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Abstract

In this paper we investigate the properties of the Lagrange Multiplier (LM)
test for autoregressive conditional heteroskedasticity (ARCH) and generalized
ARCH (GARCH) in the presence of additive outliers (AO’s). We show an-
alytically that both the asymptotic size and power are adversely affected if
AOQO’s are neglected: the test rejects the null hypothesis of homoskedasticity
too often when it is in fact true, while the test has difficulty detecting genuine
GARCH effects. Several Monte Carlo experiments show that these phenomena
occur in small samples as well. We design and implement a robust test, which
has better size and power properties than the conventional test in the presence
of AO’s. Applications to the French industrial production series and weekly
returns of the Spanish peseta/US dollar exchange rate reveal that, sometimes,
apparent GARCH effects may be due to only a small number of outliers and,
conversely, that genuine GARCH effects can be masked by outliers.

Keywords: Generalized autoregressive conditional heteroskedasticity, Lagrange
Multiplier test, Outliers, Robust testing.

JEL classification: C12, C22

*Correspondence to Dick van Dijk, Tinbergen Institute, Burg. Oudlaan 50, NL-3062 PA Rot-
terdam, The Netherlands, Email: dvandijk@tir.few.eur.nl


https://core.ac.uk/display/17044512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

A common feature of many financial time series, such as returns on exchange rates
and stock market indices, is that irregular data points tend to cluster. Large (small)
absolute realizations typically are followed by large (small) realizations of either sign.
Therefore, such clusters can be viewed as corresponding to periods with high (low)
volatility. Given that volatility, as a measure of risk, is a dominant element in many
financial analyses, it seems important to try to capture the behavior of volatility in
an econometric time series model. The autoregressive conditional heteroskedasticity
(GARCH) and generalized ARCH (GARCH) models, introduced by Engle (1982)
and Bollerslev (1986), respectively, are by now the most widely used models for this
purpose, see Bollerslev et al. (1992), Bera and Higgins (1993), and Bollerslev et al.
(1994) for recent surveys.

The GARCH model can describe the excess kurtosis and the positive and slowly
decaying autocorrelations in the squared observations, which are characteristic prop-
erties of many financial time series. However, Terdsvirta (1996) shows that the
GARCH model with normal conditional errors cannot capture these stylized facts
completely. In particular, the excess kurtosis cannot be completely accomodated.
Terasvirta suggests that models with fat-tailed conditional distributions, such as the
Student ¢, might do better in this respect. When such GARCH-¢ models are applied
in practice, it often appears that the estimated residuals still have high excess kur-
tosis, see, e.g., Baillie and Bollerslev (1989). Hence, there may remain observations
that cannot be described satisfactorily by an extended GARCH model. Such data
points may correspond to another data generating process (DGP), possibly with
markedly distinct distributional properties from the DGP of the other observations.
A typical example of an aberrant observation is an additive outlier (AO), see, e.g.,
Martin and Yohai (1986) for a definition. Neglecting AO’s in an observed time series

can suggest leptokurtic behavior. In particular, a short sequence of two AQO’s already



results in a positive bias in the first order autocorrelation of the squared observa-
tions. Such a sequence of AO’s may, for example, be caused by an overreaction to
some news fact, while this reaction is corrected in a subsequent period. On the other
hand, low order autocorrelation coefficients are biased towards zero by isolated AO’s,
and, hence, neglecting AO’s may blur inference on conditional heteroskedasticity. In
sum, it seems worthwhile to account for the presence of both GARCH effects and
outliers when dealing with financial time series. Moreover, as the economic inter-
pretation of both phenomena is rather different, statistical procedures are called for
that separate the effects of outliers from those of GARCH behavior.

In this paper, we focus on the first step in modeling financial time series, by
considering the sensitivity of tests for conditional heteroskedasticity to the presence
of AO’s. We focus on the Lagrange Multiplier (LM) test put forward in Engle (1982),
as this test is by far the most popular method to test for ARCH. An additional
motivation for considering the effect of AO’s on this ARCH test is given by the
observation that it is applied routinely to the residuals of a fitted econometric time
series model. In fact, many computer packages contain this test as a diagnostic
check. Therefore, it seems warranted to examine the properties of this test while
allowing for the presence of AO’s. We show analytically that both the size and power
of the LM test are adversely affected by neglected AO’s and construct a robust test
that can handle AO’s much better.

The outline of this paper is as follows. In section 2, the GARCH model and the
associated standard LM test are briefly discussed. Section 3 formally investigates
the effects of additive outliers on the asymptotic distribution of this standard test
statistic. An outlier robust variant of the LM test is developed in section 4. In section
5, Monte Carlo experiments are used to investigate the small sample properties of
both the conventional and the robust test. The robust test is shown to perform
much better in terms of size and power. Empirical illustrations are given in section

6, where the LM tests are applied to the French industrial production series and to



weekly returns of the Spanish peseta/US dollar exchange rate. Section 7 concludes

with suggestions for further research.

2 The LM test for GARCH

Consider the autoregressive (AR) model of order m with GARCH(p,q) disturbances

for a univariate time series y; with mean p,

L)y —p) = &, t=1,..,T, (1)
5t|Qt71 ~ (O,ht), (2)

q p
hy = w++ Z el + Z Bihi—j = w + a(L)e? |+ B(L)hE |, (3)

i=1 j=1
where €, | represents the information set available at time t — 1 and ¢(L) is a
polynomial of order m in the lag operator L, defined by L¥y, = 3,_;. We assume
that the roots of ¢(z) lie outside the unit circle. For the conditional variance of &, to
be strictly positive, the parameters in (3) have to satisfy w > 0, o; >0, i =1,...,q,
and §; > 0, j =1...,p. A necessary and sufficient condition for the existence of
the unconditional variance of &; is given by 7, a; + Z?Zl B; < 1, see Bollerslev
(1986). When this condition is satisfied, this unconditional variance is given by
E(s}) = w/(1-=X%, a; = X}_, B;). The conditional distribution of the disturbances
g, usually is assumed to be either normal or Student ¢. If p = 0, the error process
reduces to the ARCH(q) process, see Engle (1982), while for p = ¢ = 0, ¢; is simply
white noise.

