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Motion Learning in Variable Environments
Using Probabilistic Flow Tubes

Shuonan Dong and Brian Williams

Abstract— Commanding an autonomous system through
complex motions at a low level can be tedious or impractical for
systems with many degrees of freedom. Allowing an operator to
demonstrate the desired motions directly can often enable more
intuitive and efficient interaction. Two challenges in the field of
learning from demonstration include (1) how to best represent
learned motions to accurately reflect a human’s intentions, and
(2) how to enable learned motions to be easily applicable in
new situations. This paper introduces a novel representation
of continuous actions called probabilistic flow tubes that can
provide flexibility during execution while robustly encoding a
human’s intended motions. Our approach also automatically
determines certain qualitative characteristics of a motion so
that these characteristics can be preserved when autonomously
executing the motion in a new situation. We demonstrate
the effectiveness of our motion learning approach both in
a simulated two-dimensional environment and on the All-
Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE)
robot performing object manipulation tasks.

I. INTRODUCTION

Today, most space robots are directly operated using
manual command sequences. While manageable for simple
robots, this approach is tedious when controlling robots with
many degrees of freedom, such as NASA JPL's ATHLETE
(All-Terrain Hex-Limbed Extra-Terrestrial Explorer), which
has 36 independent joints [1]. Currently, operators can either
use low-level joint angle commands or choose among a
handful of pre-programmed higher-level tasks. Attempting to
pre-program all possible tasks is unreasonable on such com-
plex robots. Our solution is to introduce a motion learning
approach that uses teleoperated demonstration. The problem
of motion learning is to summarize several demonstrated
samples of a motion into a generalized representation, which
then can be used to autonomously perform the motion in new
situations.

Many researchers have investigated different aspects of
learning from demonstration [2]. For example, learning
human-taught policies has proven useful in domains of
underactuated pendulum control [3], autonomous helicopters
[4], and vehicle navigation [5]. We are interested in manip-
ulation tasks, where interaction with objects in the environ-
ment becomes important. Our approach is inspired by exist-
ing work in learning manipulation tasks from demonstration.
Peters and Campbell [6] taught the humanoid Robonaut to
grasp a tool by time-normalizing and averaging demonstrated
motions. Their work showed that learning from teleoper-
ated demonstrations is an attractive approach to controlling
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complex robots. With a more robust motion representation
and better adaptability to new situations, this type of ap-
proach will be compelling for a wider range of applications.
Researchers at USC [7], [8] modeled learned motions as
a spring system described by differential equations with
parameterized start and goal locations. In contrast, Miihlig et
al. [9] chose to abstract the demonstrated time-series data in
task space with Gaussian Mixture Models. Calinon et al. [10]
model motions as a mixture of Gaussian Mixture Models
and Bernoulli distributions that captures both spatial and
temporal aspects of a motion. Inspired by these approaches,
our work introduces a new representation that can faithfully
capture important features of a human’s demonstrated mo-
tion, without prior knowledge of the motion’s distinguishing
characteristics.

Our approach encodes a motion using a novel represen-
tation called a probabilistic flow tube, defined in the next
section. Constraint-based flow tubes have been used in the
context of planning and execution with continuous motions,
to represent sets of trajectories with common characteristics
[11], [12]. A flow tube defines a state region where valid
trajectories of a motion can be feasibly achieved given con-
straints on the system dynamics. We incorporate this concept
into motion learning by introducing a probabilistic version of
a flow tube, computed by inferring the desired state region at
each time step from human demonstrations. Geometrically,
the breadth of a probabilistic flow tube represents flexibility
in the robot’s desired movement, enabling it to optimize
additional performance criteria or recover from disturbances.
We choose the probabilistic flow tube representation because
it models motions close to how humans do, since they are
directly based on human-generated trajectories. For robots
designed to work in the field with other humans nearby,
such as in the case of ATHLETE, it is important that any
autonomous behavior should be executed in a way humans
expect, and not in a way that could cause alarm for the
human, even if it means executing a less optimal behavior.

We also introduce the ability to automatically determine
relevant variables of a motion directly from observed training
sequences, so that the motion’s relationship to these variables
can be preserved when autonomously executing the motion
in a new situation. For example, a motion to “put the
block in the bin” is described by variables specifying the
locations of the block and bin, whereas a motion to “move
two feet to the left” is described by variables specifying
distance and direction, unrelated to positions of objects in
the environment. Our problem is similar to that of task
space selection [13], although instead of the human-robot
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correspondence problem, we are more interested in detecting
what relevant features, if any, exist in the environment, and
when they become relevant in a motion.

