or not publicly available.

14. Other sources of TBT exposure

Scope

Collection of data on other sources of TBT exposure, to be taken into consideration at the risk assessment.

Methods

A literature search was carried out to identify literature mentioning other sources of TBT exposure and their importance.

Results

Besides antifouling (TBT), organotins are being used as biocides (TPT, Cyhexatin, FBTO), wood preservatives, stabilizers in plastics (mono and dialkyltins) and additive in textiles (TBT, TPT). Whereas use of organotin as antifouling has received the most attention, it is in fact the use as stabilizer that takes the largest share of the world production of organotins (around 70% of world production, Hoch, 2001). These organotins have indeed been identified in several plastics (Takahashi et al., 1999) as well as in surprisingly high concentrations in some textiles and consumer products (Gaaikema and Alberts, 1999; Reus, 2000; Reus en Westerhof 2001, Peeters, 2000). Specifically for TBT however, only two groups of consumer products have attracted attention: siliconecoated baking paper and various textile products. The European Commission's Scientific Committee on Food concluded that in the light of the foreseen phasing-out of the use of organotin in the production of silicone coated baking paper, it does not pose a threat to the European consumer. Janssen et al. arrive at a significant exposure only in their worstcase scenarios that are presented as a first steps in a step-wise investigation towards more and more realistic exposure scenarios (Jansen et al., 2000). After their first refining of the exposure scenario the calculated exposure drops to well below the TDI at which point they stop calculating more refined scenarios.

Conclusions

Exposure of European consumers to TBT via exposure routes other than seafood is relatively insignificant. It is important however, to note that this may not necessarily be true for all other organotins. The EFSA Scientific Panel on contaminants has decided that in future risk assessments TBT, DBT, TPT and DOT (dioctyltin) should together be compared to the TDI of 0.25ug/kg bodyweight as for TBT. As this range of compounds is found in a far wider spectrum of foodstuffs and consumer products, this might lead to very different conclusions.

15. Risk assessment

Scope

To identify possible consumer groups at risk and to advise maximum residue levels.

Methods

The basis for defining what constitutes a high risk and concurrently what defines a high concentration site is the Tolerable Daily Intake (TDI) which is in turn derived from the NOAEL for immunotoxicity in rats (Vos et al., 1990). The World Health Organisation recommends a TDI of $0.3 \mu g/kg$ bodyweight (bw) per day (WHO, 1999). This is however a figure that was rounded off so for our calculations we will use $0.25 \mu g/kg$ bw per day.

For our calculations we assume a bodyweight of 60 kg. The established figure of $0.25\mu g/kg$ bw per day means that in that case a safe level is maintained with an intake of 15 μ g per day. Although 60 kg is a very common figure for calculations like we present here, it is important to realise that every population, especially if one includes children, has a wide variety in bodyweights, so that not too much emphasis should be placed on the absolute amount of TBT used in the calculations. For example, if in a certain type¹ of seafood a TBT concentration is found that leads to exceeding the TDI if a 60 kg person consumes 180 grams a day, this may seem rather a lot, but the TDI would also be exceeded if a 20 kg person (e.g. a 4-year old) consumes 60 grams.

This study focuses on the risk of TBT-exposure through consumption of seafood. Although there may be other exposure routes, these are assumed not to contribute significantly to the total exposure levels where these levels approach or exceed the TDI, as is explained in Section 14.

Because of the limited consumption data the risk assessment is based on taxonomic groups rather than single species. For specific risks this is further elaborated upon where the underlying data is good enough to allow a more detailed assessment.

For each country a selection is made of which samples should be included into that country's median TBT value per taxonomic group. This selection is based on geography and sometimes on export data. For example: no shrimp were sampled in The Netherlands and Germany. Belgian shrimp were sampled, so in this case these are assumed comparable to Dutch shrimp due to the geographical proximity of the catching area, and as a large part of the German shrimp imports are from The Netherlands, in this case the value for crustaceans used in calculations is the same for Belgium, The Netherlands and Germany.

¹ A 'type' of seafood is typically a species-origin combination e.g. Dutch mussels, but a combination of species and/or locations is also possible, e.g. molluscs from the Mediterranean.

Based on the appropriate median TBT values and the consumption data the extent to which the TDI of consumers (or the average population) is approached is calculated. Because amounts of seafood consumed by the average population, the average consumer and even the average high consumer in most cases tend to be low compared to the amounts where TBT intakes would approach the TDI more specific calculations are also presented. These calculations are important because the average consumer does not exist as such. Consumption averages by definition cannot shed much light on the extremes that inevitably exist in consumption patterns.

Without going into the question whether deriving Maximum Residue Levels is the most suitable policy option to keep the exposure of the European seafood consumer below acceptable levels we will make recommendations of what such levels might be, if they were implemented.

Results

First of all the consumption estimates are presented in Table 15.1. For details see Section 6. The medians of TBT content in the country specific samples are given in Table 15.2. These are derived from the data presented in Annex IV, but to clarify the process this has been put into a separate Annex VIII.

	Part of the population	Fish	Molluscs	Cephalo-	Crusta-
				pods	ceans
Belgium	Consumers	13.4	0.7	ncr	ncr
Belgium	High consumers >95%	47.7	0.7	ncr	ncr
France	Consumers	37.6	12.0	18.2	14.9
France	High consumers >95%	94.3	23.0	29.7	33.6
Germany	Consumers	36.6	18.4	ncr	11.6
Germany	High consumers >97.5%	157.7	125.0	ncr	38.4
Greece [#]	General population	35.6	6.0	6.0	6.0
Greece [#]	High consumers 95%	106.1	86.0	86.0	86.0
Hungary	General population; based on	3.1	0.0	ncr	ncr
	internal supply (uncorrected)				
Italy	Consumers	43.6	34.1	ncr	20.9
Italy	General population	23.5	6.2	ncr	1.4
Netherlands	General population	9.2	0.5	ncr	0.3
Netherlands	High population	16.0	0.6	ncr	0.6
Portugal	General population; based on	129.7	1.6	4.1	2.1
	internal supply (uncorrected)				
Spain	General population	59.8	19.6	5.9	3.2
Sweden	General population	30.5	2.8	ncr	ncr
United Kingdom [#]	General population	19.4	1.0	1.0	1.0

Table 1Estimates of European seafood consumption per taxonomic group
(gram/day); (ncr=no consumption recorded).

For UK and GR the non-fish is reported together so these are the maximum possible values.

	Fish	Molluscs	Cephalopods	Crustaceans
Belgium	0.4	15	$4.4^{\#}$	89
France	5.7	15	$4.4^{\#}$	5.5#
Germany	3.6	15.5	$4.4^{\#}$	89
Greece	34.5	12	2.4	5.5#
Hungary	0.0	15.5#	$4.4^{\#}$	5.5#
Italy	4.5#	113	$4.4^{\#}$	5.5#
Netherlands	2.0	15.5	$4.4^{\#}$	89
Portugal	4.1	85	4.6	1.0
Spain	13.0	26	12.0	1.0
Sweden	4.0	15.5#	$4.4^{\#}$	5.5#
United Kingdom	3.9	11	$4.4^{\#}$	5.5#

Table 2Medians of TBT-content (ng/g) of location-specific selections of seafood.

These figures are the median of all samples of all countries in that taxonomic group. These are used where too little information or too few location-specific samples were available to make a selection.

To further clarify what these figures mean and how they compare to possible maximum residue levels the inverse of these figures are given in Table 15.3 multiplied by 15000 giving the amount a 60 kg person would have to eat of this kind of seafood to reach the TDI.

	Fish	Molluscs	Cephalopods	Crustaceans
Belgium	42857	1000	3409	169
France	2618	1000	3409	2727
Germany	4167	968	3409	169
Greece	435	1250	6061	2727
Hungary	inf.	968	3409	2727
Italy	3333	133	3409	2727
Netherlands	7692	968	3409	169
Portugal	3704	176	3261	14634
Spain	1153	575	1244	14634
Sweden	3750	968	3409	2727
United Kingdom	3846	1364	3409	2727

Table 3Amounts at which a 60 kg individual would reach the TDI (grams per day).

Comparing the amounts of table 15.3 with the actual amounts eaten froom Table 15.1 gives a measure of the risk that is associated with a group of consumers in a certain country. Most amounts from 15.3 however, are so high that there is little use for such a comparison. Therefore we have chosen to describe the different cases in four categories as can be seen in the Conclusions section.

Conclusions

Double low risk countries

The first category consists of countries that have low risk as a result of both low seafood consumption and low TBT content in the location-specific medians of each taxonomic group. These countries are Hungary, Sweden and The United Kingdom. In these countries relatively little seafood is eaten and TBT values are so low that high consuming individuals would have to eat unrealistic amounts (upwards of 1 kg a day) to be at risk of taking in an amount of TBT exceeding the TDI.

Low seafood consumption countries

The second category consists of countries that have a low general consumption of seafood but not low TBT contents in the whole spectrum of seafood eaten. In this category we find the three neighbouring countries Belgium, Germany and The Netherlands. In these countries the general consumption of seafood is low, even if for Germany a highconsuming group was identified. The TBT values for fish, molluscs and cephalopods are low, but in Belgian shrimp relatively high TBT concentrations were found. Belgian shrimp in this case are taken to be comparable to Dutch shrimp due to the geographical proximity of the catching area, whereas a large part of the German shrimp imports are from The Netherlands. The low overall consumption of crustaceans do not exclude the possibility of the existence of small groups of high consumers, while 100% of the TDI (for a 60 kg individual) could be reached with consumption of around 160 grams daily.

High seafood consuming counties with relatively low TBT contents in seafood

France and Spain can be considered high seafood consuming countries. Even though there are marked differences between the two counties (Spain's seafood consumption per capita being around twice that of France), both fit into the same risk category. For both countries considerable amounts of samples were analysed for TBT and the medians of the samples (as well as the averages) are so low that even with high consumption of seafood being common in large section of the French and Spanish population, it seems unlikely that anyone could get near the TDI that way. The amounts need to get near the TDI (for a 60 kg individual) are typically around 1 kg and over, depending on the (group of) species.

High seafood consuming countries with relatively high TBT content in one or more seafoods

The final category is the most serious one, and this category will be described in most detail. For each of the three countries in this category, Greece, Italy and Portugal, samples with high TBT content have been found while the countries have high seafood consumption at the same time.

In the case of Portugal high TBT values were found in samples of clams, cockles and mussels, with the range of TBT values being 32-275 ng/g and a median value of 85 ng/g. Based on the median of all mollusc samples this means that for a 60 kg person 176 grams would constitute exposure at 100% of the TDI. The highest contaminated samples however would produce that exposure level at a consumption of 55 grams a day. The relatively poor consumption information found for Portugal gives very little indication of

what amount of clams, cockles and mussels are actually eaten. The levels found however are so high, that it seems very likely that certain parts of the population (e.g. in coastal communities) are exceeding the TDI.

In Italy mussels were found to contain 35-488 ng/g with a median value of 113 ng/g. Based on the median of all mollusc samples this means that for a 60 kg person 133 grams would constitute exposure at 100% of the TDI. The highest contaminated samples however would produce that exposure level at a consumption of just 31 grams a day. Italian consumers of molluscs consume an average of 34.1 grams per day. The size of this group of consumers must be estimated at around 10 million individuals based on the consumption figure for the general population and a population of 58 million. Because of differences in geographical location, consumer preference, differences in body weight (e.g. children) this group of consumers will inevitably contain a large number of people exposed at or even above the TDI.

In Greece the picture is somewhat mixed. The range of TBT levels found in fish is very wide. Several samples were below the detection limit giving a range of <3-491 ng/g with a median value of 34.5 ng/g (including data from Spain, as Greece imports a large amount of anchovy and sardines from Spain). Based on this median of all fish samples this means that for a 60 kg person 434 grams would constitute exposure at 100% of the TDI. This clearly poses very little risk. The highest contaminated sample however would produce a 100% of TDI exposure at a consumption of just 31 grams a day. Therefore the more detailed consumption information was used to further investigate the figures found. In the Greek household expenditure survey, three categories of fish are distinguished based on quality, although quality in this case seems to relate to a combination of perceived quality, price and possibly other attributes. Sardines are in the 'lowest' category in this survey. This is however the category of seafood eaten most by the Greek population with 41% of Greeks being regarded as a consumer in this category. The 95th percentile of consumers of this category (approximately 200,000 consumers) consume on average 95 grams a day. Based on the median of Greek sardines and anchovy, 37 ng/g, these people would be exposed to just under one quarter of the TDI for a 60 kg individual.

Using the median of sardines only (86 ng/g) that goes up to 54% of the TDI so exposure at levels near or over the TDI seems realistic for a part of these high consumers because within the 95th percentile there will still be differences with regard to preference, location, body weight, etcetera. With the current data however, it is not possible to estimate how large such a group might be, although it obviously consists of fewer than 200,000 individuals.

16. Conclusions

Very little is known about what seafood people actually eat. Information on consumption patterns, consumption of specific groups, regional differences, etc. is lacking and this hampers the risk assessment severely.

The main conclusion from the cooking experiments is that TBT does not break down significantly in most typical cooking procedures. Only very long cooking times, unusual for most seafood, or combinations of cooking and frying, uncommon for practically every seafood but molluscs, show a significant decrease.

Although there is a large spread in concentrations and the averages and median are usually not very high, some very high values are still being found. The highest concentrations measured (491 and 488 ng/g TBT) in this project would cause a 60 kg individual to exceed his or her TDI with a consumption of 31 grams. In the risk calculations lower levels found in the same (group of) species, compensate for these high values. Although this is likely to be a fair representation of what happens in reality this is not certain.

As has been pointed out in the previous section, there is cause for concern regarding shellfish (molluscs) in Portugal and Italy and to a lesser extent regarding sardines in Greece. The number of people that are exposed to levels near the TDI however, cannot be determined without further research. Although this research should aid decisions about what policy measures to take this should not be used as an excuse not to take any measures at all.

A positive finding of this study is that there is a large number of countries where TBT in seafood does not appear to be a problem at all. And although in Northern European countries this may be 'helped' by the low seafood consumption it is also a very much a result of the low TBT levels found in most areas.

17. Exploitation and dissemination of results

The results have been disseminated mainly by providing the relevant sub-committee of the EFSA with the information uncovered in this project. Not only is EFSA the proper organisation for dealing with issues such as organotin in seafood, but it was agreed at an early stage of the project that the results could potentially cause a food scare if they were not disseminated in a responsible manner. Seeing that the afore mentioned EFSA sub-committee was already involved in assessing the risk of organotin in food rather than just the risk of tributyltin in seafood as we were doing, it was agreed that providing the sub-committee with the relevant information was the most likely way to strike a balance between getting the results entered into the policy-making process and avoiding the risk of creating unnecessary concern in (parts of) the European seafood-consuming public.

Dissemination of results to the scientific community has also taken place, albeit with the considerations mentioned above in mind. The most relevant presentations were:

- Willemsen, F.H. & Wegener, J.W. (2004). Exposure of the European seafood consumer to Tributyltin. 5th European pesticides residues workshop - pesticides in food and drink, Stockholm, Sweden, June 13-16, 2004
- Willemsen, F.H., Morabito, R. & Wegener, J.W. (2003). Sampling seafood for assessment of tributyltin exposure of the European consumer: Did we get it right?. 13th Annual conference of the International Society of Exposure Analysis, Stresa, Italy, September 21-25, 2003
- Massaniso, P., Di Rosa, F., Willemsen, F.H. & Morabito, R.(2003). Fate of TBT during seafood cooking. ICEBAMO 2003, Pau, France, 3-5 December 2003.

Exploitation of results is likely to involve further research in several areas identified here as problematic. As was elaborated in Section 16 it is likely that in some areas measures have to be taken. The experiences from the OT-SAFE project should be used in the practical implementation of such future policies.

18. Policy related benefits

The results of this research project have important bearings on the EU policy concerning contaminants in food. Since very little regulation with regard to organotin compounds in food is in effect yet. Although it is not up to the research team to say where and how policies should be implemented there is a strong case for regulation. Local and EU policymakers will have to coordinate their actions and make decisions on how to act.

One more important issue that must be mentioned here is the role of trade in the supply of seafood to the European market. There is a definite trend towards a larger share of especially farmed- seafood imports. This may pose a problem if the exporting countries are not as advanced when it comes to restricting the use of organotin as anti-fouling paint as the EU is. Because local and regional effects seem to play a role in the current distribution of TBT in seafood in Europe, one might at this point look at local measures for control. If seafood imports were to have a higher TBT content than locally produced seafood and reliance on imports increases, it could mean that local measures become ineffective and maximum residue levels and a mechanism for adhering to such levels might have to be put in place.

References

- Becker, W. (1989). *Befolkningens kostvanor och näringsintag i Sverige 1989*. National Food Administration.
- Becker, W. (1999). Så ofta äter vi fisk. (That is how often we eat fish. In Swedish). *Vår Föda, 1*, 27.
- Belfroid, A.C., Purperhart, M. & Ariese, F. (2000). Organotin levels in seafood. Mar. Pollution Bull., 40, 226-232.
- FAO Database (http://apps.fao.org/page/collections?subset=agriculture).
- Fent, K. (1996). Ecotoxicology of organotin compounds. Crit. Review. Toxicol., 26, 1-117.
- Gaikema, F.J. & Alberts, P.J. (1999). Gaschromatografische beplaing van residuen van organotinverbindingen in textielproducten. *De Ware(n)-Chemicus, 29*, 23-33.
- National statistical service of Greece (1999). Household expenditure survey, National statistical service of Greece, Athens.
- Gomez-Ariza, J.L., Giráldez, I., Morales, E., Ariese, F., Cofino, W. & Quevauviller, Ph. (1999). Stability and storage problems in organotin speciation in environmental samples. J. Environ. Monit., 1, 197-202.
- Hoch, M. (2001). Organotin compounds in the environment an overview. *Applied Geochemistry*, *16*, 719-743.
- Janssen, P.J.C.M., Veen, M.P. van & Speijers, G.J.A. (2000). Health Risk Assessment for Organotins in Textiles. RIVM-rapport 613350 002. Rijks Instituut voor Volksgezondheid en Milieu, Bilthoven.
- Kannan, K. & Falandysz, J. (1997). Butyltin Residues in Sediment, Fish, Fish-eating Birds, Harbour Porpoise and Human Tissues from the Polish Coast of the Baltic Sea. *Baseline*, 34, 203-207
- Keithly, J.C., Cardwell, R.D. & Henderson, G. (1997). Tributyltin in Seafood from Asia, Australia, Europe, and North America. In *Harmful Effects of the Use of Antifouling Paints for Ships*. (p. 79-93). Kirkland, Washington: Parametrix, Inc.
- Kistemaker, C., Bouman, M. & Hulshof, K.F.A.M. (1998). De consumptie van afzonderlijke producten door Nederlandse bevolkingsgroepen: voedselconsumptiepeiling (1997-1998) / (The consumption of seperate products by population groups in the Netherlands: Food consumption Survey 1997-1998). Zeist, the Netherlands: TNO Voeding.
- Madhusree, B., Tanabe, S., Öztürk, A.A., Tatsukawa, R., Miyazaki, N., Özdamar, E., Aral, O., Samsun, O. & Öztürk, B. (1997). Contamination by butyltin compounds in harbour porpoise (*Phocoena phocoena*) from the Black Sea. *Fres. J. Anal. Chem.*, 359, 244-248.
- OFIMER, Bilan trimestriel (2000). Consommation des Ménages en Produits Aquatiques, Consoscan from society Secodip (group Taylor-Nelson-Sofres). OFIMER.
- Pannier, F. (2002). Report on the selection of seafood species for TBT analysis in European countries WP1 Building the database on TBT in seafood in Europe. Pan, France: UPPA.
- Peeters, R. (2000). Schadelijk voor de volksgezondheid TBT in kunststof en textiel. *Informatie-blad TNO-MEP*. Apeldoorn: TNO-MEP.
- Penninks, A.H. (1993). The Evaluation of Data-derived Safety Factors for bis(tri-n-butyltin)oxide. *Food Additives and Contaminants*, 10, 351-361.
- Reus, H.R. (2000). TBT in textiel. *Een oriënterend onderzoek*. Rapport ND 1 BM 004/01. Keuringsdienst van Waren Noord, Groningen.

- Reus, H.R & Westerhoff, J.P. (2001). Onderzoek Naar Het Gebruik Van Industriële Biociden. De textielindustrie. Rapport nummer ND BIO 003/01. Keuringsdienst van Waren Noord, Groningen
- Robinson, S., Volosin, J., Keithly, J. & Cardwell, R. (1999). Comment on: Butyltin Residues in Sediment, Fish, Fish-eating Birds, Harbour Porpoise and Human Tissues from the Polish Coast of the Baltic Sea. *Marine Poll. Bul.*, 38, 57-61.
- Spanish Health and Consumption Ministery (1991). *The Nutrition and Feeding National Study*. Consumption National Institute. Spanish Health and Consumption Ministery.
- Takahashi, S., Mukai, H., Tanabe, S., Sakayma, K., Miyazaki, T. & Masuno, H. (1999). Butyltin residues in livers of humans and wild terrestrial mammals and in plastic products. *Environmental Pollution*, 106, 213-218.
- Tanabe, S., Prudente, M., Mizuno, T., Hasegawa, J., Iwata, H. & Miyazaki, N. (1998). Butyltin contamination in marine mammals from North Pacific and Asian coastal waters. *Environ. Sci. Technol.*, 32, 193-198.
- Ten Hallers-Tjabbes, C.C., Kemp J.F. & Boon, J.P. (1994). Imposex in whelks (*Buccinum undatum*) from the open North Sea: relation to shipping traffic intensities. *Mar. Poll. Bull.*, 28, 311-313.
- Turrini et al. (2001). Food consumption patterns in Italy: the INN-CA Study 1994-1996. *European Journal of Clinical Nutrition, 55*(7), 571-588.
- Universidad Complutense de Madrid (1991). *Household budget survey Spain: national study on nutrition and food consumption*. Instituto Nacional de Estadistica, Madrid.
- Vos, J., Klerk, A. de, Krajnc, E., Loveren, H. van & Rozing, J. (1990). Immunotoxicity of bis(tri-n-butyltin)oxide in the rat: effects on thymus-dependent immunity and on nonspecific resistance following long-term exposure in young versus aged rats. *Toxicol Appl Pharmacol*, 105(1), 144-155.
- WHO (1999). Tributyltin Oxide. 14. Concise International Chemical Assessment Document.