Although nowadays estimation of GARCH models has become fairly straight-
forward, it still is sound practice to start any specification analysis with testing
for the presence of ARCH effects. The LM test procedure has become one of the
most popular methods to test white noise errors against the alternative of condi-
tional heteroskedasticity, as it only requires estimation of the model under the null
hypothesis. The testing problem can be formulated as testing the null hypothesis

Hy:o0=...=0ay=p0 =...= 3, =0, against the alternative H, : o; > 0, 5; > 0
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for at least one i = 1,...,g and j = 1,...,p. Lee (1991) shows that the LM test
against this GARCH(p,q) alternative is the same as the LM test against the alterna-
tive of ARCH(q) errors. This follows from the fact that under the null hypothesis,
the gradient of the log likelihood of the AR(m)-GARCH(p,q) model (1)-(3) with
respect to the parameters [, ..., (, is equal to zero. The LM test against ARCH(q)

errors was developed by Engle (1982) and is given by
f2(22)7'f, (4)

where Z' = (21,..., %), = (1,é2 1,...,é2 ) and f' = (f{,..., fr), fr = (22/5%
1), with 62 = Y, £2/T. In (4), least squares estimates of the conditional mean
equation (1), obtained under the null of no ARCH, are used. This statistic takes the
same form as the well-known heteroskedasticity test of Breusch and Pagan (1979).
Engle (1982) notes that the test does not depend on the linear form of the conditional
variance function h; in (3), which implies that the same test statistic results for any
specification of h; which depends only on the past squared disturbances €2 ,, ..., 8%7(1.

Under the assumption of conditional normality of the ,’s, an asymptotically
equivalent statistic is given by
a2 2
- f'f

where R? is the uncentered coefficient of determination of an auxiliary regression of

3 =TR? (5)

the squared LS residuals €7 on an intercept and ¢ lags €7 | through &7 . Under the
null hypothesis of no (G)ARCH, the LM statistic £ is asymptotically x? distributed
with ¢ degrees of freedom. Weiss (1986) shows that, subject to certain moment
conditions, this LM test is also appropriate for nonnormal conditional distributions,
see also Koenker (1981).

The small sample properties of the LM test £ have been investigated by Diebold
and Pauly (1989), Gregory (1989), and Lee and King (1993), among others. The

main findings of these studies can be summarized as follows. One consistently finds



that the actual size of the test is lower than its nominal size, while the power is
reasonable, although not overwhelming. Diebold and Pauly (1989) report that the
power of the exact test (4) seems better than the power of its asymptotic equivalent
(5). However, for the test against an ARCH(1) or GARCH(1,1) alternative, the
differences disappear already for sample sizes of 100 observations. Gregory (1989)
finds that the power of the LM test is sensitive to departures from symmetry in
the conditional error distribution, while both Gregory (1989) and Lee and King
(1993) show that the LM statistic is fairly robust against leptokurtic conditional
error distributions.

In this paper, we are concerned with the potential effects on the LM test for
ARCH of a particular deviation from conditional normality, namely the presence of

additive outliers. In the next section, we focus on these effects in more detail.

3 Additive outliers, size, and power

In this section we demonstrate the effects of AO’s on the asymptotic distribution of
the LM test for ARCH. In subsection 3.1 we present the effect of isolated additive
outliers on the level of the ARCH test if the model in levels contains an AR spec-
ification, which is of importance for the use of the LM test as a diagnostic check.
In subsection 3.2 we derive the effect of patchy additive outliers on the level of the
test. Finally, in subsection 3.3 we obtain the effect of isolated additive outliers on
the power of the ARCH test, which seems relevant for the application of the test to
financial time series.

In order to simplify the exposition and to abstract from unnecessary complica-

tions, we focus on the AR(1) model with zero mean and ARCH(1) errors,

Yi = QY1+, (6)
5t|Qt71 ~ IN(O,ht), (7)
hy = w+asl (8)



with w > 0,0 < a <1 and —1 < ¢ < 1. The series y; is observed with error as

Ty = Y + (o4, (9)

where {J;} is a stochastic contamination process, which takes nonzero values with
positive probability, and where ( > 0 is a constant indicating the magnitude of the
outliers.

Deriving the effect of outliers on the asymptotic distribution of the ARCH test
¢ in (5) is nontrivial, because 8-th order (cross-)moments of the different stochastic
variables in (6) through (9) are involved. Therefore, instead of deriving the exact
effects, we follow a slightly different route. In order to avoid presenting unduly
lengthy derivations, we concentrate on the effect of outliers on the noncentrality
parameter of the asymptotic x? distribution of the ARCH test, compare Koenker
(1981). To be more precise, we only look at the effect of outliers on the main
determinant of this noncentrality parameter, namely the expectation of

<($t - ¢~>$t—1)2

52 - 1) (xtfl - éfvth)Z, (10)
where ¢ is the probability limit of the ordinary least squares (OLS) estimator of
the AR(1) parameter, and where 62 is the probability limit of the OLS estimator
of the variance of the regression errors. The noncentrality parameter is given by
the squared expectation of (10) divided by the variance of (10). For simplicity, we
abstract from the effect of outliers on the variance of (10). We also abstract from the
fact that in practice the test is based on a series of finite length. The finite sample
bias is of course interesting on its own, but its effect on the noncentrality parameter
is of a lower order than the expectation of (10). By focusing on the expectation of
(10) only, we obtain tractable results that reveal the main consequences of outliers

on the standard ARCH test. These consequences are further illustrated by means

of Monte Carlo simulations in section 5.