In the remainder of the paper, we describe the input data
used in our approach, formalize the problem we address, and
discuss the effectiveness of our approach both in a simulated
environment and on the ATHLETE robot.

II. OBSERVED STATE SPACE

In our experiments, the correspondence problem between
a human operator and a robot is handled by allowing the
human to demonstrate desired motions through teleoperation.
However, our approach is not limited to this kind of inter-
action, because we choose to work in task space, tracking
only the positions and interactions of points of interest in
the task, defined as the robot end effector, objects, and
other notable features in the environment. Therefore, any
system with suitable sensing capabilities, such as vision or
motion capture, and inverse kinematics control for trajectory
following [14] can also utilize our approach.

Each point of interest has a state, which may include
location x and orientation 8. We model the world seen by the
system as the set of these states, which we call “environment
states.” Demonstrated motions are captured by the evolution
of environment states through time, and information about
when the points of interest make contact with one another.
Contact information can be either obtained directly from
sensing such as force feedback or derived from the positions
of the points of interest, which is also applicable for non-
teleoperated systems with other sensing capabilities. For the
tasks discussed in this paper, it is sufficient to track only the
contact variable ¢ € {0,1} between the robot end effector
and other points of interest.

Given B points of interest in an environment and the
state vector s, = [x,0,¢| of each point, the full recorded
environment state at each time step n during demonstration
is S, =[s1,.--,Sp,...,Sp]. An observed training sequence
is then S = [S?...,Sg...,S%]?

III. PROBLEM STATEMENT

The inputs to the motion learning problem are:

o A set of D demonstrated training sequences correspond-
ing to a desired motion, S = {S;,S5...,Sp}, which
captures the environment states of B points of interest
over time. No assumptions are made regarding the
similarities of the initial states of the training sequences.

o A new environment state Spew = [S1,-..,Sby.-.,SB]
capturing the new states of the same points of interest.
This specifies the initial environment in which the robot
should autonomously execute the learned motion.

The system outputs the learned motion represented as a
probabilistic flow tube defined by the following:

o A trajectory sequence of the robot end effector

X1 0, C1
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Seff =
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o Covariances at each corresponding time step
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IV. MOTION LEARNING APPROACH

Our motion learning approach is summarized in Algo-
rithm 1. First, it determines the important features or relations
in the demonstrated motion, which we call motion variables
(vars). Then it uses the training sequences S to create a
probabilistic flow tube (s.sr, Xcss) that abides by the same
relations (vars) in the new environment (.S,,c.,).

We now proceed to describe each of these steps in detail.

A. Identifying Motion Variables

A key feature of our learning system is the ability to
autonomously determine what features or relations, if any,
are characteristic of a particular demonstrated motion. We
use the general term motion variables to describe qualitative
features of a motion. The basic idea behind motion variable
identification is that the variables relevant to the motion
are preserved over different demonstrated trials, while other
variables of the motion can vary due to changes in the
environment or the human’s movement.

For example, if the desired task is “move box to bin,”
the demonstrated sequences will reveal a pattern where the
robot end effector first moves to the location of the box and
makes contact with it, then moves to the location of the
bin and breaks contact with the box. The system will learn
that the distance between the robot effector and the box is a
relevant motion variable indicating when to close the gripper,
and that the distance between the robot effector and the bin
is a relevant motion variable indicating when to release the
gripper. The system will also learn that the positions of any
other objects known in the environment are not relevant to
this motion.

In the implementation described here, we consider as can-
didate motion variables the (nontrivial) absolute or pairwise
relative positions or orientations of all points of interest at
all changes of contact. As an example, a motion that moves
an object two feet to the right has two relevant variables:
the initial location of the object (the absolute state at which
the robot effector makes contact), and the relative movement

Algorithm 1 LEARNPFT (S, S,cu)

1: vars < IDENTIFYMOTIONVARS (S)
2: (Seff, Zesf) < MAKEPFT (S, Spew,vars)




vector (the relative displacement from the initial state at
which the effector breaks contact).

After identifying locations of candidate motion variabes,
we use clustering to determine if patterns exist across differ-
ent training samples for each candidate. A narrow spread
in the values of a motion variable across many training
samples indicates that the variable is relevant to the motion.
Algorithm 2 describes the details of the approach.