Annex I. Existing data on TBT (and other organotins) in seafood in Europe

	dex c ry ^{a)}	ate-	country study code ^{b)}	origin ^{c)}	Latin name ^{d)}	English name ^{e)}	date ^{f)}	sampling location ^{g)}		ng c	ation per g	wet weig	ght ^{h)}		reference
Ι	II	III	coue						MBT	DBT	TBT	MPT	DPT	TPT	
9	1	2	FR	"local"	Mytilus galloprovincialis	mediter. mussel	1997	Marseille, from fish markets			87				1
9	1	1	FR	"local"	Thynnus thynnus	red tuna	1997	Marseille, from fish markets			56				1
9	1	4	FR	"local"	Carcinus maenas	green crab	1997	Marseille, from fish markets			4				1
9	1	3	FR	"local"		cuttlefish	1997	Marseille, fish market, composite sample			376				1
9	1	3	FR	"local"	Loligo vulgaris	squid, european	1997	Marseille, fish market, part of composite sample			655				1
9	1	3	FR	"local"		cuttlefish	1997	Marseille, fish market, composite sample reanalysed			14				1
9	1	1	DE	North Sea		eelpout	1993		19	24	66				2
9	1	2	DE	North Sea, Eckwarderhorne		mussel	1993		37	45	54				2
9	1	2	DE	North Sea, Sylt-List		mussel	1993		14	18	24				2
9	1	2	IT	Bari	Mytilus galloprovincialis	mussel			30	135	699	20	41	71	3
9	1	2	IT	Cagliari	Mytilus galloprovincialis	mussel			57	253	963	13	23	97	3
9	1	2	IT	Genova	Mytilus galloprovincialis	mussel			103	646	2724	0	71	133	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	summer	1	130	382	513	182	35	283	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	winter	1	55	379	1076	18	37	429	3

	dex c ry ^{a)}	ate-	country study code ^{b)}	origin ^{c)}	Latin name ^{d)}	English name ^{e)}	date ^{f)}	sampling location ^{g)}		ng c	ation per g	wet weig	ght ^{h)}		reference
Ι	II	III	code						MBT	DBT	TBT	MPT	DPT	TPT	1
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	summer	2	87	171	348	117	23	217	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	winter	2	23	112	513	17	28	217	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	summer	3	36	71	234	50	21	49	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	winter	3	12	38	271	18	23	35	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	summer	4	33	68	234	40	23	53	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	winter	4	14	53	370	13	18	53	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	summer	5	80	191	403	112	25	247	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	winter	5	28	144	648	18	55	172	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	summer	6	99	221	590	119	41	305	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	winter	6	12	74	469	15	23	212	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	summer	7	57	103	289	74	18	110	3
9	1	2	IT	La Spezia Gulf	Mytilus galloprovincialis	mussel	winter	7	26	168	831	20	32	393	3
9	1	2	IT	Roma	Mytilus galloprovincialis	mussel			10	32	242	0	9	49	3
9	1	2	IT	Spezia	Mytilus galloprovincialis	mussel			55	379	1076	18	37	429	3
9	1	2	IT	Taranto	Mytilus galloprovincialis	mussel			70	359	1219	20	431	415	3
9	1	2	IT	Taranto harbour	Mytilus galloprovincialis	mussel	summer	1	18	79	198	0	28	18	3
9	1	2	IT	Taranto harbour	Mytilus galloprovincialis	mussel	summer	2	10	50	293	0	21	71	3
9	1	2	IT	Taranto harbour	Mytilus galloprovincialis	mussel	summer	3	14	65	154	0	28	119	3
9	1	2	IT	Taranto harbour	Mytilus galloprovincialis	mussel	summer	4	10	56	146	0	21	146	3
9	1	2	IT	Venezia	Mytilus galloprovincialis	mussel			3	15	114	0	0	22	3
9	1	1	IT	Egadi Islands	Thunnus thynnus thynnus	bluefin tuna	1993		15	9	39				4
9	1	2	IT	Genoa	Mytilus galloprovincialis	mussel	1994	Genoa Oil Port, Genoa	80*	1810*	250*				5

	dex c ry ^{a)}	ate-	country study code ^{b)}	origin ^{c)}	Latin name ^{d)}	English name ^{e)}	date ^{f)}	sampling location ^{g)}		ng ca	ation per g	wet weig	ght ^{h)}		reference
Ι	II	Ш	code						MBT	DBT	TBT	MPT	DPT	TPT	1
9	1	2	IT	Genoa	Mytilus galloprovincialis	mussel	1994	Genoa Oil Port, Genoa	260**	4940**	1060**				5
9	1	2	РТ	Sado Estuary system A	Mytilus galloprovincialis	mussel	Jan-86		25	12	11				6
9	1	2	РТ	Sado Estuary system A	Mytilus galloprovincialis	mussel	May-86		20	11	17				6
9	1	2	РТ	Sado Estuary system B	Mytilus galloprovincialis	mussel	Jan-86		12	6	9				6
9	1	2	РТ	Sado Estuary system B	Mytilus galloprovincialis	mussel	May-86		8	1	4				6
9	1	2	РТ	Sado Estuary system C	Mytilus galloprovincialis	mussel	Jan-86		4	2	2				6
9	1	2	РТ	Sado Estuary system C	Mytilus galloprovincialis	mussel	May-86		7	4					6
9	1	2	РТ	Sado Estuary system D	Mytilus galloprovincialis	mussel	Jan-86		2	2	5				6
9	1	2	РТ	Sado Estuary system D	Mytilus galloprovincialis	mussel	May-86		8	2					6
9	1	2	РТ	Sado Estuary system E	Mytilus galloprovincialis	mussel	Jan-86		0	1	3				6
9	1	2	РТ	Sado Estuary system E	Mytilus galloprovincialis	mussel	May-86		2	4					6
9	1	2	РТ	Sado Estuary system F	Mytilus galloprovincialis	mussel	Jan-86		1	2					6
9	1	2	РТ	Sado Estuary system F	Mytilus galloprovincialis	mussel	May-86		3	2					6
9	1	2	РТ	Sado Estuary system G	Mytilus galloprovincialis	mussel	Jan-86		2	1	3				6

	dex c ry ^{a)}	ate-	country study code ^{b)}	origin ^{c)}	Latin name ^{d)}	English name ^{e)}	date ^{f)}	sampling location ^{g)}	ng cation per g wet weight ^{h)}				reference		
Ι	II	III							MBT	DBT	TBT	MPT	DPT	TPT	-
9	1	2	РТ	Sado Estuary system G	Mytilus galloprovincialis	mussel	May-86		2						6
9	1	2	РТ	Sado Estuary system H	Mytilus galloprovincialis	mussel	Jan-86		10	3	6				6
9	1	2	РТ	Sado Estuary system H	Mytilus galloprovincialis	mussel	May-86		8						6
9	1	2	UK	"local"	Mytilus sp.	mussel	1997	fish markets, London			6				1
9	1	1	UK	"local"	Scromber scromber	mackerel	1997	fish markets, London			7				1
9	1	1	UK	"local"	Clupea harengus	herring, atlantic	1997	fish markets, London			11				1
9	1	1	UK	"local"	Pleuronectes platessa	plaice	1997	fish markets, London			2				1
9	1	4	UK	"local"	Crangon alaskensis	shrimp	1997	fish markets, London			14				1
9	1	4	UK	"local"	Pandalus tridens	shrimp	1997	fish markets, London			14				1
9	1	4	UK	"local"	Cancer productus	crab	1997	fish markets, London			3				1
9	1	2	UK	"local"	Cerastoderma edule	cockel	1997	fish markets, London			3				1
9	1	2	UK	"local"	Crassostrea sp.	oyster	1997	fish markets, London			43				1
9	1	4	UK	"local"	Crangon alaskensis	shrimp	1997	fish markets, London			5				1
9	1	4	UK	"local"	Pandalus tridens	shrimp	1997	fish markets, London			5				1
9	1	3	UK	"local"	Loligo sp.	squid	1997	fish markets, London			8				1
9	1	2	ES	South Spanish Atlantic coast		***	1992	estuary			31.0				7
9	1	2	ES	Northwestern Mediterranean	Mytilus galloprovincialis	mussel	May-96	Masnou	66.0	357.8	584.2			58.9	8
9	1	2	ES	Northwestern Mediterranean	Mytilus galloprovincialis	mussel	May-96	Barcelona	163.0	1240.0	1521.3			141.4	8

	dex c ry ^{a)}	ate-	country study code ^{b)}	origin ^{c)}	Latin name ^{d)}	English name ^{e)}	date ^{f)}	sampling location ^{g)}		ng o	cation per g	wet weig	ght ^{h)}		reference
Ι	II	III							MBT	DBT	TBT	MPT	DPT	TPT	
9	1	2	ES	Northwestern Medi- terranean	Mytilus galloprovincialis	mussel	May-96	Sant Carles	21.7	171.2	316.9			10.0	8
9	1	2	ES	South Spanish Atlantic coast	Mytilus galloprovincialis	mussel	93-94	Canela	4.0	6.1	24.4				9
9	1	2	ES	South Spanish Atlantic coast	Mytilus galloprovincialis	mussel	May- Aug 94	Canela	4.7	14.9	53.7				9
9	1	2	ES	South Spanish Atlantic coast	Venerupis decussata	clam	93-94	Canela	2.4	5.7	20.0				9
9	1	2	ES	South Spanish Atlantic coast	Venerupis decussata	clam	May- Aug 94	Canela	2.4	5.7	43.9				9
9	1	2	ES	South Spanish Atlantic coast	Crassostrea angulata	oyster	93-94	Pinillos	5.2	19.4	70.8				9
9	1	2	ES	South Spanish Atlantic coast	Crassostrea angulata	oyster	May- Aug 94	Pinillos	4.4	19.6	80.5				9
9	1	2	ES	South Spanish Atlantic coast	Cerastoderma edulis	cockel	93-94	Pinillos	4.4	17.8	68.3				9
9	1	2	ES	South Spanish Atlantic coast	Cerastoderma edulis	cockel	May- Aug 94	Pinillos	4.3	15.5	90.3				9
9	1	2	ES	South Spanish Atlantic coast	Venerupis decussata	clam	93-94	Pinillos	7.7	13.1	46.4				9
9	1	2	ES	South Spanish Atlantic coast	Venerupis decussata	clam	May- Aug 94	Pinillos	11.7	23.5	75.6				9
9	1	2	ES	South Spanish Atlantic coast	Venerupis semidecussata	clam	93-94	Pinillos	7.7	13.7	51.2				9
9	1	2	ES	South Spanish Atlantic coast	Venerupis semidecussata	clam	May- Aug 94	Pinillos	10.7	25.5	78.1				9

56

Note:

- a) Food categorization as found in the "Codex Alimentarius" split out into different columns to allow for logical operations;
- b) The country (if known) where the study was conducted;
- c) Origin of the sample, if known;
- d) Latin name of the species concerned if known and applicable;
- e) English name, in case of conflict the Latin name takes precedence;
- f) Date of sampling, if known;
- g) Location where the sample was aquired by the researchers, note that this may differ from "origin";
- h) MBT = monobutyltin, DBT = dibutyltin, TBT = tributyltin, MPT = monophenyltin, DPT = diphenyltin, TPT = triphenyltin.
- * Lower limit;
- ** Upper limit;
- *** TPT was not detected in one of three samples, 0.5*detection limit (=3 ng) was used;
- **** Three different edible bivalves.
- 1 Keithly, J.C., Cardwell, R. D. & Henderson, G. (1997). Tributyltin in Seafood from Asia, Australia, Europe, and North America. In *Harmful Effects of the Use of Antifouling Paints for Ships. Parametrix*, Inc., Kirkland, Washington, p. 79-93.
- 2 Shawky, S. & Emons, H. (1998). Distribution Pattern of Organotin Compounds at different Trophic Levels of Aquatic Ecosystems. *Chemosphere*, *36*(3), 532-535.
- 3 Caricchia, A., Chiavarini, S., Cremisini, C., Morabito, R. & Scebo, R. (1991). Organotin-compounds in marine mussels collected from Italian coasts. *Analytical Science* 7, 1193-1196
- 4 Kannan, K., Corsolini, S., Focardi, S., Tanabe, S. & Tatsukawa, R. (1996). Accumulation pattern of butyltin compunds in dolphin, tuna, and shark collected from Italian coastal waters. *Archives of Environmental Contamination and Toxicology*, *31*, 19-23
- 5 Rivaro, P., Frache, R. & Leardi, R. (1997). Seasonal variations in levels of butyltin compounds in mussel tissues sampled in an oil port. *Chemosphere*, *34*(1), 99-106.
- 6 Quevauviller, Ph., Lavigne, R., Pinel, R. & Astruc, M. (1989). Organotins in sediments and mussles from the sado estuarine system (Portugal). *Environmental Pollution*, *57*, 149-166.
- 7 Gómez-Ariza, J.L., Morales, E., Giraldez, I., Beltran, R. & Fernandez-Recamales, M.A.. (1997). General appraisal of organotin speciation in the southwest Spain coastal environment. *Química Analítica 16[Suppl 2]*, S291-S307.
- 8 Morcillo, Y. & Porte, C. (1998). Monitoring of organotin compounds and their effects in marine molluses. *Trends in Analytical Chemistry*, 17(2).
- 9 Gómez-Ariza, J.L., Giráldez, I. & Morales, E. (2001). Occurrence of organotin compounds in water, sediments and mollusca in estuarine systems in the southwest of Spain. *Water, Air and Soil Pollution, 126*, 253-270.

Annex II. Species selection

country	species	location	sampling rounds
Belgium	salmon (Oncorhynchus spp.)	Denmark	2
8	common shrimp (Crangon spp)	Southern North Sea	2
	plaice (<i>Pleuronectes platessa</i>)	The Netherlands	2
France	mussel (Mytilus galloprovinciallis)	Mediterranean (Toulon)	2
	mussel (Mytilus edulis)	Bretagne	2
		North Sea-Normandie	2
	oyster (Crassostrea gigas)	Arcachon	2
		Bretagne	2
		Marennes	2
		Normandie	2
	salmon (Salmo salar)	Imported form Norway	2
Germany	frozen pollock <i>(Theragra chalcogramma)</i>	supermarket	2
Germany	processed herring (Culpea harengus)	supermarket	2
	canned tuna <i>(Thunnus albacares)</i>	supermarket	2
Cuesas		Thermaikos Gulf Halastra 1	1
Greece	mussels (Mytilus Galloprovinciallis)	Thermaikos Gulf Halastra 2	
		Thermaikos Gulf Pieria	1
			1
	anchovy (Engraulis encrasicholus)	Saronikos Gulf	2
		Thermaikos Gulf	2
		Gulf of Kavala	2
	sea bass (Dicentrarchus labrax)	Attica (Saronikos Gulf)	2
	squid (<i>Loligo vulgaris</i>)	Imported from India	2
	octopus (Octopus vulgaris)	Imported from Morocco	2
Italy	mussel (Mytilus galloprovincialis)	Italian North West coast	2
		Italian North East coast	2
		Sardinia South coast	2
		Sardinia South West coast	2
		Sardinia West coast	2
		Sardinia North West coast	2
		Sardinia North coast	2
		Sardinia North East coast	2
		Sardinia East coast	2
		Sardinia South East coast	2
	clam (Venus "chamelea" gallina)	Venice	2
	preserved tuna	supermarket	1
Hungary	canned herring (Clupea harengus)	imported from Poland	2
- •	canned sardine (Clupea pilchardus)	imported from Thailand	2
	fried hake (Merluccius hubbis)	imported from Argentina	2
Netherlands	mussel (Mytilus edulis)	Oosterschelde	2
		Waddenzee	2
	herring (Clupea harengus)	North Sea (North)	3
	whiting (Merlangius merlangus)	North Sea	3

Portugal	cod (dried) (Gadus morhua)	Norway	1
	octopus (Octopus vulgaris)	North	2
		Central	2
		South	2
	sardine (Sardina pilchardus)	North	2
		South	2
	hake (Merluccius merluccius)	Spain	2
	horse mackerel (Trachurus trachurus)	Spain	2
	Pouting (Trisopterus luscus)	North of Portugal	2
	clams (Ruditapes decussatus)	South of Portugal	2
	cockles (Cerastoderma edule)	central	2
	shrimp (Paneus sp.)	Spain	2
	mussel (Mytilus edulis)	Spain	2
Spain	whiting (Merlangius merlangus)	Galicia	2
~pmm		Cadiz Gulf	2
		Cantabric sea	2
	sole (Solea solea)	Galicia	2
		Cadiz Gulf	2
		Cantabric sea	2
	sardine (Sardina pilchardus)	Western Mediteranean	2
	surdine (surdina pilenardas)	Cadiz Gulf	2
		Cantabric sea	2
	anchovy (Engraulis encrasicholus)	Western Mediteranean	2
	anchovy (Engruuus encrusicnotus)	Cadiz Gulf	2
		Cantabric sea	2
	squid (Loligo vulgaris)	Galicia	2
	squid (Longo vargaris)	Cadiz Gulf	2
		Saharian Morrocco	2
	prawn (Crangon crangon)	Cadiz Gulf	2
	prawn (Crungon Crungon)	Alicante coast	2
			2
	muggal (Mutilug adulia)	Morocco Argelian	
Swadan	mussel (Mytilus edulis)	Galicia baltic IIIa	2
Sweden	herring (Clupea harengus)	Baltic IIIbcd	2 2
	ashman (Sahua ashm)		
	salmon <i>(Salmo salar)</i> Swedish caviar, cod <i>(Gadus morhua)</i> eggs	Norway	2
TL. 4 . J		Norway, Iceland	2
United	haddock (Melanogrammus aeglefinus)	UK	1
Kingdom	blue mussel (Mytilus edulis)	East coast	2
		South coast	2
		West coast	2
	European oyster (Ostrea edulis)	East coast	2
		South coast	2
		West coast	2
	Pacific oyster (Crassostrea gigas)	East coast	2
		South coast	2
		West coast	2
	common whelk (Buccinum undatum)	Channel Islands	2

Annex III. Data reporting sheets

serial number ¹⁾			NL01	NL02	NL03
location of origin code			North Sea North (IVa)		
species code			Clupea harengus		
sampling date			24-04-2002		
sampling location code	;		Ijmuiden Auction		
sampled amount of tiss	ue	kg wet wt	5.7		
sampled number of ani	mals		25		
dry weight	dry weight		35		
lipids	lipids		4.3		
sample intake for organ analysis	notin	g wet wt	15		
corresponding quality of samples ²⁾	control		1,4		
organotin concentra-	MBT	ng Sn / g wet wt	2*		
tion $^{3)}$	DBT		4		
	TBT		34		
	MPT		<1		
	DPT		<1		
	TPT		<1		

Sheet III.1 Sea food samples.

¹⁾ Prefix indicates country of sampling partner (BE, ES, DE, FR, HU, GR, IT, NL, PT, SE, UK);

²⁾ Indicate serial number of control samples in sheet 2 that have been analysed together with this sample;

³⁾ <x: values below limit of detection, x*: values between limit of detection end lower limit of quantification, standard deviation can be as high as 100 %.

sample type			blank	blank	BCR477	BCR477
quality control sample nun		1	2	5	6	
sample intake for organotin	n analy-	g dry wt				
sis						
amount of water added	amount of water added					
organotin concentration	organotin concentration MBT					
	DBT					
	TBT					
MPT						
	DPT					
	TPT]				

Sheet III.2 Quality control for biota analyses.

Annex IV. Organtin results

Report sheets are listed in the following order:

- The Netherlands
- Greece
- Italy
- France
- Germany
- Portugal
- Spain
- Hungary
- United Kingdom
- Belgium
- Sweden

For each country, the report sheets with results for the seafood samples are given first, followed by the report sheets with results for the quality control samples.

The Netherlands

serial number ¹⁾			NL01	NL02	NL03	NL04	NL05	NL06
location of origin code			Oosterschelde	Waddenzee	Oosterschelde	Oosterschelde	Waddenzee	Waddenzee
					(Kokhaan)	(Mastgat 5)	(Inschot)	(Meep)
species code			mussels	mussels	mussels	mussels	mussels	mussels
sampling date			03-10-2002	03-10-2002	22-04-03	22-04-03	22-04-03	22-04-03
sampling location code	e		Yrseke auction					
sampled amount of tiss	sue	kg wet wt	1	1	1	1	1	1
sampled number of an	imals							
dry weight		% wet wt	18	24	14	13	14	14
Lipids		% wet wt	1.1	1.4	5.6	5.6	6.3	5.6
sample intake for orga	notin	g wet wt	1.9	1.5	3.0	3.2	2.5	2.9
analysis								
Corresponding quality control samples ²⁾			1,2,3,4	1,2,3,4	9,10,11	9,10,11	5,6,7,8	5,6,7,8
organotin concentra-	MBT	ng cation / g wet	2.5	< 0.5	0.8*	1.3	1	1*
tion $^{3)}$	DBT	wt	5.2	2.9	2.1	2.1	2.9	2.6
	TBT	1	7*	5*	20	15	19	16
	MPT	1	< 0.5	< 0.5	< 0.3	< 0.3	<1.3	< 0.5
	DPT	1	0.7*	<1	<0.4	<0.4	< 0.5	< 0.5
	TPT	1	3.3	1.1*	1.6*	3	1*	1

¹ prefix indicates country of sampling partner (BE, ES, DE, FR, HU, GR, IT, NL, PT, SE, UK). ²⁾ indicate serial number of control samples that have been analysed together with this sample. ³⁾ <x: values below limit of detection, x*: values between limit of detection end lower limit of quantification, standard deviation can be as high as 100 %.

The Netherlands

serial number ¹⁾			NL07	NL08	NL09	NL10	NL11
location of origin code			North Sea	North Sea	North Sea	Channel	North Sea
species code			herring	herring	whiting	whiting	whiting
sampling date			16/20-12-02	23-04-03	04-01-03	27-03-03	22-04-03
sampling location code			Ijmuiden auction	Ijmuiden auction	Stellendam auc- tion	Ijmuiden auction	Ijmuiden auction
sampled amount of tissue		kg wet wt	25	32	29	25	29
sampled number of anima	ls						
dry weight		% wet wt	24	22	20	18	19
lipids		% wet wt	17	2.7	0.5	0.6	0.5
sample intake for organotin analy-		g wet wt	0.74	3.4	6	6	6
Corresponding quality con samples ²⁾	ntrol		5,6,7,8	5,6,7,8	5,6,7,8	5,6,7,8	5,6,7,8
organotin concentration	MBT	ng cation / g wet wt	<1	0.4*	< 0.2	< 0.2	< 0.2
3)	DBT		<2	3	0.9	0.7	0.5*
	TBT		9.3	51	3.5	3.8	2.1
	MPT		<3	<0.7	<0.3	<0.5	< 0.3
	DPT		<4	0.9*	< 0.2	<0.2	< 0.2
	TPT	1	<2	5.6	1.5	1.6	0.8*

¹⁾ prefix indicates country of sampling partner (BE, ES, DE, FR, HU, GR, IT, NL, PT, SE, UK). ²⁾ indicate serial number of control samples that have been analysed together with this sample. ³⁾ <x: values below limit of detection, x*: values between limit of detection end lower limit of quantification, standard deviation can be as high as 100 %.

The Netherlands

sample type	sample type		blank	CRM	CRM	CRM	CRM						
										477	477	477	477
quality control sample number			1	2	3	5	6	9	10	4	7	8	11
sample intake for organotin	sample intake for organotin analy-		1	1	1	1	1	1	1	0.2	0.2	0.2	0.2
sis													
amount of water added	amount of water added												
organotin concentration	MBT	ng cation/g	0.5	0.8	0.6	0.9	0.6	0.8	0.7	1241	1545	1496	1210
	DBT	dry wt	0.5	0.9	0.4	0.0	0.0	0.9	0.6	1313	1379	1374	1046
	TBT		0.6	3.7	1.3	0.9	1.0	3.7	2.5	1754	1884	1812	1557
	MPT		0.0	0.0	0.0	0.0	0.0	0.0	0.0	754	759	771	619
	DPT		0.0	0.0	0.0	0.0	0.0	0.0	0.0	157	50	48	105
	ТРТ		0.0	0.0	0.0	0.0	0.0	0.0	0.0	910	1125	1068	979

Greece

serial number ¹⁾			GR01	GR02	GR03	GR04	GR05
location of origin code			Thermaikos Gulf	Thermaikos Gulf	Thermaikos Gulf	Thermaikos Gulf	Saronikos Gulf
species code			Mussels	Mussels	Mussels	Mussels	Mussels
sampling date			26-06-2002	27-06-2002	27-06-2002	1-07-2002	5-09-2002
sampling location code			Halastal (zone 6)	Halasta2 (zone 7)	Imathia (zone 8)	Pieria	Elefsis
sampled amount of tissue		kg wet wt					
sampled number of animal	ls		70	70	70	80	75
dry weight		% wet wt	30.1	31.1	29.9	28.7	25.5
lipids		% dry wt	6.5	6.8	6.2	6.7	10.2
sample intake for organotin analy-		g dry wt	0.3	0.3	0.3	0.3	0.3
sis							
Corresponding quality con	ıtrol		1,2,3	1,2,3	1,2,3	1,2,3	1,2,3
samples ²⁾							
organotin concentration	MBT	ng cation / g wet wt	3.6	1.3*	3.0	2.9	1.8*
3)	DBT		15	7.2	9.7	8.3	12.0
	TBT		14*	12*	15*	11*	15*
	MPT		<2	1.6*	1.6*	<2	<2
	DPT		<2	5.4	5.6	<2	<1
	TPT	1	13	51	36	6.4	1.8*

¹⁾ prefix indicates country of sampling partner (BE, ES, DE, FR, HU, GR, IT, NL, PT, SE, UK). ²⁾ indicate serial number of control samples that have been analysed together with this sample. ³⁾ <x: values below limit of detection, x*: values between limit of detection end lower limit of quantification, standard deviation can be as high as 100 %.