3.1 A homoskedastic AR(1) and isolated additive outliers

We first consider an AR(1) model with homoskedastic errors €; and isolated additive
outliers, so @« = 0 in (8) and ¢; is an i.i.d. process, with P(6; = 0) = 1 — ,
P(6; = 1) = P(6; = —1) = 7/2. In this situation, additive outliers have several
effects, see, e.g., Denby and Martin (1979), Bustos and Yohai (1986), and Martin
and Yohai (1986). First, they cause a bias in the estimate of the autoregressive
parameter ¢. Second, additive outliers affect the estimate of the error variance.
Both effects have implications for the noncentrality parameter of the ARCH test.
The probability limit of the OLS estimate of the AR(1) parameter ¢ under iso-

lated AO contamination is given by

. e E(fvtl"tq) . ¢
20 B W e y ey

(11)
The OLS residuals are given by

~

Er = Ty — QT4

= &+ (0 — ¢Co1 + (6 — D)yi—1, (12)

from which the estimated error variance follows easily as being

5 = E(&)
— $)2 N
W (1 + M) + 731 + ¢2). (13)
The derivation of the exact expectation of (10) is much more cumbersome. Us-
ing computer algebra we obtain the correct expression, which is available from the

corresponding author. To save space, we only present figures of the expectation of

(10) for several parameter configurations in Figure 1.
- insert Figure 1 -

The first thing to notice from this Figure is the increase in the expectation for

larger values of (. This follows directly from the fact that a larger ¢ causes a larger
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bias in the autoregressive parameter estimate. Also, the increasing behavior in ¢
is evident; if ¢ is larger, the discrepancy between the true residuals ¢; and the
contaminated residuals £, becomes larger if outliers are added. This again follows
from the bias in the estimator for ¢, given in (11). Finally, if 7 increases, the
expectation decreases and, hence, the value of the noncentrality parameter decreases
towards zero. In other words, the distribution gets closer to the nominal distribution
if the fraction of contamination becomes larger.

All these findings are intuitively clear. If a homoskedastic AR(1) process is con-
taminated with a dominant white noise process, the OLS estimator is biased towards
that white noise process. Consequently, the regression residuals will be autocorre-
lated, as will be the squared regression residuals. Therefore, the ARCH test will
reject the null hypothesis too often compared to the nominal level. If the proba-
bility of outliers 7 increases further and ( is large, the white noise contamination
becomes completely dominant and the regression residuals are approximately equal

to the contamination white noise process.

3.2 Homoskedastic white noise and patchy additive outliers

Additive outliers can occur either in isolation or in patches. In this subsection, we
show that the occurence of only a few adjacent AO’s may result in spurious detection
of ARCH effects. The effect of patchy additive outliers on the level of the test is
thus similar to that of isolated outliers, compare subsection 3.1.

We study the effect of additive outliers that occur in patches of length k£ on a
model that contains neither AR nor GARCH behavior, i.e., ¢ = ¢ = a = 0. A patch

of outliers occurs if we allow the contamination process d; in (9) to be autocorrelated,

5t:{5t ifv, #0 forsomei=t—k+1,...,t, (14)

0 else,
with 0, and v, iid., P(0; = 1) = P(6; = —1) = 1/2, P(y, = 0) = 1 — 7, and
P(v, #0) = .



As there is no AR parameter to be estimated in the present setting, we directly
proceed with the effect of patchy outliers on the estimate of the variance of the

regression errors, 2. We obtain

5 = FE(x})
= E(y) +CE(5)
= w+<2(1_P('Ut7k+1:07"'7'Ut:0))

= w+C1-1-7)"). (15)
Furthermore, we obtain that

B(ax} ) = E((yr+ C0)*(ye1 +C0i1)?)
= B(yfyioy + i CP0i_y + yia G367 + ¢ 01 y)
= W +2wC1l-(1-m)F)+ (P(E‘ie{t—k+1,...,t_1} D v £ 0)+
P, #0,v,1=0,...,0 k11 = 0,0, 4 #0))
= W+ 231 -1-m)+¢* (1- Q-+ (1 - m)F )

= W21 - (1-m)")+¢ (1- (- 1+7). (16)

As a result, the expectation of (10) can be written as

B(ajr{ ) — o' _ ¢ —m) (1 - (1 —m)*
52 wt (1= (1—m)F)

(17)

Expression (17) clearly demonstrates that unless there are no outliers, i.e., { =0
or m = 0, or only outliers, i.e., 7 = 1, the noncentrality parameter of the ARCH test
is nonzero. This results in a rejection frequency of the test above the nominal level,
despite the absence of ARCH effects. So AO’s occurring in patches can result in
a spurious detection of ARCH effects. This is intuitively clear, as additive outliers
result in large values of the innovations. If several of such values occur in a row,
the ARCH test is biased towards the detection of volatility clustering, i.e., large

innovations following large innovations. If patches become very long (k — oo) or if



the probability of a patch of outliers occurring is large (7w 1 1), then the noncentrality
parameter tends to zero again. So long patches of dominant patches result in a
distribution of the ARCH test close to its null distribution. Put differently, long
patches lead to small size distortions. It can be shown, however, that the same
phenomenon for the noncentrality parameter holds under the alternative of genuine
ARCH effects, such that long patches of outliers lead to a power loss of the ARCH
test. This is again intuitively clear, because in such cases the homoskedastic white
noise contamination will dominate the original ARCH signal, such that the volatility
clustering will go unnoticed. To get some intuition, one can consider the extreme
case of an infinitely long patch of dominant outliers, k¥ — oo and ( — oo. In that
case one no longer observes the original process, but only the contaminating white

noise.