The input is a set of D demonstrated training sequences
corresponding to a motion, {S1,S2...,Sp}. Lines 1-5 then
determine the key time steps in the motion: in our examples,
these are time steps when the robot makes or breaks contact
with an object. Figure 1 illustrates two demonstrations of a
motion where the robot effector makes contact with an object
and breaks contact some time later, as might occur in a pick-
up and drop-off action. For illustration purposes, suppose the
contact changes at time steps 2 and 8 in demonstration 1, and
at time steps 3 and 12 in demonstration 2. Assume demo 1

has a total of 20 time steps, and demo 2 has 25. Then ac-
1 2 8 20

1 3 12 25

We next determine if there are patterns in the extracted
environment states at key time steps that indicate relevant
motion variables. In our examples, we restrict candidate
motion variables to relative positions x and orientations 6
between an object (denoted obj) and the robot end effector
(denoted ef f) at key time steps (denoted «, 3).

Using data gathered from the demonstrated sequences, our

cording to our algorithm, keyTimes =

Algorithm 2 IDENTIFYMOTIONVARS (S)
Input:

S, set of demonstrated sequences {Sy : d =1..D}
Qutput:

vars, set of motion variable record entries (initially )

1: ford=1to D do

2. keyTimes (d) < {1,length (Sq)}

3. for n =2 to length (Sy) do

4: if Sy (n).contact # Sy (n — 1) .contact then
5: Add n to keyTimes (d)

6: for i,j € cols (keyTimes) and obj € all objects do
7. a={keyTimes (d,i):d=1..D}

8: B ={keyTimes(d,j):d=1.D}

9: A= {Sd (Oéd) d= ].D}

10: B = {Sd (ﬁd) id = 1D}

—_

(Pabss Xabs) < FITGAUSS (A.xc5f)

12:  if max (eig (Zaps)) < € then

13: Add [“abs”, piaps, ] to vars

14: <,U,0bj, Eobj) < FITGAUSS (A.Xeff — A.Xobj)
15:  if max (eig (Xop5)) < € then

16: Add [“relobj”, fiop5, 7, 0bj] to vars

170 (prel, Lret) < FITGAUSS (AXcpr — B.Xeyy)
18:  if max (eig (Ere1)) < € then

19: Add [“relmot”, fiye;, 1, j] to vars

20:  {and similarly for orientation (6)}

Effecter motion

\a/\ﬂ/\/

Demo 1

Contact info

Demo 2

Fig. 1. Motion variable identification

Algorithm 2 checks for consistencies, over all the sequences,
of the following types of candidate motion variables:

e Absolute motions (lines 11-13), such as “move to the
origin,” or “orient gripper down,”

o Motions relative to an object (lines 14-16), such as
“move to the box,” or “point camera at the box,”

e Motions relative to the robot (lines 17-19), such as
“move two feet to the right,” or “rotate 30° clockwise.”

We determine which of the parameters listed above are
statistically similar over the different training sequences by
fitting a Gaussian (u, 2) for each parameter at corresponding
key time steps over all the trials. Resulting Gaussians with
very narrow spread, i.e. maz (eig (X)) < e, indicate that the
motion variable in question is relevant. Figure 2 visualizes
the process of determining the relevance of the variable
(Xesf — Xpin) at different key time steps for a “move object
to bin” motion.

B. Data Processing and Flow Tube Generation

After identifying the motion variables, we know which
points of interest in the environment are relevant to the
motion in the new situation. The next step is to process the

Locations at contacts (Xof %) At start contact  (x X, ) at end contact
10 10
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Fig. 2. Clustering identifies motion variables for a “move object to bin”
motion. Left: robot and bin locations at the change-of-contact points for

each demonstration. Middle: values of the variable (xg‘f - xg‘m> at the
start of contact—the large spread indicates low relevance. Right: values of

Xefrf — xfm at the end of contact—the narrow spread indicates that
this variable is relevant to this motion.
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training data into a format with which we can create the
probabilistic flow tube. Algorithm 3 describes this process.

The algorithm can be summarized intuitively in the fol-
lowing steps, with numbers corresponding to the illustrations
in Figure 3:

1) Given the relevant motion variables: In Figure 3, we
have identified that the locations of the box and bin
are relevant.

2) Extract relevant states in new environment (line 1):
During autonomous execution of the demonstrated task
in the new environment, we assume the system can use
sensing to determine the new environment states. This
step simply extracts those states that are relevant based
on the identified motion variables. In the example, the
system will examine the new scene and extract the
locations of the box and bin using sensing.