Greece

serial number ¹⁾			GR06	GR07	GR08	GR09	GR10	GR11
location of origin code			Thermaikos	Gulf of Kavala	Saronikos	Attica (Korinthi-	India	Morocco
			Gulf		Gulf	akos gulf)		
species code			Anchovy	Anchovy	Anchovy	Seabass	Squid	Octopus
sampling date			11-07-2002	07-08-2002	05-09-2002	10-07-2002	01-08-2002	01-08-2002
sampling location code	;		Thessaloniki	Kavala auction	Piraeus auc-	Fishing farm	Indian	Mediterrenean
			auction		tion		Ocean	
sampled amount of tiss	ue	kg wet wt	3	3	3	4.8	5	4
sampled number of animals						15	25	3
dry weight		% wet wt	25.2	27.5	28.1	28.9	16.0	26.9
lipids		% dry wt	2.0	3.5	2.0	27	5.0	1.0
sample intake for organ analysis	notin	g dry wt	1.0	0.6	1.0	0.1	0.5	2.0
corresponding quality of samples ²⁾	control		1,2,3	1,2,3	1,2,3	4,5,6,7	4,5,6,7	4,5,6,7
organotin concentra-	MBT	ng cation / g wet	1.1	1.1*	1.4	<4	<0.3	0.23*
tion $^{3)}$	DBT	wt	4.1	3.7	4.0	<6	<0.4	0.23*
	TBT		51	38	41	<22	4.1*	0.85*
	MPT	1	< 0.5	<1	<0.5	<5	< 0.5	<0.3
	DPT	1	<3	<6	<3	<5	<0.4	<0.2
	TPT	1	5.3	4.4	12	1.6	<0.9	<0.4

 1) prefix indicates country of sampling partner (BE, ES, DE, FR, HU, GR, IT, NL, PT, SE, UK).

 2) indicate serial number of control samples that have been analysed together with this sample.

 3) <x: values below limit of detection, x*: values between limit of detection end lower limit of quantification, standard deviation can be as high as 100 %.</td>

serial number ¹⁾			GR09 (duplo)	GR10 (duplo)	GR11 (duplo)
location of origin code			Attica (Korinthiakos gulf)	India	Morocco
species code			Seabass	Squid	Octopus
sampling date			10-07-2002	01-08-2002	01-08-2002
sampling location code			Fishing farm	Indian Ocean	Mediterrenean
sampled amount of tissue		kg wet wt	4.8	5	4
sampled number of animals			15	25	3
dry weight		% wet wt	28.9	16.0	26.9
Lipids		% dry wt	27	5.0	1.0
sample intake for organotin ar	nalysis	g dry wt	0.1	0.5	2.0
corresponding quality control	samples ²⁾		4,5,6,7	4,5,6,7	4,5,6,7
organotin concentration ³⁾	MBT	ng cation / g wet wt	<4	<0.3	0.14*
	DBT		<4	<0.4	0.18*
	TBT		<3	4.4*	<0.7
	MPT		<3	<0.3	<0.1
	DPT		<5	<0.4	<0.2
	TPT		<6	<0.5	<0.3

serial number ¹⁾			GR12	GR13	<i>GR14</i>	GR15	GR16	GR17
location of origin code			Thermaikos	Thermaikos	Thermaikos	Thermaikos	Korinthiakos	Thermaikos
			Gulf	Gulf	Gulf	Gulf	Gulf	Gulf
species code			Mussels	Mussels	Mussels	Mussels	Sea bream	Anchovy
sampling date			26-12-2002	27-12-2002	27-12-2002	10-01-2003	11-02-2003	07-04-2003
sampling location code	;		Halastal (zone	Halasta2 (zone	Naziki (zone 4-	Vespasianou	Fishing farm	Thessaloniki
			6)	7)	5)	(zone 14)		auction
sampled amount of tiss	sue	kg wet wt					4.1	3
sampled number of ani	mals		80	80	80	80	20	
dry weight		% wet wt	24.1	22.9	19.6	29.5	27.5	26.4
lipids		% dry wt	9.2	6.9	8.2	6.5	22.4	14.9
sample intake for organ analysis	notin	g dry wt	0.3	0.3	0.20	0.3	0.09	0.14
Corresponding quality samples ²⁾	control		8,9,10	8,9,10	8,9,10	8,9,10	8,9,10	8,9,10
organotin concentra-	MBT	ng cation / g wet	1.1*	1.6*	1.2*	1.4*	<2	<2
tion $^{3)}$	DBT	wt	6.9	5.5	8.1	12	<6	<2
	TBT	1	7.5*	8*	10*	30	<25	31*
	MPT	1	<1	0.8*	<1	<1	<1	<2
	DPT	1	2.0	6.3	5.3	2.1	<2	<4
	TPT	1	9.1	38	16	5.6	<5	6*

Serial number ¹⁾			GR18	GR19	GR20	GR21	<i>GR22</i>	GR23	<i>GR24</i>
location of origin co	de		Pagasi-	Saronikos	Korinthiakos	India	Morocco	Saronikos	Evoiikos Gulf
			tikos Gulf	Gulf	gulf			Gulf	
species code			Anchovy	Sardines	Seabass	Squid	Octopus	Sardines	Sardines
sampling date			07-04-	07-04-2003	05-04-2003	07-02-	05-02-2003	28-05-03	28-05-03
			2003			2003			
sampling location co	de		Volos auc-	Piraeus auc-	Fishing farm	Indian	Mediterre-	Piraeus auc-	Piraeus auc-
			tion	tion		Ocean	nean	tion	tion
sampled amount of t	issue	kg wet wt	3	3	4.7	5	4	3	3
sampled number of a	inimals				16	25	3		
dry weight		% wet wt	26.5	27.0	27.0	20.8	21.8	31.4	37.1
lipids		% dry wt	15.0	16.7	19.0	3.1	1.4	35.3	43.1
sample intake for org	ganotin	g dry wt	0.14	0.13	0.12	0.6	1.5	0.16	0.15
analysis									
corresponding qualit samples ²⁾	y control		8,9,10	8,9,10	8,9,10	8,9,10	8,9,10	11,12,13,14	11,12,13,14
organotin concen-	MBT	ng cation / g wet	<2	2.8*	<2	<0.5	<0.2	<2	<3
tration ³⁾	DBT	wt	<2	20	<3	< 0.5	0.6*	5*	4*
	TBT	1	36*	491	<14	<2	29	86	46
	MPT	1	<2	<2	<2	<0.5	<0.2	<3	<4
	DPT		<4	<3	<4	<0.5	<0.3	<3	<4
	ТРТ	1	5*	49	<4	<1	<0.3	6*	9*

sample type	sample type		blank								
quality control sample number			1	2	4	5	6	8	9	11	12
sample intake for organotin		g dry wt	1	1	1	1	1	1	1	1	1
analysis											
amount of water added	1	g									
organotin concentra-	MBT	ng	1.1	0.8	0.5	0.8	0.6	0.8	0.7	0.9	0.6
tion	DBT	cation/g	1.0	0.0	0.5	0.9	0.4	0.9	0.6	0.0	0.0
	TBT	dry wt	7.9	3.6	0.6	3.7	1.3	3.7	2.5	0.9	1.0
	MPT		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	DPT		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TPT	1	0.8	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0

sample type		GR	CRM	CRM	CRM	CRM	CRM
			477	477	477	477	477
quality control sample number			3	7	10	13	14
sample intake for organotin and	alysis	g dry wt	0.2	0.2	0.2	0.2	0.2
amount of water added		g					
organotin concentration	MBT	ng cation/g dry	1327	1241	1210	1545	1496
	DBT	wt	1366	1313	1046	1379	1374
	TBT		1818	1754	1557	1884	1812
	MPT		858	754	619	759	771
	DPT		111	157	105	50	48
	TPT		1129	910	979	1125	1068

serial number ¹⁾			IT1	IT2	IT3	IT4	IT5	IT6	IT7
location of origin co	de		Venice la-	Venice la-	Venice la-	Venice la-	Venice la-	Venice la-	Venice la-
			goon	goon	goon	goon	goon	goon	goon
species code			Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-
			loprovin-	loprovin-	loprovin-	loprovin-	loprovin-	loprovin-	loprovin-
			cialis	cialis	cialis	cialis	cialis	cialis	cialis
sampling date			16/1/2002	21/1/2002	22/1/2002	25/1/2002	29/1/2002	31/1/2002	06/2/2002
sampling location co	ode		1: Salso	2: Libertà	5: North	7: North	9: Punta	10: Chiog-	12: Brenta
			channel	Bridge	East inhab-	East open	Fogolana	gia hydrobi-	river mouth
					ited	lagoon		ological sta-	
								tion	
sampled amount of	tissue	kg wet wt	0.450	0.521	0.551	0.478	0.512	0.598	0.415
sampled number of	animals		100	100	100	100	100	100	100
dry weight		% wet wt	21.8	16.5	18.3	20.7	19.9	15.0	13.1
Lipids		% wet wt	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>
sample intake for or	ganotin	g wet wt	ca. 2.5	<i>ca.</i> 3	<i>ca.</i> 3	<i>ca. 2.5</i>	<i>ca. 2.5</i>	<i>ca.</i> 3	<i>ca.</i> 3
analysis									
corresponding quali	ty con-		1, 11	1, 11	1, 11	1, 11	2, 12	2, 12	2, 12
trol samples ²⁾									
organotin concen-	MBT	ng cation/g wet wt	46	36	45	11	6	50	23
tration ³⁾	DBT		190	103	108	32	25	413	66
	TBT]	224	259	494	145	35	751	251
	MPT	1	<i>n.c.</i>	<i>n.c.</i>	n.c.	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>
	DPT	1	п.с.	п.с.	п.с.	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>
	TPT	1	<i>n.c.</i>	п.с.	п.с.	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>

¹⁾ prefix indicates country of sampling partner (BE, ES, DE, FR, HU, GR, IT, NL, PT, SE, UK). ²⁾ indicate serial number of control samples that have been analysed together with this sample.

³⁾ n.c. not considered.

serial number ¹⁾			IT8	<i>IT9</i>	IT10	IT11	IT12	IT13	IT14	IT15
location of origin of	code		Venice la-	Venice la-	Venice la-	Venice la-	Venice la-	Venice la-	Venice la-	Venice la-
			goon	goon	goon	goon	goon	goon	goon	goon
species code			Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-	Tapes sp.	Tapes sp.
			loprovin-	loprovin-	loprovin-	loprovin-	loprovin-	loprovin-		
			cialis	cialis	cialis	cialis	cialis	cialis		
Sampling date			7/2/2002	8/2/2002	11/2/2002	12/2/2002	13/2/2002	14/2/2002	21/1/2002	23/1/2002
Sampling location	code		13: San	14: Pell-	15: Nuovis-	16: Cam-	17: Tessera	18: Treporti	2: Libertà	3: Naviglio
			Leonardo	estrina	simo river	palto			Bridge	Brenta-oil
					mouth					channel
										confluence
sampled amount o	f tissue	kg wet wt	0.501	0.571	0.497	0.412	0.555	0.491	0.487	0.511
sampled number o	f animals		100	100	100	100	100	100	250	250
dry weight		% wet wt	23.6	17.7	18.6	19.8	20.4	16.9	19.0	17.3
Lipids		% wet wt	n.a.	n.a.	n.a.	n.a.	n.a.	<i>n.a.</i>	n.a.	<i>n.a.</i>
sample intake for	organotin	g wet wt	<i>ca. 2.5</i>	ca. 3	ca. 3	ca. 2.5	<i>ca. 2.5</i>	<i>ca.</i> 3	ca. 2.5	<i>ca.</i> 3
analysis										
corresponding qua	lity con-		2, 12	3, 13	3, 13	3, 13	3, 13	4, 14	4, 14	4, 14
trol samples ²⁾										
Organotin con-	MBT	ng cation/g	23	22	5	20	22	18	114	55
centration ³⁾	DBT	wet wt	55	133	13	52	42	34	98	66
	TBT]	195	313	32	142	209	173	217	204
	MPT]	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>
	DPT	1	<i>n.c.</i>	<i>n.c.</i>	п.с.	п.с.	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>
	TPT	1	п.с.	п.с.	п.с.	п.с.	п.с.	<i>n.c.</i>	п.с.	п.с.

serial number ¹⁾			IT16	IT17	IT18	IT19	IT20	IT21	IT22	IT23
location of origin	code		Venice la-	Venice la-	Venice la-	Venice la-	Venice la-	Venice la-	Venice la-	Venice la-
			goon	goon	goon	goon	goon	goon	goon	goon
species code			Tapes sp.	Tapes sp.	Tapes sp.	Tapes sp.	Tapes sp.	Tapes sp.	Tapes sp.	Tapes sp.
Sampling date			24/1/2002	25/1/2002	28/1/2002	29/1/2002	31/1/2002	1/2/2002	6/2/2002	7/2/2002
Sampling location	code		6: Sile riv- ermouth	7: North East open lagoon	8: Lido	9: Punta Fogolana	10: Chiog- gia hydro- biological Station	11: Chiog- gia	12:Brenta mouth	13: San Leonardo
sampled amount o	f tissue	kg wet wt	0.517	0.501	0.495	0.565	0.471	0.533	0.492	0.502
sampled number of	of animals		250	250	250	250	250	250	250	250
dry weight		% wet wt	16.9	18.9	19.2	17.6	15.9	18.6	20.1	18.9
Lipids		% wet wt	n.a.	<i>n.a.</i>	<i>n.a.</i>	n.a.	n.a.	<i>n.a.</i>	<i>n.a.</i>	n.a.
sample intake for analysis	organotin	g wet wt	са. 3	<i>ca. 2.5</i>	<i>ca. 2.5</i>	<i>ca.</i> 3	<i>ca.</i> 3	<i>ca.</i> 2.5	<i>ca.</i> 2.5	<i>ca. 2.5</i>
corresponding qua trol samples ²⁾	lity con-		4, 14	5, 15	5, 15	5, 15	5, 15	6, 16	6, 16	6, 16
Organotin con-	MBT	ng cation/g	15	15	35	4	152	334	22	24
centration ³⁾	DBT	wet wt	36	31	40	6	222	248	62	46
	TBT]	197	186	142	15	289	244	216	116
	MPT]	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>
	DPT		<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>
	TPT		<i>n.c.</i>	<i>n.c.</i>	п.с.	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>

serial number ¹⁾			IT24	IT25	IT26	IT27	IT28
location of origin code			Venice lagoon	Venice lagoon	Venice lagoon	Venice lagoon	Venice lagoon
species code			Tapes sp.	Tapes sp.	Tapes sp.	Tapes sp.	Tapes sp.
Sampling date			8/2/2002	11/2/2002	12/2/2002	13/02/2002	14/2/2002
Sampling location code			14: Pellestrina	15: Nuovissimo river mouth	16: Campalto	17: Tessera	18: Treporti
sampled amount of tissu	e	kg wet wt	0.514	0.495	0.547	0.485	0.528
sampled number of anim	nals		250	250	250	250	250
dry weight		% wet wt	17.3	16.1	15.6	19.8	19.4
Lipids		% wet wt	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>
sample intake for organo	otin analysis	g wet wt	<i>ca.</i> 3	<i>ca.</i> 3	<i>ca.</i> 3	<i>ca. 2.5</i>	<i>ca. 2.5</i>
corresponding quality co ples ²⁾	ontrol sam-		6, 16	7, 17	7, 17	7, 17	7, 17
Organotin concentra-	MBT	ng cation/g wet	14	50	15	7	7
tion $^{3)}$	DBT	wt	33	103	22	17	11
	TBT	1	155	244	43	146	79
	MPT]	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	п.с.	<i>n.c.</i>
	DPT	1	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>
	TPT	1	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>

serial number ¹⁾			IT29	IT30	IT31	IT32	IT33	IT34	IT35	IT36
location of origin co	ode		Sardinia	Sardinia	Sardinia	Sardinia	Sardinia	Sardinia	Sardinia	Sardinia
			South Coast	Soth West	West Coast	North West	North Coast	North East	East Coast	South East
				Coast		Coast		Coast		Coast
species code			Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-
			loprovin-	loprovin-	loprovin-	loprovin-	loprovin-	loprovin-	loprovin-	loprovin-
			cialis	cialis	cialis	cialis	cialis	cialis	cialis	cialis
Sampling date			25/03/2002	20/03/2002	21/03/2002	22/03/2002	27/04/2002	30/03/2002	18/03/2002	19/03/2002
Sampling location c	ode		Cagliari	Calasetta,	Oristano	Alghero	Asinara	Olbia	Arbatax	Villasimius,
sampled amount of	tissue	kg wet wt	0.120	0.133	0.328	0.210	0.261	0.219	0.210	0.143
sampled number of	animals		60	60	60	60	60	60	60	60
dry weight		% wet wt	16.6	10.2	16.9	15.4	15.2	13.8	14.5	11.4
Lipids		% wet wt	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
sample intake for or analysis	ganotin	g wet wt	<i>ca.</i> 3	<i>ca.</i> 3.5	<i>ca.</i> 3	<i>ca.</i> 3.5				
corresponding quali trol samples ²⁾	ty con-		8, 18	8, 18	8, 18	8, 18	9, 19	9, 19	9, 19	9, 19
Organotin concen-	MBT	ng cation/g	27	40	< 0,3	< 0,3	< 0,3	< 0,3	38	33
tration ³⁾	DBT	wet wt	34	44	<0,4	81	75	63	36	42
	TBT		140	89	48	558	446	488	92	47
	MPT	1	п.с.	<i>n.c.</i>	<i>n.c.</i>	п.с.	п.с.	<i>n.c.</i>	<i>n.c.</i>	п.с.
	DPT		п.с.	<i>n.c.</i>	<i>n.c.</i>	п.с.	п.с.	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>
	TPT]	п.с.	<i>n.c.</i>	<i>n.c.</i>	п.с.	п.с.	п.с.	п.с.	<i>n.c.</i>

serial number ¹⁾			IT37	
location of origin code			North Tyrrhenian sea	
species code			Mytilus galloprovincialis	
Sampling date			04/07/2002	
Sampling location code			La Spezia Gulf	
sampled amount of tissue		kg wet wt	0.650	
sampled number of animals			200	
dry weight		% wet wt	20.0	
Lipids		% wet wt	<i>n.a.</i>	
sample intake for organotin analysis		g wet wt	<i>ca. 2.5</i>	
corresponding quality control samples	2)		10, 20	
Organotin concentration ³⁾	MBT	ng cation/g wet wt	28	
	DBT		122	
	TBT		175	
	MPT		<i>n.c.</i>	
	DPT		<i>n.c.</i>	
	TPT		<i>n.c.</i>	

serial number ¹⁾			IT38	IT39	IT40	IT41	IT42	IT43	IT44	IT45
location of origin co	ode		Venice la-	Venice la-	Venice la-	Venice la-	Venice la-	Venice la-	Venice la-	Venice la-
			goon	goon	goon	goon	goon	goon	goon	goon
species code			Mytilus gal-	Mytilus gal-	Mytilus gal-	Mytilus gal-	Tapes sp.	Tapes sp.	Tapes sp.	Tapes sp.
			loprovin-	loprovin-	loprovin-	loprovin-				
			cialis	cialis	cialis	cialis				
sampling date			26/08/2002	28/08/2002	02/09/2002	04/09/2002	28/08/2002	02/09/2002	04/09/2002	06/09/2002
sampling location c	ode		1: Salso	2: Libertà	7: North	10: Chiog-	2: Libertà	7: North	10: Chiog-	11: Chiog-
			channel	Bridge	East open	gia hydro-	Bridge	East open	gia hydro-	gia
					lagoon	biological		lagoon	biological	
						station			station	
sampled amount of	tissue	kg wet wt	0.470	0.510	0.495	0.554	0.491	0.521	0.478	0.523
sampled number of	animals		100	100	100	100	250	250	250	250
dry weight		% wet wt	18.6	20.7	17.7	22.2	19.3	21.6	18.6	22.9
Lipids		% wet wt	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	<i>n.a.</i>	<i>n.a.</i>
sample intake for or analysis	rganotin	g wet wt	<i>ca. 2.5</i>	<i>ca. 2.5</i>	<i>ca.</i> 3	ca. 2.5	<i>ca. 2.5</i>	ca. 2.5	ca. 3	ca. 2.5
corresponding qualitrol samples ²⁾	ity con-		21, 26	21, 26	21, 26	21, 26	22, 27	22, 27	22, 27	22, 27
organotin concen-	MBT	ng cation/g	53	59	16	41	134	17	35	46
tration $^{3)}$	DBT	wet wt	253	307	64	117	116	33	58	180
	TBT]	279	351	68	179	271	86	201	270
	MPT]	п.с.	п.с.	п.с.	п.с.	п.с.	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>
	DPT	1	п.с.	п.с.	п.с.	п.с.	п.с.	п.с.	<i>n.c.</i>	<i>n.c.</i>
	TPT]	п.с.	п.с.	п.с.	п.с.	п.с.	п.с.	<i>n.c.</i>	<i>n.c.</i>

¹⁾ prefix indicates country of sampling partner (BE. ES. DE. FR. HU. GR. IT. NL. PT. SE. UK). ²⁾ indicate serial number of control samples that have been analysed together with this sample.

³⁾ n.c. not considered.

serial number ¹⁾			IT46	IT47	IT48	IT49	IT50	IT51	IT52
location of origin co	ode		Sardinia	Sardinia Soth	Sardinia West	Sardinia	Sardinia	Sardinia	Sardinia
			South Coast	West Coast	Coast	North East	North East	North West	North Coast
						Coast	Coast	Coast	
species code			Mytilus gallo-						
			provincialis						
Sampling date			19/08/2002	28/09/2002	01/10/2002	24/08/2002	01/09/2002	27/09/2002	25/09/2002
Sampling location of	ode		Cagliari	Calasetta	Oristano	Olbia 1	Olbia 2	Alghero	Asinara
sampled amount of	tissue	kg wet wt	0.146	0.149	0.233	0.156	0.211	0.154	0.136
sampled number of	animals		60	60	60	60	60	60	60
dry weight		% wet wt	23.0	24.9	24.0	19.7	21.4	19.1	14.5
Lipids		% wet wt	n.a.	n.a.	n.a.	n.a.	<i>n.a.</i>	<i>n.a.</i>	n.a.
sample intake for or analysis	ganotin	g wet wt	<i>ca. 2.0</i>	<i>ca. 2.0</i>	<i>ca. 2.0</i>	<i>ca. 2.5</i>	<i>ca. 2.0</i>	<i>ca. 2.5</i>	<i>ca.</i> 3.5
corresponding qualit trol samples ²⁾	ty con-		23, 28	23, 28	23, 28	23, 28	24, 29	24, 29	24, 29
Organotin concen-	MBT	ng cation/g	22	21	9	17	< 0.3	37	13
tration $^{3)}$	DBT	wet wt	71	97	13	76	< 0.4	351	59
	TBT		113	78	41	64	35	529	41
	MPT		<i>n.c.</i>	п.с.	п.с.	п.с.	п.с.	п.с.	п.с.
	DPT]	<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	п.с.	п.с.	п.с.	п.с.
	TPT		<i>n.c.</i>	<i>n.c.</i>	<i>n.c.</i>	п.с.	п.с.	п.с.	п.с.

serial number ¹⁾			IT53	IT54	IT55
location of origin code			Sardinia	Sardinia South East Coast	North Tyrrhenian sea
			East Coast		
species code			Mytilus galloprovincialis	Mytilus galloprovincialis	Mytilus galloprovincialis
Sampling date			25/09/2002	26/09/2002	26/05/2003
Sampling location code			Arbatax	Villasimius.	La Spezia Gulf
sampled amount of tissue		kg wet wt	0.148	0.139	0.330
sampled number of animals			60	60	100
dry weight		% wet wt	19.9	18.0	10.0
Lipids		% wet wt	<i>n.a.</i>	n.a.	<i>n.a.</i>
sample intake for organotin ana	lysis	g wet wt	<i>ca. 2.5</i>	<i>ca. 2.5</i>	<i>ca.</i> 3
corresponding quality control s	amples ²⁾		24, 29	24, 29	25, 30
Organotin concentration ³⁾	MBT		21	21	23
	DBT	ng cation/g wet wt	90	77	54
	TBT		62	33	108
	MPT		п.с.	п.с.	<i>n.c.</i>
	DPT		п.с.	<i>n.c.</i>	<i>n.c.</i>
	TPT		<i>n.c.</i>	п.с.	<i>n.c.</i>

¹⁾ prefix indicates country of sampling partner (BE. ES. DE. FR. HU. GR. IT. NL. PT. SE. UK). ²⁾ indicate serial number of control samples that have been analysed together with this sample.