3.3 White noise, ARCH(1), and isolated additive outliers

The final effect of additive outliers we demonstrate in this paper concerns the power
of the ARCH test. Consider the same model for y; as in subsection 3.2, only with
g being ARCH(1) instead of homoskedastic. The outlier process d; is now assumed

to be i.i.d. as in subsection 3.1. We first compute the variance of x;,
o' = B(z})
= B(y;) +CB(&)
= w/(1—a)+ . (18)
Moreover,
E(z{z;_y) = E((y+ C0)* (-1 + C61)?)
= 7"+ 27TC2W/(1 —a)+ E((w+ ayfﬂ)yt{l)
= 1+ 27+ ww/(1—a) +

3aw?(14+a)/((1 - 3% (1 — a)), (19)
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where we assume that 3a? < 1, such that the unconditional fourth moment of y,

exists. As a result, the expectation of (10) can be written as

E(xjz} ) —d6* 3aw?(a? + a +2/3)
52 T (1-30®)(1—a)(w+Cr(l—a)) (20)

Expression (20) clearly demonstrates that the noncentrality parameter is decreas-
ing in both 7 and . As the noncentrality parameter involves the square of (17),
we can see that the power of the test decreases very rapidly if the magnitude of the
outliers ( increases. The intuition behind these results is that, if we have a GARCH
process which is contaminated with a dominant homoskedastic white noise process,
the test will have difficulty in spotting the GARCH behavior of the underlying un-
contaminated series. So, under the alternative, large fractions of contamination or
contamination with large outliers both lead to a severe power loss in the present
context. In section 6 we will give an empirical example of this phenomenon.

In section 5 we use Monte Carlo simulations to examine if and how the asymptotic
results presented in this section carry over to small samples. First however, in the

next section we put forward an outlier robust variant of the LM test for ARCH.

4 An outlier robust test for ARCH

The results in the previous section show that the LM test for ARCH can be severely
distorted by additive outliers. Van Dijk et al. (1996) investigate a similar problem
when testing for linearity of the conditional mean. They show that an outlier robust
test statistic is obtained if the model under the null hypothesis is estimated by an
outlier robust estimator. In particular, they suggest to use a high breakdown point
generalized maximum likelihood type (HBP-GM) estimator to have maximum pro-
tection against AO’s. General introductions to outlier robust estimation techniques
can be found in, e.g., Huber (1981), Martin (1981), Hampel et al. (1986), and, more
recently, Lucas (1996). The idea of estimating the model under the null using an

outlier robust estimator can also be used to robustify the LM test for ARCH in (5).
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For technical details we refer to Van Dijk et al. (1996), here we only present the
general concepts involved.

The class of GM estimators can be interpreted as a type of weighted least squares
estimator, with the weights chosen endogenously in such a way that influential ob-
servations, such as AO’s, do not affect the parameter estimates. In particular, in

the AR(1) example the GM estimator solves the first order condition

T
z;yt—l e (1) (Y — Y1) = 0, (21)
=

where w,(+) is a weight function, which determines the weight for the ¢-th obser-

vation, r; is the standardized residual, 7, = (v — ¢yi—1)/(0cwy(ye—1)), with w,(-)

a weight function for the regressor y;_;, and o. is an estimate of the scale of ¢;.

Both weight functions w,(-) and w,(-) are bounded by zero and one. The first order

condition (21) is nonlinear in ¢ and, therefore, estimation requires an iterative pro-

cedure. In order to have maximum protection against outliers, the breakdown point
of the estimator, that is, the maximum fraction of contaminated observations the
estimator can cope with, should be as high as possible. Simpson et al. (1992) and

Coakley and Hettmansperger (1993) show that if a high breakdown point (HBP)

estimator is used to construct starting values for ¢ and o, and if only one iteration

of the weighted least squares scheme is performed, an efficient estimator is obtained
which retains the high breakdown point of the initial estimator. The least median of
squares (LMS) estimator of Rousseeuw (1984) is used to obtain a starting value for
the autoregressive parameter, while the median absolute deviation (MAD) estima-
tor provides an initial scale estimate, i.e., & = 1.483 - med(|y;_; — med(y;_1)|) where
med denotes the median. The constant 1.483 is used to make the MAD a consistent
estimator of the standard deviation in case ¢; is normally distributed.

Defining ¢(r;) = ryw,(r;), we use the polynomial ¢ function as proposed in Lucas

et al. (1996), given by

b(re) = (1 = H(lri| = e1))sgn(re) + H(|ri| = ) (1 = H(lre| = e2))g(ral) »  (22)

12



where ¢; and ¢y are tuning constants, H(-) is the Heaviside function, defined by
H(z) =1if z > 0 and H(z) = 0 otherwise, sgn is the signum function, and g(|r)
is a fifth order polynomial such that v (-) is twice continuously differentiable. For
this choice of (-), the resulting weight function w, () is such that the observation
at time ¢ receives a weight equal to 1 if its standardized residual is within (—¢q, ¢)
and a weight equal to zero if r; is larger than ¢, in absolute value. Partial weighting
occurs in-between. The tuning constants ¢; and ¢, are taken to be the square roots
of the 0.99 and 0.999 quantiles of the x?(1) distribution, that is, ¢; = 2.576 and
co = 3.291.