3) Gather similarly initialized demonstrations (line 2):
Identify a subset of the demonstrated data sequences
that have a relevant initial environment most similar
to the new situation. In the example, the system will

Algorithm 3 MAKEPFT (S, Sy ew,vars)

Input:
S, set of demonstrated sequences {S;: d = 1..D}
Snew, @ NEW environment state

QOutput:
Seff, trajectory sequence of robot end effector
3.y, covariances at each corresponding time step

1: S/ .., + EXTRACTRELEVANTSTATES (Sycq, vars)

2: 8’ C S + SIMILARINITCONDSEQS (S, S),..)

3: 8" - NORMALIZESCALEROTATE (S’ vars, S),..,)

4 Seff S (1) Seff

5: for d=2to D do

6: W < DYNAMICTIMEWARP (scff,S” (d) .Scfs)

7 Sepr b Sl(d— 1) sepp (Wer) 87 (d) Seps (W)
8: for d=1to D do

9: W < DYNAMICTIMEWARP (s.f,S” (d) .Scrs)

10: Sq < S (d) Seff (W:’Q)

—
—_

s'q <= INTERPOLATE (Sg4, length (scff))
for n =1 to length (scyy¢) do
3esr(n) < COVARIANCE{s'q(n):d=1..D}

_

Illustrated steps of our approach with three demonstrations of the “move the box to the bin” task in our two-dimensional simulation environment

select a subset of demonstrations in which the relative
initial positions of the box and bin are most similar to
those in the new situation.

4) Normalize demonstration sequences (line 3): Normal-
ize the selected subset of demonstrated data sequences
to fit the values of the motion variables for the new
situation. In the example, the system will scale and
rotate the data sequences so that the robot end effector
location upon initial contact with the box matches the
box location in the new situation, and the effector
location upon releasing contact with the box matches
the bin location in the new situation.

5) Generate flow tube (lines 4-13): Temporally match all
the space-normalized sequences, and create a proba-
bilistic flow tube to be used for autonomous execution.
This is accomplished through the use of dynamic time
warping, which we discuss next.

We use dynamic time warping (DTW) [15], [16] to tem-
porally match observed sequences. Intuitively, dynamic time
warping temporally deforms two sequences to minimize the
overall difference between them. The basic algorithm takes
two recorded state sequences R = [Ry, R .. .,Rm]T and
S=1[5,5..., S"}T, and creates an m x n local cost matrix
with entries containing the pairwise distances between all
the data points in both sequences, c¢;; = |R; — Sj\, where
ie{l...m}and j€{1...n}.

Any temporal matching of the two sequences corresponds
to a traversal of the cost matrix from the element matching
the origin of the two sequences, c;;, to the opposite corner,
Cmn- Thus the problem of finding the best temporal matching
reduces to finding the traversal of the cost matrix that results
in the least total cost. Dynamic programming is employed
to find this optimal matching by computing the minimal
cumulative cost:

00, ifi=0o0rj=0
Cij, if Z,j =1
Ci,j = Ci—l,j—l
cij +min¢ Ci_y , otherwise
Cij—1

The minimal cumulative cost at the last entry, C', ,,, is the
minimal total cost, and the path taken to achieve it reflects
the best matching between the two sequences. If the two
sequences are very similar, the traversal of the cost matrix



will be near diagonal. This optimal matching is represented
as a p X 2 matrix w containing the indices of R and S such
that R (w; 1) is aligned with S (w;2), where p > m,n is
the number of elements along the matched path.

Using dynamic time warping, we can determine the mean
of two trajectories R and S as 3 (R(w;1) + S (w;2)).
Referring back to our set of normalized demonstrated se-
quences §” in Algorithm 3, we can iteratively compute a
representative mean sequence using this procedure (lines 4-
7). This is the output trajectory sequence of the robot end
effector s.zy.

The demonstrated sequences may have different numbers
of data entries, so we use dynamic time warping again
to temporally match each of the normalized demonstrated
sequences in S” to the mean sequence s. sy, and interpolate
so that all have the same number of data entries (lines 8-11).
Finally, we compute covariances at each corresponding time
step across the temporally matched normalized demonstrated
sequences (lines 12-13).

V. EXPERIMENTAL RESULTS

We first tested our approach using a two-dimensional
simulated environment, and later demonstrated the system
working on the All-Terrain Hex-Limbed Extra-Terrestrial
Explorer (ATHLETE) robot. For simplicity, we employed
only the position component of each environment state.

A. Two-dimensional Simulation Results

In our simulated environment, there are three entities: a
red box, a green bin, and a stationary location marked z.
The box and bin are positioned at random locations, while
the x always marks the fixed location (5,5). A user can
teach a motion by moving the mouse around in the region.
Pressing and releasing the mouse button simulates gripping
and releasing an object if one is present. The user labels each
demonstrated sequence with the name of the motion.