³⁾ n.c. not considered.

sample type		IT	blank									
quality control sat	nple		1	2	3	4	5	6	7	8	9	10
number												
organotin con-	MBT	*ng cation/g dry wt	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
centration	DBT		< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
	TBT]	< 2.4	< 2.4	< 2.4	< 2.4	< 2.4	< 2.4	< 2.4	< 2.4	< 2.4	< 2.4

* Considering 0.5 g of dry weight sample.

sample type		IT	BCR									
			477	477	477	477	477	477	477	477	477	477
quality control san	nple		11	12	13	14	15	16	17	18	19	20
number												
sample intake for	organo-	g dry wt	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
tin analysis												
amount of water a	dded	g	0	0	0	0	0	0	0	0	0	0
organotin con-	MBT	ng cation/g dw	1521	1785	1718	1615	1637	1499	1753	1848	1740	2047
centration	DBT		1385	1596	1622	1560	1556	1490	1303	1328	1324	1406
	TBT		2039	2410	2420	2362	2278	2225	1937	1987	1949	2102

sample type		IT	blank	blank	blank	blank	blank
quality control sample number			21	22	23	24	25
organotin concentration	organotin concentration MBT		< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
	DBT		< 2	< 2	< 2	< 2	< 2
	TBT		< 2.4	< 2.4	< 2.4	< 2.4	< 2.4

* Considering 0.5 g of dry weight sample.

sample type		IT	BCR 477				
quality control sample numl	ber		26	27	28	29	30
sample intake for organotin	analysis	g dry wt	0.2	0.2	0.2	0.2	0.2
amount of water added		g	0	0	0	0	0
organotin concentration	MBT	ng cation/g dw	1480	1350	1360	1350	1770
	DBT		1370	1520	1410	1420	1300
	TBT	1	2090	2140	2060	2000	2040

France

serial number ¹⁾			FR1	FR2	FR3	FR4	FR5	FR6	FR7
location of origi	n code		FAO 27 VIII	FAO 27 VIII	FAO 27 VII e	FAO 27 VIII	FAO 27 VII d	FAO 27 At-	FAO 27 VII e
			b Atlantic	b Atlantic	Atlantic	a Atlantic	Atlantic	lantic North	Atlantic
			ocean	ocean	ocean	ocean	ocean	east	ocean
			Arcachon bay	Arcachon bay	Bretagne	Marennes	Normandie		Bretagne Sud
					Aber	island	Calvados		
species code			Crassostrea	Crassostrea	Crassostrea	Crassostrea	Crassostrea	Salmo salar	Mytilus edulis
			gigas	gigas	gigas	gigas	gigas		
sampling date			23/10/02	27/02/03	23/01/03	24/01/03	11/12/02	21/12/02	07/02/03
sampling location	on		Oyster farm	Oyster farm	Oyster farm	Oyster farm	Oyster farm	Imported	Supermarket
code			(producer-	(producer-	(producer-	(producer-	(producer-	from Norway	Pau
			seller)	seller)	seller)	seller)	seller)	Supermarket	
								Pau	
sampled amount	t of	kg wet wt	0.358	0.295	0.178	0.225	0.328	4.2	0.177
tissue									
sampled number	r of		50	50	50	50	50	25 slices	50
animals									
dry weight		% wet wt	17.9%	17.7	20	21.4	23.5	36.4	14.37
Residual moistu	ire in		7.7	8.8	9.3	8.7	7	1	7.8
dried sample									
lipids		% wet wt							
sample intake for	or	g dry wt	1	1	1	1	1	1	1
organotin analys	sis								
corresponding q			1, 5, 8	1, 5, 8	1, 5, 8	1, 5, 8	1, 5, 8 (2,6 for	2, 6	2,6
control samples ²	2)						third extract)		
organotin con-	MBT	ng cation/ g wet	<0.7	<0.7	<0.8	<0.9	<0.9	<1.4	<0.6
centration ³⁾		wt							
	DBT		0.76 ± 0.049	<0.6	<0.6	< 0.7	<0.7	<1.1	<0.5

serial number ¹⁾		FRI	FR2	FR3	FR4	FR5	FR6	FR7
	TBT	7.81 ±0.49	17.27±0.85	<i>24.64±0.97</i>	9.93±0.66	3.1±0.195	5.73±0.22	9.76±0.93
	MPT	<3	<3	<4	<4	<4	<6	<3
	DPT	<4	<4	<4	<4	<5	<7	<3
	ТРТ	<4	<4	<5	<5	<6	<9	<4

France

serial number ¹⁾		FR8	FR9	FR10	FR11	FR12	FR13	FR14
location of origin code		FAO 27 VIIe	FAO 27 VII d	FAO 27 VIII	FAO 27 VII e	FAO 37 1.2	FAO 27 At-	FAO 27 VIIe
		Atlantic	Atlantic	a Atlantic	Atlantic	Mediterra-	lantic North	Atlantic
		ocean	ocean	ocean	ocean	nean sea	east	ocean
		Normandie	Normandie	Marennes	Bretagne	Var		Normandie
		Baie Mont	Calvados	island	Aber			Baie Mont
		Saint Michel						Saint Michel
species code		Mytilus edulis	Crassostrea	Crassostrea	Crassostrea	Mytilus gal-	Salmo salar	Mytilus edulis
			gigas	gigas	gigas	loprovincialis		
sampling date		02/12/02	11/04/03	14/04/03	22/04/03	12/02/03	03/04/03	22/05/03
sampling location		Wholesaler	Oyster farm	Oyster farm	Oyster farm	Mussel farm	Imported	Wholesaler
code		Pau	(producer-	(producer-	(producer-	(producer-	from Norway	Pau
			seller)	seller)	seller)	seller)	Supermarket	
							Pau	
sampled amount of tis-	kg wet wt	0.251	0.338	0.229	0.193	0.209	2.6	0.143
sue								
sampled number of		50	50	50	50	50	25 slices	50
animals								
dry weight	% wet wt	19.4	22	21.9	17.8	16.6	40	27
Residual moisture in		11	9	6.5	5.9	8	9	10.8
dried sample								
lipids	% wet wt							
sample intake for or-	g dry wt	1	1	1	1	1	1	1
ganotin analysis								
corresponding quality		3,7	3,7	4,9	4,9	4',10	4',10	4'', 11
control samples ²⁾								
organotin con- MBT	ng cation / g wet	<0.8	<0.9	<0.9	< 0.7	17.39±1.18	<1.6	<1.1
centration ³⁾	wt							

serial number ¹⁾		FR8	FR9	FR10	FR11	FR12	FR13	FR14
	DBT	<0.6	<0.7	<0.7	<0.6	<i>37.69±3.49</i>	<1.2	<0.8
	TBT	4.73 ± 0.46	6.15±0.44	11.10 ±0.70	27.33±2.07	<i>41.65±3.85</i>	6.73±0.53	5.46 ± 0.49
	MPT	<4	<4	<4	<3	<3	<7	<5
	DPT	<4	<4	<4	<4	<3	<7	<5
	TPT	<5	<5	<5	<4	<4	<9	<6

France

serial number ¹⁾			FR15	FR16
location of origin code			FAO 27 VII e Atlantic ocean	FAO 37 1.2 Mediterranean sea
			Bretagne sud	Var
species code			Mytilus edulis	Mytilus galloprovincialis
sampling date			26/05/03	30/05/03
sampling location code			Supermarket Pau	mussel farm
				(producer-seller)
sampled amount of tissue		kg wet wt	0.139	0.216
sampled number of animals			50	50
dry weight		% wet wt	17.63	18.47
Residual moisture in dried sa	ample		9.2	8.8
lipids		% wet wt		
sample intake for organotin a	analysis	g dry wt	1	1
corresponding quality control	ol samples ²⁾		4", 11	4'',11
organotin concentration ³⁾	MBT	ng cation / g wet wt	<0.7	12.24±1.09
	DBT		<0.6	45.43±2.19
	TBT		<i>16.47 ± 1.195</i>	63.75±5.54
	MPT		<3	<4
	DPT		<3	<4
	TPT		<4	<5

France

sample type		FR	blank	blank	blank	blank	blank	blank
quality control sample num-			1	2	3	4	4'	4''
sample intake for or	ganotin	g dry wt	lg	lg	lg	lg	lg	lg
Residual moisture in	n sample							
amount of water add	ded	g						
organotin concen-	MBT	ng cation/g dry wt	<1.18	<1.18	<1.18	<1.18	<1.18	<1.18
tration	DBT		<1	<1	<1	<1	<1	<1
	TBT		<1.22	<1.22	<1.22	<1.22	<1.22	<1.22
	MPT							
	DPT	1						
	TPT	1						

sample type		FR	CRM						
quality control samp	ole num-		5	6	7	8	9	10	11
sample intake for organotin		g dry wt	0.753	0.754	0.617	0.514	0.502	0.533	0.485
Residual moisture in sample			6.5%	6.8%	6.8%	8%	8%	10%	6.8%
amount of water add	led	g							
organotin concen-	MBT	ng cation/g dry wt	1916	1750	1250	33.2	42.5	1394	1360
tration	DBT		1533	1418	1414	68.9	89.8	1419	1626
	TBT		2275	2047	2222	118	109	1959	2068
	MPT								
	DPT	1							
	ТРТ								

serial number ¹⁾			DE01	DE02	DE03	DE04	DE05	DE06
location of origi	n code		NorthAtlantik	Pacific	NorthAtlantik	NorthAtlantik	NorthSea	Alaska
species code			canned Herring	Tuna fish canned	canned Herring	salmon, frozen	fresh Herring	Alaska Pollok,
			in tomato sauce	without oil	in jelly			frozen
sampling date			1-7-2002	1-7-2002	1-7-2002	1-7-2002	1-7-2002	1-7-2002
sampling location	on code		Supermarket	Supermarket	Supermarket	Supermarket	Supermarket	Supermarket
sampled amount	t of tis-	kg wet wt	0.5	0.5	0.5	0.2	0.1	0.2
sampled number animals	r of		unknown	unknown	unknown	1	1	1
dry weight		% wet wt	30.2	42.5	29.1	32.4	32.5	15.9
lipids		% wet wt	16.5	15.9	12.2	11.9	17.1	2.1
sample intake for ganotin analysis		g wet wt	1.0	1.0	1.0	1.0	1.0	1.0
corresponding q control samples			1,5	1,5	1,5	1,5	1,5	1,5
organotin con-	MBT	ng cation / g wet	0.7	18.5	4.7	0.4	0.4	0.8
centration ³⁾	DBT	wt	0.9	4.9	1.5	1.0	0.8	2.3
	TBT		1.5	3.9	4.5	8.2	4.5	1.8
	MPT		< 0.3	<0.3	< 0.3	< 0.3	<0.3	< 0.3
	DPT]	<0.3	<0.3	< 0.3	< 0.3	<0.3	<0.3
	TPT		< 0.3	0.5	0.6	1.9	1.3	<0.3

serial number ¹⁾			DE07	DE08	DE09	DE10	DE11	DE12
location of origi	n code		NorthAtlantik	Pacific	NorthAtlantik	NorthAtlantik	NorthSea	Alaska
species code			canned Herring	Tuna fish canned	canned Herring	salmon, frozen	fresh Herring	Alaska Pollok,
			in tomato sauce	without oil	in jelly			frozen
sampling date			8-8-2002	8-8-2002	8-8-2002	8-8-2002	8-8-2002	8-8-2002
sampling location	on code		Supermarket	Supermarket	Supermarket	Supermarket	Supermarket	Supermarket
sampled amount sue	t of tis-	kg wet wt	0.5	0.5	0.5	0.2	0.1	0.2
sampled number animals	r of		unknown	unknown	unknown	1	1	1
dry weight		% wet wt	31.4	39.5	27.2	33.9	30.5	16.9
lipids		% wet wt	15.1	14.5	11.6	10.8	16.1	0.9
sample intake fo ganotin analysis		g wet wt	1.0	1.0	1.0	1.0	1.0	1.0
corresponding q			2,6	2,6	2,6	2,6	2,6	2,6
organotin con-	MBT	ng cation / g wet	0.7	19.7	5.6	0.4	0.6	0.3
centration ³⁾	DBT	wt	0.7	4.7	1.3	0.9	1.8	0.7
	TBT		1.4	2.9	4.5	8.2	34.3	0.7
	MPT		< 0.3	<0.3	< 0.3	< 0.3	<0.3	< 0.3
	DPT		< 0.3	<0.3	< 0.3	< 0.3	< 0.3	<0.3
	TPT		<0.3	0.3	0.5	2.1	1.9	<0.3

serial number ¹⁾			DE13	DE14	DE15	DE16	DE17	DE18
location of origi	n code		NorthAtlantik	Pacific	NorthAtlantik	NorthAtlantik	NorthSea	Alaska
species code			canned Herring	Tuna fish canned	canned Herring	salmon, frozen	fresh Herring	Alaska Pollok,
			in tomato sauce	without oil	in jelly			frozen
sampling date			16-9-2002	16-9-2002	16-9-2002	16-9-2002	16-9-2002	16-9-2002
sampling location	on code		Supermarket	Supermarket	Supermarket	Supermarket	Supermarket	Supermarket
sampled amount sue	t of tis-	kg wet wt	0.5	0.5	0.5	0.2	0.1	0.2
sampled number animals	r of		unknown	unknown	unknown	1	1	1
dry weight		% wet wt	32.7	34.9	24.2	31.2	33.1	15.1
lipids		% wet wt	14.2	17.6	13.6	14.3	17.3	1.9
sample intake fo ganotin analysis		g wet wt	1.0	1.0	1.0	1.0	1.0	1.0
corresponding q control samples ²			3,6	3,6	3,6	3,6	3,6	3,6
organotin con-	MBT	ng cation / g wet	0.5	16.1	7.1	0.4	0.6	<0.3
centration ³⁾	DBT	wt	0.9	3.7	2.1	1.0	1.8	0.7
	TBT	1	1.4	2.9	5.9	8.2	30.8	0.8
	MPT	1	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	< 0.3
	DPT	1	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	<0.3
	ТРТ	1	< 0.3	0.6	0.6	2.3	1.8	<0.3

serial number ¹⁾)		DE19	DE20	DE21	DE22	DE23	DE24
location of orig	gin		NorthAtlantik	Pacific	Pacific	NorthAtlantik	NorthSea	NorthSea
species code			canned Herring in tomato sauce	Tuna fish salat canned without oil	tuna fish filets canned without oil	canned Herring salat	canned Herring filets	canned Herring filets in fruity sauce
sampling date			28-7-2003	28-7-2003	28-7-2003	28-7-2003	28-7-2003	28-7-2003
sampling locati	ion		Supermarket	Supermarket	Supermarket	Supermarket	Supermarket	Supermarket
sampled amountissue	nt of	kg wet wt	1	3	3	1	1	1
sampled number packages	er of		20 cans from 4 supermarkets	20 cans from 4 supermarkets	20 cans from 4 supermarkets	20 cans from 4 supermarkets	20 cans from 4 supermarkets	20 cans from 4 supermarkets
dry weight		% wet wt						
lipids		% wet wt						
sample intake f ganotin analysi		g wet wt	1.0	1.0	1.0	1.0	1.0	1.0
corresponding ity control sam			11,12,13,15,16,17	11,12,13,15,16,17	11,12,13,15,16,17	11,12,13,15,16,17	11,12,13,15,16,17	11,12,13,15,16,17
organotin	MBT	ng cation/ g	1.7	<0.3	< 0.3	0.9	21.3	12.6
concentration	DBT	wet wt	0.3	0.4	0.5	5.3	3.7	0.8
3)	TBT		3.3	1.4	1.1	37.5	4.5	3.9
	MPT		<0.3	<0.3	< 0.3	<0.3	< 0.3	<0.3
	DPT		<0.3	<0.3	< 0.3	<0.3	< 0.3	<0.3
	TPT		< 0.3	< 0.3	<0.3	1.8	0.6	< 0.3

serial number ¹⁾			DE25	DE26
location of origin code			Pacific	NorthAtlantic
species code			salmon filet, frozen	Alaska Pollok,fish sticks, frozen
sampling date			28-7-2003	28-7-2003
sampling location code			Supermarket	Supermarket
sampled amount of tissue		kg wet wt	5	5
sampled number of packag	ges		20 bags from 4 supermarkets	20 cartons from 4 supermarkets
dry weight		% wet wt		
lipids		% wet wt		
sample intake for organotin	n analysis	g wet wt	1.0	1.0
corresponding quality cont ples ²⁾	rol sam-		11,12,13,15,16,17	11,12,13,15,16,17
organotin concentration ³⁾	MBT	ng cation / g wet wt	< 0.3	<0.3
	DBT		1.3	<0.3
	TBT		1.2	1.0
	MPT	1	<0.3	<0.3
	DPT	1	<0.3	<0.3
	TPT	7	<0.3	0.3

sample type		DE	blank	blank	blank	blank	blank	blank
quality control sa	mple		1	2	3	11	12	13
number								
sample intake for	organo-	g dry wt	0	0	0	0	0	0
tin analysis								
amount of water added		g	10	10	10	10	10	10
organotin con-	MBT	ng cation /g dry wt	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
centration	DBT		<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	TBT		<0.3	< 0.3	<0.3	< 0.3	< 0.3	<0.3
	MPT		<0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3
	DPT		<0.3	<0.3	<0.3	< 0.3	<0.3	<0.3
	TPT		<0.3	<0.3	<0.3	< 0.3	<0.3	<0.3

sample type		DE	CRM	CRM	CRM	CRM	CRM	CRM
			477	477	477	477	477	477
quality control sa	quality control sample		5	6	7	15	16	17
number								
sample intake for	organo-	g dry wt	0.1	0.1	0.1	0.1	0.1	0.1
tin analysis								
amount of water	added	g	10	10	10	10	10	10
organotin con-	MBT	ng cation /g dry wt	2550	2680	2620	2349	2389	2272
centration	DBT		1910	1880	1930	1618	1736	1553
	TBT		2240	2310	2200	2365	2353	2344
	MPT		1440	1640	1650	1618	1739	1553
	DPT		70	72	63	79,3	83,9	96,7
	TPT		1250	1170	1130	1248	1318	1300

serial number ¹⁾			PT01	PT02	PT03	PT04	PT05	PT06	<i>PT07</i>
location of origi	in code		Atlantic	Atlantic	Atlantic	Argentine	Atlantic	Atlantic	Atlantic
species code			Sardina pil- chardus	Sardina pil- chardus	Trachurus trachurus	Merluccius. sp	Trisopterus Luscus	Octopus vul- garis	Octopus vul- garis
sampling date			28-07-02	02-08-02	18-02-02	28-07-02	18-07-02	18-07-02	26-07-02
sampling location	on code		Fishing mar- ket in Leixões	Fishing mar- ket in Olhão	Fishing mar- ket in Leixões	Supermarket in North Por- tugal	Fishing mar- ket in Leixões	Fishing mar- ket in Leixões	Fishing mar- ket in Sesim- bra
sampled amoun	t of tis-	kg wet wt							
sue									
sampled numbe animals	r of		25	25	25	25	25	25	25
dry weight		% wet wt							
lipids		% wet wt							
sample intake for ganotin analysis		g wet wt							
corresponding c control samples			1,2,3,5,6,7	1,2,3,5,6,7	1,2,3,5,6,7	1,2,3,5,6,7	1,2,3,5,6,7	1,2,3,5,6,7	1,2,3,5,6,7
organotin con-	MBT	ng cation / g wet	<0,3	<0,3	0,5	<0,3	<0,3	0,5	0,5
centration ³⁾	DBT	wt	1,2	1,5	1,1	1,2	<0,3	3,4	9,5
	TBT		17,5	13,2	4,1	1,3	<0,3	4,3	27,1
	MPT								
	DPT								
	TPT		<0,3	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3

serial number ¹⁾			PT08	PT09	PT10	PT11	PT12
location of origin	code		Atlantic	Atlantic	Atlantic	Atlantic	Nigeria
species code			Octopus vulgaris	Mytillus galopro- vinciallis	Cerastoderma ed- ule	Tapes sp.	Paneus sp.
sampling date			02-08-02	02-08-02	23-07-02	02-08-02	28-07-02
sampling location	ı code		Fishing market in Olhão	Supermarket in North Portugal	Fishing market in Aveiro	Fishing market in Olhão	Supermerket in North Portugal
sampled amount	of tissue	kg wet wt					
sampled number mals	of ani-		25	50	50	50	100
dry weight		% wet wt					
lipids		% wet wt					
sample intake for tin analysis	organo-	g wet wt					
corresponding qu trol samples ²⁾	ality con-		1,2,3,5,6,7	1,2,3,5,6,7	1,2,3,5,6,7	1,2,3,5,6,7	1,2,3,5,6,7
organotin con-	MBT	ng cation / g wet wt	<0,3	3,8	2,5	2,1	<0,3
centration ³⁾	DBT]	1,0	32,2	19,0	10,5	2,6
	TBT		2,6	100,0	64,3	32,7	5,5
	MPT						
	DPT						
	TPT]	<0,3	<0,3	<0,3	<0,3	<0,3

serial number ¹⁾			PT13	PT14	PT15	PT16	PT17	PT18
location of origin	n code		Atlantic, Ria of	Mozambique	Atlantic, North	Atlantic (Nor-	Atlantic, North	Atlantic, Ria
			Aveiro (Centre		Spain	way)	Portugal	Formosa (South
			Portugal)					Portugal)
species code			Cerastoderma	Paneus sp.	Trachurus tra-	Gadus sp.	Trisopterus	Mytillus galo-
			edule		churus		Luscus	provinciallis
sampling date			7-04-03	20-12-02	26-03-03	20-12-02	26-03-03	07-04-03
sampling location	n code		Fishing market	Supermarket in	Fishing market	Supermarket in	Fishing market	Supermarket in
			in Aveiro	North Portugal	in Leixões	North Portugal	in Leixões	North Portugal
sampled amount	of tis-	kg wet wt	2	2	4	20	4	2
sue								
sampled number	of		50	100	25	25	25	50
animals								
dry weight		% wet wt						
lipids		% wet wt						
sample intake fo	r or-	g wet wt						
ganotin analysis								
corresponding q			11,12,13,15,	11,12,13,15,	11,12,13,15,	11,12,13,15,	11,12,13,15,	11,12,13,15,
control samples ²	2)		16,17	16,17	16,17	16,17	16,17	16,17
organotin con-	MBT	ng cation / g wet	13,1	1,1	1,6	1,3	1,4	9,1
centration ³⁾	DBT	wt	77,7	1,7	3,4	2,1	1,4	29,1
	TBT]	240	<0,3	6,1	1,7	<0,3	70,3
	MPT							
	DPT	1						
	TPT	1	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3

serial number ¹⁾		<i>PT19</i>	PT20	PT21	PT22	<i>PT23</i>	<i>PT24</i>	PT25
location of origin code		South Africa	Atlantic,	Atlantic,	Atlantic,	Atlantic,	Atlantic,	Atlantic, Ria
			Centre of	North	South	North Portu-	South	Formosa
			Portugal	Portugal	Portugal	gal	Portugal	(South Portu- gal)
species code		Merluccius. sp	Octopus vul- garis	Octopus vul- garis	Octopus vul- garis	Sardina pil- chardus	Sardina pil- chardus	Ruditapes de- cussatus.
sampling date		20-12-02	27-03-03	20-12-02	16-03-03	20-12-02	16-03-03	27-03-03
sampling location code		Supermarket in North Por- tugal	Fishing mar- ket in Sesim- bra	Fishing mar- ket in Leixões	Fishing mar- ket in Olhão	Fishing mar- ket in Leixões	Fishing mar- ket in Olhão	Fishing mar- ket in Olhão
sampled amount of tissue	kg wet wt	5	15	15	15	3	3	2
sampled number of animals		25	25	25	25	25	25	50
dry weight	% wet wt							
lipids	% wet wt							
sample intake for or- ganotin analysis	g wet wt							
corresponding quality		11,12,13,15,	11,12,13,15,	11,12,13,15,	11,12,13,15,	11,12,13,15,	11,12,13,15,	11,12,13,15,
control samples ²⁾		16,17	16,17	16,17	16,17	16,17	16,17	16,17
organotin con- MBT	ng cation / g wet	2,5	1,2	<0,3	2,7	3,1	1,7	10,1
centration ³⁾ DBT TBT	wt	2,4 2,6	3,1 8,2	<0,3 <0,3	5,9 4,9	5,1 29,6	2,4 19,1	28,5 275
MPT DPT								
TPT		<0,3	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3

 1).
 prefix indicates country of sampling partner (BE, ES, DE, FR, HU, GR, IT, NL, PT, SE, UK).