The weight function w,(-) for the regressor is specified as

wy (Y1) = Y(d(y—1)*) /d(ye=1)" , (23)

where again ¢ (-) is given by (22), d(y,—1) is the Mahalanobis distance of y,_1, i.e.,
d(yi—1) = |yi—1 — my|/oy, with m, and o, measures of location and scale of y;_1,
respectively. These measures are estimated robustly by the median and the MAD,
respectively. Finally, following Simpson et al. (1992), the constant « in (23) is set
equal to 2 in order to obtain robustness of standard errors.

Hampel et al. (1986) and Peracchi (1991) show that the robustness properties of
estimators carry over to test statistics based on these estimators. This suggests that
the HBP-GM estimator discussed above can be used to construct a robust version
of the LM statistic for ARCH. In particular, a robust equivalent to the LM test
in (5) is obtained as T', the sample size, times the coefficient of determination of a
regression of the weighted squared residuals 1 (r;)? on a constant and ¢ lags. Under
conventional assumptions, the outlier robust LM test, which will be denoted by &g,
retains its limiting x%(¢q) distribution. In the next section we compare the small

sample properties of £ and £i using Monte Carlo experiments.
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5 Monte Carlo experiments

Monte Carlo experiments are conducted to complement the asymptotic results ob-
tained in section 3 by some estimates of the size and power of the standard LM
test for ARCH in small samples in the presence of outliers. In addition, these ex-
periments are used to investigate the properties of the robust test developed in the

previous section.

5.1 Monte Carlo design

All the models which are used to generate series are nested within the contaminated

AR(1)-GARCH(1,1) model,

y—p = O(y—1 —p)+e, t=1,...,7T, (24)
et|Q 1 ~ IN(0,hy) (25)
hy = w+ael |+ Bh, (26)
xy = Y+ (o (27)

where P(6; = 1) = P(0; = —1) = /2 and P(6; = 0) = 1 — 7. The probability of
occurrence of AO’s 7 is fixed at 0.05 throughout. In all experiments, u is set equal
to zero, while w = 1 — a — 3, such that the unconditional variance of the errors ¢;
equals 1 for all choices of o and 3. In the Monte Carlo experiments, we study the
effects of varying the autoregressive parameter ¢, the GARCH-parameters « and
5, the absolute magnitude of the AO’s (, and the sample size T. The necessary
starting values for both y; and £; are set equal to zero, while the starting value for A,
is set equal to the unconditional variance. The first 100 observations of each series
are discarded in order to avoid possible dependence of the results on these initial
conditions. The AR order is assumed known, while an intercept is always included

in the estimation of the linear model under the null hypothesis.
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5.2 Size

The effects of isolated outliers on the size of the LM test in small samples are
investigated by generating 1000 series according to an AR(1) model with condi-
tionally homoskedastic errors, i.e., (24)-(27) with « and § fixed at zero. We set
¢ = 0.0,0.1,0.3,...,0.9, ¢ = 0,3,4,5, and T" = 100, 250, 500, giving a total of 72

experiments.
- insert Table 1 -

Rejection frequencies of the standard and robust LM test against GARCH(1,1)
errors using 5% asymptotic critical values are given in Table 1 (results for tests
against higher order ARCH alternatives and other contamination fractions are avail-
able on request from the corresponding author). The size of the standard test in case
of no outliers corroborates the findings of other Monte Carlo studies mentioned in
Section 2 in that the empirical size is below the nominal size. The size of the robust
test is quite reasonable as well. In the presence of outliers, the rejection frequencies
remain fairly low for small values of the autoregressive parameter for all sample sizes
considered. For ¢ = 0.7 or 0.9 however, it is seen that AO’s have quite a dramatic
effect on the behavior of the standard test, which now rejects the null much more
often than expected. This finding confirms the asymptotic result obtained in section
3.1 that the noncentrality parameter of the ARCH test is larger for larger values of
the autoregressive parameter.

The robust test is affected by the presence of AO’s as well, albeit to a much lesser
extent. Rejection frequencies typically remain below 10% and 25% for T'= 100 and
250, respectively. The effects of the magnitude of the outliers on the size estimates for
the standard test is seen to accord with the results of section 3.1 as well. Increasing
the absolute magnitude of the outliers initially leads to more frequent rejection of
the null. For ( =5 and T" = 250 and 500, it becomes noticeable that the distribution

of the LM test approaches the nominal distribution again. By contrast, the rejection

15



frequencies for the robust test decline when moving from ( = 3 to ( = 4 as well.
Obviously, a larger outlier is more easily detected by the robust estimation procedure

and, therefore, has less effect on the level of the robust test.

5.3 Power

The effects on the power of the LM test are investigated by generating 1000 series
according to (24)-(27) with ¢ fixed at zero (which is assumed known). We set
a=0.1,0.3,0.5,0.7,0.9, 5 = 0.2,0.4,0.6,0.8, ¢ = 0,3,4,5, and T" = 100, 250, 500.
Only combinations of the GARCH parameters for which a + # < 1 are considered,

leaving a total of 120 experiments.
- insert Table 2 -

Table 2 shows the rejection percentages for these experiments. The entries in
the columns for which ¢ = 0 indicate that the LM test is more sensitive in the
a- than in the (-direction. The power increases quite rapidly when o gets larger,
while it is hardly affected when (3 gets larger. As Lee and King (1993) argue, this
is not surprising since the LM test is derived as a test for ARCH(1) disturbances.
Comparing the standard and robust tests, it is seen that in the absence of outliers,
there is a power loss when using the robust test compared to the nonrobust test.
The loss of power becomes less for larger sample sizes, but remains considerable for
combinations of small o and large 3, which are values for the GARCH parameters
typically encountered in practice. This power loss has to be considered as a kind of
”insurance premium” one has to pay in order to be protected against the bad effects
of outliers.