In our first experiment, we taught the system three dif-
ferent motions: “move the box to the bin,” “move the box
left one unit,” and “move the box to x.” During each
demonstrated trial, the box and bin locations were randomly

EL)
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Fig. 4. Example output for three different types of motions. Black lines
show mean flow tube trajectory and blue lines show covariances. Compare
with red lines that show demonstrated trajectories for these test cases.

generated. Fifty demonstrations generated by two users were
recorded for each motion. In our experiment, 30 randomly
chosen demonstrations of each motion were used for training,
and the remaining demonstrations were used for testing.
Figure 4 shows some example results.

As seen in Table I (top), of the 60 test scenarios, our sys-
tem correctly classified the human input with 93% success.
This demonstrates the ability of our approach to recognize
motions without prior knowledge of the motion type.

TABLE I
CLASSIFICATION OF 20 INPUT TEST SEQUENCES USING PROBABILISTIC
FLOW TUBES (PFT) AND GAUSSIAN MIXTURE MODELS (GMM).

User inputs

Classified as || Move to bin | Move left | Move to
Move to bin 20 0 3

E Move left 0 19 0
Move to x 0 1 17

S Move to bin 15 4 0

> Move left 3 11 13

O Move to x 2 5 7

B. Comparison with Prior Art

We also compared our approach to a recent approach by
Miihlig et al. [9]. Miihlig’s approach also uses dynamic
time warping to temporally match demonstrated trajecto-
ries, but uses Gaussian mixture models (GMM) to describe
learned motions. These GMMs are generated using Expec-
tation Maximization with a Bayesian Information Criterion
to determine the optimal number of Gaussians. Miihlig’s
approach assumes prior knowledge of the type of motion;
for comparison purposes, we used our algorithm for motion
variable identification, and then normalized all trajectories to
the appropriate start and end positions before applying the
GMM. Table I (bottom) shows the results of this approach
using the same motion data as in the previous section. This
approach correctly classified 75% of the human’s “move box
to bin” input sequences, and averaged 55% success over all
three motions. These results indicate that probabilistic flow
tubes can offer a more useful representation than GMMs for
recognizing these types of motions.

The GMM representation suffers particular drawbacks in
cases where temporal ordering of a motion is important,
since it is computed based on spatial coordinates alone.
For instance, GMMs cannot distinguish a clockwise circular
motion (such as winding a cable) from a counter-clockwise
motion (unwinding), since they occupy the same spatial

10 10

-
EoNs
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Fig. 6. Example output of an “encircle bin clockwise with box” motion.
Left: our probabilistic flow tube approach. Right: GMM approach.



Fig. 5.

region. Figure 6 compares the GMM representation of such
a learned motion with our probabilistic flow tube represen-
tation, which incorporates temporal ordering information.
In this example, our approach recognized the direction of
motion in all test cases, while the GMM approach performed
only slightly better than random chance.

C. Hardware Demonstration

We demonstrated our motion learning capability on the
ATHLETE robot at NASA JPL. Designed to support future
planetary surface missions, ATHLETE can roll or walk over
rough terrain, and load, transport, manipulate, and deposit
payloads. While manually commanding ATHLETE through
complex tasks can be extremely tedious, our approach will
allow operators to teach the robot desired motions. While
teaching, an operator uses an interface device called the Tele-
robotic ATHLETE Controller for Kinematics (TRACK) [1]
to teleoperate the robot.

The task in our experiment was to pick up a large box
and move it to the top of a platform. We demonstrated the
motion 5 times, each with different initial positions of the
box and platform. Figure 5 shows the robot autonomously
executing the learned motion given new initial positions.

VI. CONCLUSION

We have presented an approach to learning complex
physical motions from human demonstration using two key
ideas: (1) the relevant variables of a motion can be automati-
cally determined through statistically analyzing demonstrated
sequences, and (2) a probabilistic flow tube representation
enables a more useful description of these demonstrations.

In future extensions of this work, we will investigate
more complex spatial properties of demonstrated motions;
for instance, how to determine if a trajectory is “avoiding”
an object. Using only contact information as the cue to
determining motion variables does limit automatic variable
identfication to motions where the robot has clearly changing
interactions with the environment. Exploring other attributes
of a motion that can augment variable identification is an
interesting area for future research.

ATHLETE executing a learned motion in a new situation
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