 2)
 indicate serial number of control samples that have been analysed together with this sample.

 3)
 <x: values below limit of detection, x*: values between limit of detection end lower limit of quantification, standard deviation can be as high as 100 %.</td>

sample type		PT	blank	blank	blank	blank	blank	blank	CRM	CRM	CRM	CRM	CRM	CRM
									477	477	477	477	477	477
quality control sample			1	2	3	11	12	13	5	6	7	15	16	17
number														
sample intake for or-		g dry wt	1	1	1	1	1	1	0,1	0,1	0,1	0,1	0,1	0,1
ganotin analysis														
amount of water	amount of water added		10	10	10	10	10	10	10	10	10	10	10	10
organotin con-	MBT	ng cation / g wet	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3	1782	2607	2498	2264	2419	2360
centration	DBT	wt	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3	2288	2239	2312	1952	1810	1784
	TBT		<0,3	<0,3	<0,3	<0,3	<0,3	<0,3	2037	2028	2498	2028	2250	2318
	MPT		<0,3	<0,3	<0,3	<0,3	<0,3	<0,3	1450	1725	1620	1328	1517	1456
	DPT		<0,3	<0,3	<0,3	<0,3	<0,3	<0,3	70	59	61	62	64	58
	TPT		<0,3	<0,3	<0,3	<0,3	<0,3	<0,3	1110	1236	1056	1021	1089	1057

serial number ¹⁾			ES01	ES02	ES03	ES04	ES05	ES06
location of origi	in code		Western Medi- terranean	Cadiz Gulf	Cantabric Sea	Alicante coast	Imported from Morocco- Argelian	Cadiz Gulf
species code			Engraulis encra- sicholus	Engraulis encra- sicholus	Engraulis encra- sicholus	Crangon cran- gon	Crangon cran- gon	Crangon cran- gon
sampling date			18-Jul-02	30-Jul-02	11-Sep-02	18-Jul-02	18-Jul-02	30-Jul-02
sampling location	on code		Wholesaler in Madrid	Wholesaler in Huelva	Wholesaler in Santander	Wholesaler in Madrid	Wholesaler in Madrid	Wholesaler in Huelva
sampled amoun sue	t of tis-	kg wet wt	2	2	2	2	2	2
sampled number animals	r of		25	25	25	100	100	100
dry weight		% wet wt	31.2	30.5	35.4	31.3	29.3	28
lipids		% wet wt						
sample intake for ganotin analysis		g wet wt	3.316	3.334	2.904	3.234	3.468	3.732
corresponding q control samples			1, 5	1, 5	2, 6	1, 5	1, 5	1, 5
organotin con-	MBT	ng cation / g wet	6.60	2.40*	1.29*	<2	6.83	2.00*
centration ³⁾	DBT	wt	<2	1.85*	1.79*	<2	<2	<2
	TBT		28.51	16.57	4.42*	5.44*	2.05*	2.93*
	MPT		<5	<5	<5	<5	<5	<5
	DPT		<8	<8	<8	<8	<8	<8
	TPT		<8	<8	<8	<8	<8	<8

serial number ¹⁾			ES07	ES08	ES09	ES10	ES11	ES12
location of origi	location of origin code		Western Medite-	Cadiz Gulf	Cantabric Sea	Cadiz Gulf	Cantabric Sea	Imported from
			rranean					Saharian-
								Morocco
species code			Sardina pilchar-	Sardina pilchar-	Sardina pilchar-	Solea solea	Solea solea	Loligo vulgaris
			dus	dus	dus			
sampling date			18-Jul-02	30-Jul-02	11-Sep-02	30-Jul-02	12-Sep-02	18-Jul-02
sampling location	on code		Wholesaler in	Wholesaler in	Wholesaler in	Wholesaler in	Wholesaler in	Wholesaler in
			Madrid	Huelva	Santander	Huelva	Santander	Madrid
sampled amount	t of tis-	kg wet wt						
sue			2	2	2	2	2	2
sampled number	r of							
animals			25	25	25	15	15	20
dry weight		% wet wt	41.4	33.9	40.3	31.9	32.7	26.3
lipids		% wet wt						
sample intake for	or or-	g wet wt						
ganotin analysis			2.459	2.993	2.519	3.27	3.113	3.93
corresponding q								
control samples	2)		1, 5	2, 6	2, 6	1, 5	2, 6	1, 5
organotin con-	MBT	ng cation / g wet	<2	1.39*	7.71	7.18	<2	5.76
centration ³⁾	DBT	wt	1.42*	<2	6.96	<2	<2	2.80*
	TBT		35	24.44	34.83	<2	<2	19.34
	MPT]	<5	<5	<5	<5	<5	<5
	DPT		<8	<8	<8	<8	<8	<8
	TPT		<8	<8	<8	<8	<8	<8

serial number ¹⁾			ES13	ES14	ES15	ES16	ES17	ES18
location of origi	n code		Cantabric Sea	Cadiz Gulf	Cantabric Sea	Western Medi- terranean	Cadiz Gulf	Galicia
species code			Loligo vulgaris	Merlangus mer- langius	Merlangus mer- langius	Engraulis encra- sicholus	Engraulis encra- sicholus	Mytilus edulis
sampling date			9-Sep-02	30-Jul-02	16-Sep-02	17-Oct-02	6-Nov-02	9-Nov-02
sampling location	on code		Wholesaler in Santander	Wholesaler in Huelva	Wholesaler in Santander	Wholesaler in Madrid	Wholesaler in Huelva	Supermarket in La Coruña
sampled amoun	t of tis-	kg wet wt						
sue			2	2	2	2	2	2
sampled number	r of							
animals			20	15	15	25	25	50
dry weight %		% wet wt	30.4	29.4	29.9	38.6	33.8	30.9
lipids		% wet wt						
sample intake fo ganotin analysis		g wet wt	3.361	3.451	3.432	2.621	3.049	3.434
corresponding q			1, 5	1, 5	2, 6	2, 6	4, 8	3, 7
organotin con-	MBT	ng cation / g	2.88*	2.77*	4.69	3.08*	<2	4.58
centration ³⁾	DBT	wet wt	<2	<2	4.66*	9.5	<2	23.36
	TBT		4.43*	22.17	15.46	16.01	30.09	26.08
	MPT		<5	<5	<5	<5	<5	<5
	DPT		<8	<8	<8	<8	<8	<8
	TPT	1	<8	<8	<8	<8	<8	<8

serial number ¹⁾			ES19	ES20	ES21	ES22	ES23	ES24
location of origin code			Alicante coast	Imported from	Cadiz Gulf	Western Medi-	Cadiz Gulf	Cadiz Gulf
				Morocco-		terranean		
				Argelian				
species code			Crangon cran-	Crangon cran-	Crangon cran-	Sardina pilchar-	Sardina pilchar-	Solea solea
			gon	gon	gon	dus	dus	
sampling date			17-Oct-02	17-Oct-02	7-Nov-02	17-Oct-02	6-Nov-02	7-Nov-02
sampling location	on code		Wholesaler in	Wholesaler in	Wholesaler in	Wholesaler in	Wholesaler in	Wholesaler in
			Madrid	Madrid	Huelva	Madrid	Huelva	Huelva
sampled amount	t of tis-	kg wet wt						
sue			2	2	2	2	2	2
sampled number	r of							
animals			100	100	100	25	25	15
dry weight		% wet wt	31.8	32	32.3	40.7	42.8	31.3
lipids		% wet wt						
sample intake for	or or-	g wet wt						
ganotin analysis	5		3.301	3.122	3.143	2.537	2.488	3.238
corresponding q								
control samples	2)		3, 7	2, 6	3, 7	2, 6	3, 7	3, 7
organotin con-	MBT	ng cation / g	2.40*	<2	<2	1.53*	<2	3.72*
centration ³⁾	DBT	wet wt	1.71*	<2	<2	2.97*	<2	3.68*
	TBT		<5	<5	<5	33.9	18.01	10.57
	MPT		<5	<5	<5	<5	<5	<5
	DPT		<8	<8	<8	<8	<8	<8
	TPT]	<8	<8	<8	<8	<8	<8

Spain

serial number ¹⁾			<i>ES25</i>	ES26	<i>ES27</i>	ES28	<i>ES29</i>
location of origin co	ode		Galicia	Imported from Sa-	Galicia	Cadiz Gulf	Galicia
				harian-Morocco			
species code			Solea solea	Loligo vulgaris	Loligo vulgaris	Merlangus merlan-	Merlangus merlan-
						gius	gius
sampling date			9-Nov-02	17-Oct-02	9-Nov-02	8-Nov-02	9-Nov-02
sampling location c	ode		Supermarket in La	Wholesaler in Ma-	Supermarket in La	Wholesaler in	Supermarket in La
			Coruña	drid	Coruña	Huelva	Coruña
sampled amount of	tissue	kg wet wt	2	2	2	2	2
sampled number of	animals		15	20	20	15	15
dry weight		% wet wt	35.6	30.4	33.4	30.8	33.9
lipids		% wet wt					
sample intake for or	rganotin	g wet wt					
analysis			2.888	3.392	3.131	3.297	3.103
corresponding quali	ity con-						
trol samples ²⁾			4, 8	2, 6	3, 7	3, 7	4, 8
organotin concen-	MBT	ng cation / g wet	<2	6.28	<2	<2	<2
tration ³⁾	DBT	wt	<2	7.77	<2	<2	<2
	TBT]	<2	24.38	4.78*	9.79	<2
	MPT		<5	<5	<5	<5	<5
	DPT <8		<8	<8	<8	<8	<8
	TPT	1	<8	<8	<8	<8	<8

Spain

serial number ¹⁾			ES38	ES39	ES43
location of origin code			Cantabric Sea	Cantabric Sea	Cantabric Sea
species code			Sardina pilchardus	Solea solea	Merlangus merlangius
sampling date			19-May-03	19-May-03	19-May-03
sampling location code			Wholesaler in Santander	Wholesaler in Santander	Wholesaler in Santander
sampled amount of tissue		kg wet wt	2	2	2
sampled number of animals	3		25	15	15
dry weight		% wet wt	38.2	36.6	34.2
lipids		% wet wt			
sample intake for organotir	ı analysis	g wet wt	2.804	2.895	3.088
corresponding quality contr	rol samples ²⁾		4, 8	4, 8	4, 8
organotin concentration ³⁾	MBT	ng cation / g wet wt	<2	<2	<2
	DBT		<2	<2	<2
	TBT		29.14	<2	6.15
	MPT	1	<5	<5	<5
	DPT	1	<8	<8	<8
	TPT	1	<8	<8	<8

Spain

sample type		ES	Blank	Blank	Blank	Blank	CRM 477	CRM 477	CRM 477	CRM 477
quality control s	ample									
number			1	2	3	4	5	6	7	8
sample intake fo	r or-	g dry wt								
ganotin analysis			0	0	0	0	0.5	0.5	0.1	0.1
amount of water	added	g	0	0	0	0	0	0	0	0
organotin con-	MBT	ng cation/g dry	<2	<2	<2	<2	1284	1263	1306	1296
centration	DBT	wt	<2	<2	<2	<2	1297	1301	1318	1309
	TBT	Ī	<2	<2	<2	<2	1767	1793	1807	1795
	MPT	Ī	<5	<5	<5	<5	<5	<5	<5	<5
	DPT	Ī	<8	<8	<8	<8	<8	<8	<8	<8
	TPT	1	<8	<8	<8	<8	<8	<8	<8	<8

Hungary

serial number ¹⁾			HU01	HU02	HU03	HU04	HU04a	HU05	HU06
location of origi	n code		Poland	Thailand	Argentina	Poland		Thailand	Argentina
species code			Clupea harengus	Clupea pil- chardus	Merluccius hubbis	Clupea harengus	vinegar dress- ing of HU04	Clupea pil- chardus	Merluccius hubbis
sampling date			24-May/ 07-Jun-02	24-May/ 07-Jun-02	24-May/ 07-Jun-02	09/13-Sep-02		09/13-Sep-02	09/13-Sep-02
sampling location	on code		4 importers	4 importers	2 importers	4 importers		4 importers	2 importers
sampled amount sue	t of tis-	kg wet wt	1.66	1.75	2.5	2.5		1.28	1.6
sampled number animals	r of		55	116	15 slices	68		79	10 slices
dry weight		% wet wt	27.6	28.5	21	30	8.6	22.3	19.1
lipids		% wet wt							
sample intake for ganotin analysis		g wet wt	3.7	3.5	5.2	3.5	12.0	4.6	5.4
corresponding q control samples			4, 8	4, 8	3, 7	4, 8	4,8	4, 8	3, 7
organotin con-	MBT	ng cation / g	<2	<2	<2	<2	<2	<2	<2
centration ³⁾	DBT	wet wt	<2	<2	<2	<2	<2	<2	<2
	TBT		<2	14.56	<2	5.93	<2	9.19	<2
	MPT]	<5	<5	<5	<5	<5	<5	<5
	DPT]	<8	<8	<8	<8	<8	<8	<8
	TPT		<8	<8	<8	<8	<8	<8	<8

Hungary

sample type		HU	Blank	Blank	CRM 477	CRM 477
quality control sample number			3	4	7	8
sample intake for organotin analysis		g dry wt	0	0	0.1	0.1
amount of water added		g	0	0	0	0
organotin concentration	MBT	ng cation/g dry wt	<2	<2	1306	1296
	DBT		<2	<2	1318	1309
	TBT		<2	<2	1807	1795
	MPT		<5	<5	<5	<5
	DPT		<8	<8	<8	<8
	TPT		<8	<8	<8	<8

serial number ¹⁾			UK01	UK02	UK03	UK04	UK05	UK06
location of origi	n code		VIA North West	VIA North West	IVc East coast	IVc East coast	IVc East coast	IVc East coast
			Uk	Uk				
species code			Gadus morhua	Melanogammus	Buccinum unda-	Buccinum unda-	Buccinum unda-	Mytilus edulis
				aeglefinus	tum	tum	tum	
sampling date			Oct-02	Oct-02	Jul-02	Aug-02	Jul-02	Sep-02
sampling location	on code		Whitehaven fish	Whitehaven fish	East Coast	East Coast	East Coast	Mussel beds on
			market	market	Beach	Beach	Beach	the East Coast
sampled amount	t of tis-	kg wet wt	42.5	16.5	0.065	0.043	0.326	0.13
sue								
sampled number	r of		25	25	8	5	38	35
animals								
dry weight		% wet wt	21.6	22.7	27.5	27.9	25.8	24.5
lipids		% wet wt						
sample intake fo ganotin analysis		g wet wt	2	2.03	2.18	2.02	2.03	2.08
corresponding q	uality		7,17	7,17	3,13	3,13	3,13	2,12
organotin con-	MBT	ng cation / g	5	<5	13	16	21	4
centration ³⁾	DBT	wet wt	4	<4	7	9	9	5
	TBT		4	<4	<4	18	<4	11
	MPT		<80	<80	<80	<80	<80	<80
	DPT		<80	<80	<80	<80	<80	<80
	TPT	1	<80	<80	<80	<80	<80	<80

serial number ¹⁾			UK07	UK08	UK09	UK10	UK11	UK12
location of origi	n code		VIIe South coast	VIIf West coast	VIIe South coast	VIIa West Coast	IVc East coast	VIIe South coast
species code			Mytilus edulis	Mytilus edulis	Mytilus edulis	Mytilus edulis	Crassostrea gi- gas	Crassostrea gi- gas
sampling date			Sep-02	Sep-02	Sep-02	Sep-02	Sep-02	Sep-02
sampling location	on code		Mussel beds on the South Coast	Mussel beds on the West Coast	Mussel beds on the South Coast	Mussel beds on the West Coast	Oyster beds on the East Coast	Oyster beds on the South Coast
sampled amount sue	t of tis-	kg wet wt	0.236	0.164	0.456	0.184	0.054	0.355
sampled number animals	r of		50	50	50	50	10	10
dry weight		% wet wt	27.8	22	26.1	31.1	16	18.9
lipids		% wet wt						
sample intake fo ganotin analysis		g wet wt	2.09	2.01	2.02	2.04	2.01	2.08
corresponding q control samples ²	uality		5,15	2, 12	2,12	2,12	5,15	1,11
organotin con-	MBT	ng cation / g	20	7	7	<5	<5	<5
centration ³⁾	DBT	wet wt	44	6	9	5	<4	5
	TBT	1	52	6	15	7	15	38
	MPT]	<80	<80	<80	<80	<80	<80
	DPT]	<80	<80	<80	<80	<80	<80
	TPT	1	<80	<80	<80	<80	<80	<80

serial number ¹⁾			UK13	UK14	UK15	UK16	UK17	UK18
location of origi	n code		VIIa West Coast	VIId South coast	VIIf West coast	IVc East coast	VIIe South coast	VIIe South coast
species code			Crassostrea gi- gas	Ostrea edulis	Ostrea edulis	Mytilus edulis	Mytilus edulis	Mytilus edulis
sampling date			Sep-02	Sep-02	Sep-02	Feb-03	Jan-03	Jan-03
sampling location	on code		Oyster beds on the West Coast	Oyster beds on the South Coast	Oyster beds on the West Coast	Mussel beds on the East Coast	Mussel beds on the South Coast	Mussel beds on the South Coast
sampled amount	t of tis-	kg wet wt	0.379	0.1	0.521	0.286	0.263	0.292
sampled number animals	r of		10	10	10	25	25	25
dry weight		% wet wt	13.7	16.9	20.9	17.6	25.3	21.1
lipids		% wet wt						
sample intake for ganotin analysis		g wet wt	2	2.06	2.02	2	2	2
corresponding q control samples ²			1,11	1,11	1,11	5,15	5,15	5,15
organotin con-	MBT	ng cation / g	<5	<5	<5	<5	14	<5
centration ³⁾	DBT	wet wt	<4	8	<4	5	24	7
	TBT		9	36	<4	8	29	9
	MPT		<80	<80	<80	<80	<80	<80
	DPT	1	<80	<80	<80	<80	<80	<80
	TPT	1	<80	<80	<80	<80	<80	<80

serial number ¹⁾			UK19	UK20	UK21	UK22
location of origin code			VIIf West coast	VIIa West Coast	IVc East coast	VIIe South coast
species code			Mytilus edulis	Mytilus edulis	Crassostrea gigas	Crassostrea gigas
sampling date			Dec-03	Jan-03	Feb-03	Dec-03
sampling location code			Mussel beds on the	Mussel beds on the	Oyster beds on the	Oyster beds on the
			West Coast	West Coast	East Coast	South Coast
sampled amount of tiss	sue	kg wet wt	0.08	0.128	0.093	0.099
sampled number of ani	imals		50	30	5	10
dry weight		% wet wt	29	21.5	14.8	17
lipids		% wet wt				
sample intake for orga analysis	notin	g wet wt	2.06	2.01	2.01	2.06
corresponding quality samples ²⁾	control		5,15	5,15	5,15	5,15
organotin concentra-	MBT	ng cation / g wet wt	<5	<5	<5	9
tion $^{3)}$	DBT		5	5	<4	22
	TBT	1	9	9	49	62
	MPT	1	<80	<80	<80	<80
	DPT	1	<80	<80	<80	<80
	TPT	1	<80	<80	<80	<80

sample type		UK	blank	blank	blank	blank	blank	BCR477	BCR477	BCR477	BCR477	BCR477
quality control sa	ample		1	2	3	5	7	11	12	13	15	17
number												
sample intake for	r or-	g dry wt	1	1	1	1	1	0.51	0.52	0.50	0.52	0.52
ganotin analysis												
amount of water	added	g	2	2	2	2	2	2.00	2.00	2.00	2.00	2.00
organotin con-	MBT	ng cation / g	<5	<5	<5	<5	<5	1434	1596	1818	1601	1583
centration	DBT	wet wt	<4	<4	<4	<4	<4	1304	1330	1156	1267	1112
	TBT		<4	<4	<4	<4	<4	2087	1814	1935	2135	1917
	MPT		<80	<80	<80	<80	<80	168	288	1183	281	736
	DPT		<80	<80	<80	<80	<80	9	<80	133	141	<80
	TPT		<80	<80	<80	<80	<80	622	509	1151	1177	658

Belgium

serial number ¹⁾			BE01	BE02	BE03	BE04	BE05	BE06	<i>BE07</i>
location of origin	n code		North Sea –	North Sea -	Norway	North Sea -	North Sea –	North Sea -	Norway
			Belgian conti-	Dutch conti-		Belgian conti-	Belgian conti-	Dutch conti-	
			nental shelf	nental shelf		nental shelf	nental shelf	nental shelf	
species code			Crangon cran-	Pleuronectes	Oncorhynchus	Crangon cran-	Crangon cran-	Pleuronectes	Oncorhynchus
			gon.	platessa	spp.	gon.	gon(cooked)	platessa	spp.
sampling date			22-Oct-02	22-Oct-02	18-Nov-02	6-Mar-03	6-Mar-03	6-Mar-03	12-Feb-03
sampling location	n code		own sampling	own sampling	importer	own sampling	own sampling	own sampling	importer
			at sea	at sea		at sea	at sea	at sea	
sampled amount tissue	of	kg wet wt	0.67	0.401	0.741	0.088	0.103	0.821	0.367
sampled number	of ani-		792	25	25	100	100	25	25
mals dry weight		% wet wt	24.6	23.3	31.4	22.5	23.2	16.2	26.2
lipids		% wet wt							
sample intake for ganotin analysis	r or-	g wet wt	2.02	2.06	0.5	0.51	0.51	0.53	0.52
corresponding qu control samples ²			7,17	5,15	8,18	9,19	9,19	9,19	9,19
organotin con-	MBT	ng cation / g wet	<5	<5	<5	<5	<5	<5	<5
centration ³⁾	DBT	wt	1.5	1.2	<4	4.7	5.7	<4	<4
	TBT	1	13	<4	<4	73	130	<4	<4
	MPT	1	<80	<80	<80	<80	<80	<80	<80
	DPT	1	<80	<80	<80	<80	<80	<80	<80
	TPT	1	<80	<80	<80	<80	<80	<80	<80

Belgium

serial number ¹⁾		BE08	BE09	BE10	BE11
location of origin code		North Sea –Belgian	North Sea -Belgian	North Sea -Belgian	North Sea -Belgian
		continental shelf,	continental shelf,	continental shelf,	continental shelf,
		Vlakte van de Raan	Vlakte van de Raan	Wenduinebank	Wenduinebank
species code		Crangon crangon	Crangon crangon	Crangon crangon	Crangon crangon
		(raw)	(cooked)	(raw)	(cooked)
sampling date		12-06-2003	12-06-2003	13-06-2003	13-06-2003
sampling location code		own sampling at sea			
sampled amount of tissue	kg wet wt	0.0625	0.0338	0.0882	0.0397
sampled number of animals		100	100	100	100
dry weight	% wet wt	24.2	33.6	25.5	32.9
lipids	% wet wt	0.52	0.51	0.52	0.50
sample intake for organotin and	aly- g wet wt				
sis					
corresponding quality control s	am-	10, 20	10, 20	10, 20	11, 21
ples ²⁾					
organotin concentra- MB	[
tion ³⁾ DBT	,	3.9	7.4	1.3	8.6
TBT		89	199	66	103
MPT					
DPT					
TPT					

¹⁾ prefix indicates country of sampling partner (BE, ES, DE, FR, HU, GR, IT, NL, PT, SE, UK). ²⁾ indicate serial number of control samples that have been analysed together with this sample.