In the presence of outliers, the power of the conventional test drops quite dra-
matically, confirming the asymptotic result of section 3.3. By contrast, the power of
the robust test is hardly affected and is considerably higher than the power of the

standard test. Moreover, the power of the robust test is insensitive to the magni-
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tude of the outliers, whereas the OLS based test suffers relatively more from larger

outliers.

6 Empirical illustrations

In this section we present two empirical applications to illustrate the behavior of the
LM test for ARCH in the presence of AO’s. In Section 6.1, we apply the test as a
diagnostic check to the residuals from a model for the quarterly French industrial
production index. This example shows that AO’s may give rise to spurious indication
of the presence of ARCH effects. In Section 6.2, the test is applied to weekly exchange
rate returns of the Spanish peseta versus the US dollar. Surprisingly, the standard
test does not find any evidence for conditional heteroskedasticity. Application of the
robust test to the same series reveals that ARCH effects are masked by only a few

outlying observations.

6.1 ARCH effects in French industrial production?

In this subsection we illustrate the use of the LM test as diagnostic check to test
the adequacy of a fitted model. We consider modelling the quarterly, seasonally
unadjusted index of industrial production for France, for which we may expect an
AO to appear in the second quarter of 1968 because of the nationwide strike in May
of that year. The data cover the period 1960(i)-1987(iv) and are constructed by
averaging the corresponding monthly observations, which are taken from the OFCD
Main Economic Indicators. The data are made approximately stationary by taking
seasonal differences of the logarithms. The resulting series is graphed in the left
panel of Figure 2. Two marked features of this series stand out from this graph.
First, the 1975 recession following the first oil crisis is clearly visible, leading to
five subsequent quarters of negative growth. Second, the observations 1968(ii) and
1969(ii) show a pattern which is typical for an additive outlier in the level of the

series, i.e., a large dip for the first observation and a strong peak for the second one.
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- insert Figure 2 -

A specification search leads to an AR model for this series with lags 1, 4, 5, 8
and 9 included as regressors. The standard LM test for ARCH(q) is applied to the
residuals from this model, where ¢ ranges from 1 to 12. The outcomes of the tests
are set out in the second column of Table 3. The p-values of the tests do not exceed
conventional significance levels, and hence, based on this standard test, we would

conclude there is very strong evidence for the presence of ARCH.
- insert Table 3 -

To check the robustness of this result to the possible presence of AO’s, we apply
the robust LM test for ARCH. The weights assigned by estimating the selected
AR model using our robust method are displayed in the right part of Figure 2. It
is seen that 18 observations (out of a total of 99) are downweighted, while 15 of
these observations receive a weight equal to zero. The corresponding observations
of the quarterly difference series are marked with circles in the left panel of the
same figure. Most of these observations are associated with either the 1968 strike or
the 1975 recession. Note that this relatively large number of zero weights does not
imply that the series contains a large number of outliers, but merely that the AO’s
affect many subsequent observations, due to the large AR structure. The robust test
results along with the corresponding p-values, given in the third column of Table 3
clearly demonstrate that all evidence for the presence of ARCH disappears. Hence,
we conclude that the previous suggestion of heteroskedasticity in French industrial
production is caused by aberrant observations associated with the strike in May 1968
and the oil crisis around 1974.

The LM test for ARCH has power against a range of other alternatives as well.
This can be most easily understood by noting that it is asymptotically equivalent
to the portmanteau test of McLeod and Li (1983). Hence, one might argue that it

is somewhat naive to take the results of the standard LM test as equivalent to the
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presence of ARCH in the French industrial production series, and that they rather
should be interpreted as a sign of general misspecification of the conditional mean.
Perhaps it is good to remark that the robust test is useful in this respect as well,
because the weights obtained from the robust estimation procedure indicate which

observations cause the model to be misspecified.

6.2 ARCH effects in the Spanish peseta exchange rate!

The GARCH(1,1) model has been frequently applied to (high frequency) financial
time series such as exchange rates. Examples include Baillie and Bollerslev (1989)
and Hsieh (1989). In this section, we apply the standard and robust LM tests for
ARCH to weekly returns for the Spanish peseta against the US dollar. The data are
obtained from the database of the Federal Reserve Bank of Chicago and consist of
Wednesday noon bid rates from January 1, 1986 until December 27, 1995. In case
the market was closed on a particular Wednesday, the observation on the following
Thursday is used. The return series was created by taking first differences of the

logarithm of the exchange rate and is graphed in the left panel of Figure 3.
- insert Figure 3 -
- insert Table 4 -

The upper panel of Table 4 gives some summary statistics for the return se-
ries. The median is seen to differ substantially from the mean, while the skewness
is significantly positive as well, suggesting asymmetry in this series. The value of
the kurtosis is typical for many financial time series, being substantially above the
normal value of 3. By contrast, the autocorrelation coefficients of the centered and
squared returns, given in the middle panel of Table 4, do not fit the pattern char-
acteristic for financial time series of being small but significant for a large number
of lags. In fact, of the first twenty autocorrelations, only the third and twentieth

are significantly different from zero. This may be regarded as a first suggestion of
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additive outliers, since isolated AO’s bias the low order autocorrelation coefficients
towards zero. This conjecture is strengthened by the observation that the autocor-
relations at some extremely high lags such as 35, 43 and 78 (not reported here)
suddenly become significant again.