Belgium

sample type		BE	blank	blank	blank	blank	blank	blank
quality control sample	number		7	5	8	9	10	11
sample intake for organ	sample intake for organotin		1	1	1	1	1	1
analysis								
amount of water added		g	2	2	2	2	2	2
organotin concentra-	MBT	ng cation / g wet wt	<5	<5	<5	<5		
tion	DBT		<4	<4	<4	<4	<4	<4
	TBT		<4	<4	<4	<4	<4	<4
	MPT		<80	<80	<80	<80		
	DPT	1	<80	<80	<80	<80		
	TPT	1	<80	<80	<80	<80		

sample type		BE	BCR477	BCR477	BCR477	BCR477	BCR477	BCR477
quality control sample	number		17	15	18	19	20	21
ample intake for organotin		g dry wt	0.51	0.505	0.503	0.55	0.47	0.50
analysis								
amount of water added		g	2	2	2	2	2	2
organotin concentra-	MBT	ng cation / g wet wt	1583	1797	2297	1137		
tion	DBT		1112	1210	1296	1152	1154	1191
	TBT		1917	2317	2053	1939	1946	2105
	MPT		736	477	908	275		
	DPT	1	<80	152	120	130		
	TPT]	658	831	846	790		

Sweden

serial number ¹⁾			SE01	SE02	SE03	SE04	SE04 duplo	SE05
location of origi	n code		27(IIID)	27(IIID)	N63 37.5O20 15.9(310	N63 37.5020 15.9(310	N63 37.5O20 15.9(310	Nergard AS TSK-04 Norway (IIa)
species code			Clupea harren-	Clupea harren-	Clupea harren-	Clupea harren-	Clupea harren-	Salmo salar
annulin a data			gus 13-Nov-02	gus 11-Nov-02	gus 10-Jun-02	gus 10-Jun-02	gus 10-Jun-02	10-Jun-02
sampling date			13-NOV-02	11-INOV-02	10-Jun-02	10-Jun-02	10-Jun-02	10-Jun-02
sampling locations sampled amount sue		kg wet wt	6	6	3	3	3	3
sampled number animals	r of							
dry weight		% wet wt	24.2	24.2	21.9	21.9	21.9	36.6
lipids		% wet wt						
sample intake fo ganotin analysis		g wet wt	0.52	0.52	0.53	2.01	1.05	2.07
corresponding q			8,18	8,18	8,18	5,15	4,14	4,14
organotin con-	MBT	ng cation / g	<5	<5	<5	<5	<5	<5
centration ³⁾	DBT	wet wt	<4	<4	<4	<4	<4	<4
	TBT	-	<4	<4	10	7.4	7	11
	MPT		<80	<80	<80	<80	<80	<80
	DPT		<80	<80	<80	<80	<80	<80
	ТРТ		<80	<80	<80	<80	<80	<80

Sweden

serial number ¹⁾			SE06	SE07	SE08
location of origin code			St/H-19 Knaver Norway (IIa)	Lofoten Norway (IIa)	(IIB)
species code			Salmo salar	Caviar from gdaus morhua	Caviar from gdaus morhua
sampling date			10-Nov-02	02-Apr-01	03-Apr-01
sampling location code					
sampled amount of tissue		kg wet wt	3		
sampled number of animals	5				
dry weight		% wet wt	29.8	66.3	59.8
lipids		% wet wt			
sample intake for organotin	analysis	g wet wt	2.06	2.05	2.17
corresponding quality contr	ol samples ²⁾		4,14	5,15	5,15
organotin concentration ³⁾	MBT	ng cation / g wet wt	<5	<5	<5
	DBT		<4	3.3	<4
	TBT		<4	<4	<4
	MPT		<80	<80	<80
	DPT		<80	<80	<80
	TPT		<80	<80	<80

Sweden

sample type			blank	blank	blank	BCR477	BCR477	BCR477
quality control sample	number		4	5	8	14	15	18
sample intake for orga analysis	notin	g dry wt	1	1	1	0.51	0.52	0.51
amount of water added		g	2	2	2	2	2	2
organotin concentra-	MBT	ng cation / g wet wt	<5	<5	<5	1693	1596	2297
tion	DBT		<4	<4	<4	1176	1330	1296
	TBT		<4	<4	<4	1755	1814	2053
	MPT		<80	<80	<80	549	288	908
	DPT]	<80	<80	<80	177	<80	120
	TPT]	<80	<80	<80	708	<80	846

Annex V. Analytical methods

ENEA

Pre-treatment: 100 mg sample, ultrasonic extraction with tropolone and HCl; addition of dichloromethane; drying with anhydrous sodium sulphate; addition of isooctane solution

Derivatization: addition of ethereal solution of pentylmagnesium bromide (2 mol/L); destruction of excess reagent with H_2SO_4 ; clean-up with florisil and elution with hexane:toluene 1:1

Separation: CGC column of 30 m length; 0.53 mm i.d.; methylphenylsilicone as stationary phase; 1.5 mm film thickness; He as carrier gas; column temperature ranging from 80 to 280 °C)

Detection: MS-SIM

Calibration: with pentylated standards from IVM: MBT (>98%), DBT (>99%), TBT (>98%), TPrT (>99%, as internal standard). Samples have not been corrected for recovery

GALAB

Pre-treatment: 100 mg sample, digestion with TMAH

Derivatization by addition of acetate buffer, acetic acid and 0.2% NaBEt₄ along with hexane containing Pr_4Sn as internal standard; clean-up with alumina, elution with hexane **Separation**: CGC (DB-5 column, 30 m length; 0.25 mm i.d.; 0.17 µm film thickness; He as carrier gas; column temperature ranging from 60 to 280 °C)

Detection: MIP-AES

Calibration: calibration graph using ethylated butyltin compounds as organic salts in methanol

UPPA 1

Pre-treatment: 100 mg sample, digestion by addition of protease, lipase and phosphate buffer

Derivatization: hydride generation in ethanoic acid with 10% $NaBH_4$ in 1% NaOH**Separation**: cryogenic trapping in an U-tube filled with chromatographic material (Chromosorb WHP 80-100 mesh, loaded with 10% 0V-101; 0.5 m length; 4 mm i.d.; He as carrier gas; column temperature range from -196 to 220°C)

Detection: QFAAS, wavelength 286.3 nm, addition of O_2/H_2 with resp. flow rates of 45 and 200 mL/min

Calibration: standard additions using butyltin chloride calibrants in methanol

UPPA 2?

Pre-treatment: 500 mg sample, extraction with methanol; addition of HCl; buffering with ethanoate buffer

Derivatization: addition of 2% NaBEt₄; back-extraction with isooctane

Separation: CGC (column of 30 m length; 0.25 mm i.d.; DB-1 as stationary phase; 0.25 μ m film thickness; N₂ as carrier gas; column temperature ranging from 80 to 270 °C) Detection: FPD

Calibration : standard additions using butyltin chlorides in methanol

CEFAS

Pre-treatment: 500 mg sample, digestion with 0.1% NaOH in methanol/H₂O, followed by hexane extraction

Derivatization: hydride generation with NaBH₄

Separation: CGC (column of 25 m length, 0.32 mm i.d.; 5% PHMe silicone as stationary phase; 0.52 μ m film thickness; He as carrier gas; N₂ as make-up gas; column temperature ranging from 40 to 225 °C)

Detection: FPD

Calibration : standard additions using $MBTCl_3$, $DBTO_2$ and TBTO as calibrants; TPrT as internal standard

UHCR

 $\label{eq:Pre-treatment: 200 mg sample, addition of HBr/H_2O mixture followed by extraction with 0.05\% tropolone in dichloromethane$

Derivatization: pentylation with 1 mol/L pentylmagnesium chloride; derivatization yield verified with pentylated butyltins (85 to 119%); clean-up with Florisil; drying extract under N_2 flow and redissolution in a Pe_2Me_2Sn hexane solution

Separation: CGC (column of 15 m length; 0.53 mm i.d.; SPB-1 as stationary phase; 1.5 μ m film thickness; He as carrier gas; column temperature ranging from 80 to 250 °C) **Detection**: FPD

Calibration: standard additions using pentylated butyltin calibrants

IVM

Pre-treatment : 20 mg sample (on lipid base), addition of water, adjustment to pH=1.5-2.2, extraction into diethylether with tropolon, volume reduction to 1 ml

Derivatization: pentylation with pentylmagnesiumchloride; extraction into n-hexane, volume reduction to 1 ml, clean-up over alumina (5 g) with n-hexane/diethylether, volume reduction to 1 ml

Separation: GC, SGE 25QC2 BPX-5 column of 25 m length, 0.22 mm i.d., 0.25 μ m film thickness, He as carrier gas; column temperature ranging from 60 to 285 °C) Detection: MSD

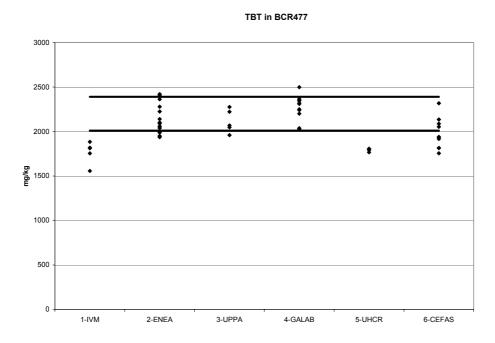
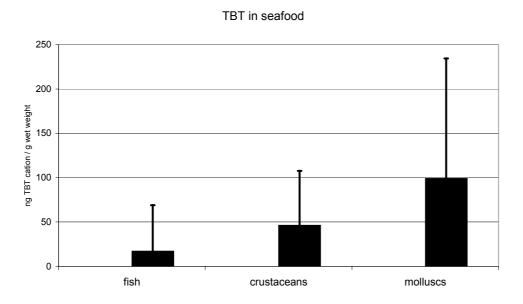
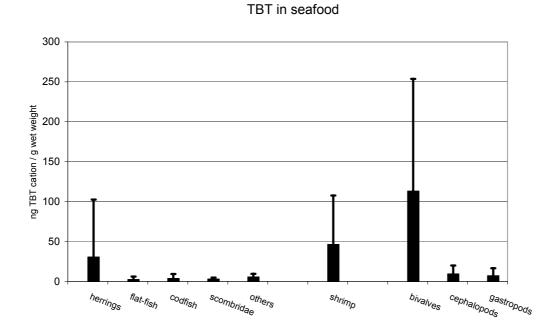
Calibration: with pentylated standards from IVM: MBT (>98%), DBT (>99%), TBT (>98%)

Annex VI. Detailed consumption patterns

Greece

Househol budget survey	General	95%	Mean	Median	95th perc.	Rate of		
	population, mean		(g/person/day)) (g/person/day)) (g/person/day)	consumers(%)		
Fish (Quality A), fresh	6	36	41	36	95	15	1998-99	Nationally representative sample of Greek households
Fish (Quality B), fresh	6.1	36	37	29	89	16	1998-99	Nationally representative sample of Greek households
Fish (Quality C), fresh	18	71	41	36	95	41	1998-99	Nationally representative sample of Greek households
Fish (Quality A, B and C), frozen	5.5	36	39	30	89	14	1998-99	Nationally representative sample of Greek households
Fresh seafood (incl. snails)	2.6	18	37	25	95	6.4	1998-99	Nationally representative sample of Greek households
Frozen seafood (incl. snails)	3.4	24	31	24	71	9.8	1998-99	Nationally representative sample of Greek households
Cured, dried and smoked fish (hake excluded)	0.6	2.7	10	6	33	5.1	1998-99	Nationally representative sample of Greek households
Cured hake	1.8	14	32	27	71	5.6	1998-99	Nationally representative sample of Greek households
Canned fish, fish roe, caviar, fish pies	1.5	10	12	8	34	13	1998-99	Nationally representative sample of Greek households

Annex VII. Figures

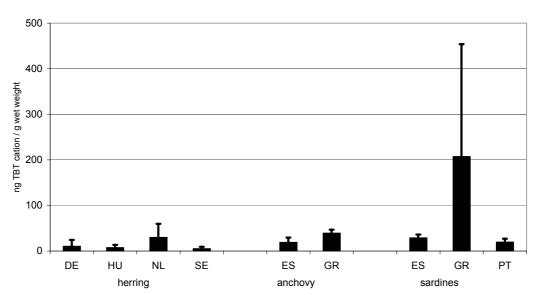

Figure 9.1 TBT in BCR-477 (the horizontals represent the 95 percent confidence interval of the certified value; the black diamonds represent the individual results as reported by the laboratories).

Figure 9.2 TBT in the three main categories seafood, average values(with standard deviations) over all species and all countries.

Figure 9.3 TBT in the nine species families seafood, average values (with standard deviations) over all species and all countries.

TBT in herrings

Figure 9.4 TBT in the three herring family species, average values (with standard deviations) per country.

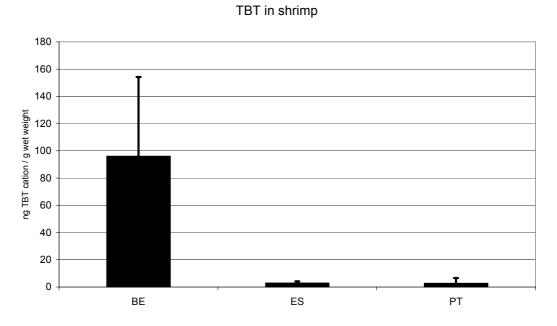
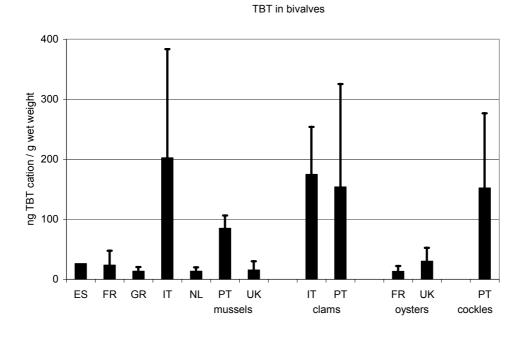
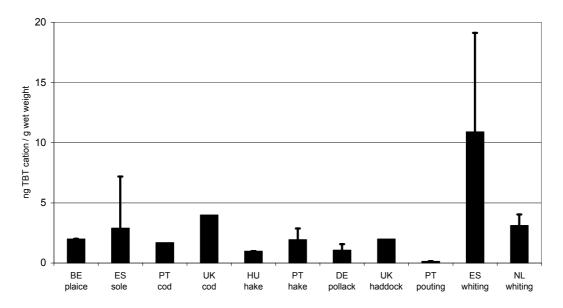




Figure 9.5 TBT in shrimp, average values (with standard deviations) per country.

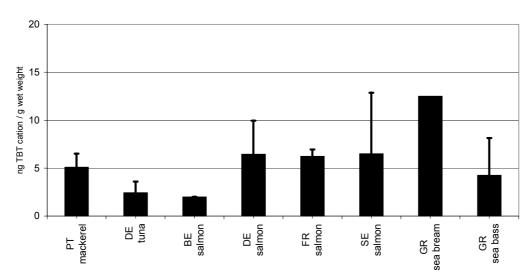


Figure 9.6 TBT in the four bivalve species, average values (with standard deviations) per country.

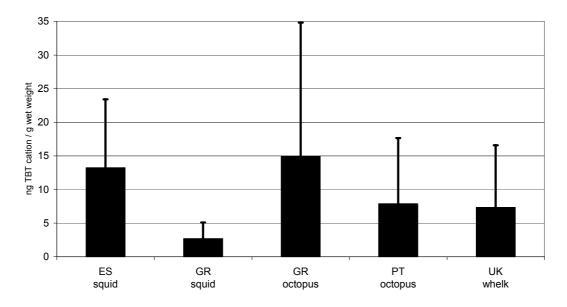

TBT in flat-fish and codfish

Figure 9.7 TBT in flat-fish and codfish species, average values (with standard deviations) per country.

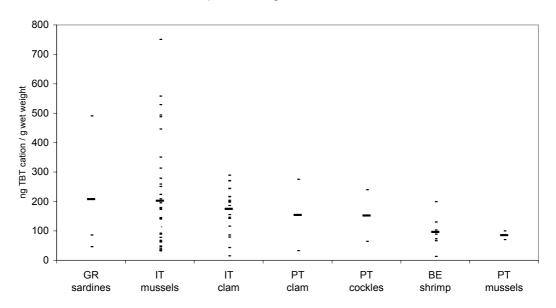

TBT in other fish

Figure 9.8 TBT in the five other fish species, average values (with standard deviations) per country.

TBT in cephalopods and gastropods

Figure 9.10 TBT in the three cephalopods and gastropods, average values (with standard deviations) per country.

samples with highest TBT levels

Figure 9.11 TBT in nine species / country combinations with the highest concentrations, averages (horizontal line) and individual values (dots).

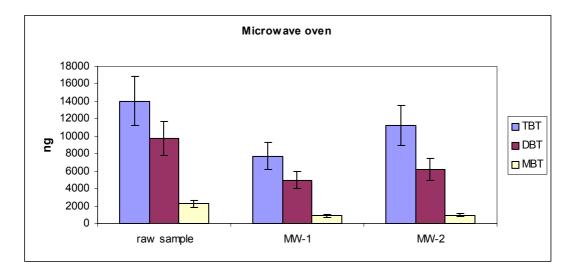


Figure 11.1 Comparison of organotin concentrations (in ng cation per 250 g of mussels), before and after cooking in microwave oven.

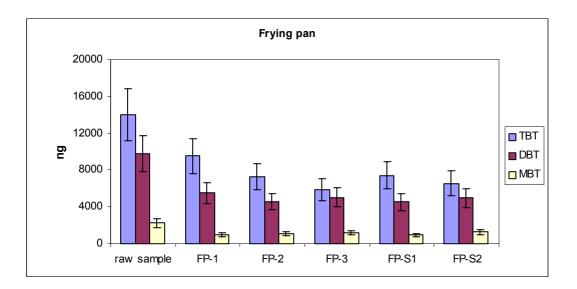


Figure 11.2 Comparison of organotin concentrations (in ng cation per 250 g of mussels), before and after cooking in frying pan.

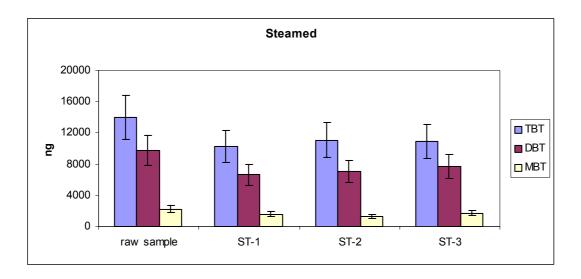


Figure 11.3 Comparison of organotin concentrations (in ng cation per 250 g of mussels), before and after cooking by steaming.

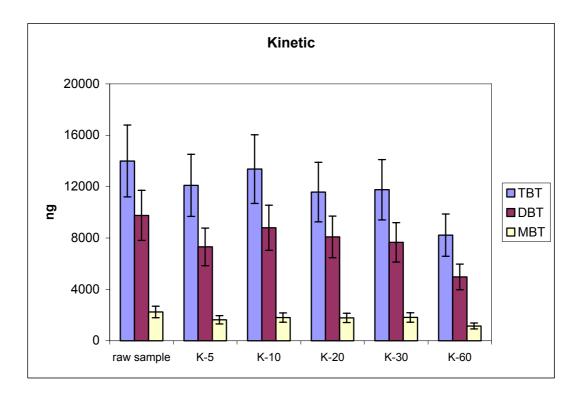


Figure 11.4 Comparison of organotin concentrations (in ng cation per 250 g of mussels), before and after boiling at different times.

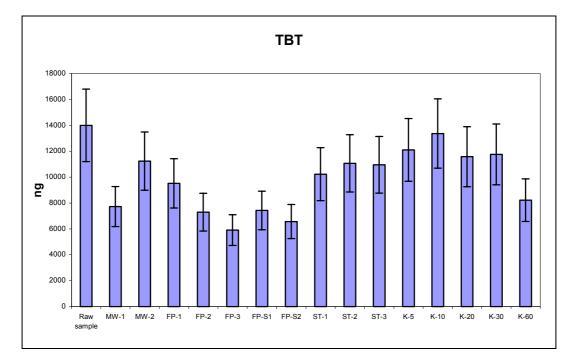


Figure 11.5 Comparison of TBT concentrations (in ng cation per 250 g of mussels), before and after cooking by different procedures.

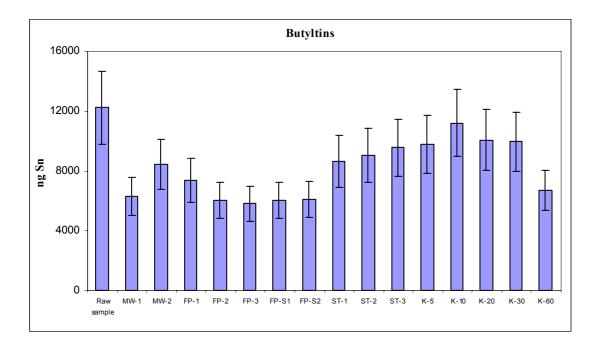


Figure 11.6 Comparison of total butyltin (sum of TBT, DBT and MBT) concentrations (in ng tin per 250 g of mussels), before and after cooking by different procedures.

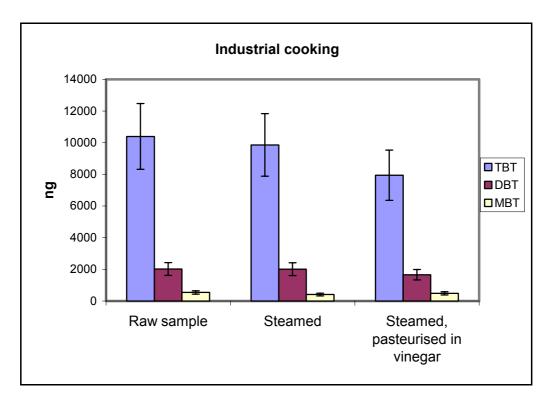


Figure 12.1 TBT, DBT and MBT concentrations (microgram cation per 80 g raw shelled mussels) in raw, steamed, and steamed plus pasteurised mussels.

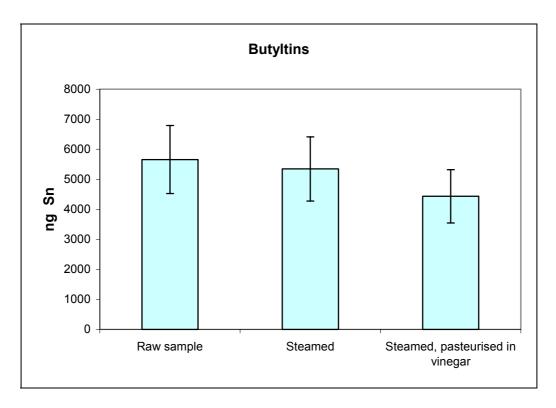


Figure 12.2 Sum of TBT, DBT and MBT (ng tin per 80 g raw shelled mussels) in raw, steamed, and steamed plus pasteurised mussels.

codex III	Sample- number	origin	Name En	date	amount sampled(kg)	No. animals sampled	dry weight (% wet wt)
9.1.2	NL01	Oosterschelde	mussels	10-Mar-02	1	Minned	18.0
9.1.2	NL02	Waddenzee	mussels	10-Mar-02	1		24.0
9.1.2	NL03	Oosterschelde	mussels	22-Apr-03	1		14.0
9.1.2	NL04	Oosterschelde	mussels	22-Apr-03	1		13.0
9.1.2	NL05	Waddenzee	mussels	22-Apr-03	1		14.0
9.1.2	NL06	Waddenzee	mussels	22-Apr-03	1		14.0
9.1.1	NL07	North Sea	herring	16/20-Dec-02		25	24.0
9.1.1	NL08	North Sea	herring	23-Apr-03		32	22.0
9.1.1	NL09	North Sea	whiting	1-Apr-03		29	20.0
9.1.1	NL10	Channel	whiting	27-Mar-03		25	18.0
9.1.1	NL11	North Sea	whiting	22-Apr-03		29	19.0
9.1.2	GR01	Thermaikos Gulf	mussels	26-Jun-02		70	30.1
9.1.2	GR02	Thermaikos Gulf	mussels	27-Jun-02		70	31.1
9.1.2	GR03	Thermaikos Gulf	mussels	27-Jun-02		70	29.9
9.1.2	GR04	Thermaikos Gulf	mussels	1-Jul-02		80	28.7
9.1.2	GR05	Saronikos Gulf	mussels	5-Sep-02		75	25.5
9.1.1	GR06	Thermaikos Gulf	anchovy	11-Jul-02	3	, 0	25.2
9.1.1	GR07	Gulf of Kavala	anchovy	7-Aug-02	3		27.5
9.1.1	GR08	Saronikos Gulf	anchovy	5-Sep-02	3		28.1
9.1.1	GR09	Attica	seabass	7-Oct-02	4.8	15	28.9
9.1.3	GR10	India	squid	8-Jan-02	5	25	16.0
9.1.3	GR10 GR11	Morocco	octopus	8-Jan-02	4	3	26.9
9.1.1	GR09b	Attica	seabass	7-Oct-02	4.8	15	28.9
9.1.3	GR10b	India	squid	8-Jan-02	5	25	16.0
9.1.3	GR10b GR11b	Morocco	octopus	8-Jan-02	4	3	26.9
9.1.2	GR110 GR12	Thermaikos Gulf	mussels	26-Dec-02	-	80	20.9
9.1.2	GR12 GR13	Thermaikos Gulf	mussels	20-Dec-02 27-Dec-02		80 80	24.1
9.1.2	GR13 GR14	Thermaikos Gulf	mussels	27-Dec-02 27-Dec-02		80 80	19.6
9.1.2	GR14 GR15	Thermaikos Gulf	mussels	1-Oct-03		80 80	19.0 29.5
9.1.2	GR16	Korinthiakos Gulf	sea bream	2-Nov-03	4.1	80 20	29.3 27.5
9.1.1	GR17	Thermaikos Gulf	anchovy	2-Nov-03 7-Apr-03	4.1	20	27.3
9.1.1	GR18	Pagasitikos Gulf	anchovy	7-Apr-03	3		26.5
9.1.1	GR18 GR19	Saronikos Gulf	sardines	1	3		20.3
		Korinthiakos gulf		7-Apr-03		16	27.0
9.1.1	GR20	-	seabass	4-May-03	4.7 5	16 25	
9.1.3	GR21	India	squid octopus	2-Jul-03 2-May-03	5 4	25	20.8
9.1.3	GR22	Morocco Saronikos Gulf	sardines	5	4	3	21.8
9.1.1	GR23			28-May-03			31.4
9.1.1	GR24	Evoiikos Gulf	sardines	28-May-03	3	100	37.1
9.1.2	IT1	Venice lagoon	mussels	16-Jan-02	0.45	100	21.8
9.1.2	IT2	Venice lagoon	mussels	21-Jan-02	0.521	100	16.5
9.1.2	IT3	Venice lagoon	mussels	22-Jan-02	0.551	100	18.3
9.1.2	IT4	Venice lagoon	mussels	25-Jan-02	0.478	100	20.7
9.1.2	IT5	Venice lagoon	mussels	29-Jan-02	0.512	100	19.9
9.1.2	IT6	Venice lagoon	mussels	31-Jan-02	0.598	100	15.0
9.1.2	IT7	Venice lagoon	mussels	2-Jun-02	0.415	100	13.1
9.1.2	IT8	Venice lagoon	mussels	2-Jul-02	0.501	100	23.6
9.1.2	IT9	Venice lagoon	mussels	2-Aug-02	0.571	100	17.7
9.1.2	IT10	Venice lagoon	mussels	2-Nov-02	0.497	100	18.6
9.1.2	IT11	Venice lagoon	mussels	2-Dec-02	0.412	100	19.8
9.1.2	IT12	Venice lagoon	mussels	13-Feb-02	0.555	100	20.4

Annex VIII. Data used in calculations

MBT (<x=x)< th=""><th>MBT (<x=0)< th=""><th>DBT (<x=x)< th=""><th>DBT (<x=0)< th=""><th>TBT (<x=x)< th=""><th>TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	MBT (<x=0)< th=""><th>DBT (<x=x)< th=""><th>DBT (<x=0)< th=""><th>TBT (<x=x)< th=""><th>TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	DBT (<x=x)< th=""><th>DBT (<x=0)< th=""><th>TBT (<x=x)< th=""><th>TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	DBT (<x=0)< th=""><th>TBT (<x=x)< th=""><th>TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	TBT (<x=x)< th=""><th>TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<>	TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<>	TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<>	Reprsv. (y/n)
2.5	2.5	5.2	5.2	7	7	0.5	0	0.7	0.7	3.3	3.3	У
0.5	0	2.9	2.9	5	5	0.5	0	1	0	1.1	1.1	У
0.8	0.8	2.1	2.1	20	20	0.3	0	0.4	0	1.6	1.6	У
1.3	1.3	2.1	2.1	15	15	0.3	0	0.4	0	3	3	У
1	1	2.9	2.9	19	19	1.3	0	0.5	0	1	1	У
1	1	2.6	2.6	16	16	0.5	0	0.5	0	1	1	У
1 0.4	0 0.4	2 3	0 3	9.3 51	9.3 51	3 0.7	0 0	4 0.9	0 0.9	2 5.6	0	у
0.4	0.4	0.9	0.9	3.5	3.5	0.7	0	0.9	0.9	5.0 1.5	5.6 1.5	у
0.2	0	0.9	0.9	3.8	3.8	0.5	0	0.2	0	1.5	1.5	у
0.2	0	0.7	0.7	2.1	2.1	0.3	0	0.2	0	0.8	0.8	у У
3.6	3.6	15	15	14	14	2	0	2	0	13	13	y y
1.3	1.3	7.2	7.2	12	12	1.6	1.6	5.4	5.4	51	51	y
3	3	9.7	9.7	15	15	1.6	1.6	5.6	5.6	36	36	y
2.9	2.9	8.3	8.3	11	11	2	0	2	0	6.4	6.4	y
1.8	1.8	12	12	15	15	2	0	1	0	1.8	1.8	y
1.1	1.1	4.1	4.1	51	51	0.5	0	3	0	5.3	5.3	у
1.1	1.1	3.7	3.7	38	38	1	0	6	0	4.4	4.4	у
1.4	1.4	4	4	41	41	0.5	0	3	0	12	12	у
4	0	6	0	22	0	5	0	5	0	1.6	1.6	У
0.3	0	0.4	0	4.1	4.1	0.5	0	0.4	0	0.9	0	У
0.23	0.23	0.23	0.23	0.85	0.85	0.3	0	0.2	0	0.4	0	У
4	0	4	0	3	0	3	0	5	0	6	0	У
0.3	0	0.4	0	4.4	4.4	0.3	0	0.4	0	0.5	0	У
0.14	0.14	0.18	0.18	0.7	0	0.1	0	0.2	0	0.3	0	У
1.1	1.1	6.9	6.9	7.5	7.5	1	0	2	2	9.1	9.1	У
1.6	1.6	5.5	5.5	8	8	0.8	0.8	6.3	6.3	38	38	У
1.2	1.2	8.1	8.1 12	10 30	10 30	1 1	0 0	5.3 2.1	5.3 2.1	16 5.6	16	у
1.4 2	1.4 0	12 6	0	30 25	30 0	1	0	2.1	2.1	5.0	5.6 0	у
2	0	2	0	31	31	2	0	4	0	6	6	y y
2	0	2	0	36	36	2	0	4	0	5	5	y y
2.8	2.8	20	20	491	491	2	0	3	0	49	49	y y
2	0	3	0	14	0	2	0	4	0	4	0	y
0.5	0	0.5	0	2	0	0.5	0	0.5	0	1	0	y
0.2	0	0.6	0.6	29	29	0.2	0	0.3	0	0.3	0	y
2	0	5	5	86	86	3	0	3	0	6	6	у
3	0	4	4	46	46	4	0	4	0	9	9	у
46	46	190	190	224	224	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
36	36	103	103	259	259	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
45	45	108	108	494	494	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
11	11	32	32	145	145	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
6	6	25	25	35	35	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
50	50	413	413	751	751	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
23	23	66	66	251	251	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
23	23	55	55	195	195	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
22	22	133	133	313	313	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
5	5	13	13	32	32	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
20	20	52	52	142	142	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
22	22	42	42	209	209	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n

codex	Sample-	origin	Name En	date	amount	No. animals	dry weight
III	number.				sampled(kg)	sampled	(% wet wt)
9.1.2	IT13	Venice lagoon	mussels	14-Feb-02	0.491	100	16.9
9.1.2	IT14	Venice lagoon	tapes sp.	21-Jan-02	0.487	250	19.0
9.1.2	IT15	Venice lagoon	tapes sp.	23-Jan-02	0.511	250	17.3
9.1.2	IT16	Venice lagoon	tapes sp.	24-Jan-02	0.517	250	16.9
9.1.2	IT17	Venice lagoon	tapes sp.	25-Jan-02	0.501	250	18.9
9.1.2	IT18	Venice lagoon	tapes sp.	28-Jan-02	0.495	250	19.2
9.1.2	IT19	Venice lagoon	tapes sp.	29-Jan-02	0.565	250	17.6
9.1.2	IT20	Venice lagoon	tapes sp.	31-Jan-02	0.471	250	15.9
9.1.2	IT21	Venice lagoon	tapes sp.	2-Jan-02	0.533	250	18.6
9.1.2	IT22	Venice lagoon	tapes sp.	2-Jun-02	0.492	250	20.1
9.1.2	IT23	Venice lagoon	tapes sp.	2-Jul-02	0.502	250	18.9
9.1.2	IT24	Venice lagoon	tapes sp.	2-Aug-02	0.514	250	17.3
9.1.2	IT25	Venice lagoon	tapes sp.	2-Nov-02	0.495	250	16.1
9.1.2	IT26	Venice lagoon	tapes sp.	2-Dec-02	0.547	250	15.6
9.1.2	IT27	Venice lagoon	tapes sp.	13/02/2002	0.485	250	19.8
9.1.2	IT28	Venice lagoon	tapes sp.	14-Feb-02	0.528	250	19.4
9.1.2	IT29	Sardinia South	mussels	25-Mar-02	0.12	60	16.6
9.1.2	IT30	Sardinia SWest	mussels	20-Mar-02	0.133	60	10.2
9.1.2	IT31	Sardinia West	mussels	21-Mar-02	0.328	60	16.9
9.1.2	IT32	Sardinia N West	mussels	22-Mar-02	0.21	60	15.4
9.1.2	IT33	Sardinia North	mussels	27-Apr-02	0.261	60	15.2
9.1.2	IT34	Sardinia North East	mussels	30-Mar-02	0.219	60	13.8
9.1.2	IT35	Sardinia East Coast	mussels	18-Mar-02	0.21	60	14.5
9.1.2	IT36	Sardinia South East	mussels	19-Mar-02	0.143	60	11.4
9.1.2	IT37	North Tyrrhen. sea	mussels	7-Apr-02	0.65	200	20.0
9.1.2	IT38	Venice lagoon	mussels	26-Aug-02	0.47	100	18.6
9.1.2	IT39	Venice lagoon	mussels	28-Aug-02	0.51	100	20.7
9.1.2	IT40	Venice lagoon	mussels	9-Feb-02	0.495	100	17.7
9.1.2	IT41	Venice lagoon	mussels	9-Apr-02	0.554	100	22.2
9.1.2	IT42	Venice lagoon	tapes sp.	28-Aug-02	0.491	250	19.3
9.1.2	IT43	Venice lagoon	tapes sp.	9-Feb-02	0.521	250	21.6
9.1.2	IT44	Venice lagoon	tapes sp.	9-Apr-02	0.478	250	18.6
9.1.2	IT45	Venice lagoon	tapes sp.	9-Jun-02	0.523	250	22.9
9.1.2	IT46	Sardinia South	mussels	19-Aug-02	0.146	60	23.0
9.1.2	IT47	Sardinia S West	mussels	28-Sep-02	0.149	60	24.9
9.1.2	IT48	Sardinia West	mussels	10-Jan-02	0.233	60	24.0
9.1.2	IT49	Sardinia North East	mussels	24-Aug-02	0.156	60	19.7
9.1.2	IT50	Sardinia North East	mussels	9-Jan-02	0.211	60	21.4
9.1.2	IT51	Sardinia N West	mussels	27-Sep-02	0.154	60	19.1
9.1.2	IT52	Sardinia North	mussels	25-Sep-02	0.136	60	14.5
9.1.2	IT53	Sardinia East	mussels	25-Sep-02	0.148	60	19.9
9.1.2	IT54	Sardinia South East	mussels	26-Sep-02	0.139	60	18.0
9.1.2	IT55	North Tyrrhen. sea	mussels	26-May-03	0.33	100	10.0

MBT	MBT	DBT	DBT	TBT	TBT	MPT	MPT	DPT	DPT	TPT	TPT	Reprsv.
(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(y/n)</td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<>	(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(y/n)</td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<>	(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(y/n)</td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<>	(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(y/n)</td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<>	(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(y/n)</td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<>	(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(y/n)</td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<>	(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(y/n)</td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<>	(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(y/n)</td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<></td></x=0)<>	(<x=x)< td=""><td>(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(y/n)</td></x=0)<></td></x=x)<></td></x=0)<></td></x=x)<>	(<x=0)< td=""><td>(<x=x)< td=""><td>(<x=0)< td=""><td>(y/n)</td></x=0)<></td></x=x)<></td></x=0)<>	(<x=x)< td=""><td>(<x=0)< td=""><td>(y/n)</td></x=0)<></td></x=x)<>	(<x=0)< td=""><td>(y/n)</td></x=0)<>	(y/n)
18	18	34	34	173	173	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
114	114	98	98	217	217	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
55	55	66	66	204	204	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
15	15	36	36	197	197	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
15	15	31	31	186	186	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
35	35	40	40	142	142	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
4	4	6	6	15	15	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
152	152	222	222	289	289	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
334	334	248	248	244	244	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
22	22	62	62	216	216	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
24	24	46	46	116	116	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
14	14	33	33	155	155	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
50	50	103	103	244	244	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
15	15	22	22	43	43	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
7	7	17	17	146	146	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
7	7	11	11	79	79	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
27	27	34	34	140	140	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	У
40	40	44	44	89	89	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
0.3	0	0.4	0	48	48	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
0.3	0	81	81	558	558	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
0.3	0	75	75	446	446	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
0.3 38	0 38	63 36	63 36	488 92	488 92	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	у
38	38	30 42	30 42	92 47	92 47	n.c. n.c.	n.c.	n.c. n.c.	n.c. n.c.	n.c.	n.c.	n
28	28	122	122	175	175	n.c.	n.c. n.c.	n.c.	n.c.	n.c. n.c.	n.c.	n
53	28 53	253	253	279	279	n.c.	n.c.	n.c.	n.c.	n.c.	n.c. n.c.	y n
59	59	307	307	351	351	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
16	16	64	64	68	68	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
41	41	117	117	179	179	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
134	134	116	116	271	271	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
17	17	33	33	86	86	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
35	35	58	58	201	201	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
46	46	180	180	270	270	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
22	22	71	71	113	113	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	у
21	21	97	97	78	78	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
9	9	13	13	41	41	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
17	17	76	76	64	64	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	у
0.3	0	0.4	0	35	35	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	У
37	37	351	351	529	529	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
13	13	59	59	41	41	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
21	21	90	90	62	62	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
21	21	77	77	33	33	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n
23	23	54	54	108	108	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	У

codex III	Sample- number.	origin	Name En	date	amount sampled(kg)	No. animals sampled	dry weight (% wet wt)
9.1.2	FR1	Arcachon bay	oysters	23-Oct-02	0.358	50	18.0
9.1.2	FR2	Arcachon bay	oysters	27-Feb-03	0.295	50	24.0
9.1.2	FR3	Bretagne Aber	oysters	23-Jan-03	0.178	50	14.0
9.1.2	FR4	Marennes island	oysters	24-Jan-03	0.225	50	13.0
9.1.2	FR5	Normandie	oysters	12-Nov-02	0.328	50	14.0
9.1.1	FR6	Atlantic North east	salmon	21-Dec-02	4.2	25 slices	14.0
9.1.2	FR7	Bretagne Sud	mussels	2-Jul-03	0.177	50	24.0
9.1.2	FR8	Normandie	mussels	12-Feb-02	0.251	50	22.0
9.1.2	FR9	Normandie	oysters	4-Nov-03	0.338	50	20.0
9.1.2	FR10	Marennes island	oysters	14-Apr-03	0.229	50	18.0
9.1.2	FR11	Bretagne Aber	oysters	22-Apr-03	0.193	50	19.0
9.1.2	FR12	Mediterranean	mussels	2-Dec-03	0.209	50	30.1
9.1.1	FR13	Atlantic North east	salmon	4-Mar-03	2.6	25 slices	31.1
9.1.2	FR14	Normandie	mussels	22-May-03	0.143	50	29.9
9.1.2	FR15	Bretagne sud	mussels	26-May-03	0.139	50	28.7
9.1.2	FR16	Mediterranean	mussels	30-May-03	0.216	50	25.5
9.1.1	DE01	NorthAtlantik	herring	7-Jan-02	0.5	unknown	25.2
9.1.1	DE02	Pacific	tuna	7-Jan-02	0.5	unknown	27.5
9.1.1	DE03	NorthAtlantik	herring	7-Jan-02	0.5	unknown	28.1
9.1.1	DE04	NorthAtlantik	salmon	7-Jan-02	0.2	1	28.9
9.1.1	DE05	NorthSea	herring	7-Jan-02	0.1	1	16.0
9.1.1	DE06	Alaska	pollock	7-Jan-02	0.2	1	26.9
9.1.1	DE07	NorthAtlantik	herring	8-Aug-02	0.5	unknown	28.9
9.1.1	DE08	Pacific	tuna	8-Aug-02	0.5	unknown	16.0
9.1.1	DE09	NorthAtlantik	herring	8-Aug-02	0.5	unknown	26.9
9.1.1	DE10	NorthAtlantik	salmon	8-Aug-02	0.2	1	24.1
9.1.1	DE11	NorthSea	herring	8-Aug-02	0.1	1	22.9
9.1.1	DE12	Alaska	pollock	8-Aug-02	0.2	1	19.6
9.1.1	DE12 DE13	NorthAtlantik	herring	16-Sep-02	0.5	unknown	29.5
9.1.1	DE13 DE14	Pacific	tuna	16-Sep-02	0.5	unknown	27.5
9.1.1	DE14 DE15	NorthAtlantik	herring	16-Sep-02	0.5	unknown	26.4
9.1.1	DE15 DE16	NorthAtlantik	salmon	16-Sep-02	0.2	1	26.5
9.1.1	DE10 DE17	NorthSea	herring	16-Sep-02	0.2	1	20.5
9.1.1	DE17 DE18	Alaska	pollock	16-Sep-02	0.1	1	27.0
9.1.1	DE18 DE19	NorthAtlantik	herring	28-Jul-03	1	20 cans	27.0
9.1.1	DE19 DE20	Pacific	tuna	28-Jul-03	3	20 cans 20 cans	20.8
	DE20 DE21	Pacific			3	20 cans 20 cans	21.8 31.4
9.1.1 9.1.1	DE21 DE22	NorthAtlantik	tuna herring	28-Jul-03	1		31.4
9.1.1 9.1.1	DE22 DE23	NorthSea	herring herring	28-Jul-03 28-Jul-03	1	20 cans 20 cans	21.8
			-				
9.1.1	DE24 DE25	NorthSea	herring	28-Jul-03	1	20 cans	16.5
9.1.1	DE25	Pacific North Atlantic	salmon	28-Jul-03	5	20 bags	18.3
9.1.1	DE26	NorthAtlantic	pollock	28-Jul-03	5	20 cartons	20.7
9.1.1	HU01	Poland	herring	May/Jun-02	1.66	55	27.6
9.1.1	HU02	Thailand	sardines	May/Jun-02	1.75	116	28.5
9.1.1	HU03	Argentina	hake	May/Jun-02	2.5	15 slices	21.0
9.1.1	HU04	Poland	herring	09/13-Sep-02	2.5	68	30.0
9.1.1	HU04a		herring	00/10 0 00			8.6
9.1.1	HU05	Thailand	sardines	09/13-Sep-02	1.28	79	22.3
9.1.1	HU06	Argentina	hake	09/13-Sep-02	1.6	10 slices	19.1