Following Baillie and Bollerslev (1989), we assume that exchange rate returns
are uncorrelated, possible with nonzero mean pu. Testing for ARCH in the residuals
can now be done by simply applying the LM test against ARCH(q) to the demeaned
and squared return series. The test results for ¢ ranging from 1 until 13 are set
out in the second column of the bottom panel of Table 4. The p-values for the
standard test are well above conventional significance levels, giving no rise to reject
the null hypothesis. This result is rather puzzling, even more so because estimating
a GARCH(1,1) model for this series gives significant estimates for the parameters
in the conditional variance equation, i.e., « = 0.122 and 8 = 0.676 with standard
errors equal to 0.047 and 0.097, respectively.

We apply the robust test to check whether the standard test results might be
driven by neglecting the presence of AO’s. The drift is now estimated as the median
of the return series. The p-values associated with the robust test, shown in the
third column of the bottom panel of Table 4, indicate that ARCH effects are present
indeed. Only for ¢ = 1 there may be some doubt, as the test rejects the null only
at the 14.4% significance level. Inspection of the weights from the robust estimation
procedure, shown in the right panel of Figure 3, reveals that from the total 521
observations, only 13 are are downweighted. Notice that nine of these observations
do not receive a weight equal to zero. Hence, our robust estimation method allow
for a less harsh treatment of aberrant observations. As can be seen from Figure
3, the downweighted observations concern extreme or outlying values of absolute
returns. Whether these observations can be modeled by the AO model depends on
the events that have taken place on these specific dates. If no particular events can

be identified, the modeler might conclude that a leptokurtic conditional distribution
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is needed for the present exchange rate return series.

7 Concluding remarks

In this paper we proposed a robust LM test for conditional heteroscedasticity. The
need for such a robust test is motivated by both analytical derivations and Monte
Carlo simulations, which show that the standard LM test of Engle (1982) breaks
down in the presence of outliers. The robust test uses a HBP-GM estimator to
estimate the homoskedastic model under the null hypothesis. The Monte Carlo
evidence suggests that the resulting test offers much better protection against the
influence of outliers than the standard test. The application to weekly exchange rate
returns shows that hidden ARCH can be revealed by taking care of outliers. Fur-
thermore, the French industrial production example shows that obviously neglected
AQO’s suggest spurious ARCH.

Further research should include a comparison of our robust test with the ro-
bust test of Bollerslev and Wooldridge (1992). Furthermore, we aim to investigate
the estimation of GARCH models using robust methods as well as the forecasting
properties of robustified GARCH models for out-of-sample volatility. The tentative
results in Franses and Ghijsels (1995) seem to indicate that quite some forecasting
power can be gained. Finally, it is interesting to study how our robust test performs
for other financial time series, possibly sampled at different frequencies, such as days

or minutes.
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Table 1: Size of LM test for ARCH(1) disturbances (5% outliers)

£ {R

6 ¢ 0 3 1 5 0 3 1 5

T =100 0.0 3.8 2.7 2.5 2.5 4.7 4.1 3.7 4.7
0.1 4.0 1.8 2.0 2.6 4.6 4.0 4.5 4.0

0.3 3.2 4.0 3.7 3.7 3.3 5.8 6.4 5.1

0.5 4.0 7.9 8.4 6.8 5.1 7.6 8.7 8.3

0.7 2.8 14.7 17.6 15.5 2.8 9.3 10.0 6.3

0.9 3.8 42.1 60.0 60.9 4.4 14.7 10.1 7.1

T =250 0.0 3.0 2.6 24 2.3 3.0 4.7 5.2 5.1
0.1 2.7 2.9 3.0 2.8 2.7 4.6 5.3 6.1

0.3 3.9 6.3 5.7 5.6 3.9 7.4 6.1 6.6

0.5 5.0 12.5 11.4 9.2 5.0 11.6 10.8 9.6

0.7 4.6 40.7 46.4 38.3 4.5 23.8 14.3 8.6

0.9 3.7 85.4 96.7 96.6 3.7 25.7 7.7 4.8

T =500 0.0 4.8 4.0 4.4 4.1 5.6 6.4 8.1 8.9
0.1 4.2 3.8 3.5 3.3 5.2 6.7 9.9 8.1

0.3 4.2 6.2 6.1 5.8 3.9 11.3 16.5 11.3

0.5 3.6 24.8 23.8 16.3 4.5 20.2 26.3 14.2

0.7 4.4 69.6 76.5 68.4 4.0 37.5 27.7 9.0

0.9 4.4 99.6 100.0 100.0 4.2 43.9 14.2 5.8

Note: Rejection frequencies at 5% significance level using asymptotic critical values for series generated by (24)-(27)
with g = 0, w = 1, « = § = 0. Additive outliers are added with probability 0.05. The table is based on 1000

replications.
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Table 2: Power of LM test for ARCH(1) disturbances (5% outliers)

£ §R

a B8 ¢ 0 3 4 5 0 3 4 5
T =100 0.1 0.2 14.3 5.5 4.7 4.8 10.8 7.0 8.4 9.9
0.1 04 14.7 5.7 4.6 4.9 11.5 7.4 9.5 11.1
0.1 0.6 15.4 5.9 4.7 5.0 11.5 8.2 10.5 12.0
0.1 0.8 17.4 6.5 5.5 4.8 12.4 9.5 10.9 12.9
0.3 0.2 51.8 16.1 8.9 6.9 30.0 20.8 28.4 31.3
0.3 04 52.8 18.2 9.9 7.8 30.1 22.7 30.0 31.3
0.3 0.6 55.6 20.0 12.5 8.9 32.0 25.2 32.0 34.4
0.5 0.2 75.9 28.5 17.3 11.2 43.6 36.0 45.4 46.6
0.5 04 76.8 27.3 17.4 11.8 43.9 41.5 45.1 44.7
0.7 0.2 86.8 29.0 19.4 14.0 50.7 51.3 51.3 50.9
T =250 0.1 0.2 31.3 8.9 5.5 4.8 20.7 12.5 18.2 20.8
0.1 04 32.6 9.2 5.7 4.8 21.4 12.7 19.2 22.5
0.1 0.6 33.8 9.6 5.9 4.8 23.5 13.2 21.0 23.6
0.1 0.8 39.7 11.1 7.0 5.2 25.3 15.7 23.3 25.7
0.3 0.2 89.1 33.2 14.8 8.1 65.8 46.3 64.9 67.8
0.3 04 90.6 36.3 17.6 9.2 66.0 49.6 66.4 69.2
0.3 0.6 93.3 42.5 23.0 14.6 70.9 61.1 72.0 72.5
0.5 0.2 99.5 55.5 32.3 19.3 86.0 74.7 85.9 85.2
0.5 04 994 53.7 34.6 22.2 87.0 85.9 87.2 86.5
0.7 0.2 99.9 55.9 36.1 24.8 92.2 92.9 92.1 91.8
T =500 0.1 0.2 51.6 8.9 4.6 4.0 34.3 20.9 31.5 36.2
0.1 04 51.9 9.2 4.6 4.1 36.0 21.7 32.8 37.1
0.1 0.6 54.8 9.9 5.0 4.1 37.1 23.5 34.9 39.1
0.1 0.8 64.0 12.2 5.1 4.2 44.9 28.7 42.8 47.7
0.3 0.2 99.2 44.6 17.0 7.6 91.6 75.4 90.6 91.8
0.3 04 99.1 51.4 21.0 10.0 934 80.2 92.5 93.7
0.3 0.6 994 61.1 33.4 17.4 93.9 89.3 94.1 94.5
0.5 0.2 100.0 78.1 45.5 24.4 98.7 95.9 98.6 98.6
0.5 04 100.0 72.4 48.0 31.2 98.4 98.8 99.0 98.8
0.7 0.2 100.0 75.3 50.9 35.1 994 99.4 99.2 99.2

Note: Rejection frequencies at 5% significance level using asymptotic critical values for series generated by (24)-(27) with
#=0,0=0,w=1—a— . Additive outliers are added with probability 0.05. The table is based on 1000 replications.
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Table 3: Tests for ARCH in French industrial production

q £ (R
1 20.172(0.000) 1.226(0.268)
2 27.079(0.000) 3.002(0.223)
3 37.052(0.000) 3.095(0.377)
4 37.525(0.000) 3.538(0.472)
5 37.700(0.000) 6.048(0.302)
6 38.152(0.000) 4.321(0.633)
7 39.074(0.000) 4.696(0.697)
8 39.206(0.000) 4.669(0.792)
9 39.624(0.000) 6.390(0.700)
10 39.593(0.000) 6.961(0.729)
11 39.690(0.000) 6.071(0.869)
12 39.812(0.000) 5.937(0.919)

Note: Sample period is 1961(i)-1987(iv). The tests are
applied to the residuals of an AR(1,4,5,8,9) model for
quarterly differences of the French industrial produc-
tion index. Asymptotic p-values of the LM test are
given in parentheses.
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Table 4: Spanish peseta/US dollar exchange rate

Summary statistics

Mean
Median
Std. dev.
Skewness
Kurtosis
Minimum
Maximum

-0.045
-0.108
1.545
0.964
7.806
-4.423
10.743

Autocorrelation of squared observations

Lags Lags
1 0.020 11 0.015
2 0.045 12 0.003
3 0.089 13 0.019
4 0.012 14 0.008
Y 0.052 15 0.003
6 0.008 16 0.011
7 0.035 17 —0.006
8 0.041 18 0.003
9 -0.027 19 —0.007
10 -0.017 20 0.087

Note:

Standard error of autocorrelations is 0.044.

LM test for ARCH

q £ (R
1 0.195(0.659) 2.131(0.144)
2 1.240(0.538) 9.176(0.010)
3 5.204(0.157) 13.647(0.003)
4 5.253(0.262) 16.572(0.002)
5 6.228(0.285) 16.694(0.005)
6 6.210(0.400) 16.635(0.011)
7 6.719(0.459) 17.520(0.014)
8 7.213(0.514) 17.606(0.024)
9 7.743(0.560) 21.869(0.009)
10 8.132(0.616) 21.847(0.016)
1 8.193(0.696) 92.605(0.020)
12 8.168(0.772) 24.462(0.018)
13 8.356(0.820) 24.659(0.026)

Note: Sample period is 1/8/1986-12/27/1995. Asymptotic p-values

of the LM test are given in parentheses.
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Figure 1: Non-centrality parameter of LM test for ARCH in the presence of AO’s

n=0.01 n=0.05

1020 30 40 50 60

Note: Expected values of the numerator of the noncentrality parameter of the asymptotic distribution of
the OLS-based LM test statistic for ARCH(1) applied to the residuals of an AR(1) model, given in (10)
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Figure 2: French industrial production: seasonal differences and weights
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Note: Quarterly differences of French industrial production index, 1961(i)-1987(iv) (left panel) and weights
obtained from robust estimation of autoregressive model containing lags 1,4,5,8 and 9 (right panel).
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Figure 3: Spanish peseta/US dollar exchange rate: weekly returns and weights
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Note: Weekly exchange rate returns for the Spanish peseta versus US dollar, over the period 1/8/1986 until
12/27/1995 (left panel), together with weights assigned by robust estimation of drift term (right panel)
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