MBT	MBT	DBT	DBT	TBT	TBT	MPT	MPT	DPT	DPT	TPT	TPT	Reprsv.
(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<>	(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(y/n)</th></x=0)<>	(y/n)
0.7	0	0.76	0.76	7.81	7.81	3	0	4	0	4	0	у
0.7	0	0.6	0	17.27	17.27	3	0	4	0	4	0	У
0.8	0	0.6	0	24.64	24.64	4	0	4	0	5	0	У
0.9	0	0.7	0	9.93	9.93	4	0	4	0	5	0	у
0.9	0	0.7	0	3.1	3.1	4	0	5	0	6	0	У
1.4	0	1.1	0	5.73	5.73	6	0	7	0	9	0	У
0.6	0	0.5	0	9.76	9.76	3	0	3	0	4	0	У
0.8	0	0.6	0	4.73	4.73	4	0	4	0	5	0	У
0.9	0	0.7	0	6.15	6.15	4	0	4	0	5	0	У
0.9	0	0.7	0	11.1	11.1	4	0	4	0	5	0	У
0.7	0	0.6	0	27.33	27.33	3	0	4	0	4	0	У
17.39	17.39	37.69	37.69	41.65	41.65	3	0	3	0	4	0	У
1.6	0	1.2	0	6.73	6.73	7	0	7	0	9	0	У
1.1	0 0	0.8	0	5.46	5.46	5	0	5	0	6	0	У
0.7 12.24	12.24	0.6 45.43	0 45.43	16.47 63.75	16.47 63.75	3 4	0 0	3 4	0	4 5	0	У
0.7	0.7	43.43 0.9	43.43 0.9	1.5	1.5	4 0.3	0	4 0.3	0 0	0.3	0 0	У
18.5	18.5	0.9 4.9	0.9 4.9	3.9	3.9	0.3	0	0.3	0	0.5	0.5	У
4.7	4.7	1.5	1.5	4.5	4.5	0.3	0	0.3	0	0.5	0.5	у У
0.4	0.4	1.5	1.5	8.2	8.2	0.3	0	0.3	0	1.9	1.9	y y
0.4	0.4	0.8	0.8	4.5	4.5	0.3	0	0.3	0	1.3	1.3	y y
0.4	0.4	2.3	2.3	1.8	1.8	0.3	0	0.3	0	0.3	0	y y
0.7	0.0	0.7	0.7	1.4	1.4	0.3	0	0.3	0	0.3	0	y y
19.7	19.7	4.7	4.7	2.9	2.9	0.3	0	0.3	0	0.3	0.3	y
5.6	5.6	1.3	1.3	4.5	4.5	0.3	0	0.3	0	0.5	0.5	y
0.4	0.4	0.9	0.9	8.2	8.2	0.3	0	0.3	0	2.1	2.1	y
0.6	0.6	1.8	1.8	34.3	34.3	0.3	0	0.3	0	1.9	1.9	y
0.3	0.3	0.7	0.7	0.7	0.7	0.3	0	0.3	0	0.3	0	y
0.5	0.5	0.9	0.9	1.4	1.4	0.3	0	0.3	0	0.3	0	y
16.1	16.1	3.7	3.7	2.9	2.9	0.3	0	0.3	0	0.6	0.6	у
7.1	7.1	2.1	2.1	5.9	5.9	0.3	0	0.3	0	0.6	0.6	у
0.4	0.4	1	1	8.2	8.2	0.3	0	0.3	0	2.3	2.3	у
0.6	0.6	1.8	1.8	30.8	30.8	0.3	0	0.3	0	1.8	1.8	у
0.3	0	0.7	0.7	0.8	0.8	0.3	0	0.3	0	0.3	0	у
1.7	1.7	0.3	0.3	3.3	3.3	0.3	0	0.3	0	0.3	0	У
0.3	0	0.4	0.4	1.4	1.4	0.3	0	0.3	0	0.3	0	У
0.3	0	0.5	0.5	1.1	1.1	0.3	0	0.3	0	0.3	0	У
0.9	0.9	5.3	5.3	37.5	37.5	0.3	0	0.3	0	1.8	1.8	У
21.3	21.3	3.7	3.7	4.5	4.5	0.3	0	0.3	0	0.6	0.6	у
12.6	12.6	0.8	0.8	3.9	3.9	0.3	0	0.3	0	0.3	0	у
0.3	0	1.3	1.3	1.2	1.2	0.3	0	0.3	0	0.3	0	У
0.3	0	0.3	0	1	1	0.3	0	0.3	0	0.3	0.3	У
2	0	2	0	2	0	5	0	8	0	8	0	У
2	0	2	0	14.56	14.56	5	0	8	0	8	0	У
2	0	2	0	2	0	5	0	8	0	8	0	У
2	0	2	0	5.93	5.93	5	0	8	0	8	0	У
2	0	2	0	2	0	5	0	8	0	8	0	У
2	0	2	0	9.19	9.19	5	0	8	0	8	0	У
2	0	2	0	2	0	5	0	8	0	8	0	у

codex	Sample number.	origin	Name En	date	amount sampled(kg)	No. animals sampled	dry weight (% wet wt)
9.1.1	PT01	Atlantic	sardine	28-Jul-02		25	
9.1.1	PT02	Atlantic	sardine	8-Feb-02		25	
9.1.1	PT03	Atlantic	horsemackerel	18-Feb-02		25	
9.1.1	PT04	Argentine	hake	28-Jul-02		25	
9.1.1	PT05	Atlantic	pouting	18-Jul-02		25	
9.1.3	PT06	Atlantic	octopus	18-Jul-02		25	
9.1.3	PT07	Atlantic	octopus	26-Jul-02		25	
9.1.3	PT08	Atlantic	octopus	8-Feb-02		25	
9.1.2	PT09	Atlantic	mussels	8-Feb-02		50	
9.1.2	PT10	Atlantic	Kockle	23-Jul-02		50	
9.1.2	PT11	Atlantic	clam	8-Feb-02		50	
9.1.4	PT12	Nigeria	shrimp	28-Jul-02		100	
9.1.2	PT13	Central Portugal	kockle	4-Jul-03	2	50	
9.1.4	PT14	Mozambique	shrimp	20-Dec-02	2	100	
).1.4).1.1	PT15	North Spain	horse mackerel	26-Mar-03	4	25	
9.1.1	PT16	Atlantic (North)	Cod	20-Dec-02	20	25	
9.1.1	PT17	North Portugal	pouting	26-Mar-03	4	25	
).1.1).1.2	PT18	South Portugal	mussels	4-Jul-03	2	50	
9.1.2	PT19	South Africa	hake	20-Dec-02	5	25	
9.1.3	PT20	Centre of Portugal		20-Dee-02 27-Mar-03	15	25	
9.1.3 9.1.3	PT21	North Portugal	octopus	27-Mai-03 20-Dec-02	15	25	
9.1.5 9.1.1	PT21 PT22		octopus	20-Dec-02 16-Mar-03	15	23 25	
9.1.1 9.1.1	PT22 PT23	South Portugal	octopus sardine		3	23	
9.1.1 9.1.1	PT23 PT24	North Portugal	sardine	20-Dec-02 16-Mar-03	3	23 25	
		South Portugal					
9.1.2	PT25	South Portugal	clam	27-Mar-03	2	50 25	21.2
9.1.1	ES01	W Mediterranean	anchovy	18-Jul-02	2	25	31.2
9.1.1	ES02	Cadiz Gulf	anchovy	30-Jul-02	2	25	30.5
9.1.1	ES03	Cantabric Sea	anchovy	11-Sep-02	2	25	35.4
9.1.4	ES04	Alicante coast	shrimp	18-Jul-02	2	100	31.3
9.1.4	ES05	Morocco-Argelian	shrimp	18-Jul-02	2	100	29.3
9.1.4	ES06	Cadiz Gulf	shrimp	30-Jul-02	2	100	28.0
9.1.1	ES07	W Mediterranean	sardine	18-Jul-02	2	25	41.4
9.1.1	ES08	Cadiz Gulf	sardine	30-Jul-02	2	25	33.9
9.1.1	ES09	Cantabric Sea	sardine	11-Sep-02	2	25	40.3
9.1.1	ES10	Cadiz Gulf	sole	30-Jul-02	2	15	31.9
9.1.1	ES11	Cantabric Sea	sole	12-Sep-02	2	15	32.7
9.1.3	ES12	Saharian-Morocco	squid	18-Jul-02	2	20	26.3
9.1.3	ES13	Cantabric Sea	squid	9-Sep-02	2	20	30.4
9.1.1	ES14	Cadiz Gulf	whiting	30-Jul-02	2	15	29.4
9.1.1	ES15	Cantabric Sea	whiting	16-Sep-02	2	15	29.9
9.1.1	ES16	W Mediterranean	anchovy	17-Oct-02	2	25	38.6
9.1.1	ES17	Cadiz Gulf	anchovy	6-Nov-02	2	25	33.8
0.1.2	ES18	Galicia	mussels	9-Nov-02	2	50	30.9
9.1.4	ES19	Alicante coast	shrimp	17-Oct-02	2	100	31.8
9.1.4	ES20	Morocco-Argelian	shrimp	17-Oct-02	2	100	32.0
9.1.4	ES21	Cadiz Gulf	shrimp	7-Nov-02	2	100	32.3
9.1.1	ES22	W Mediterranean	sardine	17-Oct-02	2	25	40.7
9.1.1	ES23	Cadiz Gulf	sardine	6-Nov-02	2	25	42.8
9.1.1	ES24	Cadiz Gulf	sole	7-Nov-02	2	15	31.3
9.1.1	ES25	Galicia	sole	9-Nov-02	2	15	35.6

MBT	MBT	DBT	DBT	TBT	TBT	MPT	MPT	DPT	DPT	TPT	TPT	Reprsv.
(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	(<x=x)< th=""><th>(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<></th></x=0)<>	(<x=x)< th=""><th>(<x=0)< th=""><th>(y/n)</th></x=0)<></th></x=x)<>	(<x=0)< th=""><th>(y/n)</th></x=0)<>	(y/n)
0.3	0	1.2	1.2	17.5	17.5					0.3	0	У
0.3	0	1.5	1.5	13.2	13.2					0.3	0	У
0.5	0.5	1.1	1.1	4.1	4.1					0.3	0	У
0.3	0	1.2	1.2	1.3	1.3					0.3	0	У
0.3	0	0.3	0	0.3	0					0.3	0	У
0.5	0.5	3.4	3.4	4.3	4.3					0.3	0	У
0.5 0.3	0.5 0	9.5 1	9.5 1	27.1 2.6	27.1 2.6					0.3 0.3	0 0	У
3.8	3.8	32.2	32.2	100	100					0.3	0	У У
2.5	2.5	19	19	64.3	64.3					0.3	0	y y
2.1	2.1	10.5	10.5	32.7	32.7					0.3	0	y y
0.3	0	2.6	2.6	5.5	5.5					0.3	0	y y
13.1	13.1	77.7	77.7	240	240					0.3	0	y
1.1	1.1	1.7	1.7	0.3	0					0.3	0	y
1.6	1.6	3.4	3.4	6.1	6.1					0.3	0	y
1.3	1.3	2.1	2.1	1.7	1.7					0.3	0	y
1.4	1.4	1.4	1.4	0.3	0					0.3	0	у
9.1	9.1	29.1	29.1	70.3	70.3					0.3	0	У
2.5	2.5	2.4	2.4	2.6	2.6					0.3	0	у
1.2	1.2	3.1	3.1	8.2	8.2					0.3	0	У
0.3	0	0.3	0	0.3	0					0.3	0	У
2.7	2.7	5.9	5.9	4.9	4.9					0.3	0	У
3.1	3.1	5.1	5.1	29.6	29.6					0.3	0	У
1.7	1.7	2.4	2.4	19.1	19.1					0.3	0	У
10.1	10.1	28.5	28.5	275	275					0.3	0	У
6.6	6.6	2	0	28.51	28.51	5	0	8	0	8	0	У
2.4	2.4	1.85	1.85	16.57	16.57	5	0	8	0	8	0	У
1.29	1.29	1.79	1.79	4.42	4.42	5	0	8	0	8	0	У
2	0	2	0	5.44	5.44	5	0	8	0	8	0	У
6.83	6.83	2	0	2.05	2.05	5	0	8	0	8	0	У
2	2	2	0	2.93	2.93	5	0	8	0	8	0	У
2	0	1.42	1.42	35	35	5 5	0	8	0	8	0	У
1.39 7.71	1.39	2 6.96	0 6.96	24.44 34.83	24.44 34.83		0	8	0	8	0	У
7.18	7.71 7.18	0.90	0.90	2	0 34.83	5 5	0 0	8 8	0 0	8 8	0 0	У
2	0	2	0	2	0	5	0	8	0	8	0	у У
5.76	5.76	2.8	2.8	19.34	19.34	5	0	8	0	8	0	y y
2.88	2.88	2.0	0	4.43	4.43	5	0	8	0	8	0	y
2.77	2.77	2	0	22.17	22.17	5	0	8	0	8	0	y
4.69	4.69	4.66	4.66	15.46	15.46	5	0	8	0	8	0	y
3.08	3.08	9.5	9.5	16.01	16.01	5	0	8	0	8	0	y
2	0	2	0	30.09	30.09	5	0	8	0	8	0	y
4.58	4.58	23.36	23.36	26.08	26.08	5	0	8	0	8	0	y
2.4	2.4	1.71	1.71	5	0	5	0	8	0	8	0	y
2	0	2	0	5	0	5	0	8	0	8	0	у
2	0	2	0	5	0	5	0	8	0	8	0	У
1.53	1.53	2.97	2.97	33.9	33.9	5	0	8	0	8	0	у
2	0	2	0	18.01	18.01	5	0	8	0	8	0	У
3.72	3.72	3.68	3.68	10.57	10.57	5	0	8	0	8	0	У
2	0	2	0	2	0	5	0	8	0	8	0	У

9.1.3 9.1.3 9.1.1 9.1.1 9.1.1 9.1.1 9.1.1 9.1.1 9.1.1	ES26 ES27 ES28 ES29 ES38	Saharian-Morocco Galicia Cadiz Gulf	squid	17-Oct-02			
9.1.1 9.1.1 9.1.1 9.1.1 9.1.1	ES28 ES29			17-001-02	2	20	30.4
9.1.1 9.1.1 9.1.1 9.1.1	ES29	Cadiz Gulf	squid	9-Nov-02	2	20	33.4
9.1.1 9.1.1 9.1.1		Cuulz Guil	whiting	8-Nov-02	2	15	30.8
9.1.1 9.1.1	ES38	Galicia	whiting	9-Nov-02	2	15	33.9
9.1.1		Cantabric Sea	sardine	19-May-03	2	25	38.2
	ES39	Cantabric Sea	sole	19-May-03	2	15	36.6
911	ES43	Cantabric Sea	whiting	19-May-03	2	15	34.2
····	UK01	North West Uk	cod	2-Oct-04	42.5	25	21.6
9.1.1	UK02	North West Uk	haddock	2-Oct-04	16.5	25	22.7
9.1.2	UK03	IVc East coast	whelks	2-Jul-04	0.065	8	27.5
9.1.2	UK04	IVc East coast	whelks	2-Aug-04	0.043	5	27.9
9.1.2	UK05	IVc East coast	whelks	2-Jul-04	0.326	38	25.8
9.1.2	UK06	IVc East coast	mussels	2-Sep-04	0.13	35	24.5
9.1.2	UK07	VIIe South coast	mussels	2-Sep-04	0.236	50	27.8
9.1.2	UK08	VIIf West coast	mussels	2-Sep-04	0.164	50	22.0
9.1.2	UK09	VIIe South coast	mussels	2-Sep-04	0.456	50	26.1
9.1.2	UK10	VIIa West Coast	mussels	2-Sep-04	0.184	50	31.1
9.1.2	UK11	IVc East coast	oyster	2-Sep-04	0.054	10	16.0
9.1.2	UK12	VIIe South coast	oyster	2-Sep-04	0.355	10	18.9
9.1.2	UK13	VIIa West Coast	oyster	2-Sep-04	0.379	10	13.7
9.1.2	UK14	VIId South coast	oyster	2-Sep-04	0.1	10	16.9
9.1.2	UK15	VIIf West coast	oyster	2-Sep-04	0.521	10	20.9
9.1.2	UK16	IVc East coast	mussels	3-Feb-04	0.286	25	17.6
9.1.2	UK17	VIIe South coast	mussels	3-Jan-04	0.263	25	25.3
9.1.2	UK18	VIIe South coast	mussels	3-Jan-04	0.292	25	21.1
9.1.2	UK19	VIIf West coast	mussels	3-Dec-04	0.08	50	29.0
9.1.2	UK20	VIIa West Coast	mussels	3-Jan-04	0.128	30	21.5
9.1.2	UK21	IVc East coast	oyster(jap)	3-Feb-04	0.093	5	14.8
9.1.2	UK22	VIIe South coast	oyster(jap)	3-Dec-04	0.099	10	17.0
9.1.4	BE01	North Sea -Belgian	shrimp	22-Oct-02	0.67	792	24.6
9.1.1	BE02	North Sea -Dutch	plaice	22-Oct-02	0.401	25	23.3
9.1.1	BE03	Norway	salmon	18-Nov-02	0.741	25	31.4
9.1.4	BE04	North Sea -Belgian	shrimp	6-Mar-03	0.088	100	22.5
9.1.1	BE05	North Sea -Dutch	plaice	6-Mar-03	0.821	25	16.2
9.1.1	BE06	Norway	salmon	12-Feb-03	0.367	25	26.2
9.1.4	BE07	North Sea -Belgian	shrimp	6-Mar-03	0.103	100	27.2
9.1.4	BE08	North Sea -Belgian	shrimp	6-Dec-03	0.0625	100	24.2
9.1.4	BE09	North Sea -Belgian	shrimp	6-Dec-03	0.0338	100	33.6
9.1.4	BE10	North Sea -Belgian	shrimp	13-Jun-03	0.0882	100	25.5
9.1.4	BE11	North Sea -Belgian	shrimp	13-Jun-03	0.0397	100	32.9
9.1.4	SE01	27(IIID)	herring	13-Nov-02	3	100	24.2
9.1.1	SE02	27(IIID) 27(IIID)	herring	11-Nov-02	3		24.2
9.1.1	SE03	N63 37.5020 15.9	herring	10-Jun-02	3		24.2
9.1.1	SE03	N63 37.5O20 15.9	herring	10-Jun-02	3		21.9
9.1.1	SE04 SE04b	N63 37.5O20 15.9	herring	10-Jun-02	3		21.9
9.1.1	SE040 SE05	Norway (IIa)	salmon	10-Jun-02 10-Jun-02	5		36.6
		2 ()					
9.1.1	SE06	Norway (IIa)	salmon	10-Nov-02			29.8
9.1.1 9.1.1	SE07 SE08	Norway (IIa) (IIB)	cod eggs cod eggs	2-Apr-01 3-Apr-01			66.3 59.8

MBT (<x=x)< th=""><th>MBT (<x=0)< th=""><th>DBT (<x=x)< th=""><th>DBT (<x=0)< th=""><th>TBT (<x=x)< th=""><th>TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	MBT (<x=0)< th=""><th>DBT (<x=x)< th=""><th>DBT (<x=0)< th=""><th>TBT (<x=x)< th=""><th>TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	DBT (<x=x)< th=""><th>DBT (<x=0)< th=""><th>TBT (<x=x)< th=""><th>TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	DBT (<x=0)< th=""><th>TBT (<x=x)< th=""><th>TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	TBT (<x=x)< th=""><th>TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	TBT (<x=0)< th=""><th>MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	MPT (<x=x)< th=""><th>MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	MPT (<x=0)< th=""><th>DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<></th></x=0)<>	DPT (<x=x)< th=""><th>DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<></th></x=x)<>	DPT (<x=0)< th=""><th>TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<></th></x=0)<>	TPT (<x=x)< th=""><th>TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<></th></x=x)<>	TPT (<x=0)< th=""><th>Reprsv. (y/n)</th></x=0)<>	Reprsv. (y/n)
5	5	4	4	4	4	80	0	80	0	80	0	y
5	0	4	0	4	0	80	0	80	0	80	0	y y
13	13	7	7	4	0	80	0	80	0	80	0	n
16	16	9	9	18	18	80	0	80	0	80	0	n
21	21	9	9	4	0	80	0	80	0	80	0	n
4	4	5	5	11	11	80	0	80	0	80	0	У
20	20	44	44	52	52	80	0	80	0	80	0	у
7	7	6	6	6	6	80	0	80	0	80	0	у
7	7	9	9	15	15	80	0	80	0	80	0	У
5	0	5	5	7	7	80	0	80	0	80	0	У
5	0	4	0	15	15	80	0	80	0	80	0	У
5	0	5	5	38	38	80	0	80	0	80	0	у
5	0	4	0	9	9	80	0	80	0	80	0	у
5	0	8	8	36	36	80	0	80	0	80	0	у
5	0	4	0	4	0	80	0	80	0	80	0	у
5	0	5	5	8	8	80	0	80	0	80	0	У
14	14	24	24	29	29	80	0	80	0	80	0	У
5	0	7	7	9	9	80	0	80	0	80	0	У
5	0	5	5	9	9	80	0	80	0	80	0	У
5	0	5	5	9	9	80	0	80	0	80	0	У
5	0	4	0	49	49	80	0	80	0	80	0	У
9	9	22	22	62	62	80	0	80	0	80	0	У
5	0	1.5	1.5	13	13	80	0	80	0	80	0	У
5	0	1.2	1.2	4	0	80	0	80	0	80	0	У
5	0	4	0	4	0	80	0	80	0	80	0	У
5	0	4.7	4.7	73	73	80	0	80	0	80	0	У
5	0	4	0	4	0	80	0	80	0	80	0	У
5	0	4	0	4	0	80	0	80	0	80	0	У
5	0	5.7	5.7	130	130	80	0	80	0	80	0	У
		3.9	3.9	89	89							У
		7.4	7.4	199	199							У
		1.3	1.3	66	66							У
_		8.6	8.6	103	103							У
5	0	4	0	4	0	80	0	80	0	80	0	У
5	0	4	0	4	0	80	0	80	0	80	0	У
5	0	4	0	4	0	80	0	80	0	80	0	У
5	0	4	0	44	44	80	0	80	0	80	0	У
5	0	4	0	32	32	80	0	80	0	80	0	У
5	0	4	0	34	34	80	0	80	0	80	0	У
5	0	4	0	30 5	30	80 80	0	80 80	0	80 80	0	У
5 5	0 0	4	0 0	5 4	5 0	80 80	0	80 80	0	80 80	0	У
5	5	4	4	4	4	80 80	0	80 80	0	80 80	0	У
5	5 0	4	4	4	4	80 80	0 0	80 80	0 0	80 80	0 0	У
5 13	13	4 7	0 7	4	0	80 80	0	80 80	0	80 80	0	y n
15	15	9	9	4	18	80 80	0	80 80	0	80 80	0	
21	21	9	9	4	0	80 80	0	80 80	0	80 80	0	n n
4	4	5	5	4	11	80	0	80	0	80	0	
20	20	44	44	52	52	80	0	80	0	80	0	у У
20	20			34	34	00	v	00	U	00	U	у

Note:

Also available from www.vu.nl/ivm/research/otsafe.

- Codex codex alimentarius code
- Name En: Species name in English
- MBT: monobutyltin
- DBT: dibutyltin
- TBT: tributyltin
- MPT: monophenyltin
- DPT: diphenyltin
- TPT: triphenyltin

Representative (y/n): is the sample representative of what would be available to the consumer

- Values below the detection limit are given as zero in the <x=0 columns
- Values below the detection limit are given as the detection limit in the <x=x columns
- This allows for different assumptions in calculations (worst case, <x=1/2x, etc.)

Origin of species included in the calculations (no data or all samples from the country considered are not mentioned)

Belgium	fish: BE+NL (herring)+PT (cod)+ DE (pollack)+ES (sole); molluscs: NL (mussels)+UK (oysters)+FR (oysters)
France	fish: FR + UK (cod)+PT (sardines, cod)+ES (sardines, whiting, sole) + DE (pollack)+NL (whiting); molluscs: FR+UK (oysters)
Germany	molluscs: NL (mussels)
Greece	fish: GR+ES (sardines from mediterranean only)
Netherlands	fish: NL+DE (salmon, pollack)+UK (cod)+BE (plaice, salmon)
Portugal	fish: PT+UK (cod); crustaceans: PT+ES (shrimp)
Spain	fish: ES+NL (whiting)
Sweden	fish: SE+UK (cod, haddock)
UK	fish: UK+ES (whiting)